
Predictive Maintenance of Electric Motor
Using ML-Based Algorithms for EV

Application

By

Tayyaba Aasar
193-FET/ MSEE/F23

Supervisor: Dr. Adnan Omer
Co-Supervisor: Dr. Ayesha Abbasi

Department of Electrical & Computer Engineering
Faculty of Engineering and Technology

INTERNATIONAL ISLAMIC UNIVERSITY
ISLAMABAD

2025

Copyright © 2025 by Tayyaba Aasar

All rights reserved. No part of the material protected by this copyright notice may be

reproduced or utilized in any form or by any means, electronic or mechanical, including

photocopying, recording or by any information storage and retrieval system, without the

permission from the author.

DEDICATED TO

To my lifelong teacher, my father Engr. Aasar Ahmad.

To my supervisor, Dr. Adnan Umar.

To my co-supervisor, Dr. Ayesha Abbasi.

CERTIFICATE OF APPROVAL

Title of Thesis: Predictive Maintenance of Electric Motor Using ML-Based Algorithms for

EV Application

Name of Student: Tayyaba Aasar

Registration No: 193-FET/MSEE/F23

Accepted by the Department of Electrical and Computer Engineering, Faculty of

Engineering and Technology, International Islamic University, Islamabad, in partial fulfillment

of the requirements for the Master of Science degree in Electrical Engineering.

Prof. Dr. Syed Badshah

Dean FET IIUI

Dr. Ihsan ul Haq

Associate Professor, Chairman

(Internal Examiner)

Prof.

(External Examiner - I)

Dr.

(External Examiner - II)

Dr. Adnan Omer (Supervisor)

Dr. Ayesha Abbasi (Co-Supervisor)

25th March, 2025

3

Abstract

Electric vehicles (EVs) play a crucial role in reducing carbon emissions, with induction

motors serving as their core component due to their durability, efficiency, and simplicity.

However, induction motors are prone to faults such as stator winding short circuits and bearing

failures, which can lead to unexpected breakdowns, increased maintenance costs, and reduced

reliability. Traditional maintenance strategies, such as reactive and preventive maintenance,

are insufficient for addressing these hidden faults, necessitating the adoption of predictive

maintenance (PdM) frameworks. This research focuses on developing a robust PdM framework

for induction motors in EVs using machine learning (ML) techniques to enhance fault detection

accuracy, reduce downtime, and optimize maintenance schedules.

The study evaluated various ML models, including Artificial Neural Networks (ANNs),

Long Short-Term Memory (LSTM), Support Vector Machine (SVM), K-Nearest Neighbor

(KNN), Decision Trees (DT), Random Forest (RF), Naive Bayes (NB), and Physics-Informed

Neural Networks (PINNs), on stator winding and Case Western Reserve University (CWRU)

bearing fault datasets. Deep learning models, particularly LSTM and ensemble methods like

the voting classifier, outperformed traditional ML models, with LSTM achieving 99.87%

accuracy for binary classification and the voting classifier reaching 100% accuracy under

certain conditions. PINNs, which incorporate motor dynamics, also performed well, achieving

99.32% accuracy for binary classification. Traditional models like Naive Bayes and KNN

struggled with complex fault patterns, emphasizing the need for advanced ML techniques.

This research contributes to the field by integrating machine learning and physics-based

modeling to enhance the reliability and efficiency of induction motors in EVs. The findings

suggest that AI-driven predictive maintenance frameworks can significantly improve motor

health monitoring, reduce maintenance costs, and extend the operational lifespan of EV

induction motors. Future work should focus on real-time monitoring, expanding fault coverage,

enhancing datasets, and leveraging digital twin technology to further refine and validate the

proposed framework.

Keywords: EVs, Induction Motors, Predictive Maintenance, Machine Learning, Fault

Detection, LSTM, PINNs, Stator Winding Faults, Bearing Faults.

i

Acknowledgements

I would like to express my heartfelt gratitude to Allah Almighty for granting me the strength,

health, and perseverance to complete this research successfully.

I am deeply indebted to my supervisor, Dr. Adnan Umar, whose unwavering guidance,

support, and expertise have been instrumental throughout this journey. His constant

encouragement and insightful advice have helped shape this work.

I am also grateful to my co-supervisor, Dr. Ayesha Abbasi, for her valuable mentorship

and constant support. Her expertise and feedback have been crucial in refining my research.

A special and profound thanks to my father, Engr. Aasar Ahmad, whose love, sacrifices,

and unwavering support have been the driving force behind my success. His encouragement,

patience, and belief in my potential have played a significant role in helping me reach this

milestone. I owe much of my perseverance and determination to him.

Lastly, I would like to extend my sincere thanks to everyone who has contributed to this

research and supported me in various ways.

Tayyaba Aasar

List of Acronyms

AI Artificial Intelligence

ANN Artificial Neural Network

AE Autoencoder

ARIMA AutoRegressive Integrated Moving Average

ANOVA Analysis of Variance

BPNN Backpropagation Neural Network

BMS Battery Management System

BDA Big Data Analytics

CNN Convolutional Neural Network

CBM Condition-Based Maintenance

CM Condition Monitoring

CSV Comma-Separated Values

CWRU Case Western Reserve University

DT Decision Tree

DNN Deep Neural Network

DWT Discrete Wavelet Transform

DL Deep Learning

DAQ Data Acquisition

iii

EV Electric Vehicle

EOL End of Life

FFT Fast Fourier Transform

FNN Feedforward Neural Network

FEM Finite Element Method

FL Fuzzy Logic

GAN Generative Adversarial Network

GUI Graphical User Interface

HMM Hidden Markov Model

HMI Human-Machine Interface

IoT Internet of Things

IM Induction Motor

KNN K-Nearest Neighbors

KF Kalman Filter

LSTM Long Short-Term Memory

LR Logistic Regression

ML Machine Learning

MSE Mean Squared Error

MCSA Motor Current Signature Analysis

NB Naive Bayes

NN Neural Network

PdM Predictive Maintenance

PINNs Physics-Informed Neural Networks

iv

PCA Principal Component Analysis

RF Random Forest

RNN Recurrent Neural Network

RUL Remaining Useful Life

SVM Support Vector Machine

SCADA Supervisory Control and Data Acquisition

STFT Short-Time Fourier Transform

TSC Time Series Classification

VFD Variable Frequency Drive

VC Voting Classifier

v

Contents

List of Tables xii

Introduction 1

1 Introduction 1

1.1 Background . 1

1.2 Research Problem . 3

1.3 Research Objectives . 4

1.4 Significance of Research . 4

1.5 Thesis Outline . 5

2 Literature Review 6

2.1 Introduction to Predictive Maintenance in EVs 6

2.2 Predictive Maintenance for Induction Motors in EV Applications 8

2.3 Recent Advances in Bearing Fault Diagnosis Using the Case Western Reserve

University Dataset . 10

2.4 Research Based on Inter-Turn Short-Circuit Fault Dataset for Induction Motors 11

2.5 Summary of Identified Gaps and Research Contributions 15

3 Theoretical Background 17

3.1 Introduction . 17

3.2 Overview of Induction Motors . 17

3.3 Faults in Induction Motors . 18

3.3.1 Inter-turn Short Circuit Fault . 18

3.3.2 Bearing Failures . 18

3.3.3 Rotor Faults . 19

vi

3.4 Predictive Maintenance for Induction Motors 20

3.4.1 Introduction to Maintenance Methods 20

3.4.1.1 Reactive Maintenance (Run-to-Failure) 20

3.4.1.2 Preventive Maintenance . 20

3.4.1.3 Predictive Maintenance . 21

3.4.2 Data-Driven Fault Diagnosis Methods 21

3.5 Machine Learning in Predictive Maintenance 22

3.5.1 Applications of Machine Learning . 22

3.5.2 Types of Machine Learning . 23

3.5.2.1 Unsupervised Learning . 23

3.5.2.2 Supervised Learning . 23

3.5.2.3 Semi-Supervised Learning 24

3.5.3 Model Generalization . 24

3.5.4 Training the Model . 24

3.5.5 Optimization of the Model . 25

3.5.6 Artificial Neural Networks . 25

3.5.6.1 Activation Functions . 25

3.5.6.2 Network Training . 26

3.5.6.3 Loss Functions . 27

3.5.6.4 Optimization Methods . 28

3.6 Long Short-Term Memory . 29

3.6.1 Types of Gates in LSTM . 29

3.6.2 Structure of LSTM . 30

3.6.3 LSTM for Fault Detection in Induction Motors 30

3.6.3.1 Sequential Data Analysis 30

3.6.3.2 Handling Temporal Dependencies 31

3.7 K-Nearest Neighbors . 31

3.7.1 Algorithm . 31

3.7.2 Advantages . 32

3.7.3 Disadvantages . 32

3.8 Support Vector Machine . 32

3.8.1 Algorithm . 32

vii

3.8.2 Advantages . 33

3.8.3 Disadvantages . 33

3.9 Random Forest . 33

3.9.1 Algorithm . 33

3.9.2 Advantages . 34

3.9.3 Disadvantages . 34

3.10 Decision Tree . 34

3.10.1 Algorithm . 34

3.10.2 Advantages . 35

3.10.3 Disadvantages . 35

3.11 Naive Bayes . 35

3.11.1 Algorithm . 35

3.11.2 Advantages . 36

3.11.3 Disadvantages . 36

3.12 Conclusion . 36

3.13 Physics-Informed Neural Networks . 36

3.13.1 Concept of PINNs . 37

3.13.2 Mathematical Foundation of PINNs 37

3.13.3 Relevance of PINNs to Fault Classification in Induction Motors 38

3.13.3.1 Kirchhoff’s Current Law 38

3.13.3.2 Flux Consistency . 39

3.13.4 Physics-Informed Neural Network Setup for Motor Fault Classification 39

3.13.5 Why ODEs Were Not Used . 40

3.13.6 Conclusion . 40

3.14 Ensemble Methods for Enhanced Fault Detection 40

3.15 Evaluation Metrics . 41

3.15.1 Key Evaluation Metrics . 41

3.16 Conclusion . 42

4 Methodology 43

4.1 Introduction . 43

4.2 Proposed Methodology Overview . 43

4.3 Datasets . 44

viii

4.3.1 CWRU Dataset . 45

4.3.2 Inter-turn Short-Circuit in Induction Motor Dataset 46

4.4 Data Preprocessing . 50

4.4.1 Data Formatting and Labeling . 50

4.4.2 Feature Scaling . 50

4.4.3 Outlier and Missing Value Analysis 50

4.4.4 Feature Selection and Visualization 51

4.4.4.1 Principal Component Analysis 51

4.4.4.2 Feature Importance Analysis 51

4.4.4.3 Classification Report Comparison 52

4.4.4.4 Correlation Analysis . 54

4.5 Model Training . 55

4.5.1 Traditional Machine Learning Models 55

4.5.1.1 K-Nearest Neighbors . 55

4.5.1.2 Random Forest . 56

4.5.1.3 Decision Tree . 56

4.5.1.4 Naive Bayes . 56

4.5.1.5 Support Vector Machine) 57

4.5.2 Performance Metrics . 57

4.5.3 Deep Learning Models . 57

4.5.3.1 Artificial Neural Network 57

ANN for Stator Winding Fault Dataset 58

ANN for CWRU Dataset . 60

4.5.3.2 Long Short-Term Memory 62

LSTM for Stator Winding Fault Dataset 62

LSTM for CWRU Bearing Fault Dataset 64

4.5.4 Physics-Informed Neural Networks 66

4.5.4.1 Architecture Design . 66

4.5.4.2 Physics-Informed Loss Function 67

4.5.4.3 Model Compilation and Training 68

4.5.4.4 Performance Evaluation . 68

4.6 Model Evaluation and Comparison . 69

ix

5 Results and Discussion 70

5.1 Introduction . 70

5.2 Data Preprocessing . 71

5.3 Results for the Stator Winding Fault Dataset 71

5.3.1 K-Nearest Neighbors . 71

5.3.2 Support Vector Machine . 72

5.3.3 Random Forest . 73

5.3.4 Decision Tree . 74

5.3.5 Naïve Bayes . 75

5.3.6 Artificial Neural Networks . 76

5.3.7 Long Short-Term Memory . 79

5.3.8 Voting Classifier . 81

5.3.9 Discussion on Model Performance for Stator Winding Fault Dataset . . 83

5.3.9.1 No-Load Condition . 83

5.3.9.2 Half and Full Load Conditions 85

5.4 Results for PINNs . 86

5.4.1 Performance Analysis and Insights . 87

5.5 Results for the CWRU Dataset . 89

5.5.1 K-Nearest Neighbors . 90

5.5.2 Random Forest . 91

5.5.3 Decision Tree . 92

5.5.4 Naïve Bayes . 93

5.5.5 Support Vector Machine . 94

5.5.6 Artificial Neural Network . 95

5.5.7 Long Short-Term Memory . 96

5.5.8 Voting Classifier . 97

5.5.9 Comparative Evaluation of Classifiers on the CWRU Dataset 98

6 Conclusion and Future Work 101

6.1 Conclusion . 101

6.2 Future Work . 102

6.3 Bibliography . 104

x

A Python Packages Used 116

xi

List of Tables

2.1 Literature review summary with research gaps 12

3.1 Common Activation Functions for Different Problem Types 28

3.2 Sample Confusion Matrix . 41

5.1 Comparison of classifiers accuracy . 83

5.2 Performance of models across load conditions 86

5.3 Performance summary of classifiers on CWRU dataset 99

xii

Chapter 1

Introduction

1.1 Background

Electric vehicles (EVs) are becoming increasingly important as they help reduce carbon

emissions and combat climate change. Unlike traditional vehicles powered by internal

combustion engines, electric vehicles are powered by electric motors, which provide numerous

advantages such as lower greenhouse gas emissions, quieter operation, and reduced fuel

consumption. With growing awareness of environmental issues and the push for cleaner, more

energy-efficient transportation, the demand for EVs is rapidly rising. This trend is supported

by advancements in technology and improvements in charging infrastructure, as illustrated by

the rapid growth in the number of EVs shown in Figure 1.1.

Figure 1.1: Global electric car stock trend 2010-2023 [1].

As the core component of most electric vehicles is the electric motor, which converts

electrical energy into mechanical power to move the vehicle. The induction motor is the most

1

used motor in electric vehicles because it is durable, efficient, and simple in design. Unlike

other motors, it does not require brushes or commutators, which makes it more reliable and

easier to maintain [2]. However, induction motors can experience various types of faults that

impact their performance, including stator winding failures, rotor faults, and bearing issues.

These faults can result in poor motor performance, system inefficiency, or even complete motor

failure if not detected earlier.

One of the most common issues in induction motors is related to the stator windings, which

can experience problems such as insulation breakdown, overheating, or winding short circuits.

These faults can significantly reduce the motor’s efficiency, leading to power loss, overheating,

or even complete failure if not addressed in time. Unlike external components, stator winding

faults are often hidden and may not present noticeable symptoms until substantial damage has

occurred, making early detection crucial [3].Alongside stator faults, bearing issues are another

major concern in induction motors. Bearings support the rotor’s rotation, and their failure

can result in excessive vibration, noise, and a decline in the motor’s performance. Common

bearing faults include wear, lubrication failure, and misalignment, all of which can cause severe

motor damage if not identified promptly. Advanced monitoring and diagnostic techniques are

therefore essential to detect both stator and bearing faults early, ensuring that the motor operates

smoothly, efficiently, and reliably over time.

Traditional methods of maintaining motors, such as reactive maintenance, are not ideal

for handling these types of faults. Reactive maintenance means that repairs are only made

when something breaks down. This approach can be expensive due to unplanned downtime

and emergency repairs. It also risks additional damage to other motor components, leading to

even higher costs. Another common approach is preventive maintenance, where maintenance

is performed regularly based on a set schedule. While this can reduce some issues, it does not

address problems that develop between scheduled checks, and it can also lead to unnecessary

repairs. Thus, both reactive and preventive maintenance have their limitations, and a better

solution is needed to reduce costs and prevent unexpected failures.

One such solution is predictive maintenance (PdM), a strategy that uses data to predict

when a motor is likely to fail. Unlike preventive maintenance, which follows a fixed schedule,

predictive maintenance focuses on real-time data to identify early signs of wear or damage.

Using sensors to monitor things like vibration, and current, predictive maintenance systems can

assess the motor’s health at any moment. This helps to detect problems before they turn into

2

major faults, allowing repairs to be scheduled before a breakdown occurs. This early detection

can save time and money by preventing unexpected repairs and unplanned downtime [4] with

predictive maintenance, the motor’s lifespan is extended, and its performance is optimized.

For predictive maintenance to work effectively, machine learning plays a key role. ML

algorithms can analyze large amounts of data collected by sensors on the motor, looking for

patterns that indicate a potential failure. Algorithms like ANNs, LSTM networks, Random

Forest, SVMs, and KNN detect issues such as stator winding faults or rotor failures using

historical data. Additionally, PINNs incorporate physical laws and motor dynamics into

the learning process, enhancing fault detection accuracy by leveraging domain knowledge.

Ensemble methods, such as voting classifiers, further enhance fault detection by combining

predictions from multiple models to improve accuracy and reliability. This approach reduces

errors, ensures precise monitoring of motor health, and minimizes unexpected failures [5].

The application of machine learning-based predictive maintenance systems offers

significant advantages for electric vehicles. These systems enhance fault detection accuracy,

enabling early identification and resolution of potential issues. By addressing faults promptly,

they help avoid costly repairs, extend the motor’s operational lifespan, and minimize

unexpected downtime. Unlike preventive maintenance, which involves routine checks and

often unnecessary repairs, predictive maintenance relies on real-time data to trigger repairs

only when needed. This approach not only optimizes maintenance schedules but also ensures

the motor operates efficiently and reliably, aligning with the evolving needs of EV technology.

1.2 Research Problem

EVs depend on induction motors for efficient operation, but these motors can experience

faults such as stator winding issues, bearing failures, and rotor problems. Such faults can lead

to unexpected breakdowns, increased maintenance costs, and reduced motor reliability. Early

and accurate fault detection is crucial for preventing operational disruptions and minimizing

maintenance expenses. However, existing research typically addresses specific fault types or

motor models and lacks a comprehensive approach to handle the diverse operational conditions

in real-world EV systems.

This research aims to develop a robust predictive maintenance framework for induction

motors in EVs, leveraging machine learning algorithms to enhance fault detection accuracy

3

and computational efficiency. By using a comprehensive benchmark dataset and analyzing

various operational scenarios, this study will provide a more effective and efficient solution

for maintaining induction motors in industrial and real-world EV applications. The goal is to

improve motor reliability, reduce downtime, and minimize the total cost of ownership for EVs.

1.3 Research Objectives

General Objective

• To develop a predictive maintenance framework for induction motors in EVs to enhance

fault detection, minimize downtime, and improve reliability.

Specific Objectives

• To design a predictive maintenance framework using machine learning for induction

motors in EVs.

• To utilize unexplored ML algorithms for accurate and precise fault predictions.

• To propose computationally efficient customized deep architectures with efficient

unexploited optimizers.

• To verify the scalability of the proposed method through benchmark datasets.

1.4 Significance of Research

The proposed research is significant as it aims to advance predictive maintenance and fault

detection for induction motors in EVs using machine learning. While existing studies have

contributed valuable insights into fault detection, they often focus on specific fault types or

motor models without providing a comprehensive approach.

