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Nomenclature
a Wave amplitude (z) d Width of channel (lz)

L Length of channel (m) ). Wavelength.

Hr, H2 Lower and upper walls of chanirel g
Gravitational acceleration

(*u')

V Dimensional fl uid velocity T
Dimensionalfluid
temDerature

p Pressure (*^") p Dimensionless pressure

p Density (*s *") p Viscosity (n ' r-')

k Thermal conductivity (w r-l r-') o Electrical conductivity

C,
Specific heat at constant pressure

(ar rs-' r-') @ Viscous dissipation

B
Volumetric volume expansion

coeflicient (r-r) 0 Nanoparticle volume fraction

K
Porous medium permeability
coefficient F, Non Darcy parameter

7; Lower wall temperature T2 Upper wall temperature

T. Mean value of I and ! J Joule current

Bo Uniform transverse ma$netic field Eo Uniform electric field

url
Dimensiohal .r and y components of .

velocity (rr-') '' ' 6
Dimensioniess wave number

U,V
Dimensional xand y componentsof

velocity (rr-') 0
Dimensionless temperature

Re Local Reynolds number qt, Radiative heat flux

Pr Prandtl number Gr Grashof number

E, Eckert number Ha Hartmann number

El Local electromagnetic parameter Do Porosity parametbr

a Radiation absomtion coeffi cient N Radiation oarameter

m Temperature scale h Embeddins parameter

cl Skin friction coefficient Nu Nusselt number

Subscribt s

/ Fluid.
p Particle
nf Nanofluid
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Preface

The flow of nanofluids has taken considerafle importance in recent times due to its

thermal properties and engineering ailplications. These fluids are mentioned first by

Choi [ , 2] who described their extraordinary properties, which gave a rise even up to

50% of thermal conductivity of liquids which are less conductive such as water or

ethylene glycol. Ever since a huge literature in both experimental and theoretical

domains appears l3-l2l.lt is vitally important that who is discussing the behavior of

the fluid to keep an eye on entropy generation or heat loss during the flow.fi3-12]

The heat loss or thermal irreversibility must be minimized in order to generate a

thermally ideal system. It is established that the thermal irreversibility is due to

viscosity, electric field and conduction properties of the fluid.

The work, aim'to discuss the entropy generation of Ag-water nanofluid flowing

through a wavy channel with simultaneous effects of viscous dissipation, mixed

convection aird for a reverse magnetic field while flowing through a non Darcy

porous spbce.

,$

:r
This thesis is based on three chapters. Chapter one provides some basic concepts and

definitions for the subsequent chapters. Chapter two deals with the MHD non-Darcian

flow of nanofluid in a wavy channel. Third chapter is the extension of second chapter

with the discussion of entropy generation in MHD non-Darcian flow of nanofluid in a

wavy channel.
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Chapter I

Preliminaries

In this chapter, some basic definitions and parameters are defined, which are helpful

in the subsequent chapters.

1.1 Fluid Mechanics

Fluid mechanics is that branch of applied mathematics that deals with the behavior of

fluids (liquids or gases) at rest or in motion.

Fluid mechanics may be divided into three categories: fluid statics, Fluid kinematics,

fluid dynamics. Fluid statics deal with the study of fluids at rest, while fluid

kinematics is the study of fluid in motion without considering the forces which cause

or accompany the motion. On the other hand fluid dynamics is the study of fluids in

motion considering the forces acting on the fluid.

1.2 Fluid

A fluid is a substance that deforms continuously when subjected to a shear stress, no

matter how small that shear stress may be. In simple words, a fluid is a substance

which is capable of flowing and which conforms to the shape of containing vessel.

1.3 Some Physical Properties of the Fluid

1.3.1 Viscosity

The viscosity of a fluid is a measure of its resistance to deformation i.e. resistance to a

shearing force when the fluid is in motion. For liquids, it corresponds to the informal

I

I

I

I
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notion of "thickness". For example, honey has a higher viscosity than water.

Mathernatically, it is defined as the ratio of shear sfiess to the rate of shear stain i.e.

Yiscositv= u= shear stresst' 
Rate of shear strain'

where p is called dpamic viscosity. 
,)

1.3.2 Density

The density of a fluid denoted by p is defined as the mass per unit volume. Thus if z

is the mass enclosed in a volume v, then

Densitv- mass of /tuid
wlume of /tuid'

or mp--.
v

The unit of density is kgma .

1.33 Kinematic Viscosity lt

The kinematic viscosity (also called "momentum diffirsivity") is the ratio of the

absolute viscosity p to the density of the fluid p . It is usually denoted by the Greek

letter nu (u).

Its unit is ra2s-r.

tt

u
U=L,

P

tr'



1.3.4 Temperature

Temperature of a body is defined as a measure of the intensity of heat. Heat always

flows from a region of higher temperature to one of lower temperature. Physical state

of a substance change with temperature. For example, water at low temperature is ice,

at higher temperature is water and at still a higher temperature is steam. Temperature

can be measure by different scales. Three common used temperature scales are the

Celsius (or centigrade), Kelvin (or absolute) and the Fahrenheit scale.

