wl'a
ln/.

In the name of Allah,
The most Gracious, The most merciful.



Boundary Layer Flow

Due to Uniform Stretching of a Circular Cylinder

By
Babar Hussain Shah

Department of Mathematics and Statistics
Faculty of Basic and Applied Sciences
International Islamic University, Islamabad

Pakistan
2017




* TH-/6779 \5’

Accession N0 ——m—m ——

‘ RV
3 . FL,\OL Wi e o e



Boundary Layer Flow
Due to Uniform Stretching of a Circular Cylinder

Babar Hussain Shah

Supervised by
Dr. Ahmer Mehmood

Department of Mathematics and Statistics
Faculty of Basic and Applied Sciences
International Islamic University, Islamabad

Pakistan
2017



Boundary Layer Flow
Due to Uniform Stretching of a Circular Cylinder

Babar Hussain Shah

A Dissertation
Submitted in the Partial Fulfiliment of the
Reguirements for the Degree of

MASTER OF SCIENCE
IN
MATHEMATICS

Supervised by
Dr. Ahmer Mehmood

Department of Mathematics and Statistics
Faculty of Basic and Applied Sciences
International Islamic University, Islamabad
Pakistan
2017



3.

Certificate

Boundary layer flow due to uniform
stretching of a circular cyliner

By

Babar Hussain Shah

A DISSERTATION SUBMITTED IN THE PARTIAL FULFILLMENT OF THE REQUIREMFNTS
FOR THE DEGREE OF THE MASTER OF SCIENCE IN MATHCMATICS

We accept this dissertation as conforming to the required standard.

W
HTMEYE _
Dr. Mazhar Hussain ' Dr Ahmed Zeeshan
External Examiner Internal Examiner
A ’\’\(1/ 4- L \ -
Dr. Ahmer Mehmood Prof. Dr. M. Arshad Zia
Supervisor Charrman

Department of Mathematics & Statistics
Faculty of Basic and Applied Sciences
International Islamic University, Islamabad
Pakistan
2017



Declaration

[ herebr, declare. that this thesis neither as a whole nor as a part thereof has been copted out
from anv source It 1s further declared that I have prepared this thesis entirely on the basis of
my personal efforts made under the sincere guidance of my kind supervisor No portion of the
work, presented m this thesis, has been submitted m the support of any apphcation Jor any

degree or qualification of this or uny other mstitute of learming

Signature
Babar Hussain Shah

MS (Mathematics)
Regustration No 230-FBAS/MSMA/S-15

Department of Muthematics & Statistics
Faculty of Basic and Applied Sciences
International Islamic Unmversity,

Islamabad Pakistan

vl



@’“é y

%ﬁﬂylm”ﬁ.
Ghe reason of what S beoome today

myéwyémm, didter, dtudents and my

Mﬁm%maéﬁa%y'ﬂymwfw/



Acknowledgements

Foremost, | am always grateful to Allah The Almighty, who made human being, the best
creation of all the living species and made them understand to write with pen He provided
me the boldness and capability to achieve this task [ offer countless Darood and Salam on
the human's welwisher and the beloved Holy Prophet Hazrat Muhammad (SA.W. W) and
his famuly, for whom ths whole universe has been manifested Allah has shown His
existence and oneness by sending him as messenger of Iskkm and born me as a Muslim

| express my gratitude to my supervisor Dr. Ahmer Mehmood for his regardless and
mspratonal efforts and moral support throughout my research carrer He sound advices and
lots of good deas were very helpful to me | would have been lost without him May ALLAH
bless him with all kinds of happiness and success in his life and may all his wishes come true
| am also thank ful to charman Department of Mathematics and statistics

My Deepest gratitude to my Mother and Father who are the real pillars of my hfe
They always encouraged me and showed their everlasting love. care and support throughout
my Ife The continuous encouragement and humble prayers support (both financially and
moral) fom my father and mother 1s unforgettable The love from elder brothers is priceless

| greatly appreciate to Mr. Muhammad Usman with his enthusiasm, his inspiration,
and hrs great efforts to explain things clearly and simply, he helped to make mathematics fun
for me Throughout my thesis-writing period, he provided encouragement, sound advice,
good teaching. good company. and lts of good iwdeas [ also thanks to my seniors, Mr
Muhammad Awais. Mr Igrar Raza, for their valuable discussions [ wish special thanks to
my fellows M Fasal, Sohatl Ahmad. M Awass, Sajjad Ahmed, Mr Kashif Chaudhary, for
helping me get through the difficult times, and for all the emotional support, comraderies,
entertainment, and caring he provided