This research will address these gaps by developing a robust predictive maintenance

framework that integrates various machine learning algorithms, including ANN, LSTM,

PINNs, SVM, KNN, Decision Trees, Random Forest, and Naive Bayes, along with ensemble

techniques like the voting classifier. By using a comprehensive benchmark dataset and detailed

feature engineering, the research aims to enhance fault detection accuracy and reliability,

providing practical solutions that will improve the safety, performance, and maintenance

efficiency of electric vehicles.

4

1.5 Thesis Outline

The thesis is organized as follows:

• Chapter 2 presents the literature review of the proposed study. It highlights the research

gaps in the existing literature, citing multiple studies, and includes a table summarizing

the limitations and objectives of prior models and techniques used in fault detection and

predictive maintenance.

• Chapter 3 provides the theoretical background of the study. It discusses the

fundamentals of 3-phase induction motors, stator winding fault mechanisms, and various

techniques, including PINNs and traditional machine learning models, supported by the

underlying mathematical and physical concepts.

• Chapter 4 describes the methodology of the study. It outlines the dataset preprocessing

steps, feature engineering techniques, and the implementation of various machine

learning models. It also explains the evaluation metrics and experimental setup used

to assess the performance of the proposed approach.

• Chapter 5 presents the results and discussion of the study. It evaluates the performance

of all models, analyzes fault classification results, and discusses the significance of the

findings for predictive maintenance, focusing on enhancing the reliability and efficiency

of 3-phase induction motors.

• Chapter 6 summarizes the study’s key findings, draws conclusions on the effectiveness

of the proposed approach, and suggests potential directions for future research in

predictive maintenance.

5

Chapter 2

Literature Review

Ensuring the reliability and safety of EVs is critical, particularly for components like

motors, inverters, and battery packs. This literature review synthesizes recent advancements

in fault detection and predictive maintenance for these components, highlighting various

methodologies and their contributions to enhancing system performance and reliability.

2.1 Introduction to Predictive Maintenance in EVs

Predictive maintenance is becoming increasingly essential in the management of EVs,

ensuring the longevity and reliability of their critical components such as batteries, electric

motors, and power electronics. As EV adoption continues to grow, there is a pressing need

to develop robust maintenance systems to reduce downtime, increase operational efficiency,

and enhance vehicle performance. By utilizing data analytics, machine learning, and advanced

sensor technologies, predictive maintenance can identify early signs of component degradation,

allowing for proactive interventions.

The study by [6] explores the application of machine learning, specifically SVM, in

combination with Discrete Wavelet Transform (DWT) for fault diagnosis in Brushless DC

(BLDC) motors. This hybrid approach achieved a fault diagnosis accuracy of 98.67%,

outperforming other traditional methods such as KNN with DWT (97.49%), showcasing its

potential for EV motor fault detection.

Additionally, the research presented by [7] discusses a hybrid fault diagnosis approach

using SVM and Naive Bayes classifiers with optimization techniques to detect faults in BLDC

motor drives. This method achieved an impressive accuracy of 98.8%, significantly improving

6

the ability to identify faults such as open and short circuits in EV motors.

As EV technology evolves, monitoring and maintaining battery health has also become a

priority. Murgai et al. [8] address the issue of battery degradation using a Scientific Machine

Learning (SciML) approach, integrating domain knowledge with neural networks to enhance

predictive accuracy. Their model reduces the data requirements for accurate predictions and

forecasts of battery degradation, ultimately extending battery life and optimizing long-term

energy management.

Other techniques like LSTM networks have also been applied to PdM. Zhang et al. [9] used

LSTM networks with vibration monitoring to detect stator faults in BLDC motors, achieving a

high accuracy of 97.10%.

In addition to motor and battery issues, temperature prediction for Permanent Magnet

Synchronous Motors (PMSMs) has also been studied. The study in Energy Conversion and

Management [10] used machine learning methods like random forest and boosting algorithms

to predict motor temperature with minimal sensors, offering a cost-effective solution to improve

system performance.

Machine learning has also been used for broader condition monitoring of electrical

machinery. The research presented by [11] discussed the use of time-series analysis and

Principal Component Analysis (PCA) for feature extraction, leading to improved reliability

and cost savings in machinery maintenance.

For DC motors, [12] combined machine learning with real-time sensor data to enhance fault

detection accuracy and operational efficiency. Similarly, [13] presented a system that combines

machine learning, IoT, and predictive modeling to monitor motor parameters and predict failure

times, offering better maintenance strategies.

Deep learning approaches have also shown promise. The research in Neural Computing

and Applications [14] focused on estimating the Remaining Useful Life (RUL) of BLDC

motors using a recurrent neural network (RNN) with attention mechanisms, providing accurate

predictions for real-time monitoring.

In the public transport sector, [15] applied machine learning and fuzzy logic to real-time

IoT data for predictive maintenance. This approach effectively detected faults, improving safety

and reliability in public vehicles.

Industry 4.0 has further advanced predictive maintenance techniques. Author in [16]

introduced optimization methods like the Jaya algorithm and Sea Lion Optimization to forecast

7

maintenance needs, while [17] combined machine learning and data analytics for real-time

monitoring and early failure detection.

Finally, [18] explored using ANNs, cloud technology, and IoT platforms for fault detection

in BLDC motors. This study improved energy management and early fault detection, enhancing

motor performance.

In conclusion, predictive maintenance is revolutionizing the EV industry by ensuring

the reliability and performance of critical components. With tools like machine learning,

advanced sensors, and innovative diagnostic techniques, PdM is helping EVs become more

efficient, reliable, and cost-effective. By moving from reactive to proactive maintenance, EV

operators can reduce costs, improve safety, and support a future where electric mobility is more

dependable and sustainable.

2.2 Predictive Maintenance for Induction Motors in EV

Applications

The application of predictive maintenance in induction motors for EV systems is

becoming increasingly important due to the need for high reliability, safety, and cost-effective

maintenance. Several studies have focused on using advanced ML techniques to improve

the fault detection and diagnosis process, ultimately enhancing the performance of EVs.

These studies highlight various methods, including feature extraction, fault classification, and

the integration of real-time data, to optimize motor health and minimize downtime in EV

applications.

In study [19], Gundewar, Kane, and Andhare developed a novel method to diagnose

broken rotor bar (BRB) faults in IMs using time-domain grayscale current signal imaging

(TDGCI) combined with a convolutional neural network (CNN). This method eliminates the

need for manual feature extraction by automatically extracting features from 2D grayscale

images generated from 1D current signals. The approach achieved an impressive classification

accuracy of 99.58%, demonstrating its potential for accurate fault detection in EV motor

systems.

The work in [20] focuses on designing a three-phase IM for EV applications and employs

various ML algorithms to diagnose faults under different load conditions. The study considers

fault types like short circuits, high-resistance connections, and open-phase circuits. Algorithms

8

such as Support Vector Machine (SVM), K-Nearest Neighbors (k-NN), Random Forest (RF),

and Deep Learning (DL) were tested, achieving fault detection accuracy levels ranging from

98% to 100%. This work illustrates how ML can be used to enhance the reliability and fault

tolerance of motors in EV applications, ultimately contributing to reduced maintenance costs

and better system performance.

In [21], researchers explored the application of multiple ML models to diagnose rotor

and bearing faults in IMs. The study used vibration data to test various models such as

SVM, Multilayer Neural Networks (MNN), Convolutional Neural Networks (CNN), Gradient

Boosting Machine (GBM), and XGBoost. The results indicated that SVM and CNN achieved

the highest diagnostic accuracy, while XGBoost was the fastest in terms of computation.

These findings show how machine learning can facilitate real-time fault diagnosis in EV motor

systems, allowing for timely interventions and enhanced system reliability.

In their research [22], Turza et al. tested ML models to detect single-phase faults in IMs

under different operational conditions. Their study achieved a high accuracy of 99.9% using

the Random Forest algorithm, demonstrating its robustness in fault detection. This highlights

the capability of ML techniques to detect faults with high precision, which is crucial for

maintaining the operational efficiency of IMs in EVs.

Amit Rai et al. [23] utilized ANN for fault prediction in IMs by analyzing vibration and

current signals under varying rotational speeds. The study found that features such as standard

deviation played a key role in improving prediction accuracy. This approach shows how ANN

can be applied to predict faults and improve the reliability of IMs in EV applications.

In [24], the authors discuss the use of machine learning techniques for PdM in EV systems.

By applying supervised, semi-supervised, and reinforcement learning methods, they were

able to classify various faults, thus enhancing the overall system reliability and minimizing

the likelihood of breakdowns. This approach further supports the case for using predictive

maintenance to extend the lifespan of EV motors and reduce maintenance costs.

Karolina Kudelina et al. [25] presented a comparative analysis of machine learning models

for diagnosing broken rotor bars in IMs. Their study, set within the framework of Industry 4.0,

integrated IoT with physical systems to improve predictive maintenance strategies. Real-world

data from induction machines were used to compare model performance, offering valuable

insights into the development of more effective PdM algorithms.

The study in [26] provides an extensive review of fault detection and diagnosis (FDD)

9

methods in EVs, covering both traditional and emerging data-driven techniques. This review

emphasizes the importance of using machine learning to enhance the safety and reliability of

EV systems, demonstrating how data-driven PdM approaches can significantly improve fault

detection capabilities.

Finally, Mohamed et al. [27] proposed a hybrid ML model for diagnosing faults in IMs

through thermal image analysis. Their study used infrared imaging combined with advanced

feature selection techniques to identify mechanical faults. The model demonstrated high

classification accuracy and sensitivity, showing its potential for broader applications in PdM

and fault detection in EV motors.

These studies collectively highlight the growing role of predictive maintenance in induction

motors for electric vehicles. The integration of machine learning algorithms, real-time data

monitoring, and advanced fault detection methods are proving essential in ensuring motor

reliability, reducing maintenance costs, and optimizing the performance of electric vehicles.

2.3 Recent Advances in Bearing Fault Diagnosis Using the

Case Western Reserve University Dataset

The diagnosis of bearing faults in rotating machinery has been extensively studied using

the Case Western Reserve University (CWRU) dataset, which serves as a benchmark for

validating various approaches. Researchers have explored diverse methods to improve the

accuracy, efficiency, and robustness of fault detection. Yoo et al. [28] introduced a

lightweight CNN model that focuses on dimensionality reduction and low computational

costs. By downsampling vibration signals and converting them into spectrograms, their

model demonstrated high classification accuracy while maintaining efficiency, setting a strong

foundation for further exploration in this domain.

Building upon this foundation, Saghi et al. [29] addressed the limitations of single-scale

CNNs by employing a multi-scale CNN architecture combined with a bidirectional gated

recurrent unit (GRU). This hybrid approach captured both local and global features of vibration

signals, making the model resilient even in noisy conditions.

Further advancing the field, Huang et al. [30] introduced a Wide Deep Convolutional Neural

Network (WDCNN) with Squeeze-and-Excitation (SE) mechanisms, which significantly

improved feature learning and diagnostic precision, achieving an accuracy of 99% on the

10

CWRU dataset. Complementary approaches by Bórnea et al. [31] utilized the Hilbert-Huang

Transform for feature extraction and applied machine learning algorithms like Random Forest

and KNN for classification. Their study emphasized the importance of balanced datasets and

effective feature selection for accurate fault detection. Finally, Sawai et al. [32] demonstrated

the potential of ensemble learning, combining RF, SVM, and ANN as base models with

a gradient boosting classifier. This method achieved a commendable accuracy of 97.7%,

showcasing the advantages of leveraging multiple classifiers to enhance diagnostic reliability.

These studies collectively highlight the evolution of fault diagnosis techniques, from

lightweight CNN models to advanced hybrid and ensemble approaches. The integration of

traditional signal processing methods with deep learning has proven particularly effective,

making these techniques highly applicable in industrial scenarios where accurate and robust

fault detection is critical.

2.4 Research Based on Inter-Turn Short-Circuit Fault

Dataset for Induction Motors

Afriyie [33] explored predictive maintenance for three-phase induction motors, focusing on

inter-turn short circuit fault detection and prediction. The study utilized stator current data and

MATLAB’s predictive maintenance toolbox to develop classification models. SVM and KNN

algorithms were compared under varying load conditions (no-load, half-load, and full-load).

SVM was identified as more effective in consistently detecting and predicting faults across

different load scenarios.

The literature review is summarized in the following table.

11

Table 2.1: Literature review summary with research gaps

Year ML Models

Used

Dataset Description Research Gap

2020 LSTM Vibration

monitoring data

and fault conditions

for BLDC motors

Applies advanced

vibration monitoring

systems and LSTM

networks for stator

fault classification in

BLDC motors.

Limited studies

on integrating

LSTM with

real-time monitoring

systems in industrial

applications.

2020 Attention-based

Neural

Network

Voltage degradation

data and fault

conditions for

electric motors

Utilizes an

attention-based neural

network to estimate the

remaining useful life of

electric motors.

Further exploration

needed on

generalization

across different

motor types.

2022 KNN,

Random

Forest

Data for public

transportation

vehicles

Explores predictive

maintenance based

on ML for public

transportation vehicles.

Lacks application in

electric vehicle

components

specifically.

2022 Hybrid ML

Models

Fault diagnosis data

for BLDC drives

Investigates hybrid

machine learning

models for fault

diagnosis in BLDC

drives.

Few studies

have assessed

hybrid models’

performance

in real-time

applications.

2023 SVM, k-NN,

MLP, RF, DT,

GB, XGBoost,

DL

Simulation data for

healthy and faulty

conditions

Focuses on fault

diagnosis for a 5HP

induction motor in EVs

under variable loads,

achieving 98-100%

accuracy.

Need for

comprehensive

testing in real-world

operational

conditions.

12

Year ML Models

Used

Dataset Description Research Gap

2023 KNN,

Random

Forest

Data for DC motor

fault detection

Develops a predictive

maintenance algorithm

for fault detection and

classification in DC

motors.

More research is

needed on feature

selection techniques

to improve model

accuracy.

2023 Random

Forest

Healthy and faulty

motor data using

d-axis and q-axis

conversions

Achieved a 99.9% fault

diagnosis accuracy by

focusing on operational

modes of IMs and

statistical features like

mean and standard

deviation.

Application of

these techniques

to other types of

motors remains

underexplored.

2023 Various

classifiers

Thermal image data

for motor faults

Proposes a machine

learning model for

diagnosing induction

motor defects through

thermal image analysis,

classifying multiple

fault types.

Exploration of

multi-sensor data

integration for

enhanced fault

diagnosis is limited.

2023 Back

Propagation

Neural

Network

Magnetic leakage

flux data for fault

conditions

Analyzes inter-turn

short-circuit faults

in electric motors,

achieving 88.1%

accuracy with BPNN.

More robust models

are needed for better

fault prediction

under varying load

conditions.

13

Year ML Models

Used

Dataset Description Research Gap

2023 Comparative

ML Models

Real data from

induction machines

Presents a signal

spectrum-based

approach for predictive

maintenance in

induction machines,

with model validation

on real data.

Need for

comparative studies

on the efficacy of

different models in

industrial settings.

2023 CNN Grayscale current

signal images of

rotor conditions

Achieves 99.58%

accuracy in fault

classification of IM

using CNN on 2D

grayscale images from

TDGCI, surpassing

traditional methods.

Limited exploration

of CNN in diverse

operational

environments of

electric motors.

2023 LSTM IoT-integrated

industrial machine

data

Focuses on predictive

maintenance of

industrial machines

using ML and IoT data.

More studies are

needed on the

effectiveness of

LSTM in real-world

conditions.

2023 Decision tree,

RF, KNN

EV battery

maintenance data

Explores ML

approaches for battery

maintenance prediction

in EVs.

Lack of

comprehensive

studies on

integrating battery

health with overall

vehicle diagnostics.

2024 SVM,

XGBoost,

Linear &

Polynomial

Regression

Temperature and

motor specifications

for EVs

Presents ML models for

temperature prediction

in EVs, using features

like ambient and

coolant temperatures.

Limited research

on multi-parameter

predictive models

for EVs under

varying conditions.

14

Year ML Models

Used

Dataset Description Research Gap

2024 ANN, SVM,

DT, RF

Motor drive and

battery system data

for EVs

Discusses fault

detection and diagnosis

in EV motor drives and

battery systems using

various ML algorithms.

Exploration

of combined

methodologies for

enhanced accuracy

in fault detection is

required.

2024 RF, SVM,

KNN, DT,

Naive Bayes,

Voting

EV data with

multiple fault types

and conditions

Focuses on fault

detection and

classification in EVs

using a variety of ML

models.

Future work

needed on model

interpretability and

explainability for

practitioners.

2024 ANN Vibration and

current signals at

multiple rotational

speeds

Uses ANN for fault

prediction in IM, with

high accuracy in using

standard deviation as a

key statistical feature.

Investigation

into real-time

implementation of

ANN for predictive

maintenance in

industrial settings is

lacking.

2.5 Summary of Identified Gaps and Research

Contributions

Despite significant progress in the field of electric motor fault diagnosis, existing literature

reveals several limitations. Many studies focus on diagnosing specific fault types, often

neglecting a unified approach for comprehensive fault classification. Additionally, the use

of advanced or hybrid deep learning models such as LSTM and Physics-Informed Neural

Networks (PINNs) remains limited, especially for electromechanical fault prediction in

induction motors. Furthermore, most prior works rely solely on either current or vibration

signals, reducing diagnostic robustness. A notable gap is the absence of physics-based learning

15

frameworks that embed motor dynamics directly into model training. Also, many existing

approaches are tailored to non-induction motors, making them less applicable to industrial

three-phase induction motor systems.

To address these challenges, this study proposes an integrated fault diagnosis framework

that combines both vibration and current signals. Covers two types of critical faults, bearing

faults and short-circuit faults in the stator winding, under various load conditions. Multiple

traditional machine learning models and deep learning models including LSTM and PINNs are

employed and compared. Most importantly, the study introduces PINNs into the predictive

maintenance domain, offering improved fault classification by incorporating motor physics

into the learning process. This comprehensive approach enhances diagnostic accuracy, model

robustness, and practical applicability for industrial use cases.

16

Chapter 3

Theoretical Background

3.1 Introduction

This chapter presents the theoretical foundation for understanding the various concepts

central to the development of a predictive maintenance framework for induction motors in

EVs. The chapter explores the working principle of induction motors, common fault types,

and maintenance strategies. Additionally, it delves into the application of machine learning

techniques for fault detection and predictive maintenance, with a focus on machine learning

algorithms, feature engineering, and deep learning models [34]. Predictive maintenance,

particularly in the context of induction motors used in EVs, has emerged as an effective strategy

to optimize motor performance and reduce operational downtime [35].

3.2 Overview of Induction Motors

Induction motors are widely used in EVs due to their robustness, high efficiency, and simple

construction. Unlike other types of electric motors, induction motors do not require brushes or

commutators, which reduces mechanical complexity and enhances reliability. In an induction

motor, alternating current (AC) supplied to the stator generates a rotating magnetic field that

induces a current in the rotor. This interaction between the stator and rotor produces mechanical

torque, which drives the vehicle’s wheels [36].

The motor consists of several key components that work together to ensure its operation.

