OPTIMIZED ROUND ROBIN SCHEDULING

-

Research Dissertation submitted by:

Muhammad Sheeraz
Reg. No. 304-FAS/MSCS/F06

Supervised by:

Mr.Qaisar Javaid

Assistant Professor
Department of Computer Science
International Islamic University, Islamabad.

Department of Computer Science
Faculty of Basic and Applied Sciences
INTERNATIONAL ISLAMIC UNIVERSITY
ISLAMABAD
2011

\

D o T u———

. _dmcy e e

Optimized Round Robin Scheduling Dissertation

Submitted to the department of Computer Science in partial fulfillment of the requirements
for the degree of
Master of Science
in
Computer Science

I e _—
1

Optimized Round Robin Scheduling

Final Approval

Department of Computer Science

INTERNATIONAL ISLAMIC UNIVERSITY ISLAMABAD

Final Approval

Dated:

It is certified that we have examined the thesis project report titled “Optimized Round Robin
Scheduling” submitted by Mr. Muhammad Sheeraz, Reg. No. 304-FAS/MSCS/F06 and it is
our judgment that this research project is of sufficient standard to warrant its acceptance by
the International Islamic University, Islamabad for awarding the degree of Masters of

Science in Computer Science MS (CS).

Committee:

External Examiner:
Dr. Waseen Shahzad
Assistant Professor

Department of Computer Science
FAST, Islamabad.

Internal Examiners:

Mr. Asim Munir

Assistant Professor

Department of Computer Science
International Islamic University, Islamabad

Supervisor:

Mr. Qaisar Javaid

Assistant Professor

Department of Computer Science

International Islamic University, Islamabad.

ii

Optimized Round Robin Scheduling Declaration

Declaration

I hereby declare that this research dissertation is not copied as a part or whole from any
source. It is further declared that no portion of this report has been submitted in support of
any other degree or qualification of this to any other university or institute of learning.

Mr. Muhammad Sheeraz
304-FAS/MSCS/F06

Optimized Round Robin Scheduling Acknowledgements

Acknowledgements

The whole praise is to Almighty Allah, the most beneficent, the most merciful. Who gave me
vision and enabled me to accomplish this dissertation.

To my supervisor Mr. Qaisar Javaid for giving me his precious time and guidance for
completing this disscrtation.

To my parents and family for their continuous and never ending invocations, cooperation and
encouragement. Their prayers for my success are an cndless source of encouragement for me
in all spheres of life.

Optimized Round Robin Scheduling Dedication

Dedication

I would like to dedicate it to my parents and family.

e

Optimized Round Robin Scheduling Abstract

Abstract

Round robin scheduling algorithm is widely used for the purposc of scheduling. The rcason
for this is that round robin scheduling algorithm is very suitable for multitasking
environment, In a multitusking environment more thun one process is being executed
concurrently. Round robin scheduling algorithm gives CPU time to each task in a circular
fashion.

Round robin scheduling algorithm is widely used in field like operating system, network
devices etc. In operating system round robin scheduling algorithm is used for scheduling of
the processes. In network devices it is used to schedule network packets for processing.

But there is a potential problem associated with this classical scheduling algorithm. If a small
process or task is present at the end of the queue, this task or process has to wait for quite a
long time becausce all the processes present in {ront of it get CPU time before this process. In
this situation the waiting and turn around times of this task or process are increased very
much. Even if a large task or process is present at the end of the queue, égain it has to wait
for quite a long time, which increases its waiting and turn around times. If this problem is
resolved the classical round robin scheduling algorithm can be made more optimized and
useful. :

This thesis is based on resolving this issue of round robin scheduling algorithm. A new

“scheduling algorithm named as “Optimized Round Robin Scheduling Algorithm” has been

proposed in this thesis. This new proposed algorithm is based on the classical round robin
algorithm with some variations. The above mentioned issue of round robin scheduling
algorithm has been resolved in the newly designed algorithm by decreasing average waiting
and turn around times of the processes. This algorithm specially looks after the process at the
end of the queue and guarantees that its waiting and turn around times do not increase very
much. For testing purpose the new proposed algorithm has been applied on sets of processes.
This has shown that the new proposed algorithm is more efficient and optimized by
exhibiting low average waiting and turn around times for the processes, as compared to the
classical round robin scheduling algorithm and some of its variants discussed in this
dissertation.

Optimized round robin scheduling algorithm is also applicable to network devices for
scheduling network packets and in any other field in which scheduling is involved.

vi

- Optimized Round Robin Scheduling Table of contents

TABLE OF CONTENTS
Chapter No. Contents Page No.
1. Introduction ¢ eteerereaestenasrs sresstasaesaRetas et st et R R e s e e RS e SRR RsES RS R e Rerene reeveneraes 1
1.1, Process Mmanagementcccceeimiiinimninioiiinnieoniiniciinnseressesessosssessssssens 2
L1 1. PrOCESS cevciiiiiiiiniiisiiincistiinneiinnenscssnicesssssesesscsseesnseresesssnsessasanaens 2
1.1.2. Process Satescccevirrciicinicnnensensineeinessnsesenscnneccsssssnssssiosssssossassans 3
1.1.3. Process Control BIOckcocieeviimicnininncnniiniiniinicneccennnniecnnnennes 5
i 1.1.4, Process Schedulingcccoovceveenriiviveniinininniieiinn e 7
! 1.1.4.1. Scheduling QUECUES oiiviiiiiiieiiiiiriecniciiieces s ssiesesnesesssnens 7
‘ 1.1.4.2. Schedulers....iiiniiiiiinieniecesessnnees 8
1.1.4.3. Context SWItCh ...ccivveeiiiiiiiiiiinciceniernencrcresnvesereesneeens 9
1.2. CPU Scheduling........ccccccvimennincnseniinininniins vveeereseenenane et erenaeeieaas 10
1.2.1. Scheduling Criteria.....cccoivneinniiiniinninicmicrcnmmnennnses 10
1.2.2. Scheduling Algorithims i ereiiscesssenees 12
1.2.2.1 First Come First Served Scheduling.......ccceceveeveriercenrennnen 12
1.2.2.2 Shortest Job First Scheduling s 12
1.2.2.3 Priority Scheduling........ccccevcvriminniniiiniininncnicnnceniinne. 13
1.2.2.4 Round Robin Scheduling........ccoocviiiiciiiiinninnennnncninnnnces 14
1.2.2.5 Multilevel Queue Schedulingccocvvviniinniiciecicnnnn. 14
1.2.2.6 Multilevel Feedback-Queue Scheduling........c.ccovveveenenans 15
1.3. Contribution of this DiSSCIAtIONc.c.ceveererereeerereesissereieseseseseessesssesssseseses 16
1.4. Dissertation Organizationc....cccevereesneineiceereesscnsnenieessesssessresscossesssscsssssnens 16
2. Literature SUIVEY ...ccieeneicnnistnnisnicesssescsnssssssssassassassssasssss teestesentisasstsssssnsssssnsssssasane 18
2.1 INErOAUCHION covveviiiiiiieencenniicieiinnrrecte st esetsssne st e saneenreessenossessonsenansasssesssnesse 18
2.2, Previous WOTK ...ccveiieiiceienrrrneniennienenseasitienesseeesiesssessssaesssssessssssssnssssanasasen 18
2.2.1. Deficit Round RODBIN......cocuvveenierveeiienenrnicieeenrcsecesreereesnesssnessassnees 19
2.2.2. iISLIP Scheduling ...c.coocvmiicieieeeeiiieccneenseeseiesnescsseaarssesessessanens 19
2.2.3. Start-time Fair QUEUINGcccooevveviiiiieieenieierseneteseercesrerenesressenes 20
2.2.4. Two Dimensional Round Robin Schedulercoocvvevirrvniinncrncnenne 20
2.2.5. Pre-order Deficit Round RObincooovveeeinrienteiincircnceneecnnnns 20
2.2.6. Stratified Round RObinccovevivvireineencencnnennennneniesnesereensessaens 21
2.2.7. Improved Algorithm for Weighted Round Robinc..ccuuueunnee. 21
3. Problem Statement And Proposed Solution...........c.... tesresnsssnnesssnessnnssnereasonsenss Y X
: 3.1 INtrOUCHION ..ciuiiiiiiieerieiniccncentnresiseetsseeaeetesresessassnessasasssesenassasassnsnsens 23
3.2. Problem definition ...t 23
3.3, Proposcd WOrK ...ttt sssssessiesessses 24
‘ 3.4. Optimized Round Robin SChedulingcccvcevcreiemmeniecensnesennsensesssssssensnes 25
, 3.4.1. BasiC THEOTY .ccccieriiiirrerinntiiniticseitesinercsssnnssoninsssssssssosnsessssssssssansos 26
3.4.2. EXplanationccceceievcniniinenniienenncenenmianessines devteereeneesarsennre 26
¢ \
!
! ‘ vii

Ontimized Bownd Robin Scheduling Table of contents
3.4.3. Optimized Round Robin Algorithmccccccovvvvivinrinnnnnniinnccnnnes 31
3.4.4. CASE SCONATIOS .uuvveieiieenrereererserririeesesarsssssssraesrmsesserersssesasssasasnsnanere 32
3.4.4.1. Best Case SCCNAi0 ouevvovvvieieeiitiieaneersscereerssnsessssescnssnes 32
3.4.4.2. Worst Case SCENATIOccccvvevvreerereersveerecrneererenressssngessnses 32
3.4.4.3. Average Case SCENATI0ucvrmverrecrirrereesessesensenraesassnssssnons 32
4. Testing and Performance Evaluation 33
4.1, INEEOAUCHION voviereerereereeeeeeesteveeseereseseseessreseesssessssesessesesssnsssesessressensessasessrssses 33
4.2, PEITOIINANCE ..icvieieicireirrieieneccccnenaseseesseeastesessesasssnssenseresessrssessnssesnsasssnsssnenensens 33
4.2.1. ProcCeSs SEL T uuueerieerieiiiieeeieeeiiiesisiesesensreresseernenresrraseassssassrsssssssssnses 34
4.2.2. Process SCL2 iiieeiiiicieeieviercsiirrrtrieearesresesessisesatatesesersesrasnnse 37
4.2.3. Process SEL 3uivecivvevinierenerernsersrsneeeserrerresssssssnssasessssnsssesssssses 38
42,4, ProcCess SELAuuviivveenrierieeiieverereesssreeinsreserserseossssssessssssssasesessanas 39
4.2.5. ProcCeSS SEU S uurceiiiiriiiiirimretenrvessressrereressnesersrronsassorssnsasnsesssssssasenes 40
4.2.0. Process SCLO .oviiiviriiiriirievesiesrirtenierrermresserersrasessesssssssrsnsssasasseses 42
4.2.7. ProCess SEL T coouveievioviiiriesinriirsnerreossrersesossssssnseressassanesssssassssssassanes 43
4.2.8. Process SEL8 ...t 44
4.2.9. ProCess SELD .ooviiceereeeiiireeieecsestnsrarteeerecssessssssssersnsssrnsessssesanasen 46
4.2.10. Process SEL 10uuiueieiiiiccinieeeiecssisnienreeeressereresssesssssssssssasesesasassas 47
4.3. Performance Evaluation of Optimized Round Robinccccvvvevmrvrrrnecrccnenen. 49
4.3.1. Graph for Waiting Timec.cccevveeverecseercncevrnmninnsnericsnens 49
4.3.2. Graph for Turn around Timecccovveevvvenrrncrercrcrnnenen, 50
4.3.3. Overall Performance ...uiieveiieiemimineinreeeevreecceessssossiossnnes 51
5. Conclusion and Future Work teeremenvesscsrensererssrnnnrnrensaesenernenes 55
5.1 INEEOQUCLION ceeeeeieeeerieecceteccrereee et esteesneeeseresessaressanesessserecsrsnsssssssssssssssessnns 55
5.2, CONCIUSION cnteiecieeceeectre e steessreesneessrtestraessnsesssessssssnsasssssesesonsnssssssesens 55
5.3 FULUIE WOTK ettt cccereteesesesaestesee s es e s ssss s sssassesessmmasnnansssssens 56
REfRIENCES et rri e resrareses e s s s tatseeaeesesessassssnsresssssmsnsnsnsnsssasae 57

viii

Optimized Round Robin Scheduling

List of Figures

LIST OF FIGURES

Figure 1.1:
Figure 3.1:
Figure 4.1:
Figure 4.2:
Figure 4.3:

Process Sates

Exccution of Optimized Round Robin algorithm
Graph showing waiting times of 10 sets

Graph showing turn around times of 10 sets

Graph showing overall performance

ix

CHAPTER 1

INTRODUCTION

X

Optimized Round Robin Scheduling Introduction

Operating system is a computer programme like other computer programmes in a computer
system. The difference between operating system and other computer programme is that the
operating system looks after all other programmes and those programmes are executed under
the umbrella of operating system. Other computer programmes cannot execute on their own
which means that they are dependent on operating system. Therefore for the successful
execution of other applications or programmes computer system must have an operating

system. It is the first programme that is loaded into the machine.