Finally, [ would like to thanks to cverybody who was immportant in success ful
realization of thesis as well as expressing my apology that [ could not mention personally all

of them
Babar Hussain Shah

LRIl



Preface

The study of convective transport and heat transfer phenomenon in boundary layer flow due
to stretching flat plates or cylinders are of practical importance m fiber technolgy and
extrusion processes and of theoretical interest as well The production of polymer sheets and
plastic films 1s based on this technology There are number of examples which include the
cooling of an mfimte metallic plate i a cooling bath, the boundary layer along material
handlmg conveyers, the acrodynamic extrusion of plastic sheets. the boundary layer along a
hquid film 1n condensation processes, paper production, glass blowing, metal spinning and
drawng plastic films, and polymer extrusion. The quality ofthe final product depends largely
on the rate of heat transfer at the stretching surface

Bemg mspred by these studies we intend to investigate the heat transfer phenomenon 1n
unsteady boundary layer flow due to stretching cylinder Two cases have been considered
namely, the impulsively started cyhnder and the oscillatory streiching of cylinder This
dissertation comprises of three chapters The first chapter includes the preliminares. In
second the numerical solution by using finite difference scheme 1s presented The e ffects of
physical parameter like strouhal number, amplitude of oscillation on velocity profile and skin
fricton coe ficient have also been d scussed

In chapter three unsteady boundary hyer flows due to uniform stretching of an impukively
started crcular cylinder has been considered, The impact of the curvature parameters and the

time varable has been investigated on the coefficent of skin friction and the velocity profile
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Chapter 1

Basics Definitions

1.1 Fluid Mechanics

Fluid mechanics 1s the branch of science which deals with the behaviour of flud 1e  (hg-
wid /gases)

1.1.1 Branches of Fluid Mechanics

Flud mechanics usually sub divided mnto three man branches (1) Flud Statics (2) Flud
Kinematics {3) Flwud Dynamics

1.1.2 Fluid Statics

It 15 the study of fluids at rest

1.1.3 Fluid Kinematics

It 15 the study of Auwds 1n motion neglecting pressure forces

1.1.4 Fluid Dynamics

It 1s the study of fluids in motion considering pressure forces It has several sub disciplines such
as Aerods namics (the study of air and other gases in motion) and Hydrodynamics (the study

of liguds 1n motion) ete



1.2 Fluid

A substance that has no fixed shape and yields easily to external pressure, a gas or (especially)

a hqud

1.2.1 Types of Fluids

There are mainly two types of fluds (1) Ideal fluids (2) Real Awds

1.2.2 Ideal Fluid

A Awuid whose density p 15 constant and viscosity g 1s zero
p = const,
¢ = 0 (No fniction force)

1.2.3 Real Fluid

All iquids for which viscosity 1s not to zero (¢ # 0) are called viscous or real Awmds There are

further two classes of real flmds {1) Newtonian fluds {2) Non-Newtoman flwds

1.2.4 Newtonian Fluid

The Auds that obey the Newton's law of viscosity are called Newtoman fluds  Linear relation-

ship holds between shear stress and the rate of deformation

du
Tyz = #Ey_

1.2.5 Non-Newtonian Fluid

The fluds which doesn't comply with the Newton's law of viscosity are called Non-Newtonian
fluds There are further three sub classes of Non-Newtoman flmds {1) Dilant flwd {Shear

thickening) (2) Pseudoplastic luid (Shear thining) (3) Viscoplastic fluid (Bingham)



Dilant Fluid

For hugher rate of shear strain higher viscosity is reflected 1e (quick sand, corn, starch etc)

Pseudoplastic Fluid

For higher rate of shear strain low viscosity 1s reflected 1€ (paints blood hetchup etc )

Viscoplastic Fluid

Solid upto certain stress and after that they start to flow 1e (maynese, tooth paste, etc )

1.3 Flow

A matenal goes under distortion when certain forces are applied on 1t 1f the deformation

continuously increases without limit then the phenomenon 1s known as flow

1.3.1 Incompressible Flow

A flow 1n which the volume and thus the density of Auid dees not change dunng the flow All

liquids are genecrally considered to have incompressible flow

1.3.2 Compressible Flow

A flon 1 which the volume and thus the density of flmd changes during the flow  All gasses

are generally considered to have compressible flow

1.3.3 Uniform Flow

A flow 1 which the velocity of flud particles at all areas of channels are equivalent

1.3.4 Non-Uniform Flow

A flow 1n which the velouty of flud particles at all sections of channels are not equivalent



1.3.5 Laminar Flow

A flow in which every fluid particle has a definite path and the path of individual particle

doesn't cross each other

1.3.6 Turbulent Flow

A flow 1n which every Awd particle doesn t has a definite path and the path of individual

particles are also cross each other

1.3.7 Steady Flow

A flow whove flow state expressed by velouty, pressure, density ctc at any position doesn't

change with time 15 called a steady flow

o1 _

at -_— 0!

