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Preface

Ludwig Prandt! [1] a German flid dynamust gave the concept of the boundary layer
theors 1n 1904 He proposed that the flow of a real fluid around objects (1e sohd bedies) could be
divided into tw o regions a thin region {or layer) near to the object called the boundury layer where
the effects of viscous forces are important and an cuter region where the cifects of viscosny may
be neglected The simplest example of the apphication of the boundary layer 1 afforded by the
flow along a very thin flat platc Historically this was the first example iilustrating the application
of Prandu’s boundary taver thcory Blaswus [2] discussed this problem in detarl in his doctor’s
thesis at Goetungen in 1908 The boundary layer problems are modeled through Navier Stohes
equations The governing partial differential equations are solved directls or by transforming them
into some wonsenient forms  The obtained difterenuial equations are solved by (wo different
approaches, the first one 1s analytical and other one 1s numerical approach Dunng the study of the
boundary layer, oftenly we deal with such complicated problems whose exact solution 15 very
hard 10 tind Therefore approximate methods such as perturbation inethods numencal methods
and ntegral methods are always of our micrest Because of less limitations in gecometry and
boundary conditions, the integral methods are appropriate and suitable to obtain the diredt

analyucal solution

These mtegral methods are based on the momentum ntegral equation devcloped by Th
von karman [3] m 1921 To solve the two dimensional boundary layer equations K Pohlhausen
[4] ntroduced an integre! method know n as Pohlhausen method after his name This method based
on the momentum mtegral equation and quartic lorm ot velocits profilc was tound to give good
results 1n non retarted flow but give less satsfactory result in retared region as first noticed by
Schubaucr in his expenimental study ot flow past an clhiptical ¢y linder Soon after the approximate
method of Karman and Millikan [5] tn which the boundary layer was divided into inner and outer
regions with separate solutions was apphed to Schubaucr’s ellipse with reasonable success Bryan
Thwaites [6] ntreduced and integral method 1n which he used some suitable correlations betw cen
boundary layer parameters tnstead of velocity profile N Curle [9] used quintie veloety profile to
modity the Karman-Pohlhausen method Attempts were subsequently made to secure miprosed

aceuracy of Kamuan-Pohlhausen method by assunung o more adequate form of the veloaly



profiles by Wat/ [10], Mangler [11] and T'mman [12] Yuan [13] and Lew [14) used exponential
function hike 1mman's [12] velocity profile [ onsianskn [15] mtroduced a new method in which
he multiplied the momentum integral equation by o small vanation of vclocity and then integrating
the cquation across the boundary laver thickness Iwo-parameter integral methods were
introduced by Sutton Wieghardt and Head [16-18] Sakiadis [19] proposed an integral method to
iy estigate the boundary layer behasior on continuous sohid surfaces The von Karman-Pohlhausen
method was modified to account for suction and mjection by Tox [20] This method gives
acceptable values of the tranafer coeffictent for heat, mass and momentum transfer for most of the

values considered

In thts thesis a brief introduction 1o integral methods and their histonical background has
been discussed Different forms of integral methods in the perspective of their applications have
been presented Also integral method particularly method ot Thwaites 15 utilized 10 obtan the
solution ol the non-similar flows past a fat plate and sphere [t 1s important to note that the solution
obtamed from aforemenuoned method agrees well with other methods Specially in the calculation
ol separation potntin Howarth s retarded flow  the percentage error 15 almost 2% and m the case

of retarded Nlow past a sphere it 1s §%6 which show the validity of present integral method

Thas dissertation 1s divided into three chapters Chapter 1 contains the definition and basic
concepts related to boundary layer and mtegral methods In chapter 2, some prominent and
extensnvely used mtegral methods have been reviewed In chapter 3 the well-known mtegral
method. namely Method of Thw artes, has been utilized in the determination of the flow separauon

ol Howarth's retarted {low and flow separation over a sphere
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Chapter 1
Introduction and Basic Definitions

1.1 Introduction

By the end of mneteenth century, there were two major groups of researchers in fluid mechanics
First group of researchers was engaged with inviscid fluid flow while the other group was studying
hydraulics Hydrodynamics, though mathematcally clegant. was unable to predict drag
expenenced by bodiecs moving n fluids This 1s known as D'Alembert’s paradox On the other
hand, the solution of practical problems offered by hydraulics were based on mainly cmpirical
data Ludwig Prandtl changed this situation by giving the concept of boundary layer [n august
1904, Prandtl presented his revolutionary concept of boundary fayer through his paper cntitled
“Uber Flussighetsbewgung bei sehr Kleiner Reibung” before a group of mathematicians and
scientists, gathered at the third international congress of Mathematics held in Heidelberg In 1905,

the paper presented by Ludwig Prandtl, was published in the procecdings of congress

With the help of this theory, Prandtl succeeded to prove that the flow about a solid body can be
categonized in to two regions a thin layer in the neighborhood of the body (boundary layer) where
the effects of viscous forces are important and friction plays an essential part and the remaiming
region outside the layer, where fnction may be neglected 1 ¢ the flow can be considered as iny 1scid
outside the boundary layer, while viscous cffects stay confined within the boundary layer Thus
Prandt] pomied out the impontant and significant role of viscous forces, no matter how small they
are, n the determination of the flow Boundary layer can develop on the objects ol different
shapes An infinitely long flat plate along which a viscous incompressible (luid flows, 1s the
simplest geometry on which boundary layer 1s developed Near the leading edge of plate the flow
in the boundary layer exhibits all characteristics of lammar flow The boundary layer thickness at
the leading edge 15 zero and 1t grows continuously towards the rear end of the plaic When the
pressure increases or surface 1s ighly curved the boundary layer structure would be more complex
In such case the boundary layer may detach from the surface a phenomenon known as separation

and the simplified form of Navier Stokes equations no longer apphes



Mathematically, the boundary layer problems are modeled through Navier Stokes equanons The
governing partial differential equations are solved directly or by transforming them nto
differential equattons Thus differcntial equations are tackled by two different approaches, the first
one 1s the analytical and other one 1s numerical approach During the study of boundary layer,
oftenly one deals with such complicated problems that their exact solution is very difficult 10 find
Therefore. the approximate methods such as series solution method, numernical methods and
integral methods etc are always of our interest Becausc of less limitations 1n terms of geometry
and boundary condstions, the integral methods are approprate and sutable techmque to obtdtn the
direct analytical solution Tt can also be applied to both lamimar and turbulence flow situations [he
integral methods eastly provide accurate answer (not exact} for complex problems The boundary
layer equauions are usually integrated over the boundary layer thickness by assuming a profile for
velocity, temperature, and concentration, as needed The better the approximate shape for the
velocity and temperature, the better the prediction of drag force and heat transfer (fmction

coefficient or heat transfer coefficient)

