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Abstract

ABSTRACT

With the explosive growth in information technology, the threats to security of the data
being sent and received is increasing day by day. The awareness of users about the
importance of confidentiality of the data has made them more demanding for their
security. Now they want their data be encrypted before it’s transferred for security
purposes. So, different encryption algorithms have been developed for this purpose.
These Algorithms take data as an input and give output with almost entirely different
form of data to meet the purpose of confidentiality.

This Dissertation is concerned with Differential cryptanalysis of Rabbit. Stream cipher is
one of the branches of Encryption Techniques. It has been claimed as one of the most
secure stream ciphers. So far many different types of attacks have been designed to break
it or compromise its security but there has been no remarkable success.

We propose a special type of differential key analysis based upon chosen plaintext attack
that works in bottom up approach in such a way to break or recover a part of the key and
then to proceed further. We believe that such type of attack is more beneficial to recover
a key in full or partially.
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Chapter 1

Introduction

1. Introduction

The concept of information will be taken to be an understood quantity. To introduce

cryptography, an understanding of issues related to information security in general is

necessary. Information security manifests itself in many ways according to the situation and

requirement. Regardless of who is involved, to one degree or another, all parties to a

transaction must have confidence that certain objectives associated with information security
4

have been met. Some of these objectives are listed in Table 1.1 [23].

Privacy or confidentiality

Keeping information secret from all but those

who are authorized to see it.

Data integrity

Ensuring information has not been altered by

unauthorized or unknown means.

Entity authentication or identification

Corroboration of the identity of an entity
(e.g., a person, a computer terminal, a credit
card, etc.)

Message authentication

Corroborating the source of information; also
known as data origin authentication.

Signature A means to bind information to an entity.

Authorization Conveyance, to another entity, of official
sanction to do or be something.

Validation A means to provide timeliness of

authorization to use or manipulate
information or resources.

Access control.

restricting access to resources to privileged
entities

Certification Endorsement of information by a trusted
entity.

Time stamping Recording the time of creation or existence
of information.

Witnessing Verifying the creation or existence of
information by an entity other than the
creator

Receipt Acknowledgement that information has been
received.

Confirmation Acknowledgement that services have been
provided.

Ownership A means to provide an entity with the legal
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Chapter 1 Introduction
right to use or transfer a resource to others.

Anonymity Concealing the identity of an entity involved
in some process

Non-repudiation Preventing the denial of previous
commitments or actions.

Revocation | Retraction of certification or authorization

Tablel.1: Some information security objectives. [23]

1.1 Cryptography

Cryptography is the study of mathematical techniques related to aspects of information

security such as confidentiality, data integrity, entity authentication, and data origin

authentication. Cryptography is not the only means of providing information security, but

rather one set of techniques.

1.1.1 Cryptographic goals

Of all the information security objectives listed in Table 1.1, the following four form a

framework upon which the others will be derived: [23]

Confidentiality is a service used to keep the content of information from all but
those authorized to have it. Secrecy is a term synonymous with confidentiality
and privacy. There are numerous approaches to providing confidentiality, ranging
from physical protection to mathematical algorithms which render data
unintelligible.

Data integrity is a service which addresses the unauthorized alteration of data.
To assure data integrity, one must have the ability to detect data manipulation by
unauthorized parties. Data manipulation includes such things as insertion,
deletion, and substitution.

Authentication is a service related to identification. This function applies to both
entities and information itself. Two parties entering into a communication should
identify each other. Information delivered over a channel should be authenticated
as to origin, date of origin, data content, time sent, etc. For these reasons this

aspect of cryptography is usually subdivided into two major classes: entity

Differential Key Attacks on Rabbit 2
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authentication and data origin authentication. Data origin authentication implicitly

provides data integrity (for if a message is modified, the source has changed).

Arbitrary length hash
functions

One way permutations

| Unkeyed Primitives »

Random sequences
Block ciphers

Symmetric-key ciphers
Stream ciphers
Arbitrary length hash
functions (MACs)
Security Symmetric key
Primitives Primitives Signatures
Pseudorandom
Seauences
Identification
"1 orimitives

K T~

A

Public-key ciphers

Public key
primitives

Signatures

®
5

Identification
Primitives

Figure 1.1: A taxonomy of cryptographic primitives. [23]

e Non-repudiation is a service which prevents an entity from denying previous
commitments or actions. When disputes arise due to an entity denying that certain

actions were taken, a means to resolve the situation is necessary.
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A fundamental goal of cryptography is to adequately address these four areas in both theory
and practice. Cryptography is about the prevention and detection of cheating and other

malicious activities.
1.2 Basic terminology and concepts

The scientific study of any discipline must be built upon rigorous definitions arising from

fundamental concepts.

1.2.1 Encryption domains and co domains

o A denotes a finite set called the alphabet of definition. For example, A = {0, 1}, the
binary alphabet, is a frequently used alphabet of definition. Note that any alphabet
can be encoded in terms of the binary alphabet. For example, since there are 32
binary strings of length five, each letter of the English alphabet can be assigned a
unique binary string of length five.

e M denotes a set called the message space. M consists of strings of symbols from an
alphabet of definition. An element of M is called a plaintext message or simply a
plaintext. For example, M may consist of binary strings, English text, computer code,
etc.

e (C denotes a set called the ciphertext space. C consists of strings of symbols from an
alphabet of definition, which may differ from the alphabet of definition for M. An
element of C is called a ciphertext.[23]

1.2.2 Encryption and decryption transformations

* K denotes a set called the key space. An element of K is called a key.

e Each element e € K uniquely determines a bijection from M to C, denoted by E..
E. is called an encryption function or an encryption transformation. Note that E, must
be a bijection if the process is to be reversed and a unique plaintext message
recovered for each distinct ciphertext.

e For each d € K, D, denotes a bijection from Cto M (i.e., Dy : C>M). D, is called a

t
decryption function or decryption transformation.
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¢ The process of applying the transformation E, to a message m € M is usually referred
to as encrypting m or the encryptioh of m.

¢ The process of applying the transformation Dy to a ciphertext ¢ is usually referred to
as decrypting c or the decryption of c.

e An encryption scheme consists of a set {E, : e € K} of encryption transformations
and a corresponding set {D, : d € K} of decryption transformations with the property
that for each e € K there is a unique key d € K such that Dy=E, " ; that is, D{E{m))
=m for all m € M. An encryption scheme is sometimes referred to as a cipher.

e The keys e and d in the preceding definition are referred to as a key pair and
sometimes denoted by (e, d). Note that e and d could be the same.

