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Abstract

The performance of maximum likelihood (ML) and Sphere decoding (SD) are
investigated when the channel is uncertain. In this work, a modified low
complexity approach is proposed to deal with the effects of the channel
uncertainty and obtain robust ML and SD. A higher complexity approach is also
suggested but is not investigated here as it appears to be unsuitable for real time
applications. The approach adopted involves linearly preprocessing the received
signal to suppress the interference caused by channel uncertainty before applying
a detector. Parallels of this approach may be found in the channel shortening
literature where it is suggested to linearly preprocess the received signal with a
channel shortened to reduce the effective delay spread of the inter symbol
interference(ISI) channel before applying a reduced state Viterbi decoder to bring
down the complexity of ML decoding. In our case, however, the pre processing is

applied to reduce the effect of the interference caused by channel uncertainty.
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Chapter 1

Introduction to MIMO

1.1 Introduction

The ever increasing demands for higher data rates caused by the multimedia and
interactive applications have created a problem for communications engineers. The data
rates that can actually be achieved depend on both physical world factors like fading,
NLOS (Non Line Of Sight), and path loss and also on regulatory bodies imposing
constraints on the available bandwidth, allowed transmit power, etc. From [1], we know
that the data rate increase requires more bandwidth and a better signal to noise ratio —
hence more transmit power. We are currently operating at the peak with regards to these
parameters. Contemporary communications systems cannot increase the transmit power
as they are constrained by the regulatory authorities because of safety considerations and
to limit interference to adjacent bands. Neither can they afford to introduce more
bandwidth as RF spectrum is a precious resource which is scarce and hence expensive.
The key to meeting the demands for higher data rates lies in using MIMO (Multiple Input
and Multiple Output) technology [2-4].

The gains to be realized through MIMO are indeed impressive with the possibility of

spatial multiplexing gain, beam forming, and diversity and array gains [4]. With the



introduction of multiple antennas at the transmitter and at the receiver, many signal
processing possibilities open up posing several interesting problems. These gains are
also verified by information theoretic analysis. With the introduction of MIMO, signal
processing becomes far more complex. Furthermore, the requirements are now far
greater not just for the signal processing aspects but also from the RF point of view as we
would now require multiple RF chains which are expensive. From the signal processing
perspective which is our interest, we now require substantially complicated signal
processing. Channels are usually time varying and where we once had to train the
receiver for only one transmitter in single input single output, we now need to train the
receivers for multiple transmitters which means a higher signal processing overhead from
a training perspective [4]. Furthermore, the signal processing at the receiver generally
assumes knowledge of the channel. This is of course unknown and must be estimated
through training. Even with training, we will get an estimate of the channel which may
be somewhat different from the actual channel.

Signal processing for MIMO generally involves designing a suitable receiver which may
be based on the (ZF) zero forcing, MMSE (Minimum Mean Square Error), (SIC)
successive interference cancelation or the (ML) maximum likelihood criterion [5, 6].
Several complexity reducing algorithms have also been proposed, in particular the sphere
decoder [7-11]. All these techniques require channel knowledge at the receiver which
may not be perfectly available. In this dissertation, we investigate robust techniques for
MIMO which by design are not sensitive to variations and or uncertainties in the channel.

We will seek robust variations on maximum likelihood and sphere decoding.



1.2 MIMO System Modal

A MIMO wireless communication system has a multiple transmit and receive antennas.
We will see that this allows the transmitter and receiver to open up multiple spatial pipes
(or streams) for information transfer between each other thereby offering excellent

performance gains and increasing the MIMO channel capacity.

n
Y -
S H Detector/ X
j - ' -———-—’
U decoder

Figure 1: MIMO system model
Assume a MIMO cﬁannel with M, transmit antennas and My, receive antennas. This flat
fading MIMO channel is modeled by the My X My matrix H. The i, j® entry of Hi.e.
[hy;] is the channel gain from the j*™ transmit antenna to the i*® receive antenna as

shown in Figure 2.



Figure 2: MIMO channel model

The channel matrix for a MIMO system is

l"1,1 hl,Z hl,MT
H= h'z_1 hz,.2 : hy vy 11
hup Nupz e Mgty

The channel matrix includes the effects of transmit, receive filtering and the effects of the

RF chains. We can write the output of system in the form of equation
yi = ng hjj * s + nj, where i = 1,2 ... Mg 1.2
s is the transmitted symbols vector s; = [sy, s, ..... 5j]

We can also write this equation in term of the channel matrix as follows



y=Hs+n 1.3

Where y is the output vector, H is the channel matrix and s is input vector and n is the

noise that added at the receiver front end.

1.3 Performance Improvement of MIMO System

MIMO systems can potentially provide the following gains over a single input single

output (SISO) system

i) Diversity Gain
ii) Beam Forming
iii)  Spatial multiplexing Gain

iv) Array Gain

1.3.1 Diversity Gain

In a wireless channel signal power fluctuates randomly, so the multiple antennas at the
receiver and transmitter are used to get the diversity gain. Using the diversity, fading
effects can be mitigated in the wireless channel. Basically diversity is to send the same
data on independent fluctuating signal paths. There are many methods to achieve the
diversity. One is by using antenna arrays called spatial diversity [12]. Another method is
to send the same data on the different carriers or transmit the same signal at different time
with the condition that the spacing between the successive transmissions must exceed the
coherence time of channel (T > t.). These techniques are called frequency and temporal
diversity. At the receiver, signals receive from different independent paths are combined.

There are several ways to combine the received signal [12] like linear combiner, selection



combining, threshold combing and Maximal Ratio Combiner (MRC). A famous scheme
to achieve transmit diversity is the ‘Alamouti Scheme’ proposed by Siavash Alamouti

[12].
1.3.2 Beam forming

Beam forming allows the antenna array to transmit or receive in a particular direction and
to place nulls in desired directions. This is key to using multiple antennas for
interference rejection and interference management in multiuser communications. Beam
forming requires channel knowledge. As an example, for coherent combining of the
received signals, channel knowledge has to be assumed at the receiver. Beam forming
requires explicit knowledge of the channel at the transmitter while transmit diversity does
not. Beam forming increases the rang, reduces the interference and increase the overall

network capacity [12].