Ths dissertation consists of three chapters First chapter contains the basic defimitions In second
chapter we have reviewed some promunent integral methods with their advantages and
disadvantages In chapter three we have used the well-known mtegral method, Mcthod of
Thwartes, to investigate the flow separation in Howarth’s retaricd flow and flow scparation over a

sphere
1.2 Basics Definitions

1.2.1 Fluid

A fluid 1s a substance that continuously deforms under an applied shear stress, no matter how
small that shear stress may be In simple words fluid 1s a continuous substance whose molccules
move freely past one another and that has the tendency to assumc the shape of its container, a

liguid or a gas
1.2.2 Fluid Mechanics

Fluid mechanics 1s the branch of apphed mechanics which 1s concerned with the study of
behavior of fluids (liquids or gasses) at rest or n motion Fluid mechanics 1s further divided into

three branches



1 Fluid Stancs
1 Flwmid Kinematics

m  Fluid Dynamics
1.2.2.1 Fluid Statics

Fluid statics 15 the branch of fluid mechamecs which deals with the study of flmid behavior at rest
1.2.2.2 Fluid Kinematics

Fluid kinematics 1s the branch of fluid mechanics which deals wiih the sudy of fluid movements

without considening the forces and encrgies in them

1.2.2.3 Fluid Dynamics

Fluid dynamics 1s the branch of Fluid mechanics which deals with the study of motion of fluids

or that of bodies 1n contact with fluids

1.2.3 Flow

A fluid continuously deforms when different forces act upon 1t If the deformation continuously

increases without hmitation, then this phenomenon 1s referred as flow

1.2.4 Deformation

The relative change in position or length of the fluid particle 15 called deformation
1.3 Physical Properties of Fluid

1.3.1 Density

The density of a substance 1s a measurc of mass per umit volume The symbol most olien used for

density 1s “p” and read as tho Mathemaucally, the density “p™ al any point P may be defined as

= 6—-—m 1
p= Lr-l.ju(ﬁv) '
where 6v 1s the volume clement around P and 8m s the mass of the fluid If the density of the

fluid varics then the density at a point 1s given by

[m ((Sm)
= n —-—hL
P Sv—~bv OV

where 8v 1s the small volume over which the substance can be considered as continuum



1.3.2 Stress

The force per umit arca of the surface on which its act 1s called stress It 1s designated by '™

Mathematically, the stress at any pont of the fluid 1s given by

4
o=hm (—F)
as—=0 48

where AF 15 the force acting on an element of surface area AS enclosing the point P There are
two components of stress
1 Normal Stress,

n  Tangential Siress

1.3.2.1 Normal Stress

The component of stress normal to the surface at point P 1s said to be the normal stress
1.3.2.2 Tangential Stress

The component of stress 1angent to the surfacc at point P s referred as tangential stress
1.3.3 Pressure

The amount of force acting per unit area 1s known as pressure It 1s denoted by P and

mathematically it 1s formulated as

where F 1s the normal force and A 1s the arca of the surface Pascal {Pa)1s the umit of pressurc 1n

Sl

1.3.4 Viscosity
The viscosity of a fluid 1s a measure of its resistance to deformation t ¢ resisung to a shearing {or
tangential) when the flmd 1s in motion It describes the internal fricton of moving fluid Tt s

designated by the symbol p. Mathematically it 1s given as

T Jhear Stress
W du/dx Rale of shear stram




1.3.5 Temperature

The measure of mtensity of heat 1s referred as temperature of the body Heat always travcl from
higher temperature to the lower temperature  Several scales and units are cxist for measuring
temperature The most common arc given below

1 Celsius {°C),

n Fahrenheut (*F).
n Kelvin (K)

1.3.6 Kinematic Viscosity

The ranio of the absolute viscosity p 1o the density p 1s known as kinemalics viscosity of the
fluid t 1s denoted by v Mathematically 1s defined as

v=E,
p

1.4 Types of Fluid

The fluid 1s classified into following types

t  Compressible Fluid
1 Incompressible Fluid
m  Invisceid Flud
v Ideal Flud
v Real Flud

1.4.1 Compressible Fluid
A ftwid i which the density p vanes sigmficantty with in the flow field whenit1s subjected to

high pressure gradient, 1s called compressible fluid Gases arc considered as compressible fluid

1.4.2 Incompressible Fluid

A fluid in which the density p remains constant 1s known as incompresstble flwd It can also be
stated as 1f a fluid requircs a large variation in pressure to produce some appreciable varnation 1n
density such fluid 1s called mmcompressible fluid All hquids are often referred as incompressible

fluids



1.4.3 Inviscid Fluid

A flurd which 1s assumed 10 have no viscosity p 1s called inviseid fliid With zero viscosity the
fluid offers no iternal resistance to change 1n shape 1 e dcformanon No natural fluid 1s inviscid
all fluid possess a certamn degree of viscosity. but in many cases, for example, with water and arr,

the viscosity 1s very small and to the reasonable degree of accuracy be treated as mviscid lutd

1.4.4 Ideal Fluid

A flurd which 1s both mviscid and incompressible 1s called an 1deal {or perfect) Mud

1.4.5 Real Fluid

A real flurd 1s one which has fimite viscosity and thus can exert 2 tangential (or shearing) stress

on a surface with which 1t 1s 1n contact
1.5 Classification of Fluid

Fluid can be classified into following two groups

1 Newtoman Fluid

| Non-Newtoman Fluid
1.5.1 Newtonian Fluid

Newtonian fluid 1s a flusd which satisfies the Newton's law of viscosity In such type of fluid the

shear stress 1s hnearly proportional to the velocity gradient
1.5.2 Non-Newtonian Fluid

A fluid which does not satisfy the Newton's law of viscosity 1s known as non-Newtonian fluid In
this case, the shear stress 1s non-lincarly proportional to the velocity gradient Mathematically it s

described as

du
T= k(@)"- (11)

where k mdicates the consstency index which describes the consistency of fluid and n indicates
the flow behavior index which describes a measure of how fluid differ from a Newtonian flud

For k = u and n = 1 equanion (1 1) reduces to the Newton's law of viscosity



1.6 Types of Flow
There are different types of flow which arc discussed below
1.6.1 Compressible Flow

The flow of a compressible (luid (1 ¢ for which the density does not remain constant} 1s known

as compressible flow
1.6.2 Incompressible Flow

The flow of an incompressible flurd (1 ¢ for which the density remains unchanged throughout the

fluid) 1s referred as mcompressible flow
1.6.3 Uniform Flow

A flow 1s said to be umiform when the velocity vector as well as other hydrodynamic parameters
remain unchanged from pomnt to pornt 1n the flud For a uniform flow, the velocity 15 a function

of time only, which can be expressed in Eulenan description as
VvV =V({)
1.6.4 Non-Uniform Flow

A flow in which the fluid properties (veloeity. density, pressure ctc } change from point (o point

