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Preface

Boundary layer flows of incompressible fluid over a stretched surface has many industrial
applications such as aerodynamic extrusion of plastic sheets, boundary layer flows along liquid
films in condensation processes, cooling of a metallic plate in cooling bath and in glass and
polymer industries. The investigations regarding boundary layer flows were performed by many
researchers such as Sakiadis [1], Crane [2], Banks [3], Grubka and Bobba [4], Banks and

Zaturska [5], Erickson et al [6] for the impermeable plate and Gupta and Gupta [7], Chen and |

Char [8], Ali [9], Chaudhary et al [10], Elbashbeshy [11], Magyari and Keller [12] for the
permeable plate. In his paper, Banks [3] gave solution by using numerical approach and was
unable to give dual solution due to high sensitivity of numerical scheme he used. Furthermore,
his solution was without velocity reversed flows. Goldstein [13] gave the physical meanings of
negative stretching velocity corresponding to the backward boundary layer. As pointed out by
Magyari and Keller [14] and Liao and Pop [15], the considered problem is mathematically

equivalent to the steady free convection flow over a vertical semi-infinite plate which is .

embedded in a fluid saturated porous medium described by Cheng and Minkowycz’s equation
[16,17] after employing the homotopy analysis method [18-20]. Recently Pop and Na [21]
reported muItiple solutions for MHD flows over a stretched permeable surface. Zaturska and
Banks [22] found multiple solutions for Blasius boundary layer flows. Magyari et al [23] found
multiple solutions of boundary layer flows over a moving plane surface. However Magyari et al '
[24] found multiple solution of the considered problem at f = -1/2. After that Liao produced a
new branch of solutions in his paper [25] and to the best of our knowledge, dual solutions of the
boundary flows over a stretched impermeable wall for p > 1 have not been reported earlier.

The theory of non-Newtonian fluids has become a field of very active research for last few
decades as this class of fluids represents many industrial fluids as well. Several authors have
considered the viscoelastic fluids whose constitutive equations are based on the assumption of -
gradually fading memory [26-29]. The steady incompressible flow of a viscoelastic fluid in the
region of a two-dimensional stagnation point flow has been studied by Beard and Walter [30]
and Garg and Rajagopal [31]. The equation of motion of viscoelastic fluids are one order higher
than available boundary conditions. In order to overcome this difficulty Beard and Walter [30]
used perturbation technique. However Garg and Rajagopal [31] tackled this difficulty by
assuming one extra boundary condition at infinity and used quasilinearization along with
orthonormalization. This method is further used by Seshadri et al [32] to investigate unsteady
three-dimensional stagnation point flow of a viscoelastic fluid. Ramachandran [33] and Lok [34]
discussed the mixed convection in stagnation point flow adjacent to vertical surface of
Newtonian and micro-polar fluids respectively. Hiemenz [35] considered the flow in the
neighborhood of stagnation line with characteristic irrespective of the shape of the body. Hayat
et al. [36] discussed the mixed convection in the stagnation point flow adjacent to a vertical
surface of a viscoelastic fluid. The dissertation is arranged as follows:

Chapter 1 includes some prerequisites and basic definitions for the convenience and better
understanding of the reader. The concepts of Chapter 2 are based on the work of S.J. Liao [25].
All the results are reproduced successfully. In Chapter 3 we reproduced the work of Hayat et al -
[36] and extended this analysis by considering the mass-transfer in the stagnation point flow
adjacent to vertical surface.



Contents

1 Preliminaries

1.1 Introduction . . . . . . i e e e e e e e e e e e e e e
1.2 Basicdefinitions . . . . . . . . . L . e e e e e e
.21 Flow . . . . o e e e e e e e e e e
122 Fluid. . . . . . . e e e e e
1.2.3 Fluid mechanics . . . . . . . . . . . . e
124 Deformation . .. .. .. . . . . e e
125 Bhearstrass . . . . . . . . . i e e e e
128 Pressure . . . . o v it e e e e e e e e e e e e e e
1.27 Density . . o 0 v it e e e e e e e e e e e e e e e e e e
1.2.8 Viscosity . . . . . . . @ i i o e e e e e e e e e e e e e
1.2.9 Kinematic vISCOSIbY . . . . . o o 0 L i i e e e e e e e e e e e e e
1.2.10 Viscous dissipation . . . . . . . . . . .. ... . e
1.2,11 Shear thinmimgeffect . . . . . . . . . . . o o L
1.2.12 Shear thickeningeffect . . . . . . ... .. .. ... L Lo oL,
1.3 Classificationof fluid . . . . . . .. . ... L
131 Tdealfluid . . . ... ... ..
132 Realfluid . . ... ... ... .. e
14 Typesofflow . . . . . . o o . e e e e
141 Steady flow . . © . . . L e e e e e e e
142 Unsteadyflow. . . . .. .. . .. . i i e
1.43 Laminar flow . . . . . . . . .. ... e e e



1.5
1.6

1.7

1.8.

1.9

1.10

1.11

1.45 Inecompressibleflow. . . ... ... ... ... .. ... . ... ... ... 9
146 Compressibleflow . ... ......... .. ... ... . . ... . .... 9
Force . . . . o o i e e e 9
Types of fOrces . & . . . L i i e e e e e e e e e e e e e e e e 9
181 Surfaceforce . . . . . . . . . e e 9
1.6.2 Bodyforce . . .. . @ @ . i i i e e e e e e e e 9
Heat transfer . . .. ... ... ... ... ... .... e 10
Fundamentals of heat transfer . . . . . . ... . ... ... ... .. ... 10
1.8.1 QConduction . . . . . .. . . i i e e e e e e e 10
1.82 Convection . . ... ... ... ... .. ... e e e e e e e 10
1.8.3 Radiation . ... . ... . . e e 10
1.8.4 Specificheat . . . . . . . . . e 10
1.8.5 Fourier’s law of heat conduction . .. ... ... ... ... .. ...... li
1.8.6 Thermal conduetivity . ... .. .. ... .. .. 11
Some Basic laws . . . . . . L . L e e e e e e e e e e e 11
1.9.1 Lawofconservationofmass. . . ... ... ... .. ... . ..... 11
1.9.2 Law of conservation of momentum . . ... ... .. ............ 12
1.9.3 Law of conservation ofenergy . . . . - . . . . .. .. . . 12
Boundary layer . . . . . . . . . .. e e e e 12
1.10.1 Boundary layer thickness . . ... ... ... .. ... ... .. ... 12
Homotopy . - - .« o o i i o i e i e e e e e e e e e e 13
1.11.1 Homotopy analysismethod (HAM} . . . . ... ... .. .. ........ 13
1.11.2 Homotopy-Padé approximation . . . . . ... ... ... .. ........ 15

A new branch of solutions of boundary-layer flows over an impermeable

stretched plate 17
2.1 Introduction . . . . . . .. ... e e e e 17
2.2 Problem Formulation . . . . . . . .. ... . L 17
2.3 Mathematical Formulations . . . . ... ... ... ... ... .. ... 20

2.3.1 Asymptotic Property . . . . . . . . . . . e 20



232 Fistapproachforgiven 8. .. . .. .. . ... .. ... .. ... 21

2.3.3 Second approach forgiven 8 ... ... .. ... .. ... ... .. ..., 32
2.3.4 Approach for given entertainment velocity . . . . . . ... ... ... ... 36
2.4 Analysisof theresults and discussion . . . . . . . . . . .. . ... ... 40

Mixed convection and mass transfer in the stagnation point How of second

grade fluid adjacent to vertical surface ' 42
3.1 Imtroduction . . . i ... e e e e e e e 42
3.2 Basicequations . . . . . ... . . ..ot 43
3.3 Solution by homotopy analysis method (HAM) . . ... ... ........... 46
3.4 Convergence of the HAM solution . . . ... ... ... ... ... .. ...... 49
35 Resultsanddiscussion . . . ... ... ... it 52
3.6 Concludingremarks . . . .. . . . .. e e e e 62



Chapter 1

Preliminaries

1.1 Introduction

In this chapter, some basic definitions, concepts of various types of fluids and basic equations
which govern the flow are described. The basic idea of homotopy, homotopy analysis method

(HAM) and homotopy-Padé approximation are also explained in this chapter.

1.2 Basic definitions

1.2.1 Flow

In the presence of different forces, a material like liquid or gases goes under deformation. In
many cases this deformation is change of position of its particles and it continuously increases

without limit, this phenomenon is known as flow.

1.2.2 Fluid

A fluid is a substance that flows under the action of shearing forces.

1.2.3 Fluid mechanics

Fluid mechanics is the branch of Engineering and physical sciences that deals with the forces
on fluids and their actions. Fluid mechanics can be divided into fluid statics (study of fluids at

rest) and fluid dynamics (study of fluids in motion).

4



1.2.4 Deformation

The relative change in position or length of the fluid particles is known as deformation (strain).

1.2.5 Shear stress

A shear stress, denoted by 7 (tau) is defined as a stress which is applied parallel or tangential to

a face of a material, as opposed to a normal stress which is applied normally (perpendicularly).

1.2.6 Pressure

Pressure is defined as the magnitude of force per unit area and it can be written as

P==, (1.1)

] g

where P is pressure, F' is the magnitude of normal force and A is the area.