1.3.5 Energy

Energy is the capacity of a physical system to perform work. Energy exists in several

forms such as heat, kinetic or mechanical energy, light, potential energy, electrical, or

in other form.

1.3.6 Stress

The stress is defined as the force per unit area on which it acts. If the stress is

uniformly distributed over the plane area A, the stress called the average stress.The

stress at any point P in the fluid is defined as

Stress atarrypointP : L, +,
tu-+o 7\$ '

where ai i, tt e force acting on an element of surface area AS enclosing the point P.

1,3.7 EntropyGeneration

Entropy is the measure of system's thermal energy per unit temperature that is unavailable for

doing useful work. Work is obtained from ordered molecular motion, so the amount of

entropy is also the measure of molecular disorder. For reversible process entropy is zero.



1.3.8 Enthalpy

Enthalpy is a measure of total energy of a thermodynamic system. It is a state function and an

extensive quantity.

1.4 Types of Fluidr ' rti

1.4.1 Compressible and Incompressible Fluids.

It is usual to divide fluids into two groups: liquids and gases. All known liquids are

slightly compressible and their density varies little with temperature and pressure. For

most practical purposes, liquids are considered to be incompressible. But for situation

involving either sudden or great changes in pressure or temperature, their

compressibility becomes important.

1.4.2 Inviscid Fluids

An in viscid fluid is that fluid having zero rviscosity. With zero viscosity the fluid

offers no intemal resistance to a change in shape. Thus an inviscid fluid, whether at

rest or in motion, can exert only a normal stress (i.e. pressure) or any surface with

which it is in contact. Consequently the shear sffess in this case is zero.

1.4.3 Ideal Fluids

A fluid which is both inviscid and incompressible is called an ideal fluid.

7
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1.4.4 Real Fluid

A real fluid is one which has finite viscosity and thus can exert a tangential stress on a

surface with which it is in contact. The flow of real fluid is called a viscous flow. Real

fluids can further be subdivided into Newtonian fluids and non-Nemonia n fluids.

1,4.5 Newtonian Fluid :

The Newtonian fluid is a fluid in which shear stress is directly and linearly

proportional to the rate of deformation. For example water, air, emulsions.

Mathematically, it can be described as:

du,," = 
!,,b,

Where r, is the shear stress acting on the plane normal to the y - axis and p is the

viscosity of fluid. Water and gasoline are the examples of Newtonian fluids under

normal conditions. The Newtonian fluid is an idealized fluid that approximates the

behavior of water, aii arid many other fluids.

1.4.6 Non-Newtonian Fluid

The,Newtonian fluid is a fluid in which shear stresS is directly but not linearly

proportional to the rate of deformation. For example, paint$, blood, shampoo, flubber,

(suspension of starch in water)

,. ''

Mathematically it can be expressed as: , o..'{'

g

( du\'''r*=olrr) 'mt*(J'

Where z, denotes the flow behavior index and consistency index respectively.

$



1.5 Types of f,'lows

1.5.1 Uniform Flow

A flow is said to be uniform when the velocity vector as well as other fluid properties

do not change from point to point in the fluid. Thus

ov 
=o.oP =0.ds '0s

i.e. the partial derivative w. r. t 'distance' of any quantity vanishes.

1,5.2 Non Uniform f,'Iow:

A flow is said to be non-uniform when velocity, density, pressure, etc. change from

point to point in the fluid flow i.e.

i -; For example, a liquid flow through a long straight pipe of constant diameter
ds

I

is s uniform flow. On the other hand, a liquid flow through a pipe of reducing section 
i

or through a curved pipe is a non-uniform flow. I

1.5.3 Steady Flow
,.' | .i

A flow is said to be steady (i.e. stationary) when the velocity vector and other fluid

properties at every point in a fluid do not change with time so that flow pattern

remains unchanged i.e.

ol =g. @ =0.0t 0t
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i'e' the partial derivative w'r.t time of any quantity vanishes. Thus the velocity is
constant w.r.t. time but it may vary from point to point. Hence the steady flow may be

uni form or non--uni form.

1.5.4 Unsteady FIow:

. ,i

A flow is said to be unsteady when fluid properties and conditions at anypoint in a

fluid change with time i.e. { *J 
"r".

1.5.5 Laminar FIow

A flow is said to be laminar if the fluid particles move along straight parallel path in

layers oi laminar' Thus in this flow, the curves traced out by any two different fluid
particles do not intersect.

1.5.6 Turbulent Flow ''

A flow is said to be turbulent if the particle of the fluid move in irregular fashion in

ali directiOns.

1,5.7 Irrotational Flori

A flow is said to,be irrotational if the fluid particles do not rotates about their own

axes during the flow.

1.5.8 Rotational FIow

A flow is said to be rotational if the fluid particles go on rotatirig about their own axis

during the flow.

F

$
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1.5.9 Internal FIow

Internal flows are those where fluid flow through confined spaces such as pipes, open

channel, and fluid mechanics. The internal flow of liquids in which the channel does

not flow full is called an opeir channel flow. For example, flow in rivers and irrigation

canals.

1.5.10 External Flow

External flows occur over bodies immersed in an unbounded fluid, such as

atmosphere throirgh *t i.f, airplanes, missiles, and space vehicle travel, or the ocean

water through which submarines and torpedoes.

