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Abstract

Electric vehicles (EVs) play a crucial role in reducing carbon emissions, with induction
motors serving as their core component due to their durability, efficiency, and simplicity.
However, induction motors are prone to faults such as stator winding short circuits and bearing
failures, which can lead to unexpected breakdowns, increased maintenance costs, and reduced
reliability. Traditional maintenance strategies, such as reactive and preventive maintenance,
are insufficient for addressing these hidden faults, necessitating the adoption of predictive
maintenance (PdM) frameworks. This research focuses on developing a robust PAM framework
for induction motors in EVs using machine learning (ML) techniques to enhance fault detection
accuracy, reduce downtime, and optimize maintenance schedules.

The study evaluated various ML models, including Artificial Neural Networks (ANNs),
Long Short-Term Memory (LSTM), Support Vector Machine (SVM), K-Nearest Neighbor
(KNN), Decision Trees (DT), Random Forest (RF), Naive Bayes (NB), and Physics-Informed
Neural Networks (PINNs), on stator winding and Case Western Reserve University (CWRU)
bearing fault datasets. Deep learning models, particularly LSTM and ensemble methods like
the voting classifier, outperformed traditional ML models, with LSTM achieving 99.87%
accuracy for binary classification and the voting classifier reaching 100% accuracy under
certain conditions. PINNs, which incorporate motor dynamics, also performed well, achieving
99.32% accuracy for binary classification. Traditional models like Naive Bayes and KNN
struggled with complex fault patterns, emphasizing the need for advanced ML techniques.

This research contributes to the field by integrating machine learning and physics-based
modeling to enhance the reliability and efficiency of induction motors in EVs. The findings
suggest that Al-driven predictive maintenance frameworks can significantly improve motor
health monitoring, reduce maintenance costs, and extend the operational lifespan of EV
induction motors. Future work should focus on real-time monitoring, expanding fault coverage,
enhancing datasets, and leveraging digital twin technology to further refine and validate the

proposed framework.

Keywords: EVs, Induction Motors, Predictive Maintenance, Machine Learning, Fault

Detection, LSTM, PINNs, Stator Winding Faults, Bearing Faults.
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Chapter 1

Introduction

1.1 Background

Electric vehicles (EVs) are becoming increasingly important as they help reduce carbon
emissions and combat climate change. Unlike traditional vehicles powered by internal
combustion engines, electric vehicles are powered by electric motors, which provide numerous
advantages such as lower greenhouse gas emissions, quieter operation, and reduced fuel
consumption. With growing awareness of environmental issues and the push for cleaner, more
energy-efficient transportation, the demand for EVs is rapidly rising. This trend is supported
by advancements in technology and improvements in charging infrastructure, as illustrated by

the rapid growth in the number of EVs shown in Figure[I.1]

Global electric car stock trends, 2010-2023
45
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Sources: IEA analysis based on country submissions and data from ACEA, EAFO, EV Volumes and Marklines.

Figure 1.1: Global electric car stock trend 2010-2023 [[1]].

As the core component of most electric vehicles is the electric motor, which converts

electrical energy into mechanical power to move the vehicle. The induction motor is the most



used motor in electric vehicles because it is durable, efficient, and simple in design. Unlike
other motors, it does not require brushes or commutators, which makes it more reliable and
easier to maintain [2]. However, induction motors can experience various types of faults that
impact their performance, including stator winding failures, rotor faults, and bearing issues.
These faults can result in poor motor performance, system inefficiency, or even complete motor
failure if not detected earlier.

One of the most common issues in induction motors is related to the stator windings, which
can experience problems such as insulation breakdown, overheating, or winding short circuits.
These faults can significantly reduce the motor’s efficiency, leading to power loss, overheating,
or even complete failure if not addressed in time. Unlike external components, stator winding
faults are often hidden and may not present noticeable symptoms until substantial damage has
occurred, making early detection crucial [3]].Alongside stator faults, bearing issues are another
major concern in induction motors. Bearings support the rotor’s rotation, and their failure
can result in excessive vibration, noise, and a decline in the motor’s performance. Common
bearing faults include wear, lubrication failure, and misalignment, all of which can cause severe
motor damage if not identified promptly. Advanced monitoring and diagnostic techniques are
therefore essential to detect both stator and bearing faults early, ensuring that the motor operates
smoothly, efficiently, and reliably over time.

Traditional methods of maintaining motors, such as reactive maintenance, are not ideal
for handling these types of faults. Reactive maintenance means that repairs are only made
when something breaks down. This approach can be expensive due to unplanned downtime
and emergency repairs. It also risks additional damage to other motor components, leading to
even higher costs. Another common approach is preventive maintenance, where maintenance
is performed regularly based on a set schedule. While this can reduce some issues, it does not
address problems that develop between scheduled checks, and it can also lead to unnecessary
repairs. Thus, both reactive and preventive maintenance have their limitations, and a better
solution is needed to reduce costs and prevent unexpected failures.

One such solution is predictive maintenance (PdM), a strategy that uses data to predict
when a motor is likely to fail. Unlike preventive maintenance, which follows a fixed schedule,
predictive maintenance focuses on real-time data to identify early signs of wear or damage.
Using sensors to monitor things like vibration, and current, predictive maintenance systems can

assess the motor’s health at any moment. This helps to detect problems before they turn into



major faults, allowing repairs to be scheduled before a breakdown occurs. This early detection
can save time and money by preventing unexpected repairs and unplanned downtime [4] with
predictive maintenance, the motor’s lifespan is extended, and its performance is optimized.
For predictive maintenance to work effectively, machine learning plays a key role. ML
algorithms can analyze large amounts of data collected by sensors on the motor, looking for
patterns that indicate a potential failure. Algorithms like ANNs, LSTM networks, Random
Forest, SVMs, and KNN detect issues such as stator winding faults or rotor failures using
historical data. Additionally, PINNs incorporate physical laws and motor dynamics into
the learning process, enhancing fault detection accuracy by leveraging domain knowledge.
Ensemble methods, such as voting classifiers, further enhance fault detection by combining
predictions from multiple models to improve accuracy and reliability. This approach reduces
errors, ensures precise monitoring of motor health, and minimizes unexpected failures [3].
The application of machine learning-based predictive maintenance systems offers
significant advantages for electric vehicles. These systems enhance fault detection accuracy,
enabling early identification and resolution of potential issues. By addressing faults promptly,
they help avoid costly repairs, extend the motor’s operational lifespan, and minimize
unexpected downtime. Unlike preventive maintenance, which involves routine checks and
often unnecessary repairs, predictive maintenance relies on real-time data to trigger repairs
only when needed. This approach not only optimizes maintenance schedules but also ensures

the motor operates efficiently and reliably, aligning with the evolving needs of EV technology.

1.2 Research Problem

EVs depend on induction motors for efficient operation, but these motors can experience
faults such as stator winding issues, bearing failures, and rotor problems. Such faults can lead
to unexpected breakdowns, increased maintenance costs, and reduced motor reliability. Early
and accurate fault detection is crucial for preventing operational disruptions and minimizing
maintenance expenses. However, existing research typically addresses specific fault types or
motor models and lacks a comprehensive approach to handle the diverse operational conditions
in real-world EV systems.

This research aims to develop a robust predictive maintenance framework for induction

motors in EVs, leveraging machine learning algorithms to enhance fault detection accuracy



and computational efficiency. By using a comprehensive benchmark dataset and analyzing
various operational scenarios, this study will provide a more effective and efficient solution
for maintaining induction motors in industrial and real-world EV applications. The goal is to

improve motor reliability, reduce downtime, and minimize the total cost of ownership for EVs.

1.3 Research Objectives

General Objective

* To develop a predictive maintenance framework for induction motors in EVs to enhance

fault detection, minimize downtime, and improve reliability.
Specific Objectives

* To design a predictive maintenance framework using machine learning for induction

motors in EVs.
* To utilize unexplored ML algorithms for accurate and precise fault predictions.

* To propose computationally efficient customized deep architectures with efficient

unexploited optimizers.

* To verify the scalability of the proposed method through benchmark datasets.

1.4 Significance of Research

The proposed research is significant as it aims to advance predictive maintenance and fault
detection for induction motors in EVs using machine learning. While existing studies have
contributed valuable insights into fault detection, they often focus on specific fault types or
motor models without providing a comprehensive approach.

This research will address these gaps by developing a robust predictive maintenance
framework that integrates various machine learning algorithms, including ANN, LSTM,
PINNs, SVM, KNN, Decision Trees, Random Forest, and Naive Bayes, along with ensemble
techniques like the voting classifier. By using a comprehensive benchmark dataset and detailed
feature engineering, the research aims to enhance fault detection accuracy and reliability,
providing practical solutions that will improve the safety, performance, and maintenance

efficiency of electric vehicles.



1.5 Thesis Outline

The thesis is organized as follows:

* Chapter 2 presents the literature review of the proposed study. It highlights the research
gaps in the existing literature, citing multiple studies, and includes a table summarizing
the limitations and objectives of prior models and techniques used in fault detection and

predictive maintenance.

* Chapter 3 provides the theoretical background of the study. It discusses the
fundamentals of 3-phase induction motors, stator winding fault mechanisms, and various
techniques, including PINNs and traditional machine learning models, supported by the

underlying mathematical and physical concepts.

* Chapter 4 describes the methodology of the study. It outlines the dataset preprocessing
steps, feature engineering techniques, and the implementation of various machine
learning models. It also explains the evaluation metrics and experimental setup used

to assess the performance of the proposed approach.

* Chapter S presents the results and discussion of the study. It evaluates the performance
of all models, analyzes fault classification results, and discusses the significance of the
findings for predictive maintenance, focusing on enhancing the reliability and efficiency

of 3-phase induction motors.

* Chapter 6 summarizes the study’s key findings, draws conclusions on the effectiveness
of the proposed approach, and suggests potential directions for future research in

predictive maintenance.



Chapter 2

Literature Review

Ensuring the reliability and safety of EVs is critical, particularly for components like
motors, inverters, and battery packs. This literature review synthesizes recent advancements
in fault detection and predictive maintenance for these components, highlighting various

methodologies and their contributions to enhancing system performance and reliability.

2.1 Introduction to Predictive Maintenance in EVs

Predictive maintenance is becoming increasingly essential in the management of EVs,
ensuring the longevity and reliability of their critical components such as batteries, electric
motors, and power electronics. As EV adoption continues to grow, there is a pressing need
to develop robust maintenance systems to reduce downtime, increase operational efficiency,
and enhance vehicle performance. By utilizing data analytics, machine learning, and advanced
sensor technologies, predictive maintenance can identify early signs of component degradation,
allowing for proactive interventions.

The study by [6] explores the application of machine learning, specifically SVM, in
combination with Discrete Wavelet Transform (DWT) for fault diagnosis in Brushless DC
(BLDC) motors. This hybrid approach achieved a fault diagnosis accuracy of 98.67%,
outperforming other traditional methods such as KNN with DWT (97.49%), showcasing its
potential for EV motor fault detection.

Additionally, the research presented by [7]] discusses a hybrid fault diagnosis approach
using SVM and Naive Bayes classifiers with optimization techniques to detect faults in BLDC

motor drives. This method achieved an impressive accuracy of 98.8%, significantly improving



the ability to identify faults such as open and short circuits in EV motors.

As EV technology evolves, monitoring and maintaining battery health has also become a
priority. Murgai et al. [8] address the issue of battery degradation using a Scientific Machine
Learning (SciML) approach, integrating domain knowledge with neural networks to enhance
predictive accuracy. Their model reduces the data requirements for accurate predictions and
forecasts of battery degradation, ultimately extending battery life and optimizing long-term
energy management.

Other techniques like LSTM networks have also been applied to PAM. Zhang et al. [9] used
LSTM networks with vibration monitoring to detect stator faults in BLDC motors, achieving a
high accuracy of 97.10%.

In addition to motor and battery issues, temperature prediction for Permanent Magnet
Synchronous Motors (PMSMs) has also been studied. The study in Energy Conversion and
Management [10] used machine learning methods like random forest and boosting algorithms
to predict motor temperature with minimal sensors, offering a cost-effective solution to improve
system performance.

Machine learning has also been used for broader condition monitoring of electrical
machinery. The research presented by [11] discussed the use of time-series analysis and
Principal Component Analysis (PCA) for feature extraction, leading to improved reliability
and cost savings in machinery maintenance.

For DC motors, [[12]] combined machine learning with real-time sensor data to enhance fault
detection accuracy and operational efficiency. Similarly, [13] presented a system that combines
machine learning, [oT, and predictive modeling to monitor motor parameters and predict failure
times, offering better maintenance strategies.

Deep learning approaches have also shown promise. The research in Neural Computing
and Applications [14] focused on estimating the Remaining Useful Life (RUL) of BLDC
motors using a recurrent neural network (RNN) with attention mechanisms, providing accurate
predictions for real-time monitoring.

In the public transport sector, [13] applied machine learning and fuzzy logic to real-time
IoT data for predictive maintenance. This approach effectively detected faults, improving safety
and reliability in public vehicles.

Industry 4.0 has further advanced predictive maintenance techniques. Author in [16]]

introduced optimization methods like the Jaya algorithm and Sea Lion Optimization to forecast



maintenance needs, while [17] combined machine learning and data analytics for real-time
monitoring and early failure detection.

Finally, [[18] explored using ANNSs, cloud technology, and IoT platforms for fault detection
in BLDC motors. This study improved energy management and early fault detection, enhancing
motor performance.

In conclusion, predictive maintenance is revolutionizing the EV industry by ensuring
the reliability and performance of critical components. With tools like machine learning,
advanced sensors, and innovative diagnostic techniques, PdM is helping EVs become more
efficient, reliable, and cost-effective. By moving from reactive to proactive maintenance, EV
operators can reduce costs, improve safety, and support a future where electric mobility is more

dependable and sustainable.

2.2 Predictive Maintenance for Induction Motors in EV
Applications

The application of predictive maintenance in induction motors for EV systems is
becoming increasingly important due to the need for high reliability, safety, and cost-effective
maintenance. Several studies have focused on using advanced ML techniques to improve
the fault detection and diagnosis process, ultimately enhancing the performance of EVs.
These studies highlight various methods, including feature extraction, fault classification, and
the integration of real-time data, to optimize motor health and minimize downtime in EV
applications.

In study [19], Gundewar, Kane, and Andhare developed a novel method to diagnose
broken rotor bar (BRB) faults in IMs using time-domain grayscale current signal imaging
(TDGCI) combined with a convolutional neural network (CNN). This method eliminates the
need for manual feature extraction by automatically extracting features from 2D grayscale
images generated from 1D current signals. The approach achieved an impressive classification
accuracy of 99.58%, demonstrating its potential for accurate fault detection in EV motor
systems.

The work in [20] focuses on designing a three-phase IM for EV applications and employs
various ML algorithms to diagnose faults under different load conditions. The study considers

fault types like short circuits, high-resistance connections, and open-phase circuits. Algorithms



such as Support Vector Machine (SVM), K-Nearest Neighbors (k-NN), Random Forest (RF),
and Deep Learning (DL) were tested, achieving fault detection accuracy levels ranging from
98% to 100%. This work illustrates how ML can be used to enhance the reliability and fault
tolerance of motors in EV applications, ultimately contributing to reduced maintenance costs
and better system performance.

In [21], researchers explored the application of multiple ML models to diagnose rotor
and bearing faults in IMs. The study used vibration data to test various models such as
SVM, Multilayer Neural Networks (MNN), Convolutional Neural Networks (CNN), Gradient
Boosting Machine (GBM), and XGBoost. The results indicated that SVM and CNN achieved
the highest diagnostic accuracy, while XGBoost was the fastest in terms of computation.
These findings show how machine learning can facilitate real-time fault diagnosis in EV motor
systems, allowing for timely interventions and enhanced system reliability.

In their research [22]], Turza et al. tested ML models to detect single-phase faults in IMs
under different operational conditions. Their study achieved a high accuracy of 99.9% using
the Random Forest algorithm, demonstrating its robustness in fault detection. This highlights
the capability of ML techniques to detect faults with high precision, which is crucial for
maintaining the operational efficiency of IMs in EVs.

Amit Rai et al. [23] utilized ANN for fault prediction in IMs by analyzing vibration and
current signals under varying rotational speeds. The study found that features such as standard
deviation played a key role in improving prediction accuracy. This approach shows how ANN
can be applied to predict faults and improve the reliability of IMs in EV applications.

In [24], the authors discuss the use of machine learning techniques for PAM in EV systems.
By applying supervised, semi-supervised, and reinforcement learning methods, they were
able to classify various faults, thus enhancing the overall system reliability and minimizing
the likelihood of breakdowns. This approach further supports the case for using predictive
maintenance to extend the lifespan of EV motors and reduce maintenance costs.

Karolina Kudelina et al. [25] presented a comparative analysis of machine learning models
for diagnosing broken rotor bars in IMs. Their study, set within the framework of Industry 4.0,
integrated [oT with physical systems to improve predictive maintenance strategies. Real-world
data from induction machines were used to compare model performance, offering valuable
insights into the development of more effective PdM algorithms.

The study in [26] provides an extensive review of fault detection and diagnosis (FDD)



methods in EVs, covering both traditional and emerging data-driven techniques. This review
emphasizes the importance of using machine learning to enhance the safety and reliability of
EV systems, demonstrating how data-driven PdM approaches can significantly improve fault
detection capabilities.

Finally, Mohamed et al. [27] proposed a hybrid ML model for diagnosing faults in IMs
through thermal image analysis. Their study used infrared imaging combined with advanced
feature selection techniques to identify mechanical faults. The model demonstrated high
classification accuracy and sensitivity, showing its potential for broader applications in PdAM
and fault detection in EV motors.

These studies collectively highlight the growing role of predictive maintenance in induction
motors for electric vehicles. The integration of machine learning algorithms, real-time data
monitoring, and advanced fault detection methods are proving essential in ensuring motor

reliability, reducing maintenance costs, and optimizing the performance of electric vehicles.