The stator, which is the stationary part of the motor, is responsible for creating the magnetic

field that drives the motor. The rotor, on the other hand, is the rotating component that interacts

17

with the magnetic field generated by the stator, producing the mechanical torque required for

operation. Additionally, bearings play a crucial role by supporting the rotor and minimizing

friction during its rotation, ensuring smooth and efficient functioning of the motor. The type of

induction motor is derived from the type of rotor used. Hence, an induction motor can be either

a squirrel-cage or wound type[37]. Figure 3.1 shows the schematic drawing of an induction

motor, illustrating these components [38].

Figure 3.1: A schematic representation of an induction motor

This simple yet efficient design is why induction motors are commonly used in EVs for

propulsion [39].

3.3 Faults in Induction Motors

Induction motors are susceptible to severe failures if faults are not identified at an early

stage. These faults can be categorized as electrical, mechanical, or environmental and may

occur both internally and externally. Some common faults in induction motors include

inter-turn short circuits in stator windings, bearing defects, end ring failures, and broken rotor

bars[38].

3.3.1 Inter-turn Short Circuit Fault

This fault occurs when the insulation between conductors at different potentials within the

same slot is compromised, leading to unintended current flow [40].

3.3.2 Bearing Failures

Bearing failures are categorized into two types:

18

• Single Point Fault: Caused by motor overloading, which leads to a fatigue crack on the

bearing surface.

• Generalized Roughness Fault: This fault arises due to the deformation of the bearing

surface, often resulting from insufficient lubrication or misalignment [41].

3.3.3 Rotor Faults

Rotor faults encompass a range of issues, including:

• Broken Rotor Bars: This occurs due to thermal stress, fatigue, or manufacturing defects.

Broken rotor bars can lead to reduced torque, excessive heating, and vibrations.

• End Ring Faults: These faults are associated with the end rings connecting the rotor

bars, caused by thermal or mechanical stress, leading to reduced motor efficiency and

abnormal vibrations [42].

Studies by the Electric Power Research Institute (EPRI) reveal that bearing failures are

responsible for 42% of induction motor faults. Inter-turn short circuits of the stator windings

account for 31%, while rotor-related faults, including end ring failures and broken rotor bars,

comprise 9% of reported cases [43].

The classification of these faults is illustrated in Figure 3.2, which provides a visual

representation of the various types of faults in an induction motor [38].

Figure 3.2: Classification of Faults in Induction Motors

Early detection of these faults is crucial for maintaining the motor’s efficiency and

reliability, as undetected faults can cause progressive damage leading to unplanned downtime

19

and expensive repairs [44].

3.4 Predictive Maintenance for Induction Motors

Predictive maintenance is a data-driven approach that aims to predict equipment failures

before they occur, minimizing downtime and costs. For induction motors, which are vital

in industrial operations, PdM uses sensors and analytics to monitor performance and detect

early signs of wear or faults. This method bridges the gap between reactive and preventive

maintenance, offering a more efficient and cost-effective solution. This section will explore the

foundational concepts of maintenance methods and their evolution toward predictive strategies.

3.4.1 Introduction to Maintenance Methods

Maintenance is an essential aspect of ensuring the reliability, performance, and operational

efficiency of induction motors. It can be broadly categorized into three methodologies: reactive

maintenance, preventive maintenance, and predictive maintenance [45–47].

3.4.1.1 Reactive Maintenance (Run-to-Failure)

This approach involves repairing or replacing equipment after it has failed. Although

simple, reactive maintenance is costly due to unplanned downtime and potential damage to

surrounding systems. See Figure 3.3 for an illustration of this approach [48].

Figure 3.3: Reactive maintenance

3.4.1.2 Preventive Maintenance

This method involves routine inspections and maintenance at scheduled intervals to prevent

failure. While preventive maintenance improves reliability compared to reactive methods, it

20

can result in unnecessary repairs and associated costs . An overview of this approach is shown

in Figure 3.4 [48].

Figure 3.4: Preventive maintenance

3.4.1.3 Predictive Maintenance

Predictive maintenance leverages sensor data and advanced analytical methods to predict

when equipment is likely to fail. By identifying potential issues early, PdM optimizes

maintenance schedules, minimizes downtime, and reduces repair costs . This concept is

illustrated in Figure 3.5 [48].

Figure 3.5: Predictive maintenance

Predictive maintenance, which is the focus of this study, uses a combination of sensor data

and machine learning models to identify and classify faults before they escalate into significant

failures. A comparison of different maintenance strategies is shown in Figure 3.6 [49].

3.4.2 Data-Driven Fault Diagnosis Methods

Modern predictive maintenance strategies often employ data-driven fault diagnosis methods

to achieve high accuracy and reliability. These methods rely on sensor data which is analyzed

using machine learning and deep learning models [50].

21

Figure 3.6: Maintenance Strategies

3.5 Machine Learning in Predictive Maintenance

Machine learning is a branch of artificial intelligence that focuses on algorithms capable

of automatically identifying patterns in input data. These patterns enable the system to make

informed predictions on future data [49, 51]. In contrast to traditional programming, where

rules are explicitly defined by the developer, machine learning models learn to identify patterns

and relationships from data, deriving rules based on past iterations and outcomes (see Figure

3.7 [49, 52]).

Figure 3.7: Machine Learning Paradigm

3.5.1 Applications of Machine Learning

Machine learning algorithms are especially useful for tasks that are challenging for

conventional programming approaches, such as:

• Classification

22

• Regression

• Machine Translation

• Anomaly Detection

These algorithms are generally categorized into three major types: unsupervised learning,

supervised learning, and semi-supervised learning, depending on the nature of the available

data [49].

3.5.2 Types of Machine Learning

Machine learning can be broadly categorized into different types based on the nature of

data and learning processes. Each type has unique characteristics and is suited for specific

applications. The primary types include supervised learning, unsupervised learning, and

semi-supervised learning [49].

3.5.2.1 Unsupervised Learning

Unsupervised learning deals with data that is unlabeled, meaning there is no explicit

mapping from inputs x to outputs y, with the dataset being represented as {xi}N
i=1. The primary

aim of unsupervised learning is to explore the data’s underlying probability distribution and

uncover patterns or structures within it [49]. This approach is most used for clustering tasks,

where the goal is to group data based on shared characteristics and identify latent factors

inherent in the dataset [53].

3.5.2.2 Supervised Learning

In contrast, supervised learning relies on labeled data, where each input x is associated with

a corresponding output y (also referred to as the target), as represented by {(xi,yi)}N
i=1. The

goal here is for the model to learn how to predict the output y from unseen inputs x in the future

[54]. Supervised learning problems are further divided into two categories:

• Classification: The model learns to map inputs x to discrete output classes y ∈

{1,2, . . . ,C} where C represents the number of classes. If there are only two possible

classes, it’s termed binary classification, while multi-class classification applies when

there are more than two classes[49].

23

• Regression: The model maps inputs x to continuous, real-valued outputs y ∈ R.

3.5.2.3 Semi-Supervised Learning

Semi-supervised learning strikes a balance between supervised and unsupervised learning

by using a mix of labeled and unlabeled data. This method is particularly useful when only a

small portion of the data is labeled, and the rest remains unlabeled. Semi-supervised models use

both types of data to predict y from x, effectively combining the strengths of both unsupervised

and supervised approaches [49, 54].

3.5.3 Model Generalization

The primary goal of machine learning models is to generalize effectively to new, unseen

data, a capability referred to as the model’s capacity. If a model performs poorly on both

training and unseen data, it is considered to be underfitting. Conversely, if it excels on training

data but struggles with new data, it is said to be overfitting. Achieving an optimal balance

between underfitting and overfitting is crucial for ensuring both accurate predictions and strong

generalization. This concept is visually summarized in Figure 3.8 [49], which illustrates the

trade-off between underfitting and overfitting in model generalization.

Figure 3.8: Model Generalization.

3.5.4 Training the Model

For a machine learning model to generalize well, it must undergo a training process. During

training, the model’s predictions ŷ are compared with the actual values y, and the prediction

error is calculated. The model then learns and improves by minimizing this error. The error is

24

typically quantified using a loss function, and various loss functions are available, each focusing

on different aspects of model performance[49].

3.5.5 Optimization of the Model

The process of adjusting the model to minimize the prediction error is known as the

optimization algorithm . The choice of loss function and optimization method, along with

their respective internal parameters, directly influences the model’s performance [49].

In predictive maintenance, machine learning algorithms are applied to analyze sensor data

and detect faults early, preventing failures and reducing downtime. Various machine learning

techniques have shown promise in the field of predictive maintenance. These techniques

include ANNs, LSTM networks, KNN, and SVM. Below, we explore these techniques.

3.5.6 Artificial Neural Networks

ANNs are computational models inspired by the structure and function of the human brain.

They consist of interconnected processing units, known as neurons, which apply nonlinear

transformations (activation functions) to input data, referred to as features. Each feature is

assigned a weighted value that reflects its significance in the learning process.

Deep Learning, a specialized branch of Machine Learning, extends ANNs by incorporating

multiple hidden layers. This allows the model to recognize complex patterns and extract

meaningful insights from data. It leverages hierarchical representation learning, where deeper

layers progressively capture more abstract features, enhancing the model’s ability to generalize

and make accurate predictions [55].

3.5.6.1 Activation Functions

Activation functions are essential in determining how input data is transformed and the

corresponding output is generated. Different types of activation functions are used based on

the specific application [56]. While hidden layers in a neural network typically utilize a single

activation function, the output layer often employs a distinct function suited to the given task

or prediction [57].Hidden layers, positioned between the input and output layers, pass their

processed outputs to subsequent layers [49]. While Artificial Neural Networks (ANNs) can

have zero or more hidden layers, deep neural networks generally consist of at least three hidden

25

layers [58]. Below are some commonly used activation functions:

• Linear Function: The simplest form of activation function, scaling the input x by a

constant c (Equation 3.1) [59].

f (x) = c · x (3.1)

• ReLU (Rectified Linear Unit): This function outputs 0 for negative values and retains

positive values unchanged, without any upper bound equation 3.2. ReLU is widely used

due to its efficiency across various applications [60].

f (x) = max(0,x) (3.2)

• Softmax Function: Produces probability values for target labels, ensuring that all

probabilities sum to 1 equation 3.3 [61].

f (xi) =
exi

∑
N
j=1 ex j

(3.3)

• Sigmoid Function: A nonlinear function that maps inputs to a range between 0 and 1,

making it effective for classification tasks equation 3.4 [62].

f (x) =
1

1+ e−x (3.4)

• Tanh Function: Similar to the sigmoid function but maps inputs to a range between -1

and 1 equation 3.5 [63].

f (x) = tanh(x) (3.5)

3.5.6.2 Network Training

Deep learning models improve their predictions through a process known as gradient

descent. This iterative optimization method adjusts model parameters to minimize a predefined

loss function . The initial weights are typically set randomly, and gradient descent computes the

derivative of the loss function with respect to the weights in each layer [64]. These weights are

then updated iteratively to reduce the error, following the process of backpropagation Figure

3.9 [49].

26

Figure 3.9: Gradient Descent

The success of the training process depends on several hyperparameters, such as the

learning rate and batch size. The learning rate determines the step size for weight updates.

A small learning rate slows convergence, while a large learning rate risks overshooting the

minimum and failing to converge. The batch size refers to the number of training samples used

for updating weights. Small batch sizes improve accuracy but increase computational cost,

whereas large batches are less computationally intensive but may sacrifice accuracy [65].

Training and evaluating a model typically involves splitting the dataset into subsets for

training, validation, and testing. The training set is used for learning, the validation set

assists in hyperparameter tuning, and the test set evaluates final model performance. K-fold

cross-validation is a popular method where the dataset is divided into k subsets, and the model

is trained k times, each time using a different subset for validation [49, 66].

3.5.6.3 Loss Functions

Loss functions quantify how well a model performs by measuring the error between

predicted and actual values. The goal of training is to minimize the loss function, as lower

errors indicate better model performance [49, 67]. Common loss functions include:

• Mean Absolute Error (MAE): Measures the average absolute difference between

predicted values ŷi and actual values yi, treating deviations equally (Equation 3.6). MAE

is not sensitive to outliers [68].

MAE =
1
N

N

∑
i=1

|yi − ŷi| (3.6)

27

• Mean Squared Error (MSE): Calculates the mean of squared differences between

predicted and actual values. It penalizes larger deviations more heavily due to squaring

(Equation 3.7) [69].

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (3.7)

• Categorical Cross-Entropy: Categorical Cross-Entropy is a loss function commonly

used for multi-class classification tasks, where the model assigns a single label from

multiple possible classes. It measures the discrepancy between the predicted probability

distribution and the actual class labels, guiding the model to improve its predictions

(Equation 3.8) [70].

CCE =−
N

∑
i=1

yi log(ŷi) (3.8)

• Binary Cross-Entropy: Applicable to binary or multi-label classification tasks,

selecting one label out of two options for each attribute (Equation 3.9) [71].

BCE =−
N

∑
i=1

[yi log(ŷi)+(1− yi) log(1− ŷi)] (3.9)

Selecting the appropriate activation function for the output layer is critical to ensure

compatibility with the loss function. Table 3.1 outlines common combinations for different

problem types [49].

Problem Type Activation Function
Regression Linear

Binary Classification Sigmoid
Multi-Class Classification Softmax

Table 3.1: Common Activation Functions for Different Problem Types

3.5.6.4 Optimization Methods

Optimizing model weights involves using algorithms that minimize the loss function.

These algorithms vary in how they update weights, incorporating techniques like momentum

(considering previous updates) and learning rate decay (reducing the learning rate over time).

Common optimization methods include:

• Stochastic Gradient Descent (SGD): Updates model weights using either a single data

sample per iteration (true SGD) or a small subset of samples (mini-batch SGD). True

28

SGD introduces more noise but can help escape local minima, while mini-batch SGD

balances computational efficiency and convergence stability [72].

• Adagrad: Adapts the learning rate based on gradient information for each parameter,

allowing better handling of sparse data [63].

• RMSProp: Maintains a moving average of squared gradients to normalize parameter

updates, stabilizing training on noisy datasets [64].

These optimizers, along with appropriate hyperparameters, play a key role in effective

model training[37].

3.6 Long Short-Term Memory

LSTM is a specialized type of Recurrent Neural Network (RNN) developed to overcome

limitations of traditional RNNs, particularly the vanishing gradient problem. LSTMs are

designed to retain long-term dependencies in sequential data, making them well-suited for

applications such as time series analysis, speech recognition, and language modeling. Unlike

feed-forward neural networks, LSTMs incorporate feedback loops, enabling them to process

sequential information effectively. Their architecture includes memory cells and gating

mechanisms that regulate information flow, determining what should be retained or discarded

at each time step. This selective memory capability allows LSTMs to focus on relevant data

while mitigating the challenges faced by standard RNNs.

LSTMs are extensively used in various domains, including time series forecasting, speech

recognition, natural language processing, video analysis, and healthcare. In predictive

maintenance, they analyze sensor data over time to detect anomalies and predict potential

faults in industrial machinery, such as pumps, motors, and turbines. This early fault detection

capability helps prevent failures, reduces maintenance costs, and minimizes downtime,

ultimately improving operational efficiency [73].

3.6.1 Types of Gates in LSTM

An LSTM contains three primary gates:input gate, forget gate, and output gate that control

the flow of information into and out of the memory cell.

29

The input gate regulates the incorporation of new information into the memory cell. By

analyzing both the current input and the previous hidden state, it determines which data should

be retained for future processing, ensuring that only relevant information is stored. The

forget gate decides what information should be discarded, removing unnecessary data from

the memory to maintain efficiency. The output gate manages the flow of information from the

memory cell to the output of the LSTM, selecting which parts of the stored information should

be passed on to the next layer or time step.

All three gates are activated using sigmoid functions, which output values between 0 and 1.

These gates are trained through backpropagation, allowing the network to learn when to open

or close them based on the input and the hidden state [73].

3.6.2 Structure of LSTM

An LSTM network is composed of multiple LSTM cells, each equipped with three key

gates: the input gate, forget gate, and output gate. These gates regulate the flow of information,

allowing the network to selectively retain or discard data at each time step, which helps in

capturing long-term dependencies in sequential data.

At the core of each LSTM cell is a memory cell that stores information from previous time

steps, influencing the current output. This memory mechanism enables LSTMs to effectively

process sequential information over extended periods. The output from each LSTM cell is

passed to the next, facilitating continuous learning and analysis across multiple time steps [73].

Due to their ability to remember and selectively forget information, LSTMs are widely used

in tasks such as time series forecasting, language modeling, and sequential data prediction [73].

3.6.3 LSTM for Fault Detection in Induction Motors

3.6.3.1 Sequential Data Analysis

Motor data, such as vibration signals and current readings, is often collected over time. This

makes the problem inherently sequential, where the state of the motor at a given time depends

on its previous states. LSTM is specifically designed to capture long-term dependencies in

sequential data, which makes it well-suited for time series data from motors.

30

Figure 3.10: Structure of LSTM

3.6.3.2 Handling Temporal Dependencies

Faults in induction motors may not manifest immediately but develop over time. For

example, a winding short circuit fault could cause gradual changes in the motor’s current or

vibration pattern. LSTM can learn these temporal dependencies and identify patterns that

indicate the onset of a fault, even if the fault is subtle at first.

3.7 K-Nearest Neighbors

KNN is a simple, instance-based learning algorithm used for both classification and

regression tasks. It operates on the principle of proximity or similarity in the feature space.

The basic idea behind KNN is that a data point is classified based on the majority class of its

neighbors in the feature space [74].

3.7.1 Algorithm

• Choose the number of neighbors (K): Select the number of nearest neighbors (K) you

want to use for making the prediction.

• Distance metric: Calculate the distance between the input data point and the points

in the training set. Common distance metrics are Euclidean, Manhattan, or Minkowski

distance.

• Vote: For classification, the data point is assigned to the class that most of its K nearest

31

neighbors belong to. For regression, the average of the K nearest neighbors’ values is

taken.

3.7.2 Advantages

• Simple to implement.

• Non-parametric: does not make any assumptions about the underlying data distribution.

• Effective for smaller datasets with fewer dimensions.

3.7.3 Disadvantages

• Computationally expensive as the dataset grows.

• Sensitive to noisy data and irrelevant features.

• Poor performance on high-dimensional data (curse of dimensionality).

3.8 Support Vector Machine

SVM is a supervised machine learning model used primarily for classification tasks but

can also be used for regression. SVM works by finding the hyperplane that best separates the

classes in the feature space. The goal is to find a decision boundary that maximizes the margin

between the two classes [75].

3.8.1 Algorithm

• Linear vs. Non-Linear: For datasets that are linearly separable, SVM identify the

optimal hyperplane that maximizes the margin between different classes, ensuring better

generalization. However, when dealing with non-linearly separable data, SVM applies

kernel functions — such as the radial basis function (RBF) or polynomial kernel — to

transform the data into a higher-dimensional space where a linear separation becomes

possible. This technique enables SVM to effectively classify complex patterns that

cannot be separated in the original input space.

32

• Maximizing the Margin: The margin is the distance between the closest points from

each class (called support vectors) and the decision boundary.

• Optimization: The SVM model minimizes a cost function while ensuring that the

margin between the classes is maximized.

3.8.2 Advantages

• Effective in high-dimensional spaces.

• Works well for both linearly and non-linearly separable data.

• Robust against overfitting in high-dimensional spaces.

3.8.3 Disadvantages

• Computationally expensive, especially with large datasets.

• Requires careful selection of the kernel function and regularization parameters.

• Sensitive to noise and outliers in the data.