1.6 Dimensionless Numbers

A dimensionless number is a number without any unit associated with it. It is the ratio

of the quantities having same dimensions. ihey fully characteizethe fluid under flow

and processing. There are many dimensionle'ss numbers. Which are used in fluid

mechanics, few of them are presented as follows:

1.6.1 Prandtl Number

The Prandtl rfumber (Pr) is a dimensionless number, named after the German

physicist Ludwig Prandtl, defined as the ratio of morhentum diffusivity to thermal

diffusivity. That is, the prandtl number is given as

{x.

Pr=9-
d

viscous di/Iusion rate _ p/ p _rr4
thermal diffusion rate k /crp k

s

11
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1.6.2 Reynolds Nurirber

In fluid mechanics, the Reynolds number (Re) is a dimensionless quantity that is used

to help predict similar flow patterns in different fluid flow situations. The concept was

introduced by George GabrielStokesin l8il,but the Reynolds number is named

after Osborne Reynold (1842-1912), who popularized its use in 1883.

1.6.3 Grashof Number

The Grashof number (Gr) is a dimensionless number in fluid dynamics and heat

transfer which approximates the ratio of the buoyancy to viscous force acting on a

fluid. It freCu;n1y arises in the study bf situations involving natural convection.

1.6.4 Eckert Number

The non-dimensional number which expres_ses the relationship between flow's kinetic

energy and enthalpy is called the Eckert"nurnber 6.: Mathematically, it is expressed

as

F\
ir?

1.6.5 Bejan Number

The Bejan number is the ratio of heat transfer ineversibility to total ineversibility

due to heat transfer and fluid frictio

1,6.6 Hartman Number

It is a dimensionless number which is expressed.by the ratio of electromagnetic force to the

viscous force. It is denoted by Ha and mathematically given by

t2
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r." ,r.l

Ha: BL

1.6.7 Nusselt Number

A Nusselt number close to one , namely convection and conduction of similar

magnitude, is characteristic of "slug flow" or laminar flow. A large Nusselt number

corresponds to more active convection, with turbulent flow typically in the 100-1000

range. The convection and conduction heat flows are parallel to each other and to the

surface normal of the boundary surface, and..are all perpendicular to the mean fluid

flow in the simple case. r. '.. 
,.,''

Convectiue heat transfer hL
-l tt - Conductipe heat transf er k '

Where h is the convective heat transfer coefficient of the flow, L is the characteristic length, k

is the thermal conductivity of the fluid.

1.6.8 Skin Friction

Skin friction arises from the friction of the fluid against the "skin" of the object that is

moving through it. Skin friction arises from"the interaction between the fluid and the

skin of the body, and is directly related to the Srea of the surface of the body that is in

contact with the fluid. Skin friction folloivs the drag equation and rises with the

square of the velocity. Skin friction is caused by viscous drag in the boundary layer

around the object. There are two ways to decrease skin friction, the first is to shape

the moving body so that smooth flow is possible, like an airfoil. The second method is

to decrease the length and cross section of the moving object as much as is practicable

*J

&\

o
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1.7 Convection

Convection is'the transfer of heat by the actual movement of the warmed matter. Heat

leaves the coffee cup as the current of the, stream and air rise. Convection is the

transfer of heat energy in a gas or liquid, bninovement of currents. It can also happen

in some solids like sand. The heat moves with the fluid. Consider this: convection is

responsible for making macaroni rise and fall in a pot of heated water. The warmer

portion of the water is less dense and therefore, they rise. Meanwhile the cooler

portions of the water fall because they are denser.

1.7.1 Natural Convection

Natural convection is a mechanism, or a qape of heat transport, in which the fluid

motion is not generated by any external source (like a pump , fan, suction device, etc)

but only by density differences in the fluid occurring due to temperature gradients.

i
1.7.2 Foiced Convection s'ru'u'ri

Forced convection is a mechanism, or type of heat transport in which fluid motion is

generated by an external source (like a pump, fan, suction device, etc). It should be

considered as one of the main methods of useful heat transfer as significant amounts

ofheat energy can be transported very efficiently.

1,7.3 Mixed Convection

Combined forced convection and natural convection, or mixed convection, occurs

when natural convection and forced convection mechanism act together to transfer

heat. This is also defined in situations where both pressure forces and buoyant forces
(1,.,i 1_1i!,i]l
a"

L4

_-a
,t;

..i:r
l.: interact.
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L.8 Homotopy Analysis Method

Homotopy Analysis Method (HAM) allows perturbation solution to be valid for

moderate to large value of parameter. HAM has been developed by Liao in l992.This

method has been successfuliy applied to solye m any types of non-linear problems.

The basic idea of HAM is to produce a succession of approximate solution tend to the

exact solution from any initial guess of the problem. The presence of auxiliary

parameter and functions in the approximate solution results in a production of a

family of appioximation solution rather than the single solution produced by

traditional perturbation methods by varying these auxiliary functions and parameters.

.) \i1" -'

It is possible to adjust the region and rate ofconvergence ofseries solution.