2.3 Recent Advances in Bearing Fault Diagnosis Using the

Case Western Reserve University Dataset

The diagnosis of bearing faults in rotating machinery has been extensively studied using
the Case Western Reserve University (CWRU) dataset, which serves as a benchmark for
validating various approaches. Researchers have explored diverse methods to improve the
accuracy, efficiency, and robustness of fault detection. Yoo et al. [28] introduced a
lightweight CNN model that focuses on dimensionality reduction and low computational
costs. By downsampling vibration signals and converting them into spectrograms, their
model demonstrated high classification accuracy while maintaining efficiency, setting a strong
foundation for further exploration in this domain.

Building upon this foundation, Saghi et al. [29] addressed the limitations of single-scale
CNNs by employing a multi-scale CNN architecture combined with a bidirectional gated
recurrent unit (GRU). This hybrid approach captured both local and global features of vibration
signals, making the model resilient even in noisy conditions.

Further advancing the field, Huang et al. [30] introduced a Wide Deep Convolutional Neural
Network (WDCNN) with Squeeze-and-Excitation (SE) mechanisms, which significantly

improved feature learning and diagnostic precision, achieving an accuracy of 99% on the
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CWRU dataset. Complementary approaches by Bornea et al. [31] utilized the Hilbert-Huang
Transform for feature extraction and applied machine learning algorithms like Random Forest
and KNN for classification. Their study emphasized the importance of balanced datasets and
effective feature selection for accurate fault detection. Finally, Sawai et al. [32] demonstrated
the potential of ensemble learning, combining RF, SVM, and ANN as base models with
a gradient boosting classifier. This method achieved a commendable accuracy of 97.7%,
showcasing the advantages of leveraging multiple classifiers to enhance diagnostic reliability.
These studies collectively highlight the evolution of fault diagnosis techniques, from
lightweight CNN models to advanced hybrid and ensemble approaches. The integration of
traditional signal processing methods with deep learning has proven particularly effective,
making these techniques highly applicable in industrial scenarios where accurate and robust

fault detection is critical.

2.4 Research Based on Inter-Turn Short-Circuit Fault
Dataset for Induction Motors

Afriyie [33] explored predictive maintenance for three-phase induction motors, focusing on
inter-turn short circuit fault detection and prediction. The study utilized stator current data and
MATLAB’s predictive maintenance toolbox to develop classification models. SVM and KNN
algorithms were compared under varying load conditions (no-load, half-load, and full-load).
SVM was identified as more effective in consistently detecting and predicting faults across
different load scenarios.

The literature review is summarized in the following table.
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Table 2.1: Literature review summary with research gaps

Year | ML Models | Dataset Description Research Gap
Used

2020 | LSTM Vibration Applies advanced | Limited studies

monitoring data | vibration  monitoring | on integrating

and fault conditions | systems and LSTM | LSTM with

for BLDC motors networks for stator | real-time monitoring
fault classification in | systems in industrial
BLDC motors. applications.

2020 | Attention-based| Voltage degradation | Utilizes an | Further exploration
Neural data and  fault | attention-based neural | needed on
Network conditions for | network to estimate the | generalization

electric motors remaining useful life of | across different
electric motors. motor types.

2022 | KNN, Data for public | Explores predictive | Lacks application in
Random transportation maintenance based | electric vehicle
Forest vehicles on ML for public | components

transportation vehicles. | specifically.

2022 | Hybrid ML | Fault diagnosis data | Investigates hybrid | Few studies
Models for BLDC drives machine learning | have assessed

models for fault | hybrid models’

diagnosis in BLDC | performance

drives. in real-time
applications.

2023 | SVM, k-NN, | Simulation data for | Focuses on fault | Need for
MLP, RF, DT, | healthy and faulty | diagnosis for a SHP | comprehensive
GB, XGBoost, | conditions induction motor in EVs | testing in real-world
DL under variable loads, | operational

achieving 98-100% | conditions.
accuracy.
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Year | ML Models | Dataset Description Research Gap
Used

2023 | KNN, Data for DC motor | Develops a predictive | More research is
Random fault detection maintenance algorithm | needed on feature
Forest for fault detection and | selection techniques

classification in DC | to improve model
motors. accuracy.

2023 | Random Healthy and faulty | Achieved a 99.9% fault | Application of
Forest motor data using | diagnosis accuracy by | these techniques

d-axis and g-axis | focusing on operational | to other types of
conversions modes of IMs and | motors remains
statistical features like | underexplored.
mean and standard
deviation.

2023 | Various Thermal image data | Proposes a machine | Exploration of

classifiers for motor faults learning model for | multi-sensor  data
diagnosing induction | integration for
motor defects through | enhanced fault
thermal image analysis, | diagnosis is limited.
classifying multiple
fault types.

2023 | Back Magnetic  leakage | Analyzes inter-turn | More robust models
Propagation flux data for fault | short-circuit faults | are needed for better
Neural conditions in electric motors, | fault prediction
Network achieving 88.1% | under varying load

accuracy with BPNN. conditions.
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Year | ML Models | Dataset Description Research Gap
Used
2023 | Comparative Real data from | Presents a  signal | Need for
ML Models induction machines | spectrum-based comparative studies
approach for predictive | on the efficacy of
maintenance in | different models in
induction machines, | industrial settings.
with model validation
on real data.

2023 | CNN Grayscale  current | Achieves 99.58% | Limited exploration
signal 1images of | accuracy in  fault | of CNN in diverse
rotor conditions classification of IM | operational

using CNN on 2D | environments of
grayscale images from | electric motors.
TDGCI, surpassing

traditional methods.

2023 | LSTM IoT-integrated Focuses on predictive | More studies are
industrial machine | maintenance of | needed on the
data industrial machines | effectiveness of

using ML and IoT data. | LSTM in real-world
conditions.

2023 | Decision tree, | EV battery | Explores ML | Lack of

RF, KNN maintenance data approaches for battery | comprehensive
maintenance prediction | studies on
in EVs. integrating  battery

health with overall
vehicle diagnostics.

2024 | SVM, Temperature and | Presents ML models for | Limited research

XGBoost, motor specifications | temperature prediction | on multi-parameter
Linear & | for EVs in EVs, using features | predictive  models
Polynomial like  ambient and | for EVs under

Regression coolant temperatures. varying conditions.
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Year | ML Models | Dataset Description Research Gap
Used
2024 | ANN, SVM, | Motor drive and | Discusses fault | Exploration
DT, RF battery system data | detection and diagnosis | of combined
for EVs in EV motor drives and | methodologies for
battery systems using | enhanced accuracy
various ML algorithms. | in fault detection is
required.

2024 | RF, SVM, | EV data with | Focuses on fault | Future work

KNN, DT, | multiple fault types | detection and | needed on model

Naive Bayes, | and conditions classification in EVs | interpretability and

Voting using a variety of ML | explainability  for
models. practitioners.

2024 | ANN Vibration and | Uses ANN for fault | Investigation
current signals at | prediction in IM, with | into real-time
multiple rotational | high accuracy in using | implementation
speeds standard deviation as a | ANN for predictive

key statistical feature. maintenance
industrial settings is
lacking.

of and Research

2.5 Summary Identified Gaps

Contributions

Despite significant progress in the field of electric motor fault diagnosis, existing literature
reveals several limitations. Many studies focus on diagnosing specific fault types, often
neglecting a unified approach for comprehensive fault classification. Additionally, the use
of advanced or hybrid deep learning models such as LSTM and Physics-Informed Neural
Networks (PINNs) remains limited, especially for electromechanical fault prediction in

induction motors. Furthermore, most prior works rely solely on either current or vibration

signals, reducing diagnostic robustness. A notable gap is the absence of physics-based learning
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frameworks that embed motor dynamics directly into model training. Also, many existing
approaches are tailored to non-induction motors, making them less applicable to industrial
three-phase induction motor systems.

To address these challenges, this study proposes an integrated fault diagnosis framework
that combines both vibration and current signals. Covers two types of critical faults, bearing
faults and short-circuit faults in the stator winding, under various load conditions. Multiple
traditional machine learning models and deep learning models including LSTM and PINNs are
employed and compared. Most importantly, the study introduces PINNs into the predictive
maintenance domain, offering improved fault classification by incorporating motor physics
into the learning process. This comprehensive approach enhances diagnostic accuracy, model

robustness, and practical applicability for industrial use cases.
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Chapter 3

Theoretical Background

3.1 Introduction

This chapter presents the theoretical foundation for understanding the various concepts
central to the development of a predictive maintenance framework for induction motors in
EVs. The chapter explores the working principle of induction motors, common fault types,
and maintenance strategies. Additionally, it delves into the application of machine learning
techniques for fault detection and predictive maintenance, with a focus on machine learning
algorithms, feature engineering, and deep learning models [34]. Predictive maintenance,
particularly in the context of induction motors used in EVs, has emerged as an effective strategy

to optimize motor performance and reduce operational downtime [35].

3.2 Overview of Induction Motors

Induction motors are widely used in EVs due to their robustness, high efficiency, and simple
construction. Unlike other types of electric motors, induction motors do not require brushes or
commutators, which reduces mechanical complexity and enhances reliability. In an induction
motor, alternating current (AC) supplied to the stator generates a rotating magnetic field that
induces a current in the rotor. This interaction between the stator and rotor produces mechanical
torque, which drives the vehicle’s wheels [36]].

The motor consists of several key components that work together to ensure its operation.
The stator, which is the stationary part of the motor, is responsible for creating the magnetic

field that drives the motor. The rotor, on the other hand, is the rotating component that interacts
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with the magnetic field generated by the stator, producing the mechanical torque required for
operation. Additionally, bearings play a crucial role by supporting the rotor and minimizing
friction during its rotation, ensuring smooth and efficient functioning of the motor. The type of
induction motor is derived from the type of rotor used. Hence, an induction motor can be either
a squirrel-cage or wound type[37]. Figure [3.1] shows the schematic drawing of an induction

motor, illustrating these components [38].

Stator
winding ends

Eotor
Figure 3.1: A schematic representation of an induction motor

This simple yet efficient design is why induction motors are commonly used in EVs for

propulsion [39].

3.3 Faults in Induction Motors

Induction motors are susceptible to severe failures if faults are not identified at an early
stage. These faults can be categorized as electrical, mechanical, or environmental and may
occur both internally and externally. Some common faults in induction motors include
inter-turn short circuits in stator windings, bearing defects, end ring failures, and broken rotor

bars[38].

3.3.1 Inter-turn Short Circuit Fault

This fault occurs when the insulation between conductors at different potentials within the

same slot is compromised, leading to unintended current flow [40]].

3.3.2 Bearing Failures

Bearing failures are categorized into two types:
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* Single Point Fault: Caused by motor overloading, which leads to a fatigue crack on the

bearing surface.

* Generalized Roughness Fault: This fault arises due to the deformation of the bearing

surface, often resulting from insufficient lubrication or misalignment [41]].

3.3.3 Rotor Faults
Rotor faults encompass a range of issues, including:

* Broken Rotor Bars: This occurs due to thermal stress, fatigue, or manufacturing defects.

Broken rotor bars can lead to reduced torque, excessive heating, and vibrations.

* End Ring Faults: These faults are associated with the end rings connecting the rotor
bars, caused by thermal or mechanical stress, leading to reduced motor efficiency and

abnormal vibrations [42]].

Studies by the Electric Power Research Institute (EPRI) reveal that bearing failures are
responsible for 42% of induction motor faults. Inter-turn short circuits of the stator windings
account for 31%, while rotor-related faults, including end ring failures and broken rotor bars,
comprise 9% of reported cases [43]].

The classification of these faults is illustrated in Figure [3.2] which provides a visual
representation of the various types of faults in an induction motor [38]].

Induction Motor Faults

Electrical Faults Mechanical Faults
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/ \
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Winding Faults \ ‘ Faults Bearing Faults
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Figure 3.2: Classification of Faults in Induction Motors

Early detection of these faults is crucial for maintaining the motor’s efficiency and

reliability, as undetected faults can cause progressive damage leading to unplanned downtime
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and expensive repairs [44].

3.4 Predictive Maintenance for Induction Motors

Predictive maintenance is a data-driven approach that aims to predict equipment failures
before they occur, minimizing downtime and costs. For induction motors, which are vital
in industrial operations, PdM uses sensors and analytics to monitor performance and detect
early signs of wear or faults. This method bridges the gap between reactive and preventive
maintenance, offering a more efficient and cost-effective solution. This section will explore the

foundational concepts of maintenance methods and their evolution toward predictive strategies.

3.4.1 Introduction to Maintenance Methods

Maintenance is an essential aspect of ensuring the reliability, performance, and operational
efficiency of induction motors. It can be broadly categorized into three methodologies: reactive

maintenance, preventive maintenance, and predictive maintenance [45-47]].

3.4.1.1 Reactive Maintenance (Run-to-Failure)

This approach involves repairing or replacing equipment after it has failed. Although
simple, reactive maintenance is costly due to unplanned downtime and potential damage to
surrounding systems. See Figure [3.3|for an illustration of this approach [48].

Machine 1
health

Figure 3.3: Reactive maintenance

3.4.1.2 Preventive Maintenance

This method involves routine inspections and maintenance at scheduled intervals to prevent

failure. While preventive maintenance improves reliability compared to reactive methods, it
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can result in unnecessary repairs and associated costs . An overview of this approach is shown

in Figure [3.4] [48].

A
Machine

health \|E - -

?lme

Figure 3.4: Preventive maintenance

3.4.1.3 Predictive Maintenance

Predictive maintenance leverages sensor data and advanced analytical methods to predict
when equipment is likely to fail. By identifying potential issues early, PAM optimizes
maintenance schedules, minimizes downtime, and reduces repair costs . This concept is

illustrated in Figure [3.5] [48].

Machine
health i
/-.\ Optimum time
- do maintenance

X Predicted failure

Time

Figure 3.5: Predictive maintenance

Predictive maintenance, which is the focus of this study, uses a combination of sensor data
and machine learning models to identify and classify faults before they escalate into significant

failures. A comparison of different maintenance strategies is shown in Figure [3.6|[49].

3.4.2 Data-Driven Fault Diagnosis Methods

Modern predictive maintenance strategies often employ data-driven fault diagnosis methods
to achieve high accuracy and reliability. These methods rely on sensor data which is analyzed

using machine learning and deep learning models [S0]].
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Figure 3.6: Maintenance Strategies

3.5 Machine Learning in Predictive Maintenance

Machine learning is a branch of artificial intelligence that focuses on algorithms capable

of automatically identifying patterns in input data. These patterns enable the system to make

informed predictions on future data [49, [51]. In contrast to traditional programming, where

rules are explicitly defined by the developer, machine learning models learn to identify patterns

and relationships from data, deriving rules based on past iterations and outcomes (see Figure

[B.7][49.152]).

Rules Classical

Data —=| Programming

—= Answers

Data ! Machine

Answers —s learning

—= Rules

Figure 3.7: Machine Learning Paradigm

3.5.1 Applications of Machine Learning

Machine learning algorithms are especially useful for tasks that are challenging for

conventional programming approaches, such as:

¢ (Classification
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* Regression
* Machine Translation
* Anomaly Detection

These algorithms are generally categorized into three major types: unsupervised learning,
supervised learning, and semi-supervised learning, depending on the nature of the available

data [49].

3.5.2 Types of Machine Learning

Machine learning can be broadly categorized into different types based on the nature of
data and learning processes. Each type has unique characteristics and is suited for specific
applications. The primary types include supervised learning, unsupervised learning, and

semi-supervised learning [49].

3.5.2.1 Unsupervised Learning

Unsupervised learning deals with data that is unlabeled, meaning there is no explicit
mapping from inputs x to outputs y, with the dataset being represented as {xi}ﬁ\': ;- The primary
aim of unsupervised learning is to explore the data’s underlying probability distribution and
uncover patterns or structures within it [49]]. This approach is most used for clustering tasks,
where the goal is to group data based on shared characteristics and identify latent factors

inherent in the dataset [53]].

3.5.2.2 Supervised Learning

In contrast, supervised learning relies on labeled data, where each input x is associated with
a corresponding output y (also referred to as the target), as represented by {(x;,y;)}Y ;. The
goal here is for the model to learn how to predict the output y from unseen inputs x in the future

[S4]. Supervised learning problems are further divided into two categories:

* Classification: The model learns to map inputs x to discrete output classes y €
{1,2,...,C} where C represents the number of classes. If there are only two possible
classes, it’s termed binary classification, while multi-class classification applies when

there are more than two classes[49].
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* Regression: The model maps inputs x to continuous, real-valued outputs y € R.

3.5.2.3 Semi-Supervised Learning

Semi-supervised learning strikes a balance between supervised and unsupervised learning
by using a mix of labeled and unlabeled data. This method is particularly useful when only a
small portion of the data is labeled, and the rest remains unlabeled. Semi-supervised models use
both types of data to predict y from x, effectively combining the strengths of both unsupervised

and supervised approaches [49} 54]].

3.5.3 Model Generalization

The primary goal of machine learning models is to generalize effectively to new, unseen
data, a capability referred to as the model’s capacity. If a model performs poorly on both
training and unseen data, it is considered to be underfitting. Conversely, if it excels on training
data but struggles with new data, it is said to be overfitting. Achieving an optimal balance
between underfitting and overfitting is crucial for ensuring both accurate predictions and strong
generalization. This concept is visually summarized in Figure [3.§] [49], which illustrates the

trade-off between underfitting and overfitting in model generalization.

Underfitting Appropriate capacity Overfitting

Figure 3.8: Model Generalization.

3.5.4 Training the Model

For a machine learning model to generalize well, it must undergo a training process. During
training, the model’s predictions y are compared with the actual values y, and the prediction

error is calculated. The model then learns and improves by minimizing this error. The error is
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typically quantified using a loss function, and various loss functions are available, each focusing

on different aspects of model performance[49].

3.5.5 Optimization of the Model

The process of adjusting the model to minimize the prediction error is known as the
optimization algorithm . The choice of loss function and optimization method, along with
their respective internal parameters, directly influences the model’s performance [49].

In predictive maintenance, machine learning algorithms are applied to analyze sensor data
and detect faults early, preventing failures and reducing downtime. Various machine learning
techniques have shown promise in the field of predictive maintenance. These techniques

include ANNs, LSTM networks, KNN, and SVM. Below, we explore these techniques.