An operating system is a platform through which users can launch and execute their
programmes and take advantage of the resources of a computer system. In other words an
operating system is a middle or intermediate programme that acts between the hardware
resources of a computer and the users of the computer system or application programmes.
Operating system in itself is basically a programme that manages all the resources of a

computer system.
An operating system does some basic tasks such as
= Recognizing the input from input devices like keyboard or mouse
» Sending output to the output devices like monitor
= Keeping track of files and directories on the disks émd
s Controlling peripheral such as disk drives and printers

Basically an operating system is an integrated programme of different programme modules,
like process management module, memory management module, I/O management module
etc. All these modules perform their predetermined tasks.

The scope of my research work is related to process management module of operating system
and more precisely the process scheduling algorithms working under process management

module of operating system.

Optimized Round Robin Scheduling Introduction

1.1. Process Management
In process management operating system creates and deletes processes [user and system],
schedules them and provides means for their synchronization, communication and deadlock

handling.

Process management module is the part of operating system that manages and schedules
different processes for execution. Because in today's multitasking environment many
processes are executed simultaneously, there should be a mechanism that can ensure the
execution of more than one process simultaneously as well as processes should be scheduled

such that any chance of starvation or deadlock is avoided.

Deadlock is a situation in which a process ‘A’ after occupying resource ‘R1’ needs another
resource ‘R2’ that another process ‘B’ occupies and process ‘B’ after occupying resource
‘R2’ needs another resource ‘R1’ that process ‘A’ occupies. Because of this situation neither

of the process will be able to continue its execution.

1.1.1. Process

The terms process and programme are often used interchangeably. But there a fine difference
between these two terms. A programme currently being in execution by the CPU is called a
process. Actually there is no difference between a programme and a process, because they
both are pieces of code.

The only difference is that whether that piece of code is being executed by the CPU at
present or not. If this piece of code is not being executed by the CPU at present it is called a
programme. And this very piece of code is known as process if this piece of code is being
executed by the CPU presently.

Hence a programme is static in nature because CPU is not executing it presently. Whereas a
process is dynamic in nature because CPU is executing it presently. As process is being
executed by the CPU it requires some address domain in memory, CPU time, files, some
variables etc. and these attributes are associated with dynamic entities.

A process is considered as a unit of work in most of the systems. There are many processes
that are being run at a time in a system some of these processes are system processes and
some are user processes. System code is executed by system processes whereas user code is

executed by user processes.

Optimized Round Robin Scheduling Introduction

Historically a process consists of only one thread of control but most modern operating
system support processes that have more than one thread i.e. multithreaded process.

1.1.2. Process States

Process state is the stage of a process that is being executed by the CPU. The eligibility of the
processes for receiving CPU time is determined by these states. These process states are not
actually recognized by the operating system as we do but these states are very useful
abstraction for comprehending processes.

These process states basically show the stage of the executing process. These process states
enable us better understand the execution life cycle of a process under execution.

A process can be identified in an operating system by a state among the following;

Started (New)

Terminated

Ready

Waiting (Blocked)

Running

These states are shown graphically in the following diagram.

Terminated

Blocked

Figure 1.1 Process Sates

Optimized Round Robin Scheduling Introduction

Started

Upon creation of a process it is in “Started”, “Created” or “New” state. Process waits for
admission to ready queue during this state. Long Term Scheduler either approves or delays
the request to be admitted to ready queue by the process. This request of the process is
automatically approved without any delay in normal desktop systems but this request can be
delayed in real time systems. The reason for this delay is that the approval of this request
may lead to over saturation. This will decrease the performance of real time systems which is

not acceptable.

Ready

During this state the process waits for getting execution time from CPU after it gets loaded
into main memory i.e. it is waiting for context switching by the Short Term Scheduler which
is also known as Dispatcher. More than one process can be in ready state. Especially in case
of single processor architecture many processes are present in the ready state and waiting to

get CPU execution time. As there can only be one process in running state by the CPU.

Running
A process is known to be in running state which is presently in execution of CPU. There can

only be one process in running state because more than one process can not be handled by

the processor at one time.

Blocked
If a process waits for occurrence of an event e.g. completion of I/O operation or some signal,

then it is in blocked state. Without getting its event completed this process cannot proceed
further.

Terminated
A process can proceed to terminated state by two ways.
1. from running state after going to completion

2- be killed explicitly

Optimized Round Robin Scheduling Introduction

It is very important to remove this process from memory after it completes its execution. If it
resides in memory it will occupy its memory address domain. Such a process is known as

Zombie process.

Additional Process States

The systems with virtual memory support have two additional states.

Swapped out and waiting

Mid Term Scheduler may swap out a process of the main memory and place it in virtual
memory. Main memory can have this process swapped back in ready state.

Swapped out and block

Mid Term Scheduler can swap out blocked processes. Such processes may again be sapped

back into main memory in the same way as swapped out and waiting processes.

1.1.3. Process Control Block (PCB)
The structure through which processes are represented in an operating system is called
Process Control Block. It is called Task Control Block as well. It contains different attribute

values related to processes. Some of the attributes are mentioned below;

Process Sate

It shows the state of the process.

Process Number

This number associated to each process by the operating system distinguishes a process from

others in the system.

Programme Counter
PCB also contains an attribute programme counter. Programme counter contains address of

an instruction. CPU executes this instruction next.

Optimized Round Robin Scheduling Introduction

CPU Registers

Depending upon computer architecture there are different number and types of CPU
registers. They include accumulator, index registers, stack pointers and general purpose
registers plus any condition code information. It is vital to save the contents of these registers
along with programme counter whenever an interrupt occurs for proper execution of the

process.

CPU Scheduling Information

It contains a process priority, pointers to scheduling queues, and any other scheduling

parameters.

Memory Management Information
Values for base and limit registers are contained in this information. Apart from that page or

segment table value are also present here.

Accounting Information

It includes the amount of CPU and real time used, time limits, account numbers, job or

process numbers, and so on.

I/ O Status Information
This attribute contains information like set of /O devices acquired by the process. It also

contains a list of open files and so on.

Optimized Round Robin Scheduling Introduction

1.1.4. Process Scheduling

The very purpose of multiprogramming is to use CPU in such a way to have its maximum
advantage. Switching CPU among different processes very fast so that users can be very
comfortable while interacting with running processes is the main purpose of time sharing.
For this purpose process scheduler selects an available process for execution on CPU. There
can be more than one process that is competing for CPU time.

This is the job of process scheduler to select a single and suitable process for execution by
the CPU. In case of a single processor system there can be only one running process at a
time. If multiple processes are present then one process will be running and rest will wait for

their turn.

1.1.4.1. Scheduling Queues

The operating system contains some queues. These queues are used to hold different
processes during their different stages in the system. Operating system contains a job queue.
All processes of the system are contained in Job queue.

A process present in the main memory being ready to get its turn on CPU is kept in a queue
known as ready queue. Linked list is the structure in the form of which this queue is normally
implemented. First and last PCBs are pointed to by pointers contained in this queue header.
A pointer is contained in every Process Control Block pointing to next PCB in queue.

A process enters into running state from ready queue. Now this process can complete its
execution, can be interrupted or it can wait for some event like /0O completion. A device
queue is attached to each 1/O device in which processes that are waiting for some 1/O are

placed.

Optimized Round Robin Scheduling Introduction

1.1.4.2. Schedulers

A process during its lifetime migrates among different system queues. Operating system is
responsible for selecting appropriate process from these queues and hand it over to CPU. The
process of selecting an appropriate process is performed by a module of operating system
known as scheduler. The types of schedulers working in an operating system are discussed
below.

Quite often in an operating system, the number of processes submitted is greater than the
number of processes that can get CPU time. Such processes are placed traditionally on a disk
for execution in future.

The process of selecting processes from here and loading them into main memory is carried
out by long term scheduler.

The process of selecting one process from among these processes and allocating CPU to it is
performed by short term scheduler.

The frequency of execution of these two schedulers is a primary distinction between them.
Short term scheduler undergoes execution in greater number as compared to long term
scheduler. A process must be selected for execution from ready queue by short term
scheduler very frequently. Short term scheduler often executes once in 100 milliseconds.
Therefore short term scheduler must be very fast in its selection process. Because if short
term scheduler is not fast, as it executes very frequently, much of CPU time will be wasted in
executing short term scheduler.

On the other hand the execution of long term scheduler is much less in frequency. There can
be gap of minutes in creation of processes. The degree of multiprogramming i.e. process in
memory is controlled by long term scheduler.

More time can be taken by long term scheduler in deciding which process to execute,
because it executes in less frequency. Long term scheduler should very carefully select a

process for execution.

Optimized Round Robin Scheduling Introduction

Another intermediate scheduling is added in some operating systems like time sharing
systems. Medium term scheduler performs this scheduling. At times it is beneficial to
eliminate a process from the memory. The process that is eliminated from the memory can be
brought back and it can restart its execution from that point it left. This technique is known

as swapping. It is performed by medium term scheduler.

1.1.4.3. Context Switch -
When CPU executes a process quite often in an operating system some sort of interrupt
occurs. Because of this operating system is required to save the context of the process that is
being executed presently. This is because of the fact that if the current state of the process
that is stopped is saved then its execution can start at a later time. This technique of saving
and at a later stage restoring the context (state) of a process by the CPU is known as context
switch.

If current state of a process which is stopped because of an interrupt is not saved then in this
case the execution of this process can not start from the point it was stopped. Therefore this is
very important to save its current state.

PCB saves the state of a process which is executing currently when it is context switched and
later when this process gets its turn again, its saved state is loaded again and execution starts
from the point where this process get stopped. Hence a CPU state save is performed and then
CPU state restore is performed in this process.

Therefore a computing process in which a process in which CPU state is stored and then
some other task is performed. Later CPU starts execution from its saved state. The benefit of
this technique is that a single CPU is managed in a way that it executes more than one
process. Context Switch is an overhead and it should not occur too frequently because in this
way most of CPU time would be lost in this process. Therefore although context switch is

very usefull technique but it should be used very carefully.

Optimized Round Robin Scheduling Introduction

1.2. CPU Scheduling

Scheduling is a basic technique today’s operating system. Because we normally have more
processes than available processors. Therefore it is important to schedule these processes so
that they can be executed. This scheduling process is performed by a scheduler and
dispatcher.

In case of a single processor system, there is only one processor is available to execute only a
single process. But there are many processes that are present in such a system every time.
These all processes require CPU time. This is the responsibility of operating system to ensure
all processes get their turn and none of them is starved for an indefinite period. The basic
concept of multiprogramming lies in the fact that CPU should be utilized efficiently by not
allowing it to remain idle. Therefore CPU scheduling becomes very important so that all
these processes are scheduled in a fashion such that they get their turn plus CPU is also
utilized efficiently. This makes sense that whenever a system has many processes, they are

needed to be scheduled by operating system for there complete execution.