where 77 represent any flud property

1.3.8 Unsteady Flow

A flow whose How «tate expressed by velouity, pressure, density etc at any position does change
with time 15 called a unsteady flow At whatever point water comes up short on a tap while
the handle 1s being turned the flow 15 an unsteady On the other hand, when water runs out

while the handle 1s stationary. leaving the operung consistent, the flow 1s steady

1.3.9 Rotational Flow

A flow in which the flud particles rotate about their own axas during the flow 1 ¢ fluid particles
have some angular velocity e g 1n a rotational stream if a match stick {bit of which) 1s tossed

on the surface of the moving hqud 1t will prvot about 1ts axis

UxV#Qor curl V#0



1.3.10 Irrotational Flow

A flow m which the flud particles do not rotate about their own axis and retain their onginal

onentation ¢ g 1n an irrotational flow 1f a match stich thrown on the surface of the moving

fluid 1t does not rotate about the axis

VxV=0o0rcurl¥=0

v=2.+2

g
d::l+3_y'}+_*k and V = wuz+ 1) + wh

1.4 Properties and Physical Parameters of Fluid

There are following properties and some physical parameters of flud

1.4.1 Viscosity

Viscosity 1s the resistance of fluid to 1ts motion, 1t 18 denoted by g It 15 also known as kinematic

viscosity Viscosity 1s a physical quantity of fluid which can be mathematically defined as “ratio

of shear stress to rate of shear strain” Sl umt for z 15 %é

shear stress
=
shear strain

u:

e -

1.4.2 Density

The mass per unit volume at constant pressurc and temperature 15 called density It 13 denoted
by p and defined as

_m

=y

2
S! unit for g 15 =~ or stokes



1.4.3 Dynamic Viscosity

The ratio of absolute viscosity u to the density p 1s called dynamic viscosity 1t 1s denoted by

v and is defined as

H
v = -
P
1.4.4 Reynolds Number
Reynolds number 1s defined as
Re = 6—U§
I

where v 15 the dynamic viscosity d 1s the diameter ¢ 1» the density and u be the viscosity A
leminar flow turns to the turbulent flow when the value of non dimensional quantity Re = Jz—d

reaches a certain amount and whatever the values of the average velocity ¢

1.4.5 Strouhal Number

The Strouhal number St 1s a dimensionless number describing oscillating flow mecharuism The
parameter 15 named after Vincenc Strouhal a Czech Physicist  The Strouhal number 15 an

integral part of the fundamentals of fluid mechames The Strouhal number 15 often given as

_ L
St =7

where f 15 the frequency. L 1s the characteristics length and {7 1s the flow velocity

1.5 Velocity Vector

A veloaity vector defined as change of position of object with respect to ime We know that
velocity 15 a vector quantity, the magmitude of velocity vector gives the speed of object while

the vector direction give its direction



1.6 Streamline

A velocty vector forming a curve of each particles of fluud at a certain tune 1s called streamline

In other words, the curve where the tangent at each pomnt indicates the direction of Awd flow

1.7 Velocity Profile

The vanation n velocity along a hine at right angles to the genetal direction of low

1.8 Curvature

The curvature measures how fast a curve 15 changing direction at a given pomnt There are

several formulas for determung the curvature of a curve

1.9 Stream Function

The flow velocity components can be expressed as the derivatnes of the scalar stream function
The stream function can be used to plot streamlines which represents the trajectories of particles
in a steady How The two dimensional lagrange stream function was introduced by Joseph Lows

Lagrange in 1781

1.10 Inertial Force

An inertial force 1s a force that resists 4 change in velocity of an object It 15 equal and opposite
direction of an applied force as well as a resistive force The concept 1s based on Newton lawn
of motion 1ncluding the law of 1nertia and action-reaction law

1.11 Viscous Force

Viscous force 1s the furce between a body and a flud (hqud or gases) moving past 1t, 1n a

direction so as to oppose the flow of lmd past the object

10



1.12 Boundary Layer Thickness

The thickness of the velocity boundary layer 15 normally defined as the distance from the solhd

body at which the viscous Alow velocity 15 99% of the freestieam velocity

1.13 Wall Shear Stress

The wall shear stress 7, 15 given by

(o

where u 1s the dy namics viscosity, u 1s the flow velocity parallel to the wall and y 15 the distance

to the wall The SI umt of shear stress 1s pascal which 15 1dentical to 5%

s

1.14 Surface Tension

It 1s defined as a tensile force acting on the surface of liquid 1n contact with air, gas or between

A

two imrmmscible hquds  Surface tension 1s denoted by ¢ Its umit 15 4

1.15 Types of Forces

There are two main categories of forces (1) Contact Forces (2) Non-contact Forces