1.2.7 Density

The density of a fluid is defined as its amount of mass per unit volume. It is denoted by the

Greek symbol p. Mathematically, it can be written as

m
= — 1.2
lo V 1 ( )

where m is the mass and V is the volume.

1.2.8 Viscosity

Viscosity of the fluid is defined as the property of the fluid that tends to resist the movement
of one layer of the fluid over adjacent layer of the fluid. It is denoted by the symbol u and is
defined as

shear stress
" rate of shear strain’

1 (1.3)

It is also termed as dynamic viscosity.



1.2.9 Kinematic viscosity

It is defined as the ratio of dynamic viscosity to fluid density and is denoted by v. Mathemati-

cally, it is defined as

=&
v= 5 (1.4)

1.2.10 Viscous dissipation

An important consequence of the existence of shear viscosity is a loss of energy when fluid is
sheared. This frictional energy loss is referred to as viscous dissipation. The rate of dissipation
of energy per unit mass of fluid by the shear viscosity is given by the viscous dissipation ¢. The
viscous dissipation rate at any point in the flow is given by
2
2u (du
Sl el 1.5
*=% (dy) ’ (1.5)

where du/dy is the rate of shear strain.

1.2.11 Shear thinning effect

Shear thinning is an effect where viscosity decreases with increasing rate of shear stress. Mate-
rials that execute shear thinning are called pseudoplastic. There are certain complex solutions

such as lava, ketchup, whipped cream, blood, paint and nail polish which deseribe such effects.

1.2.12 Shear thickening effect

A shear thickening effect is one in which viscosity of a fluid increases with the rate of shear
stress. Fluids which describe such effects are termed as dilatant. Mixture of cornstarch and

water can easily be seen to perform this effect.



1.3 C(lassification of fluid

1.3.1 Ideal fluid

A non-existent, assumed fluid without either viscosity or compressibility is called an ideal or
perfect fluid. It is the hypothetical form of fluids. However, the fluid with negligible viscosity

may be considered as an ideal fluid.

1.3.2 Real fiuid

Real fluids are those in which fluid friction has significant effects on the fluid motion. In other
words, we can not neglect the viscosity effects on the motion. Real fluids are further classified
into two classes on the basis of Newton’s law of viscosity. According to this law “shear stress is
directly proportional to the rate of deformation”. For one dimensional flow, it can be written

as

du
Tyx = »u'd_y: (16)

where 7, is the shear stress.

Newtonian fluid

A Newtonian fluid (named after fsaac Newton) is a fluid whose stress versus strain (deformation)
rate curve is linear and passes through the origin, i.e., Newtonian fluid obeys Newton’s law of

visecosity. Water, gasoline and mercury are some examples of Newtonian fluids.

Non-Newtonian fluid

Fluids in which shear stress is not directly proportional to the deformation rate are known
as non-Newtonian. A non-Newtonian fluid is a fluid whose flow properties are not described
by a single constant value of viscosity, i.e., it does not satisfy Newton’s low of viscosity. For

non-Newtonian fluids

Tyz =k (Z_:)n’ n#1 (1.7)

or

Tyz =1 (Z—:) ; (1.8)



where

is the apparent viscosity. Examples of non-Newtonian fluids are tooth paste, ketchup, gel,

shampoo, blood and soaps etc.

1.4 Types of flow

1.4.1 Steady flow

A flow for which the fluid properties (velocity, temperature etc.) remain independent of time

is called steady flow. For such flow
50
= = 1.10

where (@ is any quantity in the flow and £ is the time.

1.4.2 TUnsteady flow

A flow for which fluid velocity depends upon time is called unsteady flow, i.e.

Q)
5 #0. (1.11)

1.4.3 Laminar flow

Fluid flow in which the fluid travels smoothly or in regular paths. Laminar flow over a horizontal
surface may be thought of as consisting of thin layers, all parallel to each other that slide over
each other. Examples include the flow of oil through a thin tube and blood flow through

capillaries.

1.4.4 Turbulent flow

Turbulent flow is a type of fluid flow in which the fluid undergoes irregular fluctuations or
mixing. Common examples of turbulent flow are lava flow, atmosphere and ocean currents, the

flow through pumps and turbines and the flow in boat wakes and around aircraft-wing tips.



1.4.5 Incompressible flow

A flow in which the volume and thus the density of the flowing fluid does not change during
the flow. All the liquids are generally considered to have incompressible flow. Incompressible
flow satisfies the equation

V.V =0, (1.12)

where V is the velocity fleld of the flow.

1.4.6 Compressible flow

A flow, in which the volume and thus density of the flowing fluid changes during the flow. All

gases are, generally, considered to have compressible flows. For compressible flow

V.V 0. (1.13)

1.5 Force

Force is a vector quantity, used to demonstrate an impression which causes a free body to

undergo a change in velocity or acceleration.

1.6 Types of forces

1.6.1 Surface force

Short-range force applying on a fluid element through physical contact between the element

and its forcing body is called surface force.

1.6.2 Body force

Body force is long-range force that acts on a small fluid elements. Gravitational and electro-
magnetic forces are the common examples of body force. It is usually denoted by the symbol

f.



1.7 Heat transfer

Heat transfer is a science that studies the energy transfer between two bodies due to temperature
difference. There are three types or modes of heat transfer:

1. Conduction

2. Convection

3. Radiation

1.8 Fundamentals of heat transfer

1.8.1 Conduction

Conduction is the transfer of energy through matter from particle to particle. It is the transfer
and distribution of heat energy from atom to atom within a substance. For example, a spoon
in a cup of hot soup becomes warmer because the heat from the soup is conducted along the
spoon. Conduction is most effective in solids but it can happen in fluids.

1.8.2 Convection

Convection is the transfer of heat by the actual movement of the warmed matter. Heat leaves
the coffee cup as the currents of steam and air rise. Convection is the transfer of heat energy

in a gas or liquid by movement of currents. (It can also happen is some solids, like sand).

1.8.3 Radiation

Electromagnetic waves that directly transport energy through space. Sunlight is a form of

radiation that is radiated through space to our planet without the aid of fluids or solids.

1.8.4 Specific heat

Specific heat is the amount of heat or thermal energy required to raise the temperature of a

unit quantity of a body by one unit. It is denoted by the symbol ¢,.

16



1.8.5 Fourier’s law of heat conduction

The Fourier’s law states that the time rate of heat transfer through a material is proportional
to the negative gradient in the temperature and to the area at right angles to that gradient

through which the heat is flowing. Mathematically, it is given by

4Q _ 4%
T

& 1.
dt d (L14)

where @ is the amount of heat transferred and # is the temperature.

1.8.6 Thermal conductivity

Thermal conductivity k is the property of a material that indicates its capability to conduct

heat.

1.9 Some Basic laws

1.9.1 Law of conservation of mass

This law states that in any closed system, the mass is always invariant regardless of its changes
in shape. It is the principle which describes that matter cannot be created or destroyed. In

fluid mechanics, this law is named as equation of continuity. Mathematically, it is described as

E9—p-I-V’-(pV)=O. (1.15)
ot
For steady flow
Op
= = 0, (1.16)
and for steady incompressible flow
p(V-V)=0. (1.17)

11



1.9.2 Law of conservation of momentum

The law of conservation of momentum states that when some bodies constituting an isclated
system act upon one another, the total momentum of the system remains same. It is also
recognized as the Navier-Stokes equations derived by Claude-Louis Navier and George Gabriel
Stoke, used to describe the motion of the fluid. In an inertial frame of reference, the general

form of the equations of fluid motion is

DV
<=V T+, (1.18)

where T is the Cauchy stress tensor which is different for different fluids.

1.9.3 Law of conservation of energy

The law of conservation of energy states that energy may neither be created nor destroyed.
Therefore, the sum of all the energies in the system is a constant. The laws of conservation of

energy which is also called the energy equation is described as
p%-m:T'L_V'q, (1.19)

in which
L=VV. (1.20)

1.10 Boundary layer

The flow region adjacent to the wall in which the viscous effects are significant is called boundary

layer.

1.10.1 Boundary layer thickness

The boundary layer thickness, signified by & is simply the thickness of the viscous boundary
layer region. Becauss the main effect of viscosity is to slower the fluid near a wall, the edge
of the viscous region is found at the point where the fluid velocity is essentially equal to the

free-stream velocity.

12



1.11 Homotopy

A homotopy between two functions f and g from a space X to a space Y is a continuous map

H

¥

H:X x|[0,1] —Y, (1.21)
such that
H(z,0) = (z) (1.22)
and
H(z,1) = g(a), (1.23)

where X denotes set pairing and = € X. If we consider the second element in the set X x [0,1],
then we can say that at time £ = 0, the function H equals f and at ¢t = 1, H becomes g. Two
mathematical objects are said to be homotopic if one can be continuously deformed into the
other. The concept of homotopy was first formulated by Poincaré around 1900 {Collins 2004).

When two functions f and g are homotopic, we relate them as
feg. (1.24)

1.11.1 Homotopy analysis method (HAM)

Perturbation methods have been widely used by the engineers in obtaining results especially
for non-linear problems. Such methods require small or large parameters so that approximate
solution can be expressed in term of series. It is not necessary that all problems involve such
small or large parameters. Therefore it seems important to have another analytic method which
does not required the restriction on parameters. Keeping this fact in view, Liac has developed
homotopy analysis method (HAM) which is independent upon small parameters assumption.
The basic idea of HAM is described as follows.