1.2.1. Scheduling Criteria

Many CPU scheduling algorithms are available for the purpose of CPU scheduling. Each
algorithm has its own traits and it might support a particular class of processes more than
another class of processes. While selecting a particular scheduling algorithm traits of
different scheduling algorithms should be considered. For the purpose of comparison
between scheduling algorithms different criteria are available.

One algorithm might show best result for one criterion and it might show poor results for
another criterion. Hence selection of an algorithm for a particular criterion is very important.
Some criteria are discussed below;

CPU utilization

CPU is desired to be kept busy to the maximum. Theoretically CPU utilization should be
between 0 to 100 percent. But in reality, it should range from 40 (in case of lightly loaded

system) to 90 percent (in case of heavily used system).

10

Optimized Round Robin Scheduling Introduction

Throughput
Work is being done when CPU is executing processes. Throughput is the number of
processes executed per unit time. For long processes, this rate may be one process per hour;

for short transaction, it may be 10 processes per second.

Waiting Time

The CPU scheduling algorithm cannot do any thing with time of execution of process or
amount of time of doing I/O, it can only affect the amount of time that a process spends in
ready queue called waiting time. Scheduling algorithm should try to minimize waiting time
of a process.

Waiting time = time spent in ready queue by the process

Turnaround Time

Turnaround time is the time from submission of a process to its completion. Turnaround time
is the sum of the time spent waiting to get into memory, waiting in the ready queue,
executing on the CPU, and doing l/O.

Turn around Time = Burst time + Waiting time

Response Time

It is more useful criterion than turnaround time in an interactive system. Time form the
submission of a request until the first response is produced is called response time.

CPU utilization and throughput criteria are tried to be maximized while turnaround, waiting

and response times are tried to be minimized.

11

Optimized Round Robin Scheduling Introduction

1.2.2. Scheduling Algorithms

Many scheduling algorithms are available and each of these algorithms has its own
properties. They make it possible for us to execute many processes and prohibit any resource
starvation in the system. Some of the very common CPU scheduling algorithms are described

below briefly.

1.2.2.1. First Come First Served Scheduling

“First Come First Served” scheduling algorithm is the simplest scheduling algorithm. Here
CPU is given to process that requests it first. And this process holds the CPU till its
completion. This process does not give CPU to any other process until it completes it
execution.

Scheduling overhead is minimal in this scheduling scheme because context switching is only
performed when a process completes its execution not in between. Large process might hold
CPU for long time therefore throughput of this scheduling algorithm might be low.
Turnaround time might be high because of the very reason mentioned earlier. Waiting and
response times might be high because of same reason. This scheduling algorithm permits
every process for completing its execution and hence there is no starvation in this scheduling
algorithm. There isn’t any concept of prioritization. Hence this scheme faces problem

meeting process deadlines. [22]

1.2.2.2. Shortest Job First Scheduling

This scheme takes different approach towards solving the processes. This scheduling
algorithm focuses on the lengths i.e. amount of CPU time required by the processes. Shortest
job first scheduling sorts all ready queue processes and picks up the process that requires the
least CPU time, this process is solved to its completion and then the next process with least
CPU time requirement is picked up and executed.

Theoretically this scheduling algorithm gives the most optimum results possible. At short
term scheduler level this scheduling algorithm is not implement-able. As it is impossible to
find exact CPU time that a process requires prior to its execution. One approach is to

approximate the CPU time required by the process but of course it would be a predicted

12

Optimized Round Robin Scheduling Introduction

value and no guarantee can be given about the predicted value i.e. whether this value be
accurate or not.

Shortest job first scheduling algorithm gives optimum average waiting times for the
processes. Because it executes short process prior to long process therefore waiting times for
the processes are decreased quite a bit. If a long process gets executed after a short process,
waiting time of short process is decreased more than waiting time of long process is
increased.

It is worth noticing that a more appropriate term for this scheduling algorithm is shortest next
CPU burst scheduling algorithm. This algorithm can support preemption or it can be without
preemption. Shortest remaining time first is another name that is given to the preemptive

shortest job first scheduling algorithm. [22]

1.2.2.3. Priority Scheduling

This algorithm assigns priority value to every process. Process having the greatest priority is
given CPU. This means that the processes with higher priorities are executed first always.
Interactive processes can be assigned higher priority values so that they can get a high
response time. This algorithm is very useful because in some scenarios it is desirable to give
much of CPU time to a specific process. Through priority scheduling algorithm this task is
performed very efficiently.

This algorithm has two flavours preemptive and non-preemptive. In preemptive version of
this algorithm currently executing process will be preempted if a process with greater priority
arrives in queue and latest arrived process with greater priority will be assigned CPU.
Shortest job first scheduling algorithm is form of this algorithm where priority is amount of
CPU burst time. If CPU burst time is higher, priority of this process will be lower.

There is chance of indefinite starvation for low priority processes in this algorithm. This
scenario is created if high priority processes are continuously coming in the system. In this
case a process in the system with a low priority will be blocked indefinitely. This process
will be blocked till new processes with higher priority are coming. When processes with
higher priority stop coming in the ready queue, only then this blocked process will have a

chance to get CPU and start its execution.

13

Optimized Round Robin Scheduling Introduction

A solution to this problem i.e. blocking for low priority processes is aging. In aging priority
of process present in queue increases gradually with the passage of time. In this procedure a
time comes when this process is assigned the highest priority in the system. Hence this

process will have its turn on the CPU. [22]

1.2.2.4. Round Robin Scheduling

In time sharing systems processes should get equal amount of CPU time. This algorithm is
specifically developed for time sharing systems. In this scheduling algorithm CPU time is
given to all processes in a circular manner. This scheduling algorithm is basically working on
the principle of first come first served scheduling except preemption is an added
phenomenon.

This algorithm has a concept of time quantum that is the maximum time for which a process
can execute on the CPU.

Queue is viewed like circular queue. All the processes one by one in a circular fashion are
allocated the CPU. The processes are allocated CPU for a maximum time of one time
quantum. After that either the process goes to its completion or it is put back in ready queue
and CPU it allocated to the next process.

Time quantum value normally lies between ten to hundred milliseconds. The value of time
quantum should not be very large. In this case round robin scheduling algorithm will be
degenerated to first come first served scheduling. Similarly time quantum value should not be
very low because in this case context switching will occur very frequently and much of CPU
time will be wasted in context switching. Hence time quantum value ought to be greater than
context switch time. As a rule the time quantum value should be chosen such that 80 percent

of processes in queue get completed when they are executed first time for one time quantum.
[22]

1.2.2.5. Multilevel Queue Scheduling

This algorithm is used in scenarios where processes can be divided into different groups.
This division can be based on memory requirement, CPU time requirement, I/O requirement
etc. For example consider foreground and background processes. These two group of

processes have different resource requirments.

14

Optimized Round Robin Scheduling Introduction

Multilevel queue scheduling algorithm comes up with the solution. It divides the ready queue
into several queues. Each of these queues can follow a different scheduling algorithm.
Assignment of processes to queues is permanent which is based on a specific property of
process.

For example we are using two queues for foreground processes and background processes.
Former require quick response therefore round robin scheduling algorithm would be a better
choice to be used in this queue. On the other hand for background or batch processes first
come first served scheme can be used.

Another variation that can be done is that the CPU time may be distributed among different
queues according to the requirements of the processes. For example for foreground or
interactive processes we can allocate say 70 percent of CPU time where for background or

batch process 30 percent of the CPU time can be allocated. [22]

1.2.2.6 Multilevel Feedback Queue Scheduling

The scheme discussed above is bit inflexible as processes can not move between queues i.e.
they do not change their queue during their execution. This scheme has an advantage that its
overhead is low and foreground and background processes do not change their nature during
their execution. But this scheme is inflexible.

Multilevel feedback queue scheduling algorithm is flexible in the sense that processes can
move between different queues during their execution. The idea behind this scheme is to
group processes with similar requirement. In this scheme if a process is using too much CPU
time it is placed in low priority queue.

I/O bound and interactive processes are placed in higher priority queues. A process may be
moved to higher queue that has been waiting for quite a long time in a low priority queue. It

will avoid indefinite blocking or starvation for the process. [22]

15

————— — —

Optimized Round Robin Scheduling Introduction

1.3. Contribution of this Dissertation

This dissertation is focused on scheduling algorithms. There is a potential problem associated
with this classical round robin scheduling algorithm. If a small process or task is present at
the end of the queue, this task or process has to wait for quite a long time because all the
processes present in front of it get CPU time before this process. In this situation the waiting
time of this task or process is increased very much. Even if a large task or process is present
at the end of the queue, again it has to wait for quite a long time, which increases its waiting
time. This issue of round robin scheduling algorithm has been resolved by developing a new
algorithm i.e. optimized round robin scheduling algorithm in this dissertation. Optimized
round robin scheduling algorithm solves this issue by decreasing average waiting and turn
around times of the processes.

Round robin algorithm is widely used in scheduling problems in today’s multitasking
environment. In multitasking environment many interactive processes are competing to get
the CPU time. Therefore by resolving this specific issue associated with round robin
scheduling algorithm, would prove very beneficial for scheduling environment where round
robin algorithm is widely used.

Beauty of the dissertation is that the proposed algorithm does not have large computational
complexity which is very essential in developing algorithms. Another key factor is that this
algorithm is not specific to one field. Although in this dissertation the proposed algorithm is
applied to processes of operating system but this is not the only place where this algorithm
can be applied. This algorithm is also applicable in scheduling network packets in network

devices etc.

1.4. Organization of Dissertation

The dissertation is composed of five chapters. These chapters elaborate key concepts and
different aspects of scheduling. The first chapter named “Introduction” discusses
introductory concepts that have been used in this dissertation.

Second chapter named “Literature Survey” discusses different literature regarding to this
dissertation and different algorithms that have been developed in the past to resolve different
scheduling issues. This literature survey focuses on different algorithms that are also

implemented in other fields such as in network field.

16

Optimized Round Robin Scheduling Introduction

Third chapter named “Problem Statement And Proposed Solution” discusses the issue
associated with the round robin scheduling algorithm. This dissertation is basically based on
this issue. Then this chapter discusses proposed solution, its overall concepts and theory. This
chapter discusses in depth the new proposed algorithm, its basic theory, working and
different case scenarios.

Fourth chapter named “Testing and Performance Evaluation” focuses on performance
evaluation of new proposed algorithm. In this chapter different sets of processes are executed
with the different algorithms including new proposed algorithm and comparison is performed
between the results of these algorithms. These experimental results reveal that the new
designed algorithm exhibits better performance than classical round robin and other
algorithms considered in this dissertation by exhibiting low average waiting and turn around
times for processes.

Fifth chapter named “Conclusion and Future Work” presents overall conclusion and the

future work in this direction.

17

CHAPTER 2

LITERATURE SURVEY

Optimized Round Robin Scheduling Literature Survey

2.1. Introduction
Round robin scheduling algorithm is widely used in its classical form and there are many
variations of this algorithm. This chapter discusses some algorithms that used round robin

scheduling algorithm in some form.

2.2. Previous Work

As discussed earlier, many scheduling algorithms are available for the purpose of scheduling
processes in an operating system so that these all processes get a chance to be executed on
the CPU and share computer resources. These scheduling algorithms use different scheduling
techniques to schedule many processes. So that each and every process is executed to its
completion and the process gets a feeling as if CPU were under its control. This is the beauty
of multitasking environment that many different interactive processes are executed having
CPU shared among them.

Another worth mentioning point is that scheduling algorithms are not confined to operating
system design only. Rather these scheduling algorithms are used in various different fields.
In fact wherever a queue is being formed and a resource is being shared among different
entities, there is a need of some scheduling discipline. These scheduling algorithms are also
used in network devices. In network devices such as routers, switches, bridges etc.
scheduling algorithms are used to schedule data packets. I:fvery data packet needs some CPU
time to be processed. As there are many data packets traveling through a network device at a
given time, therefore these data packets also need to be scheduled through some scheduling

algorithm.