3.9 Random Forest

Random Forest is an ensemble learning technique that builds multiple decision trees and

combines their predictions. It is a bagging algorithm that reduces overfitting and increases the

model’s accuracy by averaging the predictions of several trees, each built using random subsets

of the data [76].

3.9.1 Algorithm

• Bootstrap Sampling: Create multiple bootstrap samples (random subsets with

replacement) from the training data.

• Build Decision Trees: Build a decision tree for each sample. When making a split in the

tree, instead of considering all features, only a random subset of features is used.

33

• Combine Predictions: For classification tasks, the final prediction is based on the

majority vote from all the trees. For regression tasks, the average of the predictions

from all the trees is used.

3.9.2 Advantages

• High accuracy and robust to overfitting.

• Can handle both classification and regression tasks.

• Handles missing values and large datasets well.

• Easy to interpret with feature importance metrics.

3.9.3 Disadvantages

• Can be computationally expensive for large datasets.

• Models can become large and difficult to interpret.

• Less effective when the relationship between features is weak.

3.10 Decision Tree

A Decision Tree is a supervised learning algorithm used for classification and regression.

It works by splitting the data into subsets based on the most significant feature at each node,

creating a tree-like structure of decisions [77].

3.10.1 Algorithm

• Splitting: Start at the root node and recursively split the data based on the feature that

provides the best split (using criteria like Gini impurity, entropy, or variance).

• Stopping Criteria: Stop when a stopping criterion is met (e.g., when all data points in a

node belong to the same class or when the tree reaches a specified depth).

• Prediction: For classification, the majority class in a leaf node is used for prediction.

For regression, the mean value of the target variable is used.

34

3.10.2 Advantages

• Simple to understand and interpret.

• Supports both numerical and categorical data.

• Does not require feature scaling.

• Effectively manages missing data.

3.10.3 Disadvantages

• Susceptible to overfitting, particularly with deep trees.

• Sensitive to noise and outliers in the dataset.

• Unstable: minor variations in the data can result in significant changes to the tree

structure.

3.11 Naive Bayes

Naïve Bayes is a probabilistic classification algorithm based on Bayes’ Theorem, operating

under the assumption that features are conditionally independent given the class label. It is

especially efficient for high-dimensional datasets and is commonly applied in text classification

tasks [78].

3.11.1 Algorithm

• Bayes’ Theorem: It determines the probability of each class based on the given input

features and assigns the class with the highest likelihood.

• Independence Assumption: Assumes that each feature contributes independently to the

class probability, which simplifies the computation.

• Prediction: For a given input, the class with the highest posterior probability is chosen

as the predicted class.

35

3.11.2 Advantages

• Simple and fast, with a low computational cost.

• Works well with high-dimensional datasets (e.g., text classification).

• Requires fewer training data and is less prone to overfitting.

3.11.3 Disadvantages

• The independence assumption is often unrealistic, leading to poor performance if features

are correlated.

• Not suitable for regression tasks or continuous target variables.

3.12 Conclusion

In this section, we have reviewed a variety of machine learning classifiers that are

commonly applied to predictive maintenance tasks. Each classifier has its strengths and

weaknesses, making them suitable for different types of data and problem settings. KNN is

simple and effective for small datasets, while SVM work well in high-dimensional spaces.

Random Forest and Decision Trees provide interpretability and robustness, and Naive Bayes

excels with high-dimensional data. Artificial ANNs and LSTM networks are especially

powerful for learning complex patterns, with LSTMs being particularly suitable for time-series

data. Understanding these classifiers’ principles will provide a foundation for their application

in predictive maintenance in later chapters.

3.13 Physics-Informed Neural Networks

PINNs are a type of deep learning model that embed physical laws into the training process.

Unlike conventional neural networks that rely solely on data to identify patterns, PINNs

incorporate the governing equations of a system into their learning framework. This approach

ensures adherence to established physical principles, enhances generalization, and reduces the

dependence on large labeled datasets. PINNs are especially beneficial in scenarios where data is

36

scarce but the governing physics is well-defined, making them valuable in scientific computing,

engineering, and other fields involving physical systems [79, 80].

3.13.1 Concept of PINNs

The key benefit of PINNs is their ability to incorporate physical laws directly into the loss

function during training. Unlike traditional neural networks that focus solely on minimizing

the error between predictions and actual data, PINNs introduce an additional loss term that

penalizes deviations from governing physical equations. This approach ensures that the model’s

predictions not only align with the data but also comply with established physical constraints

[81].

A standard PINN setup combines two loss terms:

• Data Loss (L_data): This term ensures the neural network predictions match the

available labeled data.

• Physics Loss (L_physics): This term penalizes deviations from the governing physical

equations, which could be partial differential equations (PDEs), ordinary differential

equations (ODEs), or algebraic constraints.

The total loss function is the sum of the data loss and the physics loss:

Ltotal = Ldata +λLphysics (3.10)

where λ is a hyperparameter that controls the balance between fitting the data and satisfying

the physics [82].

3.13.2 Mathematical Foundation of PINNs

The mathematical foundation of PINNs is based on the idea of integrating the system’s

governing equations into the loss function. These equations are often expressed as differential

equations. For example, in fluid dynamics, the system might be governed by partial differential

equations (PDEs) like the Navier-Stokes equations. For a general PDE, the governing equation

can be expressed as:

N(u(x, t)) = f (x, t) (3.11)

37

where:

• N is a differential operator (such as a gradient or divergence),

• u(x, t) is the solution of the equation (e.g., temperature, velocity),

• f (x, t) is the forcing term (external inputs or sources).

In the case of PINNs, the neural network u(x, t) approximates the solution of the equation,

and the physics loss is the residual of the equation:

Lphysics = ∥N(u(x, t))− f (x, t)∥ (3.12)

The network is trained to minimize this residual, which ensures that the predictions of the

model satisfy the physical equations [83, 84].

3.13.3 Relevance of PINNs to Fault Classification in Induction Motors

In the context of fault classification task for a 3-phase induction motor, PINNs are leveraged

to incorporate motor physics using algebraic equations rather than complex differential

equations. These algebraic equations represent steady-state conditions that govern the behavior

of the motor. Below is the mathematical framework that we use for the model:

3.13.3.1 Kirchhoff’s Current Law

Kirchhoff’s Current Law states that the sum of currents entering a junction equals the sum

of currents leaving the junction. For a 3-phase motor, this can be expressed as:

I1 + I2 + I3 = 0 (3.13)

where I1, I2, and I3 are the currents in the three-phase windings of the induction motor. This

equation ensures that the current balance is maintained in the motor, which is an important

physical constraint when classifying faults.

38

3.13.3.2 Flux Consistency

The flux in an induction motor is related to the currents in the windings. The flux φ can be

considered a function of the currents in the three windings:

φ = f (I1, I2, I3) (3.14)

This equation ensures that the total flux generated in the motor is consistent with the currents

in the windings.

3.13.4 Physics-Informed Neural Network Setup for Motor Fault

Classification

In our case, the fault classification of the induction motor involves using measured features

like current and flux. The governing equations for motor physics, including KCL and flux

consistency, are used to regularize the model’s learning process. The model’s output is the fault

classification, which is constrained by these physical laws. Hence, the total loss function in the

PINN is:

Ltotal = Lclassification +λ1Limbalance +λ2Lflux (3.15)

where:

• Lclassification is the traditional classification loss term (e.g., cross-entropy loss) that

minimizes the difference between predicted and actual fault classes.

• Limbalance is the term that penalizes violations of Kirchhoff’s Current Law:

Limbalance = ∥I1 + I2 + I3∥2 (3.16)

• Lflux is the term that penalizes inconsistencies in the flux equation:

Lflux = ∥φ − f (I1, I2, I3)∥2 (3.17)

The terms Limbalance and Lflux ensure that the predicted currents and flux are consistent with

the motor’s physical behavior, improving the model’s robustness [85, 86].

39

3.13.5 Why ODEs Were Not Used

In many traditional applications of PINNs, Ordinary Differential Equations (ODEs) or

Partial Differential Equations (PDEs) are used to model dynamic systems that change over time

or have spatial dependencies [87, 88]. However, in our case, the fault classification problem

focuses on steady-state measurements rather than dynamic behavior. The features used for

classification, such as current and flux, are directly measured, which means they do not need to

be derived through ODEs [89].

Furthermore, the physical relationships governing the motor can be effectively captured

using algebraic equations like Kirchhoff’s Current Law (KCL) and flux consistency, which are

simpler and computationally more efficient than ODEs. For example, KCL ensures the sum of

currents in the three-phase windings equals zero, while flux consistency maintains the balance

between currents and generated flux [90]. These constraints are sufficient to regularize the

model and ensure that the predictions align with the physics of the motor. Thus, using ODEs is

unnecessary and would add unnecessary complexity to the model [91].

3.13.6 Conclusion

PINNs provide an effective way to incorporate known physical laws into machine learning

models. In the case of fault classification for induction motors, PINNs can integrate the

algebraic constraints governing the motor’s behavior—such as Kirchhoff’s Current Law and

flux consistency—into the loss function. This helps the model learn more robustly, ensuring

that the predictions respect motor physics, even with a limited amount of labeled data. The

use of ODEs or PDEs is unnecessary in this static fault classification task, as simpler algebraic

constraints effectively capture the essential motor behavior [92].

3.14 Ensemble Methods for Enhanced Fault Detection

Ensemble learning techniques, like the voting classifier, enhance accuracy and reliability

by merging predictions from multiple machine learning models. By combining outputs from

different models, these methods help minimize errors and improve the overall effectiveness of

a predictive maintenance system [93].

40

3.15 Evaluation Metrics

Once the model is trained, different evaluation metrics are used to assess its performance.

These metrics help evaluate the model’s ability to generalize to new data [94]. In classification

tasks, the confusion matrix serves as a crucial tool, offering a detailed overview of the model’s

predictive accuracy .

The confusion matrix is a tabular representation that highlights true positives (TP), false

positives (FP), false negatives (FN), and true negatives (TN). Table 3.2 [49] shows an example

of a confusion matrix:

Predicted Values Positive Negative
Actual Positive TP FN
Actual Negative FP TN

Table 3.2: Sample Confusion Matrix

• True Positives (TP): Correctly predicted positive samples.

• True Negatives (TN): Correctly predicted negative samples.

• False Positives (FP): Incorrectly predicted positive samples.

• False Negatives (FN): Incorrectly predicted negative samples.

In an ideal model, all predictions fall along the diagonal of the confusion matrix, with no

off-diagonal elements. This indicates the model has perfectly classified all data samples [49].

3.15.1 Key Evaluation Metrics

1. Accuracy

Accuracy measures the proportion of correct predictions out of the total number of

samples, with a range between 0 and 1.

2. Precision

Precision quantifies the fraction of true positives among all predicted positive samples,

with a range between 0 and 1.

41

3. Recall (Sensitivity)

Recall evaluates how well the model identifies actual positive samples, with a range

between 0 and 1.

4. F1-Score

The F1-Score is the harmonic mean of precision and recall, providing a balance between

the two. It ranges between 0 and 1.

These metrics collectively offer a comprehensive understanding of the model’s

performance, highlighting its ability to handle both positive and negative predictions

effectively[49].

3.16 Conclusion

This chapter provided a comprehensive overview of the theoretical concepts underpinning

this study. It discussed the working principle of induction motors, the common faults they

experience, and the importance of early fault detection. The application of machine learning

for predictive maintenance was explored, highlighting its potential to enhance reliability and

reduce downtime. Various machine learning classifiers, including ensemble methods, were

discussed for their suitability in fault classification tasks. Finally, evaluation metrics such

as accuracy, precision, recall, and F1-score were introduced to quantify model performance.

This foundational knowledge sets the stage for the implementation detailed in the subsequent

chapters.

42

Chapter 4

Methodology

4.1 Introduction

The methodology chapter outlines the systematic approach adopted to conduct this research,

detailing the procedures, tools, and techniques employed to address the research questions. It

provides a clear framework for data collection, analysis, and interpretation, ensuring the study’s

reliability and validity. This chapter serves as a roadmap, guiding the reader through the steps

taken to achieve the research objectives.

4.2 Proposed Methodology Overview

This research proposes a comprehensive methodology to develop an effective predictive

maintenance framework for induction motors in EVs. The approach integrates traditional

machine learning algorithms, PINNs, and LSTM networks to achieve accurate and reliable

fault classification. The dataset includes sensor readings, such as current and vibration signals,

collected under various operational and faulty conditions. Data preprocessing techniques,

including normalization, handling of missing values, and feature engineering, are applied to

ensure data quality and relevance.

The methodology employs classical machine learning models, including ANN, SVM,

KNN, Decision Trees, and Random Forest, to classify fault types, alongside ensemble

techniques for enhanced accuracy. PINNs are incorporated to leverage the underlying

physical laws of motor dynamics, embedding domain knowledge into the learning process and

improving predictions. LSTM networks are utilized to capture temporal patterns in the sensor

43

data, essential for detecting faults with time-dependent characteristics. The performance of all

models will be compared based on performance parameters such as accuracy, precision, recall,

and F1-score, ensuring a thorough evaluation of their effectiveness. This integrated approach

is designed to enhance the reliability and efficiency of motor maintenance systems in EVs. The

methodology is illustrated in Figure 4.1, providing a step-by-step flowchart of the proposed

predictive maintenance framework.

Figure 4.1: Flowchart of the proposed predictive maintenance methodology

4.3 Datasets

In this section, we describe the benchmark datasets used for training and evaluating

the predictive maintenance models for induction motors in EVs. These datasets serve as a

foundation for fault detection and classification tasks and are specifically selected to provide

comprehensive, real-world data on motor performance under various conditions. Each dataset

contains different operational scenarios, including normal motor conditions and various fault

types such as stator winding issues and bearing failures. The use of these datasets enables a

robust evaluation of machine learning algorithms and provides a basis for comparison across

different models.

• CWRU Bearing Dataset: This dataset provides vibration data under various fault

conditions, including different load and rotational speed settings for bearing fault

diagnosis [95].

• Inter-turn Short-Circuit in Induction Motor Dataset: It includes data collected from

induction motors experiencing inter-turn short circuits, along with various operational

settings such as load and driving frequencies [96].

44

4.3.1 CWRU Dataset

The Case Western Reserve University (CWRU) Bearing Dataset [97] is widely recognized

for bearing fault detection and classification. Initially developed at Rockwell to assess

motor bearing conditions, it has since become a benchmark for evaluating signal-processing

techniques, feature engineering, and data-driven models in numerous research studies [98–

104].

Data collection was conducted using a test bench comprising a 2-horsepower (HP)

Reliance Electric motor, a dynamometer, and a torque transducer. This setup monitors motor

performance and torque under different load conditions. Vibration signals were captured

using three accelerometers positioned at the Drive End (DE), Fan End (FE), and Base (BA),

with sampling rates of 12 kHz and 48 kHz, ensuring high-resolution measurements. The

dataset includes time-series vibration data recorded under various fault conditions, which were

artificially induced in the bearings using electro-discharge machining (EDM). The faults were

introduced at distinct locations within the bearing, specifically in the ball, inner race, and outer

race, with defect sizes ranging from 0.007 inches (0.18 mm) to 0.021 inches (0.53 mm) [49].

The dataset encompasses different motor operating conditions, such as a 1 HP load, a shaft

rotation speed of 1772 RPM, and a 48 kHz sampling rate. Each fault type is characterized

by multiple statistical features, including maximum, minimum, mean, standard deviation,

root mean square (RMS), skewness, kurtosis, crest factor, and form factor. These features

are computed over time segments consisting of 2048 data points (0.04 seconds) at a 48 kHz

sampling rate [49].

Due to its comprehensive fault scenarios and operational conditions, this dataset is a

valuable resource for researchers investigating fault detection and classification in industrial

machinery. It is widely applied in predictive maintenance and the development of fault

detection algorithms. Researchers utilize it to test and validate various machine learning

techniques, ranging from conventional signal processing methods to advanced artificial

intelligence models [49]. Figures 4.2a and 4.2b illustrate the form factor of the vibration signal

computed over different samples in the dataset, where the x-axis represents the sample index,

and the y-axis denotes the form factor of the normalized vibration signal.

45

(a) (b)

Figure 4.2: Vibration data: (a) Normal (b) Anomalous

4.3.2 Inter-turn Short-Circuit in Induction Motor Dataset

This dataset [3] focuses on inter-turn short-circuit (ITSC) faults in induction motors,

providing both leakage flux and current signals. The test bench utilized for data acquisition

comprises two identical three-phase squirrel cage induction machines, each rated at 1 HP with

a delta configuration, 220V supply voltage, and a rated current of 3A. One machine operates

as a motor, while the other emulates the mechanical load. The motor’s stator was specially

rewound to facilitate the emulation of ITSC faults, allowing access to winding branches to

introduce controlled short circuits. This setup enables the simulation of various fault severities,

ranging from minor insulation degradation to severe short circuits.

Two fault types were simulated:

1. High Impedance (HI): Represents the initial stage of the fault, where the electrical

insulator begins to degrade, creating a parallel current path.

2. Low Impedance (LI): Represents a full short-circuit, where current flows through the

new path, inducing a voltage in the shorted coil.

For each fault type, three severity levels were emulated by varying the percentage of shorted

turns in the stator winding:

• Level 1: 1.41% of the winding

• Level 2: 4.81% of the winding

• Level 3: 9.26% of the winding

To prevent permanent damage, the short-circuit current was limited to its rated value using

a variable resistor of 50 Ω. Data was collected under three mechanical load conditions: no load

46

(0%), half load (50%), and full load (100%), with driving frequencies ranging from 30 Hz to 60

Hz in 5 Hz increments. In total, 2,590 patterns were acquired, including 350 from the normal

class and 2,240 from various fault conditions.

To monitor the axial leakage flux, a coil of 100 turns of 24 AWG copper wire was

placed around the motor shaft. The currents of the three motor phases were measured using

SCT013-030 current transformers.

For a comprehensive analysis, it is beneficial to include visual representations of the motor’s

behavior under normal and faulty conditions across the three load scenarios at a driving

frequency of 50 Hz. These visualizations can aid in understanding the impact of ITSC faults

under varying operational conditions.

Figure 4.3: No load current graph - Normal

Figure 4.4: No load current graph - Faulty

47

Figure 4.5: Half load current graph - Normal

Figure 4.6: Half load current graph - Faulty

Figure 4.7: Full load current graph - Normal

48

Figure 4.8: Full load current graph - Faulty

Figure 4.9: Current (CH1) behavior across all fault conditions (0-6)

(a) (b)

Figure 4.10: (a) Healthy no-load motor data (b) Faulty no-load motor data

49

4.4 Data Preprocessing

Raw data is often found in varying formats and ranges, which can hinder a model’s

performance and its ability to interpret the data effectively [105]. To address these challenges,

preprocessing the data becomes a critical step before feeding it into machine learning models.

The preprocessing steps in this study included data labeling, feature scaling, PCA for

visualization, feature selection analysis, and correlation analysis. Below are the key steps

undertaken:

4.4.1 Data Formatting and Labeling

The initial step was to convert the raw dataset into a usable format. The data was originally

distributed across multiple Excel sheets, each representing a separate class. These were

consolidated into a single sheet, and the respective classes were labeled correctly.

4.4.2 Feature Scaling

Feature scaling [106] was performed to standardize the range of features, as unscaled

data could cause models to prioritize features with larger ranges, potentially leading to biased

results. Min-Max normalization was applied, which scales the data to a range between 0 and

1. This choice ensures that all features are on a comparable scale, preventing any feature from

dominating the model’s learning process and helping to improve convergence during training.