1.3.3 Array Gain

Array gain is power gain that improves the performance of a system. Array gain focuses
the transmitted energy towards the receiver, so that more power is received. Transmitter
or receiver array gain needs channel state information (CSI) at the transmitter and
receiver. It also depends on the number of receive and transmit antennas. Channel state
information (CSI) at the transmitter is difficult to maintain [3], but channel state

information (CSI) is typically available at receiver.



1.3.4 Spatial multiplexing gain

Spatial multiplexing gain can be achieved by transmitting independent data from
individual antennas [4]. Channel capacity increases linearly with respect to size of
transmit and receive arrays. There are several different techniques that are used to
increase the performance and capacity of the system. These methods have been described
as Bell Labs Layered Space Time Architecture (BLAST). Different architectures are

given below.

Data Stream

A

=

Process

Figure 3: BLAST Architecture

Serial coding: The logic of spatial multiplexing to send the My independent symbols in
each transmission by using the dimension of space in addition to time. To achieve full
order diversity, the encoded bits must be sent over all transmit antennas. This can be

performed by using the serially encoding as shown in Figure 4.

Data Stream Encoding/
——

A 4

Mapping/interleaving De-multiplexer

Xmr

L

Figure 4: Serial Coding
7



The bit stream is processed by encoding, interleaving and mapping to a different
constellation point. The mapped signal is then de-multiplexed and the multiple streams
created are sent over a different transmit antennas. If each code word is adequately long,
it can be sent over e all M; transmitted antennas and received by all My receiver
antennas. The result is full diversity gain. This system is called vertical encoding (V-
BLAST) [4]. This however increases complexity exponentially [12] with the codeword
length. The increasing complexity makes it impractical.

Parallel coding: This simple method is described also Bell Laboratories called BLAST
(Bell Labs Layered Space Time Architecture) [4]. The architecture of parallel coding is
shown in Figure 5. In serial coding, the encoding was performed before de-multiplexing.
In the parallel encoding, the data stream is de-multiplexed into the My streams and these
streams are encoded independently. After these processes send the data stream over the
each corresponding transmit antenna as shown in Figure 5. But the problem with the
parallel encoding is its complexity increases linearly with number of antennas. These

both methods can be used as one transmission technique is called differential BLAST

Encoding/ Xa t

Mapping/interleaving

(DBLAST).

A 4

Data Stream
tre——

Demultiplexer

Encoding/ Xoar i

Mapping/interleaving

Figure 5: Parallel Coding



VBLAST Receiver and joint detection: Optimal decoding can be achieved by joint
detection. The joint detection is the process that transmitted code words from each
transmit antenna is received by the all receive antennas. Its detail is available in [13]. The
complexity of the receiver can be reduced by using the ordered successive interference
cancellation as in [13] as well as in Figure 6. All the streams are ordered in terms of
received SNR. The received symbols with highest SNR are detected first, treating the
other streams as interference. The estimated symbols of the stream with highest SNR are
extracted out and the process is repeated for the stream with the next highest SNR while
other treating uncancelled streams as interference. This process is repeated again and
again until all My transmitted streams have been estimated. In the receiver each
transmitted codeword individually decode, so the resulting receiver complexity is to be
linear with the number of transmitted codeword. The solution of that complexity is
DBLAST where the transmission of data streams rather than the independent codeword
on individual antenna, the codeword are rotated on antennas, so that the codeword is

extended over all M, transmit antennas.

Y, .| Decoding
Deinterleaving

Output Data Stream
Ordered Symbol !
Y 1 1 ‘
MR ! Interfere-nce ! ::I Multiplexer >
cancellation I
]

Decoding
Deinterleaving

A 4

Figure 6: BLAST Receiver and joint detection



1.4 Capacity of MIMO channel

The capacity of wireless channel is very important because it dictates the maximum data
rate that can be sent on a channel with arbitrarily small bit error probability. Maximum
achievable capacity was discovered by Claude Shannon [1]. The foundation was totally
mathematical and depends on mutual information between output and input of the
channel. Shannon defined capacity as the maximization of mutual information. We can
find the channel capacity by Shannon’s famous formula C = B X log,(1 + SNR), where
C is channel capacity, B is bandwidth of the signal and SNR is the signal to noise ratio
and that was quite a revolutionary idea in communication sectors. In the following
sections we will see the capacity advantages of MIMO wireless system and apply

Shannon‘s capacity on a MIMO wireless channel.

1.4.1 Capacity of MIMO channel

The capacity of MIMO wireless channel is extended from the mutual information

formula of a SISO system

max

C=1rlEy)
above equation shows that the channel capacity can be achieved by maximizing the
mutual information between s and y. For MIMO system it can be written as
C = p(sypser 1(5:5)
In this P is the average power transmitted by the single transmitter and P(s) is the
distribution of the input signal s.
For a flat fading MIMO system, the relation between input and output is

y=Hs+n 1.4
10



Now we assume that channel H is known at the receiver. Channel state information (CSI)
at the receiver can be keep up through training, but H is random variable. The mutual

information between input and output is [12]

=Bl (s:y) = BGh(y) — h(yls) L5
Using the relationship between entropy and mutual information
I(s;y) = h(y) — h(yls) 1.6
= h(y) — h(Hs + nj|s)
= h(y) = h(nis)
= h(y) — h(n) 1.7

h (.) Shows the differential entropy but the covariance matrix of the received y is given

by

E[yy"Y] = E[(Hs + n)(Hs + n)H]

Ry = E[(Hs + n)(s"H") + n" ] 1.8
= E[Hss"H" + Hsn" + ns"H + nn"] 1.9
= HR,HY + 0 + 0+ NIy, 1.10