1.15.1 Contact Forces

There are further types of contact forces {1) Frictional force {2} Tension force (3) Normal force

(4) Aur resistance force (5) Appled force (6} Spring force

1.15.2 Non-Contact Forces

It can he further divided three types (1) Gravitational force (2) Electrical force (3) Megnetic

force

11



1.15.3 Centrifugal Force

The tendency of an object following a curved path to fly away frotn the centre of curvature 1s
called centrifugal force [t mght be described as “lack of centripetal force Its direction s
along the radius of the aircle from the centre towards the object Mud Aymng of a tire 1s an

example of centrifugal force

1.15.4 Centripetal Force

The force that keeps an object moving with a umform speed along a circular path Its direction
1 along the radsus of the arcle from the object towards the centre Satellite orbiting a planet

15 an example of centripetal force

1.15.5 Applied Force

An applied force 15 a force that 1s applied to an object by a person or another object If a

person 15 pustung a desh across the room then there 15 an apphed force acting upou the object

1.15.6 Gravity Force

The force of gravity 15 the force with which the earth, moon or other massively large object

attracts another object towards 1tself

Fgrn\. = 10§

1.15.7 Normal Force

The normal force 1s the support force exerted upon an object that 15 1n contact with another

stable object

12



1.15.8 Friction Force
The friction force 1s the force exerted by a surface as an object moves across 1t or makes an
efforts to move across 1t
1'-"l'rul = an:ln‘n
1.15.9 Air Resistance Force
The air resistance 15 a special type of frictional force that acts upon objects as they travel
through the air
1.15.10 Tension Force

The tension force 1 the force that 1s transmitted through a string, rope cable or wire when it
15 pulled tight by force acting from opposite ends

1.15.11 Spring Force

The ~pring force 14 the force exerted by a compressed or stretched spring upon any object that

15 aftached to 1t

1.16 Continuity Equation or Law of Conservation of Mass

1.16.1 Statement

Mass 1n any dlassical system can neither be created nor be destroyed, 1e [mass remains
conserved) In steady flow. the mass flow per umt time passing through each section does not

change, even 1f the pipe diameter changes (M= constant)

dAf
— =0 1
dt ’ (1)

dM = / pdV,

Af = fd,M = fpdxz

13



A = / pdV’

3

M d

— == dl’,
at dt)”
P
According to law of conservation of mass
dM
i
Eq (1 1) becomes
d
0=— v,
7/~
d
— dl" =0,
dt / P

i

3
]a—deJ—/pl"nds:U
i

3

according to Gauss Divergence Theorem on second 1ntegral
/%dl —I—fdw(p Vidl” =0,
/[% + div(p V)|dV =0

dp
5 + div{pV} = 0.

which 15 the required contimutty equations for incompressible fow

Thercfore, Eq (1 3) becomes
div(p V) =10,

14

(13)



pdnV=20
dn V=20
vYV=0 (14)
Vo= [u(z y =) vlr y, 2, 8) w(r g = t)
Therefore, Eq (1 4) becomes

Gu N ow

— — — *
oz Tyt ¢ (14%)

which 15 the required continuity equation for incompressible flow

1.17 Newton'’s Law of Viscosity

1.17.1 Statement

The Newton law states that ‘The shear stress acting on a flud 15 proportional to the rate of

shear stran’

T4z & Rate of Deformation
T,z = b {Rate of Deformauon).

OR

08

it 15
st 3t (15

Rate of Delormation = i»’_t =
81 = {dy)(48)

61 = (veloaity){time),
3 = (6u)(6t)

dudt = dydf
¢ ou
5t by
d8  du
lm — = —.
at—0 it dy

15



@ _a
dt — dy’

d
Rate of Deformahon = &«
dy

du
dy’

Tyr X

efu
Tz = {constant of proportlonahtv}a—‘
Y

du
Tyr = i— (16
yr dy
1.18 Equation of Motion for Viscous Fluid
For viscous Awd following foices are sigmficant
{a) Pressure force per umt volume
Fy=-VP, (17)
where p 15 pressure
{t) Body force per unit volume
Fy = pB, (18)
where p 15 density, B 1s bedy force per umit mass
{¢) Viscous force { friction force)
F=¢%vr (19)
The tesult out of F—p. F,, and F, 1s
F= fp + ﬁb + Fl.
F=-VP+pB+~dnV (110)
mi=F
™ _ F
—a = —,
v v

16



™
=]
l
a2t

From (19} and (1 11) we have

v
pi—t = _-VP-pB+dnV

which 15 the required equation of motion for viscous fiud

Case (1), when fluid 15 at rest

dv’
i 0
Eq (1 12) becomes
-VP +pB =10,
VP =pB

which 1s the describing equation for static flud
Case (2) when fluid 15 1mscous

divd =0.

