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Nomenclature

a Wave amplitude (m) d | Width of channel (m)

Length of channel (m) A | Wavelength A
v R Gravitational acceleration

H,, H, | Lower and upper walls of channel g (m-z) '

Vv Dim?nsional ﬂuid velocity T gg}npe;zltz?:l fluid

P Pressure (Nm™2) P | Dimensionless préssure

p Density (kg m™) # | Viscosity (v sm™)

k Thermal conductivity (W m” K ") o | Electrical conductivity
Specific heat at constant pressure i L

¢, (U kg Ka,) @ | Viscous dissipation
Volumetric volume expanrsionr

P coefficient (') | ¢ Nanoparticle volume fraction

K fgggi]:igidmm permeability F* | Non Darcy parameter

T, Lower wall temperature 7, | Upper wall temperature

T Mean value of T, and T; J | Joulecurrent

B, Uniform transverse magnetic field = | E, | Uniform electric field

L Dimensional ¥ and Y components of -

wv velocity (ms") | Dimensionless wave number
Dimensional xand y components of 1

“Y velocity (ms") 9 | Dimensionless temperature

Re Local Reynolds number g, | Radiative heat flux

“Pr Prandt] number Gr | Grashof number

E, Eckert number Ha | Hartmann number

E, Local electromagnetic parameter D, | Porosity parameter

a Radiation absorption coefficient N | Radiation parameter

m Temperature scale h | Embedding parameter

C, Skin friction coefficient Nu | Nusselt number

Subscripts

J Fluid

p Particle -

nf Nanofluid
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Preface

The flow of nanoﬁuids has taken considerable importance in recent times due to its
thermal properties and engineering applications. These fluids are mentioned first by
Choi [1, 2] who described their extraordinary properties, which gave a rise even up to
50% of thermal conductivity of liquids which are less conductive such as water or
ethylene glycol: Ever since a huge literature in both experimental and theoretical
domains appears [3-12]. It is vitally important that who is discussing the behavior of
the fluid to keep an eye on entropy generation or heat loss during the flow.[13-12]
The heat loss or thermal irreversibility must be minimized in ordef to generate a
thermally ide;11 system. It is established that the thermal irreversibility is due to

viscosity, electric field and conduction properties of the fluid.

The work:aim ‘to discuss the entropy generation of Ag-water nanofluid flowing
through a wavy channel with simultaneous effects of viscous dissipation, mixed
convection and for a reverse magnetic field while flowing through a non Darcy

}

porous space.

This thesis is based on three chapters. Chapter one provides some basic concepts and
definitions for the subsequent chapters. Changr two deals with the MHD non-Darcian
flow of nanofluid in a wavy channel. Third chapter is the extension of second chapter
with the discussion of entropy generation in MHD non-Darcian flow of nanofluid in a

wavy channel.
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1.4.4 Real Fluid

A real fluid is one which has finite viscosity and thus can exert a tangential stress on a
surface with which it is in contact. The flow of real fluid is called a viscous flow. Real

fluids can further be subdivided into Newtonian fluids and non-Newtonia n fluids.

1.4.5 Newtonian Fluid

The Newtonian fluid is a fluid in which shear stress is directly and linearly
proportional to the rate of deformation. For example water, air, emulsions.
Mathematically, it can be described as:

T, =H—,

Tl
Where 7, is the shear stress acting on the plane normal to the y—axis and uis the

viscosity of fluid. Water and gasoline are the examples of Newtonian fluids under
normal conditions. The Newtonian fluid is an idealized fluid that approximates the

behavior of water, air arid many other fluids.

1.4.6 Non-Newtonian Fluid

The Newtonian fluid is a fluid in which shear stress is directly but not linearly
proportional to the rate of deformation. For example; paints, blood, shampoo, flubber,

(suspension of starch in water)

.

{.
Mathematically it can be expressed as: - «:

_ du m,v 0
T, =M ‘—1; ;m; %0,

Where m, denotes the flow behavior index and consistency index respectively.
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Le. the partial derivative w.r.t time of any quantity vanishes. Thus the velocity is
constant w.r.t. time but it may vary from point to point. Hence the steady flow may be
uniform or non-uniform. PR
1.5.4 Unsteady Flow:

A flow is said to be unsteady when fluid properties and conditions at any point in a

fluid change with time i.e. % £u etc.