- HRSHH + NOIMR

R, is output correlation matrix and R, is input corellation matrix. As the normal

distribution maximizes entropy

11



I(s:y) = Blog, [HR;H" + Iy ] 1.11
C = B3Blog, det (HR;H” + Iy ) 1.12

In general channel knowledge at the transmitter is difficult to obtain practically. The
channel information can be fed back from the receiver to the transmitter or the channel
could be estimated from the reverse link. In any case, it is difficult to obtain accurate
channel information at the transmitter as the information obtained suffers from limited
feedback and channel variations. If channel is unknown at the transmitter then the
capacity is achieved by transmitting isotropically, i.e. no particular direction is favored
and the capacity can be expressed in terms of the single value decomposition (SVD) and

by using the unitary matrix properties [20] as
C=X"log,(1+4) 1.13

where m is rank of H and A; are the eigenvalues of HH which are positive by virtue of
its positive semidefinite structure. Clearly in equatioﬁ 1.11 capacity of the MIMO
channel is sum of capacities of multiple SISO channels. If channel is known at the
transmitter, then we can use the “water filling algorithm” [12] to optimally allocate power

among the eigenmodes of the channel to maximize the transmission rate.

1.5 Capacity of Time varying MIMO Channel

When considering the capacity of time varying MIMO channel, it is customary to look at
two extreme situations. The first situation is when the channel is fast varying and is
characterized by ergodic capacity. If the channel is slowly varying, it is modeled as quasi-

state, i-e constant in the transmit block and characterized by outage capacity.

12



Ergodic Capacity: When channel is sufficiently fast varying then we can expect a
codeword to experience enough channel states so that by the law of large numbers, we

can expect the average rate of information transfer to be
C = " Ey[Blog, det (1, + HRH)] 1.14
where the expectation is applied on channel matrix’s distribution.

Outage capacity: The Ergodic Capacity has been used as a measure for the spectral
efficiency of the MIMO channel. The capacity under channel ergodicity that defined as
the average of the maximal value of the mutual information between the transmitted and
the received signal, where the maximization was carried out with respect to all possible
transmitter statistical distributions. Another measure of channel capacity that is
frequently used is outage capacity. With outage capacity, the channel capacity is
associated to an outage probability. Capacity is treated as a random variable which
depends on the channel instantaneous response and remains constant during the
transmission of a finite-length coded block of information. If the channel capacity falls
below the outage capacity, there is no possibility that the transmitted block of information
can be decoded with no errors, whichever coding scheme is employed. The probability
that the capacity is less than the outage capacity denoted by Couage is q. This can be
expressed in mathematical terms by Prob {C < Coutage} = q.

The ergodic capacity can be understood as the mean of this random variable while the

outage capacity is a measure of its spread. If we are willing to accept an outage

13



probability of poyeqge » then the outage capacity is the rate R such that p (R >

log,det(I+HHM)) < poutage-
1.6 Multiuser MIMO

The mathematical model for a MIMO system is quite broad in the sense that the very
same model also applies to a multiuser setting with multiple transmitters / receivers. The
basic Multiuser MIMO (MU-MIMO) is shown in figure 7. Some simple examples of
multiuser systems include the uplink in a cellular setting, and the downlink in a cellular

system [12]. Our main emphasis in this thesis will be on the single user setting.

‘s
O

i User2

Figure 7: Multiuser MIMO

Userl

Transmit

=

1.7 Conclusion

We have summarized on MIMO system model and system equation. Performance of
system can be improved by using the MIMO system. It enhances the Diversity Gain,
Beam Forming, Spatial Multiplexing Gain and Array Gain. Some special techniques are

14



used for multiplexing like serial coding and parallel coding. V-BLAST and D-BLAST
also are used for coding and decoding. Capacity of MIMO wireless channel can be
improved by using multiple antennas at the transmitter and receiver. Capacity of MIMO

channel is the sum of SISO channel.

15
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Chapter 2

MIMO Receivers

2.1 Introduction

This chapter is devoted to MIMO receivers; with special focus on single-user systems.
Our focus is to discuss the MIMO receiver like linear receiver and nonlinear receiver.
Linear receivers are Zero Forcing (ZF) and Minimum Mean Square Error (MMSE), while
linear receivers are Maximum Likelihood (ML) and Sphere Decoder (SD). Since some of
them may exhibit a complexity that makes them unpractical. So it is important to seek
receivers that achieve a close-to-optimum performance while keeping a moderate
complexity. A basic assumption in this chapter is that channel state information is
available at the receiver.

This chapter organized as follows. Section 2.2 describes receiver diversity. Section 2.3

describes MIMO equalizers (ZF, MMSE, SIC, ML and SD) and their performance.

2.2 Receiver diversity

Receiver diversity can be achieved by combining the different fading path. These fading

paths are achieved from multiple receive antennas and are combined to obtain the desired

16



signal. To achieve the desire signal it will pass through a demodulator. Demodulator

separates the desire signal.

In the receiver there are two types of gain: diversity gain and array gain. The diversity
gain is the coherent combining of multipath received signals [14] while Array gain is
collecting the maximum energy by using the directional antennas. It has been already
discussed in section 1.3.3.

The signal combining can be performed in different ways as in Figure 8, which is called

combining techniques.

Figure 8: Diversity combining

Different combining techniques are [4] are selection combining, threshold combining,
maximal ratio combining, and equal gain combining. Using these techniques equalizers

are designed.

2.3 Equalizers

Delay spread in channels causes Inter-symbol interference (ISI). ISI creates a problem for
the receiver because the received signal does not resemble the transmitted signal. To
mitigate the effect of ISI, equalizers are used. Both the noise and signal pass through the
equalizer which can enhance the noise power. Linear equalizers tend to enhance the

noise whereas nonlinear equalizers do not do that reasons have been discussed in the next

17



sections. A second issue relating to receiver design is the complexity. To mitigate the ISI
at the receiver, the equalizer must have an estimate of impulse response of the channel.
But the wireless channel changes with time, so the equalizer must track the channel by
updating its estimates periodically as the channel varies. Training and tracking is called
adaptive equalization. Since the equalizer must adapt with the changes of the channel.
But the problem is when the channel is fast fading. In addition to dealing with channel
variations, the equalizer must also contend with noise enhancement as it seeks to remove

interference.