lue to which Eq (1 12) becomes

dy’
pEf_ = —VP"F,OB‘

which 1s the equation of motion for inviscid flud

Case (3) when

d
T = Matena! dervatine,

d a3 ,
E——a'{"v

Eq (1 12) becomes

d L yvp=-tvp+lanves
ot p p
Case (4) when
dv dp dp
vp=2,,2, %
P 3.rz+3yj+c)::

17
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du

= |u—

or

I

Ou

oy

\-component of momentum equation {1 12)

B = Bri + By) + B:zk

V = w4+ vy + wk.

v _ou v ou,
A TR TR
a8 ad d
Ve i—e 49— + k=
‘5z tlgy T s
VV=(uz+tg+wk)(z§;+Jé%
o ad d
VT-ua—I+15y—+uE
d ad
VOV = (u— +ve
( ) (U6I+L6y
+ dv
dz oz dy 8z

81;] [ v 01‘] {
v— |1+ lu—t+r—Fuw—|j+t U+ U U=

dJd
+ L-d—:)

7,
+ uvé—__)(m + )+ wh)

dur ouw

Jz Jy GE

du+ du+l(3u+ du 16P+ (dzu+02u+()2u B
—_ H— — — = - —— | — —_ —_]
ot dr  dy "oz p Oz ar? Oyt 82? i
v-component of {1 12)
Jv + UOU . 161' + dv 10P + (321 + 9% N dzt') +B
= R U S ST R [t N S il
ot Jdr Oy “a: p Oy dr? 0y 0:¢ v
z-component of {1 12)
iﬂ+u@+t'%+uaw——ld‘p+u B)u-+&+(’)zw + B
ot dx dy : pd: Jr?  6y?  0:° -
Eqgs (1 16) (1 18) are vahd for unsteady viscous fAow How

18
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1.19 Navier Stoke’s Equation for a Viscous Incompressible flow

in Cylindrical Coordinates

(. ug, u:) denotes the veloaity components in (r, 8, z) directions respectively, then the system

(116} {1 18) in cyhudrical system of coordinates read as

Oy du, updu, du, uﬁ
Up——

B Yot e TR T

18p Pu, 10u, 1%, %, u 2 Bup
= R -2, |9 10U U (U U <Tu 119
i por +U[8r2 e TR T T2 (119)
811.3 aug g B‘U,g aug Uy Ug
54_&'-61' 3 df +u:_:+ r
_ 1dp FPuy 10ug 1 Pug Fuy us 2 dur o
= Fﬂ‘;@*”[m ror T2 tom A pae) U
Qus |, Ous | woOus | Jus
at Y T ee T s
18p Fu. 1du, 1%, Oy,
= F=_Ea_:+”[ar?+F§F+r_2§aT a7 |’ (121)

Eq(119) {121) arc the Navier Stokes’ equations 1n cylindrical polar coordinates
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Chapter 2

Unsteady Flow of Viscous Fluid over

the Vacillate Stretching Cylinder

2.1 Introduction

The boundary layer flow due to stretching of elastic sheets or wires 1s very important practically
in engineering and ndustrial processes For example, generally raw material in hquified state
passes through an extrusion die for manufacturing of metallic and polymeric sheets even under
high temperature, material elongation and linear stretching 15 usually observed at this stage
According to Vleggaar [1]. the velocity of material 18 propotional to the distance so. stretclung
plates, wires, rods or cylinders are such kind of system which are modeled mathematicatly The
flow over moving surfaces was hypothetical worked for the first time by Sakiadis [2] Crane
[3] was the firat who studied the two dimensional steady state flow of viscous lud because of
stretclung sheet Later, the work was extended by Wang [4]. considering three dimensional flow
and obtained a numerical solution Exploration of flow over stretclung surfaces under different
nteresting material, great work of Crane {3} inspired various authers later, which has features
such as porous medium and porous sheets, electrically conducting flwud, nonlinear stretching and
non-New toman nature of fwds The flow caused by periodical oscallating streching sheet was
previously considered by Wang [4] who calculated the perturbation solution by taking large
frequency and small amplitude of oscilllation  Oscillatory motion nf magneto-ly drodynamic

viscoelastic lud was studied by Rajagopal {5] over a porous sheet in porous medium Wang's

20



[4] work was extended by Abbas [6] by nvestigating the shp effects of viscous Amd over an
oscillatory stretching flat plate