Consider a non-linear equation governed by

Nlu(z,t)] =0, (1.25)
where N is non-linear operator, z and ¢ denote the independent variables and u is an unknown

13



function. For simplicity, we ignore all boundary and initial conditions, which can be treated in
the similar way. By means of HAM, we first construct the so-called zeroth-order deformation

equation as

(1 - q}L[¥(z,t; q) — uo(z,1)] = ghH (2, 1)N{®(z, ; )} (1.26)

where g € [0, 1] is the embedding parameters, % # 0 is an auxiliary parameter, L is an auxiliary
linear operator , ®{z, t; q) is unknown function, ug(z,t) is an initial guess and H(x,t) denote
a non-zero auxiliary function. It is obvious that for embedding parameter ¢ = 0 and ¢ = 1,

equation (1.27) becomes

&(z,1;,0) = uo(z,t),  N[®(z,t;1)] =0,

respectively. Thus as g increases from 0 to 1, the solution ®(z,t; g) varies from the initial guess

ug(z,t) to the solution u(z,t). Expanding ®(z,t; q) in Taylor series with respect to g, one has

+co

o(z,t; ) = vo(z, ) + ) um(z,t)g™, (1.27)

m=1

where

1 8™ ®(x,t;
—T—Lm——@ lg=0, (1.28)

The convergence of the series (1.28) depends upon the auxiliary parameter A. It is convergent
at g = 1, one has
400

u(z,t) =uo(z,t) + Y um(z,1), (1.29)

m=1
which must be one of the solutions of the original non-linear equation, as proven by Liao [18].

Define a vector

E)n = {u0($: t):ul (.?:, t)r Tt ;un(m:t)}'

Differentiating the zeroth — order deformation equation (1.27) m — times with respect to ¢

14



and dividing by the m! and finally setting ¢ = 0, we get the following mth — order deformation

equation

L{um(z,t) — Xmuo(z,t)] = hH(z, ) B[ Wm-1], (1.30)
where

> 4. 1 O0"N[(ztq)]

Ry[Tma] = D] g1 lg=0 (1.31)

and
0,k<1
Xm = {l,k o1 (1.32)

It should be emphasized that u,(z,t) for m > 1 is governed by the linear equation (1.31)
with linear boundary conditions that come from the original problem, which can be solved by

symbolic computation software such as Maple or Mathematica.

1.11.2 Homotopy-Padé approximation

A Padé approximation of a given power serieg is a rational function of numerator of degree
m and denominator of degree n whose power series agrees with the given one upto degrees
m -+ n inclusively. The Padé approximation can be though of as a generalization of a Taylor
Polynomial. A Padé approximation often yields better approximation of the function that
truncating its Taylor series, and it may still work where the Taylor series does not converge. In
many cases traditional Padé technique can greatly increase the convergence region and rate of

approximations. For a given series

00

anr”. (1.33)

The corresponding [m,n] Padé approximation is

15



m
E bm,krk
k=0

m
Z c—m,krk
k=0

(1.34)

in which by, x and ¢, x are determined by the coefficients a; (¢ = 0,1,2,3,--- ,m 4 n). The
so-called homotopy-Padé approximation was proposed by combining the Padé approximation
and homotopy analysis method. For convergence of series Eq.(1.28) at ¢ = 1, we first employ
the traditional [m,n] Padé technique about the embedding parameter ¢ to obtain [m,n| Padé

approximant

Z B‘m,k (r)qk

= (1.35)
Z Cm,k (T)qk

k=0

where the coefficients By, x(r) and Cp, x(r) are determined by the first several approximations

ug(r), ur(r), u2(7r) - - - , Umen(r). On setting g = 1 equation (1.36) becomes

S Brur)
= (1.36)
5 ()

k=0

In general the [m, m] homotopy-Padé expression can be expressed as.

m24m41 ek
kZO B1 ! ("')
mifml mk ’ (137)
01 "(r)

k=0
In above equation BI"'k(r) and CT* ’k(r) are coefficients. It is very interesting that these
coeflicients are independent of the auxiliary parameter h. Comparing equations (1.35) and
(1.38), we find that in accuracy the [m,m] homotopy-Padé approximation is equivalent to the
traditional [m? +m+1,m? +m+ 1] Padé approximant. Similarly, the so-called homotopy-Padé

approximation can be applied to accelerate the convergence of the related series.

16



Chapter 2

A new branch of solutions of
boundary-layer flows over an

impermeable stretched plate

2.1 Introduction .

The boundary layer flows over the stretched impermeable wall were investigated by different
authors so far by using different homotopy analysis method and numerical schemes etc, Two
branches of the solutions are found. The first one agrees well with the numerical results given
by Bank {3]. However, the second branch can further be divided into two parts in which one is
mathematically equivalent to a branch of solutions of Cheng and Minkowycz’s equation reported
by the Ingham et al [17]. The other one is new and has never been reported other than Liao
[15]. In this chapter we revise the study of Liao [15]. It is also analyzed that different from
the first branch of solutions the second branch of sclution shows reversed velocity flows. It is
further observed that the difference of skin frictions of the two branches of solutions is rather

small, even when the corresponding profiles of velocity are clearly distinct.

2.2 Problem Formulation

Consider the boundary-layer viscous flow over a stretched impermeable plate {2, 3] governed by

17



'U-ax'l"ua—y'—ila 3 (21)
Gu Ov
i 2.2
subject to the boundary conditions
u = a{z + b)*, v=20 at y=0, . (2.3)
uw—0 as ¥y — +o0

Where {z,¥) denotes the Cartesian coordinates along the plate and normal to it, u and v are
the velocity components of fluid in the = and v directions, v is kinematic viscosity, a ,b and
A are parameters related to the surface stretching speed. Let ¥ denote the stream function.

Using the transformation

A+1

‘I’=ﬂ1/m($+b) 2 F(9), 2.4

A-1 ’
=Ny TTy

where a # 0 and a(1 + A) > 0, the above equations become

F(€) + 3FOF"(€) - BFHE) =0, (25)

subject to the boundary conditions

F(0) =0, F(0)=1, F'{+00) = 0, (2.6)
where

Since a(1 + A) > 0, we have a>0 when A > —1, corresponding to —1 < 8 < 1; and a<0
when A < -1, corresponding to 8 > 1. When, a < 0 and —1 < § £ 1, the stretching velocity
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of the surface is positive. However, when a < 0 and 8 > 1, the stretching velocity becomes
negative, corresponding to the so called backward boundary layer that has physical meanings
as mentioned by Goldstein [13].

From Eq.(2.4), we deduce the velocity of the fluid

u(z,y) = a{z + DY F'(£), (2.8)

1 A-1
v(@,y) = Vel +Au(z+5) 2 [F(E)+ 26 -1)4F ()] (2.9)

The velocity of the fluid at £ — +o0 is
) A-1

v(z, +00) = —%—\/a(l + Az +b) 2 Fl+o), (2.10)

and the skin friction on the stretched surface becomes

5 3x—-1

T = pua—z ly=o=ap/a(l + Nu(z +b) 2 F(0). (2.11)

Banks [3] gave a branch of solution for —1 < § < +o00 by using numerical method, also satisfied
the property F'(£§) > 0 for 0 < £ < +co. As pointed by Chaudhary et al. [10], Magyari
and Keller [12], and reported by Liao and Pop [15], the considered problem is mathematically
equivalent to the steady free convection flow over a vertical semi-infinite plate that is embedded
in a fluid saturated porous medium, described by famous Cheng and Minkowycz’s equation
[16], if and only if A > —1/2 corresponding to —1 < § < 1. It is easy to verify that the first
branch of solutions reported by Ingham and Brown [17] is indeed mathematically equivalent
to those given by Banks [3] in a finite region —1 < # < 1. Note that the two problems are
not completely equivalent even mathematically. Ingham and Brown [17] proved that there is
no solution corresponding to the forward boundary layer flows for the Cheng and Minkowycz's
equation when A € —1, corresponding to § > 1. However, Banks [3] found numerical results
even for 3 = 200. It is interesting that Ingham and Brown [17] reported a second branch of
solution for 1 £ A < 400, corresponding to 1/2 < 8 < 1. According to the above-mentioned
equivalence between the two problems, Eqgs.(2.5) and (2.6) should have multiple solutions at
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least in the region —1/2 < 8 < 1. But Banks [3] did not mention such kind of solutions.
Employing the homotopy analysis method [18-20], a new analytic technique for non-linear
problems, Liao and Pop [15] successfully found the first branch of solutions which agree well
with the Banks numerical results, but equally fail to find the second ones.

In this chapter, a new branch of solutions is reproduced for 1/2 < 8 < +co by means of the
homotopy analysis method [18, 19], which has been successfully applied to solve many non-linear
problems. In a finite region 1/2 < § < 1, this kind of branch of sclutions is mathematically
equivalent to the second branch of solutions of the Cheng and Minkowycz's equation given by

Ingham and Brown [17].