Equalizers are broadly classified into linear equalizers and non linear equalizers. Linear
equalizers are Zero Forcing (ZF) and Minimum Mean Square Error (MMSE), and non

linear equalizers are Maximum Likelihood and decision feedback equalizers.
2.3.1 Zero Forcing (ZF)

MIMO system can be interpreted as a system of equations. In these equations, the
unknown variables are transmitted symbols. A system of equations can be solved if the
number of unknowns is equal to the number of equations. If the system of equations is
tall, an approximate solution can be found by invoking least squares theory. This
involves pre-multiplying the system of equations by the inverse of the tall matrix H. The
resulting solution is known as the Zero Forcing (ZF) solution. Zero Forcing is a linear
MIMO detection technique because it involves a linear operation of pre-multiplying by a

matrix. The received signal at the receiver is
y=Hs+n 2.1
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H is channel matrix, s is transmitted vectors, y is out put vector and n is noise added by
the channel. To achieve the estimate of s multiply the inverse of channel matrix
§=H"ly 2.2
where § is estimation of s. For detection of each stream via zero forcing, all other
streams are considered as interference [13]. To eliminate the interference we have to
perform nulling of the interferers by linearly weighting the received signals. For nulling
the interferers, we choose weight vectors w! (i =1,2,..M;) referred to nulling

vectors [13]

W,Thk={17. L=k 0 hzz 0

0 i¢k} [h” 0 0]
0 0 ha

where hy, is k™ column of H. Let w; is the i® row of a W matrix, then

WH = I, 23
where W is the weight matrix that cancel out the effect the channel matrix. So by forcing
the interference to zero, s can be estimated. If H is rectangular matrix then W becomes
equal to the pseudo inverse of H. It denoted by HY

W = (H#H)"'H" = H? 24
If H is to be assumed iid (independent identically distributed), then pseudo inverse exists,
so equation 2.1 become

H'y = H'Hs + Htn 2.5
we know that HtH =1, so

§=s+Htn 2.6
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From the equation 2.6, the major disadvantage of the zero forcing is to cause the noise to

be enhanced if H is ill conditioned.

2.3.1a Performance and Complexity

The performance of Zero Forcing equalizer is shown Figure 9 in the form of bit error rate
(BER). The zero forcing equalizer requires computation of the pseudo inverse of a tall
matrix. If the channel does not change significantly, the previous calculated pseudo
inverse can be used for next symbol calculation. On the other hand if channel is fast

fading then we have to calculate pseudo for almost every symbol.
2.3.2 Minimum Mean Square Error (MMSE)

In this approach a vector s is to be estimated on the basis of received vector by
minimizing the mean square error between the detected vector and the transmit vector. It
would seem strange that the mean square error can be minimized at the receiver but the
receiver is not aware of what was transmitted. However, the expectation operation is

used to calculate the mean square error over all possible transmission combinations [13].

Figure 9: MMSE Architecture
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To overcome the noise enhancement caused by zero forcing, we have to design such an
equalizer that maintains a balance between ISI suppression and noise enhancement.
Figure 9 shows a MIMO receiver employing a linear equalizer. We have

y=Hs+n 2.11

where s is transmitted vector that is equal to

$1
S2
Sk
s =
Sk+1
ST!

W is a linear processing that is applied on received signal vector to estimate the
transmitted signal. To obtain the MMSE solution, we choose W to minimize the mean
square error. The estimate of s is equal to

§=Wy 2.12

where §, = wyy, this shows that k%" row of W. The MMSE cost function is

] = E{S¢ — s1)*} 2.13
J = E{(wly-s¢)’} 2.14
J = E{(Ww[(Hs + n) - 5;)?} 2.15

] =E{(wlHs + win—s)(sTH"w, + n"w; —s; )}  2.16

] = E{(wIHss"H"w;+w] Hsn"w; — w]Hss, + wins"TH"w; + w]nn"w, —

wins, — s;sTH"w; — s;n"w, + s2)} 2.17

By applying the expectation on cost function
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] = (W HE{ss"}H"w,, + w} HE{sn"}w, — wl HE{ss, } + wlE{ns"}H " w, +

wlE{nn"}w, — wlE{ns;} — E{s,sT}H"w, — E{s;nT}w; + E{s2})2.18

E{ss"} =Iand E{sn”} = 0 because signal and noise are uncorrelated. The equation

2.18 become
J=wIHIH™w, + 0 — 2wJH1, + 0+ w)o?2lw, + 0+ 0+1 2.19
] = wlHH " w, — 2w]H1, + wo2lw, + 1 220

Taking the derivative of cost function J with respect to weight vector and put equals to

Zero

8]

= 2HHw, — 2H1; + 202w, = 0 2.21
(HHT + ¢2)w,, = H1,, 2.22
wy = (HHT + ¢21)"1H1, 223
From the equation 2.17
w; = (HHT + ¢2I)"1H1,
w, = (HHT + ¢21)~1H1,
and
. = (HHT + g21)"1H1,
Whiuse = [wq wa..w,] = (HHT + 62)"'H 2.24
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Intuitively we can say MMSE solution reduces noise enhancement. By minimizing the
mean square error between the transmitted and detected symbols, it seeks to balance the
effect of the interference with the noise enhancement to provide. In the extreme situation

with no noise, this equation reduces to the zero forcing solution (if g,, = 0).