To the best of our hnowledge the Wang [4] was the first who discussed the effects of stretch-
g ¢ylinder over a stationary flud and cxamine the solution analytically by using the technique
of asymptoti expansion and numerically by shooting method Afterwards, many authors -
vestigated various aspects of this 1dea and obtained similanty solution near a stretching arcular
cylnder The exact solution for axasymmetne motion of flmd was studied by Burde [7], Ishak
8] and Nazar [9] by discussing the fow and heat transfer over a stretching cylmder and ob-
tammed a numerical solution by Keller Box method Ishak (8] and Nazar [9] examined the effect
of snction 1 electrically conducting flud because of stretching cylinder  Matroberardino and
Paullet [10] proved the existence of solution for all values of parameters by examimng of flow
wver a permeable stretching cylinder According to concept of Sparrow and Yu [11] the flow may
be considered as axisymmetric, if the order of radius of cylinder and boundary layer thickness
1s same The governing equations of such kind of flow contain the terms of transverse curvature
because of which the boundary layer 1s effected considerable

Our current study 1s the time depended flow caused by oscillatory stretching of cylmder
15 considered The solution of this problem 1s determuined by using fimte difference strategy
Imtially we transform seru infimite spatial domain mnto fimmte domain by using appropriate
transformation and after that we discretize the spatial denivatives by using difference quotients
The resulting albebraic equations are solved by using Gaussian elumination method with dafferet
tume steps Many authors hke Abbas [6], Wang [4] have already obtained numencal solution

due to the same strategy

2.2 Mathematical Modeling of the Problem

Consider an unsteady axisymmetnic flow of an incompressible viscous Awid due to an oscillatory
stretchung of a uniform cylmder Imtially, at the £ =0 the cylinder end the fluid are assumed

to be at rest At £ > 0 the cylinder 1s subjected to an osallatory stretching given by

Uy = aT(1 + € coswi)

21



Figure 2-1 Geometry of flow phenomenon

In yhindrical coordinates described in Fig 2 1 the law of conservation of mass can be expressed

1n the form
8(ru) d(F)  O(rw)
T * dar * gz

=0 (21)

where a(%l = (), because no angular motion, where u & v denote the components of veloaity

n F & 7 direction respectively The momentum equations for axisymmetric flow 1n eylindrical

system read as

gti+u%+.a_u+ ?E—_l___ap_+_1; _&_{_?_1_"_}__6_2“ + Bs 22)
at oz | oF YoE T p 0T i J7? ‘o ! l
24_“@4_-d_L:_Lu@-—_EE_FU(—iE_FF@_{_:_‘E + Bs 23
o ‘ez er oz poF Yozt o T i

Because of the absence of any potential flow the pressure gradiant 1> zero in the boundary
layer Under the boundary layer assumptions and 1n the absence of body furce the above

system reduces to the form

_v0 0 (2 1)



The appropriate boundary conditions for I > Q are given by

w(F.F.1) = aZ(] + econwt) = Uy, (25)
u(T, x.f) = 0 when 7 — =, (26)
u(f,R ) =0when ¥ — R (27

and the 1mmtial conditions at £ = 0 read a~

here R 1s the radius of the cylinder, @ 15 the stretching rate, w be the oscllations frequency
and € be the amplitude of oscillation with € < 1 The velocity components defined 1n terms of

streamn function and stream function are given by

1d¥ 19¥
U= - L = _—

For tTrar 210

Above system of equations 1s transformed to dimensionless form by using following transforma-

tions

u = Qaff’{r.t), v:—\/;i_f(r,t), r=wl, ¥=RaTf(r 1)
T
r o= {%)2_1_ (211)

due to which Eq (2 1) 1s satisfied 1dentically and Eq (2 4) takes the form

) [5‘% - ff"] =f +u+nf (212)
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Subjected to the boundary conditions

fir,t) = 0 whenr=20 f’(r, t) = 14 ecos(t) also when r =0,

firt) = 0 whenr—x (213)

where Re 15 the Reynolds number define by Re = % and St denotes Strouhal number define
by St = 3 and the prime denote by derivative with respect to r Strouhal number 1s the ratio
of oscillating frequency to the constant stretching rate The values S5t <1 correspond the small

frequency where as St > 1 correspond to high frequency At the surface of cylinder the shear

Tu,Zﬁ((jF:) at =R

stress can be represented by

Putting the value of % we got

Ty = 4‘J}?‘f”(o.t) (214)

where u 1s dynamic viscosity, here we also define the coefficients of skin friction Cy which comes

out of the form

Tw
Cr = p{aT)?
Putting the value of 7, we get
2 "
= 0.t 215
Cr=gg /0 (2 15)

2.3 Numerical Solution

To find the numerical solution of above equations (2 12 & 2 13), we apply the fimite differcuce

scheme Before doing so we transform the sem infimte domain 7 € [0,00) into fimte domain 7