1.5.5 Laminar Flow

A flow is said to be laminar if the fluid particles move along straight parallel path in
layers or laminar. Thus in this flow, the curves traced out by any two different fluid

particles do not intersect.
1.5.6 Turbulent Flow

A flow is said to be turbulent if the particle of the fluid move in irregular fashion in

all directions.
1.5.7 Irrotational Flow

A flow is said to be .irrotational if the fluid particles do not rotates about their own

axes during the flow.
1.5.8 Rotational Flow

A flow is said to be rotational if the fluid particles go on rotatirig about their own axis

during the flow.
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1.5.9 Internal Flow

Internal flows are those where fluid flow through confined spaces such as pipes, open
channel, and fluid mechanics. The internal flow of liquids in which the channel does
not flow full is called an open channel flow. For example, flow in rivers and irrigation

canals.
1.5.10 External Flow

External flows occur over bodies immersed in an unbounded fluid, such as
atmosphere through which airplanes, missiles, and space vehicle travel, or the ocean

water through which submarines and torpedoes.

1.6 Dimensionless Numbers

A dimensionless number is a number without any unit associated with it. It is the ratio
of the quantities having same dimensions. They fully characterize the fluid under flow
and processing. There are many dimensionless numbers. Which are used in fluid

mechanics, few of them are presented as follows:
1.6.1 Prandtl Number

The Prandtl number (Pr) is a dimensionless number, named after the German

physicist Ludwig Prandtl, defined as the ratio of momentum diffusivity to thermal

-

diffusivity. That is, the Prandtl number is given as

prab - viscous diffusion rate _HIp C M
a  thermal diffusion rate k/c,p k '

11




1.6.2 Reynolds Number

In fluid mechanics, the Reynolds number (Re) is a dimensionless quantity that is used
to help predict similar flow patterns in different fluid flow situations. The concept was
introduced by George Gabriel Stokes in 1851, but the Reynolds number is named

after Osborne Reynold (1842-1912), who popularized its use in 1883.
1.6.3 Grashof Number

The Grashof numbeér (Gr) is a dimensionless number in fluid dynamics and heat
transfer which approximates the ratio of the buoyancy to viscous force acting on a

fluid. It frequency arises in the study of situations involving natural convection.
1.6.4 Eckert Number

The non-dimensional number which expresses the relationship between flow’s kinetic

energy and enthalpy is called the Eckert number E_: Mathematically, it is expressed

as

1.6.5 Bejan Number

The Bejan number is the ratio of heat transfer irreversibility to total irreversibility

due to heat transfer and fluid frictio

1.6.6 Hartman Number

>

¥y
[N

It is a dimensionless number which is expressed-by the ratio of electromagnetic force to the

viscous force. It is denoted by Ha and mathematically given by

12
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Ha = BL ‘/i.
pv

1.6.7 Nusselt Number

A Nusselt number close to one , namely convection and conduction of similar
magnitude, ié characteristic of “slug flow” or laminar flow. A large Nusselt number
corresponds to more active convection, with turbulent flow typically in the 100-1000
range. The convection and conduction heat flows are parallel to each other and to the
surface normal of the boundary surface, and.are all perpendicular to the mean fluid

flow in the simple case.

Convective heat transfer _hL
Conductive heat transfer k

ki

Where h is the convective heat transfer coefficient of the flow, L is the characteristic length, k

is the thermal conductivity of the fluid.
1.6.8 Skin Friction

Skin friction arises from the friction of the fluid against the “skin” of the object that is
moving through it. Skin friction arises.fromthe interaction between the fluid and the
skin of the body, and is directly related to the area of the surface of the body that is in
contact with the fluid. Skin friction f_ollo%vs the drag equation and rises with the
square of the veloéity. Skin friction is caused by viscous drag in the boundary layer
around the object. There are two ways to decrease skin friction, the first is to shape
the moving body so that smooth flow is possible, like an airfoil. The second method is

to decrease the length and cross section of the moving object as much as is practicable

13
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1.7 Convection

Convection is the transfer of heat by the actual movement of the warmed matter. Heat
leaves the coffee cup as the current of the stream and air rise. Convection is the
transfer of heat energy in a gas or liquid by;‘fnovement of currents. It can also happen
in some solids like sand. The heat moves with the fluid. Consider this: convection is
responsible for making macaroni rise and fall in a pot of heated water. The warmer
portion of the water is less dense and therefore, they rise. Meanwhile the cooler

portions of the water fall because they are denser.
1.7.1 Natural Convection

Natural convection is a mechanism, or a type of heat transport, in which the fluid
motion is not generated by any external source (like a pump , fan, suction device, etc)

but only by density differences in the fluid occurring due to temperature gradients.