¢ To construct an encryption scheme requires one to select a message space M, a
ciphertext space C, a key space K, a set of encryption transformations {E, : e € K},

and a corresponding set of decryption transformations {D;: d € K}

1.2.3 Achieving confidentiality

An encryption scheme may be used as follows for the purpose of achieving confidentiality.

Two parties A and B first secretly choose or secretly exchange a key pair (e; d). At a
subsequent point in time, if A wishes to send a message m € M to B, she computes ¢ = E(m)
and transmits this to B. Upon receiving ¢, B computes Dfc) = m and hence recovers the

original message m.

Adversary

A

]

'

: c ! ,
Encryption IL Decryption
E (m)=c T T T T T T T T T T T T T - Dc)=m
Y UNSEARCHED CHANNEL
m y m
Plaintext Destination
source
A B
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Figure 1.2: Schematic of a two-party communication using encryption. [23]

1.2.3.1Communication participants

Referring to Figure 1.1, the following terminology is defined. [23]

An entity or party is someone or sométhing which sends, receives, or manipulates
information. Alice and Bob are entities. An entity may be a person, a computer
terminal, etc.

A sender is an entity in a two-party communication which is the legitimate
transmitter of information. In Figure 1.6, the sender is Alice.

A receiver is an entity in a two-party communication which is the intended recipient
of information. In Figure 1.6, the receiver is Bob.

An adversary is an entity in a two-party communication which is neither the sender
nor receiver, and which tries to defeat the information security service being provided
between the sender and receiver. Various other names are synonymous with
adversary such as enemy, attacker, opponent, tapper, eavesdropper, intruder, and
interloper. An adversary will often attempt to play the role of either the legitimate

sender or the legitimate receiver.

Channels

A channel is a means of conveying information from one entity to another.

A physically secure channel or secure channel is one which is not physically
accessible to the adversary.

An unsecured channel is one from which parties other than those for which the
information is intended can reorder, delete, insert, or read.

A secured channel is one from which an adversary does not have the ability to

reorder, delete, insert, or read.

Security
A fundamental premise in cryptography is that the sets M; C;K; {E. : e € K}, {D4: d € K}

are public knowledge. When two parties wish to communicate securely using an encryption

scheme, the only thing that they keep secret is the particular key pair (e,d) which they are

using, and which they must select. One can gain additional security by keeping the class of

Differential Key Attacks on Rabbit 6
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encryption and decryption transformations secret but one should not base the security of the
entire scheme on this approach. History has shown that maintaining the secrecy of the
transformations is very difficult indeed.

Encryption scheme

An encryption scheme is said to be breakable if a third party, without prior knowledge of the
key pair (e,d), can systematically recover plaintext from corresponding ciphertext within
some appropriate time frame.

An appropriate time frame will be a function of the useful lifespan of the data being
protected. For example, an instruction to buy a certain stockmay only needs to be kept secret
for a few minutes whereas state secrets may need to remain confidential indefinitely.

An encryption scheme can be broken by trying all possible keys to see which one the
communicating parties are using (assuming that the class of encryption functions is public
knowledge). This is called an exhaustive search of the key space. It follows then that the
number of keys (i.e., the size of the key space) should be large enough to make this approach
computationally infeasible. It is the objective of a designer of an encryption scheme that this
be the best approach to break the system.

Frequently cited in the literature are Kerckhoffs’ desiderata, a set of requirements for cipher
systems. They are given here essentially as Kerckhoffs originally stated them:

1. The system should be, if not theoretically unbreakable, unbreakable in practice;

2. Compromise of the system details should not inconvenience the correspondents;

3. The key should be rememberable without notes and easily changed;

4. The cryptogram should be transmissible by telegraph;

5. The encryption apparatus should be portable and operable by a single person; and

6. The system should be easy, requiring neither the knowledge of a long list of rules nor
mental strain.

This list of requirements was articulated in 1883 and, for the most part, remains useful today.
Point 2 allows that the class of encryption transformations being used be publicly known and

that the security of the system should reside only in the key chosen.

Cryptology
e Cryptanalysis is the study of mathematical techniques for attempting to defeat

cryptographic techniques, and, more generally, information security services.
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e A cryptanalyst is someone who engages in cryptanalysis.

e Cryptology is the study of cryptography and cryptanalysis.

e A cryptosystem is a general term referring to a set of cryptographic primitives used to
provide information security services. Most oﬂ;n the term is used in conjunction with
primitives providing confidentiality, i.e., encryption.

Cryptographic techniques are typically divided into two generic types: symmetric-key and
public-key.
1.3 Symmetric Key Encryption

1.3.1 Substitution ciphers and transposition ciphers

Substitution ciphers are block ciphers which replace symbols (or groups of symbols) by other
symbols or groups of symbols.

A block cipher is an encryption scheme which breaks up the plaintext messages to be
transmitted into strings (called blocks) of a fixed length t over an alphabet 4, and encrypts
one block at a time. [23]

Another class of symmetric-key ciphers is the simple transposition cipher, which simply

permutes the symbols in a block.

1.3.2 Stream ciphers

Stream ciphers form an important class of symmetric-key encryption schemes. They are, in
one sense, very simple block ciphers having block length equal to one. What makes them
useful is the fact that the encryption transformation can change for each symbol of plaintext
being encrypted. In situations where transmission errors are highly probable, stream ciphers
are advantageous because they have no error propagation. They can also be used when the
data must be processed one symbol at a time (e.g., if the equipment has no memory or
buffering of data is limited).

Definition Let K be the key space for a set of encryption transformations. A sequence of
symbols ejeze; __ _¢; €K, is called a keystream.

1.3.2.1 The key space

The size of the key space is the number of encryption/decryption key pairs that are available
in the cipher system. A key is typically a compact way to specify the encryption
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transformation (from the set of all encryption transformations) to be used. For example, a
transposition cipher of block length ¢ has #! encryption functions from which to select. Each
can be simply described by a permutation which is called the key.

It is a great temptation to relate the security of the encryption scheme to the size of the key
space. The following statement is important to remember.