Below are the most commonly used scaling techniques:

• Min-Max Normalization: Scales values between 0 and 1 [107].

• Standardization (Z-Score): Adjusts data to have a mean of zero and a standard

deviation of one, ensuring consistency and improving performance across various

machine learning algorithms.

• Mean Normalization: Centers the data by subtracting the mean and scaling it by the

data range, ensuring values fall within a standardized range.

4.4.3 Outlier and Missing Value Analysis

The dataset was carefully examined for outliers and missing values. However, no missing

values or significant outliers were identified, ensuring that the data did not require additional

50

imputation or outlier removal techniques.

4.4.4 Feature Selection and Visualization

To explore the importance of features and their contributions to classification accuracy,

multiple techniques were applied:

4.4.4.1 Principal Component Analysis

PCA was used to reduce dimensionality and visualize the data distribution across principal

components [108]. Although PCA is often used for feature selection, in this case, it did not

improve classification accuracy. This was likely due to the limited number of features in the

dataset and the fact that the features contained complementary information. A PCA plot was

generated to illustrate the data’s separability across different classes in reduced dimensions.

Figure 4.11: PCA plot for ITSC in induction motor dataset

4.4.4.2 Feature Importance Analysis

A feature importance graph was generated using model-based methods to understand the

contribution of individual features to the classification task. The analysis suggested that some

features (e.g., Feature 5 and Feature 4) had higher importance scores, while others were deemed

less significant. However, when training the model using only the most important features,

51

Figure 4.12: PCA plot for CWRU dataset

the performance was lower compared to using all features. This finding highlights that while

individual features may seem less critical, their combined interactions contribute to the overall

classification accuracy [109].

Figure 4.13: Feature importance graph for CWRU dataset

4.4.4.3 Classification Report Comparison

A comparison of the classification report (accuracy, precision, recall, and F1-score) for the

model trained with:

52

Figure 4.14: Feature importance graph for ITSC in stator winding dataset

• Only important features (as identified in the feature importance analysis).

• All features (retained to capture subtle interdependencies).

The results reinforced the decision to retain all features for achieving optimal performance.

Figure 4.15: Classification report of ANN with only important features (7) used

53

Figure 4.16: Classification report for ANN with all features (8) used (CWRU dataset)

4.4.4.4 Correlation Analysis

The relationship between features and target classes was examined using a correlation

heatmap. This analysis confirmed the absence of multicollinearity among features, further

validating the decision to use all features in the dataset. The heatmap provided insights into

feature interactions and ensured that no redundant information was present [110].

Figure 4.17: Correlation heatmap for CWRU dataset

These visualizations (PCA plot, feature importance graph, and correlation heatmap)

provided valuable insights into the dataset’s characteristics and its readiness for training.

54

Figure 4.18: Correlation heatmap for ITSC in induction motor dataset

4.5 Model Training

The training of both traditional machine learning models and deep learning architectures

was conducted to classify faults in a 3-phase induction motor. The models were trained on the

preprocessed dataset, with hyperparameter tuning performed to optimize their performance.

The models used and their respective training processes are detailed below.

4.5.1 Traditional Machine Learning Models

4.5.1.1 K-Nearest Neighbors

Rationale: KNN was chosen for its simplicity and effectiveness in handling small to

medium-sized datasets, making it a good baseline for classification tasks.

Training: The KNN algorithm was trained using the standard method, where the number

of neighbors (k) was optimized. The Euclidean distance was used as the distance metric, and

the dataset was scaled to ensure features were on the same scale.

Hyperparameter Tuning: The number of neighbors (k) was fine-tuned using

cross-validation. Different values of k were tested, and the value that minimized classification

error was selected.

55

4.5.1.2 Random Forest

Rationale: Random Forest was selected for its ability to handle high-dimensional datasets

and its robustness to overfitting due to ensemble learning.

Training: Random Forest was trained as an ensemble model consisting of multiple decision

trees. Each tree was trained on a bootstrapped subset of the data, and predictions were made

based on the majority vote of the trees.

Hyperparameter Tuning: The key hyperparameters tuned were the number of estimators

(number of trees) and the maximum depth of the trees. Grid search and cross-validation were

used to optimize these parameters, with the number of trees tested in the range of 50 to 200 and

the maximum depth ranging from 10 to 50.

4.5.1.3 Decision Tree

Rationale: Decision Tree was chosen for its interpretability and ability to model non-linear

relationships within the dataset.

Training: The Decision Tree classifier was trained to iteratively split the dataset into

subsets based on feature importance, maximizing information gain at each split.

Hyperparameter Tuning: The key hyperparameters tuned were the maximum depth of

the tree, the minimum samples required to split a node, and the criterion used for splitting (e.g.,

Gini impurity or entropy). Grid search was used to find the optimal combination, ensuring the

model did not overfit.

4.5.1.4 Naive Bayes

Rationale: Naive Bayes was selected due to its simplicity and efficiency in handling

multi-class classification problems, especially for small datasets.

Training: The Gaussian Naive Bayes model was trained under the assumption that features

are conditionally independent given the class. This assumption simplifies the computation and

makes the model efficient, even for large datasets.

Hyperparameter Tuning: As the Gaussian Naive Bayes classifier has limited

hyperparameters, the focus was on verifying the assumption of normality for each feature.

Minimal tuning was required for this model.

56

4.5.1.5 Support Vector Machine)

Rationale: SVM was selected for its ability to find optimal hyperplanes and perform well

with complex and high-dimensional datasets.

Training: SVM was trained to find an optimal hyperplane that maximized the margin

between classes in the feature space. A linear kernel was initially used for simplicity, and the

dataset was scaled to improve the algorithm’s efficiency.

Hyperparameter Tuning: The primary hyperparameters tuned were the kernel type

(e.g., linear, RBF) and the regularization parameter (C), which controls the trade-off between

maximizing the margin and minimizing classification error. A grid search was performed to

select the optimal combination of these parameters.

4.5.2 Performance Metrics

The performance of all traditional machine learning models was evaluated using the

following metrics:

• Accuracy: The proportion of correctly classified samples out of the total samples.

• Precision: The ratio of true positive predictions to the total positive predictions,

reflecting the model’s ability to avoid false positives.

• Recall: The ratio of true positive predictions to the total actual positives, indicating the

model’s sensitivity in detecting true cases.

• F1-Score: The harmonic mean of precision and recall, providing a balanced evaluation

metric, especially in cases of imbalanced datasets.

These metrics provided a holistic view of the models’ effectiveness in identifying both fault

and normal conditions, ensuring a robust comparison.

4.5.3 Deep Learning Models

4.5.3.1 Artificial Neural Network

ANNs are a class of deep learning models inspired by the human brain’s neural structure,

widely used for classification tasks in engineering and fault diagnosis domains [49]. In this

study, ANNs were developed and trained to classify two distinct datasets: the stator winding

57

fault dataset and the CWRU bearing fault dataset. The models were designed to accurately

differentiate between normal and faulty conditions, ensuring robust fault diagnosis for both

applications.

ANN for Stator Winding Fault Dataset

Architecture Design The ANN architecture designed for the stator winding fault dataset

consists of four dense layers:

• Input Layer: Configured to match the feature size of the dataset, ensuring compatibility

with the input data.

• Hidden Layers:

– First hidden layer with 64 neurons and ReLU activation.

– Second hidden layer with 128 neurons and ReLU activation to capture complex

feature interactions.

– Third hidden layer with 64 neurons and ReLU activation to consolidate learned

patterns.

• Output Layer: A dense layer with softmax activation and a number of neurons equal to

the dataset’s classes for multi-class classification.

The network design allowed the model to learn complex patterns in the data, with deeper layers

facilitating feature extraction and ReLU activation preventing vanishing gradient issues. The

softmax activation function in the output layer converted logits into probabilities, enabling

accurate classification. The model summary is shown below:

Figure 4.19: ANN model summary for ITSC in induction motor dataset

58

Model Compilation The model was compiled with the following configurations:

• Optimizer: The Adam optimizer was used for adaptive and efficient learning,

dynamically adjusting the learning rate during training.

• Loss Function: Categorical Crossentropy was employed since the classification problem

involved multiple classes.

• Metrics: Accuracy was tracked during training to directly measure the model’s

classification success.

Training Process The ANN was trained using the following parameters:

• Training Dataset: The training dataset was scaled and split into batches to enhance

computational efficiency.

• Batch Size: A batch size of 10 was used to divide the training data into smaller subsets

for gradient updates.

• Epochs: The model was trained for 50 epochs to allow iterative optimization of the

weights.

The model was fit to the training data using the fit() method, which minimized the loss

function by updating weights.

Performance Metrics The model’s performance was evaluated using the following

metrics:

• Loss Trends: Training and validation loss trends were monitored to assess the model’s

learning behavior.

• Confusion Matrix: A confusion matrix was generated to evaluate classification

performance across all classes.

• Accuracy, Precision, Recall, and F1-score: These metrics were used to evaluate

the model’s classification performance, providing a comprehensive assessment of its

predictions.

This setup enabled the ANN to efficiently classify fault and normal conditions in the stator

winding dataset.

59

ANN for CWRU Dataset

Architecture Design The ANN architecture for the bearing fault dataset was designed

using the Sequential API from the TensorFlow Keras library. It consisted of a total of seven

layers, including input, hidden, and output layers, with the following details:

• Input Layer:

– Configured to accept data with 8 features, corresponding to the dataset’s feature

space.

• Hidden Layers:

– Layer 1: 16 neurons with ReLU activation.

– Layer 2: 32 neurons with ReLU activation.

– Layer 3: 64 neurons with ReLU activation.

– Layer 4: 128 neurons with ReLU activation.

– Layer 5: 64 neurons with ReLU activation.

– Layer 6: 32 neurons with ReLU activation.

• Output Layer:

– The output layer consisted of 10 neurons with a softmax activation function,

designed to output probabilities for 10 different classes.

The architecture was progressively deep to enable the model to learn intricate relationships in

the data, with ReLU activation ensuring efficient gradient flow. The softmax activation function

allowed multi-class classification by converting logits into probabilities. The model summary

is shown below:

Model Compilation The model was compiled with the following configurations:

• Optimizer: The Adam optimizer was employed for efficient learning and dynamic

adjustment of the learning rate.

• Loss Function: Categorical Crossentropy was selected for this multi-class classification

task.

60

Figure 4.20: ANN model summary for CWRU dataset

• Metrics: Accuracy was tracked during training to evaluate the model’s classification

success.

Training Process The ANN was trained using the following parameters:

• Training Dataset: The training dataset was scaled and split into batches for efficient

computation.

• Batch Size: A batch size of 10 was used, dividing the data into manageable subsets for

gradient updates.

• Epochs: The model was trained for 50 epochs, allowing sufficient optimization of the

model’s weights.

The fit() method was used for training, and early stopping was employed to monitor

validation loss and prevent overfitting.

Performance Metrics The model’s performance was evaluated using the following

metrics:

• Accuracy, Precision, Recall, and F1-score: These metrics were used to evaluate

the model’s classification performance, providing a comprehensive assessment of its

predictions.

• Loss Trends: Training and validation loss trends were analyzed to ensure proper

learning.

61

• Confusion Matrix: A confusion matrix was generated to analyze classification

performance across all classes.

This robust setup enabled the ANN to achieve accurate classification of bearing faults and

normal conditions in the dataset.

4.5.3.2 Long Short-Term Memory

LSTM networks are a specialized type of recurrent neural network (RNN) designed to

capture long-range dependencies in sequential data, making them highly suitable for time-series

classification tasks. Unlike traditional RNNs, LSTMs incorporate memory cells and gating

mechanisms (input, forget, and output gates) to regulate the flow of information and prevent

issues like vanishing gradients. This capability makes LSTMs an effective choice for fault

diagnosis in engineering applications, where temporal patterns play a crucial role in identifying

faults.

LSTM for Stator Winding Fault Dataset

Architecture Design The LSTM model for the stator winding fault dataset was designed

to process sequential data from motor sensors, capturing temporal dependencies in fault

occurrences. The architecture is structured as follows:

• Input Layer: Accepts sequences of sensor readings (three-phase currents and leakage

flux) over a predefined number of timesteps.

• Hidden Layers:

– First LSTM layer with 128 units, ReLU activation, and return sequences enabled

for deeper feature extraction.

– Dropout layer (30%) to prevent overfitting.

– Second LSTM layer with 64 units, ReLU activation, and return sequences enabled.

– Dropout layer (30%) to enhance generalization.

– Third LSTM layer with 32 units and ReLU activation to refine extracted temporal

features.

– Dense layer with 64 neurons and ReLU activation for additional feature learning.

62

• Output Layer: A dense layer with softmax activation and a number of neurons equal to

the dataset’s classes (7), ensuring multi-class classification.

The model summary is shown below:

Figure 4.21: LSTM model summary for ITSC in induction motor dataset

This architecture allows the model to learn sequential dependencies in sensor data while

leveraging dropout layers to improve robustness.

Model Compilation The LSTM model was compiled with the following configurations:

• Optimizer: Adam optimizer with a learning rate of 0.0005 for adaptive and efficient

learning.

• Loss Function: Categorical Crossentropy was used, given the multi-class classification

nature of the task.

• Metrics: Accuracy was tracked to evaluate the model’s classification success.

Training Process The LSTM model was trained using the following parameters:

• Training Dataset: The dataset was normalized, and sequences were created with 10

timesteps.

• Batch Size: A batch size of 32 was selected to balance training stability and

computational efficiency.

• Epochs: The model was trained for 50 epochs to optimize the weight parameters.

63

The fit() method was used to train the model, minimizing the loss function iteratively while

monitoring validation performance.

Performance Metrics The model’s performance was assessed using the following

evaluation criteria:

• Loss Trends: Training and validation loss trends were analyzed to track the model’s

learning progression.

• Confusion Matrix: A confusion matrix was generated to examine class-wise prediction

performance.

• Accuracy, Precision, Recall, and F1-score: These metrics were computed to provide a

comprehensive assessment of the model’s classification performance.

This approach enabled the LSTM model to effectively classify stator winding faults based on

time-series sensor data.

LSTM for CWRU Bearing Fault Dataset

Architecture Design The LSTM model for the CWRU bearing fault dataset was

developed to classify vibration signals into multiple bearing fault categories. The architecture

consists of:

• Input Layer: Accepts sequences of vibration signal readings over a predefined number

of timesteps.

• Hidden Layers:

– First LSTM layer with 64 units, ReLU activation, and return sequences enabled for

hierarchical feature extraction.

– Dropout layer (20%) to mitigate overfitting.

– Second LSTM layer with 32 units and ReLU activation.

– Dropout layer (20%) to improve generalization.

– Dense layer with 64 neurons and ReLU activation for enhanced feature

representation.

64

• Output Layer: A dense layer with softmax activation and 10 neurons, corresponding to

the number of bearing fault categories.

The model summary is shown below:

Figure 4.22: LSTM model summary for CWRU dataset

The use of multiple LSTM layers ensures that temporal dependencies in vibration signals

are effectively captured, enhancing the fault classification process.

Model Compilation The model was compiled with:

• Optimizer: Adam optimizer with an adaptive learning rate of 0.0005.

• Loss Function: Categorical Crossentropy for multi-class classification.

• Metrics: Accuracy to evaluate classification effectiveness.

Training Process The LSTM model was trained under the following conditions:

• Training Dataset: The vibration signal dataset was preprocessed and converted into

sequences with a fixed number of timesteps.

• Batch Size: A batch size of 32 was chosen for efficient training.

• Epochs: The model was trained for 50 epochs to allow optimal learning.

The model was trained using the fit() method, with early stopping implemented to prevent

overfitting by monitoring validation loss.

65

Performance Metrics To evaluate the model’s classification performance, the following

metrics were used:

• Loss Trends: Training and validation loss trends were analyzed.

• Confusion Matrix: A confusion matrix was generated to assess the accuracy of each

class prediction.

• Accuracy, Precision, Recall, and F1-score: These metrics were calculated to measure

classification effectiveness.

By leveraging LSTM’s ability to learn sequential patterns in vibration signals, the model

achieved accurate classification of bearing faults, contributing to an effective predictive

maintenance framework.

4.5.4 Physics-Informed Neural Networks

PINNs integrate physical laws into neural network training, enhancing predictive

accuracy by embedding domain-specific knowledge directly into the learning process. This

approach is particularly beneficial in fields like engineering, where systems are governed by

well-established physical principles.

4.5.4.1 Architecture Design

The PINN model was developed to classify stator winding faults in a three-phase induction

motor by utilizing both sensor data and domain knowledge. The architecture consists of:

• Input Layer: Accepts features such as three-phase current signals (I1, I2, I3) and leakage

flux (φ).

• Hidden Layers:

– Fully connected dense layers with 64, 128, and 64 neurons, all using ReLU

activation to capture nonlinear dependencies.

• Output Layer: A dense layer with softmax activation and a number of neurons equal to

the fault classes (7), ensuring multi-class classification.

66

Figure 4.23: PINNs model summary

The model is summarized as follows:

This architecture enables the model to capture essential fault patterns while integrating

domain-specific constraints through the physics-informed loss function.

4.5.4.2 Physics-Informed Loss Function

A key component of PINNs is the physics-informed loss function, which consists of two

components:

1. Classification Loss: Sparse categorical cross-entropy is used to optimize the model for

accurate fault classification.

2. Physics Loss: Constraints derived from electrical laws are enforced to guide learning:

• Current Imbalance Constraint: Under normal conditions, the sum of the

three-phase currents should be zero:

I1 + I2 + I3 = 0

• Flux Consistency Constraint: The leakage flux should be correlated with the sum

of the phase currents:

φ ∝ I1 + I2 + I3

The total loss function is defined as:

Ltotal = Lclassification +λLphysics

where λ is a weighting factor that balances the influence of physics constraints.

67

4.5.4.3 Model Compilation and Training

The PINN model was compiled using:

• Optimizer: Adam optimizer with an adaptive learning rate for efficient convergence.

• Loss Function: The custom physics-informed loss function incorporating both

classification and physics losses.

• Metrics: Accuracy was tracked to evaluate classification performance.

The training process involved:

• Training Dataset: The dataset was standardized, and sequences were prepared for

efficient learning.

• Batch Size: A batch size of 16 was used for stable training.

• Epochs: The model was trained for 50 epochs to optimize parameter learning.

• Validation Strategy: A validation dataset was used to monitor model performance and

prevent overfitting.

4.5.4.4 Performance Evaluation

The PINN model’s effectiveness was assessed using:

• Loss Trends: Training and validation loss curves to analyze learning progression.

• Confusion Matrix: To evaluate class-wise fault classification accuracy.

• Accuracy, Precision, Recall, and F1-score: Standard evaluation metrics were computed

to measure classification performance.

By integrating physics laws into the learning process, the PINN model enhanced its fault

classification accuracy and reliability, demonstrating its potential for predictive maintenance

applications in induction motors.

68

4.6 Model Evaluation and Comparison

To comprehensively assess our classification models, we employ evaluation metrics such

as accuracy, precision, recall, F1-score, and confusion matrices. Accuracy measures the

proportion of correctly classified instances, while precision indicates the exactness of positive

predictions. Recall reflects the model’s ability to identify all relevant instances, and the

F1-score balances precision and recall. The confusion matrix provides detailed insights into

specific misclassifications. These metrics offer a holistic view of each model’s performance,

allowing us to identify strengths and weaknesses. In the Results and Discussion chapter, we

will present a detailed comparative analysis based on these metrics to evaluate each model’s

effectiveness in relation to our research objectives.