15 referred as non-uniform flow

1.6.5 Steady Flow

A flow 10 which the velocity vector and other fluid properties at every pont in a fluyd does not

change with time so that the flow pattern depend on time change 1s called steady flow,1¢
a
—()=0

1.6.6 Unstcady Flow

A flow 1n which fluid properties and conditions at any point in flmd change with time 18 known

as unsteady flow, 1 ¢

d 0
E()*



1.6.7 Laminar Flow

The flow of a fluid when cach particle of the flud follows a smooth path, paths which never
interfere with one another One result of laminar flow 15 that the velocity of the fluid 1s constant at

any point in the fluid The flow of air on air craft wing 1s an example of laminar flow
1.6.8 Turbulent Flow

A flow in which the fluid particle moves 1n irregular manner in all direction 1s known as turbulent
flow In turbulent flow the speed of the fluid at a pont 1s continuously undergong changes in both
direction and magmtude The blood flow mn arteries and o1l transport 1n pipelings arc common

examples of turbulent flow

1.6.9 Ideal Flow

The flow of 1deal fluid (1 e 1nviscid and incompressible fluid) 1s called 1deal flow
1.6.10 Internal Flow

A flow for which the fluid 1s confined by a surface 1s called 1mernal flow The flow 1n a pipc 18

an example of mternal flow
1.6.11 External Flow

An external flow 1s a flow which occurs over the bodies immersed 1n an unbounded fluid The

flow over airfoils, ship hulls and over turbine blades arc examples of external flow
1.6.12 Irrotational Flow

Such type of flow 1n which the fluid particles do not rotate about their own axes 1s known as

irrotational flow The condition for an irrotationdl flow 1s

va =0
1.6.13 Rotational Flow

A flow 1n which the fluid particles rotate about their own axes 1s called rotational flow The

condition for rotational flow 15

UxV =0



1.6.14 One-, Two -, and Three-Dimensional Flows

A flow can be classified as one-, two-, and three- dimensional flow depending on the number of
space coordinates A flow 1s said to be one-dimensional flow 1f the fluid properties are depending
only on one space coordinate The flow across a duct ts an example of onc-dimensional flow A
flow in which the flow parameters vary in the direction of flow and 1n one direction at right angles
to this direction 1s called two dimensional flow The Now betwcen two non-parallel flat plates 1s
considered as two dimensional flow A flow in which the velocity field and other hydrodynamic
propertics are functions of three spacce coordinates and for time 1s referred as three dimensional

low The flow of air on the wing of an airplane 1s an example of three dimensiondl flow

1.7 Basic Definitions used in Integral Methods
1.7.1 Boundary Layer Thickness
Boundary layer thickness 1s the distance from the surface to the point on normal direction where
the fluid velocity u equals 99% of the free stream velocity Itis designaied by 8 Mathematically
1t can be given as

8 = Y(u=099v,)

Where U/ denote the free stream velocity

1.7.2 Displacement Thickness

It 1s defined as the distance by which the external potential flow 1s displaced outwards due to the
decrease in the velocity in the boundary layer Itis denoted by 8, Mathematically, it 1s
cxpressed as

®

= [ (1-2)er=[ (1-g)e

Sinceaty = 8, u = Ug therefore the integrand vamishes 1 € £cro fory=z4d

1

1.7.3 Momentum Thickness

Moment Thickness 1s the distance from the surface such that momentum f{lux corresponding to

frec stream velocity through this distance 1s equal to the loss in momentum due the formulauon of



boundary layer It represents the reduction in momentum, 111§ denoted by 8,,, Mathematically, 1t

1s represented as

bn= [ (1- L)y = [ o (1- )
= — —_—— y = —_ -—— ¥
"oy Us Us o Us Us
Sinceaty = 8, u = U, . therefore the integrand 1s zero for y = é

1.7.4 Shape Factor

Shape factor 1s the ratio of displaccment thickness and momentum thickness It 1s denoted by H

and mathematically formulated as

It describes the nature of flow

1.7.5 Skin Friction

The friction between a moving fluid and its enclosing surface 1s known as skin friction
1.7.6 Skin Friction Coecfficient

Skin fricuon coefficient 1s defined as

Tw

C}- =
1 2
ipum

Where 7,, =Wall shear stress, p=Density of the fluid and U= Free stream velocity

1.7.7 Boundary Layer Separation

A phenomenon in which the fluid layer suddenly detaches from the body 1s known as separation
It occurs due to the presence of sufficient adverse pressure gradient within the boundary layer The
point at which flow leaves the surfacc 15 called separation pont At this point the shear stress or

the velocity gradient normal to the wall, 15 zero i ¢

du
= Uz Dyeo = 0



1.8 Alternative Forms of Displacement Thickness and Momentum
Thickness

Since we know that the displacement thickness and momentum thickness are formulatcd as

&

5 f (1 ")d
- - —ldy,
2] 0 US

5 -IO“(1 u)d
m= )\ T o)

Defining the non-dimensional distance from the wall as

n=x0ry=né

o i

due to which
dy = &dn
Also,
aty=0np=0andaty=6.n=1

Therefore, the displaccment thickness and the momentum thickness defined above, are modified

as below

1 u d
59_5L (I—E) n,

5 —ojl“(l “)d
m=0) U\ "0,/

respectively



Chapter 2
Review of Some Prominent Integral Methods

2.1 Literature Review

After the revolutionary concept of the boundary layer, given by Ludwig Prandtl [1] wn 1904,
Blasius [2] was the first who succeeded to obtain the expression for the boundary layer thickness

&§(x) and wall sheer stress 7,,(x) It was found that the velocity profiles were similar when plotted

u
non-dimensionally as m vcrsus% It was not possible to obtain a closcd form solution for the

velocity profile, a numencal solution was needed

The closed form solution for lamuinar boundary layers can be obtained by using approximale
methods The charactenstics and properties of turbulent boundary layer can also be determined
by the same approximate methods In this chapter we will discuss some prominent approximalc
methods (Integral Methods) which will make us able to calculate the boundary layer thickness of
tamunar and turbulent boundary layer as a function of distance along the wall The equations which
are obtained by integrating thc momentum equation 4€ross the boundary layer thickness {[romy =
0 to y = &) are very useful and simple which ymmediately provide the desired results However,
the process involves some further manipulations and construction of some new functions n order
to make the resulung mathematics compact The business of making all such efforts 15 usually
named as the integral methods The integral methods are used to calculate the boundary layer
parameters approximately Thesc methods, oftenly, are used when the equations of motion are not
sausfied everywhere in the fluid but only across the boundary layer thickness These integral

methods are based on the momenium integral cquation given by Karman (3] 1921

In 1921. Pohlhausen [4] mtroduced an integral method for the solution of two dimensional
boundary layer equations along with the pressure gradient This method was based on von Karman
momentum 1ntegral equation This method gives sausfactory results for favorable pressure
gradient w hile for the adverse pressure gradicnt 1t gives less satisfactory resulls To come over the
short commgs of Pohlhausen method, Karman and Millikan [5] developed a new mcthod