Some of the-most popular process scheduling algorithms includes first come first served
scheduling (FCFS), shortest job first scheduling (SJF), round robin scheduling (RR),

multilevel queue scheduling, multilevel feedback-queue scheduling etc.

In today's multitasking (exccution of more than one process simuitancously) environment
round robin scheduling algorithms is very often used. Round robin scheduling algorithm is
able to exccute more than one process by allocating them time slices or quantum. Then it

cycles CPU through each process in queue.

18

Optimized Round Robin Scheduling Literature Survey

2.2.1. Deficit Round Robin

Fair Queuing technique is the concept that has been emphasized in this research paper. Mr.
M. Shreedhar and Mr. George Varghese mention in [15] that when there is more than one
flow passing through a network device then fair queuing is the technique that enables the
network resources to be fairly sharcd among all the flows. |

The previous available schemes achieving nearly perfect fairness were expensive from
implementation point of view. Also the per-packet required work by those techniques has
been O (log (n)), n represents active flows. Similarly the other available schemes with
cheaper approximation of fair queuing showed unfair behavior.

They propose a scheme, “Deficit Round Robin (DRR)” that obtains nearly perfect fairness
with per-packet required work of O (1). This scheme can be applied in different scheduling
problems. This DRR scheme is especially very attractive to be used in gateways and routers.
DRR scheme is especially suited for Datagram networks i.e. networks operating on UDP
protocol although DRR is a generic scheme and can be applied to all the networks. DRR is
also applicable to scheduling environments where the whole job should be processed at a

time not a part of the job. Similarly DRR is also applicable to load balancing problem.

2.2.2,iSLIP Scheduling

Mr. Nick Mckeown mentions in [16] that FIFO input queu/es are generally avoided because if
these queues are used they reduce the achievable bandwidth. Some algorithms guarantee
100% throughput.

The proposed “iSLIP Séhedu’ling” algorithm, iterative round robin, for uniform traffic it
provides cent percent throughput property and it’s also very easy for implementation in
hardware.

The simulation results of these versions under light and pressure conditions are analyzed.
Under non-uniform traffic conditions iSLIP algorithm does have the ability to avoid the
starvation of any input queue by adapting to fair scheduling policy. Two versions for iSLIP

algorithm are proposed i.e. iterative and non-iterative.

19

Optimized Round Robin Scheduling Literature Survey

2.2.3. Start-time Fair Queuing

Mr. Pawan Goyal, Mr. Harrick M. Vin and Mr. Haichen Cheng state in [18] that “Start-Time
Fair Queuing (SFQ)” provides efficient, results in spite of change in the capacity of the
server. From computational view point it is very efficient and it also exhibits smallest
fairness measure. They claim that for integrated services networks start-time fair queuing is
more suitable than weighted fair queuing and claim that SFQ is certainly more efficient in

performance than self clocked fair queuing.

2.2.4. Two-Dimensional Round-Robin Scheduler

Mr. Richard O. LaMaire and Mr. Dimitrios N. Serpanos mention in [19] state that in a packet
switch operating on the concept of multiple input queues the proposed algorithm achieves
higher throughput in addition to fair access. In this algorithm for each output there is a queue
maintained by each input port. Proposed algorithm Faimess properties are shown and
analyzed. These properties are then compared with input and output queuing configurations.
This shows that “2-D Round Robin Scheduler” exhibits the same throughput as that of output
queuing. Basically two algorithms are suggested i.e. basic and enhanced 2-dimensional round
robin.

Both of these algorithms provide the same saturation throughput as provided by the queuing
architecture. Both of these algorithms can be implementeii through logic components which

makes them high speed providers in switch implementation.

2.2.5. Pre-order Deficit Rourrd Robin

Mr. Shih-Chiang Tsao and Mr. Ting-Dar Lin mention in {21] that deficit round robin
algorithm has large latency plus unfair behavior problems. They adopt a technique that
eliminates these problems by placing priority queues. This technique is same as of deficit -
round robin except certain number of queues are placed earlier to deficit round robin design
and this reorders sequence of transmission.

They suggest “Pre-Order Deficit Round Robin (PDRR)” algorithm as a better alternative to
deficit round robin by showing analysis on latency and fairness. They also show that it

exhibits a complexity of O(1) and O(logZ) per-packet. They propose PDRR algorithm that

20

Optimized Round Robin Scheduling Literature Survey

tackles the problem of bursty transmission. This algorithm also solves the problem of
| inappropriate transmission sequence. ‘

This algorithm does this by reordering the transmission sequence of packets. They state, in

future, the behavior of PDRR is to be tested for different simulation cases so that its general

behavior is observed better.

2.2.6. Stratified Round Robin

Mr. Sriram Ramabhadran and Mr. Joseph Pasquale state in [24] that fair queuing is a topic
that has been given a fair amount of attention. But even then there remains a problem that
some algorithms exhibiting better performance are very expensive to implement or are not
feasible, and there are some algorithms that are not expensive to implement but their
performance is not as desired. The “Stratified Round Robin” algorithm that is presented by
them provides a low complexity solution. It does not matter how many flows are there this
algorithm contains a unique property of single packet delay bound.

In stratified round robin algorithm flows that have almost same bandwidth requirements are
grouped together into a single class of flow. With deficit weighted round robfn technique is
applied within a flow class. This scheme is very practical and feasible. Its implementation
can be realized as a priority cncoder. It is very feasible to use this technique in high speed

routers because of its practicality.

2.2.7. An Improved Scheduling Algorithm for Weighted Round-Robin

Mr. Yao-Tzung Wung, Mr. Tzung-Puo Lin and Mr. Kuo-Chung Gan state in [30] that in
designing an isochronous scheduler, priority and constant delay are considered as vital
performance parameters. The solution proposed by them further enhances the performance of
weighted round robin multiplexing which provides a very effective and simple technique for
priority tralfic. In an A'TM switch, the smoothness performance in a weighted round robin
multiplexer further improves by adopting this proposed technique.

This improved solution especially tackles the problems caused by delay jitters. Mean
response time and its standard deviations are considered. This proposed solution by them is
very much suited for the networks that are operating on real time applications. It will help

improve quality of service of such networks.

21

Optimized Round Robin Scheduling Literature Survey

The above discussed literature is based on the classical round robin scheduling algorithm in
majority of the cases. This is because round robin scheduling algorithm is very widely used
in operating system, network devices etc, Therefore if performance of round robin algorithm

can be improved and optimized this would be very beneficial in many fields.

22

CHAPTER 3

PROBLEM STATEMENT
AND
PROPOSED SOLUTION

Optimized Round Robin Scheduling Problem Statement And Proposed Solution

~3.1. Introduction
This chapter discusses the typical problém associated with the classical round robin
scheduling algorithm. This problem is defined and then proposed work has been discussed
below.
In this chapter a new aigorithm has been discussed which gives the solution to the problem
associated with round robin scheduling algorithm. The proposed solution to the problem is

discussed in detail with its basic theory and explanation.

3.2. Problem Definition

In today’s multitasking environment interactive process requires constant CPU time. But
because there are many processes running at a time in a multitasking environment, it is no
feasible to hand over CPU to a single interactive process. The CPU time must be distributed
among different processes present in the system. In this scenario round robin scheduling
algorithm is very suitable to be used because round robin scheduling algorithm gives CPU
one by one in a cyclic manner to all processes of queue. And every process in the queue gets
CPU time.

Although round robin scheduling algorithm is very widely used in different fields now a days
but a potential issue is there. If the ready queue used in rodnd robin algorithm is too long, the
process at end of queue waits for its turn for quite a long time. Although it might require a
small portion of CPU time to complete its execution or even if it requires large portion of
CPU time, it will execute for.the specific time quantum and then it gets placed at end of
queue again. It waits again for quite some time to get its turn. This will incrcasc the waiting

time for this process significantly.

This situation shows that there is a potential problem for the process at end of ready queue
generally and specifically il a small process (requiring a small amount of CPU time for its
execution) is present at the end of execution queue. These two situations are described

below;

» [f a process requiring small amount of CPU time is present at end of queue of round
robin algorithm, say it requires 5 milliseconds of CPU time and say the time quantum

is 50 milliseconds. But thc problem is that this small process will have to wait for all

23

e A

Optimized Round Robin Scheduling Problem Statement And Proposed Solution

the other processes in front of it to be executed either to their completion or equal to
the time quantum. Although this process only requires a very small amount of CPU

timce but its waiting time is increaged very much,

* The second situation arises if the process present at the end of ready queue of round
robin scheduling algorithm requires large amount of CPU time. Say it requires 55
milliseconds and the time quantum is 50 milliseconds. Now this process will get its
turn after all of its earlier processes either execute to their completion or they execute
for the specific time quantum. And when it starts its execution it will execute for 50
milliseconds and then again it gets placed at end of queue. This process again waits
and gets its turn after all the processes present before it are executed. Again in this

case the waiting time for this particular process has increased to a great deal.

The above two situations clearly describe the specific problem that is associated with round

robin scheduling algorithm.

3.3. Proposed Work

One solution that can be adopted is not to use round robin algorithm. But actually this cannot
be a solution because for interactive processes round robin scheduling algorithm comes to be
very suitable choice. So we cannot avoid u‘sing_ round robin scheduling algorithm for
processes.

One another aspect is that round robin scheduling algorithm is not only used in operating
systems for process scheduling, but round robin scheduling algorithm is also being used in
network devices in processing network data packets. Hence round robin scheduling algorithm
because of its wide and effective usage cannot be thrown away for solving the specific
problem addressed above.

Therefore if a solution is provided for the above mentioned probiem it would be very
beneficial for scheduling purposes. This would not only be beneficial for process scheduling
in operating system but it would also be beneficial for network devices that are using round
robin scheduling algorithm for processing network data packets.

My proposed solution to the above mentioned problem is based on the features of classical
round robin schéduling algorithm plus it more specifically considers the above mentioned

problem. The solution focuses on the process that is present at end of queue. So that waiting

24

Optimized Round Robin Scheduling Problem Statement And Proposed Solution

time for the process that is present at end of queue does not increase very much rather its
waiting time is be kept as minimum as possible. New proposed algorithm decreases average
waiting and turn around times for the progesses.

Once this issue relating to round robin algorithm gets resolved, round robin algorithm will
become more efficient and optimized. The waiting times for the processes gets decreased and
average waiting time for the processes in a specific time interval becomes less than the
average waiting time for the same set of processes executed through round robin scheduling
algorithm.

This proposed algorithm has been applied to processes. Actually this algorithm can also be
applied to network devices i.e. in scheduling network packets. But because processes within
an operating system are very common and easily understood therefore this new algorithm,
round robin, deficit round robin and start time fair queuing scheduling algorithms have been
applied to processes. After executing different sets of processes with these scheduling
algorithms, the results cf these scheduling algorithms have been compared.

The results have shown that this new proposed algorithm is more optimized and efficient by
exhibiting low waiting and turn around times as compared to round robin, deficit round robin
and start time fair queuing algorithms. Therefore the usability and effectiveness of round
robin algorithm has been increased by this newly designed algorithm. This newly designed

algorithm has been named as “Optimized Round Robin Scheduling Algorithm”.

3.4. Optimized Round Robin Scheduling

Optimized round robin algorithm removes the specific problem associated with the processes
discussed earlier.

Optimized round robin scheduling algorithm reduces the waiting time of the process present

at the end of ready queue. It optimizes throughput, turnaround and waiting times. Actually in

o multitasking and interactive environment waiting time is very important criterion and this
waiting time is tried to be kept as low as possible so that every process in the system can get

a feeling that CPU is dedicated to it entirely.

25

Optimized Round Robin Scheduling Problem Statement And Proposed Solution

3.4.1. Basic Theory

Optimized round robin is an effective algoﬁthm in time sharing systems where system must

ensure [ow waiting time to interactive processes. The preemption overhead is kept low by

effective context switching mechanisms and by providing adequate memory for the processes
to remain in main memory simultaneously.