1.8.1 General Approach of HAM

Consider nbn-linear equation
.[i

N[u(x)] = o (r.r)

Subject to some initial condition or boundary condition. The first step in the HAM

solution of the equation is construct the homotopy.

nlO(r;o);0,@),H(x),h - q) LIO (x; q) - {, (x)l - t n 6(';t))

!

where h is an auxiliary parameter;* ,i(,i) ;* 0 is an auxiliary function, q e [0, t] is

embedding parameter, /o(x) is an initial approximation to the solution that satisfies

the given initial condition or boundary conditions, 0@;q)satisfies the initial or

boundary condlitions and L is some linear operator. The linear operator I should

*+'

15
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normally be of the same order as the non linear operator N. Setting homotopy equal to

zero so that

(t-q)Ll0(x;q)-0,(x)): fi O(,;q)f 0.2)

Equation (1.2) is known as the zero-order dtfd.-ution equation. By letting q: 0 in

this equation we obtain

LIO(x;o)-0,(,)] = o (r.3)

It follows from our definition of

rl0(.)) , 0(*;q), and Qo(x) ttrat

$(x;o):0'(*)

Now letting q:l then 
i ,

N[/(;;1)] = o

j

It is clear that Q(x;q) satisfy the initial and boundary condition of the problem an

0(*;r):0(r) (l.s)

SoQ(x;q) varies continuously from initial approximation to the required solution

/(x) es q increases 0 to l. Now we define the terms

o^G)=\ff|=,

t'
\., ! .; :- 'r..ii

-l

15
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By Tailor's theorem we cair write ".' 
";' .'

0@;q)=Q@;0)+f 
t o^$(x'q)l 

^ .r. =Qo@)+i0,,{*)r,, (1.7)
* *l Oq^ le=o ' 

t 
n=t

where,

Llo,,@)-z^0.-t1)1=n',.,9--''l^@:il)t)=n ,,,r-r)t .-fflr* (l'8)

Now we differEntiate Eq (1.4) with respect to q and setting q:0 and finally divided

by ml Then so called mth-order deformation equation become

gr

10,........m<tY =<'Lm ll'"""""e\s"

Thus this equation is valid for all m>l.The right hand side of Eq.(1.8) will depend on

term /,(x) with n ( m. As a result the term S,(x)can be obtained in ordei of

increasing m by solving the linear deformation equation in succession. The solution to

the mth order deformation equation can be vnitten as,

0^@) = ph7x1+$P 
^1x1,

Where /'(x)"satisfies the homogenous equatlgn

rlt^ (*)f = o

and QP ^(x)is 
particular solution of Eq.(1.7) we,can express it as

(1.e)

(r. r0)

n'

L7
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oo,,(x) = z.o^_,(x) + r' (;e:ffi;=,) (l.l r)

,6 is the inverse operhtor of the lineai operator L. The mth partial sum of the term

Q.@)as

0,@)=z!#)
'k-=o . . '

Thus solution can be expressed as

(l. l2)

E

0@)=0@;r=)I/*(r) =tim0^@) (1.13)
k=o

This solution will be valid where ever the series converges.

1.8.2 Ativantages of Homotopy Anatysis Method

HAM provides the liberty in how to develop the solutions to non linear problems. The

liberty endure several benefits over ordinary perturbation methods such as,

l. It is always valid no matter,wl::T,gthere exit small physical parameter or
l:. .. ., .

not.

2. The HAMrtechnique can be used to develop valid solution even to problems

that are highly nonlinear.

3. The HAM provides a convenient way to guarantee the convergence of

approximation series.

4. The HAM provides great freedom to choose the equation type of linear sub-

problem and the base function of solution.

lJi

:i'
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Chapter 2

MHD Non-Darcidn FIow of Nanofluid in a Wavy Channel

In this chapter, we disctissed the flow of nanofluid through non Darcian porous wavy

channel. Constant magnetic field is applied perpendicular to flow and sinusoidal wavy

walls of channel considered with long wavelength. A nonlinear system of equations

comprising mass, momentum and thermal energy equations for nanofluid with mixed

convection completes the flow model. The coupled ODE's are solved using

Homotopy Analytical Method (HAM). Graphs for velocity and heat are drawn to

observe the effects of various parameters. like Darcy number, porosity parameter,

Magnetic number, Grashof number and EC(*i nurnbrr.

2.1 Problem Formulation

The 2-D steady flow of a nanofluid through the horizontal symrnetric channel

bounded by wavy walls is considered in the flow direction and y-axis is pcrpcndicular

to it. The configuration of the walls is defined by the following equations

(2.t)

s'

Ht=-d -r*t(+r) ,u,= a+o.or(+r)

€i}
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Fig.2.1 Schematic figure of the physical model

where a is wave amplitude of wavy wall, d the mean width of channel and I the

length of wavy channel. Following equations represent the conservation of mass,

momentum and energy respectively representing in components fom can be written

&S'

(2.2\
aiN
-+- =0&@

( -aa -4"-)P*lu a*u @ )=
aD ( a', a2a )-#* o.,l#.#)-o*nfi -f u *@F), s(r -r')-r'o'(r.r)

(2.4)

The forces involved in the equation of conservation of momentum can be written as:

Inertial term= ,r(r#.t#), pressure sadient= (-r-),

viscous forces = o.(#.#),Lorentzforce= o,rBli ,

20
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Darcy forces I ++r. ala and Convection= (00),r s(T -r')' [e , 
,,,,

wherep,ris the density, pnyis the'viscosity and on, is electric conductivity of the

nanofluid, wtrile,B, is magnetic field strength and F'is the Frochhiemers correction.