2.3 Mathematical Formulations

2.3.1 Asymptotic f’rbperty

According to the boundary condition F'{+o00) = 0, it is straightforward to define

§ = F(4o0). (2.12)

It is well-known that most boundary-layer fiows have exponential property at unity. Thus, it
is natural to express F({) as
400

F(§) =6+ Ajexp(—jut), (2.13)

7=1
where g > 0 is the spatial-scale parameter and A4; is a coefficient. When { — 400, the

dominant term of the above expression is

F(£) = & + Ay exp(—pt),

Substituting it into Eq.(2.5), we have

— Ay

—A2 2
5 — (20— 8) exp(—pf) - e

2

exp(—2ul) +--- =0, £ — +o0.

To enforce the dominant term of the above equation is zero, we set
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=672, (2.14)

which enforces

§>0. (2.15)
Thus, under the transformation
§
F(§) = 61— w(n)], n=(5)6. (2.16)
Eq.(2.5) becomes
w" () + [1 = w(mw" (7) + 26w(n) =0, 1 € [0, +00), (2.17)
subject to the boundary conditions
w(0) =1, w’(O) +2y=0, w’(+o°) =0, w(+oo) =0, (218)
where
1

depends on . Note that v does not appear in Eq.(2.17). If 8 is given, then the unknown -
must be determined. Similarly, if «y is given, we should regard 8 as an unknown parameter.

In the frame of the homotopy analysis method [18, 19], Eqs.(2.17) and (2.18) can be solved
by three different approaches, as described below.
2.3.2 First approach. for given j

Zeroth-order deformation equation

w{n) can be expressed by the base functions

{ezp(-nn) | n 2 1}
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in the form

+oo
w(n) =3 Ajexp(—jn). (2.20)
J=1

For given £, is unknown. Let v, denote the initial approximation of v where v is unknown.
Under the Rule of Solution expression (2.20) and using the boundary conditions (2.18), it is

straightforward to choose

wy(n) = 2(1 — 7o) exp(—n} + (27, — 1) exp(—2n) (2.21)

as the initial approximation of w(n). Under the Rule of Solution Expression(2.20) and with the

aid of governing equation {2.17), the auxiliary linear operator is defined as

83%(nq)  ,0%(n,q)  02(n;q) :
vq)| = = — — —2®(n; q). 2.22
£lo(m )] =~ + 275 o (m;9) (2.22)
It possesses the property
£[Cle"’7 + 6'26"2’1 + 036217] ={, (2.23)

for any constants Cj, Cy and C3. Furthermore, Eq.(2.17) suggests to define the non-linear

operator as

3 . 2 . .
T AL B R L S -1

Let g € [0,1] denote an embending parameter, i # 0 an auxiliary parameter, and H(n) # 0 an

auxiliary function. Using above definitions, we construct the zeroth-order deformation equation

(1 — ) L{@(n; q) — wo(n}] = ghH (n)N[2(n; 9)], (2.25)

subject to the boundary conditions

Y= Od(mq) . 0%(n;q)
2(0;9) = 1, 2T(g) + e l=o=0,  lim B =0. (2.26)
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When ¢ = 0 and g = 1, we have from the zeroth-order deformation equations {2.25) and (2.26)

that
‘I‘(’?; 0) = wﬂ(n): P(O) = Yo, (227)
and
O 1) =w(n), I1) =1, (2.28)
respectively. Defining
1 8™®(n; ¢ 19" T(q
unin) = 2 Z2BD |, = 2OTA

and expending ®{n; ¢} and I'(g) in Taylor series with respect to the embending parameter ¢, we

have
+00
B(n;q) = 3(n;0) + ) _ waln)g”, (2:29)
n=1
+co
T(g) =T(0) + D 7uq™ (2:30)
n=1

Assuming that A and H(n) are properly chosen so that the above series converge at ¢ = 1, we

have from Eqs.(2.27) and (2.28) that

+oo
w(n) = woln) + ) wn(n), (2.31)
+00
Y=Y+ Yu (2.32)
n=1

Higher-order deformation equation

For the sake of simplicity, define the vector

E"rra.('rt') = {wO(anl(n)!wz(n)! nt 'w‘m(n)}i

23



differentiating the zeroth-order deformation Egs.(2.25) and (2.26) n times with respect to the
embending parameter g, then setting ¢ = 0, and finally dividing by n!, we have the nth-order

deformation equation

L[wn(n) — xXnWn-1)] = BH 1) Ra[Wn-1(), Ynl; (2.33)

subject to the boundary conditions

wa(0) =0,  wh(0)+29, =0,  wh(co) =0, (2.34)

under the definitions

n-1
Bu[Wao1(n), Vo1l = w"(n) + w"(n) + Y _[2Bwi(n)w) 1_i(n) — v (Mwn-a1-i(m)].  (2.35)
. i=0
and
i = {2 z i i - (2.36)

Due to the boundary conditions (2.34), wi(n) contains the unknown =y, for £ = 0,1,2,3,---.
Thus, the term R, [Wn-1(n), v,_;] contains the unknown =y,,_;. Note that both w,(n) and 7,,_,
are unknown, but we have only Egs.(2.33) and (2.34) for w,(n). Thus, the problem is not closed
and an ac'!ditional algebraic equation is needed to determine -y,,_,.

Substituting Eq.(2.2i) into Eq.(2.35), we have

4

Ri[@o(n),vo] = D _ Bu,i(vo) exp(—in),
=2

where By ;(-yg) is a coefficient dependent upon <yg. According to the Rule of Solution Expression

(2.20), the auxiliary function H(n) must have the form

H(n) = exp(kn)

where k is an integer. So, we have
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4
H(mRa[@o(), 0l = Y Bral(o) expl—(i — k)n), (2.37)

=2
when k 2> 1, the term exp(—7) appears on right hand side of Eq.(2.33). Thus according to

Eq.(2.23), the corresponding solution w; (1) contains

nexp(—7),

which however, disobeys the Rule of Solution Expression Eq.(2.20). When & < 1, the solution
of 1q.(2.33) does not contain the term exp(—3%), and this disobeys the Rule of Coefficient
Ergodicity, i.e. all coefficients in the solution expression Eq.(2.20) can be modified to ensure
the completeness of the set of the base functions, as mentioned by Liao {18,p.21]. When & = —1,
there does not exist an algebraic equation to determine <y, and therefore the problem is not
closed. This however disobeys the Rule of Solution Existence described by Liao [18,p.21]. When
k=0, ie.

Hn) =1, (2.38)

we can set

B1,2(70) =0, (239)

which provides us with an algebraic equation to determine the unknown -y,. And in this way,
Rule of Solution Expression, the Rule of Coefficient Ergodicity, and the Rule of Solution of
Existence, are satisfied. Using Eqs.(2.21) and (2.37) and imposing henceforth £ = 0 in the
Eq.(2.37), we have the algebraic equation

(28 - 1)7v; — 4By + 28 =0, (2.40)

which has two different positive solutions

V28

Yo = B+ 1 820, (2.41)
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and

Y
. 70_\/2?_1:

Where the range of 3 is determined by the definition Eq.(2.19). Each of the above expression

B>1/2. (2.42)

corresponds to a branch of solution. It is found that, when H () = 1, we always have

2n+42

Ru[Wa-1(n), Yn1] = Z Bn,j{Tn—1) exp[—Jn]. (2.43)
i=2

Thus in general, we can always obtain -,,_; by solving the algebraic equation

Brj(Tn-1) =0. (2.44)

It is found that the above algebraic equation is always linear when (n > 2), and the solution
wy(n} obeys the Rule of Solution Expression Eq.(2.20). In this way, it is convenient to solve
the linear higher-order deformation Egs.(2.33) and (2.34) by means of a symbolic software such

as Mathematica.

Moultiple solutions

For a given B, the two different values of -y, given by Eqgs.(2.41) and (2.42), correspond to the
two different values of v and the two different solutions of w(n), respectively. For example, let

us consider the case of § = 1. For each -y, we obtain

wl(”l)u’hawz(ﬂ)ﬁz Tty

successively. Obviously, it is important to ensure that the series Eq.(2.31) and Eq.(2.32) are
convergent due to auxiliary parameter R, which can control the convergence of these serieé.
Note that +y is a function of . The so-called A—curves of -y at the 10th-order of approximation
are as shown in Fig. 2.1. Obviously, the series of ¥ converges when i = —1/2 for the first branch
of solutions, or when A = —3/4 for the second branch. This is indeed true, as shown in Tables 1

and 2. Besides, much more accurate results can obtained by means of the so-called homotopy-
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Padé technique [18, 20, as shown in Tables 3 and 4. The corresponding series of w(n) also
converges to the numerical results given by Runge-Kutta's method using the analytic results of
F"(0), as shown in Fig. 2.2.

Thus, when 8 = 1, the first approach gives two different solutions, corresponding to

F(400) = 1.2807737812 F”(0) = —0.9063755237

and

F(+00) = 0.4336537219 F'(0) = —0.9133389388

respectively. The first branch of solution agrees well with Bank’s numerical results [3]. As
shown in Fig. 2.2, the second branch of solution shows in some region reversed velocity flows.
The second one was not reported for the stretched impermeable wall. Note that, although
there exists obvious differences between F{+o00) of two solutions, the difference between F”(0)
is small. This might be the reason why the second branch of solution was not found by the
shooting method.