Fact A necessary, but usually not sufficient, condition for an encryption scheme to be secure
is that the key space be large enough to preclude exhaustive search.

For instance, the simple substitution cipher in Example 1.25 has a key space of size 26!~ 4 x
10%. The polyalphabetic substitution cipher of Example 1.31 has a key space of size (26!)3 =
7 x 10”°. Exhaustive search of either key space is completely infeasible, yet both ciphers are

relatively weak and provide little security.

Attacker
Ke - - Message
Message “| Encryption Decryption
Source . >
y Cipher text y
Key
Key
Source

Figl.1: Symmetric-key secrecy system

Due to Shannon [22], a secrecy system1 between a transmitter and a receiver can be best
illustrated by Fig. 1.1. At the transmitting end, the ciphertext is produced by encrypting the
message using the key. Upon reception of the ciphertext, it is decrypted using the same key
to obtain the original message. As the channel between the transmitter and the receiver is
insecure, the ciphertext is subject to falling on the hand of the attacker. The attacker's task is
to reconstruct the message from the ciphertext. In order to describe the ideal cryptosystem

where knowledge of the ciphertext leaks no information about the message itself to the
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attacker, Shannon first introduced the notion of perfect secrecy. Mathematically speaking, let

X, Y be the plaintext and ciphertext respectively. Perfect secrecy means for all X, Y we

always have

Pr(Y | X) = Pr( Y ):

Main characteristics of stream ciphers can be summarized as the following:

Speed: faster in hardware,

Hardware implementation cost: low,

Error propagation: limited or no error propagation,

Synchronization requirement: to allow for proper decryption, the sender and
receiver must be synchronized (i.e. using the same key and operating at the same
position within the key). As detailed in Section 2.1.1, stream ciphers are commonly
classified as synchronous stream ciphers and self synchronizing stream ciphers
according to their capability of re-establishing proper decryption automatically after

loss of synchronization.

1.3.2.2Classification

Stream ciphers can be either symmetric-key or public-key.

A stream cipher generates successive elements of the keystream based on an internal state.

There are different types of stream ciphers [24]:

Synchronous stream ciphers
A synchronous stream cipher is one in which the keystream is generated
independently of the plaintext message and of the ciphertext. That’s:
3y =F1(9;, K)
For example, the OFB mode of a block cipher is a synchronous stream cipher
It has following distinctive features:
o Synchronization requirements (In case of loss of synchronization).
o No error propagation.
o Active attacks.

Self-synchronizing stream ciphers
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A self-synchronizing (a.k.a. asynchronous) stream cipher is one in which the keystream is
produced as a function of the key and a fixed number of previous ciphertext digits. The
typical mode is the cipher feedback mode

0 = Fa(K, 3N, BN+t 155 Jie1)
Where N is a constant. For example, a block cipher in one-bit cipher feedback mode is an
asynchronous stream cipher. Accordingly, two basic properties of asynchronous stream
ciphers include: as the name implies, self-synchronization is enabled in case of loss of

synchronization,; it suffers limited error propagation only.

1.3.2.3 LFSR-based stream ciphers
Linear feedback shift registers (LFSRs) [24] are popular components in stream ciphers as
they can be implemented cheaply in hardware, and their properties are well-understood. The
use of LFSRs on their own, however, is insufficient to provide good security[24]. Various
schemes have been proposed to increase the security of LFSRs.
¢ Non-linear combining functions
Use several LFSRs in parallel. The keystream is generated as a nonlinear function

fof the outputs of the component LFSRs

Fig.1.2 LFSR using nonlinear combining function[24]

¢ Clock-controlled generators

3

Generate the keystream as some nonlinear function of the stages of a single LSFR
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Key stream

Figl.3 Clock-controlled generators[24]

e Filter generator
Using the output of one (or more) LFSRs to control the clock of one (or more)
other LFSRs

1.3.2.4Necessary Design Principles

Below is provided a collection of necessary, but by no means sufficient design principles

known so far for the LFSR-based keystream generator.

Pseudo randomness: The output of the keystream generator should not be
distinguishable from a truly random sequence; otherwise, the attacker can not only
mount a ciphertext-only attack (to decrypt), but also play a more dangerous game to
impersonate the encryptor with high probability of success.

Pseudo randomness is the common criterion that all keystream generators should
comply with.

Linear Complexity: The length of the shortest possible equivalent LFSR to generate
a given binary sequence of finite length. The notable Berlekamp- Massey algorithm
[22] is a very efficient algorithm to determine the linear complexity of a finite binary
sequence of bit length n within O(r?) bit operations.

Nonlinearity: It was first studied in [18] as a security measure of cryptographic
Boolean functions. A function with low nonlinearity is prone to the linear attack or
the best affine approximation attack. Note that nonlinearity is also an important

parameter for combination generators.
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o Correlation Immunity: with the advent of Siegenthaler's proposed correlation
attacks [11], Siegenthaler proposed the concept of correlation immunity for a
cryptographic Boolean function in [20] to describe the existence of the correlation
between the minimum number of input variables and output. High correlation
immunity implies that many input variables must be considered jointly in the divide-
and-conquer scenario, and thus is expected to increase the complexity of correlation
attacks.

e Others: To resist newly-emerging algebraic attacks, the algebraic degree of a
Boolean function should be high.

The problem of how to construct a good Boolean function to achieve the best possible
tradeoff among above criteria is difficult, which stimulates lots of research work and has still

a long way to go.

1.4 Digital signatures

A cryptographic primitive which is fundamental in authentication, authorization, and
nonrepudiation is the digital signature. The purpose of a digital signature is to provide a
means for an entity to bind its identity to a piece of information. The process of signing
entails transforming the message and some secret information held by the entity into a tag

called a signature.

1.5 Public-key encryption
Let {E. : e € K} be a set of encryption transformations, and let {D, : d € K} be the set of

corresponding decryption transformations, where K is the key space. Consider any pair of
associated encryption/decryption transformations (E,;D,) and suppose that each pair has the
property that knowing E, it is computationally infeasible, given a random ciphertext ¢ € C, to
find the message m € M such that E,(m) = c. This property implies that given e it is
infeasible to determine the corresponding decryption key d. (Of course e and d are simply
means to describe the encryption and decryption functions, respectively.) E, is being viewed
here as a trapdoor one-way function (Definition 1.16) with d being the trapdoor information
necessary to compute the inverse function and hence allow decryption. This is unlike

symmetric-key ciphers where e and d are essentially the same.
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1.5.1 Symmetric-key vs. public-key cryptography

Symmetric-key and public-key encryption schemes have various advantages and

disadvantages, some of which are common to both. This section highlights a number of these

and summarizes features pointed out in previous sections.