£10.1] as
1
= 2
T Tir (216)
due to which the governing svstem modifies as
3 2 o f 2 2
T fv,nm + 5y frm + 47?fn —Re Stm = Re [7? ffrm + gfiffn - (T}fn] ] (217)
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and

d 0?
(—%(D.t)z{) f(nty=0, whenn=1, #(l,f)z-—l—ecos(t) (2 18)

Eqs (217 & 218) are solved by using fimte difference scheme  We replace the hnear terins
at advanced tume step k + 1 and the nonhinear terms at the previous time step & The time

dervative % 1s approximated by forward difference By doing <o the Eqgs takes the form

de\HJ B g fx)
an on

7S 4+ P Y + Y — Re St [

= Re[2r® A 4 2p g N - (707 (219)
Imitial condition at + = 0 15 described as
fn0y=0=Ff (2 20)

Furthermore, the equations {2 19 & 2 20) are discretize to the Linear equations as M + 2 um-
formly distributed grid points as (0 = 14 71, N T = 1) with a grid size of Ay = ﬁ
Fimte difference approximation has been used to discretize spatial derivatives  For our situation

we used first two denvatives for second order central difference approximation

fo= ——f‘+;;1{"‘ +0(24a9%) (221)
= 1 ‘i{;; fio1 L oran?) (2 22)

because of one boundary condition at 7 = 0 and two houndary condition at 7 = 1 The third

order dervative 15 approsimated by

_ fiv2 — 3fiv1 + afl. - fi1
foom = (An)? ) (2 23)

where f, 13 the value of f at 7, = 1Anfor: =0.1.2, ,M—1 {m—1) linear system of equations

as produced by using above mentioned finite dufference scheme for fi“”” as follow
w fOHD o fED g gD L p D - B for v=1,20 A1, (2 24)
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k i
where w,,Z,.¥, 2, are the known algebraic coefficients of ff;r”,f'( + f‘(d'”‘ H:l) respec-

tively, and Blm makes the night side of algebiaic system (2 24) The mesh term including
To 1 JTAf> a4 1 equation (2 24) can be found by discretizing boundary date mentioned
mm (2 18) Equation {2 24) formed a quad diagonal matrix of dimension M + 2 The system
of algebraic equations can easily be solved by using Gaussian elimination methed for different

time levels with time step size tk) = kAf for k =0,1,

2.4 Results and Discussion

f )
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Figure 2-2 Effect of € on the velocity profile f'(n 7) against 5

In this section we discuss the effects of some physical parameters e g strounhal number,
amplitude of oscillation and Reynolds number on skin {nction coefficients and veloeity profile
It 1~ founded 1n Figure 2 2 that as ¢ increases there 1s no eflect occur on the boundary layer
tluchness but near the surface of cylinder veloaity profile enhances In Figure 2 3 the effect of
Strouhal mumber on velocity profile i1s investigated It 15 seen that boundary layer thickness
decreases when Stroubal number increases This 1s a consequence of the increased frequency
of vsallations  The velouty profile at different time values has been plotted 1n Fig 24 The

velocity curves exlubit an overall asymptotic behavior having different values at the cylinder’s
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Figure 2-4 Effect of ime on the velocity profile f(,7) with 1n a time-period against 7
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Figure 2-5 Effect of St on the skin friction coefficient 710, 7) against 7

1
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Figure 2-G Effect of ¢ on the skin friction coefficient 10,7 against T
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Figure 2-8 Effect of Re on the shin friction coefficient (0 7) aganst 7
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surface This 15 betause of the osallatory nature of the ¢ylinder's surface The variation of
coethelent of skin friction due to the Strouhal number 1s depicted 1n Fig 25 The amphtude of
oscillation 15 seen mereasing upon increasing the value of St This 15 because of the reason that
increased values of St correspond to high frequency which 1n terms enhances the momentum
transfer 1n the boundary laver The role of amplitude parameters € 1s some what trivial, upon
increasing the values of € the amphtude of the fluctuations in the coefficient of skin fnction
also imncreases as depicted 1n Fig 26 In both the figures 2 5 and 2 6, 1t can be <een that for
small time values there 15 a great vanations in the coefficient of skin friction but after certain
time the curves attain the steady Auctuation state The role of Re on veloaty profile and skin
friction coefficient 15 depicted 1n Fig 2 7 and 2 8 respectnely It 1s founded in Fig 2 7 that as
Re mcreases the velocity profile decreases It 1s due to the fact that inertial [orce becomes
more stronger than viscous force as Re increases From Fig 2 8 it 1s observed that the shin
friction coefficient decreases as time increases This 1s because of the reason that imtially fud
offer great resistance to the motion but with the passage of time, such lund of resistive forces
decreases and totion of luid becomes steady It 18 also seen that in Fig 2 8 that as Re increases
the amplitude of osallation in skin friction coefficient increases  Thus 15 because of the reason
that decreasing curvature which results increasing surface area that is in direct contact with

the Awud

2.5 Conclusions

Unsteady boundary layer flow due to an osaillatory stretching of the cylinder has been considered
n this chapter The impact of physical parameters such as the amphtude of oscillations the
strouhal number and the curvature parameters have been observed on the velocity and skin
friction graphs It 1s noted that the flow enhances 1n the boundary layer upon increasing the

strouhal number and amplitude parameter €
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Chapter 3