2.3.2a Complexity and performance

The complexity of the MMSE approach is identical to the ZF approach. The
performance is better, especially at lower signal to noise ratios. From equation 2.24, it

has been shown that when &, = 0 MMSE becomes ZF.

ber

Figure 10: Performance graph of MMSE and ZF
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2.3.3 Successive interference cancellation (SIC)

The performance of the linear receivers can be improved by using detected data to cancel
out interference. This does require the detection process could be ordered. The idea in

SIC is to subtract the effect of estimated symbols from the received signal vector y. As

$. =Wy 2.25
§, = Wly = W/ (Hs + n) 2.26
=wi/Hs+w/n=s+w/n 227
noise
and
§, = Wl (y —h;8;) = wli(Hs + n) —wlh,3,) 2.28
=s+win—wlh3; 2.29

and so on. This subtraction process is repeated until all symbols have been detected.
Initially, the first symbol is detected by treating everything else as interference. Then the
contribution of this estimated symbol to the received signal is subtracted out. The process
repeats in this manner so that in detecting a bit, previously detected bits are canceled out
while subsequent bits are suppressed by an equalizer. This process is also called Layer
Peeling [2]. This is a nonlinear receiver design because the process of taking decisions
on detected symbols and canceling out their interference in the received signal is a
nonlinear operation. It can potentially suffer from error propagation. To overcome the

effects of error propagation, special attention has to be paid to the order in which bits are
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detected. The complexity of this approach is not much more than that of the linear

equalizers.

2.3.3a ZF-SIC

Successive interference cancelation receivers are based on the linear equalizers already
discussed and their aim is to improve the performance of linear equalizers without
running up a significant bill on complexity. There is a very large performance gap
between the performance of Maximum Likelihood (ML) and linear equalizers. However,
Maximum Likelihood also has much more complexity associated with it. SIC based

receivers are compromise between these two techniques.

For a SIC based receiver, the first step is to order the transmit streams from the strongest
to the weakest. The strongest stream will be detected first treating all other streams as
interference and its contribution to the received signal will be subtracted out. Then the
next strongest stream is detected and so on. The process of determining the sequence to
detect the streams is called ordering. It is necessary to minimize the impact of error
propagation.

To determine detection order, the covariance matrix of estimated error s — 8 is used. The
covariance matrix is

Ry = E[(s—8)(s—8)"] = 62(H*H)™! = 0P 2.30
or by pseudo inverse

P=HfH)? 2.31
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Let §; is j* entry of § then the best approximate is for which P;; is the smallest (i-e the

jt* diagonal element of P). The algorithm is summarized as follows

i.  Ordering: find out the transmitted signals with lowest error variance.
ii. Interference nulling: detect the strongest remaining stream from the received
signal while nulling out the all weaker signals.
ili.  Interference cancellation: subtract the contribution of the detected stream to the
received signal.

iv.  Repeat steps 2 and 3 until all streams have been detected.
QR decomposition: From the equation 2.1, we know that
y=Hs+n 2.32

H is channel matrix. We use the QR decomposition of a channel matrix, so H=QR.Q

is unitary matrix, i.e. Q = Q"Q = QQM = I and R is upper triangular matrix.

1 T2 MNn

0 Yoy *o* T
22 2n

R=], . :
0 ee rnn

put the value of Q and R in equation 2.21
y=QRs+n 2.33
by pre-multiplying with Q" and we will get

Qlly = Rs + QHn
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V1 N1 Tz TNn]s

}]:2 - 9 7‘2?' vee T‘z:n S:Z + QHn 2_34
};n 0 n Sn
From the equation 2.34
VYn = hnSn + noise 2.35
And
§, = sign (ry—;—) 2.36
Similarly
a —1n8
Sn-1 = Yn-1— :—:i—:‘f 2.37

We can estimate $,, to $; using these steps.

2.3.3b MMSE-SIC

MMSE-SIC is similar to zero forcing SIC with one small difference. Instead of nulling
the un-canceled interfering streams, they are suppressed by using the MMSE criterion.
Covariance matrix of estimation error s — § will be used to find the ordering for better

detection. Recall from the previous section the equation

Ry, = E[(s —8)(s — §)"] = o2P 2.38

where P = (HHT + ¢21)~1.
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2.3.4 Maximum Likelihood Equalizer (MLE)

Maximum Likelihood Equalizer searches the maximum likelihood sequence among all
transmitted vectors s. The maximum likelihood transmitted vectors are found using the

following equation

Sl = arg sie{s:“,__ij‘sk} lly — Hs;||2 2.39
where {sq,...., 5} are the set of possible transmitted vectors. K is the number of
transmitted vectors that is k = MMT where M is the constellation points [10]. Note that it
is not necessary that My < My for Maximum Likelihood (ML) method.

Our goal here is to find the maximum likely symbol s; from the given ensemble
space {si,...,5;}. To minimize the bit error rate, we have to maximize the
probability Pr(s = s;ly) . This method is called MAP (maximum A posteriori

probability) decoding. To find Pr(s;|y), by applying the Bayes’ rule we may write [15]

Pr(s;ly) = T ren 240

In the above equation Pr(y|s;) is conditional probability density function of a vector that
has been sent. Pr(s;) is the i® vector’s probability that was sent. When there is no
apriori knowledge available about the transmit signal, it can be assumed that all possible
transmit vectors are equally probable. So in this case, MAP becomes ML detection. From
the equation 2.40, it can be seen that denominator is independent from s; so the decision
based on maximizing Pr(s;|y) is equivalent to finding s; that maximize Pr(yls;). So
there will be following probability density function (pdf):

Pr(y|H,s;) = det(mQ) lexp (-(y ~Hs)"Q7l(y-Hs)) 241
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where Q is a covariance matrix and will be equals to
Q = E[(y - m)(y - m)"] 242
= E[(y — Hs;)(y — Hs)"] = E[nn"] = 621, 2.43

so the resultant conditional pdf is

Pr(y|H,s;) = —)n: p(—-—(y Hs)H(y — Hs,)) 2.44

Consequently, the decision to find the value of maximum conditional probability Pr(s;|y)

is equivalent to

arg geqsias,y Pr(ylH, sp) = arg Sle{s""_f_,“sk} lly — Hs||? = spy 2.45

MLE is optimal solution in term of Bit Error Rate (BER) under the assumption is that all

the transmit sequences are equally likely.
2.3.4 Complexity

In the MIMO receiver the complexity of Maximum Likelihood (ML) detection increases
exponentially in the number of transmit antennas and the constellation size. This is
because all possible transmitted vectors must be checked to determine which is most

likely with the received signal vectors [13].
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Chapter 3

Low complexity ML methods

3.1 Introduction

In the MIMO receiver the Maximum Likelihood (ML) decoder decodes the transmitted
signal by comparing the received signal vector with each possible combination of
transmitted vectors. The complexity of the decoder grows exponentially in the number of

transmit antennas. The complexity of maximum likelihood receiver is NP hard [11].