3.5.6 Artificial Neural Networks

ANNSs are computational models inspired by the structure and function of the human brain.
They consist of interconnected processing units, known as neurons, which apply nonlinear
transformations (activation functions) to input data, referred to as features. Each feature is
assigned a weighted value that reflects its significance in the learning process.

Deep Learning, a specialized branch of Machine Learning, extends ANNs by incorporating
multiple hidden layers. This allows the model to recognize complex patterns and extract
meaningful insights from data. It leverages hierarchical representation learning, where deeper
layers progressively capture more abstract features, enhancing the model’s ability to generalize

and make accurate predictions [S3]].

3.5.6.1 Activation Functions

Activation functions are essential in determining how input data is transformed and the
corresponding output is generated. Different types of activation functions are used based on
the specific application [56]. While hidden layers in a neural network typically utilize a single
activation function, the output layer often employs a distinct function suited to the given task
or prediction [S7].Hidden layers, positioned between the input and output layers, pass their
processed outputs to subsequent layers [49]]. While Artificial Neural Networks (ANNs) can

have zero or more hidden layers, deep neural networks generally consist of at least three hidden
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layers [38]]. Below are some commonly used activation functions:

* Linear Function: The simplest form of activation function, scaling the input x by a

constant ¢ (Equation [3.1)) [59].
fx)=c-x 3.1)

* ReLU (Rectified Linear Unit): This function outputs O for negative values and retains
positive values unchanged, without any upper bound equation [3.2] ReLU is widely used

due to its efficiency across various applications [60]].

f(x) = max(0,x) (3.2)

* Softmax Function: Produces probability values for target labels, ensuring that all

probabilities sum to 1 equation [3.3][61]].

exi

f(Xi):W

(3.3)

* Sigmoid Function: A nonlinear function that maps inputs to a range between 0 and 1,

making it effective for classification tasks equation [3.4] [62].

fx) = (3.4)

* Tanh Function: Similar to the sigmoid function but maps inputs to a range between -1
and 1 equation [3.5][63].
f(x) = tanh(x) (3.5)

3.5.6.2 Network Training

Deep learning models improve their predictions through a process known as gradient
descent. This iterative optimization method adjusts model parameters to minimize a predefined
loss function . The initial weights are typically set randomly, and gradient descent computes the
derivative of the loss function with respect to the weights in each layer [64]]. These weights are

then updated iteratively to reduce the error, following the process of backpropagation Figure

[3.9/[49].
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Figure 3.9: Gradient Descent

The success of the training process depends on several hyperparameters, such as the
learning rate and batch size. The learning rate determines the step size for weight updates.
A small learning rate slows convergence, while a large learning rate risks overshooting the
minimum and failing to converge. The batch size refers to the number of training samples used
for updating weights. Small batch sizes improve accuracy but increase computational cost,
whereas large batches are less computationally intensive but may sacrifice accuracy [63].

Training and evaluating a model typically involves splitting the dataset into subsets for
training, validation, and testing. The training set is used for learning, the validation set
assists in hyperparameter tuning, and the test set evaluates final model performance. K-fold
cross-validation is a popular method where the dataset is divided into k subsets, and the model

is trained k times, each time using a different subset for validation [49, 66].

3.5.6.3 Loss Functions

Loss functions quantify how well a model performs by measuring the error between
predicted and actual values. The goal of training is to minimize the loss function, as lower

errors indicate better model performance [49, 67]. Common loss functions include:

* Mean Absolute Error (MAE): Measures the average absolute difference between
predicted values y; and actual values y;, treating deviations equally (Equation[3.6). MAE

1s not sensitive to outliers [68]].

1 Y .
MAE = 5} [yi =il (3.6)
i=1
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* Mean Squared Error (MSE): Calculates the mean of squared differences between

predicted and actual values. It penalizes larger deviations more heavily due to squaring

(Equation [69].

1 N

MSE = N Y (i — i) (3.7)
i=1

* Categorical Cross-Entropy: Categorical Cross-Entropy is a loss function commonly
used for multi-class classification tasks, where the model assigns a single label from
multiple possible classes. It measures the discrepancy between the predicted probability

distribution and the actual class labels, guiding the model to improve its predictions
(Equation [3.8) [70].

N
CCE = - y;log(y)) (3.8)
i=1

* Binary Cross-Entropy: Applicable to binary or multi-label classification tasks,

selecting one label out of two options for each attribute (Equation [3.9) [71]].

N
BCE = — ) [yilog(¥i) + (1 —yi)log(1 — ;)] (3.9)

i=1
Selecting the appropriate activation function for the output layer is critical to ensure
compatibility with the loss function. Table 3.1) outlines common combinations for different

problem types [49].

Problem Type Activation Function
Regression Linear
Binary Classification Sigmoid
Multi-Class Classification Softmax

Table 3.1: Common Activation Functions for Different Problem Types

3.5.6.4 Optimization Methods

Optimizing model weights involves using algorithms that minimize the loss function.
These algorithms vary in how they update weights, incorporating techniques like momentum
(considering previous updates) and learning rate decay (reducing the learning rate over time).

Common optimization methods include:

 Stochastic Gradient Descent (SGD): Updates model weights using either a single data

sample per iteration (true SGD) or a small subset of samples (mini-batch SGD). True
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SGD introduces more noise but can help escape local minima, while mini-batch SGD

balances computational efficiency and convergence stability [72].

» Adagrad: Adapts the learning rate based on gradient information for each parameter,

allowing better handling of sparse data [[63]].

* RMSProp: Maintains a moving average of squared gradients to normalize parameter

updates, stabilizing training on noisy datasets [64].

These optimizers, along with appropriate hyperparameters, play a key role in effective

model training[37]].

3.6 Long Short-Term Memory

LSTM is a specialized type of Recurrent Neural Network (RNN) developed to overcome
limitations of traditional RNNs, particularly the vanishing gradient problem. LSTMs are
designed to retain long-term dependencies in sequential data, making them well-suited for
applications such as time series analysis, speech recognition, and language modeling. Unlike
feed-forward neural networks, LSTMs incorporate feedback loops, enabling them to process
sequential information effectively. Their architecture includes memory cells and gating
mechanisms that regulate information flow, determining what should be retained or discarded
at each time step. This selective memory capability allows LSTMs to focus on relevant data
while mitigating the challenges faced by standard RNNss.

LSTMs are extensively used in various domains, including time series forecasting, speech
recognition, natural language processing, video analysis, and healthcare. In predictive
maintenance, they analyze sensor data over time to detect anomalies and predict potential
faults in industrial machinery, such as pumps, motors, and turbines. This early fault detection
capability helps prevent failures, reduces maintenance costs, and minimizes downtime,

ultimately improving operational efficiency [73]].

3.6.1 Types of Gates in LSTM

An LSTM contains three primary gates:input gate, forget gate, and output gate that control

the flow of information into and out of the memory cell.
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The input gate regulates the incorporation of new information into the memory cell. By
analyzing both the current input and the previous hidden state, it determines which data should
be retained for future processing, ensuring that only relevant information is stored. The
forget gate decides what information should be discarded, removing unnecessary data from
the memory to maintain efficiency. The output gate manages the flow of information from the
memory cell to the output of the LSTM, selecting which parts of the stored information should
be passed on to the next layer or time step.

All three gates are activated using sigmoid functions, which output values between O and 1.
These gates are trained through backpropagation, allowing the network to learn when to open

or close them based on the input and the hidden state [73]].

3.6.2 Structure of LSTM

An LSTM network is composed of multiple LSTM cells, each equipped with three key
gates: the input gate, forget gate, and output gate. These gates regulate the flow of information,
allowing the network to selectively retain or discard data at each time step, which helps in
capturing long-term dependencies in sequential data.

At the core of each LSTM cell is a memory cell that stores information from previous time
steps, influencing the current output. This memory mechanism enables LSTMs to effectively
process sequential information over extended periods. The output from each LSTM cell is
passed to the next, facilitating continuous learning and analysis across multiple time steps [[73]].

Due to their ability to remember and selectively forget information, LSTMs are widely used

in tasks such as time series forecasting, language modeling, and sequential data prediction [73]].

3.6.3 LSTM for Fault Detection in Induction Motors
3.6.3.1 Sequential Data Analysis

Motor data, such as vibration signals and current readings, is often collected over time. This
makes the problem inherently sequential, where the state of the motor at a given time depends
on its previous states. LSTM is specifically designed to capture long-term dependencies in

sequential data, which makes it well-suited for time series data from motors.

30



Updated cell state to help

I _ Lo
Hidlden State ‘-’ \I [/. ‘_\] I{ W Y
Tl et
4 | | Bogat] B! I |
e hs i I T == Il
o NNt
——— —|—\ - — — — — — — -

Figure 3.10: Structure of LSTM

3.6.3.2 Handling Temporal Dependencies

Faults in induction motors may not manifest immediately but develop over time. For
example, a winding short circuit fault could cause gradual changes in the motor’s current or
vibration pattern. LSTM can learn these temporal dependencies and identify patterns that

indicate the onset of a fault, even if the fault is subtle at first.

3.7 K-Nearest Neighbors

KNN is a simple, instance-based learning algorithm used for both classification and
regression tasks. It operates on the principle of proximity or similarity in the feature space.
The basic idea behind KNN is that a data point is classified based on the majority class of its

neighbors in the feature space [[74].

3.7.1 Algorithm

* Choose the number of neighbors (K): Select the number of nearest neighbors (K) you

want to use for making the prediction.

* Distance metric: Calculate the distance between the input data point and the points
in the training set. Common distance metrics are Euclidean, Manhattan, or Minkowski

distance.

* Vote: For classification, the data point is assigned to the class that most of its K nearest
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neighbors belong to. For regression, the average of the K nearest neighbors’ values is

taken.

3.7.2 Advantages
» Simple to implement.
* Non-parametric: does not make any assumptions about the underlying data distribution.

¢ Effective for smaller datasets with fewer dimensions.

3.7.3 Disadvantages

* Computationally expensive as the dataset grows.
 Sensitive to noisy data and irrelevant features.

* Poor performance on high-dimensional data (curse of dimensionality).

3.8 Support Vector Machine

SVM is a supervised machine learning model used primarily for classification tasks but
can also be used for regression. SVM works by finding the hyperplane that best separates the
classes in the feature space. The goal is to find a decision boundary that maximizes the margin

between the two classes [[75]].

3.8.1 Algorithm

* Linear vs. Non-Linear: For datasets that are linearly separable, SVM identify the
optimal hyperplane that maximizes the margin between different classes, ensuring better
generalization. However, when dealing with non-linearly separable data, SVM applies
kernel functions — such as the radial basis function (RBF) or polynomial kernel — to
transform the data into a higher-dimensional space where a linear separation becomes
possible. This technique enables SVM to effectively classify complex patterns that

cannot be separated in the original input space.
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* Maximizing the Margin: The margin is the distance between the closest points from

each class (called support vectors) and the decision boundary.

* Optimization: The SVM model minimizes a cost function while ensuring that the

margin between the classes is maximized.

3.8.2 Advantages

« Effective in high-dimensional spaces.
» Works well for both linearly and non-linearly separable data.

* Robust against overfitting in high-dimensional spaces.

3.8.3 Disadvantages

* Computationally expensive, especially with large datasets.
* Requires careful selection of the kernel function and regularization parameters.

¢ Sensitive to noise and outliers in the data.

3.9 Random Forest

Random Forest is an ensemble learning technique that builds multiple decision trees and
combines their predictions. It is a bagging algorithm that reduces overfitting and increases the
model’s accuracy by averaging the predictions of several trees, each built using random subsets

of the data [76]].

3.9.1 Algorithm

* Bootstrap Sampling: Create multiple bootstrap samples (random subsets with

replacement) from the training data.

* Build Decision Trees: Build a decision tree for each sample. When making a split in the

tree, instead of considering all features, only a random subset of features is used.
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* Combine Predictions: For classification tasks, the final prediction is based on the
majority vote from all the trees. For regression tasks, the average of the predictions

from all the trees is used.

3.9.2 Advantages

High accuracy and robust to overfitting.

Can handle both classification and regression tasks.

Handles missing values and large datasets well.

* Easy to interpret with feature importance metrics.

3.9.3 Disadvantages

* Can be computationally expensive for large datasets.
* Models can become large and difficult to interpret.

* Less effective when the relationship between features is weak.

3.10 Decision Tree

A Decision Tree is a supervised learning algorithm used for classification and regression.
It works by splitting the data into subsets based on the most significant feature at each node,

creating a tree-like structure of decisions [[77].

3.10.1 Algorithm

 Splitting: Start at the root node and recursively split the data based on the feature that

provides the best split (using criteria like Gini impurity, entropy, or variance).

* Stopping Criteria: Stop when a stopping criterion is met (e.g., when all data points in a

node belong to the same class or when the tree reaches a specified depth).

* Prediction: For classification, the majority class in a leaf node is used for prediction.

For regression, the mean value of the target variable is used.
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3.10.2 Advantages

Simple to understand and interpret.

Supports both numerical and categorical data.

Does not require feature scaling.

Effectively manages missing data.

3.10.3 Disadvantages

* Susceptible to overfitting, particularly with deep trees.
* Sensitive to noise and outliers in the dataset.

* Unstable: minor variations in the data can result in significant changes to the tree

structure.

3.11 Naive Bayes

Naive Bayes is a probabilistic classification algorithm based on Bayes’ Theorem, operating
under the assumption that features are conditionally independent given the class label. It is
especially efficient for high-dimensional datasets and is commonly applied in text classification

tasks [78]].

3.11.1 Algorithm

* Bayes’ Theorem: It determines the probability of each class based on the given input

features and assigns the class with the highest likelihood.

* Independence Assumption: Assumes that each feature contributes independently to the

class probability, which simplifies the computation.

* Prediction: For a given input, the class with the highest posterior probability is chosen

as the predicted class.
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3.11.2 Advantages

* Simple and fast, with a low computational cost.
* Works well with high-dimensional datasets (e.g., text classification).

* Requires fewer training data and is less prone to overfitting.

3.11.3 Disadvantages

* The independence assumption is often unrealistic, leading to poor performance if features

are correlated.

 Not suitable for regression tasks or continuous target variables.

3.12 Conclusion

In this section, we have reviewed a variety of machine learning classifiers that are
commonly applied to predictive maintenance tasks. Each classifier has its strengths and
weaknesses, making them suitable for different types of data and problem settings. KNN is
simple and effective for small datasets, while SVM work well in high-dimensional spaces.
Random Forest and Decision Trees provide interpretability and robustness, and Naive Bayes
excels with high-dimensional data. Artificial ANNs and LSTM networks are especially
powerful for learning complex patterns, with LSTMs being particularly suitable for time-series
data. Understanding these classifiers’ principles will provide a foundation for their application

in predictive maintenance in later chapters.

3.13 Physics-Informed Neural Networks

PINNS are a type of deep learning model that embed physical laws into the training process.
Unlike conventional neural networks that rely solely on data to identify patterns, PINNs
incorporate the governing equations of a system into their learning framework. This approach
ensures adherence to established physical principles, enhances generalization, and reduces the

dependence on large labeled datasets. PINNs are especially beneficial in scenarios where data is
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scarce but the governing physics is well-defined, making them valuable in scientific computing,

engineering, and other fields involving physical systems [[79} 80]].

3.13.1 Concept of PINNs

The key benefit of PINNSs is their ability to incorporate physical laws directly into the loss
function during training. Unlike traditional neural networks that focus solely on minimizing
the error between predictions and actual data, PINNs introduce an additional loss term that
penalizes deviations from governing physical equations. This approach ensures that the model’s
predictions not only align with the data but also comply with established physical constraints
[81].

A standard PINN setup combines two loss terms:

* Data Loss (L._data): This term ensures the neural network predictions match the

available labeled data.

* Physics Loss (L_physics): This term penalizes deviations from the governing physical
equations, which could be partial differential equations (PDEs), ordinary differential

equations (ODEs), or algebraic constraints.

The total loss function is the sum of the data loss and the physics loss:

Liotal = Lata + )LLphysics (3.10)

where A is a hyperparameter that controls the balance between fitting the data and satisfying

the physics [82].

3.13.2 Mathematical Foundation of PINNs

The mathematical foundation of PINNs is based on the idea of integrating the system’s
governing equations into the loss function. These equations are often expressed as differential
equations. For example, in fluid dynamics, the system might be governed by partial differential
equations (PDEs) like the Navier-Stokes equations. For a general PDE, the governing equation

can be expressed as:

N(u(x,t)) = f(x,1) (3.11)
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where:
* N is a differential operator (such as a gradient or divergence),
* u(x,t) is the solution of the equation (e.g., temperature, velocity),
* f(x,1) is the forcing term (external inputs or sources).

In the case of PINNS, the neural network u(x,) approximates the solution of the equation,

and the physics loss is the residual of the equation:

Lphysics = [N (u(x,1)) — f(x,1)] (3.12)

The network is trained to minimize this residual, which ensures that the predictions of the

model satisfy the physical equations [83, 84]].

3.13.3 Relevance of PINNs to Fault Classification in Induction Motors

In the context of fault classification task for a 3-phase induction motor, PINNSs are leveraged
to incorporate motor physics using algebraic equations rather than complex differential
equations. These algebraic equations represent steady-state conditions that govern the behavior

of the motor. Below is the mathematical framework that we use for the model:

3.13.3.1 Kirchhoff’s Current Law

Kirchhoff’s Current Law states that the sum of currents entering a junction equals the sum

of currents leaving the junction. For a 3-phase motor, this can be expressed as:

L+L+15=0 (3.13)

where /1, I, and I3 are the currents in the three-phase windings of the induction motor. This
equation ensures that the current balance is maintained in the motor, which is an important

physical constraint when classifying faults.
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3.13.3.2 Flux Consistency

The flux in an induction motor is related to the currents in the windings. The flux ¢ can be

considered a function of the currents in the three windings:

¢ = f(l1,h,15) (3.14)

This equation ensures that the total flux generated in the motor is consistent with the currents

in the windings.