As mentioned before,. when g = 1, the above mentioned second branch should be mathemat-
ically equivalent to the corresponding second branch of solutions of the Cheng and Minkowycz’s
equation at A — 4-00. We compare the two solutions and find that this is indeed true. The
series verifies the validity of prescribed approach. And this approach is valid for other values of
B, as shown later. So, different from Banks {3] and Liao and Pop [15], it is successfully repro-
duced the two branches of solutions for the boundary-layer flows over a stretched impermeable
plate.

In general, for given 8, (8 > 0). We can find the first branch of solution (0 £ § < +o00) by
means of Eq.(2.41) and the second one (1/2 < 8 < 4o0) by Eq.(2.42}. In each case, the con-
vergent result can be obtained by choosing a proper £ according to the corresponding fi—curves
of . Besides, the homotopy-Padé technique can be applied to accelerate the convergence of
the solution series, when necessary. The values of F(+oo) and F*(0) of two branches of solu-
tions are listed in Tables 5 and 6. It is found that, different from the first branch of solutions,

the second branch of solutions shows the reversed velocity flows in some regions that become
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larger and larger as 8 tends to 1/2, as shown in Fig. 2.3. The second branch of solutions for
1/2 < B £ 1 is mathematically equivalent to the Cheng and Minkowycz’s equation. However,
it should be emphasized that the second branch of solutions for 1 < # < +oo has never been

reported, to the best of our knowledge.

5 -7 T T T T~
/ N
4 / \
! \

3t {

{
2r i
17 f!

! Y

. . A " " L 2 N h
-14 -12 -1 -0.8 -0.6 -04 -02 0.0

Fig. 2.1: K-curves of 4 at the 10th-order of approximations when 8 = 1: (solid line) for
the first branch of solutions when -y, = 2 — +/2 and (dashed line) for second branch of solution
when g = 2 + v/2.
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Table 1:

Approximation of v, F(+cc), and F”(0) of the first branch of solutions when § = 1,74y =

2—~+/2and A= -1/2.

Order of Approximations

¥ F(+o00) F'(0)

3
10
20
30
40

0.60957 1.28083 -0.90621
0.60861 1.28077 -0.90638
0.60961 1.28077 -0.90638
0.60961 1.28077 -0.90638
0.60961 1.28077 -0.90638

Table 2:

Approximation of 7, F(+o00), and F*{0) of the second branch of solutions when 8 = 1,7, =

2++/2 and k= —3/4.

Order of Approximations

¥ F(+o0) F(0)

10
20
30
40

5.31532 0.43375 -0.91243
5.31758 0.43365 -0.91334
5.31758 0.43365 -0.91334
5.31758 0.43365 -0.91334

Table 3:

The [m, m] homotopy-Padé approximation of v, F((+c0), and F”(0) of the first branch of

solutions when S =1,v, =2 — V3.

I\

o i Flre)  F'(0)
UQ 5,5] 0.6096142954 1.2807737816 -(0.9063755218
| [10,10] 0.6096142958 1.2807737812 -0.9063755237
N (15,15] 0.6006142058 1.2807737812 -0.9063755237
N 20,20 0.6096142958 1.2807737812 -0.9063755237
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Table 4:

The [m, ] homotopy-Padé approximation of vy, F(+00), and F"(0) of the second branch

of solutions when 8 = 1,75 = 2 + /2.

fm, m| v F(+00) F*(0)

[5,5) 5.3174870195 0.4336574191 -0.9133447576
[10,10] 5.3175776654 0.4336537229 -0.9133389444
[15,15] 5.3175776896 0.4336537219 -0.9133389388
(20,20] 5.3175776896 0.4336537219 -0.9133389388

Table 5:

F(+00), and F”(0) of the first branch of solutions when 8 > 0.

B & F(+c0) F'(0)

0.1 -1 15671987677 -0.5044714296
02 -1 15233211707 -0.5604081070
0.3 -1 1.4836193076 -0.6124206246
0.4 -1 14474244267 -0.6611548740
05 -1 14142135624 -0.7071067812
0.6 -1 1.3835703539 -0.7506652338
0.7 -1  1.3551581436 -0.7921407683
0.8 -1 13287010210 -0.8317853005
0.9 -1 1.3039701608 -0.8698060404
1 -1 12807737812 -0.9063755237
9 -1/2 1.1065468058 -1.2160186992
5 -1/3 0.8466059564 -1.8632196025
10 -1/5 0.6583880016 -2.6081483726
20 -1/7 0.4958786514 -3.6698608598
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2

Fig 2.2: F(¢) and F'{£) of the two branches of solutions when 8 = 1:(dashed line) F(£) of
the first branch of solution; (solid line) F’(£)} of the first branch of solutions; (dashed line) F(£)

for the second branch of solution; {dashed) F'(¢) of the second branch of solutions.

£ =0.51,08,5,10

P

0 5 10 15 20

Fig 2.3: The second branch of the analytic solutions of the boundary-layer flows over a

stretched wall.
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Table 6:

F(+c0), and F"{0) of the second branch of solutions when 1/2 < 8 < +co0.

B A F{+00) F(0)
0.505 -1/40 0.1203123736  -0.71680431
0.51 -1/20 0.1350947640 -0.7194636996
0.53 -1/10 0Q.1708129121 -0.7290554847
0.55 -1/4 0.1956425368 -0.7381289899
06 -1/2 0.2423611636 -0.7598846445
0.8 -1/2  0.3597660152 -0.8401331462
1 -1/2 04336537219 -0.9133389388
15  -1/2  0.5402172761 -1.0760357869
2 -1/2  0.5934991205 -1.2185531166
3 -1/2 0.6351815454 -1.4644223721
4 -1/3  0.6416251516 -1.6756327445
5 -1/3 0.6347755047 -1.8634603629
10 -1/4 0.5646581867 -2.6081685246
20 -1/8 0.4579147612 -3.6698616153

In summary, by means of the above approach, we not only find the first branch of the
solutions obtained by Banks [3], but also the second branch for 1/2 < 8 < +oco. Although the
second branch of solutions for 1/2 < 8 < 1 is mathematically equivalent to the second branch
of solutions found by Ingham and Brown [17] for the Cheng and Minkowyez's equation, the

second branch of solutions for 1 < 8 < +o0 is new investigation by Liao {25].

2.3.3 Second approach for given

By means of the above-mentioned approach we can find the first branch of solutions in the region
8 > 0. However, as reported by Banks [3], the first branch of solutions exist for —1 < § < +00.
So, we should give an analytic approach valid for —-1 < 8 < 0.

For this purpose, we construct the zeroth-order deformation equation
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(1 — q)L[®(n; q) — wo(n)] = qhH ()N (7; q)] (2.45)

subject to the boundary conditions

%(n; g)

o(0; Q) =1, n_liﬂlm —'"'a_n_'—" =0, (246)
and
OB(m;
2D |, 0 +2(1 - o+ 24T(0) =0, (2.47)
where
o B 0B(m;9)
L(2(n;9)] = o R (2.48)
with the property
L[Ole‘" +Ch+ Cge""], (2.49)

The initial approximation wo(n) and the nonlinear operator N are the same as Eq.(2.21) and
Eq.(2.24), respectively. Similarly, the series Eqs.(2.31} and (2.32) hold, and wn(n) is now

governed by the higher-order deformation equations

Llwa(n) = XnwWn-1(m)] = BH(0)RulW n-1(n): Vn1l, (2.50)

subject to the boundary conditions

wn(0) = 0, wn(co) = 0, w) (00) =0 (2.51)

and

where R,[%,_1(n),7,_1] is defined by Eq.(2.35). Similarly, to obey the Rule of Solution

33



Expression Eq.(2.20), we should choose

H(np)=1. (2.53)
Let w}(n) denote the special solution of high-order deformation Eq. (2.50), which obeys the
Rule of Solution Expression Eq.(2.20). Then, using the property Eq.(2.49), we have the general
solution
wn(n) = wi(n) + C1e™" + Ca + Cie”.

From Eq.(2.51) it obvious that Cy = C3 = 0. Then, C is determined by the boundary conditien
wr(0) = 0. For n = 1, wy(n) contains the unknown initial approximation v, which is determined

by the boundary condition Eq.(2.52), i.e.

W, (0) = 0. (2.54)

1t is found that Eq.(2.52) has two different solutions

_ 51+86- \/5(420 — 168 — 645%)

To = 4(3 +4B) (2:55)
and
S148f+ /5(429 - 166 ~ 6457) 256
To = 4(3 + 46) ' -56)
For n > 1, we have from'Eq.(2.52) that
!
oy = _wnz(()), n>9. (2.57)

In this way, <y,_; is obtained and sil boundary conditions are satisfied. Note that, different
from the first approach, the solution w,(n) given by the second approach does not contain the

the unknown -,,.
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Table 7:

F (400}, and F”(0) of the first branch of solutions when —1 < 4 < 0.