The idea behind Sphere Decoder (SD) is to reduce the computational complexity of
Maximum Likelihood (ML) receiver. The sphere decoder searches only those noiseless
received vectors that lie in the hyper sphere whose radius R around the received signal as

opposed to maximum likelihood which searches among all possible transmissions [11].

X x x

-~ > X >

x X X

< > = P x
X X s X x

Figure 11: Lattice point Architecture
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Unlike the brute force maximum likelihood receiver which has a fixed complexity that is
exponential in the number of transmit antennas, the complexity of the sphere decoder
depends on several different factors such as the received signal, the search ordering, the
sphere radius. In contrast to the variable complexity of the sphere decoder, a
modification called the Fixed Sphere Decoder has also been proposed which has a fixed

decoding complexity.
3.2 Sphere decoder (SD)

The SD can achieve ML performance at reduced complexity by searching for the closest
point among the possible Lattice points that lie within a hyper sphere of radius R around

the received vector x [13]. Mathematically, the sphere decoder solves the problem [12]:
§= arg siEOMT:"’;—i:lslleRz "Y - HSIIZ 3.1

Where H € R™", x € R™*1, and OMT shows the m dimensional lattice points. O
Shows the transmit constellation. The SD only searches for the ML transmit signal from
among the lattice points that lie within a hyper sphere of radius R around the received
signal. In contrast the ML decoder searches through all possible lattice points. A key
question here is how does the SD know which lattice points are within a sphere centered
at the received signal x. Calculating the distance of each lattice point to the received
vector reduces to the exhaustive search carried out by the ML decoder. The SD can
cleverly find the set of lattice points within the hyper sphere without the need for an
exhaustive search thereby saving on complexity as compared to exhaustive search ML

decoding. To understand this, first consider the simplest possible case. Finding the set of
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lattice points within a radius of the received signal in one dimensional space is simple.
This set is simply the set of lattice points in an interval around the received signal.
Similarly, if we know the set of lattice points in a k dimensional space that lie within a
hyper sphere, then the possible values of the (k +1)" coordinate for the set of lattice
points in the k +1dimensional space that lie within a hyper sphere of the same radius is
simply an interval. We can thus recursively find and check all lattice points in the hyper
sphere. Mathematically, by the Gram Schmidt orthogonalization

H= Q[ Rmpxmy ] 32

O(Mp-Mp)xMy

Where the unitary matrix is partitioned as Q = [Q; Q3] such that Q, contains the first
My columns of Q. With a little manipulation, it can be shown that the hyper sphere

constraint becomes [16]

R? > [|Qfy —Rs 33
'
This also can be written as [16]
2
R? > 3T (yk — T a5 ) 34

Where yy, s, are the k! element of y, s. Also 1y, is the (k,I)t* element of the upper
triangular matrix R. In order to satisfy condition 3.4, a necessary but not sufficient

condition is

Rz 2 (YMT—TMT, MTsMT)Z 35

This implies the following condition on sy, [13]
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-R +R
[YMT ] _<. SM —<- lYMT J 3.6
My M T TM.MT

Likewise if we define Ym;—1imy) = YMp—-1 — TMp-1mpSMp ~ We get the following

necessary condition on Sy, [13]

~Rngo +RpMop—
[Y(Mr-ilm'r) Rur 1] <sy. < ly(MT-ilmr) Rmr—1 37
T™Mr-1,M7-1 T TMp—1,M7=1

Where R%,._; = R? — (yp, — rMT,MTsMT)Z. The SD proceeds similarly to obtain the
lattice points within the hyper sphere.

3.2.1 Complexity of Sphere Decoder

The worst case complexity of the SD is exponential in the dimension My just like the ML
decoder. However, it has been shown [14] that the expected complexity of the sphere
decoder is polynomial. The complexity of the SD fluctuates with the channel conditions
and the noise in addition to the ordering employed [14]. The search radius can also be
dynamically modified. The search radius may be initialized at co and may be reduced to
the distance of the received vector to a possible transmit vector every time a transmit
vector is found within the sphere as the ML codeword must have distance less than or

equal to this.

The questions we would like to tackle in this work are how to deal with the channel

uncertainty in a SD/ML receivers.
3.3 Fixed Complexity sphere decoder (FSD)

The fixed complexity sphere decoder (FSD) is a clever modification to the sphere

decoder. Its complexity is fixed — unlike the sphere decoder which has variable
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complexity that is exponential in the worst case. Like the sphere decoder, the FSD can be
considered in terms of tree search. While the sphere decoder searches all points in a
hyper sphere, i.e. visits all leaves of the tree which lie within a predetermined radius, the
FSD reduces this complexity even further by searching only a fixed number of the points.
This is cleverly achieved by solving equalization problems using the zero forcing
equalizer we have already discussed. This enables the FSD to overcome the two main
problems associated with the sphere decoder, i.e. its variable complexity and its
sequential nature. The FSD is immediately parallelizable while the sphere decoder’s

sequential nature makes it difficult to share the complexity using parallel processing.
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Chapter 4

Low Complexity Robust Maximum Likelihood Techniques

4.1 Introduction

If the channel is unknown at the receiver then there are many possibilities of channel. So
there is much difficult to maintain the perfect channel information at the receiver. A
channel is estimated by iteratively and estimates the transmitted symbol. In this chapter
section 4.2 covers channel uncertainty. Section 4.3 is devoted for robust techniques like

ML and SD. In the 4.4 low complexities approach is discussed.