5
il
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1.7.2 Foiced Convection

Forced convection is a mechanism, or type of heat transport in which fluid motion is
generated by an external source (like a pump, fan, suction device, etc). It should be
considered as one of the main methods of useful heat transfer as significant amounts

of heat energy can be transported very efficiently.
1.7.3 Mixed Convection

Combined forced convection and natural convection, or mixed convection, occurs
when natural convection and forced convection mechanism act together to transfer

heat. This is also defined in situations where both pressure forces and buoyant forces

o W TR

interact,
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1.8 Honiot'dpy Analysis Method

Homotopy Analysis Method (HAM) allows perturbation solution to be valid for
moderate to large value of parameter. HAM has been developed by Liao in 1992.This
method has been successfully applied to solve m any types of non-linear problems.
The basic idea of HAM is to produce a succession of approximate solution tend to the
exact solution from any initial guess of the problem. The presence of auxiliary
parameter and functions in the approximate solution results in a production of a
family of approximation solution rather than the single solution produced by
traditional perturbation methods by varying these auxiliary functions and parameters.

IR AR

It is possible to adjust the region and rate of convergence of series solution.
1.8.1 General Approach of HAM
Consider non-linear equation

N[u(x)] =0 (+1)

Subject to some initial condition or boundary condition. The first step in the HAM

solution of the equation is construct the homotopy.

H[(x:9);6y(x), H(x), ) ~q)L[¢(x:4)~¢(x)] -g4 #(x4)]

b

where Z  is an auxiliary parameter,‘§ fi(x) # 01is an auxiliary function, g e[O,l]is

embedding parameter, ¢,(x) is an initial approximation to the solution that satisfies
the given initial condition or boundary conditions, ¢@(x;q)satisfies the initial or

boundary conditions and L is some linear operator. The linear operator L should

15
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normally be of the same order as the non linear operator N. Setting homotopy equal to

zero so that

(1-q)L[¢(x:9)-4,(x)] =94 ’j¢(x;q)] (1.2)

Equation (1.2) is known as the zero-order ;'ie;‘!f"'(‘;nnation equation. By letting g= 0 in

this equation we obtain

L[$(x;0)-¢,(x)] =0 (1.3)
It fqllows from our definition of

L[¢(x)], #(x;9),and ¢ (x) that
4(x0) = ¢, (x) (1.4)

Now letting g=1 then

N[#(ED] =0

It is clear that ¢(x;q) satisfy the initial and boundary condition of the problem an

¢(x1) = ¢(x) (1.5)
So@(x;q) varies continuously from initial approximation to the required solution
¢(x) As q increases 0 to 1. Now we define the terms

_ 1 0"(x,q)

= o

- (1.6)
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By Tailor’s theorem we can write

b(x;9) = ¢(x;0>+i$% o 0" =h(0)+ 36,000" (1.7)

Now we differentiate Eq (1.4) with respect to q and setting ¢ = 0 and finally divided

by m! Then so called m™-order deformation equation become

where,

1 o'N [¢(x;q)]|
il — 1) ! : aq'i'_l =0

Lao

o

L[ 4,() = 2,8, (x)] =4 (1.8)

Thus this equation is valid for all m >1. The right hand side of Eq.(1.8) will depend on

term ¢,(x) with n < m. As a result the term @, (x)can be obtained in order of

increasing m by solving the linear deformation equation in succession. The solution to

the m™ order deformation equation can bé written as,

8, (x)=¢"(x)+4",,(x), (1.9)

Where ¢" (x) satisfies the homogenous equation

L[#(x)]=0 , (1.10)

and ¢”, (x)is particular solution of Eq.(1.7) we can express it as

17
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(1.11)

1 0"'N[g(x; q)]l ]

()= 2,80 (¥)+ L ( TR W

L' is the inverse operator of the linear operator L. The m™ partial sum of the term

¢, (x)as

3.0 = 24 () (1.12)

Thus solution can be expressed as

$0) = 31294, (x) = lim 7 () (1.13)

This solution will be valid where ever the series converges.
1.8.2 Advantages of Homotopy Analysis Method

HAM provides the liberty in how to develop the solutions to non linear problems. The

liberty endure several benefits over ordinary perturbation methods such as,

1. It is always valid no matter whethier there exit small physical parameter or

I_E: : v.,’:( * L';‘.':

not.