(approximate) by using von Mises transformations



Bryan Thwaites [6] introduced an approximate method, in which instead of using polynomial like

2
Pohlhausen, he used the relation between two parameters &y, ( a_u) and &, (_a_:) This
dy y=0 ay y=0a

method gives more satisfactory results than the Pohlhausen method To improve the Pohlhausen
method which 1s based on 4™ degree polynonual Schhichting and Ulrich [7] developed a method
which is based on 6™ degree polynomial The main advantage of this method was that the higher
derivation of the velocity profiles with respect to distance along the wall are obtained with the
more degree of micety as compared to the fourth order polynomial Weil [8] has apphed method
[7] to compressible flows with zcro heat transfer Curle [9] modified the Karman-Pohlhausen
method by using a quinuc velocity profile which satisfied an additional boundary condition at the

wall

Walz (10] approximated the one-parameter velocity profiles used by Hartree, 1n fractional
exponents To obtain more accurate results different methods, similarly to Pohlhausen mcthod,
have been proposed using the velocity profiles which satisfied the more boundary condihons than
the Pohlhausen quartic profile Mangler [11] used a one-parametcr family of profiles and compare

his results with exact resulis He used the following velocity profile
u
E=f(f1)=1"(1_ﬂ)n(1+aln+ﬂzqz) (21)

Timman [12] introduced a method based on momentum mtegral equation which sausties more
boundary conditions than Pohlhausen’s and Mangler's velocity profiles He used the polynomuial

of the form

=
= 1—[ exp(=n?)(a+cn* + Ydn —exp(-n¥) (b +dn*+ 1}, (22)
n

e

where 1 = % Moreover, the exponential functions like Timman's velocity profiles has also been

used by Yuan [13] and Lew [14] Loitsiansku [15] modified the Karman-Pohlhausen method by
first multiplying the momentum equation by a small vanation of velocily and then integrating the
cquation across the boundary layer thichness Sutton [16]) used the method which contains Two-
parameters He used this method to the case of 2 flat plate with zero pressure gradient. Wieghardt
[17] also developed a two-parameter integral method and utilized 1t for the different cases tlead

[18] proposed a two-parameter method which satisfied the momenium and energy equation



together with the conditions at the wall and at the outer edge of the boundary layer An ntegral
method for the moving continuous flat surface was developed by Sakiadis [19] This method s
based on the different velocity profiles and sansfied the surtable boundary conditions  Fox [20]
developed an integral method for the calculation of the boundary layer over the moving continuous
flat surface with mjection and suction This method 1s modified form of the Karman-Pchlhausen

method for the myection and suction

In this section we will discuss some prominent and most preferred integral methods to calculate

the boundary layer The following integral methods will be discussed

1 Karman-Pohlhausen Mcthod
2 Altermanve Polynomial Forms
3 Timman’s Method

4  Method of Thwaites

Since all these methods depend upon Von-Karman momentum ilegral equation Therefore, tirst
we will develop the momentum integral equation for incompressible steady two dimensional
flow and axisymmetnic flow

2.2 von-Karman Momentum Integral Equation
The boundary layer equations for incompressible, steady and two dimensional flow are given as
Momentum Equation

du  du 13p d%u

b — = — 4 y— 23
uax-i-va pax+vay2' (23)
Continuity Equation
du v
—_—t——= 24
FPRF z4
Subject to the following boundary conditions
u=v=0aty=0,
u=U(x) aty-—roo} (25)

To find the momentum integral equation wc ntegrate momentum cquation fromy=0tw0y=194
with respect to y

Ia el +f6 %, fau d +f5 o*u (26)
u— v—dy = —_— V—
REFrLo A M vl R A A T
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au 1dp

Ix  pox

Evaluaung the integrals involved in cquation (2 6) Last term on the R H S reads as

vesdy=-— 27
VT (27)

du
where 1o = P(a';)y.-.u

The sccond term of the L H S of equation (2 6) can be written as

L (2
J; 3y y—J;vay(u-—U)dy, (28)
Which upon mntegration by parts takes the form
J'svgy-dy=-—f6(u—U)a—vdy (29)
o 9y 0 dy
Since from continuity equation, we have
L
dy Odx
Therefore, substituting 1n cquation (2 9). we have
java—udy=J6(u—U)a—udy (210)
o Oy 0 0x
By mnvoking equation (2 7) and (2 10} n equanon(Z 6), we obtan
:_x[uzj;d%(l—%)dy +U%§Ld(1—%)dy=% (211)

Equation (2 11) can be wntten as

d al T
—_[y2 — 5 == 212
where
61.[ u
= —{1—-— 213
B J;U(1 U)dy (213)
a
1]
= _2 14
6= | (1-g) e (214)

Dividing Equation (2 12) by U2 on both sides to get

15



1 d 1aU Tp
—_—y2 e = e
TP AT PR (215)

Equation (2 15) can be expressed as

d(6)+(2+H) aul 1 216
dx = ™ u / Mdx  pU¥ (218)
The above equation simplifics to
d b, dl g
E(6m)+(2+H)FE;-W (217)

where H 1s called the shape factor and defined as

Thus Equation (2 17) 1s known as the momentum 1ntegral equation for incompressible, steady
and two dimensional flow

2.3 von-Karman Momentum Integral Equation for Axisymmetric Flow

The boundary layer cquations for incompressible, steady and two dimensional axisymmectric
flow are given as

Momentum Equation

du ou 13dp *u
— —— — 218
”ax+"a p6x+v3y2' (218)

Continuity Equation
d d
(ru) + v) _ 0

219
dx ay ' (219)
Subject to the following boundary conditions
u=v=0aty=0,
22
u = U(x) aty—'no] (220

To obtain the Momentum Integral form integrate the cquation (2 18) fromy = Otoy =4 with
respect 10 y Therefore, we have

JS el +[6 et _Fuaud +f6 g 221)
ouaxy uva}' y_o ox ovayzy

Evaluating the integrals involved in equation (2 21) Last term on the RH S reads as

16



é az %o
[y =
4]

dy? p
where
Tp = .“( )y 0

The second term of the L H S can be wnitten as

& 9
f udy J' v—(u—U)dy
0 6

Upon integration by parts of equation (2 23) we obtain
J‘a aud J"s( ) 6vd
v—dy=—| (u—-U)z
o 9y Y 0 dy Y

Since from conunuity equation, we have

dv odJu udr

3y ox rox’

Therefore, substituting (2 25) n (2 24), we have

J:v——dy J'(u- )—d.y+J (u-— )———-dy

By i oking equauon (2 22) and (2 26) equation(2 21}. we obtain

dr T,
5D+‘_U26 =‘E,
ol

ou
—_ [uzam] +U— ==

dx
Where 8,,, and 8, are defined m equation (2 13) & (2 14} respectively
Dividing Equation (2 27) by U? on both sides to get

1d 10U dr Tg
2 5 = ——

UZdx o Ueml Uax 7% 00 6x Om plU?