The terms present in the energy equation can be classified as follows:

"(q!.4)'[aF' ry')'

viscous dissipation= o,r(*)' and Joule's heating= o,rBli' ,',\q)
Where Co is the specific heat of the nanofluid, The effective density of the nanofluid is

given by

Pnr= (1,-0)fu+0P,

where O is the solid volume fraction.;The effective dynamic viscosity of the

nanofluid given by Brinkman [ 17 ] is,<.
(.t

ut=;L''u 
0-o)"

The heat capacitance of the nanofluid is

(pc,),, : (r- O)(pc,), * p(ec,),

The electrical conductivity of nanofluid is

-r),

(2.,)-(?-,),

,I oo

9rorI

or

s
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The effective thermal conductivity of the nanofluid given by Maxwell Grant model

[18]is

dr

T=7, i=0, il=0, aty=Hl
F=Tz, i=0, 7=0 at!=11,

(2.5)

In order to reduce the goveming equations and boundary conditions into similar form,

following similarity transforms are deployed:

k4 _ke +2b -20(4 -ke)
4 kr+2k, +6(*, -*,)

The corresponding boundary conditions are:

i = x|, V = yd, i =uc, 6 =1, r^ = +,)
4=+'^=#'o=# I

tuAv
-+- = 0.
Ax Ay

(2.6\

(2.7\

Where d is the dimensionless wave number, d is dimensionless temperature and m

is the temperattre scale, governing the variable temperature difference between the

two channel walls. To reduce Eqs. (2.2) to (2.5) in dimensionless form we use the non

dime,nsionless variables and then we have i

4**("*."X)=,ql-?.*.(r#.#))-4Mu-4L*+rc,e-4*"ra'.rt

,LRepr6(uX-."X)= *(0, #.#)+ A,EcprMu, + AEcpr(X)' (2 s)

s
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0=1, U=0, v=0, At y=41
0:n,t=0tv=0raty=41

(2.10)

tt

The corresponding dimensionless boundary conditions are:

t\ = -t - i"*(7,) *o 4 = w fi c*(T.)

u and v are the components of velocity in .r and y direction respectively and

t, = $,M - 
otBo'd', 

4 = 
l''t

Eoc ft Pt

^=W'4=xb'

, 4=fu, 4=%-, 1. =(Po)',h or o- 
1PB),-'

(2,rr)

The physical properties of the nanofluid and particle are mentioned in Table 2.1 and the

values of different involved ratios (4,,1,1r,,qn,4,4)*"mentioned in the Table 2.2

v
Table 2. I

Physical properties of water and nano-particles.
Properties

c o(txs-trt)

'(**t)
o(^-')

p xto-s (o-')

a(N'*-2)

Water
4t79

997J

5x104
2t

l.62xl}a

Silver
23s

10500

6.30 x 107

1.89

*
Table 2.2
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Parametric values for different volume fraction

oAlA2A3A4AsA6
l% 1.30135 1.95305 0.33333 0.99477 0.95922 1.3317s

2% t.32157 1.98489 l.l1453 1.33546 1.00987 1.77878

(2.t6)

The dimensionless Nusselt number at the wavy wall y = h, and y = [is given by

In view of the said dimensionless numbers, the Eqs. (2.7) to (2.9) with long wave

length approximation take the following form,

**?:0, (2.tzlox oy

-q*. a# - Ur" - A*. AoG,o - ArRe F'r2: 0, (2. 13)

A"#. A,EcPrMu2 .A**(fl,l': o. (2.t4\

The Skin friction along the walls can be expressed as

c, =l,where r*= tt^!(E)r=r,*r, (2.1s)tr ' Pf'ro

r, is wall sharing shess at V = H, and 1i = 11,

The dimensionless Skin friction at the wavy wall y = \ and y = [is given by

n -?4 r,O)l", -E'),,|_n,.rn,

The Nusselt number along the walls can be expressed as

yr=-fi*- where o =-k .(uf \**(7,-r) *'n ct*=-k'dla. 
)r=r,dHr, Q'tr)

q, is the rate of heat transfer at ! = H, and V = H,

tt
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u(y,O)=uo(y) and d(y,O) =00(y) (2.23)

Forq= 1

u(y,l) -z(y) and d(y,l) =0$) (2.24)

lVhe'n embedding parameter q diverges from 0 to l, then u(y,q) , 0(y,q) varies from

initial guess zo(y) ,00(y)to final u(i, e(y)solution. Let us expandz(y,q) ,0(y,q) by

Taylor series as

u(y,q')= ro(y) +iur(fl O'
l=t

o(y, q) = oo(y) *lie, (r) o'
l=l

(2.2s)

(2.28)

In which

{t

(2.26)

Differentiating /- times to zero6-order defonnation Eq. (2.12) with respect to the q and

dividing it by l! then putting q:0 andgain l'torder deformation expression for u,(y)and