69

Chapter 5

Results and Discussion

5.1 Introduction

In this chapter, we present our research on predicting faults in induction motors. We focused

on two common faults: short circuits in the stator winding and bearing faults. To study these,

we used two datasets: one specifically for stator winding faults and another from the CWRU

for bearing faults[95].

We trained several machine learning models to identify these faults. This included

traditional classifiers such as SVM, KNN, Random Forest, Decision Tree, and Naive Bayes.

We also implemented advanced models like ANN, LSTM networks and PINNs.

To evaluate each model’s performance, we used metrics including accuracy, precision,

recall, and F1-score. We also analyzed confusion matrices to understand how well each model

identified different types of motor faults.

All model development and training were conducted using Python in the Google Colab

environment, which provides a cloud-based Jupyter notebook interface with access to GPUs,

enabling efficient execution of computationally intensive tasks. We utilized libraries such

as NumPy for numerical computations, Pandas for data manipulation and analysis, and

Scikit-learn for implementing traditional machine learning algorithms. For building and

training deep learning models, we employed TensorFlow and Keras, while Matplotlib and

Seaborn facilitated data visualization.

This comprehensive approach ensured robust data preprocessing, model development,

and performance evaluation, setting the foundation for the detailed analysis presented in the

subsequent sections of this chapter.

70

5.2 Data Preprocessing

As explained in Section 4.2.1, the datasets were preprocessed using Min-Max

normalization, where a custom function was employed to scale the time-series values within

the range [0,1]. Additionally, data was organized and labeled to reflect different fault

conditions, while PCA was utilized for visualization, though it did not enhance classification

accuracy. Feature importance analysis revealed that while some features were individually less

significant, their combined use optimized model performance. Correlation analysis confirmed

the absence of multicollinearity, validating the inclusion of all features in the dataset.

5.3 Results for the Stator Winding Fault Dataset

The performance of traditional classifiers was evaluated under various load conditions.

Below are the findings for the no-load condition. The following figures present the

classification reports and confusion matrices for each model:

5.3.1 K-Nearest Neighbors

The KNN classifier achieved an overall accuracy of 74.37%, indicating a moderate

performance in classifying stator winding faults. The classification report (Figure 5.31)

highlights that Class 0 (healthy) and Class 6 (most severe fault) were classified with high

precision and recall, suggesting that KNN effectively distinguishes between normal and

extreme fault conditions. However, intermediate fault classes, particularly Classes 2, 3,

and 4, showed lower precision and recall due to overlapping features, leading to frequent

misclassifications. The confusion matrix (Figure 5.32) further confirms this issue, as significant

misclassifications occurs between these adjacent fault levels. Despite its simplicity, KNN

provided reasonable classification performance but struggled with distinguishing gradual fault

severity variations, making it less effective for complex multi-class fault detection scenarios.

71

Figure 5.1: KNN classification report

Figure 5.2: KNN confusion matrix

5.3.2 Support Vector Machine

The SVM model achieved 63% accuracy, with high precision and recall for Class 0

(healthy) and Class 6 (severe fault), as shown in Figure 5.40. However, intermediate fault

classes (2, 3, and 4) showed lower F1-scores due to misclassifications, which is clearly visible

in the confusion matrix (Figure 5.39). The model struggled to distinguish between adjacent

fault levels, indicating limitations in handling overlapping fault features.

72

Figure 5.3: SVM classification report

Figure 5.4: Confusion matrix for SVM

5.3.3 Random Forest

The Random Forest classifier demonstrates improved performance compared to SVM,

achieving an overall accuracy of 77% with a macro F1-score of 78%, as evidenced in

Figure 5.34. The classification report indicates better precision and recall across most classes.

The confusion matrix (Figure 5.33) shows fewer misclassifications, particularly for classes

0 and 6, suggesting that Random Forest effectively distinguishes between different fault

categories in the dataset.

73

Figure 5.5: Classification report for Random Forest

Figure 5.6: Confusion matrix for Random Forest

5.3.4 Decision Tree

The Decision Tree classifier achieves an accuracy of 74%, slightly lower than Random

Forest, with a macro F1-score of 75%. As shown in Figure 5.36, the classification report

shows reasonable precision and recall for most classes, but certain classes, such as 1 and 4,

exhibit lower performance. The confusion matrix in Figure 5.35 indicates a higher degree of

misclassification compared to Random Forest, suggesting that while Decision Tree captures

74

patterns effectively, it may overfit to the training data, leading to reduced generalization.

Figure 5.7: Classification report for Decision Tree

Figure 5.8: Confusion matrix for Decision Tree

5.3.5 Naïve Bayes

The Naïve Bayes classifier demonstrates significantly lower performance compared to other

models, achieving an accuracy of 24% and a macro F1-score of 24%. The classification report

in Figure 5.38 highlights poor precision and recall across most classes, except for class 6, which

shows relatively better precision but still suffers from misclassifications. The confusion matrix

in Figure 5.37 indicates widespread misclassification, with many instances being incorrectly

75

assigned to different categories. The assumption of feature independence in Naïve Bayes may

not align well with the dataset characteristics, leading to suboptimal classification performance.

Figure 5.9: Naïve Bayes classification report

Figure 5.10: Confusion matrix for Naïve Bayes

5.3.6 Artificial Neural Networks

The ANN model demonstrates strong classification performance, achieving an accuracy of

74% with a macro F1-score of 75%. The classification report in Figure 5.42 indicates that the

model performs exceptionally well for certain classes, particularly class 0 and class 6, which

76

achieve F1-scores above 0.90. The confusion matrix in Figure 5.41 shows that the majority

of predictions align well with actual labels, with a structured pattern of classification across

different fault types.

The training and validation loss curves in Figure 5.13 indicate effective learning, with a

steady decline in loss over epochs, demonstrating that the model generalizes well. Similarly, the

accuracy curves in Figure 5.14 show consistent improvement, with both training and validation

accuracy stabilizing at a high level, indicating a well-trained model. These results suggest

that the ANN effectively captures patterns in the data, making it a reliable approach for fault

classification.

Figure 5.11: Classification report for ANN

77

Figure 5.12: Confusion matrix for ANN

Figure 5.13: Training and validation loss for ANN

78

Figure 5.14: Training and validation accuracy for ANN

5.3.7 Long Short-Term Memory

Based on the results obtained for the LSTM model, the classification report in Figure 5.44

indicates high precision, recall, and F1-scores across all classes, achieving an overall accuracy

of 89%. The confusion matrix in Figure 5.43 demonstrates that most samples are correctly

classified, with minimal misclassifications. The training and validation loss curves in

Figure 5.17 show a consistent decrease, suggesting effective learning without significant

overfitting. Similarly, the accuracy curves in Figure 5.18 indicate a steady improvement,

with validation accuracy closely following training accuracy, further confirming the model’s

generalization capability.

These results highlight the effectiveness of the LSTM model in classifying faults in the

dataset. The high performance across different metrics suggests that the model successfully

captures temporal dependencies in the data, leading to precise fault classification. The

consistent trends in training and validation performance confirm that the model has learned

meaningful patterns, making it a reliable choice for predictive maintenance applications.

79

Figure 5.15: Classification report for LSTM

Figure 5.16: Confusion matrix for LSTM

80

Figure 5.17: Training and validation loss for LSTM

Figure 5.18: Training and validation accuracy for LSTM

5.3.8 Voting Classifier

The voting classifier achieved a high overall accuracy of 94%, as shown in the classification

report in Figure 5.45. Precision, recall, and F1-scores are consistently strong across all classes,

indicating reliable fault classification. The confusion matrix in Figure 5.46 demonstrates

minimal misclassifications, with most samples correctly assigned to their respective categories.

These results highlight the effectiveness of the ensemble approach in improving classification

performance by combining multiple models’ predictions.

81

The model’s high accuracy and balanced performance across all metrics confirm its

robustness in handling the dataset. The voting classifier effectively integrates multiple

classifiers’ strengths, leading to improved generalization and reduced misclassification rates.

This makes it a strong candidate for predictive maintenance applications, ensuring reliable

fault detection and classification.

Figure 5.19: Voting classifier classification report

Figure 5.20: Voting classifier confusion matrix

82

5.3.9 Discussion on Model Performance for Stator Winding Fault Dataset

5.3.9.1 No-Load Condition

The performance comparison of all classifiers on the stator winding fault dataset with seven

classes is summarized in Table 5.1 and Figure 5.21.

Model Accuracy (%)
KNN 74.37
SVM 62.79
Random Forest 77.79
Decision Tree 74.15
Naïve Bayes 23.74
ANN 74.00
LSTM 89.42
Voting Classifier 94.00

Table 5.1: Comparison of classifiers accuracy

The results show that the voting classifier achieved the highest accuracy of 94%, followed

by LSTM with 89.42% and Random Forest with 77.79%. Among the traditional classifiers,

KNN and Decision Tree performed similarly, with accuracies of 74.36% and 74.15%,

respectively. In contrast, SVM struggled with an accuracy of only 62.79%, and Naïve Bayes

performed the worst at 23.74%, indicating that it is not well-suited for this dataset. The ANN

model achieved 74% accuracy, demonstrating a balanced performance but with clear challenges

in distinguishing between fault classes of varying severity. The classification report highlights

that Classes 0 (healthy) and 6 (most severe fault) were classified with high precision and recall

values, while intermediate fault classes (Classes 1-5) had lower classification accuracy due to

feature overlap among different levels of stator winding faults.

The misclassification in the dataset is primarily caused by the similarity between adjacent

fault classes, making it difficult for models to distinguish between them effectively. The

classification report for the ANN model shows that while Classes 0 and 6 achieved high

precision and recall, Classes 2, 3, and 4 had much lower values, indicating significant confusion

between these categories. This is expected, as early-stage faults exhibit signal characteristics

that closely resemble normal motor operation, leading to incorrect classifications. Additionally,

the dataset structure contributes to these results - since the progression from minor to severe

short-circuit faults is gradual, feature values overlap, making it harder for classifiers to draw

clear decision boundaries as shown in the PCA plot in Figure 5.22.

83

Figure 5.21: Comparison of classifiers accuracy

Figure 5.22: PCA plot for ITSC in induction motor dataset

However, deep learning models such as LSTM demonstrated superior performance,

achieving 89.42% accuracy. LSTM’s ability to learn temporal dependencies in sequential data

makes it particularly effective for fault classification, as it can capture subtle differences in

motor behavior over time.

To further analyze the classification performance, we conducted a binary classification

experiment, considering only Class 0 (healthy) and Class 6 (most severe fault). The results in

Figure 5.23 show a significant improvement in accuracy across all models, as the classification

task becomes easier when distinguishing between only two distinct classes.

This confirms that the difficulty in the original seven-class dataset arises from the similarity

84

Figure 5.23: Bar chart for no load Binary classification

between intermediate fault classes, rather than an inherent limitation of the models themselves.

5.3.9.2 Half and Full Load Conditions

For the half-load and full-load conditions, the classification models were trained using a

dataset with only two classes: healthy and severely faulty. The accuracies of all classifiers for

both load conditions are shown in Figures 5.24 and 5.25.

Figure 5.24: Bar chart for half-load Binary classification

The classification performance improved notably due to the reduced complexity of the

dataset, where distinguishing between only two classes (healthy and severely faulty) is a

relatively easier task compared to classifying faults of varying severity levels. Table 5.2

summarizes the performance across all load conditions.

85

Figure 5.25: Bar chart for full-load Binary classification

Model No Load Accuracy Half Load Accuracy Full Load Accuracy
KNN 99.74% 96.57% 97.02%
SVM 92.46% 93.91% 94.15%
Random Forest 99.60% 99.03% 98.88%
Decision Tree 99.74% 98.65% 98.92%
Naive Bayes 80.00% 75.78% 79.10%
ANN 99.09% 96.02% 95.90%
LSTM 100.00% 99.87% 99.87%
Voting Classifier 100.00% 100.00% 99.9%

Table 5.2: Performance of models across load conditions

Overall, the results confirm that classification performance improves significantly when

dealing with binary classification rather than multi-class classification. The deep learning

models, particularly LSTM and the voting classifier, exhibited superior performance across

both load conditions, making them ideal choices for predictive maintenance applications where

high classification accuracy is critical.

5.4 Results for PINNs

The dataset covering 7 types of classes was classified using PINNs, and its performance was

compared with traditional Artificial Neural Networks. PINNs achieved an accuracy of 75% for

the 7-class dataset and 99.32% for the binary classification task (healthy vs. faulty conditions).

Below are the key results and visualizations for PINNs:

86

Figure 5.26: Classification report of PINNs

Figure 5.27: Confusion matrix for PINNs

5.4.1 Performance Analysis and Insights

The performance of PINNs and ANNs was evaluated on both the 7-class and 2-class

datasets. For the 7-class dataset, PINNs achieved an accuracy of 75%, while ANNs achieved

74%. This indicates that both models performed similarly on the more complex task, with

PINNs slightly outperforming ANNs. The marginal improvement in accuracy for PINNs

can be attributed to their ability to incorporate physical laws and constraints, which may

have provided a slight advantage in capturing underlying patterns in the data. However, the

difference is minimal, suggesting that the added complexity of PINNs does not significantly

enhance performance for multi-class classification tasks.

87

In contrast, for the binary classification task (healthy vs. faulty), both models achieved

exceptional performance, with PINNs reaching 99.32% accuracy and ANNs achieving 99%

accuracy. This demonstrates that both PINNs and ANNs are highly effective for simpler

classification tasks where the decision boundaries are more straightforward. The near-perfect

accuracy of both models highlights their ability to generalize well on binary classification

problems, with PINNs slightly outperforming ANNs due to their physics-informed approach,

which aligns well with the problem domain.

The training and validation losses (Figure 5.28) and accuracies (Figure 5.29) for PINNs

provide further insights into their learning behavior.

Figure 5.28: Training and validation loss for PINNs

The convergence of losses and accuracies indicates that PINNs were able to learn

effectively, but the relatively lower accuracy on the 7-class dataset suggests that the

physics-based constraints may limit their flexibility in handling highly complex, multi-class

problems. On the other hand, ANNs, with their flexibility and ability to model complex,

non-linear relationships, performed comparably to PINNs on the 7-class dataset and slightly

worse on the binary task.A bar chart comparing the accuracy of PINNs with other models is

provided to illustrate the performance differences (see Figure 5.30).

88

Figure 5.29: Training and validation accuracy for PINNs

Figure 5.30: Bar chart for comparing PINNs with other deep learning models

5.5 Results for the CWRU Dataset

The performance of various classifiers on the CWRU dataset is evaluated using accuracy,

confusion matrices, and classification reports. For each model, the confusion matrix and

classification report are provided to analyze the performance in detail. Below are the results for

each classifier:

89

5.5.1 K-Nearest Neighbors

The KNN classifier achieved an accuracy of 83% on the CWRU dataset. While it

performed well for some classes, it struggled with others, particularly due to its sensitivity to

class imbalance and high-dimensional data. Misclassifications were observed across multiple

classes, impacting overall reliability, as shown in Figure 5.31 and Figure 5.32.

Figure 5.31: Classification report KNN

Figure 5.32: Confusion matrix for KNN

90

5.5.2 Random Forest

The Random Forest classifier achieved a high accuracy of 98% on the CWRU dataset.

Its strong performance is due to its ensemble learning approach, which reduces overfitting

and enhances generalization. The confusion matrix in Figure 5.33 indicates minimal

misclassifications, highlighting its effectiveness in handling complex, high-dimensional data,

as further detailed in the classification report in Figure 5.34.

Figure 5.33: Confusion matrix Random Forest

Figure 5.34: Classification report Random Forest

91

5.5.3 Decision Tree

The Decision Tree classifier achieved an accuracy of 93%, demonstrating good performance

in fault classification. However, some misclassifications are observed, particularly in certain

fault categories, as reflected in the confusion matrix in Figure 5.35. This suggests that while the

model effectively captures patterns, it may be prone to overfitting, as shown in the classification

report in Figure 5.36.

Figure 5.35: Confusion matrix Decision Tree

Figure 5.36: Classification report for Decision Tree

92

5.5.4 Naïve Bayes

The Naïve Bayes classifier achieved an accuracy of 88%, but its performance varies across

classes. The confusion matrix in Figure 5.37 reveals significant misclassifications, particularly

in certain fault categories. The model’s assumption of feature independence may limit its

effectiveness in handling complex fault patterns, as evidenced by the classification report in

Figure 5.38.

Figure 5.37: Naïve Bayes confusion matrix

Figure 5.38: Classification report for Naïve Bayes

93

5.5.5 Support Vector Machine

The SVM model demonstrates excellent classification performance, as seen in the confusion

matrix in Figure 5.39 and classification report in Figure 5.40. The confusion matrix

shows minimal misclassifications, with most predictions correctly aligned along the diagonal,

indicating strong class separation. The classification report further confirms this, with

precision, recall, and F1-scores all above 0.95 for each class. The model achieves an impressive

overall accuracy of 98%, with macro and weighted averages also at 0.98, reflecting its

consistency across all fault classes. Compared to other models, SVM significantly outperforms

Naïve Bayes in terms of precision and recall, making it a highly reliable approach for fault

classification in induction motors.

Figure 5.39: Confusion matrix for SVM

94

Figure 5.40: Classification report for SVM

5.5.6 Artificial Neural Network

The ANN model exhibits strong classification performance, as reflected in its confusion

matrix (Figure 5.41) and classification report (Figure 5.42). The confusion matrix shows that

most predictions are accurately classified, with only a few misclassifications. The classification

report indicates high precision, recall, and F1-scores for all classes, with most values exceeding

0.90. The model achieves an overall accuracy of 95%, with macro and weighted averages also

at 0.95 or higher, confirming its reliability in fault classification. ANN demonstrates robust

learning capabilities, performing well across all classes, though slight misclassifications are

observed in certain cases.

95

Figure 5.41: Confusion matrix for ANN

Figure 5.42: Classification report for ANN

5.5.7 Long Short-Term Memory

The LSTM model demonstrates exceptional classification performance, achieving an

impressive accuracy of 99%. As shown in Figure 5.43, the confusion matrix shows minimal

misclassifications, indicating that the model effectively differentiates between classes. The

classification report in Figure 5.44 further confirms its robustness, with precision, recall, and

F1-scores close to or equal to 1.00 for most classes. The macro and weighted averages also

stand at 0.99, highlighting the model’s strong ability to learn sequential patterns and accurately

predict faults. These results suggest that LSTM is highly effective in capturing temporal

96

dependencies within the dataset, leading to superior predictive performance.

Figure 5.43: Confusion matrix for LSTM

Figure 5.44: Classification report for LSTM

5.5.8 Voting Classifier

The performance of the voting classifier is evaluated using the confusion matrix and

classification report. The confusion matrix in Figure 5.46 shows strong classification accuracy,

with most instances correctly predicted along the diagonal. The classification report in Figure

5.45 provides detailed performance metrics, where the model achieves an overall accuracy of

97

98%. The precision, recall, and F1-score values remain high across all classes, with most

exceeding 0.98. The macro and weighted averages also confirm the robustness of the classifier,

indicating that the ensemble approach effectively improves classification performance.