3.13.4 Physics-Informed Neural Network Setup for Motor Fault

Classification

In our case, the fault classification of the induction motor involves using measured features
like current and flux. The governing equations for motor physics, including KCL and flux
consistency, are used to regularize the model’s learning process. The model’s output is the fault
classification, which is constrained by these physical laws. Hence, the total loss function in the

PINN is:

Ltotal = Lclassiﬁcation + A'l Limbalance + )LZLﬂux (3 15)

where:

* Lelassification 18 the traditional classification loss term (e.g., cross-entropy loss) that

minimizes the difference between predicted and actual fault classes.

* Limbalance 18 the term that penalizes violations of Kirchhoff’s Current Law:

Limbalance = Hll +1h +I3H2 (3.16)

* Lgux 1s the term that penalizes inconsistencies in the flux equation:
Luus = |6 — f(I1, b, 1) |? (3.17)

The terms Limpalance and Lgyx ensure that the predicted currents and flux are consistent with

the motor’s physical behavior, improving the model’s robustness [85, 86].
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3.13.5 Why ODEs Were Not Used

In many traditional applications of PINNs, Ordinary Differential Equations (ODESs) or
Partial Differential Equations (PDEs) are used to model dynamic systems that change over time
or have spatial dependencies [87, |88]]. However, in our case, the fault classification problem
focuses on steady-state measurements rather than dynamic behavior. The features used for
classification, such as current and flux, are directly measured, which means they do not need to
be derived through ODEs [89].

Furthermore, the physical relationships governing the motor can be effectively captured
using algebraic equations like Kirchhoff’s Current Law (KCL) and flux consistency, which are
simpler and computationally more efficient than ODEs. For example, KCL ensures the sum of
currents in the three-phase windings equals zero, while flux consistency maintains the balance
between currents and generated flux [90]. These constraints are sufficient to regularize the
model and ensure that the predictions align with the physics of the motor. Thus, using ODE:s is

unnecessary and would add unnecessary complexity to the model [91].

3.13.6 Conclusion

PINNSs provide an effective way to incorporate known physical laws into machine learning
models. In the case of fault classification for induction motors, PINNs can integrate the
algebraic constraints governing the motor’s behavior—such as Kirchhoff’s Current Law and
flux consistency—into the loss function. This helps the model learn more robustly, ensuring
that the predictions respect motor physics, even with a limited amount of labeled data. The
use of ODEs or PDEs is unnecessary in this static fault classification task, as simpler algebraic

constraints effectively capture the essential motor behavior [92].

3.14 Ensemble Methods for Enhanced Fault Detection

Ensemble learning techniques, like the voting classifier, enhance accuracy and reliability
by merging predictions from multiple machine learning models. By combining outputs from
different models, these methods help minimize errors and improve the overall effectiveness of

a predictive maintenance system [93].
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3.15 Evaluation Metrics

Once the model is trained, different evaluation metrics are used to assess its performance.
These metrics help evaluate the model’s ability to generalize to new data [94]. In classification

tasks, the confusion matrix serves as a crucial tool, offering a detailed overview of the model’s

predictive accuracy .

The confusion matrix is a tabular representation that highlights true positives (TP), false

positives (FP), false negatives (FN), and true negatives (TN). Table 3.2] [49] shows an example

of a confusion matrix:

Predicted Values | Positive | Negative
Actual Positive TP FN
Actual Negative FP TN

Table 3.2: Sample Confusion Matrix

In an ideal model, all predictions fall along the diagonal of the confusion matrix, with no

off-diagonal elements. This indicates the model has perfectly classified all data samples [49].

3.15.1 Key Evaluation Metrics

1. Accuracy

Accuracy measures the proportion of correct predictions out of the total number of

samples, with a range between 0 and 1.

2. Precision

Precision quantifies the fraction of true positives among all predicted positive samples,

with a range between 0 and 1.
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True Positives (TP): Correctly predicted positive samples.
True Negatives (TN): Correctly predicted negative samples.
False Positives (FP): Incorrectly predicted positive samples.

False Negatives (FN): Incorrectly predicted negative samples.




3. Recall (Sensitivity)

Recall evaluates how well the model identifies actual positive samples, with a range

between O and 1.

4. F1-Score

The F1-Score is the harmonic mean of precision and recall, providing a balance between

the two. It ranges between 0 and 1.

These metrics collectively offer a comprehensive understanding of the model’s
performance, highlighting its ability to handle both positive and negative predictions

effectively[49]].

3.16 Conclusion

This chapter provided a comprehensive overview of the theoretical concepts underpinning
this study. It discussed the working principle of induction motors, the common faults they
experience, and the importance of early fault detection. The application of machine learning
for predictive maintenance was explored, highlighting its potential to enhance reliability and
reduce downtime. Various machine learning classifiers, including ensemble methods, were
discussed for their suitability in fault classification tasks. Finally, evaluation metrics such
as accuracy, precision, recall, and F1-score were introduced to quantify model performance.
This foundational knowledge sets the stage for the implementation detailed in the subsequent

chapters.
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Chapter 4

Methodology

4.1 Introduction

The methodology chapter outlines the systematic approach adopted to conduct this research,
detailing the procedures, tools, and techniques employed to address the research questions. It
provides a clear framework for data collection, analysis, and interpretation, ensuring the study’s
reliability and validity. This chapter serves as a roadmap, guiding the reader through the steps

taken to achieve the research objectives.

4.2 Proposed Methodology Overview

This research proposes a comprehensive methodology to develop an effective predictive
maintenance framework for induction motors in EVs. The approach integrates traditional
machine learning algorithms, PINNs, and LSTM networks to achieve accurate and reliable
fault classification. The dataset includes sensor readings, such as current and vibration signals,
collected under various operational and faulty conditions. Data preprocessing techniques,
including normalization, handling of missing values, and feature engineering, are applied to
ensure data quality and relevance.

The methodology employs classical machine learning models, including ANN, SVM,
KNN, Decision Trees, and Random Forest, to classify fault types, alongside ensemble
techniques for enhanced accuracy. PINNs are incorporated to leverage the underlying
physical laws of motor dynamics, embedding domain knowledge into the learning process and

improving predictions. LSTM networks are utilized to capture temporal patterns in the sensor
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data, essential for detecting faults with time-dependent characteristics. The performance of all
models will be compared based on performance parameters such as accuracy, precision, recall,
and F1-score, ensuring a thorough evaluation of their effectiveness. This integrated approach
is designed to enhance the reliability and efficiency of motor maintenance systems in EVs. The
methodology is illustrated in Figure [@.1] providing a step-by-step flowchart of the proposed

predictive maintenance framework.

Dataset :: Preprocessing : Feature
Selection Data Engineering

Il

Comparison of — Performance (= Model Training
Results Evaluation

Figure 4.1: Flowchart of the proposed predictive maintenance methodology

4.3 Datasets

In this section, we describe the benchmark datasets used for training and evaluating
the predictive maintenance models for induction motors in EVs. These datasets serve as a
foundation for fault detection and classification tasks and are specifically selected to provide
comprehensive, real-world data on motor performance under various conditions. Each dataset
contains different operational scenarios, including normal motor conditions and various fault
types such as stator winding issues and bearing failures. The use of these datasets enables a
robust evaluation of machine learning algorithms and provides a basis for comparison across

different models.

* CWRU Bearing Dataset: This dataset provides vibration data under various fault
conditions, including different load and rotational speed settings for bearing fault

diagnosis [93].

¢ Inter-turn Short-Circuit in Induction Motor Dataset: It includes data collected from
induction motors experiencing inter-turn short circuits, along with various operational

settings such as load and driving frequencies [96].
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4.3.1 CWRU Dataset

The Case Western Reserve University (CWRU) Bearing Dataset [97] is widely recognized
for bearing fault detection and classification. Initially developed at Rockwell to assess
motor bearing conditions, it has since become a benchmark for evaluating signal-processing
techniques, feature engineering, and data-driven models in numerous research studies [98-
104].

Data collection was conducted using a test bench comprising a 2-horsepower (HP)
Reliance Electric motor, a dynamometer, and a torque transducer. This setup monitors motor
performance and torque under different load conditions. Vibration signals were captured
using three accelerometers positioned at the Drive End (DE), Fan End (FE), and Base (BA),
with sampling rates of 12 kHz and 48 kHz, ensuring high-resolution measurements. The
dataset includes time-series vibration data recorded under various fault conditions, which were
artificially induced in the bearings using electro-discharge machining (EDM). The faults were
introduced at distinct locations within the bearing, specifically in the ball, inner race, and outer
race, with defect sizes ranging from 0.007 inches (0.18 mm) to 0.021 inches (0.53 mm) [49].

The dataset encompasses different motor operating conditions, such as a 1 HP load, a shaft
rotation speed of 1772 RPM, and a 48 kHz sampling rate. Each fault type is characterized
by multiple statistical features, including maximum, minimum, mean, standard deviation,
root mean square (RMS), skewness, kurtosis, crest factor, and form factor. These features
are computed over time segments consisting of 2048 data points (0.04 seconds) at a 48 kHz
sampling rate [49].

Due to its comprehensive fault scenarios and operational conditions, this dataset is a
valuable resource for researchers investigating fault detection and classification in industrial
machinery. It is widely applied in predictive maintenance and the development of fault
detection algorithms. Researchers utilize it to test and validate various machine learning
techniques, ranging from conventional signal processing methods to advanced artificial
intelligence models [49]. Figures @.2a] and [4.2b]illustrate the form factor of the vibration signal
computed over different samples in the dataset, where the x-axis represents the sample index,

and the y-axis denotes the form factor of the normalized vibration signal.
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Figure 4.2: Vibration data: (a) Normal (b) Anomalous

4.3.2 Inter-turn Short-Circuit in Induction Motor Dataset

This dataset [3] focuses on inter-turn short-circuit (ITSC) faults in induction motors,
providing both leakage flux and current signals. The test bench utilized for data acquisition
comprises two identical three-phase squirrel cage induction machines, each rated at 1 HP with
a delta configuration, 220V supply voltage, and a rated current of 3A. One machine operates
as a motor, while the other emulates the mechanical load. The motor’s stator was specially
rewound to facilitate the emulation of ITSC faults, allowing access to winding branches to
introduce controlled short circuits. This setup enables the simulation of various fault severities,
ranging from minor insulation degradation to severe short circuits.

Two fault types were simulated:

1. High Impedance (HI): Represents the initial stage of the fault, where the electrical

insulator begins to degrade, creating a parallel current path.

2. Low Impedance (LI): Represents a full short-circuit, where current flows through the

new path, inducing a voltage in the shorted coil.

For each fault type, three severity levels were emulated by varying the percentage of shorted

turns in the stator winding:
* Level 1: 1.41% of the winding
* Level 2: 4.81% of the winding
* Level 3: 9.26% of the winding

To prevent permanent damage, the short-circuit current was limited to its rated value using

a variable resistor of 50 Q. Data was collected under three mechanical load conditions: no load
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(0%), half load (50%), and full load (100%), with driving frequencies ranging from 30 Hz to 60
Hz in 5 Hz increments. In total, 2,590 patterns were acquired, including 350 from the normal
class and 2,240 from various fault conditions.

To monitor the axial leakage flux, a coil of 100 turns of 24 AWG copper wire was
placed around the motor shaft. The currents of the three motor phases were measured using
SCT013-030 current transformers.

For a comprehensive analysis, it is beneficial to include visual representations of the motor’s
behavior under normal and faulty conditions across the three load scenarios at a driving
frequency of 50 Hz. These visualizations can aid in understanding the impact of ITSC faults
under varying operational conditions.
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4.4 Data Preprocessing

Raw data is often found in varying formats and ranges, which can hinder a model’s
performance and its ability to interpret the data effectively [105]. To address these challenges,
preprocessing the data becomes a critical step before feeding it into machine learning models.
The preprocessing steps in this study included data labeling, feature scaling, PCA for
visualization, feature selection analysis, and correlation analysis. Below are the key steps

undertaken:

4.4.1 Data Formatting and Labeling

The initial step was to convert the raw dataset into a usable format. The data was originally
distributed across multiple Excel sheets, each representing a separate class. These were

consolidated into a single sheet, and the respective classes were labeled correctly.

4.4.2 Feature Scaling

Feature scaling [106] was performed to standardize the range of features, as unscaled
data could cause models to prioritize features with larger ranges, potentially leading to biased
results. Min-Max normalization was applied, which scales the data to a range between 0 and
1. This choice ensures that all features are on a comparable scale, preventing any feature from
dominating the model’s learning process and helping to improve convergence during training.

Below are the most commonly used scaling techniques:

e Min-Max Normalization: Scales values between 0 and 1 [[107]].

» Standardization (Z-Score): Adjusts data to have a mean of zero and a standard
deviation of one, ensuring consistency and improving performance across various

machine learning algorithms.

* Mean Normalization: Centers the data by subtracting the mean and scaling it by the

data range, ensuring values fall within a standardized range.

4.4.3 Outlier and Missing Value Analysis

The dataset was carefully examined for outliers and missing values. However, no missing

values or significant outliers were identified, ensuring that the data did not require additional
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imputation or outlier removal techniques.

4.4.4 Feature Selection and Visualization

To explore the importance of features and their contributions to classification accuracy,

multiple techniques were applied:

4.4.4.1 Principal Component Analysis

PCA was used to reduce dimensionality and visualize the data distribution across principal
components [108]. Although PCA is often used for feature selection, in this case, it did not
improve classification accuracy. This was likely due to the limited number of features in the
dataset and the fact that the features contained complementary information. A PCA plot was

generated to illustrate the data’s separability across different classes in reduced dimensions.
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Figure 4.11: PCA plot for ITSC in induction motor dataset

4.44.2 Feature Importance Analysis

A feature importance graph was generated using model-based methods to understand the
contribution of individual features to the classification task. The analysis suggested that some
features (e.g., Feature 5 and Feature 4) had higher importance scores, while others were deemed

less significant. However, when training the model using only the most important features,
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Figure 4.12: PCA plot for CWRU dataset

the performance was lower compared to using all features. This finding highlights that while
individual features may seem less critical, their combined interactions contribute to the overall

classification accuracy [109].
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Figure 4.13: Feature importance graph for CWRU dataset

4.4.4.3 Classification Report Comparison

A comparison of the classification report (accuracy, precision, recall, and F1-score) for the

model trained with:
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Feature Importance
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Figure 4.14: Feature importance graph for ITSC in stator winding dataset

* Only important features (as identified in the feature importance analysis).

 All features (retained to capture subtle interdependencies).

The results reinforced the decision to retain all features for achieving optimal performance.
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Figure 4.15: Classification report of ANN with only important features (7) used
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precision recall fl-score  support
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accuracy 8.97 698
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weighted avg 8.97 8.97 8.97 698

Accuracy @ 8.9652173913843478

Figure 4.16: Classification report for ANN with all features (8) used (CWRU dataset)

4.4.4.4 Correlation Analysis

The relationship between features and target classes was examined using a correlation
heatmap. This analysis confirmed the absence of multicollinearity among features, further
validating the decision to use all features in the dataset. The heatmap provided insights into

feature interactions and ensured that no redundant information was present [110].

Carrelation Heatmap
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Figure 4.17: Correlation heatmap for CWRU dataset

These visualizations (PCA plot, feature importance graph, and correlation heatmap)

provided valuable insights into the dataset’s characteristics and its readiness for training.
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Figure 4.18: Correlation heatmap for ITSC in induction motor dataset

4.5 Model Training

The training of both traditional machine learning models and deep learning architectures
was conducted to classify faults in a 3-phase induction motor. The models were trained on the
preprocessed dataset, with hyperparameter tuning performed to optimize their performance.

The models used and their respective training processes are detailed below.

4.5.1 Traditional Machine Learning Models
4.5.1.1 K-Nearest Neighbors

Rationale: KNN was chosen for its simplicity and effectiveness in handling small to
medium-sized datasets, making it a good baseline for classification tasks.

Training: The KNN algorithm was trained using the standard method, where the number
of neighbors (k) was optimized. The Euclidean distance was used as the distance metric, and
the dataset was scaled to ensure features were on the same scale.

Hyperparameter Tuning: The number of neighbors (k) was fine-tuned using
cross-validation. Different values of k& were tested, and the value that minimized classification

error was selected.
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4.5.1.2 Random Forest

Rationale: Random Forest was selected for its ability to handle high-dimensional datasets
and its robustness to overfitting due to ensemble learning.

Training: Random Forest was trained as an ensemble model consisting of multiple decision
trees. Each tree was trained on a bootstrapped subset of the data, and predictions were made
based on the majority vote of the trees.

Hyperparameter Tuning: The key hyperparameters tuned were the number of estimators
(number of trees) and the maximum depth of the trees. Grid search and cross-validation were
used to optimize these parameters, with the number of trees tested in the range of 50 to 200 and

the maximum depth ranging from 10 to 50.

4.5.1.3 Decision Tree

Rationale: Decision Tree was chosen for its interpretability and ability to model non-linear
relationships within the dataset.

Training: The Decision Tree classifier was trained to iteratively split the dataset into
subsets based on feature importance, maximizing information gain at each split.

Hyperparameter Tuning: The key hyperparameters tuned were the maximum depth of
the tree, the minimum samples required to split a node, and the criterion used for splitting (e.g.,
Gini impurity or entropy). Grid search was used to find the optimal combination, ensuring the

model did not overfit.

4.5.1.4 Naive Bayes

Rationale: Naive Bayes was selected due to its simplicity and efficiency in handling
multi-class classification problems, especially for small datasets.

Training: The Gaussian Naive Bayes model was trained under the assumption that features
are conditionally independent given the class. This assumption simplifies the computation and
makes the model efficient, even for large datasets.

Hyperparameter Tuning: As the Gaussian Naive Bayes classifier has limited
hyperparameters, the focus was on verifying the assumption of normality for each feature.

Minimal tuning was required for this model.
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4.5.1.5 Support Vector Machine)

Rationale: SVM was selected for its ability to find optimal hyperplanes and perform well
with complex and high-dimensional datasets.

Training: SVM was trained to find an optimal hyperplane that maximized the margin
between classes in the feature space. A linear kernel was initially used for simplicity, and the
dataset was scaled to improve the algorithm’s efficiency.

Hyperparameter Tuning: The primary hyperparameters tuned were the kernel type
(e.g., linear, RBF) and the regularization parameter (C), which controls the trade-off between
maximizing the margin and minimizing classification error. A grid search was performed to

select the optimal combination of these parameters.