Equation (2 28) can be cxpressed as

(5) (2+H)6 dU+1dr Tg
m) P ) O Tr e T pU

Equation (2 29) can be wntten

(5)+(2+H) dU+6 dr_ Ty
1 dx  pU?

where H 1s called shape factor and defined as

17
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(2 24)

(225}

(2 26)

(227)

(228)

(229)

(2 30)



5p
H=2
Sm

Thus, Equaution (2 30) 1s the momentum ntegral cquation for the incompressible, steady and two
dimensional axisymmetric flow

2.4 Karman-Pohlhausen Method

In 1921 Pohlhausen [4] 1ntroduced an mtegral method for the solution of the boundary layer
equations This method based on momentum integral cquation developed by von-Karman [3] This
method was the first general method and had so many applications 1n the different branches of
flud dynamics This method doesn’t solve the boundary layer equations everywhere i the fluid

but at the boundary of boundary layer In his method he assumed the velocity profile in the form
g =2
-=fm . n=3% (231)

For the assumed velocity profile, the skin friction. momentum thickness and displacement

thickness are defined as follows

;—Js =% £, (232)

6m :

o= [ ra - pran (233)
o

5 1

%= [a-pan. (234)

o]

The boundary condstion to be satisfied arc

d*u dp )
aty=0 u=0 pa—zy—=a=-pUU,
Or _—ld—p=UU'
5 dx : ; (235)
3311_0
a3y ) )

du 2%u a3u
at y=6, u=U —, PV

-0 (2 36)
dy

These boundary conditions are transtormed to the form

18



f(0)=0, f'(0)=~4A f"0)=0,
f = =f")=1"1)= ~o) (237)

. &% d §2
where the prime denotes the differentiation wrt*n'and A = _u-a_p' = =1/’ The ‘n’ number of
it dx v

unknown coefficients invoived in assumed velocity profile can be determined by n° of the
boundary conditions (2 37) and the other unknown factor & can be found by the momentum
integral equation If first three boundary conditions at y = 0 are considered then the skin friction,
momentum thickness and displacement thickness are the function of A only Thercfore the

substitution of (2 31) 1nto momentum integral equation results in the following form

dz
a= U-1M(A) + UN(A)Z2, (2 38)

2
where Z = 67 = 5 The lunctions M{A) & N(A) are the universal functions and depend upon

which of the boundary conditions of (2 35) & (2 36) are sausfied
There are two major shortcomings of Pohlhausen method described above

1 The first criticism 1s the choice that which boundary conditions shail be satisfied and tact
is that at y = & the outer boundary conditions arc satisfied Pohlhausen assumed a quartic
velocity profile which satsfied the first two boundary conditions of {2 35) at the wall and
first three boundary conditions of (2 36)arc sausficd al the edge of the boundary layer By
using these assumptions one leads to a method which, when apphes to the region for which
the pressurc 1s decreastng, gives accurate results but 1t gives less satisfactory results when
scparation 1s approached To solve this problem Curle [9] i 1958 used a quintic velocily
profile which satisfied an additional boundary condition at the wall to obiain the accurate
results m the region of the down-stream of the pressure mimmum, 50 that the predicted
separation 1s 6 percent too high than the exact However, the method fails ncar the
stagnation point Earher, Schlichting and Ulnich [7] assumed a sixth degree polynomial
which satisfied one more boundary conditions at the cdge of the boundary layer This
method gives some better resulls near to separation, say I5 percent error 1n the scparation
distance But this mcthod fails near to a stagnation-point

2 The second shortcoming of this method 1s the second dervative of free stream velociy U

1e U, which appears n the final equation given by (2 38) Now 1f we are succeeded to



obtain U from expenmental results, but m many cases 1t will be very hard to obtain the

second derivative of the free stream velocity U To overcome this problem Holstein and

Bohlen [30] modified the Pohlhausen method so that U'" does not appear n the final

cquation They uscd a parameter “m’ defined by

SLU
v

— _(5m2A
m= = 6)

(239)

Conseguently. the momentum integral equation given 1o cquation (2 17) 1s written as follows

Tylm _ U5 dd,, +6§1 U'(Z . 59)
wtd v Mdx v 8
The equation (2 40) further can be re-wntten as
U d
L =——(82%) +m(2 + H),
2vdx
where
Tws 50 ‘Srzn
= —= = — = —
b= H=35" m=3

The equation (2 41) can also be simplified as
u d (8% _
de\o /)

L=2{l-m(H+2}}

where

(2 40)

(2 41)

(242)

(2 43)

Since we know that the skin fnction 1,,. momentum thickness &, displacement thickness &y are

the function of *A" Therefore, from equation (2 42) and (2 43) we can observe that the functions

I H L arc the fanctuons of m Therefore, by using equation (2 39)into equation (2 43) we will

obtain the first order equation for m as follows.

d L(m)
&=

dx \g’

20
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The function L{m) 1s lincarly approximated by Tam 1n 1941 so that the equation {2 44) can be
integrated numencally The hnear approximation given by Tam has been used by many other

authors, notably the Thwaites [6]
2.5 Alternative Polynomial Forms

In 1944 Mangler [ i |] used a more complicated velocity profile than the Pohlhauscn’s velocity

profile He proposed a velocity profile of the form

u

E=f(7?)=1_(1‘71)n (1 + ayn + an®) (2 45)

The assumed velocity profile sausfies ‘n’ number of boundary conditions of the form {2 37)
atn = 1 If a, 1s considered to be zcro-only the first two boundary conditions f(0) =0, f"(0) =
—A are used If @, is kept non-zero, then the third boundary condition f'(0) = 0 1s used By
these boundary conditions the unknown coefficients a; & a;, ivolved m assumed velociy

profile. arc determined and hence the functions {{m), H(m) and L(m) arc obtained

The momentum integral equation can be solved in simlar way as m Pohlhausen method The
solution obtained by the alternative polynorual forms depends upon the value of ‘n” and on cither
a, 15 kept zero or non-zero Mangler concluded that the polynomial given in equation (2 45) with
n = 12, a, = 0 gives better approximation near a leading-edge stagnation pomnt The Pohlhauscn
quartic profile, similar to velocity profile defined by Mangler with n = 3, a, = 0 hasa very little
less accuracy Pohlhausen quartic profile gives much accurate results of the boundary layer with
cero pressure gradient But it gives more accurale approximation when n = 4, @, # 0 are used 1n
equation (2 45) This latter form of velocity profile was suggested by Schhchting and Ulnch

which fails near the leading edge stagnation point
2.6 Timman’s Method

In 1949 a new method was proposed by Timman [12] to calculate the laminar boundary layer He

assumed a velocity profile of the form

Sd=co
E =1- f exp(-nP)(@a+cn*+ Jdn- exp(—n?) (b +dn® + ), (2 46)
1
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wheren = % To obtain the vatue of unknown cocfficicnts (a, b, ¢, d) only the boundary conditions

at the wall were considered Subsututing (2 37) 1 cquation (2 46), one gets

1 1 3
fm)=1—b—§JE@+§c )
frO=2b-d)= -%62 = —A4,

f'O)=2(c-a)=0, '
2 '