The basic theory of optimized round robin scheduling includes the following aspects;

= The processes are sorted according to their burst times.

» The process having smallest burst time is at the top of the ready queue.

= At the end of ready queue, process having largest burst time is placed.

* Two pointers are maintained in optimized round robin scheduling algorithm.

» The first pointer “tempLastBurstTime” keeps the burst time of the process present at the
end of the ready queue. The process has the largest burst time.

» The second pointer “tempTotalBurstTime” stores the sum of burst times of executed
processes.

* Every process gets a fixed time quantum in which either the process completes its
execution or it executes for the time quantum and after that it is put at end of queue.

= After sorting first process is picked up and solved for a maximum of one time quantum.

» If time quantum is greater than process burst time it gets solved completely else it is
placed at end of ready queue. .

» The condition whether the “tempTotalBurstTime” is equal to or greater than the
“templ.astBurstTime” (burst time of process at end of queue) is checked after executing a
process for a maximum of one time quantum.

» [f the condition is true then process present at the end of ready queue catches the CPU
and is executed for a maximum of one time quantum. After that queue is again sorted and

this fashion goes on.

3.4.2. Explanation
The optimized round robin scheduling algorithm works on sorting the processes according to
their burst times i.e. the priority is assigned to process with the smallest burst time. Besides

this, priority is also given to the processes with the large burst times. To remove the

26

Optimized Round Robin Scheduling Problem Statement And Proposed Solution

starvation of the processes with large burst times, two pointers are maintained i.e.
“tempLastBurstTime” and “tempTotalBurstTime”.

The pointer “tempLastBurstTime” stores the burst time of the largest process i.e. process
present at end of queuc. We can also say that this pointer points to the burst time of last
process.

The pointer “tempTotalBurstTime” stores the sum of burst times of executed processes.

As optimized round robin scheduling algorithm is an advanced form of round robin
algorithm, therefore it contains a time quantum as well. A process has to leave the CPU if
time quantum has expired and the process has not executed completely. When a new process
arrives that has shorter burst time, process that is executing currently doesn’t leave the CPU
but continues the execution until it completes its execution or time quantum expires.

The risk of starvation for the processes with larger burst time is removed by using the
pointers mentioned above. The pointer “tempLastBurstTime” is compared against pointer
“tempTotalBurstTime”.

If pointer “tempTotalBurstTime” is greater than or equal to pointer “tempLastBurstTime”
then process present at end of queue, having smaller or equal burst time to the value of the
pointer “tempTotalBurstTime”, is executed and the pointer “tempTotalBurstTime” is reset to
0. If the process is not executed to its completion it is again placed at end of queue.

Selecting time quantum value is same as method of selec{ion of round robin algorithm. As a
generic rule this value is chosen such that 80 percent of the processes are executed to their
completion when they execute for one time quantum.

The ready queue is sorted whenever the value of “tempTotalBurstTime” becomes equal to or

greater than “tempLastBurstTime”.

27

Optimized Round Robin Scheduling Problem Statement And Proposed Solution

The following figure explains this scheduling scheme in pictorial form. Here first of all
process ‘A’ is picked up by the CPU and it executes for one time quantum after that it is put
back at the end of the ready queue. The process ‘A’ is placed at the end of the queue because
its burst time is greater than the time quantum. Process ‘B’ and process ‘C’ will gain CPU

after that and after them process ‘A’ can have its turn on CPU. This fashion continues.

; =i+t Completion
tempTotalBurstTime
tempLastBurstTime
Preemption

Figure 3.1 Execution of Optimized Round Robin algorithm

The working of optimized round robin scheduling algorithm is further explained with the
help of an example. Let’s take a process set. Their arrival and burst times are as follows.

Time quantum for this example is taken as 10ms.

Process Arrival Time Burst Time
PO 0 8
Pl 0 4
P2 0 6
P3 0 13
P4 0 1

It is assumed that all processes have arrived in queue at time 0. First of all queue is sorted
and the order of sorted processes is;

P4 --- P1 == P2 - PO --- P3

28

Th FK

Optimized Round Robin Scheduling Problem Statement And Proposed Solution

As P4 is first process in queue, execution is started from it. “tempTotalBurstTime” pointer
gets initialized with value of 0 and “tempLastBurstTime” pointer is initialized with the value
13 i.e. the burst time of the last process in the quecuc. As P4 requires only 01 millisecond of
CPU time therefore it executes to its completion i.e. its burst time is less than time quantum.
After executing P4 “temptTotalBurstTime” pointer is updated with the value 1.
“tempLastBurstTime” pointer holds the value 13.

After the execution of P4, P1 is given the CPU time as it is now the smallest process in the
queue. It requires 4 milliseconds of CPU time which is less than time quantum therefore P1
also completes its execution. At this time “tempTotalBurstTime” pointer value is updated
with the value 5 and “tempLastBurstTime” still contains the value 13.

After the execution of P, P2 is given the CPU time as it is now the smallest process in the
queue. It requires 6 milliseconds of CPU time which is less than time quantum therefore P2
also completes its execution. At this point “tempTotalBurstTime” pointer is updated with the
value 11 and “tempLastBurstTime” still holds the value 13. After executing each process the
values of both the pointers are compared to see whether the value of “tempTotalBurstTime”
pointer is greater than or equal to the value of “tempLastBurstTime” pointer. But up to this

point this condition has not become true. At this very point this condition is as follows;

tempTotalBurstTime >= tenﬁpLasfiBurstTime
11 >= 13

The above condition is not true yet therefore execution continues in normal fashion.

After the execution of P2, PO is given the CPU time as it is now the smallest process in the
queue. It requires 8 milliseconds of CPU time which is less than time quantum therefore PO
also completes its execution. At this point “tempTotalBurstTime” pointer is updated with the
value 19 and “tempLastBurstTime” still holds the value 13. Now it is obvious that the above
mentioned condition becomes true because the value of “tempTotalBurstTime” pointer is
now greater than the value of “tempLastBurstTime” pointer. Therefore now CPU time will
be given to process present at end of queue. At this point when the above mentioned
condition becomes truc the values of both pointers get updated. Pointer
“tempTotalBurstTime” gets updated with the value 0 and the pointer “tempLastBurstTime”

is updated with value of burst time of last process in queue, which happens to be 13,

29

Optimized Round Robin Scheduling Problem Statement And Proposed Solution

Now P3 starts execution. It executes for 10 milliseconds and then preempted as time
quantum expires and this process requires more CPU time. Because queue has only one
process therefore it regains CPU time and completes its execution.

The Gantt chart of the execution of these processes is shown below;

P4 P1 P2 PO P3 P3

0 1 5 11 19 29
32
The waiting times of the processes are given below;
PO=11ms Pl=1ms P2=5ms P3=19ms P4=0ms
Average Waiting Time = (11+14+5+19+0) / 5=> 7.2 ms

The turn around times of the processes are given below;
PO=19ms PRl=5ms P2=1Ims P3=32ms P4=1ms
Average Turn around Time = (19+5+11+32+1)/5=> 13.6 ms

-

Optimized round robin scheduling algorithm has shown better results compared to other
algorithms discussed in this dissertation but optimized round robin scheduling algorithm does
this at the cost of sorting. In optimized round robin sorting could occur frequently which
consumes CPU time and this is overhead of optimized round robin scheduling algorithm that

we have to bear.

30

Optimized Rdund Robin Scheduling ___Problem Statement And Proposed Solution

3.4.3. Optimized Round Robin Algorithm

OptimizedRoundRobin (processes, time ,quantum)
l. Sort the queue in ascending order
2. n = processes
3. Loop: from 1 ton
a. Solve the process up to one time quantum
b. Check if (tempTotalBurstTime >= tempLastBurstTime)
1. Solve process with the largest burst time up to one time quantum
2. Sort the queue
3. Gotostep3
c. Sort the queue if new processes have arrived
d. Gotostep3
End OptimizedRoundRobin

Optimized Round Robin Scheduling __Problem Statement And Proposed Solution

'3.4.4. Case Scenarios
Three different case scenarios are discussed below for optimized round robin scheduling

algorithm. \

3.4.4.1 Best Case Scenario [Complexity]

The best case scenario of optimized round robin scheduling algorithm is when the sorting
process is performed only once in the queue. In this case time complexity of this algorithm
comes out to be O(nlogn).

Optimized round robin scheduling algorithm shows better results as compared to round
robin, deficit round robin and start time fair queuing algorithms in most of the cases.
Sometimes round robin, deficit round robin and start time fair queuing algorithms might
show a bit better result as compare to optimized round robin algorithm. But Performance

difference among these algorithms in this case is not very large.

3.4.4.2. Worst Case Scenario [Complexity]

The worst case scenario of optimized round robin scheduling algorithm is when the sorting
process is performed k times in the queue, where k is the number of processes in the queue.
In this case time complexity of this algorithm comes out to be O(k * nlogn).

Optimized round robin scheduling algorithm shows beilter results as compared to round

robin, deficit round robin and start time fair queuing algorithms.

3.4.4.3. Average Case Scenario [Complexity]

The average case scenario of optimized round robin scheduling algorithm is when the sorting
process is performed between minimum i.e. I and maximum value i.e. k (number of
processes) in the queue. In this case time complexity of this algorithm comes out to be
O(m*nlogn) where m>1 and m<k. Optimized round robin scheduling algorithm shows better

results as compared to round robin, deficit round robin and start time fair queuing algorithms.

32

CHAPTER 4

TESTING AND
PERFORMANCE EVALUATION

”

Optimized Round Robin Scheduling Testing and Performance Evaluation

‘ 4.1. Introduction

The performance of the newly developed algorithm has been discussed in this chapter. To
check the newly designed algorithm’s performance and also to compare it with the

performance of round robin, deficit round robin and start time fair queuing scheduling
algorithms these four scheduling algorithms have been applied to different process sets. 10
sets of processes, with each set containing 10 processes, have been executed with these four

algorithms.

4.2, Performance

To check the performance of optimized round robin scheduling algorithm 10 sets of
processes with each set containing 10 processes, are executed with these four algorithms and
then waiting and turnaround times for every process have been calculated. The execution of
the processes is depicted via Gantt charts. Then average waiting and turnaround times values
are calculated. These values are compared for these algorithms. This has shown performance
of each algorithm i.e. optimized round robin, round robin, deficit round robin and start time
fair queuing scheduling algorithm.

In each set of processes a value is selected for time quantum. Time quantum value should be
carefully selected because if this value is very small too much context switching occurs and
this waists CPU time. This CPU time can be used in some other computation. Therefore too
much context switching should be avoided by selecting large time quantum value. But on the
other hand if time quantum is very large then this would give CPU to large processes for
more time and waiting and turn around times for small processes present after the large
processes increase very much.

Therefore time quantum value is selected such that 80 percent of processes complete their

execution when each of them get the CPU time for a maximum of one time quantum. [22]

Following are the sets of processes that are executed with these algorithms and then their

results are also listed to show their comparison.