4.5.2 Performance Metrics

The performance of all traditional machine learning models was evaluated using the

following metrics:
* Accuracy: The proportion of correctly classified samples out of the total samples.

* Precision: The ratio of true positive predictions to the total positive predictions,

reflecting the model’s ability to avoid false positives.

* Recall: The ratio of true positive predictions to the total actual positives, indicating the

model’s sensitivity in detecting true cases.

* F1-Score: The harmonic mean of precision and recall, providing a balanced evaluation

metric, especially in cases of imbalanced datasets.

These metrics provided a holistic view of the models’ effectiveness in identifying both fault

and normal conditions, ensuring a robust comparison.

4.5.3 Deep Learning Models
4.5.3.1 Artificial Neural Network

ANNS are a class of deep learning models inspired by the human brain’s neural structure,
widely used for classification tasks in engineering and fault diagnosis domains [49]. In this

study, ANNs were developed and trained to classify two distinct datasets: the stator winding
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fault dataset and the CWRU bearing fault dataset. The models were designed to accurately
differentiate between normal and faulty conditions, ensuring robust fault diagnosis for both

applications.

ANN for Stator Winding Fault Dataset

Architecture Design The ANN architecture designed for the stator winding fault dataset

consists of four dense layers:

* Input Layer: Configured to match the feature size of the dataset, ensuring compatibility

with the input data.
* Hidden Layers:

— First hidden layer with 64 neurons and ReLLU activation.

— Second hidden layer with 128 neurons and ReLU activation to capture complex

feature interactions.

— Third hidden layer with 64 neurons and ReLU activation to consolidate learned

patterns.

* Output Layer: A dense layer with softmax activation and a number of neurons equal to

the dataset’s classes for multi-class classification.

The network design allowed the model to learn complex patterns in the data, with deeper layers
facilitating feature extraction and ReLLU activation preventing vanishing gradient issues. The
softmax activation function in the output layer converted logits into probabilities, enabling

accurate classification. The model summary is shown below:

Model: “sequential 1"

Layer (type) output Shape Param #
dense_4 (Dense) ( , 64) 320
dense_5 (Dense) ( » 128) 8,320
dense_6 (Dense) ( , 64) 8,256
dense 7 (Dense) ( y 6) 390

Total params: 17,286 (67.52 KB)
Trainable params: 17,286 (67.52 KB)
Non-trainable params: © (©.90 B)

Figure 4.19: ANN model summary for ITSC in induction motor dataset
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Model Compilation The model was compiled with the following configurations:

* Optimizer: The Adam optimizer was used for adaptive and efficient learning,

dynamically adjusting the learning rate during training.

* Loss Function: Categorical Crossentropy was employed since the classification problem

involved multiple classes.

* Metrics: Accuracy was tracked during training to directly measure the model’s

classification success.

Training Process The ANN was trained using the following parameters:

* Training Dataset: The training dataset was scaled and split into batches to enhance

computational efficiency.

* Batch Size: A batch size of 10 was used to divide the training data into smaller subsets

for gradient updates.

* Epochs: The model was trained for 50 epochs to allow iterative optimization of the

weights.

The model was fit to the training data using the £it () method, which minimized the loss

function by updating weights.

Performance Metrics The model’s performance was evaluated using the following

metrics:

* Loss Trends: Training and validation loss trends were monitored to assess the model’s

learning behavior.

* Confusion Matrix: A confusion matrix was generated to evaluate classification

performance across all classes.

* Accuracy, Precision, Recall, and F1-score: These metrics were used to evaluate
the model’s classification performance, providing a comprehensive assessment of its

predictions.

This setup enabled the ANN to efficiently classify fault and normal conditions in the stator

winding dataset.
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ANN for CWRU Dataset

Architecture Design The ANN architecture for the bearing fault dataset was designed
using the Sequential API from the TensorFlow Keras library. It consisted of a total of seven

layers, including input, hidden, and output layers, with the following details:
* Input Layer:

— Configured to accept data with 8 features, corresponding to the dataset’s feature

space.

* Hidden Layers:

Layer 1: 16 neurons with ReLLU activation.

Layer 2: 32 neurons with ReLLU activation.

Layer 3: 64 neurons with ReLLU activation.

Layer 4: 128 neurons with ReLU activation.

Layer 5: 64 neurons with ReLLU activation.

Layer 6: 32 neurons with ReLLU activation.
* Output Layer:

— The output layer consisted of 10 neurons with a softmax activation function,

designed to output probabilities for 10 different classes.

The architecture was progressively deep to enable the model to learn intricate relationships in
the data, with ReLLU activation ensuring efficient gradient flow. The softmax activation function
allowed multi-class classification by converting logits into probabilities. The model summary

is shown below:

Model Compilation The model was compiled with the following configurations:

* Optimizer: The Adam optimizer was employed for efficient learning and dynamic

adjustment of the learning rate.

* Loss Function: Categorical Crossentropy was selected for this multi-class classification

task.
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Model: "sequential”

Layer (type) Output Shape Param #
dense (Dense) ( » 16) 144
dense 1 (Dense) ( y 32) 544
dense_2 (Dense) ( , 64) 2,112
dense_3 (Dense) ( , 128) 8,320
dense_4 (Dense) ( , 64) 8,256
dense_5 (Dense) ( , 32) 2,080
dense_6 (Dense) ( , 10) 330

Total params: 21,786 (85.10 KB)
Trainable params: 21,786 (85.10 KB)
Non-trainable params: © (9.00 B)

Figure 4.20: ANN model summary for CWRU dataset

* Metrics: Accuracy was tracked during training to evaluate the model’s classification

SUCCESS.

Training Process The ANN was trained using the following parameters:

* Training Dataset: The training dataset was scaled and split into batches for efficient

computation.

* Batch Size: A batch size of 10 was used, dividing the data into manageable subsets for

gradient updates.

* Epochs: The model was trained for 50 epochs, allowing sufficient optimization of the

model’s weights.

The fit () method was used for training, and early stopping was employed to monitor

validation loss and prevent overfitting.

Performance Metrics The model’s performance was evaluated using the following

metrics:

* Accuracy, Precision, Recall, and F1-score: These metrics were used to evaluate
the model’s classification performance, providing a comprehensive assessment of its

predictions.

* Loss Trends: Training and validation loss trends were analyzed to ensure proper

learning.
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* Confusion Matrix: A confusion matrix was generated to analyze classification

performance across all classes.

This robust setup enabled the ANN to achieve accurate classification of bearing faults and

normal conditions in the dataset.

4.5.3.2 Long Short-Term Memory

LSTM networks are a specialized type of recurrent neural network (RNN) designed to
capture long-range dependencies in sequential data, making them highly suitable for time-series
classification tasks. Unlike traditional RNNs, LSTMs incorporate memory cells and gating
mechanisms (input, forget, and output gates) to regulate the flow of information and prevent
issues like vanishing gradients. This capability makes LSTMs an effective choice for fault
diagnosis in engineering applications, where temporal patterns play a crucial role in identifying

faults.

LSTM for Stator Winding Fault Dataset

Architecture Design The LSTM model for the stator winding fault dataset was designed
to process sequential data from motor sensors, capturing temporal dependencies in fault

occurrences. The architecture is structured as follows:

* Input Layer: Accepts sequences of sensor readings (three-phase currents and leakage

flux) over a predefined number of timesteps.
* Hidden Layers:
— First LSTM layer with 128 units, ReLU activation, and return sequences enabled
for deeper feature extraction.
— Dropout layer (30%) to prevent overfitting.
— Second LSTM layer with 64 units, ReLU activation, and return sequences enabled.
— Dropout layer (30%) to enhance generalization.

— Third LSTM layer with 32 units and ReLLU activation to refine extracted temporal

features.

— Dense layer with 64 neurons and ReL.U activation for additional feature learning.

62



* Output Layer: A dense layer with softmax activation and a number of neurons equal to

the dataset’s classes (7), ensuring multi-class classification.

The model summary is shown below:

Model: “sequential”

Layer (type) output Shape Param #
lstm (LSTM) ( , 18, 128) 68,096
dropout (Dropout) ( , 1@, 128) 8
Istm_1 (LSTH) ( , 18, 64) 49,408
dropout_1 (Dropout) ( , 18, 64) 8
Istm_2 (LSTH) ( s 32) 12,416 )
dense (Dense) ( , 64) 2,112
dense_1 (Dense) ( , 7Y 455 )

Total params: 132,487 (517.53 KB)
Trainable params: 132,487 (517.53 KB)
Non-trainable params: © (8.99 B)

Figure 4.21: LSTM model summary for ITSC in induction motor dataset

This architecture allows the model to learn sequential dependencies in sensor data while

leveraging dropout layers to improve robustness.

Model Compilation The LSTM model was compiled with the following configurations:

* Optimizer: Adam optimizer with a learning rate of 0.0005 for adaptive and efficient

learning.

* Loss Function: Categorical Crossentropy was used, given the multi-class classification

nature of the task.

* Metrics: Accuracy was tracked to evaluate the model’s classification success.

Training Process The LSTM model was trained using the following parameters:

* Training Dataset: The dataset was normalized, and sequences were created with 10

timesteps.

* Batch Size: A batch size of 32 was selected to balance training stability and

computational efficiency.

* Epochs: The model was trained for 50 epochs to optimize the weight parameters.
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The £it () method was used to train the model, minimizing the loss function iteratively while

monitoring validation performance.

Performance Metrics The model’s performance was assessed using the following

evaluation criteria:

* Loss Trends: Training and validation loss trends were analyzed to track the model’s

learning progression.

* Confusion Matrix: A confusion matrix was generated to examine class-wise prediction

performance.

* Accuracy, Precision, Recall, and F1-score: These metrics were computed to provide a

comprehensive assessment of the model’s classification performance.

This approach enabled the LSTM model to effectively classify stator winding faults based on

time-series sensor data.

LSTM for CWRU Bearing Fault Dataset

Architecture Design The LSTM model for the CWRU bearing fault dataset was
developed to classify vibration signals into multiple bearing fault categories. The architecture

consists of:

* Input Layer: Accepts sequences of vibration signal readings over a predefined number

of timesteps.
* Hidden Layers:

— First LSTM layer with 64 units, ReLLU activation, and return sequences enabled for

hierarchical feature extraction.

Dropout layer (20%) to mitigate overfitting.

Second LSTM layer with 32 units and ReLLU activation.

Dropout layer (20%) to improve generalization.

Dense layer with 64 neurons and ReLU activation for enhanced feature

representation.
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* Output Layer: A dense layer with softmax activation and 10 neurons, corresponding to

the number of bearing fault categories.

The model summary is shown below:

Model: "sequential”

Layer (type) Output Shape Param #
Istm (LSTM) ( , 1@, 64) 18,688
dropout (Dropout) (None, 10, 64)

lstm 1 (LSTM) ( , 32) 12,
dropout_1 (Dropout) [ » 32)

dense (Dense) ( ; 64) 2,112
dense_1 (Dense) ( , 1@) hhu_

Total params: 33,866 (132.29 KB)
Trainable params: 33,866 (132.29 KB)
Non-trainable params: @ (0.92 B)

Figure 4.22: LSTM model summary for CWRU dataset

The use of multiple LSTM layers ensures that temporal dependencies in vibration signals

are effectively captured, enhancing the fault classification process.

Model Compilation The model was compiled with:
* Optimizer: Adam optimizer with an adaptive learning rate of 0.0005.
* Loss Function: Categorical Crossentropy for multi-class classification.

* Metrics: Accuracy to evaluate classification effectiveness.

Training Process The LSTM model was trained under the following conditions:

* Training Dataset: The vibration signal dataset was preprocessed and converted into

sequences with a fixed number of timesteps.
* Batch Size: A batch size of 32 was chosen for efficient training.
* Epochs: The model was trained for 50 epochs to allow optimal learning.

The model was trained using the £it () method, with early stopping implemented to prevent

overfitting by monitoring validation loss.
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Performance Metrics To evaluate the model’s classification performance, the following

metrics were used:
* Loss Trends: Training and validation loss trends were analyzed.

* Confusion Matrix: A confusion matrix was generated to assess the accuracy of each

class prediction.

* Accuracy, Precision, Recall, and F1-score: These metrics were calculated to measure

classification effectiveness.

By leveraging LSTM’s ability to learn sequential patterns in vibration signals, the model
achieved accurate classification of bearing faults, contributing to an effective predictive

maintenance framework.

4.5.4 Physics-Informed Neural Networks

PINNs integrate physical laws into neural network training, enhancing predictive
accuracy by embedding domain-specific knowledge directly into the learning process. This
approach is particularly beneficial in fields like engineering, where systems are governed by
well-established physical principles.

4.5.4.1 Architecture Design

The PINN model was developed to classify stator winding faults in a three-phase induction

motor by utilizing both sensor data and domain knowledge. The architecture consists of:

* Input Layer: Accepts features such as three-phase current signals (/1, I>, I3) and leakage

flux (¢).
* Hidden Layers:

— Fully connected dense layers with 64, 128, and 64 neurons, all using ReLU

activation to capture nonlinear dependencies.

* Output Layer: A dense layer with softmax activation and a number of neurons equal to

the fault classes (7), ensuring multi-class classification.

66



Model: "sequential”

Layer (type) Output Shape Param #
dense (Dense) ( , 64) 320
dense 1 (Dense) ( » 128) 8,320
dense 2 (Dense) ( » 64) 8,256
dense 3 (Dense) ( s 7) 455

Total params: 17,351 (67.78 KB)
Trainable params: 17,351 (67.78 KB)
Non-trainable params: @ (0.00 B)

Figure 4.23: PINNs model summary

The model is summarized as follows:
This architecture enables the model to capture essential fault patterns while integrating

domain-specific constraints through the physics-informed loss function.

4.5.4.2 Physics-Informed Loss Function

A key component of PINNs is the physics-informed loss function, which consists of two

components:

1. Classification Loss: Sparse categorical cross-entropy is used to optimize the model for

accurate fault classification.
2. Physics Loss: Constraints derived from electrical laws are enforced to guide learning:

¢ Current Imbalance Constraint: Under normal conditions, the sum of the

three-phase currents should be zero:

L+DL+13 =0

* Flux Consistency Constraint: The leakage flux should be correlated with the sum

of the phase currents:

po<li+hL+1

The total loss function is defined as:

zotal = cg/ﬂclassiﬁcation + logi)hysics

where A is a weighting factor that balances the influence of physics constraints.
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4.5.4.3 Model Compilation and Training
The PINN model was compiled using:
* Optimizer: Adam optimizer with an adaptive learning rate for efficient convergence.

* Loss Function: The custom physics-informed loss function incorporating both

classification and physics losses.

* Metrics: Accuracy was tracked to evaluate classification performance.

The training process involved:

Training Dataset: The dataset was standardized, and sequences were prepared for

efficient learning.

Batch Size: A batch size of 16 was used for stable training.

Epochs: The model was trained for 50 epochs to optimize parameter learning.

Validation Strategy: A validation dataset was used to monitor model performance and

prevent overfitting.

4.5.4.4 Performance Evaluation
The PINN model’s effectiveness was assessed using:
* Loss Trends: Training and validation loss curves to analyze learning progression.
* Confusion Matrix: To evaluate class-wise fault classification accuracy.

* Accuracy, Precision, Recall, and F1-score: Standard evaluation metrics were computed

to measure classification performance.

By integrating physics laws into the learning process, the PINN model enhanced its fault
classification accuracy and reliability, demonstrating its potential for predictive maintenance

applications in induction motors.
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4.6 Model Evaluation and Comparison

To comprehensively assess our classification models, we employ evaluation metrics such
as accuracy, precision, recall, Fl-score, and confusion matrices. Accuracy measures the
proportion of correctly classified instances, while precision indicates the exactness of positive
predictions. Recall reflects the model’s ability to identify all relevant instances, and the
F1-score balances precision and recall. The confusion matrix provides detailed insights into
specific misclassifications. These metrics offer a holistic view of each model’s performance,
allowing us to identify strengths and weaknesses. In the Results and Discussion chapter, we
will present a detailed comparative analysis based on these metrics to evaluate each model’s

effectiveness in relation to our research objectives.
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Chapter 5

Results and Discussion

5.1 Introduction

In this chapter, we present our research on predicting faults in induction motors. We focused
on two common faults: short circuits in the stator winding and bearing faults. To study these,
we used two datasets: one specifically for stator winding faults and another from the CWRU
for bearing faults[935].

We trained several machine learning models to identify these faults. This included
traditional classifiers such as SVM, KNN, Random Forest, Decision Tree, and Naive Bayes.
We also implemented advanced models like ANN, LSTM networks and PINNs.

To evaluate each model’s performance, we used metrics including accuracy, precision,
recall, and F1-score. We also analyzed confusion matrices to understand how well each model
identified different types of motor faults.

All model development and training were conducted using Python in the Google Colab
environment, which provides a cloud-based Jupyter notebook interface with access to GPUs,
enabling efficient execution of computationally intensive tasks. We utilized libraries such
as NumPy for numerical computations, Pandas for data manipulation and analysis, and
Scikit-learn for implementing traditional machine learning algorithms. For building and
training deep learning models, we employed TensorFlow and Keras, while Matplotlib and
Seaborn facilitated data visualization.

This comprehensive approach ensured robust data preprocessing, model development,
and performance evaluation, setting the foundation for the detailed analysis presented in the

subsequent sections of this chapter.
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5.2 Data Preprocessing

As explained in Section 4.2.1, the datasets were preprocessed using Min-Max
normalization, where a custom function was employed to scale the time-series values within
the range [0,1]. Additionally, data was organized and labeled to reflect different fault
conditions, while PCA was utilized for visualization, though it did not enhance classification
accuracy. Feature importance analysis revealed that while some features were individually less
significant, their combined use optimized model performance. Correlation analysis confirmed

the absence of multicollinearity, validating the inclusion of all features in the dataset.