4.2 Channel uncertainty

The MIMO channel mixes the input signals. To decouple the input signal at the receiver
side requires MIMO detectors. For detection of signal there is need of knowledge of
channel at the receiver that is called CSI at receiver. There are many types of receivers
that already have been discussed in chapter 2. In the zero forcing equalizer uses pseudo
inverse of the channel matrix H to obtained the transmitted signal. If H is is ill-
conditioned, then Ht enhances the noise at the receiver. The MMSE receiver (HTH +
o2)"HT can be used instead. We consider the case where the channel matrix H is

uncertain, i.e.
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where H is unknown to the receiver, while H is the CSI available to the receiver. We
consider the channel uncertainty to be modeled as an ellipsoid [19] defined by P, i.e. the

channel is modeled as
H=H+Pu, ..uy] | llull; <1 42

Where P is a Mg X Mp matrix and uy shows the uncertainty from the KtF transmit
antennas. This is a general model for the channel uncertainty. M, gives the dimensions
of the ellipsoid in which the channel variations lie. It can be anything from zero to My.

4.3 Robust Techniques

Now we consider a few simple examples to demonstrate the basic ideas of robust ML
techniques, before we investigate the details. We first consider a simple model of the

channel uncertainty such that in [19]

H= {Hl , with probability 1/2 43

H, , with probability 1/2

The receiver knows channel matrix Hy and H; with the probability % However, it is

uncertain that which of these two values the channel assumes. A receiver has to be
designed according to some criterion like ZF, MMSE, SIC and ML/SD. But which of
these realizations H; or H, does the channel assume? For example if the receiver
assumes that the channel is Hy it is correct half the time but the other half the time its
assumption is inconsistent with the actual channel. Such a receiver would exhibit an
early error floor which shows that channel uncertainty cannot just be ignored in receiver

design especially if it is significant.
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A robust approach which takes into account the channel uncertainty involves the receiver
decoding the received signal for both possible channel realizations and choosing the best

one
§=arg msi" lly — Hgsl| 4.4
k= arg min {"y" lly — Hisll} 4.5
where the minimization with respect to s is carried out by using a sphere decoder (SD).
4.4 Robust SD technique

For above example, this receiver is equivalent to the two ordinary sphere decoder
receivers. There may be N possibilities as in 4.4 and 4.5. So this approach would have a
complexity of N sphere decoders. This complexity can be reduced by using the SD

receiver as follows in [19] so that there are N-1 linear equalizations and only one sphere

decoding
§ = arg ™" |ly — Hsl|| 4.6
Hy = argy" ly — Hisl 4.7
§,=Hly 4.8

However, how do we deal with the situation where the channel uncertainty has infinite
possibilities? Clearly in 4.6 and 4.7, we cannot search every one of the infinite

possibilities.
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Now let us consider another simple model. Let the channel be
H=H, +tH, 0<t<1 4.9

This is very simple model for the channel uncertainty. There are infinite possibilities for
the channel that it can take on. The uncertainty here is in the scale factor t. Perhaps the
technique discussed in the previous section can be applied to this model using the
bisection method — however it would be more appropriate to try to search for a lower

complexity approach to deal with the uncertainty.
4.5 Low Complexity Techniques to deal with Channel Uncertainty

We consider the following approaches to dealing with the channel uncertainty.

4.5.1 Iterative detection and channel estimation

The most common approach to dealing with channel uncertainty is iterative detection and
channel estimation. In the first step, uncertainty is ignored altogether and the data is
detected with a receiver designed according to the uncertain channel. In the second step,
the channel is re-estimated using detected data in the first step. Then the estimated

channel is used to design a receiver to detect the data and so on.

This method is a local optimization algorithm [18, 19]. After a couple of iterations, this
algorithm converges to a local solution. The quality of the solution depends on the
starting point of the algorithm so that it performs well if there is little uncertainty but
performs poorly as the uncertainty becomes significant. Mathematically, the received

signal is

38



[x[1] .. x[N]] =H[s[1] .. s[N]]+[n[1] .. n[N]] 4.11

x s N

Estimation of the channel is a linear least squares problem and an estimate of H can be

found using linear least squares method. The estimate uses the detected data S.
H = XsH(ssH)! 4.12

H is estimated by the receiver using its previous estimates of the transmit data S. An
equalizer designed according to this channel estimate may then be used to form an
estimate of the transmit signal for use in channel estimation in the next iteration. While
linear least squares has a tendency to average out noise, in this case, we will not get
perfect estimate of the channel because the estimation is carried out using detected data
which is imperfectly known and may have errors [19]. The received signal may be
expressed as

x= Hs + PUs +n 4.13
A A

signal  interference

where P is a matrix that defines an ellipsoid that models the channel uncertainty. Its
dimensions are Mg X Mp. In the above equation, U is an unknown quantity at the
receiver and so the second term acts as interference in the detection process at a receiver
that is designed on the assumptioh that the channel is H. So if the sphere decoder (SD)
receiver or maximum likelihood (ML) is designed according to H, it may be expected
that the second term will degrade the performance of receiver. It can be seen in equation
4.13 that the term ‘interference’ is dependent on the transmit signal s. Therefore the

approach of treating this term as interference and trying to suppress it is strictly
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suboptimal. The redeeming feature of iterative detection and channel estimation is that it
tries to incorporate this second term into the data detection process so that all received
signal power is exploited for data detection. The second term in the equation 4.13 is used

in the data detection process in consequent iterations when the channel is re-estimated
4.5.2 Linear Preprocessing

It is clear from the equation 4.13 that the second term initially constitutes interference to
the data detection process and will result in poor detection if the term is not suppressed.
So another approach to dealing with channel uncertainty would be to suppress the second
term using a linear preprocessor. Like iterative detection and channel estimation, this
approach is also a suboptimal local optimization algorithm because it tries to suppress a
term that is actually data dependant and could aid the data detection process. We now
demonstrate the idea. First consider the situation where Mg = Mt + Mp. Under this
assumption, it is possible to choose the such a matrix W, whose rank should be equal to

M and also lies in the left null space of P. So that
WP =0 4.14

When this preprocessor is applied at the received signal, the ‘interference’ term entirely

vanishes and we get

Wy = WHs + Wn 4.15
iy

It is also noted by the equation 4.15, that intention of linear preprocessor is to just

eliminate those terms that are created by the channel uncertainty. The purpose of the
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linear preprocessor is not to equalize or detect the data but just to suppress the
uncertainty. Now we can apply a SD/ML receiver designed according to the effective
channel G to detect the transmit data. This will make sure that the ‘interference’ term

does not degrade the detection of the transmitted signal.