1.5.1.1 Advantages of symmetric-key cryptography

1.

Symmetric-key ciphers can be designed to have high rates of data throughput. Some
hardware implementations achieve encrypts rates of hundreds of megabytes per
second, while software implementations may attain throughput rates in the megabytes
per second range.

Keys for symmetric-key ciphers are relatively short.

3. Symmetric-key ciphers can be employed as primitives to construct various

cryptographic mechanisms including pseudorandom number generators, hash
functions, and computationally efficient digital signature schemes, to name just a few.
Symmetric-key ciphers can be composed to produce stronger ciphers. Simple
transformations which are easy to analyze, but on their own weak, can be used to
construct strong product ciphers.

Symmetric-key encryption is perceived to have an extensive history, although it must
be acknowledged that, notwithstanding the invention of rotor machines earlier, much
of the knowledge in this area has been acquired subsequent to the invention of the
digital computer, and, in particular, the design of the Data Encryption Standard in the
early 1970s.

1.5.1.2 Disadvantages of symmetric-key cryptography

1. In atwo-party communication, the key must remain secret at both ends.

In a large network, there are many key pairs to be managed. Consequently, effective
key management requires the use of an unconditionally trusted TTP.

In a two-party communication between entities 4 and B, sound cryptographic practice
dictates that the key be changed frequently and perhaps for each communication
session.

Digital signature mechanisms arising from symmetric-key encryption typically

require either large keys for the public verification function or the use of a TTP.
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H
1.6 Classes of attacks and security models

Over the years, many different types of attacks on cryptographic primitives and protocols
have been identified. The discussion here limits consideration to attacks on encryption and,

to a small extent, on protocol.

1.6.1 Main Categories

The attacks these adversaries can mount may be classified as follows:

1.6.1.1 Passive attack It’s one where the adversary only monitors the communication
channel. A passive attacker only threatens confidentiality of data.

1.6.1.2 Active attack It’s one where the adversary attempts to delete, add, or in some other
way alter the transmission on the channel. An active attacker threatens data integrity and

authentication as well as confidentiality.

According to the purpose of the attack, it can be divided into three categories.
1.6.1.3 Distinguishing attack
It’s to distinguish the output of the keystream generator from a truly random sequence.
1.6.1.4 Predicting attack
It’s to predict the output of the keystream generator with or without a keystream of limited
length.
1.6.1.5 Key-recovery attack
It’s to obtain the key.
The predicting attack implies a distinguishing attack. The key-recovery attack implies the
predicting attack (and hence the distinguishing attack). Obviously, the most powerful attack
of all is the key-recovery attack.
Meanwhile, according to the assumptions of the cryptanalyst, the attack can be either a
known-plaintext attack or a ciphertext-only attack. The former implies the keystream is
known. The latter essentially involves investigation of the redundancy in the plaintext and
thus is application-dependent, which is less common in cryptanalysis. Now, we discuss

generic attacks on stream ciphers.
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1.6.2 Generic attacks on stream ciphers

1.6.2.1 Time-memory Tradeoff

The attack is not only effective to stream ciphers, but also applicable to block ciphers. In the
landmark paper [5] in 1980, it was shown for the first time that a tradeoff can be achieved
between time complexity and memory complexity of attacking a general cryptosystem. The
idea was lately adjusted in the case of stream ciphers for a tradeoff [6,7] between time,
memory and data complexities

1.6.2.2 Guess and Determine '

The basic idea is to guess a few part of the key, and use the knowledge of the keystream
generator to solve the rest of the key that generates the targét keystream. It is especially
suitable to attack LFSR-based stream ciphers, where only the states of a few shortest LFSRs
are guessed.

1.6.2.3 Algebraic Attack

The algebraic attack [8, 9] is comparatively néw in the research literature but has received
lots of attention; it is also applicable to block ciphers (e.g. see [10]). In short, when there is a
multivariate relation involving only the key and the keystream output, the key can be found
by using either the linearization method or XL method to solve the (over defined) system of
multivariate equations. The LFSR-based stream ciphers are potentially vulnerable against
this attack and it has been successfully demonstrated that the algebraic attack against a series
of stream ciphers is very practical and efficient [8, 9]. One major drawback of this method,
however, is the difficulty in complexity estimate for both time and data complexity, which
arises from the tough underlying problem of solving the equations.

1.6.2.4 Correlation Attack

Vast body of intensive research literature covers this kind of attacks for two decades. Initially
targeting at the nonlinear combiners, Siegenthaler first introduced the correlation attacks [11]
in the middle of the 1980's. The basic idea is to \divide and conquer" when the keystream
output is correlated to the individual LFSR output sequence due to the poor choice of the
combining function. That is, instead of the naive exhaustive search on all possible
combination of the initial states of the component LFSRs, we only perform an exhaustive
search on each individual LFSR independently and test the correlation between each LFSR

output sequence and the keystream. The optimum (deterministic) maximum likelihood
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decoding strategy yields the answer for the initial state of the LFSR.. Note that by viewing
the nonlinear filter generator as the nonlinear combiner with memory, the idea [10] of
Siegenthaler's correlation attacks on nonlinear combiners can be applied to attack nonlinear
filter generators (e.g. [12, 13]).

Apparently, the time complexity of the basic correlation attack [11] grows exponential in the
length of the LFSR, which is impractical for a long LFSR. As a matter of fact, in coding
theory, the maximum likelihood decoding problem for linear codes, according to [14], was
shown to be NP-complete. The focus of cryptographers has been on the general problem
where the individual LFSR may be arbitrarily long. In order to speed up the attack for the
general setting, Meier and Staffelbach [15, 16] used the probabilistic iterative decoding
strategy to refine the basic correlation attack into a so-called \fast correlation attack" to
reconstruct each individual LFSR. A critical factor for the efficiency of the fast correlation
attack is the novel use of the multiple polynomial of the LFSR's feedback polynomial with
low weight (and low degree).