4(.r) u follows

(2.27\

u,(!)=iWL" 
I

0,(v)=iry.,*l

f,lr,Q)- t,u,-,(y)l=h I
frlil,(il- 2,0,_,0il= h )

[0,,=1r,
m<11

*rfj
\(!,8)=0, 0,$,q):l at Y=4
ut(!,8)=0, 0,(y,q): m at y = l\

U
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Nrlu(y,q),e(y,q)f= -4P + ,\ui - A"Mu, - 4fi* erc,0t - AzReF'\ 
e.zs)

ttrl"(l,d,e(y,q))= \ff+ ArEcprHaru,, + ArEcrr(u;)' )

The solution of lth- order approximation can be stated as

u(y)=u,(fl +furQ) lr--; I tz'rol
0(y)=e,91+lerQ) j

For velocity and temperatue the solution expressions for the best understand

readers at first and second iteration are given as

ing of

(2.3 r)

(2.32)

t'

/ \ 13. 9Gr. 1859M . 209F . 3Gr, ,u,lyl =-l--nr --hr +-n, *-h, +-Iliy+ y- +
' \' ' 20 ' 400 ' S(M)Da ' 500 ' 400 'r

l3M- , 9Gr- , 507M - , 57F- . 3Gr- ,

-h. 

y- +-h. y' --h. y' --h. y' --h. y- +20 " 400 'r l000Da '' 100 '' 400 'r

l69M 
h.rn * l9F 

h. ; _ l69M h,r. _ l9F 
h,ru.

l000Da " 100 " 5000Da 'J 500 ''

o,(y) = -+o, -Wn,.+.ryh,y' +"{, n,rn -
lErM 

h^uo *IE"M h^uu2"102'

And

'*'r;
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s.

f,-r ' i't ll f'J et t$ [ '

" '::"ii
.!

u( v\=-r-11r,. -9G' h. *glErGr h.h^ + 
1859M 

h, +\/t l0 ' 200' 500 t z 2500 I

40842M - ^ 2217E^GrM - . 1885M'z . 
^

- 

h-' r ---------:---!- h.h- - --------------- h' -
40000Da ' 56000 tz l055Da''

435l9GrM2 . ^ l22llM2F . ^ l8823GrMF2 . 
^trr T 

-;- 

rtr / - --------------i- rtr -35600Da' 17500Da" 35000Da''13il5M4.^ 
, g3866MF.^ 16742GrM2.^

h, ' + y- + 

- 

h, 'y + ---------------- h, '
65450Da* ' J 

154000Da LJ 35600Da' I

13- .9Gr. .39E^Gr-- " 998-GrM-.:ah,y, +=h, v, _"':l:' h,h,/, _"1r,1'"^ h,h,y2 +
l0 'J 200 'J 200 t zJ 2000 t zJ

535775M: 
h.oy2 + 

l3ErGr 
h.h^ru * l69M 

h.ru
20000Da' ' r 1000 t L/ 25000Da 'J ,

37129M,4 6 777llGrM, o, 25704GrM, o,o
tr I --Ltt y - LLt y 'T

4000Da 8000Da l6000Da

6274g5ErGlM 
h,h^v2 +43749M'z h,ry6 _ l6gM 

h, yu _
10000Da2 

"t"zr 
10000 

"t r 2500Da""
3E'GrM 

h,h. v6 - 169M 
h, v6 - 

37129M 
h,a vo -2000 t 'r 25000Da '/ 4000Da ' /

ryh,oyu -2W-h,oyu *q7.!^:^:^!=o;M h,h,y, +
8000D4 '' l6000Da 'J l0000Da'

43718M2 
n.nre

10000 ' /

(3.3 3 )

,$\

, / , ::ilI'

-\_
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o (y) = -*o,- l6ioE". 
o, o, -Wn,h, - l-%- tr,' -

ttE-M - t43E^M - - 358ttE^M. ." h. h.h. + " h.h^ -5 , 100 -'--z 1050 --t--2

99E"GrM 
h,h._l43ErM y.z *83I3E"MF h.h- +2000 '' 100 ' 10500 'z

ffi^,o, -+ -ffi:b,o,, -ffih,h,y3 +

?9tlru' h,ro *l6993'rh,h.y -93468"M'h,h.v2 +
l0550Da '- 30Da t z' l0500Da t zr'

Wh,hrt + 3 E rMhrf +W-h,h ryz +

Wh,hr!, .Yor, r, -tt'lr{# h,h,r, -

Wh,h r!, .Wo,o,r, -Wh,hry3 +

*o7'.#n ,hry1 -ErMorr, -"'-f{ h,hrto -

ryh,h,," Wh,hrlo .ryh,h,./

(3.34)
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2.3 Results and Discussion

This section provides the behaviour of parameters present in the expression of flow, heat

and mass transfer characteristics. In oarticular, the influen.. oflEckert number (Ec),

permeability " (porosity) parameter (Da), Grashof number (Gr), Magnetic Field

parameter (M), Reynolds number (Re), and non Darcy parameter (.F). In order to bring

out the addition of dissimilar up-and-coming parameters, softward Mathematica is used

to imagine the behaviour of involved parameters through graphs.