For example, the preprocessor can be applied for the simple model for channel
uncertainty that has been shown in 4.1. We can rewrite that model as H, = H; + AH.
If AH has rank r that satisfies the constraint My = M; + r, we could write AH as in
[14] as the product of the two rank r matrices AH = AB. From this equality, that is
possible to find a linear preprocessor W in the left null space of A. By using this

preprocessor to H,, we get

W(H, + AB) = WH, 4.16

As WA = 0, the equation 4.16 shows, if the preprocessor is applied to H, then it would
give WH;. Therefore in 4.1 regardless of which realization the channel assumes, the
sphere decoder (SD) can be designed for effective channel WH; after applying the

preprocessor.

It is not possible to always have My = Mp + My, so this approach will now be
modified so this condition will not be longer necessary. It is to be noted that, this
condition was mandatory to entirely eradicate the ‘interference’ that was caused through
the channel uncertainty. In relaxing this situation, we will not able to eradicate this term

completely. However, we expect to minimize this term as much as feasible.
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When the linear preprocessor W is applied to the received signal vector X, we want the
resulting signal to be close in the mean square error sense to some linear combination G

of the transmitted signal vector s. We therefore try to find to minimize the cost function
2
J=E{|lwiy—glis|’} 4.17

Where w! is the k" row of W and g is the effectual channel from the all transmitters
toward the k*" receiver. Both wj and g are design variables that are used to minimize

the cost function of mean square error (MSE). It can be shown that this minimum cost

function is achieved at
Wk = R;leyng 4.18
Where Rys = E{ys”} and Ry, = E{yy"}. For this w , the cost becomes

J = g (Rss — RyyRyyRys )8k 4.19
The desired values of gk are to be found by using the eigenvectors of the matrix

Rgs — ReyRyy Rys 4.20
Rows of the required preprocessor are to be obtained from the equation 4.18.

The MMSE criterion has been widely used in literature. To our knowledge, the
application most similar to ours is in the channel shortening literature. More detail is
available in [16] and references therein. In these references, the MMSE criterion is used
to design channel shortening filters to reduce the delay spread of the channel. Therefore
most of the multipath energy is restricted to a shorter delay spread. This is usually done
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to facilitate a smaller cyclic prefix in the discrete multitone, or is to allow a reduced state
Viterbi decoder for enhanced data detection performance in single carrier
communications. However, our work is different in the sense that here we use the
MMSE criterion to design a linear preprocessor to suppress the channel uncertainty
effects in contrast to reducing the span of the channel as in channel shortening.

Both approaches to dealing with channel uncertainty discussed above are local
optimization algorithms. Iterative detection and channel estimation requires a good
initialization to perform well but it incorporates the uncertainty term into the detection
process. Applying a linear preprocessor will suppress the interference term due to the
channel uncertainty to provide a better estimate but does not incorporate the interference
term into the detection process. Both these local optimization algorithms complement
one another. The linear preprocessor can be used to provide a good initialization to
iterative detection and channel estimation while the iterative detection and channel
estimation can be used to incorporate the uncertainty term into the data detection process
that has been suppressed by the linear preprocessor. In short, we propose to concatenate

these two local optimization algorithms to deal with the channel uncertainty.

4.6 Simulation Results

The simulated MIMO system has six transmit antennas(M; = 6) and six
receive antennas (M = 6). The channel uncertainty is assumed to lie in a
two dimensional ellipsoid that means the value of Mp, = 2. The channel

uncertainty is modeled by the matrix P = pP . In this equation P has

elements that are independent identically distributed (i.i.d), according to the unit normal
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distribution and the scaling factor p determines the amount of uncertainty. The actual

channel is assumed to be uniformly distributed inside the uncertainty ellipsoid. By

assuming the BPSK modulation scheme, the bit error rate plots (BER) are obtained. The

bit error rate (BER) plots are given in FIG 4.2. This figure shows and compares the

performance of two stages algorithm with the simple iterative detection and channel

estimation over three iterations.
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Figure 12: Performance of ID & CE Ew/N, vs BER

The solid lines show the performance of iterative detection and channel estimation while

dotted lines show the performance of iterative detection and channel estimation when the

preprocessor is applied. In the first iteration the channel is assumed so the performance is

poor. In the next iterations channel is estimated and reused for data detection and

estimation. When the preprocessor is applied on the iterative detection and channel
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estimation iteratively, the performance is much better than using simple iterative
detection and channel estimation.

Figure 4.3 plots the BER against the channel uncertainty p. Three iterations have been
shown; the dotted plot shows the proposed model with preprocessing and solid plot
shows the iterative detection and channel estimation without the preprocessing. It is
observed that the performance of the scheme using a linear preprocessor is relatively
stable to the effects of the channel uncertainty as compared to simply using iterative

detection and channel estimation.
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Figure 13: Performance in term of channel uncertainty
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4.7 Conclusion

In summary, we have proposed a two stage algorithm by concatenating the two local
optimization algorithms. Within a few iterations, the iterative detection and channel
estimation algorithm converges to the local minimum. The linear preprocessor provides
the iterative detection and channel estimation algorithm with a better initialization so that
better overall performance is achieved. Simulations have verified the effectiveness of the
approach and the performance gains are achieved without a very significant increase. in
computational complexity as the underlying idea is to apply a linear preprocessor which
simply amounts to a matrix multiplication. We conclude with the note that the utility of
the proposed approach is not just limited to a situation where the channel is uncertain, but
can also be applied to a situation where the ‘interference’ term could be caused by say

inter-cell interference from some co-channel cell,
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