This fast correlation attack of [15, 16] was improved by a series of variant fast correlation
attacks. Recently, various (still probabilistic) decoding techniques have proved very

successful to further improve the performance of the fast correlation attack (e.g. [17]).

1.6.1 Attacks on encryption schemes

The objective of the following attacks is to systematically recover plaintext from ciphertext,
or even more drastically, to deduce the decryption key.

1.6.1.1 A ciphertext-only attack is one where the adversary (or cryptanalyst) tries to
deduce the decryption key or plaintext by only observing ciphertext. Any encryption scheme
vulnerable to this type of attack is considered to be completely insecure.

1.6.1.2 A known-plaintext attack is one where the adversary has a quantity of plaintext
and corresponding ciphertext. This type of attack is typically only marginally more difficult
to mount.

1.6.1.3 A chosen-plaintext attack is one where the adversary chooses plaintext and is
then given corresponding ciphertext. Subsequently, the adversary uses any information

deduced in order to recover plaintext corresponding to previously unseen ciphertext.
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1.6.1.4 An adaptive chosen-plaintext attack is a chosen-plaintext attack wherein the
choice of plaintext may depend on the ciphertext received from previous requests.

1.6.1.5 A chosen-ciphertext attack is one where the adversary selects the ciphertext
and is then given the corresponding plaintext. One way to mount such an attack is for the
adversary to gain access to the equipment used for decryption (but not the decryption key,
which may be securely embedded in the equipment). The objective is then to be able, without
access to such equipment, to deduce the plaintext from (different) ciphertext.

1.6.1.6 An adaptive chosen-ciphertext attack is a chosen-ciphertext attack where

the choice of ciphertext may depend on the plaintext received from previous requests.

1.6.2 Models for evaluating security

The security of cryptographic primitives and protocols can be evaluated under several
different models. The most practical security metrics are computational, provable, and ad hoc
methodology, although the latter is often dangerous. The confidence level in the amount of
security provided by a primitive or protocol based on computational or ad hoc security
increases with time and investigation of the scheme. However, time is not enough if few

people have given the method careful analysis.

1.6.2.1Unconditional security

The most stringent measure is an information-theoretic measure — whether or not a system
has wunconditional security. An adversary is assumed to have unlimited computational
resources, and the question is whether or not there is enough information available to defeat
the system. Unconditional security for encryption systems is called perfect secrecy.

For perfect secrecy, the uncertainty in the plaintext, after observing the ciphertext, must be
equal to the a priori uncertainty about the plaintext — observation of the ciphertext provides
no information whatsoever to an adversary.

A necessary condition for a symmetric-key encryption scheme to be unconditionally secure is
that the key be at least as long as the message. The one-time pad is an example of an
unconditionally secure encryption algorithm. In general, encryption scheme do not offer
perfect secrecy, and each ciphertext character observed decreases the theoretical uncertainty

in the plaintext and the encryption key. Public-key encryption schemes cannot be
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unconditionally secure since, given a ciphertext c, the plaintext can in principle be recovered
by encrypting all possible plaintexts until ¢ is obtained.

1.6.2.2 Complexity-theoretic security

An appropriate model of computation is defined and adversaries are modeled as having
polynomial computational power. (They mount attacks involving time and space polynomial
in the size of appropriate security parameters.) A proof of security relative to the model is
then constructed. An objective is to design a cryptographic method based on the weakest
assumptions possible anticipating a powerful adversary. Asymptotic analysis and usually also
worst-case analysis is used and so care must be exercised to determine when proofs have
practical significance. In contrast, polynomial attacks which are feasible under the model
might, in practice, still be computationally infeasible.

Security analysis of this type, although not of practical value in all cases, may nonetheless
pave the way to a better overall understanding of security. Complexity-theoretic analysis is
invaluable for formulating fundamental principles and confirming intuition. This is like many
other sciences, whose practical techniques are discovered early in the development, well
before a theoretical basis and understanding is attained.

1.6.2.3 Provable security

A cryptographic method is said to be provably secure if the difficulty of defeating it can be
shown to be essentially as difficult as solving a well-known and supposedly difficult
(typically number-theoretic) problem, such as integer factorization or the computation of
discrete logarithms. Thus, “provable” here means provable subject to assumptions. [23]

This approach is considered by some to be as good a practical analysis technique as exists.
Provable security may be considered part of a special sub-class of the larger class of
computational security considered next.

1.6.2.4 Computational security

This measure the amount of computational effort required, by the best currently-known
methods, to defeat a system; it must be assumed here that the system has been well-studied to
determine which attacks are relevant. A proposed technique is said to be computationally
secure if the perceived level of computation required to defeat it (using the best attack
known) exceeds, by a comfortable margin, the computational resources of the hypothesized

adversary.
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Often methods in this class are related to hard problems but, unlike for provable security, no
proof of equivalence is known. Most of the best known public-key and symmetric key
schemes secure in current use are in this class. This class is sometimes also called practical
security.

1.6.2.5 Ad hoc security

This approach consists of any variety of convincing arguments that every successful' attack
requires a resource level (e.g., time and space) greater than the fixed resources of a perceived
adversary. Cryptographic primitives and protocols which survive such analysis are said to
have heuristic security, with security here typically in the computational sense. Primitives
and protocols are usually designed to counter standard. While perhaps the most commonly
used approach (especially for protocols), it is, in some ways, the least satisfying. Claims of

security generally remain questionable and unforeseen attacks remain a threat.

1.6.3 Perspective for computational security

To evaluate the security of cryptographic schemes, certain quantities are often considered.
Definition The work factor W; is the minimlim amount of work (measured in appropriate
units such as elementary operations or clock cycles) required to compute the private key d
given the public key e, or, in the case of symmetric-key schemes, to determine the secret key
k. More specifically, one may consider the work required under a ciphertext-only attack
given n ciphertexts, denoted Wu(n).