& (247)

dx U Sdx

Imtially first three conditions of (2 37) were considered by Timman and thesc boundary conditions

determine @, b, ¢ as a function of A, when @ 1s kept zero | rom equation (2 46) we can obtain the
5 ]
momentum thickness T’", the displacement thickness -53 and the skin fricbon % as a [unction of

A and also m 1s a function of A Therefore, we can get the functions L, H and L defined in ¢cquation
(2 42) and (2 43) as a function of m from the momentum integral equation reducing to the form
(2 44) Timman observed (hat the obtained solution yielded much satisfactory representation of

flow near to 4 stagnation point, but not quite accurate in the region of retarded flow, as application

to the Howarth’s flow [ u = U (] - f) ] showed

Accordingly. he proposed that the condinon 2d — b = 0 should be used nstead of d = 0 1n the
regions of ads erse pressure gradients This assumption was made 10 satisfy the complicated fourth
condition defined in (2 47)at the point where separation occurs When £77(0) = 01t follows from
third and fourth condition of (2 47) that b = 2d = —A, so that the functions {, H and L van be

calculated
2.7 Method of Thwaites

in 1949 Bryan Thwaites [6] proposed a new ntegral method to calculate the boundary layer
thickness and the skin fnction without assurming velocity profiles, as the methods previously
described all do By suitably correlating the boundary layer characienistics {,H and L and shape
parameter m we can find the shape parameter m as a function of x by numerncal mtegration ol
cquation (2 44} Then we can find the momentum thickness &,, from equation (2 13}, the
displacement thickness & and wall shear siress 7, from equation (2 42) Since the different set

of functions H(m), I{m) and L{m) are agreed with each accurate solution of the laminar boundary
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layer In sumilar manner an unambiguous sct of functions correspond to an approximate method
using a single-parameter family of profiles From here we conclude that an approximatc method
gives better approximation 1f and only if the values of the functions I, H and L of approximate and

exact solution are very close to each other

B Thwartes used a similar approach to calculate the laminar boundary layer He examined and
compared the set of functions H(m), [(m) and L(m) of all known cxact and approxmmate solution
of the laminar boundary layer equations [le found that for the positive value of m, the solutions
with respect to H(m) and {(m) are very close to each other For the negative value of m, the
solutions differ considerably from cach other, such that the values of m corresponding 1o the
boundary-layer separation, that 1s the values for which {{m)=0, which were obtained ranging from
m = —0068tom = —0157 Luckily, at that time two most important and well known solutions,
Howarth's solution and Hartree’s solution of Schubaucr’s experimental results, were ax ailable to
Thwaites These solutions were very close to cach other, and the values of H(m)} and [{(m} chose

by Thwaites were also quite close Lo these solutions

For different solutions, the values of L{(m) defined in equation (2 43) were much closer as
compared to H(m) and I(m}, for both positive and negauve value of m Thwaites found that the

function L(m) was lincar and approximated as follows
L(m) = 045 — 6m (248)

He chose these coefficients as these were the best agreement with the available solutions at (hat

ume By using equation (2 48) 1n equation (2 44) we get

52 04SVJ‘ U dx (2 49)

Having thus obtained 87, equation (2 42) reduces to

8p = Om H(m),

=£‘£1( ) (250)

Earlier, the function L(m) was expressed as a hinear function by Wals [10] and Taru [28]. but
Thwates approximation is considered more acceplable because his approxirmation 1s not based on

a single solution Curle and Skan [29] modified the Thwaites method by suggesting some
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improvements to Thwaites functions Thwaites obtained the values of H(m) by finding the ratio
of exact 8 to exact 8,, Curle and Skan [29] proposed that the value of H{mm) would be detcrmined
by considering the rauio of exact 8, to the approximate 6, By applying similar argument to [(m),
Curle and Skan [29] modified the Thwaites functions n the region ncar scparation where these

functions differ considerably for individual solutions
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Chapter 3

Calculation of the Boundary Layer Separation over a Sphere through Integral
Method

3.1 Introduction

The problem of separation of flow 1s onc of the most important phenomenon to be explored
intensively, to find the solution of this problem Viscosity 1s the most important factor in the
classical concept of flow separation, therefore, often 1t1s given as “boundary layer flow separation”
or “boundary layer separation” Adverse pressure gradient is the sufficient condition for the
boundary layer separation Flow separation occurs when the boundary layer travels far enough
against an adverse pressure gradient that the speed of the boundary layer relative to the object falls
almost 1o zero The flusd flow becomes detached from the surface of the object and instead takes
the forms of eddies and voruces The point of scparation may be defined as the it between the
forward and reverse flow m the layer very close to the wall, 1 ¢, af the point of separation

o)

y=0
This means that the shear stress at the wall 1s zcro, 1 e,

1, =0

flow separation point u_

Fig 3.1 Velocity profile in 2 boundary layer in the vicinity of separation.
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Fig. 3.2 Velocity profiles in a2 boundary layer subjected to a pressure risc

The velocity profiles exhibiting the separation phenomenon are shown diagrammatically in Figs

31&32

The problem of boundary layer separation 15 as old as that of the concept of boundary laver
Ludwig Prandt] was the first one who nvestigated the Now separation before he started his work
on the revolutionary theory of the boundary layer During his work at the “Maschien Iabrik
Augsburg-Nurnberg ™ (MAN), he observed that the computed pressure was not same as obtained
in actual diffuser He worked for three years to investigate how and why the flow separation and
pressure losses were occurred Finally, he was succeeded to solve this problem by giving his new
concept of boundary layer [1] Ludwig Prandil [21] provided the cxpenimental evidences 10 show
that the nise 1n pressure in the direction of the flow 1¢ positive {or adverse) pressure gradient along
the flow path, 1s the necessary condition for the boundary layer separaion This argument IS valhd
for both compressible and incompressible flows Fottinger [22] invcstigated that the adrerse
pressure gradient and viscosity are the fwo necessary conditions, responsible tor the boundary
layer separation Schhichting (23] proposed that the increase 1n pressure i the direction of the flow

and the presence of the wall fnction are two important (actors duc to which flow scparates {rom
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the wall Gortler and Witting [24] obtained the separation of flow over a plate by using the senes

method For this problem they uscd the following velocity distnbution
x
@ =u(l-pn% &z0

Meksyn [25] explaned the role of viscosity i the boundary layer separation Schubauer and
Spangenberg [26] stated that the separation of flow occurs due to the relation of the pressure
gradient along the wall to the velocity gradient along the normal distance to the wall Becduse of
the great importance of boundary layer scparation, Scienusts have studied this phcnomenon,
extensively In this chapter we have used mtegral method (Mcthod of Thwaites) to find the flow
separation 1n Howarth'’s retaried flow and flow separation over a spherc

3.2 Mcthod of Thwaites for the Calculation of the Boundary Layer

Separation in Howarth's Retarted Flow.