33

Optimized Round Robin Scheduling Testing and Performance Evaluation

| 4.2.1. Process Set 1

Time Quantum = 25 ms

Process Arrival Time Burst Time
ro 0 30
P1 0 26
P2 0 23
P3 1 20
P4 2 19
P5 5 18
Pé6 9 10
P7 9 3
P8 10 2
P9 ‘ 10 1

Detailed Calculation

Waiting Time = Sum of times spent by a process in ready queue from the time of its
submission to the time of its completion

Turn Around Time = Waiting Time + Burst Time

1. Gantt chart Round Robin
PO P1 P2 P3 P4 P5 P6 P7 P8 PO PO P1
0 25 _ 50 73 93 112 130 140 143 145 146 151 152

Waiting Times
PO =121 P1 =126 P2 =50 P3=72 P4 =91
P5=107 P6=121 P7 =131 P8 =133 P9 =135

34

Optimized Round Robin Scheduling Testing and Performance Evaluation
Turn Around Times

PO =151 Pl =152 P2=73 .P3=92 P4=110
PS5 =125 P6— 131 P7 134 P8=135 P9 =136

2. Gantt chart Optimized Round Robin

P2 (P9 | P8 | P7 | P6| PO | PO |P5| P4 | P1]|PI | P3

0 23 24 26 29 39 64 69 87 106 131 132 152

Waiting Times
PO =39 P1 =106 P2=0 P3 =131 P4 =85
P5=64 P6 =20 P7=17 P8=14 P9=13

Turn Around Times
P0=69 . P1=132 P2=23 P3 =151 P4 =104

P5 =82 P6 =30 P7=20 P8 =16 P9=14

3. Gantt chart Deficit Round Robin

P2 | P1 | P3| P4 |P5|P6| P7| P8 | P9 PO

0 23 49 69 88 106 116 119 121 122 152

Waiting Times
PO =122 P1=23 P2=0 P3 =48 P4 =67
P5=183 P6 =97 P7=107 P8 =109 P9 =111

Turn Around Times
PO =152 1Pl =49 1’2 =23 1’3 =68 4 = 86
P5 =101 P6=107 P7=110 P8=111 Po=112

e - e ——

Optimized Round Robin Scheduling Testing and Performance Evaluation

4. Gantt chart Start Time Fair Queuing

PO | P1 | P2 | P3| P4 P5S P6 | P7 P8 | P9

0 30 56 79 99 118 136 146 149 151 152

Waiting Times

PO=0 P1=30 P2 =56 P3 =178 P4 =97
PS=113 P6 =127 P7 =137 P8 =139 P9 =141
Turn Around Times

PO =30 P1 =56 P2=179 P3=98 P4=116
P5=131 P6 =137 P7 =140 P8 =141 P9 =142

Optimized Round Robin | Deficit Round Start Time
Round Robin Robin Fair Queuing
Aver. Waiting Time 48.9 108.7 76.7 91.8
Aver, Turn around Time 64.1 123.9 91.9 107.0

The processes are in descending order i.e. larger processes are present at the start of the
queue and smaller processes are present at the end of the queue. The Gantt charts for
optimized round robin, round robin, deficit round robin and start time fair queuing algorithms
arc shown above. The waiting and turn around times arc calculated for cach process. The
average waiting and turn around times are calculated and have been shown in a table. The
value for time quantum is selected as 25 milliseconds i.e. 80 percent of the processes can
complete their execution in one time quantum.

Optimized round robin scheduling algorithm shows much better results as compared to round
robin, deficit round robin and start time fair queuing algorithms i.e. optimized round robin
scheduling algorithm shows smaller average waiting and turn around times values for the
processes as compared to the other algorithms. This is because of the fact that in optimized
round robin scheduling algorithm sorting process is performed. This decreases the waiting
and turn around times for the smaller processes which in turn decrease average waiting and
turn around times values for the processes. Process P9 which is present at the end of the
queue requires only 1 millisecond for its execution. Process P9 has a waiting time of 13 ms
for optimized round robin algorithm which is much less than the other algorithms® waiting
time values.

In round robin, deficit round robin and start time fair queuing algorithms sorting process is
not performed. The waiting and turn around times for the small processes present at the end
of the qucue are increased. T'his results in increasing the average waiting and turn around
times for the processcs.

36

-

Optimized Round Robin Scheduling

Testing and Performance_Evaluation

4.2.2. Process Set 2

Time Quantum = 25 ms

Process Arrival Time Burst Time
Po 0 2
P1]

P2 1 3
P3] 3
P4 1 4
P5 5 10
P6 8 15
P7 12 22
P8 15 28
P9 15 30

Gantt chart Round Robin

PO [P1 [P2 [P3| P4 P5]P6][P7 [P8 [P9] PS8 [P9 |

0 2 4 7

Gantt chart Optimized

10 14 24

Round Robin

39

61 86

1t 114 119

PO P1 P4 P2 P3[P5]P6] PO PO P7] P8 PS|

0 2 4 8

11 14 24

Gantt chart Deficit Round Robin

39

64 69

91 116 119

[P0 | P1 [P2 P3][P4[P5]P6]|P7] P8][P9 |

0o 2 4 7 10 14 24 39 61 8 119
Gantt chart Start Time Fair Queuing
[P0 [P1 [P2 P3| P4a[P5]P6|[P7]PS8][P9 |
0o 2 4 7 10 14 24 39 61 89 119
Optimized Round Robin Deficit Start Time
Round Robin Round Robin | Fair Queuing |

Aver. Waiting Time 20.3 21.6 19.1 19.1

Aver. Turn around Time 32.2 33.5 31.0 31.0

37

Opntimized Round Robin Scheduling

Testing and Performance Evaluation

In this process set processes are in ascending order i.e. small processes are present at the start
of the queue and large processes are present at the end of the queue. The time quantum value

is selected as 25 milliseconds.

In this case the difference between results is not very great. Although optimized round robin
scheduling algorithm still shows better results as compared to round robin scheduling
algorithm, the other two algorithms i.e. deficit round robin and start time fair queuing
scheduling algorithms show a slight better results as compared to optimized round robin
scheduling algorithm. But this difference in average waiting and turn around times is not

great.

4.2.3. Process Set 3

Time Quantum = 15 ms

Process Arrival Time Burst Time
PO 0 5
P1 1 10
P2 1 7
P3A 1 3
P4 5 10
PS 6 16
P6 8 2 .
P7 12 12
P8 12 8
P9 12 16
Gantt chart Round Robin

PO [P1L[P2[P3[P4[P5|[P6|P7[P8[P9]P5]P9]
0 5

15

22

25 35 50

Gantt chart Optimizcd Round Robin

52

64 72

87

88

89

PO | P3| P6 [P2 PO [PO PS]PL][P5]P5]P4] P7|

0 5 8

10

17 32 33

Gantt chart Deficit Round Robin

41

51 66

67

LPo Pt P2 P3| P4]P5]P6]P7]P8] P9 |
0

5 15 -

22

25 35 51

53

65 73

89

77

89

38

Optimized Round Robin Scheduling Testing and Performance Evaluation

Gantt chart Start Time Fair Queuing :
(PO [P1 [P2 P3|P4|P5]|P6|P7] P8 | P9 |
0

5 15 22 25 35 51 53 65 73 89
\
Optimized Round Robin Deficit Start Time
Round Robin Round Robin | Fair Qucuing
Aver. Waiting Time 25.1 32.0 28.6 28.6
Aver. Turn around Time 34.0 40.9 37.5 37.5

In this process set processes are neither in ascending nor in descending order i.e. small and
large processes are present randomly in the queue without any order. The time quantum
value is selected as 15 milliseconds. In this case optimized round robin scheduling algorithm
shows better results i.e. less average waiting and turn around times as compared to round
robin, deficit round robin and start time fair queuing.

4.2.4. Process Set 4

Time Quantum = 15 ms

Process Arrival Time Burst Time
PO 0 ' 3
P1 0 2
P2 0 8
P3 0 2
P4 5 18
P5 9 24
Pé6 12 6
P7 20 12
P8 22 12
P9 25 2

Gantt chart Round Robin
[POJPL | P2][P3 | P4 | PS[P6[P7T][P8| PO P4]P5]
0 3 5 I3 15 30 45 51 63 75 77 80 89

Gantt chart Optimized Round Robin
[PL{P3| PO P2]P6|P7 | P5|PY]P5][P8 | P4] Pq]
0 2 4 7 15 21 33 48 50 59 71 86 89

39

Optimized Round Robin Scheduling

Testing and Performance Evaluation

Gantt chart Deficit Round Robin

|P0|P1|P2|P3LP4]P5LP6]P7]P8)P91

0 3 5 1315 33 57 63 75 87 89
. _ \
Gantt chart Start Time Fair Qucuing
o [P P2l P3[Pa|P5[P6][P7] P8]| P9 |
0 3 5 13 15 33 57 63 75 87 89
Optimized Round Robin Deficit Start Time
Round Robin Round Robin | Fair Queuing |
Aver, Waiting Time 16.9 28.9 25.8 25.8
Aver. Turn around Time 25.8 37.8 34.7 34.7

In this process set processes are neither in ascending nor in descending order i.e. small and
large processes are present randomly in the queue without any order. The time quantum
value is selected as 15 milliseconds.
In this case process P9 requires only 2 milliseconds and is present at the end of the queue. Its
waiting and turn around times increase for round robin, deficit round robin and start time fair
queuing algorithms. Optimized round robin scheduling algorithm sorts the queue therefore
waiting and turn around times for the process P9 are kept very low as compared to the other
algorithms. Therefore optimized round robin scheduling algorithm shows better results i.e.
less average waiting and turn around times as compared to round robin, deficit round robin
and start time fair queuing.

4.2.5. Process Set S
Time Quantum = 15

-

Process Arrival Time Burst Time
PO 0 10
P1 ‘ 1 16
P2 1 15
P3] 5
P4 2 2
Ps 8 i3
P6 10 16
P7 10 12
P8 10 10
P9 1 5

40

Optimized Round Robin Scheduling Testing and Performance Evaluation

Gantt chart Round Robin
[PO [P1L] P2 | P3| P4 | PSJP6TP7 [P8 [P9 | P1 | P6 |
0 10 25 40 45 47 60, 75 87 97 102 103 104

Gantt chart Optimized Round Robin
. [po P4 P3[Ps|P6 [PO[P8[P1|[P1[P7]|P5]P2 |
0 10 12 17 32 33 38 48 63 64 76 89 104

Gantt chart Deficit Round Robin
[po [PL]{ P2 [P3[P4[P5|[P6]P7| P8]| P9 |
0 10 26 41 46 48 61 77 8 99 104

Gantt chart Start Time Fair Queuin
| Po | P1 P2 | P3[P4|P5]|P6]|P7| P8] P9 |
0 10 26 41 46 48 61 77 89 99 104

Optimized "Round Robin Deficit Start Time
Round Robin Round Robin | Fair Queuing |
Aver. Waiting Time 33.3 53.7 44.3 443
Aver. Turn around Time 43.7 64.1 54.7 54.7

In this process sct processes arc neither in ascending nor in descending order i.e. small and
large processes are present randomly in the queue without any order. The time quantum
value is selected as 15 milliseconds.

Again in this case average waiting and turn around times of the processes for optimized
round robin scheduling algorithm are quite less than the average waiting and turn around
times of the processes for round robin, deficit round robin and start time fair queuing. This is
because of the fact that optimized round robin scheduling algorithm performs the process of
sorting. The rest of the three scheduling algorithms do not perform this sorting process.

Therefore the average values for waiting and turn around times are increased for these
algorithms.

41

Optimized Round Robin Scheduling

Testing and Performance Evaluation

4.2.6. Process Set 6

Time Quantum = 10 ms

Process Arrival Time Burst Time
PO 0 T8
P1 1 3
P2 1 7
P3 1 6
P4 1 5
Ps .2 2
P6 8 4
P7 10 , 1
P8 10 13
P9 11 22

Gantt chart Round Robin
(pofPr[P2]P3 | PafPs{Pe]P7 P8 PO P8 PY[PY]
0 8 11 18 24 29 31 35 36 46 56 59 69 71

-~

Gantt chart Optimized Round Robin
PO | P2 | P7 PSPl | P6]P4]P3] P8] P9 | P8 | P9 [P9 |
0 8 IS 16 18 21 25 30 36 46 56 59 69 71

Gantt chart Deficit Round Robin
[Po [PL | P2 P3| P4|P5]P6]P7]| P8 | P9 |
0 8 11 18 24 29 31 35 36 49 71

Gantt chart Start Time Fair Queuing
PO PL P2 P3 [P4[P5]P6]P7]P8]PY]
0 8 11 18 24 29 31 35 36 49 71

Optimized Round Robin Deficit Start Time Fair
Round Robin Round Robin Queuning
Aver, Waiting Time 18.3 20.6 19.6 19.6
Aver. Turn around Time 25.4 27.7 26.7 26.7

42

Optimized Round Robin Scheduling

Testing and Performance Evaluation

In this process set processes are neither in ascending nor in descending order i.e. small and
large processes are present randomly in the queue without any order. The time quantum

value is selected as 10 milliseconds.