2. Thé HAM technique can be used to develop valid solution even to problems
that are highly nonlinear.

3. The HAM provides a convenient way to guarantee the convergence of
approximation series.

4. The HAM provides great freedom to choose the equation type of linear sub-

problem and the base function of solution.
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Chapter 2

i
R
s

MHD Non-Darcidn Flow of Nanofluid in a Wavy Channel

In this chapter, we discussed the flow of nanofluid through non Darcian porous wavy
channel. Constant magnetic field is applied perpendicular to flow and sinusoidal wavy
walls of channel considered with long wavelength. A nonlinear system of equations
comprising mass, momentum and thermal energy equations for nanofluid with mixed
convection completes the flow model. The coupled ODE’s are solved using
Homotopy Analytical Method (HAM). Graphs for velocity and heat are drawn to
observe the effects of various parameters like Darcy number, porosity parameter,

.,

Magnetic number, Grashof number and'E¢kret number.

2.1 Problem Formulation

The 2-D steady flow of a nanofluid through the horizontal symmetric channel
bounded by wavy walls is considered in the flow direction and y-axis is pcrpendicular

to it. The configuration of the walls is defined by the following equations

H,=—d—acos(%’£f) ,H2=d+acos[27”f) 2.1

19,
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Darcy forces =(%+F‘ 17]17 and Convectiqn=(pﬂ)"fg(T—T')

. S
N,

where p, is the density, u, is the” viscosity and o, is electric conductivity of the

nanofluid, while B, is magnetic field strength and F " is the Frochhiemers correction.
The terms present in the energy equation can be classified as follows:

Inertial term= ( pC, ) (17 or +V %) , Heat conductivity= K, , [

o’T o'T
nf af >

Eir

2
. e ou . _
viscous dissipation= 4, (5) and Joule’s heating= o, B/ii’,

Where C,is the specific heat of the nanofluid, The effective density of the nanofluid is
given by

Py = (1-0)p,+dp,

where ¢ is the solid volume fraction.” The effective dynamic viscosity of the

nanofluid given by Brinkman [ 17 ] is

Hs

Hy =——"335
" (1-¢)

The heat capacitance of the nanofluid is
(pC,), = (1=9)(eC,), +4(oC, ),

The electrical conductivity of nanofluid is

21
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2.3 Results and Discussion 2

This section provides the behaviour of parameters present in the expression of flow, heat
and mass transfer characteristics. In Rarticular, the influence of:Eckert number (£c¢),
permeability ~(porosity) parameter (Da), Grashof number (Gr), Magnetic Field
parameter (M), Reynolds number (Re), and non Darcy parameter (F "). In order to bring
out the addition of dissimilar up-and-coming parameters, softwaré Mathematica is used
to imagine the behaviour of involved parameters through graphs.

Figs. 2.2 to 2.5 Represents the impact of Eckert number, Gras}fof number, Magnetic
field parameter, non Darcy parameter on velocity profile. It represent from Fig. 22
indicates that as the Eckert number increases‘velocity also increases. It can be seen from
Fig. 2.3 that when the Grashof number increases velocity also increases and the Fig. 2.4
indicates that_ ‘when magnetic field is applied, then it disagree the flow due to the effect

of Lorentz force and hénce the velocity of the fluid reduced. Fig 2.5 indicates that as the

non Darcy parameter increases velocity decreases.

Figs. 2.6 to 2.9 represents the impact of Grashof number , Eckert number non Darcy
parameter and rﬁagnetic field parameter on dimensionless temperature profiles. It
represent from Fig. 2.6 that when the Grashof number increases temperaturé decreases
wh_ile Fig. 2.7 indicates that temperature incréased by increasing the values of Eckert
number. Fig. 2.8 indicates that when the porosity parameter increases temperature will
also be increahsed, same is the casé 'mPlé 2.9 it as the Magnetic field parameter
increases terr{perature also increases. Fig. 2.10 (bottom) éhows the effects of skin
friction with -the various values of non Darcy parameter. It can be noted that in Fig. 2.10
(bottom) the skin friction decreases with increasing the non Darcy parameter. Fig: 2.11

(top) shows the the impact of Eckret number on skin friction coefficient for various

values of Grashof number. From Fig. 2.11it can be seen that Skin friction decreases with
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3.3 Conclusion

In Fig 3.1 to 3.3 it can be observed that the entropy generation rate increases wi_tﬁ .
increasing values of Br, Da and Ec, but the fig 3.4 Shows that entropy generation rate - |

decreases with increasing values of F. Again from figs. 3.5, 3.6 indicates that the .

entropy generation rate increases with iricreasing the-values of Gr and F. In Figs. 3.7

to 3.9, we observed that ‘the Bejan number decreases with an: increase in ihé -

parametric values of Br, Da and M, while Fig 3.10 indicates that Bejan number

increases with an increase in the parameter values of Gr.
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