B kR F(+00) F"(0)
-0.95 -1 3.7343486357  2.777454210
-0.90 -1 3.1198300898 1.5176890220
-0.8 -1 25922842960 0.7135604366
-0.7 -1 23170430417 0.3660958444
-0.6 -1 2.1346791652 0.1528510095
-05 -1 2 0
-0.4 -1 1.8941059198 -0.1194986175
-0.3 -1 1.8073695138 -0.2181647105
-0.2 -1 1.7342480756 -0.3026969209
-0.1 -1 1.6712706089 -0.3770531959

0 -1 1.6161254468 -0.4437483134

Note that, vy given by Eq.{2.55) is valid for
—_—‘@g“ <ﬂ<-———-—‘/’r3§"1. (2.58)

Besides, is tends to 2/9 as f — —3/4. So, Eq.{2.55) is valid for —1 < 8 < 0. Similarly,
for given 8, we choose a proper A by plotting the corresponding fi—curves of v, and besides
the homotopy-Padé technique can be used to accelerate the convergence of the solution series,
when necessary. In this way, using the initial approximation =y, given by Eq.(2.55), we obtain
the first branch of solution in the region —1 < # < 0 is obtained, as shown in Table 7. The
convergent analytic results for 8 € —1 cannot be obtained. All these analytic solutions agree
well with Banks’ numerical results [3] without reversed velocity flow.

Therefore, by means of the above two approaches for given § we can find the whole first
branch of solutions given by Banks’ numerical methods [3] and besides the whole second branch
of solutions that shows reversed velocity flows in some regions. The values of F(+co) of the

two branches of solutions are as shown in Fig. 2.4.
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Note that the second branch of solutions 1 < 8 < co has never been reported, although
the solutions for 1/2 < 8 < 1 are mathematically equivalent to Ingham and Brown’s numerical

solutions {17] for the Cheng and Minkowycz’s equation.

F (e0)

Sokd ine  ; Brst branch of sohtions
3 Dashed line ; second branch of solitions

Fig. 2.4. Comparison of F(+00) of the two branches of solutions of the boundary layer flows
over a stretched wall: (solid line) first branch solutions; (dashed line) second branch sclutions;

results obtained by the approach for given entrainment velocity of the fluid.

2.3.4 Approach for given entertainment velocity

From Eq.(2.11), F{4oco) is related to the entertainment velocity of the fluid. Suppose that we
would determine the movement of the stretched wall for a given entertainment velocity. This
is an inverse problem and the corresponding approach is given below.

For a given v = 1/F%(+00), we need to search for the corresponding value of 3. Now, v is

known but 3 is unknown. So, we define a non-linear operator

v 8%(nq) . 19%@(ni9) 8%(n;9) 2
N[@(n; q)] = B T [1—2(m (1)]"'"6—,?5— + ZA(Q)[T] ) (2.59)
where A{q) corresponds to 5. Using the initial guess
wo(n) = 2(1 — ) exp(—n) + (2y — 1) exp(—2n) (2.60)
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and the same auxiliary linear operator as in Eq.(2.22), we construct the zeroth-order deforma-

tion equation as follows

(1 — @)L[2(n; 9) — wo(n)] = ghH ()N [2(m; Alg))), (2.61)

subject to the boundary conditions

& - 8%(;9) , 9%(n;q)
;q) = ¥+ —————= |p=0= —— 2.

where v = 1/F2(+00) is known. Let 8, denote the initial approximation of 8. Write

400
Alg)=Bo+ D Bud" (2.63)
n=1
and
-E)m = {ﬁO:ﬂl:ﬁ?) e ﬁm}:
where

1 8"A{g)
Bn= Al o fq=0 -

Similarly, from the zerof;h-;arder deformation equations (2.61) and (2.62), we have the corre-

sponding high-order deformation equation

Llwn(n) = XpWn-1(7)]) = RH (1) Ba[Tn-1(n), B norl. (2.64)

subject to the boundary conditions

wn(0) =0, wh(0) = 0, wl(00) =0, (2.65)

where
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n-1

Rol@a-1(1), B -1l = 0" (n) +w"(n) = 3 w(n)wn_1_x(n)
k=0 . (2.66)

n=-1 k
123 B ()

k=0 =0

Similarly, we choose the auxiliary function
H(m)=1.

Table 8:
The [m,m] homotopy-Padé approximation of § and F”(0) when F(+o0) = 2.

[rm, m] g F(0)
5,5] -0.4998755351 4.6%10~*
[10,10] -0.4999999350 4.4*10~%
{15,15] -0.4999099998 1.3*10~1!
[20,20) -0.5000000000 4.0*10~1®

Let Bn,z(Fn—l) denote the coefficient of exp[—2n] of R,,[i?,‘_l(n),ﬁ]. Similarly, using the
same auxiliary function as in Eq. (2.38) and enforcing
—_
Bn,2( ﬁn—l) = 01 (2'67)

_f
We can obtain unknown £ ,_;. Thereafter, it is easy to get wy(n) of the high-order deformation

Eq. (2.64) and Eq. (2.65)When n = 1, we have from Eq.(2.67) the initial approximation

[ RS
0T a1 -2 201 -6%)2

F(-H)O) =6&=1. (268)

Similarly, by means of plotting the k — curves of £ and F”(0), a proper value of A can be
found to ensure that the solution series is convergs, besides the homotopy-Padé technique
may be applied to accelerate the convergence. For example, when F(+o00) = 2, our analytic

approximation converges to the exact solution
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F(n) = 2tanh(n/2), F'(0) =0, B=1/2,

as shown in Table 8. The values of F(0) and g for some given F(+co) are listed in Table 9.
All these results agree well with those given by the above-mentioned two approaches for the
given 3, as shown in Fig 4. This indicates the validity and flexibility of the homotopy analysis

method. Besides, it also verifies the correctness of our second branch of solutions.

Table 9:

Approximations of § and F”(0) for given F(+o0).

5 K B F"(0)

4 -3/4 -0.96177340 3.45489516
3 -3/4  -0.88397276 1.31559436
95 -3/4 077171006 0.59275642
9 -3/4 -0.50000000 0.00000000
1.5 -3/4  0.25757399 -0.59078760
1.95 -1/10 1.14276743 -0.95635271
12 -1/50 140233554 -1.04147974
115 -1/50  1.70164153 -1.13211564
0.6 -3/5 209104078 -1.24285249
05 -3/4 126616358 -1.00298966
0.4 -2/5 0.89950383 -0.87728143
0.3 -3/10 0.68378517 -0.79457316
0.2 -1/10 0.55399162 -0.73990719
0.12 -3/50 0.50401551 -0.71675655
01 -1/25 050121417 -0.71436667
0.08 -3/100 0.50011008 -0.7129335
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2.4 Analysis of the results and discussion

Using the above-mentioned three analytic approaches, we successfully reproduced two branches
of solutions for the boundary-layer flows over a stretched impermeable wall. The first branch of
solutions (1 < 8 < -+ 00) agrees well with Banks numerical results [3] given by shooting method,
and do not show the reversed velocity flows. The second branch {(1/2 < b < + o0) shows the
reversed velocity flows in some regions that becomes larger and larger as 8 tends to 1/2. The
second branch of solutions can be divided into two parts. One (1/2 < # < 1) is mathematically
equivalent to Ingham and Brown’s second branch of numerical solutions of the Cheng and
Minkowycz s equation [16], the other (1 < 8 < + o0) is reported by Liao[25]. The difference
between the values of F'(-+ co) for the two branches of solutions is obvious near 8 = 1/2, but
becomes smaller and smaller as 8 increases, as shown in Fig. 2.4. So, according to Egs.(2.8) —
(2.10), the velocity of the fluid and especially the entrainment velocity of the fluid of the two
branches of solutions are different, especially near § = 1/2. However, the difference between
the values of F”(0) of the two branches of solutions is so small that it is even hard to distinguish
them in Fig. 2.5. For example, the relative differences of F/(0) when 8 = 1,5 and 10 are 0.77%,
0.013%, and 0.00077%, respectively. According to Eq.(2.11}, the local skin friction coefficient
on the stretched wall is directly proportional to F”(0). Thus, although the velocity profiles
of the two branches of solutions of the boundary layer flows over a stretched wall might be
obviously different, the skin frictions on the wall are nearly the same. So, from a practical
point of view, we need not worry about the great increase of the skin friction on the wall when,
owing to some reasons, the profile of the velocity and the entrainment velocity change from one
of the two branches of solutions to the other.

It is well-known that, for some unsteady nonlinear problems, the tiny differences of initial
conditions might lead to obviously different solutions. In this chapter, we show that the dual
solutions of the boundary-layer flows over a stretched wall are sensitive to the boundary value
F”(0). Thus, mathematically speaking, for some nonlinear boundary value problems, the small
difference of boundary conditions might also lead to obviously different solutions. This might

be the reason why it is not easy to find the second branch of solutions by numerical methods.
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F "(0)

o

Solidline  : first branch of soluions
1t Dotted line  : second branch of solutions

) \\

0 5 10 15 207

Fig. 2.5: Comparison of F”(0) of the two branches of solutions of the boundary layer flows
over a stretched wall. The difference of solutions of the two branches is not visible, because it
is very small, as mentioned in main text.