Again in this casc average waiting and, turn around times of the processes for optimized
round robin scheduling algorithm are quite less than the average waiting and turn around

times of the processes for round robin, deficit round robin and start time fair queuing.

4.2.7. Process Set 7

Time Quantum = 30 ms

Process Arrival Time Burst Time
PO 0 5
P1 1 12
P2 5 23
P3 5 27
P4 5 31
P5 9 65
P6 10 29
P7 20 20
P8 22 19
P9 22 5

Gantt chart Round Robin

[Pol PL P2 P3]P4]P5]P6

[P7 [P8 | PO | P4 | Ps]|P5]

0 5 17 40 67 97 127

Gantt chart Optimized Round Robin

156

176 195 200 201

231 236

| PO | P1L|{P2|{P9|PS|P7][P5

| P3| P6 | PS5 | P5 | P4 [P4]

0 5 17 40 45 064 84

Gantt chart Deficit Round Robin

114 141 170 200 205 235 236

| P7 | P8 | P9 |

(Po [P1 P2 P3| P4 P5]P6
0 5 17

40 67 98 163

Gantt chart Start Time Fair Queuin

192 212 231

236

PO P1L]P2| P3| P4 |P5]P6

| P7 | P8 | P9 |

0 5 17 40 67 98 163

192 212 231

236

43

_— o a

Optimized Round Robin Scheduling

Testing and Performance Evaluation

Optimized Round Robin Deficit Start Time
Round Robin Round Robin | Fair Queuing |
Aver. Waiting Time 67.2 095.8 094.3 94.3
Aver. Turn around Time 90.8 119.4 117.9 117.9

In this process set processes are neither in ascending nor in descending order i.e. small and
large processes are present randomly in the queue without any order. The time quantum
value is selected as 30 milliseconds.

Again in this case average waiting and turn around times of the processes for optimized
round robin scheduling algorithm are quite less than the average waiting and turn around
times of the processes for round robin, deficit round robin and start time fair queuing. The
difference between average waiting and turn around times is very significant in this case.
This is because of the fact that in this process set most of the processes are large and only
two of the processes are small. Therefore waiting and turn around times for the small
processes are increased greatly in round robin, deficit round robin and start time fair queuing.
On the other hand in ‘case of optimized round robin scheduling algorithm as sorting is
performed therefore waiting and turn around' times for the small processes are kept very
small plus waiting and turn around times for large processes are also kept as small as
possible.

4.2.8. Process Set 8
Time Quantum = |0 ms
Process Arrival Time Burst Time
PO 0 8 ~
P1 0 6
P2 7 12
P3 8 3
P4 9 1
P5 11 19
Po 20 9
r7 20 3
P8 20 4
P9 20 1

44

Optimized Round Robin Scheduling Testing and Performance Evaluation

Gantt chart Round Robin
[P0]P1IP2|P3]P4IP5|P6[P7IP8|P9TP2|P5J
0 8 14 24 27 28 38 47 50 54 55 57 66

\

Gantt chart Optimized Round Robin
(Pt profrPa]pP3[rP2[P5]Po[P2][P7 | P8] PG6]PS]|
0 6 14 15 18 28 38 39 41 44 48 57 66

Gantt chart Deficit Round Robin
[PoJP1 P2 P3[P4a][P5[P6]|P7| P8 | P9 |
0 8 14 26 29 30 49 58 61 65 66

Gantt chart Start Time Fair Queun
[Po [P1 [P2] P3| Pq] 7gP6]P7|P81P9|
0 8 14 26 29 30 49 58 o6l 65 66
Optimized Round Robin Deficit Start Time
Round Robin | Round Robin | Fair Queuing |
Aver. Waiting Time 16.7 22.5 22.5 22.5
Aver. Turn around Time 23.3 29.1 29.1 29.1

In this process set processes are neither in ascending nor in descending order i.e. small and
large processes are present randomly in the queue without any order. The time quantum
value is sclected as 10 milliscconds.

Again in this case average waiting and turn around times of the processes for optimized
round robin scheduling algorithm are quite less than the average waiting and turn around
times of the processes for round robin, deficit round robin-and start time fair queuing.

The difference between average waiting and turn around times is significant in this case. In
this process set most of the processes are small and only two of the processes are large.
Therefore waiting and turn around times for the small processes present at the end of the
queue are increased greatly in round robin, deficit round robin and start time fair queuing. On
the other hand in case of optimized round robin scheduling algorithm as sorting is performed
therefore waiting and turn around times for the small processes are kept very small plus
waiting and turn around times for large processes are also kept as small as possible.
Therefore the average waiting and turn around times for the optimized round robin
scheduling algorithm are smaller as compared to average waiting and turn around times for
the rest of the algorithms.

45

B VS

Optimized Round Robin Scheduling

Testing and Performance Evaluation

4.2.9. Process Set 9

Time Quantum = 30 ms

Process Arrival Time | Burst Time
PO 0 39
P1 1 24
P2 4 30
P3 4 21
P4 4 19
P5 10 35
P6 11 25
P7 15 29
P8 22 22
P9 28 20

Gantt chart Round Robin

PO P1L P2 P3]P4]P5]P6

[P7 P8 PO | PO | P5]

0 30 54 84 105 124 154

Gantt chart Optimized Round Robin

179 208 230 250 259 264

-

PO PO P5| PS5 P4] P9 P2

| P3| P8 | P7 | P1 | P6]

0 30 39 69 74 93 113

Gantt chart Deficit Round Robin

143 164 186 215

[P0 | P1 | P2 | P3| P4 |[P5]P6|P7]P8[P9] PO]

0 30 54 84 105 124 159

Gantt chart Start Time Fair Queuing

184 213 235 255 264

(PO P1L | P2 P3[P4|[P5][P6|P7] P8][P9 |

239 264

0 39 63 93 114 133 168 193 222 244 264
Optimized | Round Robin | Deficit Start Time
Round Robin Round Robin, | Fair Qucuing |
Aver. Waiting Time 116.7 139.4 131.4 117.0
Aver. Turn around Time 143.1 168.8 158.8 143.4

46

Optimized Round Robin Scheduling Testing and Performance Evaluation

In this process set processes are neither in ascending nor in descending order i.e. small and
" large processes are present randomly in the queue without any order. The time quantum
value is selected as 30 milliseconds.
All the processes in this process set are, large. Again in this case average waiting and turn
around times of the processes for optimized round robin scheduling algorithm are quite less
than the average waiting and turn around times of the processes for round robin and deficit
round robin algorithms. Start time fair queuing algorithm shows better results in this case
which are quite close to optimized round robin algorithm but not better than optimized round
robin algorithm,

4.2.10. Process Set 10

Time Quantum =20 ms

Process Arrival Time Burst Time
PO 0 9
1 0 8
P2 0 2
P3 0 12
P4 0 25
P5 0 4
P6 0 1
P7 0 9
P8 0 29
P9 .0 1

Gantt chart Round Robin
[PO | PL [P2 P3[P4a[P5[P6|P7|P8| P9 [P4]PS8]
0 9 17 19 31 51 5 66 75 95 9 101 110

Gantt chart Optimized Round Robin
(PO P2[Ps|PL]PO|[P7 [P8 | P8 | P6| P3| P4]| P4]
0 1 3 7 15 24 33 S3 62 73 8 105 110

Gantt chart Deficit Round Robin
PO | P P2 | P3| P4 |[P5]|P6|P7]| P8 | P9 |
0 9 17 19 31 S6 60 71 8 109 110

47

Optimized Round Robin Scheduling Testing and Performance Evaluation

~ Gantt chart Start Time Fair Queuing -
[Po Pt P2 P3|Pa|P5]|P6]|P7]| P8 | P9 |

0 9 17 19 31 56 60 71 80 109 110
Optimized Round Robin Deficit Start Time
Round Robin Round Robin | Fair Queuing |
Aver. Waiting Time 30.3 46.9 45.2 45.2
Aver. Turn around Time 41.3 57.9 56.2 56.2

In this process set processes are neither in ascending nor in descending order i.e. small and
large processes are present randomly in the queue without any order. The time quantum
value is selected as 20 milliseconds.

This process set contains both small and large processes. Again in this case average waiting
and turn around times of the processes for optimized round robin scheduling algorithm are
quite less than the average waiting and turn around times of the processes for round robin,
deficit round robin and start time fair queuing algorithms.

48

Optimized Round Robin Scheduling Testing and Performance Evaluation

4.3 Performance Evaluation of Optimized Round Robin

For judging the performance of optimized round robin algorithm against round robin, deficit
round robin and start time fair queuing algorithms, graphs have been drawn in the following
section. Graphs have been drawn for waiting times and turn around times of the process sets

Jisted above.

4.3.1. Graph for Waiting Time

To check the performance of optimized round robin scheduling algorithm graph have been
drawn for waiting times of the process sets listed above. As there are 10 sets listed above
therefore graph have been drawn for these sets of processes being executed with optimized

round robin, round robin, deficit round robin and start time fair queuing algorithms.

o

140 o
120
100

o3

B ORR
B RR
ODRR

80
604
40

OSTFQ

1 2.3 4 5 6 7 8 9 10

Figure 5.1 Graph showing waiting times of 10 sets
ORR = Optimized Round Robin RR =Round Robin
DRR = Deficit Round Robin STFQ = Start Time Fair Queuing
The graph clearly shows that optimized round robin scheduling algorithm is showing better

results as compared to other scheduling algorithms. In each case optimized round robin

scheduling algorithm is exhibiting less waiting time as compared to other scheduling

49

Optimized Round Robin Scheduling Testing and Performance Evaluation

algorithms. This means that optimized round robin scheduling algorithm is more optimized
| and efficient as compared to the algorithms whose results are shown above for waiting time
criterion.)
4.3.2. Graph for Turn around Time
To check the performance of optimized round robin scheduling algorithm graph have been
drawn for turn around times of the process sets listed above. As there are 10 sets listed above
therefore graph have been drawn for these sets of processes being executed with optimized

round robin, round robin, deficit round robin and start time fair queuing algorithms.

180 &
1607
140

1201
100
801

60{f

B ORR
HRR
ODRR
OSTFQ

40
20

1 2 3 4 5 6 7 8 9 10

Figure 5.2 Graph showing turn around times of 10 sets

ORR = Optimized Round Robin RR =Round Robin

DRR = Deficit Round Robin STFQ = Start Time Fair Queuing

The graph clearly shows that optimized round robin scheduling algorithm has shown better
results as compared to other scheduling algorithms. In each case optimized round robin
scheduling algorithm is exhibiting less turn around time as compared to other scheduling
algorithms. This means that optimized round robin scheduling algorithm is more optimized
and efficicnt as compared to the algorithms whose results arc shown above for turn around

time criterion too.

50

Optimized Round Robin Schedulin Testing and Performance Evaluation

4.3.3. Overall Performance
At the end let’s take the average of averagge waiting time and average turn around time of all

the ten sets. From these ten sets following results are calculated.