If Wy is t years, then for sufficiently large ¢ the cryptographic scheme is, for all practical
purposes, a secure system. To date no public-key system has been found where one can

prove a sufficiently large lower bound on the work factor W
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2. Literature Survey

Stream ciphers are an important class of encryption algorithms. They encrypt individual
characters (usually binary digits) of a plaintext message one at a time, using an encryption
transformation which varies with time [24]. There is a vast body of theoretical knowledge on
stream ciphers, and various design principles for stream ciphers have been proposed and
extensively analyzed. However, there are relatively few fully-specified stream cipher
algorithms in the open literature. This unfortunate state of affairs can partially be explained
by the fact that most stream ciphers used in practice tend to be proprietary and confidential.
[2]

The goal of cryptanalysis is to find some weakness or insecurity in a cryptographic scheme,
thus permitting its subversion or evasion. Cryptanalysis might be undertaken by a malicious
attacker, attempting to subvert a system, or by the system's designer (or others) attempting to
evaluate whether a system has vulnerabilities, and so it is not inherently a hostile act.
Differential cryptanalysis is a general form of cryptanalysis applicable primarily to block
ciphers, but also to stream ciphers and cryptographic hash functions. In the broadest sense, it
is the study of how differences in an input can affect the resultant difference at the
output.[26] Differential cryptanalysis is usually a chosen plaintext attack, meaning that the
attacker must be able to obtain encrypted ciphertexts for some set of plaintexts of his
choosing. There are, however, extensions that would allow a known plaintext or even a
ciphertext-only attack. The basic method uses pairs of plaintext related by a constant
difference; difference can be defined in several ways, but the eXclusive OR (XOR) operation
is usual. The attacker then computes the differences of the corresponding ciphertexts, hoping
to detect statistical patterns in their distribution. The resulting pair of differences is called a
differential. Their statistical properties depend upon the nature of the S-boxes used for

encryption, S0 the attacker analyses differentials (AxAy), where
Ay = S(X)D S(X © Ax )(and denotes exclusive or) for each such S-box S. In the

basic attack, one particular ciphertext difference is expected to be especially frequent; in this
way, the cipher can be distinguished from random. More sophisticated variations allow the

key to be recovered faster than exhaustive search.
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2.1 Rabbit: A New High-Performance Stream Cipher

Boesgaard et al.[l1] represent a design of a secure stream cipher which is efficient in
software; The Rabbit Stream Cipher. Rabbit [1] takes a 128-bit secret key as input and
generates, for each iteration, an output block of 128 pseudo-random bits from a combination
of the internal state bits. The encryption/decryption is carried out by XOR’ing the pseudo-
random data with the plaintext/ciphertext. The size of the internal state is 513 bits divided
between eight 32-bit state variables, eight 32-bit counters and one counter carry bit. The eight
state variables are updated by eight coupled non-linear integer valued functions. The counters

secure a lower bound on the period length for the state variables.

Fig 2.1: Graphical illustration of the system [1]
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2.1.1 Security Analysis

2.1.1.1 Key Setup Properties
The setup can be divided into three stages: Key expansion, system iteration and counter

modification.[1]
Key Expansion
In the key expansion stage we ensure two properties.
e A one-to-one correspondence between the key, the state and the counter, which
prevents key redundancy.
e The other property is that after one iteration of the next-state function, each key bit
has affected all eight state variables.
System Iteration
The key expansion scheme ensures that after two iterations of the next-state function; all state
bits are affected by all key bits with a measured probability of 0.5. A safety margin is
provided by iterating the system four times.
Counter Modification
The counter modification makes it hard to recover the key by inverting the counter system as

this would require additional knowledge of the state variables.

2.1.1.2 Counter Properties
o Period Length

The adopted counter system in Rabbit has a period length of 22°°”!. Since it can be shown
that the input to the g-functions has at least the same period, a highly conservative lower
bound on the period of the state variables, Ny > 2158, can be secured
o Probabilities for Bit-flips in the Counters
For a 256-bit counter incremented by one, the period length for bit position i is 2"/, This
implies that the least significant bit has a bit-flip probability of 1 and the most significant
bit has a bit-flip probability of 272%%.

.The most important findings are as follows.

For the chosen a; constants bit-flip probabilities for the individual bit positions are all in the

interval [0.17; 0.91]. Furthermore, the probabilities are unique for each bit position. Since all
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the counter bits have full period and unique bit-flip probabilities, it seems difficult to predict

bit patterns of the counter variables.

2.1.1.3 Algebraic Analysis
[1] Analyze a given output byte’s dependence on its input bytes. All output bytes of the next-

state function depend on the maximal 12 input bytes. Consequently, removing any of those

input bytes will result in nearly maximal entropy of error of the output bytes.

2.1.1.4Linear Correlation Analysis
The aim of the correlation analysis is to find the best linear approximations between bits in

the input to the next-state function and the extracted output. Each of the eight next-state
functions takes three 32-bit state variables and three 32-bit counter values as input and
returns the corresponding updated 32-bit state variable. Each bit position in x;, j+; defines a

binary function from {0, 1}'%?

to {0, 1}. Thus, assuming that all 192 input bits are
independently and uniformly distributed random variables, all correlations from output bits to
linear combinations of input bits can be found via the Walsh-Hadamard Transform (WHT)
[19,20].
o The g-function
An exhaustive investigation of all 2** possible convolutions of WHT spectra from the
individual output bits in the g-function is not feasible [1]. However, investigations of all
convolutions of 16-, 18- and 20-bit g-functions show that the largest resulting correlation
coefficients are of similar magnitude as the non-combined output bits and we expect the
32-bit g-function to behave similarly. [1]
o Linearly Combined Output-Bits
It was found that all combinations of output bytes depend on at least four different g-
functions which can only be obtained by combining at least five extracted output bits [1].
On the other hand, it was found that by combining two extracted output bits, the least
number of g-function dependencies is five. Replacing addition with XOR [1] obtain: The
largest corresponding correlation coefficient is 272, All other combinations of two
output bits depending on five g-functions have smaller correlation coefficients. One of

the examples of a linear approximation that only depends on four g-functions has a
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largest correlation coefficient of 27592 All other byte-wise combinations of five output

bits depending on four g-functions have smaller correlation coefficients.

2.1.1.5 Statistical Tests
Tests were performed on the internal state as well as on the extracted output. Furthermore, [

1] also conducts various statistical tests on the key setup function. Finally, we performed the

same tests on a version of Rabbit where each state variable and counter variable was only 8

bit wide. No weaknesses were found in any case. [1]

2.1.2 Resulting Attacks

This subsection discusses relevant attacks based on the above analysis.