5.3 Results for the Stator Winding Fault Dataset

The performance of traditional classifiers was evaluated under various load conditions.
Below are the findings for the no-load condition. The following figures present the

classification reports and confusion matrices for each model:

5.3.1 K-Nearest Neighbors

The KNN classifier achieved an overall accuracy of 74.37%, indicating a moderate
performance in classifying stator winding faults. The classification report (Figure [5.31)
highlights that Class O (healthy) and Class 6 (most severe fault) were classified with high
precision and recall, suggesting that KNN effectively distinguishes between normal and
extreme fault conditions. However, intermediate fault classes, particularly Classes 2, 3,
and 4, showed lower precision and recall due to overlapping features, leading to frequent
misclassifications. The confusion matrix (Figure[5.32)) further confirms this issue, as significant
misclassifications occurs between these adjacent fault levels. Despite its simplicity, KNN
provided reasonable classification performance but struggled with distinguishing gradual fault

severity variations, making it less effective for complex multi-class fault detection scenarios.
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Classification Report for KHM:

precision recall fl-score  support
a B.91 8,95 a,.93 Aay
1 B.62 B.62 A.62 AHE
2 B.53 8,58 @,55 417
3 £ .88 8,74 ., g8 484
4 8. 56 8,51 9, 54 445
5 B .89 a,98 Q. wa 382
& &.4a4 @.a1 @8.93 15H
accuracy @8.74 2801
macro avg B. 75 0,75 @, 75 2881
wPiEhde avg &. 74 8,74 A, 74 2881
Figure 5.1: KNN classification report
Confusion Matrix for KNN
o i 7 5 5 1 1
- 48 6 B4 5 1
p 5 51 34 74 B 4
B
2 m B 3 48 B 10 B
&
=+ 12 81 101 12 10 1
i 7 7 3 12 6 4
o 4 2 2 13 2 I
o 1 2 3 3 5 6
Predicted

Figure 5.2: KNN confusion matrix

5.3.2 Support Vector Machine

The SVM model achieved 63% accuracy, with high precision and recall for Class 0
(healthy) and Class 6 (severe fault), as shown in Figure However, intermediate fault
classes (2, 3, and 4) showed lower F1-scores due to misclassifications, which is clearly visible

in the confusion matrix (Figure [5.39). The model struggled to distinguish between adjacent

fault levels, indicating limitations in handling overlapping fault features.
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Classification Report for SVM:

precision recall fi-score support

8 8.87 8.76 9.81 4a7

1 a.58 8.61 a.59 3B8

2 8.47 2.41 a8.44 417

3 8.78 .62 8.69 484

4 9.4 8.38 8.39 445

5 a8.55 8.85 a.6e7 3g2

[l a.86 2.84 a.85 358
accuracy 9.63 2881
macro avg a.65 8.64 a.63 2881
weighted avg 9.64 8.63 9.63 2801

Figure 5.3: SVM classification report

Confusion Matrix for SVYM

Actual

Predicted

Figure 5.4: Confusion matrix for SVM

5.3.3 Random Forest

The Random Forest classifier demonstrates improved performance compared to SVM,
achieving an overall accuracy of 77% with a macro Fl-score of 78%, as evidenced in
Figure[5.34] The classification report indicates better precision and recall across most classes.
The confusion matrix (Figure [5.33) shows fewer misclassifications, particularly for classes
0 and 6, suggesting that Random Forest effectively distinguishes between different fault

categories in the dataset.
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Classification Report for Random Forest:

precision recall f1-score support

a8 8.93 8.94 8.93 4a7

1 8.66 8.61 8.63 388

2 8.57 8.58 8.57 417

3 a.82 8.85 8,84 484

4 8.58 8.57 8.57 443

5 8.94 8.96 8.95 g2

i 8,95 8.95 8.95 158

accuracy a.77 2881
macro avg a.78 8.78 a.78 281
weighted avg 8.77 8.77 .77 2801

Figure 5.5: Classification report for Random Forest

Confusion Matrix for Random Forest

Actual

Predicted

Figure 5.6: Confusion matrix for Random Forest

5.3.4 Decision Tree

The Decision Tree classifier achieves an accuracy of 74%, slightly lower than Random
Forest, with a macro Fl-score of 75%. As shown in Figure [5.36] the classification report
shows reasonable precision and recall for most classes, but certain classes, such as 1 and 4,
exhibit lower performance. The confusion matrix in Figure [5.35]indicates a higher degree of

misclassification compared to Random Forest, suggesting that while Decision Tree captures
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patterns effectively, it may overfit to the training data, leading to reduced generalization.

Classification Report for Decision Tree:

precision recall fil-score  support
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Figure 5.7: Classification report for Decision Tree
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Figure 5.8: Confusion matrix for Decision Tree

5.3.5 Naive Bayes

The Naive Bayes classifier demonstrates significantly lower performance compared to other
models, achieving an accuracy of 24% and a macro F1-score of 24%. The classification report
in Figure[5.38]highlights poor precision and recall across most classes, except for class 6, which
shows relatively better precision but still suffers from misclassifications. The confusion matrix

in Figure [5.37] indicates widespread misclassification, with many instances being incorrectly
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assigned to different categories. The assumption of feature independence in Naive Bayes may

not align well with the dataset characteristics, leading to suboptimal classification performance.

Classification Report for Naive Bayes:

precision recall f1-score support
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2 8.19 8.13 @.16 417

3 8.21 .14 @.17 484

4 9.22 .15 @.18 445

5 9.20 8.18 8.19 382

6 8.69 0.49 8.58 358
accuracy @.24 2801
macro avg 8.27 .24 @.24 2801
weighted avg 8.26 8.24 8.24 2801

Figure 5.9: Naive Bayes classification report
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Figure 5.10: Confusion matrix for Naive Bayes

5.3.6 Artificial Neural Networks

The ANN model demonstrates strong classification performance, achieving an accuracy of
74% with a macro F1-score of 75%. The classification report in Figure indicates that the

model performs exceptionally well for certain classes, particularly class O and class 6, which
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achieve F1-scores above 0.90. The confusion matrix in Figure [5.41] shows that the majority
of predictions align well with actual labels, with a structured pattern of classification across
different fault types.

The training and validation loss curves in Figure [5.13| indicate effective learning, with a
steady decline in loss over epochs, demonstrating that the model generalizes well. Similarly, the
accuracy curves in Figure[5.14]show consistent improvement, with both training and validation
accuracy stabilizing at a high level, indicating a well-trained model. These results suggest
that the ANN effectively captures patterns in the data, making it a reliable approach for fault

classification.

Classification Report for ANN:

precision recall fi1-score  support
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Figure 5.11: Classification report for ANN
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Confusion Matrix for ANN
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Figure 5.12: Confusion matrix for ANN
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Figure 5.13: Training and validation loss for ANN
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Figure 5.14: Training and validation accuracy for ANN

5.3.7 Long Short-Term Memory

Based on the results obtained for the LSTM model, the classification report in Figure [5.44]
indicates high precision, recall, and F1-scores across all classes, achieving an overall accuracy
of 89%. The confusion matrix in Figure [5.43] demonstrates that most samples are correctly
classified, with minimal misclassifications. The training and validation loss curves in
Figure show a consistent decrease, suggesting effective learning without significant
overfitting. Similarly, the accuracy curves in Figure [5.18] indicate a steady improvement,
with validation accuracy closely following training accuracy, further confirming the model’s
generalization capability.

These results highlight the effectiveness of the LSTM model in classifying faults in the
dataset. The high performance across different metrics suggests that the model successfully
captures temporal dependencies in the data, leading to precise fault classification. The
consistent trends in training and validation performance confirm that the model has learned

meaningful patterns, making it a reliable choice for predictive maintenance applications.
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Classification Report for LSTM:

precision recall fil-score support
(%] 9.99 1.00 1.00 406
1 .88 0.79 0.83 397
2 B.74 9.81 e.77 492
3 0.97 0.93 0.95 398
4 B.74 8.79 9.76 420
5 9.98 .97 0.97 381
6 9.99 .99 0.99 395
accuracy 0.89 2799
macro avg 9.90 9.90 9.90 2799
weighted avg 0.90 0.89 0.90 2799

Figure 5.15: Classification report for LSTM
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Figure 5.16: Confusion matrix for LSTM
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Figure 5.17: Training and validation loss for LSTM
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Figure 5.18: Training and validation accuracy for LSTM

5.3.8 Voting Classifier

The voting classifier achieved a high overall accuracy of 94%, as shown in the classification

report in Figure[5.45] Precision, recall, and F1-scores are consistently strong across all classes,

indicating reliable fault classification. The confusion matrix in Figure [5.46] demonstrates

minimal misclassifications, with most samples correctly assigned to their respective categories.

These results highlight the effectiveness of the ensemble approach in improving classification

performance by combining multiple models’ predictions.
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The model’s high accuracy and balanced performance across all metrics confirm its
robustness in handling the dataset. The voting classifier effectively integrates multiple
classifiers’ strengths, leading to improved generalization and reduced misclassification rates.
This makes it a strong candidate for predictive maintenance applications, ensuring reliable

fault detection and classification.

Classification Report:

precision recall fl-score  support
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Figure 5.19: Voting classifier classification report
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Figure 5.20: Voting classifier confusion matrix
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5.3.9 Discussion on Model Performance for Stator Winding Fault Dataset
5.3.9.1 No-Load Condition

The performance comparison of all classifiers on the stator winding fault dataset with seven

classes is summarized in Table [5.1| and Figure [5.21]

Model Accuracy (%)
KNN 74.37
SVM 62.79
Random Forest 77.79
Decision Tree 74.15
Naive Bayes 23.74
ANN 74.00
LSTM 89.42
Voting Classifier 94.00

Table 5.1: Comparison of classifiers accuracy

The results show that the voting classifier achieved the highest accuracy of 94%, followed
by LSTM with 89.42% and Random Forest with 77.79%. Among the traditional classifiers,
KNN and Decision Tree performed similarly, with accuracies of 74.36% and 74.15%,
respectively. In contrast, SVM struggled with an accuracy of only 62.79%, and Naive Bayes
performed the worst at 23.74%, indicating that it is not well-suited for this dataset. The ANN
model achieved 74% accuracy, demonstrating a balanced performance but with clear challenges
in distinguishing between fault classes of varying severity. The classification report highlights
that Classes 0 (healthy) and 6 (most severe fault) were classified with high precision and recall
values, while intermediate fault classes (Classes 1-5) had lower classification accuracy due to
feature overlap among different levels of stator winding faults.

The misclassification in the dataset is primarily caused by the similarity between adjacent
fault classes, making it difficult for models to distinguish between them effectively. The
classification report for the ANN model shows that while Classes 0 and 6 achieved high
precision and recall, Classes 2, 3, and 4 had much lower values, indicating significant confusion
between these categories. This is expected, as early-stage faults exhibit signal characteristics
that closely resemble normal motor operation, leading to incorrect classifications. Additionally,
the dataset structure contributes to these results - since the progression from minor to severe
short-circuit faults is gradual, feature values overlap, making it harder for classifiers to draw

clear decision boundaries as shown in the PCA plot in Figure[5.22]
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Figure 5.21: Comparison of classifiers accuracy
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Figure 5.22: PCA plot for ITSC in induction motor dataset

However, deep learning models such as LSTM demonstrated superior performance,
achieving 89.42% accuracy. LSTM’s ability to learn temporal dependencies in sequential data
makes it particularly effective for fault classification, as it can capture subtle differences in
motor behavior over time.

To further analyze the classification performance, we conducted a binary classification
experiment, considering only Class 0 (healthy) and Class 6 (most severe fault). The results in
Figure [5.23|show a significant improvement in accuracy across all models, as the classification
task becomes easier when distinguishing between only two distinct classes.

This confirms that the difficulty in the original seven-class dataset arises from the similarity
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Figure 5.23: Bar chart for no load Binary classification
between intermediate fault classes, rather than an inherent limitation of the models themselves.

5.3.9.2 Half and Full Load Conditions

For the half-load and full-load conditions, the classification models were trained using a
dataset with only two classes: healthy and severely faulty. The accuracies of all classifiers for

both load conditions are shown in Figures[5.24]and [5.25]

Comparison of Classifier Accuracies
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Figure 5.24: Bar chart for half-load Binary classification

The classification performance improved notably due to the reduced complexity of the
dataset, where distinguishing between only two classes (healthy and severely faulty) is a
relatively easier task compared to classifying faults of varying severity levels. Table [5.2]

summarizes the performance across all load conditions.
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Figure 5.25: Bar chart for full-load Binary classification

Model No Load Accuracy | Half Load Accuracy | Full Load Accuracy
KNN 99.74% 96.57% 97.02%
SVM 92.46% 93.91% 94.15%
Random Forest 99.60% 99.03% 98.88%
Decision Tree 99.74% 98.65% 98.92%
Naive Bayes 80.00% 75.78% 79.10%
ANN 99.09% 96.02% 95.90%
LSTM 100.00% 99.87% 99.87%
Voting Classifier 100.00% 100.00% 99.9%

Table 5.2: Performance of models across load conditions

Overall, the results confirm that classification performance improves significantly when
dealing with binary classification rather than multi-class classification. The deep learning
models, particularly LSTM and the voting classifier, exhibited superior performance across

both load conditions, making them ideal choices for predictive maintenance applications where

high classification accuracy is critical.

5.4 Results for PINNs

The dataset covering 7 types of classes was classified using PINNs, and its performance was
compared with traditional Artificial Neural Networks. PINNs achieved an accuracy of 75% for

the 7-class dataset and 99.32% for the binary classification task (healthy vs. faulty conditions).

Below are the key results and visualizations for PINNs:
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Classification Report:

precision recall fl-score  support
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Figure 5.26: Classification report of PINN's
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Figure 5.27: Confusion matrix for PINNs

5.4.1 Performance Analysis and Insights

The performance of PINNs and ANNs was evaluated on both the 7-class and 2-class
datasets. For the 7-class dataset, PINNs achieved an accuracy of 75%, while ANNs achieved
74%. This indicates that both models performed similarly on the more complex task, with
PINNSs slightly outperforming ANNs. The marginal improvement in accuracy for PINNs
can be attributed to their ability to incorporate physical laws and constraints, which may
have provided a slight advantage in capturing underlying patterns in the data. However, the
difference is minimal, suggesting that the added complexity of PINNs does not significantly

enhance performance for multi-class classification tasks.
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In contrast, for the binary classification task (healthy vs. faulty), both models achieved
exceptional performance, with PINNs reaching 99.32% accuracy and ANNs achieving 99%
accuracy. This demonstrates that both PINNs and ANNs are highly effective for simpler
classification tasks where the decision boundaries are more straightforward. The near-perfect
accuracy of both models highlights their ability to generalize well on binary classification
problems, with PINNs slightly outperforming ANNs due to their physics-informed approach,
which aligns well with the problem domain.

The training and validation losses (Figure [5.28) and accuracies (Figure [5.29) for PINNs

provide further insights into their learning behavior.

Training & Validation Loss
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Figure 5.28: Training and validation loss for PINNs

The convergence of losses and accuracies indicates that PINNs were able to learn
effectively, but the relatively lower accuracy on the 7-class dataset suggests that the
physics-based constraints may limit their flexibility in handling highly complex, multi-class
problems. On the other hand, ANNs, with their flexibility and ability to model complex,
non-linear relationships, performed comparably to PINNs on the 7-class dataset and slightly
worse on the binary task.A bar chart comparing the accuracy of PINNs with other models is

provided to illustrate the performance differences (see Figure [5.30).
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Figure 5.29: Training and validation accuracy for PINNs
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Figure 5.30: Bar chart for comparing PINNs with other deep learning models

5.5 Results for the CWRU Dataset

The performance of various classifiers on the CWRU dataset is evaluated using accuracy,

confusion matrices, and classification reports.

For each model, the confusion matrix and

classification report are provided to analyze the performance in detail. Below are the results for

each classifier:
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5.5.1 K-Nearest Neighbors

The KNN classifier achieved an accuracy of 83% on the CWRU dataset.