Figure 5.45: Voting classifier classification report

Figure 5.46: Confusion matrix for voting classifier

5.5.9 Comparative Evaluation of Classifiers on the CWRU Dataset

The performance of the classifiers on the CWRU dataset is summarized in Table 5.3 and

visualized in Figure 5.47.

98

Model Accuracy (%)
KNN 83

Random Forest 98
Decision Tree 93
Naïve Bayes 88

SVM 98
ANN 96

LSTM 99
Voting Classifier 98.3

Table 5.3: Performance summary of classifiers on CWRU dataset

The results reveal significant differences in accuracy, with LSTM achieving the highest

accuracy of 99%, followed by Random Forest and SVM at 98%, and the Voting Classifier at

98.3%. Naïve Bayes, on the other hand, had the lowest accuracy at 88%.

Figure 5.47: Bar chart for Performance Comparison

The superior performance of LSTM can be attributed to its ability to capture temporal

dependencies and long-term patterns in the time-series data, which is crucial for fault diagnosis

tasks. LSTMs are particularly effective for sequential data, making them well-suited for the

vibration signals in the CWRU dataset. However, their computational complexity and longer

training times are notable drawbacks.

Similarly, Random Forest and SVM performed exceptionally well due to their ability to

handle high-dimensional data and find optimal decision boundaries. Random Forest, as an

ensemble method, reduces overfitting by combining multiple decision trees, while SVM excels

in high-dimensional spaces by finding the best hyperplane for classification.

In contrast, simpler models like Naïve Bayes and KNN struggled to achieve comparable

accuracy. Naïve Bayes, with an accuracy of 88%, is limited by its assumption of feature

99

independence, which is often violated in real-world datasets like CWRU. KNN, with

83% accuracy, is sensitive to the choice of the number of neighbors and struggles with

high-dimensional data, leading to lower performance. Decision Trees, while interpretable and

effective for small datasets, achieved 93% accuracy but are prone to overfitting, especially with

noisy data. ANN, with 96% accuracy, demonstrated strong performance due to its ability to

model complex, non-linear relationships, but its effectiveness depends heavily on the chosen

architecture and hyperparameters.

Overall, the results highlight the importance of selecting models that can handle the

complexity and high-dimensional nature of the CWRU dataset. Ensemble methods like

Random Forest and Voting Classifier, as well as deep learning models like LSTM, excel in

this context due to their ability to generalize and capture intricate patterns. Simpler models,

while computationally efficient, are less effective for this task.

100

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This research focused on developing a predictive maintenance framework for induction

motors in EVs using machine learning techniques. With the growing adoption of EVs, ensuring

the reliability and efficiency of induction motors is essential to prevent unexpected failures and

reduce maintenance costs. Traditional maintenance strategies, such as reactive and preventive

maintenance, are insufficient in addressing hidden faults, particularly stator winding short

circuits, which can significantly impact motor performance[111]. Thus, predictive maintenance

has emerged as a promising solution for real-time fault detection and early intervention[112].

In this study, various machine learning models, including ANNs, LSTM, SVM, KNN,

Decision Trees, Random Forest, and Naive Bayes, were applied to classify stator winding

faults. Additionally, PINNs were explored to incorporate motor dynamics into the learning

process, enhancing fault classification accuracy. The effectiveness of these models was

evaluated based on key performance metrics such as accuracy, F1-score, confusion matrices,

and bar charts.

The results demonstrated that deep learning models, particularly LSTM and ensemble

methods like the voting classifier, outperformed traditional machine learning models in

fault classification. These models exhibited superior generalization capabilities, accurately

detecting both high-impedance and low-impedance faults in stator windings. The study

also highlighted the limitations of conventional models, which struggled with complex fault

patterns, reaffirming the need for advanced predictive maintenance solutions.

By integrating machine learning and physics-based modeling, this research contributes to

101

enhancing the reliability and efficiency of induction motors in EVs. The findings suggest

that predictive maintenance frameworks leveraging AI-driven fault diagnosis can significantly

improve motor health monitoring, reduce downtime, and optimize maintenance schedules,

ultimately extending the lifespan of EV motors[113].

6.2 Future Work

Although this study achieved promising results, several areas remain for further research

and improvement:

1. Integration of Real-Time Monitoring: Future work can focus on deploying the

proposed predictive maintenance framework in real-world applications by integrating

real-time sensor data collection from EV motors. This would enhance the practical

implementation and validation of the proposed models[114].

2. Expanding Fault Coverage: Future studies can include a broader range of motor faults,

such as rotor issues, to create a more comprehensive predictive maintenance system.

3. Dataset Enhancement: More diverse datasets covering various fault types and operating

conditions can be used to improve model robustness. Additionally, instead of relying

solely on publicly available datasets, researchers can create their own datasets through

controlled experiments[115].

4. Utilization of Digital Twin Technology: Digital twin-based synthetic data generation

can be explored to augment datasets, simulate different fault scenarios, and improve

model training and validation[116].

5. Classification of Stator Winding Faults for Multiple Load Conditions: In this study,

stator winding faults were classified under half and full-load conditions into two classes:

normal and severe fault. Future work can focus on classifying all seven fault classes,

ranging from minor to severe short circuits, for these load conditions using different

classifiers to achieve optimal performance.

6. Cross-Domain Adaptability: The proposed predictive maintenance framework can

be extended to other rotating machinery beyond induction motors in EVs, such as

102

industrial pumps, wind turbines, and aerospace systems, to evaluate its adaptability and

scalability[117].

By addressing these areas, future research can further refine predictive maintenance

strategies, making EV motors more reliable, efficient, and cost-effective. The advancements

in machine learning and digital twin-based simulations hold great potential for revolutionizing

fault diagnosis and predictive maintenance across various industries[118].

103

6.3 Bibliography

[1] W. E. Forum. (2023) Electric vehicle sales leapt 55% in 2022, with china

in front. [Online]. [Online]. Available: https://www.weforum.org/agenda/2023/05/

electric-vehicles-ev-sales-growth-2022/

[2] X. Sun, Z. Li, X. Wang, and C. Li, “Technology development of electric vehicles: A

review,” Energies (Basel), vol. 13, no. 1, Dec 2019.

[3] S. Kumar et al., “A comprehensive review of condition based prognostic maintenance

(cbpm) for induction motor,” 2019.

[4] A. K. S. Jardine, D. Lin, and D. Banjevic, “A review on machinery diagnostics and

prognostics implementing condition-based maintenance,” Oct 2006.

[5] L. Breiman, “Random forests,” 2001.

[6] W. R. Abed, S. K. Sharma, and R. Sutton, “Fault diagnosis of brushless dc motor for

an aircraft actuator using a neural wavelet network,” in IET Conference on Control and

Automation 2013: Uniting Problems and Solutions, 2013, pp. 1–6.

[7] L. L. Li, J. Q. Liu, W. B. Zhao, and L. Dong, “Fault diagnosis of high-speed brushless

permanent-magnet dc motor based on support vector machine optimized by modified

grey wolf optimization algorithm,” Symmetry, vol. 13, no. 2, p. 163, 2021.

[8] S. Murgai et al., “Scientific machine learning for battery degradation forecasting in

electric vehicles,” Journal of Machine Learning Applications, vol. 5, no. 1, pp. 23–35,

2023.

[9] “Application of long short-term memory networks for stator fault detection in bldc

motors,” IEEE Transactions on Industrial Electronics, vol. 68, no. 7, pp. 6521–6532,

2022.

[10] “Machine learning for temperature prediction in permanent magnet synchronous

motors,” Energy Conversion and Management, vol. 210, pp. 112–120, 2021.

[11] “Condition monitoring of electrical machinery using pca and time-series analysis,”

Journal of Maintenance Engineering, vol. 6, no. 2, pp. 45–57, 2022.

104

https://www.weforum.org/agenda/2023/05/electric-vehicles-ev-sales-growth-2022/
https://www.weforum.org/agenda/2023/05/electric-vehicles-ev-sales-growth-2022/

[12] “Real-time fault detection for dc motors using machine learning,” International Journal

of Electrical Engineering and Technology, vol. 9, no. 3, pp. 86–95, 2023.

[13] “Predictive modeling of motor parameters for fault detection with iot and machine

learning,” Journal of Industrial IoT, vol. 3, no. 5, pp. 58–67, 2022.

[14] “Estimating the remaining useful life of bldc motors using rnn with attention

mechanisms,” Neural Computing and Applications, vol. 34, no. 6, pp. 789–802, 2023.

[15] “Fuzzy logic and machine learning for predictive maintenance in public transport,”

Journal of Transportation Safety and Security, vol. 14, no. 2, pp. 99–107, 2022.

[16] “Optimization methods for predictive maintenance in industry 4.0,” IEEE Transactions

on Industrial Informatics, vol. 19, no. 3, pp. 112–123, 2023.

[17] “Machine learning and data analytics for early failure detection in real-time monitoring

systems,” Journal of Process Control, vol. 28, pp. 45–59, 2023.

[18] “Fault detection in bldc motors using anns, cloud technology, and iot,” IEEE Access,

vol. 11, pp. 3645–3656, 2023.

[19] S. Gundewar, S. Kane, and S. Andhare, “Diagnosis of broken rotor bar faults in induction

motors using time-domain grayscale current signal imaging and convolutional neural

networks,” IEEE Transactions on Industrial Electronics, vol. 69, no. 3, pp. 1234–1246,

2024.

[20] “Designing three-phase induction motors for ev applications and fault diagnosis using

machine learning algorithms,” Journal of Electric Power Systems Research, vol. 13,

no. 4, pp. 76–89, 2023.

[21] “Machine learning models for diagnosing rotor and bearing faults in induction motors

using vibration data,” IEEE Transactions on Industrial Informatics, vol. 21, no. 1, pp.

45–58, 2022.

[22] D. Turza et al., “Single-phase fault detection in induction motors using random forest

algorithm,” Journal of Mechanical Systems and Signal Processing, vol. 15, no. 6, pp.

231–242, 2023.

105

[23] A. Rai et al., “Fault prediction in induction motors using artificial neural networks and

vibration and current signals,” Journal of Electrical Engineering & Technology, vol. 11,

no. 2, pp. 302–314, 2022.

[24] “Machine learning techniques for predictive maintenance in electric vehicle systems,”

Computational Intelligence in Electrical Engineering, vol. 4, no. 2, pp. 157–170, 2023.

[25] K. Kudelina et al., “Comparative analysis of machine learning models for diagnosing

broken rotor bars in induction motors,” Industrial Internet of Things Journal, vol. 8,

no. 5, pp. 67–79, 2024.

[26] “Review of fault detection and diagnosis methods in electric vehicles: Data-driven

approaches,” Journal of Electrical Engineering and Computer Science, vol. 32, pp.

98–109, 2023.

[27] F. Mohamed et al., “Hybrid machine learning model for fault diagnosis in induction

motors using thermal image analysis,” Journal of Thermal Science and Engineering

Applications, vol. 14, no. 3, pp. 150–162, 2022.

[28] J. Yoo, J. Kim, and S. Choi, “Lightweight convolutional neural network for bearing fault

diagnosis with spectrograms,” Journal of Mechanical Science and Technology, vol. 34,

no. 5, pp. 2029–2039, 2020.

[29] H. Saghi, X. Li, and Z. Zhang, “Multi-scale convolutional neural network and

bidirectional gated recurrent units for bearing fault diagnosis,” Mechanical Systems and

Signal Processing, vol. 148, p. 107174, 2021.

[30] Y. Huang, H. Zhang, and S. Liu, “Wide deep convolutional neural network with

squeeze-and-excitation for fault diagnosis of rotating machinery,” Journal of Vibration

and Acoustics, vol. 143, no. 6, p. 061010, 2021.

[31] D. Bórnea, D. Opris, , and R. Rădulescu, “Bearing fault detection using hilbert-huang

transform and machine learning,” Journal of Mechanical Engineering Science, vol. 234,

no. 6, pp. 1421–1433, 2020.

[32] S. Sawai, S. Chandra, and P. Sahu, “Ensemble learning-based fault diagnosis for rotating

machinery: A comparative study of rf, svm, and ann with gradient boosting,” IEEE

Access, vol. 8, pp. 187 445–187 459, 2020.

106

[33] D. Afriyie, “Inter-turn short circuit fault detection and prediction in induction motors,”

Science Engineering Entrepreneurship Design (SEED) Journal, vol. 2, no. 1, 2023.

[34] J. Smith and A. Brown, “Predictive maintenance for electric motors in electric vehicles,”

Journal of Electric Vehicle Engineering, vol. 15, no. 4, pp. 235–245, 2020.

[35] D. Lee and H. Kim, “Application of artificial intelligence in predictive maintenance of

induction motors,” International Journal of Machine Learning Applications, vol. 23,

no. 2, pp. 142–158, 2021.

[36] R. Kumar and S. Singh, “Induction motor design and working principle,” IEEE

Transactions on Industrial Electronics, vol. 66, no. 7, pp. 5734–5741, 2019.

[37] D. A. Moreno Salinas, “Predictive maintenance of induction motors using deep learning:

Anomaly detection using an autoencoder neural network and fault classification using a

convolutional neural network,” Ph.D. Thesis, Your Institution Name, 2022.

[38] D. Afriyie, “Fault detection and prediction in induction motors,” Ph.D. Thesis, Your

Institution Name, 2022.

[39] L. Wang and X. Zhang, “Fault diagnosis and maintenance strategies for induction

motors,” IEEE Access, vol. 8, pp. 12 467–12 478, 2020.

[40] Q. Zhang and Y. Zhao, “Fault detection in electric motors: A comprehensive review,”

Journal of Electrical Engineering and Technology, vol. 17, no. 3, pp. 143–155, 2022.

[41] P. Smith and N. Gupta, “Stator winding faults in induction motors: Mechanisms and

detection methods,” Journal of Vibration Engineering, vol. 19, no. 6, pp. 310–323, 2021.

[42] M. Jones and S. Patel, “Rotor faults in induction motors: A review of methods and

algorithms,” Journal of Mechanical Systems, vol. 34, no. 1, pp. 57–65, 2022.

[43] R. Taylor and J. Roberts, “Bearing failure analysis in induction motors,” IEEE

Transactions on Industrial Applications, vol. 50, no. 8, pp. 4567–4573, 2020.

[44] C. Anderson and E. Clark, “Predictive maintenance in induction motors for electric

vehicles: The role of machine learning,” International Journal of Smart Automation,

vol. 12, no. 1, pp. 88–99, 2021.

107

[45] J. Jiang and C. Kuo, “Enhancing convolutional neural network deep learning for

remaining useful life estimation in smart factory applications,” in 2017 International

Conference on Information, Communication and Engineering (ICICE), 2017, pp.

120–123.

[46] Y. O. Lee, J. Jo, and J. Hwang, “Application of deep neural network and generative

adversarial network to industrial maintenance: A case study of induction motor fault

detection,” in 2017 IEEE International Conference on Big Data (Big Data), 2017, pp.

3248–3253.

[47] M. Paolanti, L. Romeo, A. Felicetti, A. Mancini, E. Frontoni, and J. Loncarski, “Machine

learning approach for predictive maintenance in industry 4.0,” in 2018 14th IEEE/ASME

International Conference on Mechatronic and Embedded Systems and Applications

(MESA), 2018, pp. 1–6.

[48] MathWorks, “Predictive maintenance with matlab,” Available online, 2019. [Online].

Available: https://www.matlabexpo.com/content/dam/mathworks/mathworks-dot-com/

images/events/matlabexpo/uk/2019/predictive-maintenance-with-matlab.pdf

[49] D. A. Moreno Salinas, “Predictive maintenance of induction motors using deep learning:

Anomaly detection using an autoencoder neural network and fault classification using a

convolutional neural network,” 2022.

[50] Z. Gao, C. Cecati, and S. X. Ding, “A survey of fault diagnosis and fault-tolerant

techniques—part i: Fault diagnosis with model-based and signal-based approaches,”

IEEE Transactions on Industrial Electronics, vol. 62, no. 6, pp. 3757–3767, June 2015.

[51] K. P. Murphy, Machine Learning: A Probabilistic Perspective, ser. Adaptive

Computation and Machine Learning Series. Cambridge, United States: MIT Press,

2012, visited on 07/14/2021.

[52] F. Chollet, Deep Learning with Python, 1st ed. Shelter Island, NY: Manning

Publications, 2018.

[53] K. P. Murphy, Machine Learning: A Probabilistic Perspective, ser. Adaptive

Computation and Machine Learning Series. Cambridge, United States: MIT Press,

2012, visited on 07/14/2021.

108

https://www.matlabexpo.com/content/dam/mathworks/mathworks-dot-com/images/events/matlabexpo/uk/2019/predictive-maintenance-with-matlab.pdf
https://www.matlabexpo.com/content/dam/mathworks/mathworks-dot-com/images/events/matlabexpo/uk/2019/predictive-maintenance-with-matlab.pdf

[54] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, visited

on 07/09/2021. [Online]. Available: https://www.deeplearningbook.org/

[55] F. Chollet, Deep Learning with Python, 1st ed. Shelter Island, NY: Manning

Publications, 2018.

[56] Peltarion. (2021) Available activations | build an ai model. Visited

on 11/09/2021. [Online]. Available: https://peltarion.com/knowledge-center/

documentation/modeling-view/buildan-ai-model/activations

[57] J. Brownlee. (2021) How to choose an activation function for deep learning.

Visited on 11/09/2021. [Online]. Available: https://machinelearningmastery.com/

choose-an-activation-function-for-deep-learning/

[58] Pathimind. (2021) A beginner’s guide to neural networks and deep learning. Visited on

11/09/2021. [Online]. Available: http://wiki.pathmind.com/neural-network

[59] Peltarion. (2021) Linear activation function | build an ai model. Visited

on 11/09/2021. [Online]. Available: https://peltarion.com/knowledge-center/

documentation/modeling-view/buildan-ai-model/activations/linear

[60] ——, “Relu activation function | build an ai model,” 2021, visited

on 11/09/2021. [Online]. Available: https://peltarion.com/knowledge-center/

documentation/modeling-view/buildan-ai-model/activations/relu

[61] ——, “Softmax activation function | build an ai model,” 2021, visited

on 11/09/2021. [Online]. Available: https://peltarion.com/knowledge-center/

documentation/modeling-view/buildan-ai-model/activations/softmax

[62] ——, “Sigmoid activation function | build an ai model,” 2021, visited

on 11/09/2021. [Online]. Available: https://peltarion.com/knowledge-center/

documentation/modeling-view/buildan-ai-model/activations/sigmoid

[63] ——, “Tanh activation function | build an ai model,” 2021, visited

on 11/09/2021. [Online]. Available: https://peltarion.com/knowledge-center/

documentation/modeling-view/buildan-ai-model/activations/tanh

109

https://www.deeplearningbook.org/
https://peltarion.com/knowledge-center/documentation/modeling-view/buildan-ai-model/activations
https://peltarion.com/knowledge-center/documentation/modeling-view/buildan-ai-model/activations
https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/
https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/
http://wiki.pathmind.com/neural-network
https://peltarion.com/knowledge-center/documentation/modeling-view/buildan-ai-model/activations/linear
https://peltarion.com/knowledge-center/documentation/modeling-view/buildan-ai-model/activations/linear
https://peltarion.com/knowledge-center/documentation/modeling-view/buildan-ai-model/activations/relu
https://peltarion.com/knowledge-center/documentation/modeling-view/buildan-ai-model/activations/relu
https://peltarion.com/knowledge-center/documentation/modeling-view/buildan-ai-model/activations/softmax
https://peltarion.com/knowledge-center/documentation/modeling-view/buildan-ai-model/activations/softmax
https://peltarion.com/knowledge-center/documentation/modeling-view/buildan-ai-model/activations/sigmoid
https://peltarion.com/knowledge-center/documentation/modeling-view/buildan-ai-model/activations/sigmoid
https://peltarion.com/knowledge-center/documentation/modeling-view/buildan-ai-model/activations/tanh
https://peltarion.com/knowledge-center/documentation/modeling-view/buildan-ai-model/activations/tanh

[64] ——, “What are the optimization principles in deep learning,” 2021,

visited on 07/29/2021. [Online]. Available: https://peltarion.com/knowledge-center/

documentation/modeling-view/run-a-model/optimization-principles-(in-deep-learning)

[65] K. P. Murphy, Machine Learning: A Probabilistic Perspective, ser. Adaptive

computation and machine learning series. MIT Press, 2012, visited on 07/14/2021.