Recently, Pop and Na [21] reported multiple solutions for MHD flows over a stretched
permeable surface. Zaturska and Banks [5] found multiple solutions for Blasius boundary-layer
flows. Magyari et al. [23] found multiple solutions of boundary-layer flows over a moving plane
surface in a special case. In this chapter we assume that the solutions tend to zero exponentially
at infinity. However, Magyari et al. [24] found that, when 8 = 1/2, Egs.(2.5) and (2.6} have an
infinite number of solutions with algebraic asymptotic property at infinity. It seems that the
boundary-layer flows might have multiple solutions in general, and thus further investigations
are necessary. And the homotopy analysis method provides us with a useful analytic tool for

this purpose.
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Chapter 3

Mixed convection and mass transfer
in the stagnation point flow of
second grade fluid adjacent to

vertical surface

3.1 Introduction

Here, the influence of mass transfer on the stagnation point flow adjacent to a vertical surface
with mixed convection is seen. The fluid is incompressible and viscoelastic. Infact this work is
generalization of research presented by Hayat et al. {36] in the regime of mass transfer. Analysis
with first order chemical reaction is presented. Homotopy analysis method is used to construct
the solution of the mixed convection and mass transfer in two-dimensional stagnation point
flows of second grade fluid around the heated surfaces for the case when the wall temperature
varies linearly with the distance from the stagnation point. The two dimensional boundary
layer equation governing the flow, thermal field and concentration fields are reduced to three
nonlinear ordinary differential equation by using the set of similarity transformation. The
solution of these equations are obtained in the buoyancy assisting and opposing regions. It

is observed that, similar to the Newtonian flow case, a reverse flow regions develops for the
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buoyancy opposing flow region. The influences of secondary parameters on the velocity, thermal

and concentration fields are discussed in detail.

3.2 Basic equations

Let us consider a second grade fluid of uniform ambient temperature T, and mass concentration
C is flowing normal to the a heated vertical surface as shown in Fig. 3.1. It is further assumed
that the free stream velocity of fluid is U, at a large distance from the vertical plate. T,,(z) be
the temperature of the heated plate which obeys T},(z)} > Tio. The flow in the neighborhood
of the stagnation line (z—axes) has the same characteristic irrespective of the shape of body.

This flow is often referred to as a Hiemenz flow [35).

Buoyaney assisting rogion

Bucyancy appoging region

Fig. 3.1: Physical model and coordinate systern.
In the absence of viscous dissipation and heat generation, under the Bounsinesq approxi-
mation, boundary layer equation steady state flow condition is given as
du v _

==+

52T 5y =0 (3.1)
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fu du eu %y u Bu B?u  Oudv 8%u
“ Vg = U+ o (Vara * e gyt Gaa Vgt ) £OAT T, 62)

up +v5y-_a3y2’ (3.3)
oc  acC o*C
U"é; + ’Ué;' = Dgy—z— - k]_O, (3.4)
subject to the boundary conditions
u=0, wv=0, T=Tu(z), Clz,y)=Cw at y=0 (3:5)
u — U (z), %5—»0, T Tw, Clz,y)— Cooasy— oo ’ .

where Cy be the concentration at the sheet surface, z and y are Cartesian coordinates along
and normal to the plate, respectively, « and v are the velocity components along = and y—axes,
respectively, v be the kinematic viscosity, T be the temperature, g be the acceleration due to
gravity, 3 be the thermal expansion coeflicient, @ be the thermal diffusibility and %y be the
viscoelastic parameter and a and b are the positive constants. Furthermore, +ve and -ve sign
indicated in Eq. (3.2) correspond to assisting and opposing flow respectively.

We lock for a solution of Eqs. (3.1) — (3.4) of the form

n=y3y u=azf'(n), v=—vavf (), } . @)

9(’7) = (T - Too) / (T‘w - Too)a ‘35(77) = (C - Coo) / (Cw — Coo)

After introducing the above transformation Eqgs.(3.2) — (3.4) reduced to the following ordinary

differential equations

fm+ff”-—f’z-l-lzi:/\9—K(f”—2ff’"+ffw)=_0, (37)

0" +Pr(f0' —F'8) =0, (3.8)
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" +8c(fo'~ 8¢)=0, (3.9)

and the boundary conditions Eq. (3.5) becomes

FO)=F'0)=0, 8(0)=1, #(0)=1 } (3.10)

J(0) =1, f"o0)=0, B(oo)=0, ¢(o0)=0,
Where prime denotes the differentiation with respect to # and A > 0 is the constant mixed
convection parameter, K > 0 is the dimensionless viscoelastic parameter and Pr is the Prandt]

number, Sc is the Schmidt number and § is a chemical reaction which are defined as

_ 2 3
_ gﬁb _ g'B(Tw Tm)x /'U _ G'rz: K = E‘E: Se =

v k].
- = -, d=— 3.11
a-z R Uoomz/ 'U2 RE§ ] P D: c ] ( )

A

with Gry = gB8(Tw ~ Tea)x? / 13 being the local Grashof number, _Ref, = Uyx? / v? is the local
Reynolds number and p is the density of the fluid. Physical quantities of interest are defined as

T

Cp=To M=t ¢'(0)=(@)y=0, (312

- a(Tw — Too)’ Oy

where 7, and g, are the wall friction and the heat transfer from the plate, which are given by

_ fou 8%y | . 8 _ odudy
Tw ‘—,’-"(%)y -0 + ko (‘U‘B_T‘—— +'U-5;§ Zaay)y _a’ (313)
qu = —k (
Using variables (3.7), we get

Rex/*Cp=(f "+ K(Bf'f"~ff"y=0=1"(0)
Rez % Nug = —6'(0) , (3.14)

s'0)= (%), _,

In order to obtain the solution of Eqs. (3.7) — (3.10), Homotopy analysis method is employed

as follows.
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3.3 Solution by homotopy analysis method (HAM)

The initial approximations of f(n)},8(n) and ¢(n) and the auxiliary linear operators L1, £ and

L3 are assumed as

fo(n) =n—1+exp(—n)
fo(n) = exp(—n) , (3.15)
$o(n) = exp(—n)

éf df )
a)=-5-
2
La(6) = gn_g _o b, (3.16)
d?
Ca(¢)=ﬁ—¢

which satisfy the following properties

£4[CL + Cy exp(n) + Czexp(—n)] =0
L2[Cy exp(n) + Cs exp(—n)

] (3.17)
£3[Cs exp(n) + C7 exp(—7))]

= 0 ’
=0
in which C;, 1 = 1—7 are arbitrary constants, p € (0, 1) and £y, fz,and A3 indicate the embedding

and non-zero auxiliary parameters, respectively. The zeroth-order deformation problems are of

the following form

(1 - p)La{F(nip) — folm)] = phLEr ()M [F (ms p)) (3.18)
fopy =0,  F'Gp=0,  Flloop)=1 (3.19)
(1 = p)La[B(m; p) — Bo(n)] = PhaHa(m)N2[0(n; p), F(mi )] (3.20)
0P =1, 8 () =0, (3.21)
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(1 - p)La[d(m; p) — do(m)] = phaHa(mN3[(m; p), Fim p)], (3.22)

300 =1, 3 (cop) =0, (3.23)

the non-linear operators A1,y and A3 are defined by

-~ . 2 5. " F e \ 2 R )
MIFmp)] = f(n 2) ¢ Fon ;)2 1;(772:10) _ (Wéﬁp)) +1+X8(n; p)

_ o%f (n,p) 8f ) 8 Fmp) 8 f(n,p)

" (( o ) e o IO ) , (3.4
Nfbtrip), P = ZO) (f(, p2n) af§1'p)e(n,p))

_~ o~ 2‘\
N3, Pl = ZEEE) 1 s (f( ?)%gj;f’) 5¢(n;p))

and Hi(n)}, Ha(n) and H3(n) are the base functions. For the present flow problem we consider

Hi(m)=exp(~n),  Ha(n)=1 = Ha(n)
Obviously for p =0 and p = 1 we have
Fm 0y =folm),  Flm1)=f (m)

B(n;0) =6o(n),  Bml)=0(n) - (3.25)
B0y = do(n), Sl =¢ ()

As p increases from 0 to 1, f(n; p), 8(n;p) and bm; p) vary from its initial approximations
fo(m), Bo(n) and ¢y(n) to the exact solution f (n), # (n) and @#(n). Due to Taylor’s theorem
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Flmp) = folm) + Y, fmlm) P™ W

m=1

O(m;p) = Oom) + D Omlm) P™ 3, (3.26)
m=1
3(mp) = do(m) + 3 ¢mn) P™
m=1
fmlr) = o T LR,
Bun() = %Q%gé_jf” o (0 (3.27)
bm(n) = Elfamgzgz’ pl =0 )

where convergence of the series in Egs. (3.26) is ensured by £y, hp,and k3. Assume that
Ry, Hig,and A3 are selected such that the series in Eqs. (3.37) — (3.39) are convergent at p = 1,

then due to Egs. (3.25) one can write

f ()= folny+ Y fm(n)

m=1

8 (n) =6o(n) + D bmlm) 7. (3.28)
m=]1

¢ ()=o) + Y $m(n)

m=1 /
Differentiating the zeroth-order deformation equations (3.18), (3.20) and (3.22) m times with re-
spect to p, dividing by m!, and finally setting p = 0, we get the following mth-order deformation

problems

L1[fm (1) = X Frr (M) = BRI (m)
Lo0m(n) = XmOm-107)] = R (m) > (3.29)
L3{bm(n) — XmBm-1 (1)) = hsR% ()

fm(0) = f 7 (0) = f (o0} =0
0n(0) = Opn(c0) =0 ) (3.30)
$m(0) = ¢’m(°°) =0
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m—1 T
Rb(m) = F1_ 1) + (1 = Xpn) £ My + z [frmm1kf § = F o1l &)

m—1 .
-K k;o etk f &= 2f p gk ¥+ f me1-4F P

m—1 ) (3.31)
Ri.(n) =8"(n)+Pr kZ‘b [0 1 kf —0 moa—if &)
~ m—1
Rin(n) = ¢ ") — S 8 $y + Se Z O o1k J
where
0, k<1
Xge = {1, E>1 (3.32)

The series solution of Eqs. (3.29) up to first few order of approximations have been obtained

by using symbolic software Mathematica.