1- FOR OPTIMIZED ROUND ROBIN

Average Waiting Time

Average Waiting Time = [Av. Waiting time (set 1) + Av. Waiting time (set 2) + Av.
Waiting time (set 3) + ... + Av. Waiting time (set 10)]/ 10

Average Waiting Time = [48.9 + 20.3 + 25.1 + 16.9 + 33.3 +18.3+67.2+ 16.7+ 116.7
+30.3]1/ 10

Average Waiting Time =393.4/10

Average Waiting Time = 39.34

Average Turn around Time

Average Turn around Time = [Av. TA time (set 1) + Av. TA time (set 2) +
Av. TA time (set 3) + ... + Av. TA time (set 10)] / 10
Average Turn around Time =[64.1 + 32.2 + 34.0 + 25.8 + 43.7 +25.4 + 90.8 + 23.3 +
143.1 +41.3]/10 '
Average Turn around Time = 523.7/10

Average Turn around Time = 52.37

51

Optimized Round Robin Scheduling Testing and Performance Evaluation

2- FOR ROUND ROBIN

Average Waiting Time

~ Average Waiting Time = [Av. Waiting time (set 1) + Av. Waiting time (set 2) + Av.
‘ Waiting time (set 3) + ... + Av. Waiting time (set 10)}/ 10
Average Waiting Time = [108.7 + 21.6 + 32.0 + 28.9 + 53.7 +20.6 + 95.8 + 22.5 + 139.4
+46.9]/10
Average Waiting Time = 569.9 /10
Average Waiting Time = 56.99

Average Turn around Time

Average Turn around Time = [Av. TA time (set 1) + Av. TA time (set 2) +
Av. TA time (set 3) + ... + Av. TA time (set 10)]/ 10
Average Turn around Time = [123.9+ 33.5 + 40.9 +37.8+64.1 +27.7+ 119.4'+ 29.1 +
- 165.8+57.9]/10
Average Turn around Time = 700.1/ 10

Average Turn around Time = 70.01

3- FOR DEFICIT ROUND ROBIN

Average Waiting Time

-

Average Waiting Time = [Av. Waiting time (set 1) + Av. Waiting time (set 2) + Av.
Waiting time (set 3) + ... + Av. Waiting time (set 10)]/ 10

Average Waiting Time =[76.7 + 19.1 + 286 +25.8 +443+19.6 +94.3+22.5+ 1314
+452]/10

Average Waiting Time = 507.5/ 10

Average Waiting Time = 50.75

52

Optimized Round Robin Scheduling Testing and Performance Evaluation

- Average Turn around Time
Average Turn around Time = [Av. TA time (set 1) + Av. TA time (set 2) +
Av. TA time (set 3) + ... + Av. TA time (set 10)]/ 10
Average Turn around Time = [91.9 + 31.0 + 37.5+ 34.7 + 54.7 + 26.7 + 117.9 + 29.1 +
158.8 + 56.21/ 10
Average Turn around Time = 638.5/ 10

Average Turn around Time = 63.85

4- FOR START TIME FAIR QUEUING
Average Waiting Time

Average Waiting Time = [Av. Waiting time (set 1) + Av. Waiting time (set 2) + Av.
Waiting time (set 3) + ... + Av. Waiting time (set 10)] / 10
Average Waiting Time =[91.8 + 19.1 + 28.6 + 25.8 + 44.3+ 19.6 + 94.3 + 22.5 + 117.0
- +452]1/10
Average Waiting Time = 508.2/ 10
Average Waiting Time = 50.82

Average Turn around Time

Average Turn around Time = [Av. TA time (set 1) + Av. TA time (set 2) +
Av. TA time (set 3) + ... + Av. TA time (set 10)]/ 10
Average Turn around Time =[107.0 + 31.0 + 37.5+34.7 + 54.7 + 26,7+ 117.9 + 29.1 +
143.4 + 56.2]/ 10
Average Turn around Time =638.2/10

Average Turn around Time = 63.82

53

Optimized Round Robin Scheduling Testing and Performance Evaluation

M ORR
B RR
ODRR
OSTFQ

AWT ATAT

Figure 5.3 Graph showing overall performance

ORR = Optimized Round Robin
RR =Round Robin

DRR = Deficit Round Robin

STFQ = Start Time Fair Queuing
AWT = Average Waiting Time
ATAT = Average Turn Around Time

The above graph clearly shows the performance of optimized round robin scheduling
algorithm against round robin, deficit round robin and start time fair queuing scheduling
algorithms. The graph clearly shows that optimized round robin scheduling algorithm has
shown better results i.c. low waiting and turn around times as compared to the other
algorithms.

54

CHAPTER §

CONCLUSION
AND FUTURE WORK

Optimized Round Robin Scheduling Conclusion and Future Work

5.1. Introduction
Overall conclusion of this dissertation is discussed in this chapter. It also discusses the future

work in this direction so that this algorithm can be made more efficient and optimized.

5.2. Conclusion

This dissertation discusses in detail the round robin scheduling algorithm. This dissertation
was chosen because round robin scheduling algorithm is very widely used in different fields
computer science including operating system, network devices etc. But this classical round
robin scheduling algorithm has a problem associated with it that has been discussed in detail
in this dissertation.

This dissertation focuses on the specific problem associated with round robin scheduling
algorithm in detail and then proposes a new scheduling algorithm named as optimized round
robin scheduling algorithm which resolves this issue. By resolving this issue optimized round
robin scheduling algorithm has become more useful and effective.

The results of this new scheduling algorithm have been compared with results of round robin
(RR), deficit round robin (DRR) and start time fair queuing (STFQ) scheduling algorithms
and it has become obvious that optimized round robin (ORR) scheduling algorithm exhibits
more optimized and efficient results as compare to RR, DRR and STFQ scheduling
algorithms. Waiting and turn around times are the two criteria on which the results of these
algoritth i.e. ORR, RR, DRR and STFQ scheduling algorithms have been tested. Results
show that optimized round robin scheduling algorithm gives more optimized results for these
two criteria than RR, DRR and STFQ scheduling algorithms.

From these results different graphs have been drawn to show the performance difference
between optimized round robin scheduling algorithm and other scheduling algorithms. Hence
it has become obvious and clear that optimized round robin scheduling algorithm gives more

optimized results as compared to RR, DRR and STFQ scheduling algorithms.

55

Optimized Round Robin Scheduling Conclusion and Future Work

5.3. Future Work

As it is said,

“There is always room at the top”. .

Therefore this proposed scheduling algorithm is not the last one. More optimized results can
be obtained by applying some other variation of round robin scheduling algorithm.
Optimized round robin scheduling algorithm has shown better results compared to other
algorithms discussed in this dissertation but optimized round robin scheduling algorithm does
this at the cost of sorting. In optimized round robin sorting could occur frequently which
consumes CPU time and this is overhead of optimized round robin scheduling algorithm that
we have to bear.

One thing that can be done with this scheduling algorithm is that the ready queue is sorted
many times if some sort of technique can be applied to this queue and sorting occurrence can
be minimized this would also be a very useful future work related to this scheduling

algorithm.

56

Optimized Round Robin Scheduling References

REFERENCES:

[1] Bennet J. and Zhang H., Hierarchical packet fair queueing algorithms, In ACM
SIGCOMM °96 (1996).

[2] Chan W., and Nieh J., Group ratio round-robin: An O(1) proportional share scheduler,
Tech. Rep. CUCS-012-03, Department of Computer Science, Columbia University, April
2003.

{3] Cheung S., and Pencea C., BSFQ: Bin sort fair queuing, In IEEE INFOCOM®02 (2002).

[4] Chuanxiong G. SRR, an O(1) time complexity packet scheduler for flows in multi-service
packet networks, In ACM SIGCOMM 01 (2001). '

[S} Ciark D., and Fang W., Explicit allocation of best-effort packet delivery service,
IEEE/ACM Transactions on Networking 6 (August 1998).

[6] D. Saha, M. Saksena, S. Mukherjee and S. Tripathi, On Guaranteed Delivery of Time-
Critical Messages in DQDB, In Proc, IEEE Infocomm *94.

[7] D. Stiliadis and A. Varma, Efficient fair queueing algorithms for packet-switched
networks, IEEE/ACM Trans. Networking 6 (2) (1998) 175-185.

{8] D. Stiliadis and A. Varma, Latency-rate servers: A general model for.analysis of traffic
scheduling algorithms, IEEE/ACM Trans. Networking 6 (5) (1998) 611-624.

[91 Goyal P., and Vin H., Generalized guaranteed rate scheduling algorithms: A framework,
IEEE/ACM Transactions on Networking 5 (August 1997).

[10] H.M. Chaskar and U. Madhow, Fair scheduling with tunable latency: A Round Robin
approach, in: IEEE Globecom'99, 1999, pp. 1328-1333.

[11] J.C.R. Bennett, D.C. Stephens and H. Zhang, High speed, 'scalable, and accurate
implementation of fair queuing algorithms in ATM networks, in: Proceedings of the
ICNP'97, 1997, pp. 7-14.

[12] J.L. Rexford, A.G. Greenberg and F.G. Bonomi, Hardware-efficient fair queueing
architectures for high-speed networks, in: Proceedings of the INFOCOM '96, 1996, pp. 638-
646. ‘ :

[13] Lenzini L., Mingozzi E. and Stea G. Aliquem: a novel DRR implementation to achieve
better latency and fairness at O(1) complexity, In IWQoS’02 (2002).

57

Optimized Round Robin Scheduling References

[14] M. Katevenis, S. Sidiropoulos and C. Courcoubetis, Weighted Round-Robin cell multi-

plexing in a general-purpose ATM switch chip, IEEE J. Selected Areas Commun. 9 (8)
(1991) 1265-1279.

[15] M. Shreedhar and George Varghese, Efficient Fair Queuing using Deficit Round Robin
by SIGCOMM °95 Cambridge, MA USA 1995 ACM 0-89791 -711-1 /95/0008

[16] Nick McKeown, The iSLIP Scheduling Algorithm for Input-Queued Switches,
IEEE/ACM TRANSACTIONS ON NETWORKING VOL. 2, NO. 5, OCTOBER 1994

[17] N. Matsufuru and R. Aibara, Efficient fair queueing for ATM networks using Uniform
Round Robin, in: Proceedings of the INFOCOM'99, 1999, pp. 389-397.

[18] Pawan Goyal, Harrick M. Vin, and Haichen Cheng. Start-time Fair Queuing: A
Scheduling Algorithm for Integrated Services Packet Switching Networks, IEEE/ACM
Transactions on Networking (1997) 690 — 704.

[19] Richard O. LaMaire and Dimitrios N.Serpanos, Two-Dimensional Round-Robin
Scheduler for packet switches with multiple input queues, 0634692/94 1994 IEEE

[20] S. Golestani, A self clocked fair queueing scheme for broadband applications, In Proc.
IEEE Infocomm 94, 1994. .

[21] Shih-Chiang Tsao and Ying-Dar Lin, Pre-order Deficit Round Robin: a new scheduling
algorithm for packet-switched networks, Computer Networks 35 (2001) 287-305

[22] Sllberschatz, Galvin and Gagne, Operating System Concepts Windows XP updated
with Java 7" edition

[23] S.J. Golestani, A self-clocked fair queueing scheme for broadband applications, in:
Proceedings of the INFOCOM'94, April 1994, pp. 636-646.

[24] Sriram Ramabhadran and Joseph Pasquale, Stratified Round Robin: A Low Complexity
Packet Scheduler with Bandwidth Fairness and Bounded Delay, SIGCOMM 03, August 25-
29, 2003, Karlsruhe, Germany ACM 1-58113-735-4/03/0008

[25] S. Suri, G. Varghese and G. Chandranmenon, Leap forward virtual clock: A new fair
queuing scheme with guaranteed delays and throughput faimess, in: Proceedings of the
INFOCOM'97, 1997, pp. 557-562.

[26] Stephens D., Bennet J., and Zhang H., Implementing scheduling algorithms in high
speed networks, IEEE Journal on Selected Areas in Communications: Special Issue on Next-
generation [P Switches and Routers 17 (June 1999).

[27] Stiliadis, D. and Varma A., Rate proportional servers: A design methodology for fair
queueing algorithms, IEEE/ACM Transactions on Networking 6 (April 1998).

58

Optimized Round Robin Scheduling References

[28] www.wikipedia.org

[29] Xu, J. and Lipton R., On fundamental tradeoffs between delay bounds and
computational complexity in packet scheduling algorithms, In ACM SIGCOMM 02 (2002).

[30] Yao-Tzung Wung, Tzung-Puo Lin and Kuo-Chung Gan, An Improved Scheduling
Algorithm for Weighted Round-Robin Cell Multiplexing in an ATM Switch, Computer and
Communication Research Lab. Industrial Technology Research Institute, Taiwan. 0-7803-
1825-0/94 1994 1IEEE.

59