Unsteady Boundary Layer Flow due
to Uniform Stretching of a Circular

Cylinder

3.1 Introduction

In this chapter, a study has been caried out to investigate unsteady boundary layer flow due
to umform stretchung of a circular cylinder The problem 1s modeled mathematically and
15 solved numerically by using finite difference scheme explaned in chapter 2 The effect of
physical parameters like curvature parameter and dimensionless time on the veloaty profile
are examined through graph Morcover the results have been compared to the flate stretching
surface having some values of curvature It 1s observed that the boundary layer thickness has
more effect 1n case of cylinder having curvature parameter £ = 1 a~ compared to the flate

strectching sutface kK = 0

3.2 Mathematical Modeling of the Problem

Consider a long shm cylinder of infimte length continuously form of a shit and passes through
the fad It 15 assumed that the cylinder 1s being impulsively started to be stretching umformiy

in the axial direction at ¢t > 0 At ¢ = 0 the surrounding flud are assumed to be at rest The
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velocity of the stretching surface 15 described by

U, =ax

In view of the above assumptions the governing systein arises of the equation of contimuty and

momentum equation In cylindrical coordinates the continuity equation 1> given by

d(ru) O(iv)
or *Tor TV G

and the momentum equation after the implications of boundary layer assumption read 4s

é)mL du Bu_ug ou

) (32)

5 Yo t'a T rarlar

where u,v denotes the veloaty component along r and y axes The appropriate boundar)

conditions for £ > 0 are given by

u(z,r.t) =eratr==~R, (33)
vir rt)=0at r=R, (34)
wz.rt)=0asr— x (35)

The 1mutial conditions defined at ¢ = U read as
u{z,r,0) =0, (36)

v(r.r,0) =0 37

where R 1s the 1adius of the cylinder, a 15 the stretching rate, here the velocity components
defined 1n terms of stream function are ginven by

19 _10¥

Uy=-—, v=-
r Or r oz

(38)
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Above system of equations are transformed to dimensionless form by using following transfor-

mations
4 1 1.1 1 1
u = arf(n), v= —;(au)EETRf(n}. T=at, E=1—eT, ¥ = (azxv)IRE? f(7),
iRt 51
7= 2R (E‘) e 49)

Our govermng equations are transformed by using above mentioned transformations (3 8 & 3 9)
mnto following nonlinear partial differential equations
1 2 o*f .
(2 + 25 VEn) fom + [0 =) + 26Vl + €lf o = (R = €L =) 520, (310)
where & = /27 denotes the curvature parameter According to the boundary conditions also

transform to the {form
f(n) =0 when np =0, F(n)=1when =0, F(n) = 0 when 5 — (3 11)

The governing equation show a good agreement between Rayleigh and Crane type of equation

It 1s a Rayleigh type of equation for large tume and 1t 1s Crane type of equation for a small time

3.3 Results and Discussion

The governing equations (3 10 and 3 11) have been sulved by the fimte difference scheme de-
scribed 1n the previous chapter The impact of the curvature parameter and the time variable
has been observed and show graphrcally in Figure 31 and 32 In Fig 31 the veloaty profile
for different 1alues of the time vanable £ have been plotted Obuviously, for small time values
the flow develops 1n the boundary layer and establishes continuously with passage of time For
sufficiently large values of £ the flow has fully been established and no further developments
are observed for large values of time Imitially the surface skin friction 1s large enough which
decreases with the passage of time and stabilizes for large value of time This fact can be con-
firmed from Fig 32 Furthermore, the effect of curvature parameter ~ on the coefficient of skin

friction 15 also shown 1n Fig 3 2 Upon increasing the values of & the shin friction coefficient
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increases 18 depicted 1n Fig 3 2

3.4 Conclusions

Numerical solutions to the govermng dimensionless partial differential equation and the associ-
ated boundary conditions have been obtained The results have been depicted graphically It
1s observed that the flow stables to develop for small tune value and get estabhished for large
time values The coefficient of skin friction 15 hugh for a small times and decreases quickly at
the imitial stages Finally, when the steady state 15 achieved the coefficient of skin friction also

gets stabilized for sufficiently large values of time
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