While it

performed well for some classes, it struggled with others, particularly due to its sensitivity to

class imbalance and high-dimensional data. Misclassifications were observed across multiple

classes, impacting overall reliability, as shown in Figure[5.31] and Figure [5.32]
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Figure 5.31: Classification report KNN
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Figure 5.32: Confusion matrix for KNN
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5.5.2 Random Forest

The Random Forest classifier achieved a high accuracy of 98% on the CWRU dataset.
Its strong performance is due to its ensemble learning approach, which reduces overfitting
and enhances generalization. The confusion matrix in Figure [5.33] indicates minimal
misclassifications, highlighting its effectiveness in handling complex, high-dimensional data,

as further detailed in the classification report in Figure [5.34]
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Figure 5.33: Confusion matrix Random Forest
Classification Report:

precision recall fl-score  support
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Figure 5.34: Classification report Random Forest
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5.5.3 Decision Tree

The Decision Tree classifier achieved an accuracy of 93%, demonstrating good performance
in fault classification. However, some misclassifications are observed, particularly in certain
fault categories, as reflected in the confusion matrix in Figure[5.35] This suggests that while the

model effectively captures patterns, it may be prone to overfitting, as shown in the classification

report in Figure [5.36
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Figure 5.35: Confusion matrix Decision Tree
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Figure 5.36: Classification report for Decision Tree
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5.5.4 Naive Bayes

The Naive Bayes classifier achieved an accuracy of 88%, but its performance varies across
classes. The confusion matrix in Figure[5.37|reveals significant misclassifications, particularly
in certain fault categories. The model’s assumption of feature independence may limit its

effectiveness in handling complex fault patterns, as evidenced by the classification report in

Figure [5.38]
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Figure 5.37: Naive Bayes confusion matrix
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Figure 5.38: Classification report for Naive Bayes
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5.5.5 Support Vector Machine

The SVM model demonstrates excellent classification performance, as seen in the confusion
matrix in Figure [5.39] and classification report in Figure 5.40f The confusion matrix
shows minimal misclassifications, with most predictions correctly aligned along the diagonal,
indicating strong class separation. The classification report further confirms this, with
precision, recall, and F1-scores all above 0.95 for each class. The model achieves an impressive
overall accuracy of 98%, with macro and weighted averages also at 0.98, reflecting its
consistency across all fault classes. Compared to other models, SVM significantly outperforms
Naive Bayes in terms of precision and recall, making it a highly reliable approach for fault

classification in induction motors.
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Figure 5.39: Confusion matrix for SVM
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Figure 5.40: Classification report for SVM

5.5.6 Artificial Neural Network

The ANN model exhibits strong classification performance, as reflected in its confusion
matrix (Figure [5.41) and classification report (Figure [5.42)). The confusion matrix shows that
most predictions are accurately classified, with only a few misclassifications. The classification
report indicates high precision, recall, and F1-scores for all classes, with most values exceeding
0.90. The model achieves an overall accuracy of 95%, with macro and weighted averages also
at 0.95 or higher, confirming its reliability in fault classification. ANN demonstrates robust

learning capabilities, performing well across all classes, though slight misclassifications are

observed in certain cases.
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Figure 5.41: Confusion matrix for ANN
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Figure 5.42: Classification report for ANN

5.5.7 Long Short-Term Memory

The LSTM model demonstrates exceptional classification performance, achieving an
impressive accuracy of 99%. As shown in Figure [5.43] the confusion matrix shows minimal
misclassifications, indicating that the model effectively differentiates between classes. The
classification report in Figure @ further confirms its robustness, with precision, recall, and
F1-scores close to or equal to 1.00 for most classes. The macro and weighted averages also
stand at 0.99, highlighting the model’s strong ability to learn sequential patterns and accurately

predict faults. These results suggest that LSTM is highly effective in capturing temporal
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dependencies within the dataset, leading to superior predictive performance.
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Figure 5.43: Confusion matrix for LSTM
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Figure 5.44: Classification report for LSTM

5.5.8 Voting Classifier

The performance of the voting classifier is evaluated using the confusion matrix and
classification report. The confusion matrix in Figure[5.46| shows strong classification accuracy,
with most instances correctly predicted along the diagonal. The classification report in Figure

[5.43| provides detailed performance metrics, where the model achieves an overall accuracy of
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98%. The precision, recall, and Fl-score values remain high across all classes, with most
exceeding 0.98. The macro and weighted averages also confirm the robustness of the classifier,
indicating that the ensemble approach effectively improves classification performance.
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Figure 5.45: Voting classifier classification report
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Figure 5.46: Confusion matrix for voting classifier

5.5.9 Comparative Evaluation of Classifiers on the CWRU Dataset

The performance of the classifiers on the CWRU dataset is summarized in Table [5.3] and
visualized in Figure [5.47]
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Model Accuracy (%)
KNN 83
Random Forest 98
Decision Tree 93
Naive Bayes 88
SVM 98
ANN 96
LSTM 99
Voting Classifier 98.3

Table 5.3: Performance summary of classifiers on CWRU dataset

The results reveal significant differences in accuracy, with LSTM achieving the highest
accuracy of 99%, followed by Random Forest and SVM at 98%, and the Voting Classifier at
98.3%. Naive Bayes, on the other hand, had the lowest accuracy at 88%.

Comparison of Classifier Accuracies
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Figure 5.47: Bar chart for Performance Comparison

The superior performance of LSTM can be attributed to its ability to capture temporal
dependencies and long-term patterns in the time-series data, which is crucial for fault diagnosis
tasks. LSTMs are particularly effective for sequential data, making them well-suited for the
vibration signals in the CWRU dataset. However, their computational complexity and longer
training times are notable drawbacks.

Similarly, Random Forest and SVM performed exceptionally well due to their ability to
handle high-dimensional data and find optimal decision boundaries. Random Forest, as an
ensemble method, reduces overfitting by combining multiple decision trees, while SVM excels
in high-dimensional spaces by finding the best hyperplane for classification.

In contrast, simpler models like Naive Bayes and KNN struggled to achieve comparable

accuracy. Naive Bayes, with an accuracy of 88%, is limited by its assumption of feature
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independence, which is often violated in real-world datasets like CWRU. KNN, with
83% accuracy, is sensitive to the choice of the number of neighbors and struggles with
high-dimensional data, leading to lower performance. Decision Trees, while interpretable and
effective for small datasets, achieved 93% accuracy but are prone to overfitting, especially with
noisy data. ANN, with 96% accuracy, demonstrated strong performance due to its ability to
model complex, non-linear relationships, but its effectiveness depends heavily on the chosen
architecture and hyperparameters.

Overall, the results highlight the importance of selecting models that can handle the
complexity and high-dimensional nature of the CWRU dataset. Ensemble methods like
Random Forest and Voting Classifier, as well as deep learning models like LSTM, excel in
this context due to their ability to generalize and capture intricate patterns. Simpler models,

while computationally efficient, are less effective for this task.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This research focused on developing a predictive maintenance framework for induction
motors in EVs using machine learning techniques. With the growing adoption of EVs, ensuring
the reliability and efficiency of induction motors is essential to prevent unexpected failures and
reduce maintenance costs. Traditional maintenance strategies, such as reactive and preventive
maintenance, are insufficient in addressing hidden faults, particularly stator winding short
circuits, which can significantly impact motor performance[111]. Thus, predictive maintenance
has emerged as a promising solution for real-time fault detection and early intervention[112].

In this study, various machine learning models, including ANNs, LSTM, SVM, KNN,
Decision Trees, Random Forest, and Naive Bayes, were applied to classify stator winding
faults. Additionally, PINNs were explored to incorporate motor dynamics into the learning
process, enhancing fault classification accuracy. The effectiveness of these models was
evaluated based on key performance metrics such as accuracy, F1-score, confusion matrices,
and bar charts.

The results demonstrated that deep learning models, particularly LSTM and ensemble
methods like the voting classifier, outperformed traditional machine learning models in
fault classification. These models exhibited superior generalization capabilities, accurately
detecting both high-impedance and low-impedance faults in stator windings. The study
also highlighted the limitations of conventional models, which struggled with complex fault
patterns, reaffirming the need for advanced predictive maintenance solutions.

By integrating machine learning and physics-based modeling, this research contributes to
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enhancing the reliability and efficiency of induction motors in EVs. The findings suggest
that predictive maintenance frameworks leveraging Al-driven fault diagnosis can significantly
improve motor health monitoring, reduce downtime, and optimize maintenance schedules,

ultimately extending the lifespan of EV motors[113].

6.2 Future Work

Although this study achieved promising results, several areas remain for further research

and improvement:

1. Integration of Real-Time Monitoring: Future work can focus on deploying the
proposed predictive maintenance framework in real-world applications by integrating
real-time sensor data collection from EV motors. This would enhance the practical

implementation and validation of the proposed models[114].

2. Expanding Fault Coverage: Future studies can include a broader range of motor faults,

such as rotor issues, to create a more comprehensive predictive maintenance system.

3. Dataset Enhancement: More diverse datasets covering various fault types and operating
conditions can be used to improve model robustness. Additionally, instead of relying
solely on publicly available datasets, researchers can create their own datasets through

controlled experiments[115]].

4. Utilization of Digital Twin Technology: Digital twin-based synthetic data generation
can be explored to augment datasets, simulate different fault scenarios, and improve

model training and validation[116].

5. Classification of Stator Winding Faults for Multiple Load Conditions: In this study,
stator winding faults were classified under half and full-load conditions into two classes:
normal and severe fault. Future work can focus on classifying all seven fault classes,
ranging from minor to severe short circuits, for these load conditions using different

classifiers to achieve optimal performance.

6. Cross-Domain Adaptability: The proposed predictive maintenance framework can

be extended to other rotating machinery beyond induction motors in EVs, such as
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industrial pumps, wind turbines, and aerospace systems, to evaluate its adaptability and

scalability[[117].

By addressing these areas, future research can further refine predictive maintenance
strategies, making EV motors more reliable, efficient, and cost-effective. The advancements
in machine learning and digital twin-based simulations hold great potential for revolutionizing

fault diagnosis and predictive maintenance across various industries[118]].

103



6.3

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Bibliography

W. E. Forum. (2023) Electric vehicle sales leapt 55% in 2022, with china
in front. [Online]. [Online]. Available: https://www.weforum.org/agenda/2023/05/

electric-vehicles-ev-sales- growth-2022/

X. Sun, Z. Li, X. Wang, and C. Li, “Technology development of electric vehicles: A

review,” Energies (Basel), vol. 13, no. 1, Dec 2019.

S. Kumar et al., “A comprehensive review of condition based prognostic maintenance

(cbpm) for induction motor,” 2019.

A. K. S. Jardine, D. Lin, and D. Banjevic, “A review on machinery diagnostics and

prognostics implementing condition-based maintenance,” Oct 2006.
L. Breiman, “Random forests,” 2001.

W. R. Abed, S. K. Sharma, and R. Sutton, “Fault diagnosis of brushless dc motor for
an aircraft actuator using a neural wavelet network,” in IET Conference on Control and

Automation 2013: Uniting Problems and Solutions, 2013, pp. 1-6.

L. L. Li, J. Q. Liu, W. B. Zhao, and L. Dong, “Fault diagnosis of high-speed brushless
permanent-magnet dc motor based on support vector machine optimized by modified

grey wolf optimization algorithm,” Symmetry, vol. 13, no. 2, p. 163, 2021.

S. Murgai et al., “Scientific machine learning for battery degradation forecasting in
electric vehicles,” Journal of Machine Learning Applications, vol. 5, no. 1, pp. 23-35,

2023.

“Application of long short-term memory networks for stator fault detection in bldc
motors,” IEEE Transactions on Industrial Electronics, vol. 68, no. 7, pp. 6521-6532,
2022.

“Machine learning for temperature prediction in permanent magnet synchronous

motors,” Energy Conversion and Management, vol. 210, pp. 112-120, 2021.

“Condition monitoring of electrical machinery using pca and time-series analysis,’

Journal of Maintenance Engineering, vol. 6, no. 2, pp. 45-57, 2022.

104


https://www.weforum.org/agenda/2023/05/electric-vehicles-ev-sales-growth-2022/
https://www.weforum.org/agenda/2023/05/electric-vehicles-ev-sales-growth-2022/

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

“Real-time fault detection for dc motors using machine learning,” International Journal

of Electrical Engineering and Technology, vol. 9, no. 3, pp. 86-95, 2023.

“Predictive modeling of motor parameters for fault detection with iot and machine

learning,” Journal of Industrial IoT, vol. 3, no. 5, pp. 58-67, 2022.

“Estimating the remaining useful life of bldc motors using rnn with attention

mechanisms,” Neural Computing and Applications, vol. 34, no. 6, pp. 789-802, 2023.

“Fuzzy logic and machine learning for predictive maintenance in public transport,”

Journal of Transportation Safety and Security, vol. 14, no. 2, pp. 99-107, 2022.

“Optimization methods for predictive maintenance in industry 4.0, IEEE Transactions

on Industrial Informatics, vol. 19, no. 3, pp. 112-123, 2023.

“Machine learning and data analytics for early failure detection in real-time monitoring

systems,” Journal of Process Control, vol. 28, pp. 45-59, 2023.

“Fault detection in bldc motors using anns, cloud technology, and iot,” IEEE Access,

vol. 11, pp. 3645-3656, 2023.

S. Gundewar, S. Kane, and S. Andhare, “Diagnosis of broken rotor bar faults in induction
motors using time-domain grayscale current signal imaging and convolutional neural
networks,” IEEE Transactions on Industrial Electronics, vol. 69, no. 3, pp. 1234-1246,
2024.

“Designing three-phase induction motors for ev applications and fault diagnosis using
machine learning algorithms,” Journal of Electric Power Systems Research, vol. 13,

no. 4, pp. 76-89, 2023.

“Machine learning models for diagnosing rotor and bearing faults in induction motors
using vibration data,” IEEE Transactions on Industrial Informatics, vol. 21, no. 1, pp.

45-58, 2022.

D. Turza et al., “Single-phase fault detection in induction motors using random forest
algorithm,” Journal of Mechanical Systems and Signal Processing, vol. 15, no. 6, pp.

231-242, 2023.

105



[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

A. Rai et al., “Fault prediction in induction motors using artificial neural networks and
vibration and current signals,” Journal of Electrical Engineering & Technology, vol. 11,

no. 2, pp. 302-314, 2022.

“Machine learning techniques for predictive maintenance in electric vehicle systems,”

Computational Intelligence in Electrical Engineering, vol. 4, no. 2, pp. 157-170, 2023.

K. Kudelina et al., “Comparative analysis of machine learning models for diagnosing
broken rotor bars in induction motors,” Industrial Internet of Things Journal, vol. 8,

no. 5, pp. 67-79, 2024.

“Review of fault detection and diagnosis methods in electric vehicles: Data-driven
approaches,” Journal of Electrical Engineering and Computer Science, vol. 32, pp.

98-109, 2023.

F. Mohamed et al., “Hybrid machine learning model for fault diagnosis in induction
motors using thermal image analysis,” Journal of Thermal Science and Engineering

Applications, vol. 14, no. 3, pp. 150-162, 2022.

J. Yoo, J. Kim, and S. Choi, “Lightweight convolutional neural network for bearing fault
diagnosis with spectrograms,” Journal of Mechanical Science and Technology, vol. 34,

no. 5, pp. 2029-2039, 2020.

H. Saghi, X. Li, and Z. Zhang, “Multi-scale convolutional neural network and
bidirectional gated recurrent units for bearing fault diagnosis,” Mechanical Systems and

Signal Processing, vol. 148, p. 107174, 2021.

Y. Huang, H. Zhang, and S. Liu, “Wide deep convolutional neural network with
squeeze-and-excitation for fault diagnosis of rotating machinery,” Journal of Vibration

and Acoustics, vol. 143, no. 6, p. 061010, 2021.

D. Bérnea, D. Opris, and R. Radulescu, “Bearing fault detection using hilbert-huang
transform and machine learning,” Journal of Mechanical Engineering Science, vol. 234,

no. 6, pp. 1421-1433, 2020.

S. Sawai, S. Chandra, and P. Sahu, “Ensemble learning-based fault diagnosis for rotating
machinery: A comparative study of rf, svm, and ann with gradient boosting,” IEEE

Access, vol. 8, pp. 187445-187 459, 2020.

106



[33] D. Afriyie, “Inter-turn short circuit fault detection and prediction in induction motors,”

Science Engineering Entrepreneurship Design (SEED) Journal, vol. 2, no. 1, 2023.

[34] J. Smith and A. Brown, “Predictive maintenance for electric motors in electric vehicles,”

Journal of Electric Vehicle Engineering, vol. 15, no. 4, pp. 235-245, 2020.

[35] D. Lee and H. Kim, “Application of artificial intelligence in predictive maintenance of
induction motors,” International Journal of Machine Learning Applications, vol. 23,

no. 2, pp. 142-158, 2021.

[36] R. Kumar and S. Singh, “Induction motor design and working principle,” [EEE
Transactions on Industrial Electronics, vol. 66, no. 7, pp. 5734-5741, 2019.

[37] D. A. Moreno Salinas, “Predictive maintenance of induction motors using deep learning:
Anomaly detection using an autoencoder neural network and fault classification using a

convolutional neural network,” Ph.D. Thesis, Your Institution Name, 2022.

[38] D. Afriyie, “Fault detection and prediction in induction motors,” Ph.D. Thesis, Your

Institution Name, 2022.

[39] L. Wang and X. Zhang, “Fault diagnosis and maintenance strategies for induction

motors,” IEEE Access, vol. 8, pp. 12467-12478, 2020.

[40] Q. Zhang and Y. Zhao, “Fault detection in electric motors: A comprehensive review,’

Journal of Electrical Engineering and Technology, vol. 17, no. 3, pp. 143-155, 2022.

[41] P. Smith and N. Gupta, “Stator winding faults in induction motors: Mechanisms and

detection methods,” Journal of Vibration Engineering, vol. 19, no. 6, pp. 310-323, 2021.

[42] M. Jones and S. Patel, “Rotor faults in induction motors: A review of methods and

algorithms,” Journal of Mechanical Systems, vol. 34, no. 1, pp. 57-65, 2022.

[43] R. Taylor and J. Roberts, “Bearing failure analysis in induction motors,” IEEE
Transactions on Industrial Applications, vol. 50, no. 8, pp. 4567-4573, 2020.

[44] C. Anderson and E. Clark, “Predictive maintenance in induction motors for electric
vehicles: The role of machine learning,” International Journal of Smart Automation,

vol. 12, no. 1, pp. 88-99, 2021.

107



[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

J. Jiang and C. Kuo, “Enhancing convolutional neural network deep learning for
remaining useful life estimation in smart factory applications,” in 2017 International
Conference on Information, Communication and Engineering (ICICE), 2017, pp.
120-123.

Y. O. Lee, J. Jo, and J. Hwang, “Application of deep neural network and generative
adversarial network to industrial maintenance: A case study of induction motor fault
detection,” in 2017 IEEE International Conference on Big Data (Big Data), 2017, pp.
3248-3253.

M. Paolanti, L. Romeo, A. Felicetti, A. Mancini, E. Frontoni, and J. Loncarski, “Machine
learning approach for predictive maintenance in industry 4.0,” in 2018 14th IEEE/ASME
International Conference on Mechatronic and Embedded Systems and Applications

(MESA), 2018, pp. 1-6.

MathWorks, “Predictive maintenance with matlab,” Available online, 2019. [Online].
Available: https://www.matlabexpo.com/content/dam/mathworks/mathworks-dot-com/

1mages/events/matlabexpo/uk/2019/predictive- maintenance-with-matlab.pdf

D. A. Moreno Salinas, “Predictive maintenance of induction motors using deep learning:
Anomaly detection using an autoencoder neural network and fault classification using a

convolutional neural network,” 2022.

Z. Gao, C. Cecati, and S. X. Ding, “A survey of fault diagnosis and fault-tolerant
techniques—part i: Fault diagnosis with model-based and signal-based approaches,’

IEEE Transactions on Industrial Electronics, vol. 62, no. 6, pp. 3757-3767, June 2015.

K. P. Murphy, Machine Learning: A Probabilistic Perspective, ser. Adaptive
Computation and Machine Learning Series. = Cambridge, United States: MIT Press,
2012, visited on 07/14/2021.

F. Chollet, Deep Learning with Python, 1st ed. Shelter Island, NY: Manning
Publications, 2018.

K. P. Murphy, Machine Learning: A Probabilistic Perspective, ser. Adaptive
Computation and Machine Learning Series. Cambridge, United States: MIT Press,
2012, visited on 07/14/2021.