2.1.2.1 Attacks on the Key Setup Function

[1] Conclude that due to the four iterations after key expansion and the final counter
modification, both the counter bits and the state bits depend strongly and highly non-
linearly on the key bits. This makes attacks based on guessing parts of the key
difficult. Furthermore, even if the counter bits were known after the counter
modification, it is still hard to recover the key.

Divide-and-Conquer Attack:

[1] Conclude: It is not possible to verify a guess on fewer bits than the key size.
Guess-and-Determine Attack:

[1] described the strategy for this attack is to guess a few of the unknown variables of
the cipher and from those deduce the remaining unknowns. The attacker must guess
more than 128 bits before the determining process can begin, thus, making the attack
infeasible.

Distinguishing and Correlation Attacks:

[1] Narrate that in case of a distinguishing attack the attacker tries to distinguish a
sequence generated by the cipher from a sequence of truly random numbers. This

attack is also not believed to be feasible.
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2.1.3 Performance

The measured encryption/decryption performance was 3.7 clock cycles per byte on a

Pentium III processor and 10.5 clock cycles per byte on an ARM7 processor.

2.1.4 Conclusion

In terms of security, Guess and Determine attacks, Divide-and-Conquer attacks as well as
Distinguishing and Correlation attacks were considered, but no attack better than exhaustive
key search was found. The measured encryption/decryption performance was 3.7 clock
cycles per byte on a Pentium III processor and 10.5 clock cycles per byte on an ARM7

processor. [1]

2.1.5 Disadvantage

During the security analysis of Rabbit, [1] conclude that knowing the values of the counters
may significantly improve both the Guess-and-Determine attack, the Divide-and-Conquer
attacks as well as a Distinguishing attack even though obtaining the key from the counter
values is prevented by the counter modification in the setup function.

In terms of security attacks, Guess and-Determine attacks, Divide-and-Conquer attacks as
well as Distinguishing and Correlation attacks were considered, but no attack better than
exhaustive key search was found [1]. There is mentioned no analysis of Rabbit in terms of

differential attacks.

2.3 Cryptanalytic weakness in modern stream ciphers and
recommendations for improving their security levels

Irfan Ullah et al.[2] discuss security problems in some modern stream ciphers. They [2]
discuss SNOW, Scream and Rabbit. Some efforts have been made to overcome the problems
those were pointed out in these cryptosystems by different cryptanalysts. The stream ciphers
are faster and efficient than block ciphers but comparatively less secure [2]. [2] Make some

compromise on efficiency but to get more security.
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In cryptanalysis of Rabbit, there are some deficiencies in the model specifically due to some
weaknesses in the key scheduling algorithm of the model [2]. There is a possibility of related
key attacks that exploit the symmetries of the next state and key setup function.

2.3.1 Changes in Rabbit

[2] Make some changes in its design that generates the key stream as such to minimize the
attacks on it.

In the next state functions every X affects the next second state which is easily traceable so
[2] make the following changes so that even more organized attacks may fail against this

model:

Figure 2.2: The New model of Rabbit [2]

a. Make the map as such that the current state X affects the next X state and that X affects the

next second state and that affects the next third state. Thus there is no linear increase in the
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state scheduling. At the fifth state the process is repeated once again as for the first four
states.

b. The process continues till all states change their values at least once.

2.3.2 Disadvantage

[2] Claims that the differential analysis is impossible because we are not always sure after
how much iteration every state is affected, if we increase the number of states for achieving
more security the mathematical representation is only possible by making some logics.

Again there is no detailed proof against this claim. Every model leaves some very minor
weaknesses those may be considered as ignorance of designers or there may be some other
things that every designer had left some peeping point to make it always possible for them to

crack their own models.

2.4. The Rectangle Attack-Rectangling the Serpent
Biham et al. [3] introduce different attacks on the Serpent including 10-round attack on 256-

bit keys variants that’s the best published attack on the cipher. The attack enhances
Amplified Boomerang attack and uses better differentials.

2.4.1 Working

Here Serpent is a block cipher with 128-bit block size and key length is 0-256 bit.

2.4.1.1 Boomerang Attack
[3] Gives the main idea behind Boomerang attack; Use two short differential characteristic

instead of one long characteristic. It’s very useful when we have good short differential

characteristics and very bad long ones.

2.4.1.2 Rectangling the Boomerang
[3] Gives three steps of improvement:

. Instead of requiring a specific ¥ ,we can count on all possible ¥’ values for which
v’ >0 by E; ’
¢ Instead of discarding pairs with wrong P value, we sort the pairs into piles according

to the output difference p of Eo.For each possible pile we perform the original attack.
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e Third is based on first 2.We can take into consideration more quartets. Assume that
for the first pair The difference a causes some difference a and for the second pair a=>
b we can count also characteristic for which y> 6 and y@ a Db>3

2.4.2 Disadvantage

Though the improvement in Boomerang attack given by [3] counts all the quartets with
plaintext differences o and ciphertext difference f .However it’s very hard to do exact

calculation.

2.5 Problem Domain and Objective to Attain

2.5.1 Problem Statement

While talking in terms of cryptographic differential attacks in both of the stream ciphers
specially Rabbit [1], there is no proof for security. Although Rabbit is stream ciphers and
differential attacks are mostly known attacks for block cipher however, they can also be
applied to stream ciphers [19]

We consider Boesgaard et al. [1] Rabbit model that is one of the state of the art stream
ciphers. Many different attacks have been designed to break its security to some extent but no
remarkable success has been achieved by any of the designers so far. In other words its
security against these many different attacks has almost been confirmed. There have also
been designed Differential attacks to menace the security but again there can not be any
remarkable success. The reason is the brilliance of the model designers. But this is not the
end. History of cryptography shows that many strong ciphers have been attacked differently
by different crypt analyzers despite the claims of security by their designers. So we’ll
consider further such minor weaknesses in the models. Same types of attacks can be applied
on the same model differently to analyze different aspects of the cipher. This will further
direct towards the more security of the model in terms of the confiscation of flaws being

exploited in the analysis.
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2.5.2 Objective to Attain

As we have studied techniques of Biham et al. [3] to implement differential attacks. Though
this technique is designed for differential cryptanalysis of block ciphers, we’ll use this to see
its impact on the described stream cipher. For this we have to come to know about the small
differential properties of Rabbit [1] model. We’ll consider this and some other ways to try to
take advantage of hidden flaws in Rabbit and hence its security.