1

Figs. 2.2 to 2.5 Represents the impact of Eckert number, Grashof number, Magnetic

field parameter, non Darcy parameter on velocity profile. It represent from Fig. 2.2

indicates that as the Eckert number increases.yelocity also increases. It can be seen from

Fig.2.3 that when the Grashof number increases velocity also increases and the Fig. 2.4

indicates that'when magnetic field is applied, then it disagree the flow due to the effect

of Lorentz force and h€nce the velocity of the fluid reduced. Fig Z.S indicut.s that as the

non Darcy parameter increases velocity decreases.

Figs. 2,6 to 2.9 represents the impact of Grashof number , Eckert number non Darcy

parameter arid magnetic field parameter on dimensionless ttimperature profiles. It

represent from Fig. 2.6 that when the Grashof number increases temperature decreases

wh^ile Fig. 2.7 indicates that temperature increased by increasing the values of Eckert

number. fig Z..S indicates that when the porosity parameter increases temperature will

also be increased, same is the case "il'ii!. 2.9 itas the Magnetic field parameter

increases temperature also increases. Fig. 2.10 (bottom) shows the ettects of skin

friction *itt it e various values of non Darcy parameter. It can be noted that in Fig. 2.10

(bottom) the skin friction decreases with increasing the non Darcy parameter. Fig. 2.1 I

(top) shows the the impact of Eckret number on skin friction coefficient fbr various

values of Grashof number. From Fig. z.llit can be seen that Skin friction decreases with

o]
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the increases values of Grashof number. In Fig. 2.12 (top) shows the the impact of

Magnetic field parameter on skin friction efficient for various values of non Darcy

parameter, it can be seen from the fig that the Skin friction decreases with the increases

values non Darcy parameter. While Fig.2.l3(bottom) shows the the impact of Magnetic

parameter on skin friction for various value's of non Darcy parameter, it can be seen

from the fig that the Skin friction increases with the increases values of non Darcy

parameter. Fig.2.l4(bottom) shows variation of Nusselt number for different values of

non Darcy parameter. It can be seen that Nusselt number increases with the increase in

the non Darcy Parameter. Fig.2.l5(bottom)shows variation of Nusselt number along the

wavy channel for different values of magnetic parameter. The graph exposed that

Nusselt number decreases with the increase in magnetic field parameter.

Fig. 2.16(bottom) shows the impact of magnetic parameter on Nusselt number for

various values of non Darcy parameter. It is obevious that the Nusselt number decreases

with the increases values of non Darcy parameter.

Ec=0.1
Ec=0.2

- 1.0 0.0 0.5

v

Fig.2,2 The impact of Eckert number on the velocity profiles.
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Fig.2.3 The impact of Grashof number on velocity profiles

tr

a

-1.{, -0.5 0.0 0.5

v

Fig.2.4 The impact of the magnetic parameter on velocity profile



t

t

-r.0 -0.5 0.0 0.5

v

Fig. 2.5 The impact of non Darcy parameter on velocity profile.

-'r.0 -0.5 0.0 0.5

v

Fig.2.6 The impact of Grashof number on temperature profiles

u
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Fig.2.8 The impact of non Darcy parameter on temperature profiles
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Fig. 2.9 The impact of Magnetic parameter on temperature profiles

Fig. 2.10 (Bottom)The impact of non Darcy parameter on skin

friction coefficient
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M
Fig.2.13( Bottom)The impact of Magnetic parameter on skin friction

coefficient for various values of non Darcy parameter

x

F.ig.2.14 (bottom)The Impact of porosity parameter on Nusselt number

v
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Fig.2.15(bottom)The Impact of magnetic parameter on Nusselt number
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['ig.2.16(bottom)The Impact of Magnetic parameter on local Nusselt

number for various values of non Darcy number
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2.4 Conclusion

The following points are observed and concluded as:

It is noticed that as the Eckert number and Grashof number increases velocity also

increases. It is observed that by applying magnetic field it disagree the flow due to the

effect of Lorentz force and so the velocity of the fluid reduced, also when the non

Darcy parameter increases velocity decreases.

Temperature decreases for the increasing values of Grashof number and increases as

the Eckert number and porosity parameter and magnetic parameter increases. It is

measured that Skin friction efficient decreases for increasing values of non Darcy

parameter. It is noted that skin fiction coefficient decrease when the impact of Eckret

number has been seen on skin friction coefficient for various values of Grashof

number. The impact of magnetic field parameter on skin friction efficient for various

values of non Darcy parameter has been seen, it results in decrease of skin friction

efficient.

The Impact of porosity parameter and magnetic field parameter on Nusselt number is

noticed and observed that Nusselt number increases as the values of porosity

parameter increases and decreases as the values of magnetic field parameter increases.

The Impact of magnetic parameter on Nusselt number for various values of non Darcy

parameter has been observed and noticed that when the magnetic field applied Nusselt

number decreases for different values of non Darcy parameter.
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Chapter 3

Entropy Generation in MHD Non-Darcian Flow of

Nanofluid in a Wavy Channel

In this chapter, entropy generation analysis of non-Darcian natural convection

MHD nanofluid flow over wavy surface has been analyzed. The solutions of

velocity and the temperature distributions are used from the previous chapter.