[66] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, visited

on 07/09/2021. [Online]. Available: https://www.deeplearningbook.org/

[67] Peltarion, “What are the optimization principles in deep learning,” 2021,

visited on 07/29/2021. [Online]. Available: https://peltarion.com/knowledge-center/

documentation/modeling-view/run-a-model/optimization-principles-(in-deep-learning)

[68] ——, “Regression loss metrics on the peltarion platform,” July 2021,

visited on 07/13/2021. [Online]. Available: https://peltarion.com/knowledge-center/

documentation/evaluation-view/regression-loss-metrics/mae-/-mean-absolute-error

[69] ——, “Regression loss metrics on the peltarion platform,” 2021, visited

on 07/29/2021. [Online]. Available: https://peltarion.com/knowledge-center/

documentation/evaluation-view/regression-loss-metrics/mse-/-mean-squared-error

[70] ——, “Categorical crossentropy loss function | peltarion platform,”

2021, visited on 07/29/2021. [Online]. Available: https://peltarion.com/

knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/

categorical-crossentropy

[71] ——, “Binary crossentropy loss function | peltarion platform,” 2021, visited

on 11/09/2021. [Online]. Available: https://peltarion.com/knowledge-center/

documentation/modeling-view/build-an-ai-model/loss-functions/binary-crossentropy

[72] F. Chollet, Deep learning with Python, 1st ed. Manning Publications, 2018.

[73] GeeksforGeeks, “Introduction to long short-term memory

(lstm).” [Online]. Available: https://www.geeksforgeeks.org/

deep-learning-introduction-to-long-short-term-memory/

110

https://peltarion.com/knowledge-center/documentation/modeling-view/run-a-model/optimization-principles-(in-deep-learning)
https://peltarion.com/knowledge-center/documentation/modeling-view/run-a-model/optimization-principles-(in-deep-learning)
https://www.deeplearningbook.org/
https://peltarion.com/knowledge-center/documentation/modeling-view/run-a-model/optimization-principles-(in-deep-learning)
https://peltarion.com/knowledge-center/documentation/modeling-view/run-a-model/optimization-principles-(in-deep-learning)
https://peltarion.com/knowledge-center/documentation/evaluation-view/regression-loss-metrics/mae-/-mean-absolute-error
https://peltarion.com/knowledge-center/documentation/evaluation-view/regression-loss-metrics/mae-/-mean-absolute-error
https://peltarion.com/knowledge-center/documentation/evaluation-view/regression-loss-metrics/mse-/-mean-squared-error
https://peltarion.com/knowledge-center/documentation/evaluation-view/regression-loss-metrics/mse-/-mean-squared-error
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/categorical-crossentropy
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/categorical-crossentropy
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/categorical-crossentropy
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/binary-crossentropy
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/binary-crossentropy
https://www.geeksforgeeks.org/deep-learning-introduction-to-long-short-term-memory/
https://www.geeksforgeeks.org/deep-learning-introduction-to-long-short-term-memory/

[74] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Transactions on

Information Theory, vol. 13, no. 1, pp. 21–27, 1967.

[75] S. Gundewar, P. Kane, and A. Andhare, “Detection of broken rotor bar fault in bldc using

lstm,” Journal of Advanced Mechanical Design, Systems and Manufacturing, vol. 16,

no. 2, 2020.

[76] M. C. Kim, J. H. Lee, D. H. Wang, and I. S. Lee, “Induction motor fault diagnosis using

support vector machine, neural networks, and boosting methods,” Sensors, vol. 23, no. 5,

2023.

[77] R. Udoy, T. Viswya, H. U. Islam, M. Pathan, S. Shahriar, M. S. Alam, M. M. Rahman,

and Z. I. Islam, “Single phase fault detection of induction motor using machine learning

approaches,” in Proceedings of the ICPEA, 2024, pp. 122–127.

[78] D. ECCLESTON, “Conditional predictive maintenance of electric vehicles from

electrical and mechanical faults,” 2024.

[79] K. Karolina, H. A. Hadi, V. Raja, M. Rjabtsikov, N. Usman, T. Vaimann, and A. Kallaste,

“Signal processing and machine learning techniques for predictive maintenance of rotor

bars in induction machines,” in 2023 IEEE International Conference on Electrical Power

Engineering (EDPE), 2023, pp. 1–6.

[80] L. Pan, R. Martinez, D. G. Andersson, and T. S. Yu, “A machine learning approach for

predicting induction motor faults,” in IEEE Power Energy Society General Meeting,

2022, pp. 1–6.

[81] A. Singh and S. Rathi, “Fault diagnosis in induction motors using convolutional neural

networks,” IEEE Access, vol. 11, pp. 1633–1643, 2023.

[82] P. Aivaliotis, K. Georgoulias, and G. Chryssolouris, “The use of digital twin for

predictive maintenance in manufacturing,” Procedia CIRP, vol. 96, pp. 114–119, 2024.

[83] Y. Xu, J. Zhang, W. Chen, Z. Wang, and L. Xue, “A digital twin-based fault diagnosis

framework for centrifugal pumps using transfer learning,” IEEE Transactions on

Industrial Electronics, vol. 71, pp. 1134–1143, 2024.

111

[84] S. M. Ahmed, A. M. K. Ahamed, and N. R. S. C. Kumar, “Data-driven predictive

maintenance using machine learning and digital twin technology,” Journal of Intelligent

Manufacturing, vol. 34, pp. 23–34, 2023.

[85] A. R. Hossain and R. S. Ray, “An innovative fault detection system for induction motors

using data-driven models,” Journal of Electrical Engineering & Technology, vol. 19, pp.

521–533, 2024.

[86] N. Nguyen, T. Tran, P. V. Nguyen, and M. T. Nguyen, “Fault diagnosis and prognosis

of electric motors: A review of techniques and applications,” IEEE Transactions on

Industrial Applications, vol. 59, pp. 1107–1122, 2023.

[87] S. R. Malekian, M. R. Hasan, T. Shams, and D. Rajagopal, “Predictive maintenance for

induction motors using machine learning and iot,” in Proceedings of the IEEE Industrial

Electronics Conference (IECON), 2024, pp. 765–770.

[88] G. E. Karniadakis, L. Lu, and P. Perdikaris, “Physics-informed machine learning,”

Nature Reviews Physics, vol. 3, no. 6, pp. 422–440, 2021.

[89] J. Sirignano and K. Spiliopoulos, “Dgm: A deep learning algorithm for solving partial

differential equations,” Journal of Computational Physics, vol. 375, pp. 1339–1364,

2018.

[90] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A

deep learning framework for solving forward and inverse problems involving nonlinear

partial differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707,

2019.

[91] G. E. Karniadakis, L. Lu, and P. Perdikaris, “Physics-informed machine learning,”

Nature Reviews Physics, vol. 3, no. 6, pp. 422–440, 2021.

[92] H. Yang and et al., “Fault detection and diagnosis of induction motors using deep

learning-based models,” Mechanical Systems and Signal Processing, vol. 137, p.

106514, 2020.

[93] T. G. Dietterich, “Ensemble methods in machine learning,” in Proceedings of the First

International Workshop on Multiple Classifier Systems, 2000.

112

[94] J. Brownlee, “Tour of evaluation metrics for imbalanced classification,” https://

machinelearningmastery.com/tour-of-evaluation-metrics-for-imbalanced-classification/,

2020, visited on 11/09/2021.

[95] Kaggle, “Cwru bearing datasets,” https://www.kaggle.com/datasets/brjapon/

cwru-bearing-datasets, 2021, accessed: 2021-07-06.

[96] ——, “Mit short circuit flux and current signals,” https://www.kaggle.com/datasets/

rebecacunha/mit-short-circuit-flux-and-current-signals, 2021, accessed: 2021-07-06.

[97] CWRU, “Welcome to the case western reserve university

bearing data center website,” https://web.archive.org/web/

20210526191015/https://csegroups.case.edu/bearingdatacenter/pages/

welcome-case-western-reserve-university-bearing-data-center-website, 2021,

accessed: 2021-07-06.

[98] D. Miljković, “Brief review of motor current signature analysis,” CrSNDT Journal,

vol. 5, pp. 14–26, June 2015.

[99] S. Afrasiabi, M. Afrasiabi, B. Parang, and M. Mohammadi, “Real-time bearing fault

diagnosis of induction motors with accelerated deep learning approach,” in 2019

10th International Power Electronics, Drive Systems and Technologies Conference

(PEDSTC), February 2019, pp. 155–159.

[100] X. Zhang, Y. Liang, J. Zhou, and Y. Zang, “A novel bearing fault diagnosis model

integrated permutation entropy, ensemble empirical mode decomposition and optimized

svm,” Measurement, vol. 69, pp. 164–179, June 2015, accessed: 2021-07-06. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S0263224115001633

[101] C. B. Vilakazi, “Machine condition monitoring using artificial intelligence: The

incremental learning and multi-agent system approach,” Ph.D. dissertation, University,

2021.

[102] Y. Lei, F. Jia, J. Lin, S. Xing, and S. Ding, “An intelligent fault diagnosis method

using unsupervised feature learning towards mechanical big data,” IEEE Transactions

on Industrial Electronics, vol. 63, no. 5, pp. 1–1, May 2016.

113

https://machinelearningmastery.com/tour-of-evaluation-metrics-for-imbalanced-classification/
https://machinelearningmastery.com/tour-of-evaluation-metrics-for-imbalanced-classification/
https://www.kaggle.com/datasets/brjapon/cwru-bearing-datasets
https://www.kaggle.com/datasets/brjapon/cwru-bearing-datasets
https://www.kaggle.com/datasets/rebecacunha/mit-short-circuit-flux-and-current-signals
https://www.kaggle.com/datasets/rebecacunha/mit-short-circuit-flux-and-current-signals
https://web.archive.org/web/20210526191015/https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website
https://web.archive.org/web/20210526191015/https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website
https://web.archive.org/web/20210526191015/https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website
https://www.sciencedirect.com/science/article/pii/S0263224115001633

[103] A. Shenfield and M. Howarth, “A novel deep learning model for the detection

and identification of rolling element-bearing faults,” Sensors, vol. 20, no. 18,

p. 5112, January 2020, accessed: 2021-07-06. [Online]. Available: https:

//www.mdpi.com/1424-8220/20/18/5112

[104] D. Hoang, X. Tran, M. Van, and H.-J. Kang, “A deep neural network-based feature fusion

for bearing fault diagnosis,” Sensors, vol. 21, no. 1, p. 244, January 2021.

[105] P. Aivaliotis, K. Georgoulias, and G. Chryssolouris, “The use of digital twin for

predictive maintenance in manufacturing,” Journal, 2020.

[106] J. Zhang, Y. Xu, and W. Chen, “A digital twin-based fault diagnosis framework for

centrifugal pumps using transfer learning,” Journal, 2024.

[107] S. Raschka, “About feature scaling and normalization,” https://sebastianraschka.com/

Articles/2014_about_feature_scaling.html, July 2014, accessed: 2021-07-08.

[108] L. Wang and J. Zhang, “Principal component analysis for fault detection in rotating

machinery,” Journal, 2019.

[109] J. Choi and M. Song, “Feature selection and importance in machine learning

applications,” Journal, 2018.

[110] S. M. Goutte, M. Bougouin, and L. Blanchet, “Correlation analysis for feature

engineering in fault diagnosis systems,” Journal, 2022.

[111] A. Brown et al., “Advancements in predictive maintenance for industrial applications,”

Journal of Industrial Engineering, vol. 45, no. 3, pp. 123–135, 2022.

[112] X. Chen et al., “Real-time monitoring systems for electric vehicle motors,” IEEE

Transactions on Vehicular Technology, vol. 70, no. 8, pp. 789–801, 2021.

[113] Y. Li et al., “Limitations of traditional machine learning in fault diagnosis,” Machine

Learning Applications, vol. 8, no. 1, pp. 34–48, 2021.

[114] P. Martinez et al., “Cross-domain applications of predictive maintenance,” Journal of

Engineering Systems, vol. 29, no. 5, pp. 67–79, 2021.

114

https://www.mdpi.com/1424-8220/20/18/5112
https://www.mdpi.com/1424-8220/20/18/5112
https://sebastianraschka.com/Articles/2014_about_feature_scaling.html
https://sebastianraschka.com/Articles/2014_about_feature_scaling.html

[115] V. Singh et al., “Classification of stator winding faults under multiple load conditions,”

IEEE Transactions on Industrial Electronics, vol. 67, no. 9, pp. 456–468, 2020.

[116] J. Smith et al., “Challenges in predictive maintenance for electric vehicles,” Automotive

Engineering Review, vol. 25, no. 6, pp. 112–125, 2020.

[117] H. Wang et al., “Deep learning for fault detection in induction motors,” Neural

Computing and Applications, vol. 34, no. 7, pp. 123–136, 2022.

[118] Y. Zhang et al., “Predictive maintenance strategies for electric vehicles,” Renewable and

Sustainable Energy Reviews, vol. 145, pp. 111–123, 2021.

115

Appendix A

Python Packages Used

The following Python packages were used in this research:

• TensorFlow - Used for deep learning model implementation, including ANN, LSTM,

and PINNs.

• Keras - Used for building neural network models.

• Keras Tuner - Used for hyperparameter tuning.

• Scikit-Learn - Used for traditional machine learning models, preprocessing, feature

scaling, and performance evaluation.

• Matplotlib - Used for visualization of data and model results.

• Seaborn - Used for enhanced visualization, including confusion matrices.

• NumPy - Used for numerical operations and array manipulations.

• Pandas - Used for data loading and manipulation.

• Scikit-Learn Model Selection - Used for splitting datasets into training and testing sets.

• Scikit-Learn Preprocessing - Used for standardizing and normalizing data.

• Scikit-Learn Neighbors - Used for K-Nearest Neighbors (KNN) classifier.

• Scikit-Learn SVM - Used for Support Vector Machine (SVM) classifier.

• Scikit-Learn Ensemble - Used for Random Forest classifier.

116

• Scikit-Learn Tree - Used for Decision Tree classifier.

• Scikit-Learn Naive Bayes - Used for Naive Bayes classifier.

• Scikit-Learn Metrics - Used for accuracy measurement, classification reports, and

confusion matrices.

117

	List of Tables
	Introduction
	Introduction
	Background
	Research Problem
	Research Objectives
	Significance of Research
	Thesis Outline

	Literature Review
	Introduction to Predictive Maintenance in EVs
	Predictive Maintenance for Induction Motors in EV Applications
	Recent Advances in Bearing Fault Diagnosis Using the Case Western Reserve University Dataset
	Research Based on Inter-Turn Short-Circuit Fault Dataset for Induction Motors
	Summary of Identified Gaps and Research Contributions

	Theoretical Background
	Introduction
	Overview of Induction Motors
	Faults in Induction Motors
	Inter-turn Short Circuit Fault
	Bearing Failures
	Rotor Faults

	Predictive Maintenance for Induction Motors
	Introduction to Maintenance Methods
	Reactive Maintenance (Run-to-Failure)
	Preventive Maintenance
	Predictive Maintenance

	Data-Driven Fault Diagnosis Methods

	Machine Learning in Predictive Maintenance
	Applications of Machine Learning
	Types of Machine Learning
	Unsupervised Learning
	Supervised Learning
	Semi-Supervised Learning

	Model Generalization
	Training the Model
	Optimization of the Model
	Artificial Neural Networks
	Activation Functions
	Network Training
	Loss Functions
	Optimization Methods

	Long Short-Term Memory
	Types of Gates in LSTM
	Structure of LSTM
	LSTM for Fault Detection in Induction Motors
	Sequential Data Analysis
	Handling Temporal Dependencies

	K-Nearest Neighbors
	Algorithm
	Advantages
	Disadvantages

	Support Vector Machine
	Algorithm
	Advantages
	Disadvantages

	Random Forest
	Algorithm
	Advantages
	Disadvantages

	Decision Tree
	Algorithm
	Advantages
	Disadvantages

	Naive Bayes
	Algorithm
	Advantages
	Disadvantages

	Conclusion
	Physics-Informed Neural Networks
	Concept of PINNs
	Mathematical Foundation of PINNs
	Relevance of PINNs to Fault Classification in Induction Motors
	Kirchhoff’s Current Law
	Flux Consistency

	Physics-Informed Neural Network Setup for Motor Fault Classification
	Why ODEs Were Not Used
	Conclusion

	Ensemble Methods for Enhanced Fault Detection
	Evaluation Metrics
	Key Evaluation Metrics

	Conclusion

	Methodology
	Introduction
	Proposed Methodology Overview
	Datasets
	CWRU Dataset
	Inter-turn Short-Circuit in Induction Motor Dataset

	Data Preprocessing
	Data Formatting and Labeling
	Feature Scaling
	Outlier and Missing Value Analysis
	Feature Selection and Visualization
	Principal Component Analysis
	Feature Importance Analysis
	Classification Report Comparison
	Correlation Analysis

	Model Training
	Traditional Machine Learning Models
	K-Nearest Neighbors
	Random Forest
	Decision Tree
	Naive Bayes
	Support Vector Machine)

	Performance Metrics
	Deep Learning Models
	Artificial Neural Network
	ANN for Stator Winding Fault Dataset
	ANN for CWRU Dataset

	Long Short-Term Memory
	LSTM for Stator Winding Fault Dataset
	LSTM for CWRU Bearing Fault Dataset

	Physics-Informed Neural Networks
	Architecture Design
	Physics-Informed Loss Function
	Model Compilation and Training
	Performance Evaluation

	Model Evaluation and Comparison

	Results and Discussion
	Introduction
	Data Preprocessing
	Results for the Stator Winding Fault Dataset
	K-Nearest Neighbors
	Support Vector Machine
	Random Forest
	Decision Tree
	Naïve Bayes
	Artificial Neural Networks
	Long Short-Term Memory
	Voting Classifier
	Discussion on Model Performance for Stator Winding Fault Dataset
	No-Load Condition
	Half and Full Load Conditions

	Results for PINNs
	Performance Analysis and Insights

	Results for the CWRU Dataset
	K-Nearest Neighbors
	Random Forest
	Decision Tree
	Naïve Bayes
	Support Vector Machine
	Artificial Neural Network
	Long Short-Term Memory
	Voting Classifier
	Comparative Evaluation of Classifiers on the CWRU Dataset

	Conclusion and Future Work
	Conclusion
	Future Work
	Bibliography

	Python Packages Used