Howarth [27] and Tami [28] explained a funther family of solutions of the boundary layer equations

These solutions relate 1o the following potential flow
ax
U = Up(1-5I" (=123 ), (31)
0

which, clearly, represents a generalized form of the tlow along a flat plate and becomes 1dentical

with 1t when we puta = 0 Howarth studied the simplest case withn = 1. hat 15 equation (3 1)

1s expressed in the form of U(x) = Up(1 — ;ﬂ) It can be inferred as represenung the potential
o

flow along a flat plate which stans at x = 0 and which adjowns to another infinite wall at night

anglestoitatx = L
3.2.1 Mathematical Modcling

The problem statement for Howarth’s flow 1s given as

du  du 19p Q%u

el — = — 32
”ax+"ay p6x+v6y2' (32)
du dv 33)
dx ay_-

Subject to the following boundary conditions
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u=v=0aty=20
} (34)

ax
u=U(x)=U0(1———) aty — o
Yo

3.3 Integral solution (Method of Thwaites) of the problem.

In 1949 Bryan Thwaites [6] introduced a method to solve the boundary layer equations without
assurning velocity profiles He used some sultable comrelation between boundary layer
characterisucs H,1,L and the shape parameter m Thc momentum 1ntegral equation for 1wo
dimensional boundary layer flow in terms of shape factor H and momentum thickness 6, 1s

expressed as

%(ém)+m—;-2—)6m%=% (35)
The above equation can be re- wniten as
;—x (B) = =(H + z)amf"u- + %(g)yu (36)
Using (3 4) 1n (3 2) we get
uu'+(v-ai‘f) =0 (37)
dy?

y=0

To solve equation (3 5) we are required to know
du d%u

(5)._md (55)

y=0 y=0

Thwaites [6] considered all the known exact and approximate solutions available at that ime for

the boundary layer equations and defined by

du U d%u U
(-—) =—Il(m)and | — ==m, (38)
ay y=0 1) J=0 65

where {(m) and m are dimensionless functions or parameiers Thesc forms are chosen n order to
ensure that [ and m depend only on the shape of the velocity profile and do not depend upon the

boundary layer thickness By using equation (38)1n (37) weget
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, U
uy +v§m=0

Thus equation further can be expressed as
LV
U= ‘-szm, (39)

or
s2U"
- (310)

m =

Substituiing equation {3 8) and (3 9) 1n equation(3 5), we get

Us,, d
. 5;(551) = [2 + H(n)]m + 2I(m),

or

vd . _
———(67) = 2[2 + H(m)]m + 2{(m)

The above cquation can be simplified as
(311)

21(531) = L(m).
v dx

THAED 76

where
Lim) = 2[(H + 2)]m + 2i(m) (312)

Thwaites plotted L(m) versus m and found that the relation was Lincar He suggested,

L(m) =045+ 6m

By using this valuc in equation (3 11) we obtain

va (82)=045+6
vdx ™ m

This equation can be simphificd as
! v
-, (313)

—d—(<52)+6—62 =045
dx uvr U
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which 1s linear in 6%, and can be expressed as
d
= (US82) = 0.45vU> (3 14)

By integrating equation {3 14) we obtain

045v [
52 vj USdx, (3 15)
4]

where the constant of integration 15 zero because 8, = 0 atx =0 In terms of dimensionless

quantities equation (3 15) can be expressed s

X

52 045vj U dxt 316

m= U-6 x ( )
O

Since
x ax
u=Ux)=U (1 —a—) = U0(1 -——),
Uy

which can also be expressed as

Vv =a-x)
T

By using the above value of U™ 1n equation (316) we have

52 = 045v
m )]6

J’ [(1 —x™))® dx”,

Which upon ntegration reduces 10
82 = 0075v[(1 - x7)"% - 1] (317)

Since Thwaites's cntenon of separauon is

m = 53:”' (318)
Due to which we have
m=—0075[(1 —x*)"¢-1] (319)
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From the Newton's law of viscosity, we have

du
Ty = H (6_3;)

which 1n view of equation (3 8) takes the form

y=0

U
Ty = #6_1(”1)

Thwaites suggested correlations for {{(m) and H(m) He proposed the correlation for the shear

function as follows

T0m
! - = 0 062
(m) U {(m+009)

As we know that separation occurs where the effects of viscosity are vanished and shear stress 1s

ZEero, 50

Twlm

I(m) = = (m+009)°% =0,

(m+ 009)%%% = 0,
m = —0 09
By using the value of m 1n equation(3 19), we have
—0075[(1 —x*)~* —1] = —009,
X'gep = 0123 (3 20)
3.3.1 Results and Discussion

In this seciion we have implemented the method of Thwaites to delermine the separation of
Howarth's retarted flow The separation occurs at x” = 0123 It can be observed that our
approximation 1s quite close to the Howanh's result which 1s x* = 0 120, due to which we can
claim that our result 1s acceptable The various properties of the boundary layer for several

positions of x* are described in Table 3 1
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Table 3.1: Values of different boundary layer parameters correspond to different values of x*

x* -m Sm v H(m) 8p ‘ [(m) 1 é ‘I

| 1l 1) |

00125 0 0059 00767 I 26330 0 2019 02017 273 !

00250 00123 01109 2 6605 0 2951 02004 180 |
00375 00193 01390 , 26938 03745 01889 135
00500 00270 01644 . 27351 0 4497 01760 107
00625 00355 01883 I 27873 (05249 01614 085
00750 0 0447 02115 : 28553 06039 01444 068
00875 00549 02343 29472 0 6906 01240 053
0 1000 00661 02571 30775 07914 00982 0138
01125 00785 0 2801 32762 , 09178 00604 0215

01170 00832 02885 |I 33757 09738 | 0 0403 0135 |
01200 00865 02941 ‘ 34543 10159 00228 0077
01230(x",,,) | 00899 | 02997 , 35453 1062 J 00 000

_ [ R [N A J
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3.4 Method of Thwaites to Investigate the Boundary Layer Separation over

Non-Flat Surface

In this section we will apply the method of Thwaites to the non-flat surface, the spherc, 1o
determine the boundary layer separation and as well as the values of other boundary layer

parameters

3.4.1 Mathematical Modeling

Let us assume a stcady two-dimensional flow past an axisymmetric body The coordinates (x,y)
are chosen 1n such a2 manner that x coordinate 1s measured 1n the stream wisce direchon (in the
direction of fluid flow) and y coordinate 1s 1aken normal to the surface of the body Figure 31

shows the physicat coordinates, direction of free stream velocity and the flow lay out