The equations for entropy generation are modeled and get dimensionless using

similarity transformations. The influence of numerous involving parameters on

entropy generation and on Bejan number are displayed through graphs and

discussed in details.

3.1 Mathematical Formulation of Problem

The entropy generation rate of nanofluid, in the presence magnetic field and

according to the above assumptions, can be described as

s'n=ffFrf.?*.+ + (3 r)

Where

(vr), =(#)'.(#)'
f ^-:,2

a =(q)" (3'2)

lq)
J =o(E+vxB)

The dimensionless form of equation (3.1) via similarity transformation defined in

equation (2.6) can be written as

4L



t\t

s L. = ? o*l;lil' . ;(x)' ). + i(#)'

s'-=?tr-r')'l+19'

.'ry! 1:3)

.i(X)'1.+i'(Xy .%!,:"t 
(t +t

In Eq. (3.1) the right hand side consists of three parts: the first part is entropy

generation due to contribution of thermal irreversibility that comprises the

enhopy generation by heat transfer due to axial conduction from the wavy

surface; the second part is fluid friction irreversibility and the third part denotes

joule dissipation irreversibility, which is due to the movement of electrically

conducting fluid under the consideration of magnetic field, thus inducing electric

current that circulate in the fluid. The entropy generation numberNo is the

similar form of the entropy generation rate, which shows the ratio between actual

entropy generation rate Si* and characteristic entropy generation rate Si which

is given below.

o'-kr(m)'-o d'7"

Now dividing equation (3.3) by equation (3.4), we get

No =S!"'sr

(3.s )

*"=ffi, futor)'{-t%) .;(X)'t.
pt c' (au\' *o,rBlc'u'r' d'lq ) T'

(3.6)
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The non-dimensional form of entropy generation number No can be written as,

* 
" 

= 
?lu' (x)' .(x)'). tr *e| . 

? + o (3 7)

Where

The dominance of the ineversibility procedure is essential, since the entropy
generation number is not capable to conquer this problem. The Bejan numberBe
is employed to comprehend the entropy generation mechanism. Mathematically it
can be written as:

o=L:. Br= ltrc
T : KAT

B"= N'
N, + Nr'

(3 8)

(3. 1 1)

*, = 
+lu, (x)' .(x)'), *, = ff 

u;(H'

*(x)'.(x|tL
kl

.**w)'

(3.e)

.?Yo (3 10)

Now using (3.10) into (3.9), we get

Be=

fL
kl

d,( 99\' *( 99\'
\ax ) \ay )

o,, MB, 2

ojo

It is clear from Eq. (3.11) that0< Be<1. When.Be:0, fluid friction and joule

dissipation ineversibility dominate entropy generation, when 8e = l, the
2'

contribution of heat transfer irreversibility is equal to sum of fluid friction and

Joule heating and whenBe=l, the irreversibility mechanism is dominated by

heat transfer effects. The dimensionless volumetric entropy rate and also average

Bejan number, which tend to be a good important measure connected with total

global entropy, will be evaluated with all current following formula:
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Nû,aw (3.12)

where V will be control volume.

3.2 Results and Discussion.

This section provides the behaviour of parameters involved in the expressions of

entropy generation. In particular, the influence of the parameters Br ,Da,Ec ,F' ,

Gr and M on entropy generation number Nc is discussed graphically, in

addition to this the impact of, Br, Da, M,Gr onBejan number .Beis also

discussed. In order to bring out the addition of dissimilar up-and-coming

parameters, computational software Mathematica has been used to imagine the

behaviour of all the parameters mentioned above through graphs.

Figs. 3.1 to 3.6 are drawn to show the effects of involving parameter such as

Brickman number Br, porosity Da, Eckert number Ec , non Darcy parameter F,

Grashof number Gr and magnetic field parameter M on entropy generation

numberNc

In Fig 3.lit can be seen that the entropy generation rate increases with increasing

the values of Br.Fig3.2 is showing that increase in the values of Da results in

the increase of entropy generation rate. And Ec, but the fig 3.4 Shows that

enhopy generation rate decreases with increasing values of If, Again from figs.

3.5, 3.6 indicate that the entropy generatibn rate increases with increasing the

values of Gr and ^d. In Figs. 3.7 to 3.9,'we observed that the Bejan number

decreases with an increase in the parameter values of Br, Da and M while Fig

3.10 indicates that Bejan number increases with the increasing values of Gr.

=i[[**"drdr7' Beon = di pr,*,*a,

r!.
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Fig.3.5 Impact of Gron entropy generation number
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3.3 Conclusion

In Fig 3.1 to 3.3 it can be observed that the entropy generation rate increases with

increasing values of Br, Da and Ec,but the fig 3.4 Shows that entropy generation rate

decreases with increasing values of F. A[ain from figs. 3.5, 3.6 indicates that the

entropy generation rate increases with iricreasing the values of Gr and F. In Figs. 3.7

to 3.9, we observed that the Bejan number decreases with an: increase in the

parametric values of Br, Da and M, while Fig 3.10 indicates that Bejan number

increases with an increase in the parameter values of Gr.
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