3.4 Convergence of the HAM solution

The convergence and rate of approximation for the HAM solution of the series (3.28) are
strongly dependent upon the auxiliary parameters iy, fip and fiz. Therefore one can choose the
proper value of Ky, His and A3 by plotting the fi-curves which ensure that the solution series (3.28)
converge, as suggested by Liao [18]. For this purpose the A-curves are plotted against 15th-order
of approximation in Fig. 3.2 for both cases of assisting and opposing flows. Fig. 3.2 clearly
depicts that the range for the admissible values of Ay, Hp and B3 —1.9 < I < -0.3, -18 <
By < ~0.3 and —2.5 < kA3 < 0. Obviously our calculations shows that the series (3.28) converges

in the whole region of 7 when Ay 23 == —1.
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1.0t Assisting Flow), Opposing Flow

0.8} \
0.6

20 -15 -10  -05 00

Ay

Fig. 3.2: fi;-curves are plotted against the 15th — order of approximation for assisting and
opposing flow for f (0) when Pr=K =0.2, Sce=A=§ =0.5.
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Assisting Flow, Opposing Flow
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=-2.0
Fig. 3.3: hp-curves are plotted against the 15th — order of approximation for assisting and

opposing flow for  /(0) when Pr = K =02, Se=A=4§=0.5.
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70

Assisting Flow, Opposing Flow

o/

20 —-15 -10 —05 00

iz

Fig. 3.4: hg-curves are plotted against the 15th — order of approximation for assisting and

opposing flow for ¢ /(0) when Pr = K = 0.2, Se=A=§=0.5.

Order of approximation For assisting flow For opposing flow

FU0) -07(0) —¢’(0) fY(0) -6'(0) —4'(0)
1 1.3733 0.2400 0.0946 0.8500 0.2875  0.0879
5 1.4133 03600 0.0925 0.8338 0.3285  0.0839
10 1.4190 0.3358 0.0926 0.8197 0.301¢ 0.0836
15 1.4190 0.3354 0.0927 08182 0.3006 0.0839
20 1.4190 03354 0.0927 0.8176 0.3002 0.0839
25 14190 03354 0.0927 0.8174 0.3001  0.0839
30 1.4190 03354 0.0927 0.8174 0.3001  0.0839

Table 1: Convergence of the missing initial condition f “{0), —8'(0) and —¢ ’(0) for assisting

and opposing flows agaiﬂst different order of approximation.
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3.5 Results and discussion

£
1.0}
0.8t
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1 2 3 4 5 6

f!
1.0{
0.8}

0.6}
K =0.0,0.2,0.6, 1.0
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0.2t
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Pr=071,8=4& = 05.a = 02

4 3 6

77{7
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W

Fig. 3.5 (a,b): Effects of viscoelastic parameter K on the velocity f ' for assisting and

opposing flows,
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K=000207,12
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0 1 2 3 4 <7
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Opposing Flow
1-0 Pr=072 2 = 835

0.0}

K=0002207,12

0.0 0.5 1.0 15 2.0

Fig. 3.6 (a,b): Effects of viscoelastic parameter K on the temperature & for assisting

and opposing flows.
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Fig. 3.7 (a,b): Effects of viscoelastic parameter K on the concentration field ¢ for assisting

and opposing fows.
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Fig. 3.8 (a,b): Effects of Prandtl number Pr on the temperature # for assisting and opposing

flows.
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Fig.3.9 (a,b): Effects of Schmidt parameter Sc on concentration field ¢ for assisting and

opposing fows.
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Fig. 3.10 (a,b): The variations of the generative chemical reaction parameter & on the con-

centration field ¢ for assisting and opposing flows.
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Fig. 3.11 (a,b): The variation of the destructive chemical reaction parameter ¢ on the

concentration field ¢ for assisting and opposing fows.
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Fig. 3.12 (a,b): The variation of the chemical reaction parameter § destructive / generative-

and on the grad of mass transfer —¢ ’(n) for assisting and opposing flows.
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Fig. 3.13 {(a,b): The variation of the viscoelastic K on the grad ient of mass transfer —¢ /(7))
for destructive / generative chemical reaction for assisting and opposing flows.
In order to see the effects of some pertinent parameters involved in the system of differential

equation like viscoelastic parameter K, the Prandtl number Pr, Schmidt number S¢, mixed
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reaction parameter A and chemical reaction parameter § on velocity f /, temperature 6 and
concentration field ¢, Figs. 3.5-3.13 are drawn.

It is important to mention here that all the graphs are drawn against 10th — order solution
obtained by the described homotopy analysis method. Furthermore, the graphs show the effects
of assisting flows and opposing flows. Fig. 3.5(a,b) show the effects of viscoelastic parameter
K on the velocity profile f / for assisting and opposing flows respectively. It is observed
that velocity profile f / is decreasing function of K both for assisting and opposing flows. By
increasing the viscoelasticity of the fluid, boundary layer thickness increases. For opposing flows
it is seen that the reversal of the fluid flow occurs in presence of low viscoelastic effects of fluid
and therefore the solution obtained for the opposing flow is not practical in nature as shown in
Fig. 3.5 (b). Fig. 3.6 (a,b) depicts the variation on the temperature field 8 due to K. The effects
of K on the temperature field 8 for assisting flow are comparatively dominant than of opposing
flow. It can be seen that the temperature field & increases due to increase in K. But its effects
on thermal boundary layer thickness are very less bond in microscopic level, by increasing the
viscoelasticity of the fluid, thermal boundary layer thickness increases both for assisting and
opposing flows. Fig. 3.7(a,b) are drawn to show the effects of viscoelastic parameter on K
on the concentration field ¢. It is observed that the effects of K on the concentration field ¢
are very weak both for assisting and opposing flows. The effects of Pr on temperature field
@ are shown in Fig. 3.8 (a,b). It is observed that by increasing the Prandtl number Pr,
the temperature field and thermal boundary layer thickness decreases. The effects of Schimdt
number on the concentration field are similar to that of Prandtl number Pr on temperature field
both for assisting and opposing flows as shown in Fig. 3.9 (a,b}. The effects of chemical reaction
parameter § on the concentration field ¢ are shown in Fig. 3.10 (a,b) and Fig. 3.11 (a,b). It
is noted that § < 0 and é > 0 represent generative chemical reaction and destructive chemical
reaction respectively. The effects of generative chemical reaction on the concentration field ¢
for assisting and opposing flows are very strong and concentration boundary layer thickness
increases due to increase in generative chemical reaction. It is interesting to note here that
the effects of destructive chemical reaction on concentration field are quite opposite to that
of generative chemical reaction. The destructive chemical reaction can be used to reduce the

concentration boundary layer thickness as shown in Fig. 3.11 (a,b). The effects of generative /
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destructive chemical reaction on the gradient of mass transfer —¢ / for the whole domain of 5
are shown in Fig. 3.12 (a,b). In both of these figures two curves represent generative chemical
reaction and remaining represent destructive chemical reaction. It is ochserved that through both
figures for generative chemical reaction, mass transfer gradient starts to increase upto almost
0.4 and after 7 = 1.2, it starts to decay to zero. But for destructive chemical reaction, mass
gradient starts with same maximum number and continuocusly and smoothly decreases to zero.
To see the variation in presence of viscoelasticity parameter K and generative / destructive
chemical reaction 4 on the concentration field, Fig. 3.13 (a,b) are shown. Fig. 3.7 (a,b) that
the effects of viscoelastic parameter on concentration field are minimum. Similar effects are

observed against mass gradient ¢ '(n) through Fig. 3.13 (a,b).

3.6 Concluding remarks

The main goal of this chapter is provide an analytical solution to a non-linear problem. For
this purpose, HAM analysis has been used for mixed convection flow in a stagnation point
in a second grade fluid. The simple and convenient expressions for velocity, temperature and
mass transfer have been developed. The validity of the solutions for velocity, temperature and
mass transfer has been explicitly discussed. The cbtained series solutions confirm the power
and ability of the HAM as an easy tool for computing the solution of non-linear problem. It
is noted that the negative values of the temperature gradient and gradient of mass transfer
provide an indication of the physical fact that the heat and mass transfer flows from the surface
to the ambient fluid. The significance of the other parameters on the fiow, temperature and
mass transfer is high lighted. The analytic technique employed in this chapter can be used to

other non-linear problems in the similar way.
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