Fig 3.3. Physical model and coordinate system

The boundary layer cquations for the steady two-dimensional, axisymmetric flow are
U—+v—=—-—-——+vo— (321)

a(ru) + a(rv)

o 5 0 (322)
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where u, v arc representing the fluid velocity components in the x — direction and y —directions,
respectively, v 1s the kinematic viscosity coefficient and r(x) is the radu of the contour of the body

taken at nght angles to the axis
The boundary condimons for this problem read as
u=y=0ay=0, (323)
u=U{x), v=0ay-o (3 24)
3.5 Integral solution (Method of Thwaites) of the problem

To use method of Thwailes we will assume the momentum integral equation n terms of shape

factor H and momentum thickness &,, described in equation (2 30) . which can be wnitten as

d §ndlU  6,dr v sdu
— = — S m [ — 325
() = -2 D) P dx+U2(6y)y_o (325)
Now m view of (3 23) equation (3 21) becomes
62
0=UU'+(v—u (3 26)
dy* y=0

du du
To find the solution of equanons(3 25) we need 10 know (5) and (v 5-;) The values
y=0 y=0

of these parameters, suggested by Thwaites, are given In equauon(38) By putting

equation (3 8) and (3 9) 1n equation (3 25), we get

4 5 y=(2+H)—2 Smd” L Y iim) (327)
dx ome T Us. rdx Usn "

Muluplying equation (3 27) by %’5 on both sides, we obtain

Us, d ¢ dr U
Ta(ﬁm) =(2+H)m —Ta ;‘+ I(m)

This equation can be cxpressed as

Ud 8% dr U
—— (=20 +Hm+im)] -2—— -,
v dx r
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Ud 82 dr U
(52 = _p_mZ -
o (82)=L(m)-2 b (328)

where
L(m) = 2[(2 + H}m + I(m)]

Bryan Thwautes plotted L{m) versus m and found that the relation was linear He chose to put
L(m) =045+ 6m
By using this value n cquation (3 28) we get

U4 62)=045+6 ,dmdr U 329
vdx s ™ m r dx v ( )

1n view of equation (3 10) the above equation can be written as

Ud SAU" 82, dr U
-—(6§IJ=045+6(- = )+ mZ
vdx v

rdx v’

Which further simphifies to

I

4 52y + {62 +22% V52 _gas
dx > ™ U rdx] ™

v

; (3 30)

Equation {3 30) 1s a first order linear differential equation Upon further manipulation cquation

(3 30) reduces to
d 2 776..2Y — 5,2
a(as,,,u:r)_0451»1;r (331)

The integration of equation (3 31) yiclds

045v (¥
84 = o fo USr2dx (332)

In terms of dimensionless quantities cquation (3 32) can be wntten as

2 0 45v E—S_z _
52, = 22 "GP (333)

¥ o
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Now we are ready to apply the method of Thwaites to the casc of sphere We know that 1n the
case of sphere of radius R, kept at rest in frec stream veloaity U, the 1dcal potential velocity is

given by

U(x) = 2 Upstn >
X —2 nSlnR.

or
_ 3
Ux) = 5 sinx (334)

The schematic of the above cquation can be seen i Fig 3 4 The r{x) n the casc of sphere 1s

given by
rix) = Rsm-{,
R
or
r(x) = sinx (335)

Fig 3.4, Free stream velocity of fluid
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By putting equation (3 34) and (3 35) n equation (3 33), we obtain

2 045v p— =
=33 a_j sin’xdx (336)
0

2
m

To find the separation pomnt we will use Thwaites criterion of separation which 1s given as

By invoking values of 6% and U 1n above equation, we get

045v  _(* _ _
m= —= cosx[ sin‘xdx, (337)
simtx 0

Which upon integration gives

0 45v 1= 3 1
m=——= cOSX ——cosx+cos X —=cos X +-cos’x
sin*x 5 7
"= 16 _ 2= 3 6= 1 8
m sin"x = 045 [3—5-cosx —cos°x+c0s"x —gcos X +5cos x] (338)
Since we know that 1n laminar tlow, separation occurs when m = =0 09 Therefore, by using

this valuc 1n above equanon, we get

3 1
—009 sin'x = 045 —r:osx—cos Y + cos x—gcos x+7cos x]

This equation further simphfies to

12 16
—7—cos 8% — 7cos®x + 11cos*x — 9cos x+7cosx+1—{) (339

Note that equation (3 39) 1s a polynormial equation in terms of cosx and finding the separation
pomt " X" 15 equivalent to finding the roots of this equation We unlize the famous 'Bisection

Method' to find that

Xep = 18074 = 103 56° (3 40)
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N ——

//-/ 103.56°
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Stagoatiow Poin( v

WVake

Fig 3.5 Flow separation over a sphere

3.5.1 Results and Discussion

We have applied Thwaies method 1o the axially symmetnc body, which 1s a sphere [he
separation occurs at 103 56° (see Fig 3 5) In comparison to the Blasius series solution X, =
109 6° , the present result, obtained by Thwaites method, 1s quite acceptable The comparison

of our result with other results which are available 1n hiterature 15 given In Table 32

Table 3.2: Comparison of calculated separation point with various mcthods

-—_ -

Present Method CS Method Smuth-clutter Sernies Method !

—_—— = —  ————————————— —

103 56° 107 5° 105 9° 109 6° |
L B 1 e .
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The boundary layer parameters for different values of £ arc calculated by Thwaites

correlation formulae and tabulated 1n Table 3 3

Table 3.3: Values of different boundary layer parameters correspond to different values of x

x m b H(m) 8p {(m) _3(93)
! Ul\dy /y=
160 00064 . 03826 | 26352 | 10083 | 02099 | 05485
163 00139 i 03963 | 26679 | 10572 | 01978 | 04991
166 00226 = 04110 | 27105 | 11142 | 01835 | 04465
169 00320 ‘ 04271 | 27683 | 11823 | 01665 | 03899
172 00441 } 04446 | 28501 | 12671 | 01456 | 03272
175 00575 | 04637 | 29739 | 13789 | 01185 | 02556
177 00676 *© 04774 ' 30983 ;| 14791 | 00942 | 01974
179 00789 . 04919 | 32851 | 16161 | 00587 | 01193
.
180 00851 } 04996 | 34184 | 17077 | 00310 | 00620
1802 00863 | 05011 | 34497 | 17287 | 00239 | 00476
1805 0 0882 i 05035 35003 17623 00116 00231
1807 00895 | 05051 | 35366 | 17862 | 00022 | 00043
18074, | 00898 | 05054 | 35441 | 17911 | 0000 0 000
|

0
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