108


https://www.matlabexpo.com/content/dam/mathworks/mathworks-dot-com/images/events/matlabexpo/uk/2019/predictive-maintenance-with-matlab.pdf
https://www.matlabexpo.com/content/dam/mathworks/mathworks-dot-com/images/events/matlabexpo/uk/2019/predictive-maintenance-with-matlab.pdf

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, visited
on 07/09/2021. [Online]. Available: https://www.deeplearningbook.org/

F. Chollet, Deep Learning with Python, 1st ed. Shelter Island, NY: Manning
Publications, 2018.

Peltarion. (2021) Available activations | build an ai model. Visited
on 11/09/2021. [Online]. Available: https://peltarion.com/knowledge-center/

documentation/modeling-view/buildan-ai-model/activations

J. Brownlee. (2021) How to choose an activation function for deep learning.
Visited on 11/09/2021. [Online]. Available: https://machinelearningmastery.com/

choose-an-activation-function-for-deep-learning/

Pathimind. (2021) A beginner’s guide to neural networks and deep learning. Visited on

11/09/2021. [Online]. Available: http://wiki.pathmind.com/neural-network

Peltarion. (2021) Linear activation function | build an ai model. Visited
on 11/09/2021. [Online]. Available: https://peltarion.com/knowledge-center/

documentation/modeling- view/buildan-ai-model/activations/linear

——  “Relu activation function | build an ai model,” 2021, visited
on 11/09/2021. [Online]. Available: https://peltarion.com/knowledge-center/

documentation/modeling-view/buildan-ai-model/activations/relu

—, “Softmax activation function | build an ai model,” 2021, visited
on 11/09/2021. [Online]. Available: https://peltarion.com/knowledge-center/

documentation/modeling-view/buildan-ai-model/activations/softmax

——, “Sigmoid activation function | build an ai model,” 2021, visited
on 11/09/2021. [Online]. Available: https://peltarion.com/knowledge-center/

documentation/modeling-view/buildan-ai-model/activations/sigmoid

——  “Tanh activation function | build an ai model,” 2021, visited
on 11/09/2021. [Online]. Available: https://peltarion.com/knowledge-center/

documentation/modeling-view/buildan-ai-model/activations/tanh

109


https://www.deeplearningbook.org/
https://peltarion.com/knowledge-center/documentation/modeling-view/buildan-ai-model/activations
https://peltarion.com/knowledge-center/documentation/modeling-view/buildan-ai-model/activations
https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/
https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/
http://wiki.pathmind.com/neural-network
https://peltarion.com/knowledge-center/documentation/modeling-view/buildan-ai-model/activations/linear
https://peltarion.com/knowledge-center/documentation/modeling-view/buildan-ai-model/activations/linear
https://peltarion.com/knowledge-center/documentation/modeling-view/buildan-ai-model/activations/relu
https://peltarion.com/knowledge-center/documentation/modeling-view/buildan-ai-model/activations/relu
https://peltarion.com/knowledge-center/documentation/modeling-view/buildan-ai-model/activations/softmax
https://peltarion.com/knowledge-center/documentation/modeling-view/buildan-ai-model/activations/softmax
https://peltarion.com/knowledge-center/documentation/modeling-view/buildan-ai-model/activations/sigmoid
https://peltarion.com/knowledge-center/documentation/modeling-view/buildan-ai-model/activations/sigmoid
https://peltarion.com/knowledge-center/documentation/modeling-view/buildan-ai-model/activations/tanh
https://peltarion.com/knowledge-center/documentation/modeling-view/buildan-ai-model/activations/tanh

[64] ——, “What are the optimization principles in deep learning,” 2021,
visited on 07/29/2021. [Online]. Available: https://peltarion.com/knowledge-center/

documentation/modeling- view/run-a-model/optimization-principles-(in-deep-learning)

[65] K. P. Murphy, Machine Learning: A Probabilistic Perspective, ser. Adaptive

computation and machine learning series. MIT Press, 2012, visited on 07/14/2021.

[66] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, visited
on 07/09/2021. [Online]. Available: https://www.deeplearningbook.org/

[67] Peltarion, “What are the optimization principles in deep learning,” 2021,
visited on 07/29/2021. [Online]. Available: https://peltarion.com/knowledge-center/

documentation/modeling-view/run-a-model/optimization-principles-(in-deep-learning)

[68] ——, “Regression loss metrics on the peltarion platform,” July 2021,
visited on 07/13/2021. [Online]. Available: https://peltarion.com/knowledge-center/

documentation/evaluation- view/regression-loss-metrics/mae-/-mean-absolute-error

[69] ——, “Regression loss metrics on the peltarion platform,” 2021, visited
on 07/29/2021. [Online]. Available: https://peltarion.com/knowledge-center/

documentation/evaluation-view/regression-loss-metrics/mse-/-mean-squared-error

[70] ——,  “Categorical crossentropy loss function | peltarion platform,”
2021, visited on 07/29/2021. [Online]. Available: https://peltarion.com/
knowledge-center/documentation/modeling- view/build-an-ai-model/loss-functions/

categorical-crossentropy

[71] ——, “Binary crossentropy loss function | peltarion platform,” 2021, visited
on 11/09/2021. [Online]. Available: https://peltarion.com/knowledge-center/

documentation/modeling-view/build-an-ai-model/loss-functions/binary-crossentropy
[72] F. Chollet, Deep learning with Python, 1sted. Manning Publications, 2018.

[73] GeeksforGeeks, “Introduction to long short-term memory
(Istm).” [Online]. Available: https://www.geeksforgeeks.org/

deep-learning-introduction-to-long-short-term-memory/

110


https://peltarion.com/knowledge-center/documentation/modeling-view/run-a-model/optimization-principles-(in-deep-learning)
https://peltarion.com/knowledge-center/documentation/modeling-view/run-a-model/optimization-principles-(in-deep-learning)
https://www.deeplearningbook.org/
https://peltarion.com/knowledge-center/documentation/modeling-view/run-a-model/optimization-principles-(in-deep-learning)
https://peltarion.com/knowledge-center/documentation/modeling-view/run-a-model/optimization-principles-(in-deep-learning)
https://peltarion.com/knowledge-center/documentation/evaluation-view/regression-loss-metrics/mae-/-mean-absolute-error
https://peltarion.com/knowledge-center/documentation/evaluation-view/regression-loss-metrics/mae-/-mean-absolute-error
https://peltarion.com/knowledge-center/documentation/evaluation-view/regression-loss-metrics/mse-/-mean-squared-error
https://peltarion.com/knowledge-center/documentation/evaluation-view/regression-loss-metrics/mse-/-mean-squared-error
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/categorical-crossentropy
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/categorical-crossentropy
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/categorical-crossentropy
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/binary-crossentropy
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/binary-crossentropy
https://www.geeksforgeeks.org/deep-learning-introduction-to-long-short-term-memory/
https://www.geeksforgeeks.org/deep-learning-introduction-to-long-short-term-memory/

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Transactions on

Information Theory, vol. 13, no. 1, pp. 21-27, 1967.

S. Gundewar, P. Kane, and A. Andhare, “Detection of broken rotor bar fault in bldc using
Istm,” Journal of Advanced Mechanical Design, Systems and Manufacturing, vol. 16,

no. 2, 2020.

M. C. Kim, J. H. Lee, D. H. Wang, and I. S. Lee, “Induction motor fault diagnosis using
support vector machine, neural networks, and boosting methods,” Sensors, vol. 23, no. 5,

2023.

R. Udoy, T. Viswya, H. U. Islam, M. Pathan, S. Shahriar, M. S. Alam, M. M. Rahman,
and Z. I. Islam, “Single phase fault detection of induction motor using machine learning

approaches,” in Proceedings of the ICPEA, 2024, pp. 122-127.

D. ECCLESTON, “Conditional predictive maintenance of electric vehicles from

electrical and mechanical faults,” 2024.

K. Karolina, H. A. Hadi, V. Raja, M. Rjabtsikov, N. Usman, T. Vaimann, and A. Kallaste,
“Signal processing and machine learning techniques for predictive maintenance of rotor
bars in induction machines,” in 2023 IEEE International Conference on Electrical Power

Engineering (EDPE), 2023, pp. 1-6.

L. Pan, R. Martinez, D. G. Andersson, and T. S. Yu, “A machine learning approach for
predicting induction motor faults,” in IEEE Power Energy Society General Meeting,

2022, pp. 1-6.

A. Singh and S. Rathi, “Fault diagnosis in induction motors using convolutional neural

networks,” IEEE Access, vol. 11, pp. 1633-1643, 2023.

P. Aivaliotis, K. Georgoulias, and G. Chryssolouris, “The use of digital twin for

predictive maintenance in manufacturing,” Procedia CIRP, vol. 96, pp. 114-119, 2024.

Y. Xu, J. Zhang, W. Chen, Z. Wang, and L. Xue, “A digital twin-based fault diagnosis
framework for centrifugal pumps using transfer learning,” IEEE Transactions on

Industrial Electronics, vol. 71, pp. 1134—1143, 2024.

111



[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

S. M. Ahmed, A. M. K. Ahamed, and N. R. S. C. Kumar, “Data-driven predictive
maintenance using machine learning and digital twin technology,” Journal of Intelligent

Manufacturing, vol. 34, pp. 23-34, 2023.

A. R. Hossain and R. S. Ray, “An innovative fault detection system for induction motors
using data-driven models,” Journal of Electrical Engineering & Technology, vol. 19, pp.

521-533, 2024.

N. Nguyen, T. Tran, P. V. Nguyen, and M. T. Nguyen, “Fault diagnosis and prognosis
of electric motors: A review of techniques and applications,” IEEE Transactions on

Industrial Applications, vol. 59, pp. 1107-1122, 2023.

S. R. Malekian, M. R. Hasan, T. Shams, and D. Rajagopal, “Predictive maintenance for
induction motors using machine learning and iot,” in Proceedings of the IEEE Industrial

Electronics Conference (IECON), 2024, pp. 765-770.

G. E. Karniadakis, L. Lu, and P. Perdikaris, ‘“Physics-informed machine learning,”

Nature Reviews Physics, vol. 3, no. 6, pp. 422-440, 2021.

J. Sirignano and K. Spiliopoulos, “Dgm: A deep learning algorithm for solving partial
differential equations,” Journal of Computational Physics, vol. 375, pp. 1339-1364,
2018.

M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations,” Journal of Computational Physics, vol. 378, pp. 686707,
2019.

G. E. Karniadakis, L. Lu, and P. Perdikaris, ‘“Physics-informed machine learning,’

Nature Reviews Physics, vol. 3, no. 6, pp. 422440, 2021.

H. Yang and et al., “Fault detection and diagnosis of induction motors using deep

learning-based models,” Mechanical Systems and Signal Processing, vol. 137, p.

106514, 2020.

T. G. Dietterich, “Ensemble methods in machine learning,” in Proceedings of the First

International Workshop on Multiple Classifier Systems, 2000.

112



[94] J. Brownlee, “Tour of evaluation metrics for imbalanced classification,” https://
machinelearningmastery.com/tour-of-evaluation-metrics-for-imbalanced-classification/,

2020, visited on 11/09/2021.

[95] Kaggle, “Cwru bearing datasets,”  https://www.kaggle.com/datasets/brjapon/
cwru-bearing-datasets, 2021, accessed: 2021-07-06.

[96] ——, “Mit short circuit flux and current signals,” https://www.kaggle.com/datasets/

rebecacunha/mit-short-circuit-flux-and-current-signals, 2021, accessed: 2021-07-06.

[97] CWRU, “Welcome to the case western reserve university
bearing data center website,” https://web.archive.org/web/
20210526191015/https://csegroups.case.edu/bearingdatacenter/pages/
welcome-case-western-reserve-university-bearing-data-center-website, 2021,

accessed: 2021-07-06.

[98] D. Miljkovi¢, “Brief review of motor current signature analysis,” CrSNDT Journal,

vol. 5, pp. 14-26, June 2015.

[99] S. Afrasiabi, M. Afrasiabi, B. Parang, and M. Mohammadi, ‘“Real-time bearing fault
diagnosis of induction motors with accelerated deep learning approach,” in 2079

10th International Power Electronics, Drive Systems and Technologies Conference

(PEDSTC), February 2019, pp. 155-159.

[100] X. Zhang, Y. Liang, J. Zhou, and Y. Zang, “A novel bearing fault diagnosis model
integrated permutation entropy, ensemble empirical mode decomposition and optimized
svm,” Measurement, vol. 69, pp. 164—179, June 2015, accessed: 2021-07-06. [Online].
Available: https://www.sciencedirect.com/science/article/p11/S0263224115001633

[101] C. B. Vilakazi, “Machine condition monitoring using artificial intelligence: The
incremental learning and multi-agent system approach,” Ph.D. dissertation, University,

2021.

[102] Y. Lei, F. Jia, J. Lin, S. Xing, and S. Ding, “An intelligent fault diagnosis method
using unsupervised feature learning towards mechanical big data,” IEEE Transactions

on Industrial Electronics, vol. 63, no. 5, pp. 1-1, May 2016.

113


https://machinelearningmastery.com/tour-of-evaluation-metrics-for-imbalanced-classification/
https://machinelearningmastery.com/tour-of-evaluation-metrics-for-imbalanced-classification/
https://www.kaggle.com/datasets/brjapon/cwru-bearing-datasets
https://www.kaggle.com/datasets/brjapon/cwru-bearing-datasets
https://www.kaggle.com/datasets/rebecacunha/mit-short-circuit-flux-and-current-signals
https://www.kaggle.com/datasets/rebecacunha/mit-short-circuit-flux-and-current-signals
https://web.archive.org/web/20210526191015/https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website
https://web.archive.org/web/20210526191015/https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website
https://web.archive.org/web/20210526191015/https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website
https://www.sciencedirect.com/science/article/pii/S0263224115001633

[103] A. Shenfield and M. Howarth, “A novel deep learning model for the detection
and identification of rolling element-bearing faults,” Semnsors, vol. 20, no. 18,
p. 5112, January 2020, accessed: 2021-07-06. [Online]. Available: https:
/Iwww.mdpi.com/1424-8220/20/18/5112

[104] D.Hoang, X. Tran, M. Van, and H.-J. Kang, “A deep neural network-based feature fusion

for bearing fault diagnosis,” Sensors, vol. 21, no. 1, p. 244, January 2021.

[105] P. Aivaliotis, K. Georgoulias, and G. Chryssolouris, “The use of digital twin for

predictive maintenance in manufacturing,” Journal, 2020.

[106] J. Zhang, Y. Xu, and W. Chen, “A digital twin-based fault diagnosis framework for

centrifugal pumps using transfer learning,” Journal, 2024.

[107] S. Raschka, “About feature scaling and normalization,” https://sebastianraschka.com/

Articles/2014_about_feature_scaling.html, July 2014, accessed: 2021-07-08.

[108] L. Wang and J. Zhang, “Principal component analysis for fault detection in rotating

machinery,” Journal, 2019.

[109] J. Choi and M. Song, “Feature selection and importance in machine learning

applications,” Journal, 2018.

[110] S. M. Goutte, M. Bougouin, and L. Blanchet, “Correlation analysis for feature

engineering in fault diagnosis systems,” Journal, 2022.

[111] A. Brown et al., “Advancements in predictive maintenance for industrial applications,”

Journal of Industrial Engineering, vol. 45, no. 3, pp. 123-135, 2022.

[112] X. Chen et al., “Real-time monitoring systems for electric vehicle motors,” IEEE

Transactions on Vehicular Technology, vol. 70, no. 8, pp. 789-801, 2021.

[113] Y. Li et al., “Limitations of traditional machine learning in fault diagnosis,” Machine

Learning Applications, vol. 8, no. 1, pp. 34-48, 2021.

[114] P. Martinez et al., “Cross-domain applications of predictive maintenance,” Journal of

Engineering Systems, vol. 29, no. 5, pp. 67-79, 2021.

114


https://www.mdpi.com/1424-8220/20/18/5112
https://www.mdpi.com/1424-8220/20/18/5112
https://sebastianraschka.com/Articles/2014_about_feature_scaling.html
https://sebastianraschka.com/Articles/2014_about_feature_scaling.html

[115] V. Singh et al., “Classification of stator winding faults under multiple load conditions,”

IEEE Transactions on Industrial Electronics, vol. 67, no. 9, pp. 456—468, 2020.

[116] J. Smith ef al., “Challenges in predictive maintenance for electric vehicles,” Automotive

Engineering Review, vol. 25, no. 6, pp. 112-125, 2020.

[117] H. Wang et al., “Deep learning for fault detection in induction motors,” Neural

Computing and Applications, vol. 34, no. 7, pp. 123-136, 2022.

[118] Y. Zhang et al., “Predictive maintenance strategies for electric vehicles,” Renewable and

Sustainable Energy Reviews, vol. 145, pp. 111-123, 2021.

115



Appendix A

Python Packages Used

The following Python packages were used in this research:

TensorFlow - Used for deep learning model implementation, including ANN, LSTM,
and PINNS.

» Keras - Used for building neural network models.
* Keras Tuner - Used for hyperparameter tuning.

 Scikit-Learn - Used for traditional machine learning models, preprocessing, feature

scaling, and performance evaluation.
* Matplotlib - Used for visualization of data and model results.
* Seaborn - Used for enhanced visualization, including confusion matrices.
* NumPy - Used for numerical operations and array manipulations.
* Pandas - Used for data loading and manipulation.
* Scikit-Learn Model Selection - Used for splitting datasets into training and testing sets.
* Scikit-Learn Preprocessing - Used for standardizing and normalizing data.
* Scikit-Learn Neighbors - Used for K-Nearest Neighbors (KNN) classifier.
* Scikit-Learn SVM - Used for Support Vector Machine (SVM) classifier.

¢ Scikit-Learn Ensemble - Used for Random Forest classifier.
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* Scikit-Learn Tree - Used for Decision Tree classifier.
* Scikit-Learn Naive Bayes - Used for Naive Bayes classifier.

* Scikit-Learn Metrics - Used for accuracy measurement, classification reports, and

confusion matrices.
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