To get the differential properties of the model [1] we will perform:

2.5.2.1 Differential key analysis
Although the key generated is truly random however, we will try to see the differences in the

out put key by the input key values and also try to correlate the certain internal state values.

2.5.2.2 Ladder Approach .
We’ll try to analyze the model with Ladder Approach. In this approach, we’ll divide the key

into 8bits and then analyze them by examining different values against the input key values
and the correlation between the different octets of the key generated and the input key, and
also between the various state variables during key generation process.

The assumptions about the ladder approach are:

Initial guess: We modify cipher to plaintext and on the basis of similarity we modify our
guess.

Strong Correlation Equations: Our equations give us recursive result (£) in bottom up
approach. The difference is, we store the previous result also. After production of every state
we are going to find out the correlation b/w actual chosen plaintext and recovered chosen
plaintext P’, P”

Weak encryption keys: We apply weak encryption keys and check the attack and see after
how much attempts we are supposed to recover the key.

Strong chosen plaintext: We’ll have a probabilistic approach towards the selection of the

plaintext that is to be chosen for the attack.
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3. Research Methodologies

Stream ciphers are an important class of symmetric encryption algorithms. Their basic design
philosophy is inspired by the One-time-Pad cipher, which encrypts by XOR’ing the plaintext
with a random key. However, the need for a key of the same size as the plaintext makes the
One-Time-Pad impractical for most applications. Instead, stream ciphers expand a given
short random key into a pseudo-random keystream, which is then XOR’ed with the plaintext
to generate the ciphertext. Consequently, the design goal for a stream cipher is to efficiently
generate pseudo-random bits which are indistihguishable from truly random bits. Rabbit was
introduced by Boesgaard et al [1] and is one of the state of the art stream ciphers known. It’s
much secure cryptographically as claimed by its designers and the ones who have analysed it
in some respects.

However, a great work in respect of analysis has been done and also yet to be done to prove

the security of the cipher in different aspects

3.1 The Design of Rabbit

3.1.1The Cipher Algorithm

The internal state of the stream cipher consists of 513 bits. 512 bits are divided between eight
32-bit state variables x;; and eight 32-bit counter variables c;;, where x;; is the state variable
of subsystem j at iteration i, and c;; denote the corresponding counter variables. There is one
counter carry bit, ¢7;, which needs to be stored between iterations. This counter carry bit is
initialized to zero. The eight state variables and the eight counters are derived from the key at

initialization.[1]

3.1.1.1 Key Setup Scheme|1}
The algorithm is initialized by expanding the 128-bit key into both the eight state variables

and the eight counters such that there is a one-to-one correspondence between the key and

the initial state variables, x; 0, and the initial counters, c; .
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The key, K[m“O], is divided into eight subkeys: ko = K50k, = gB18E |k, =

K!27-1121 The state and counter variables are initialized from the subkeys as follows:

K(+1 mod 8) | K for j even
5o~ (1)
Ki+5 mod 8) 1 K(j+4 mod 8) for j odd

and
K(+4 mod 8) | K+5moa 8) fOr j €ven
&o= )
K;j | K+1 moa 8y fOr j 0dd.
The system is iterated four times, according to the next-state function defined below, to
diminish correlations between bits in the key and bits in the internal state variables. Finally,
the counter values are re-initialized according to:

Ci4a = Cj @D x (j+4 mod 8),4 (3)

to prevent recovery of the key by inversion of the counter system.

3.1.1.2 Next-state Function[1]

The core of the Rabbit algorithm is the iteration of the system defined by the following
equations: |

Xoji+1 = 8o,i T (87,<<<16) + (g6,;<<<16)

X101 = 81, F (80, <<<8) + gy

Xpit1 = 82,1 +(g1,;<<<16) + (80,<<<16)

X3is1 = 83,1 + (&2, <<<8) + gy,

X401 = 841+ (83<<<16) + (g,<<<16) “4)

Xsjit1 = 85,1+ (84,;<<8) + g3;

Xe,it1 = 80,1 * (85,<<16) + (g4,<<16)

X741 = 87,1 + (g6,i<<<8) + g5,
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gii = (%55 + ¢0)° (x5 + ¢;)* >>32)) mod 2*

®)

Where all additions are modulo 232. Before iteration the counters are incremented as

described below:

3.1.1.3 Counter System [1]

The dynamics of the counters is defined as follows:

Coj1 = Coj+ 29+ ¢7; mod 2*
Cyir1 = Cyi + a3 + o+ mod 2%
Cais1 = Coi + @+ ¢y mod 2%
Cs,s1 = C3;+ a3 + ¢4 mod 2%
Cuiv1 = Cyj + a4 + €354 mod 23
Csjn = Cs; + a5 + ¢4;4 mod 2°
Ce,e1 = Co; + 26 + #5,4 mod 2
Cr,u1 = C,;+ a7 + #6341 mod 2%

where the counter carry bit, ¢;;+1, is given by

Lif co;+ag+ g7; >=2"22j=0
giv = Lif ¢ + 8 + g1 ,>=22 >0

0 otherwise.

Furthermore, the a; constants are defined as:

a9 = 0x4D34D34D a; = 0xD34D34D3
a; = 0x34D34D34 a; = 0x4D34D34D
a4 = 0xD34D34D3 as = 0x34D34D34

(6)

()

()
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ag = 0x4D34D34D a; = 0xD34D34D3.

3.1.1.4 Extraction Scheme {1]

After each iteration 128 bits of output are generated as follows:

150 = ¢ 0’1[15..01 ® xs; [31..16] s 31161 = Xo; B1.16] g x3,i[15..0]
54730 = Xai [15..0] X7, [31..16] 163481, = X, [31..16] BXs, [15..0]
579641 = Xai [15.0] o X1 [31..16] 52580 = Xai [31..16] X [15.0} ©)
511961 = X6 [15..0] Dxs, [31..16] sl127-1121 =X, [31.16] gy X1 [15.0]

where s; is the 128-bit keystream block at iteration i.

3.1.1.5 Encryption/decryption Scheme L[1J

The extracted bits are XOR’ed with the plaintext/ciphertext to encrypt/decrypt.
Ci = pi®si, (10)

Pi = CigSis 11)

where c; and p; denote the ith ciphertext and plaintext blocks, respectively.

3.3 Our Approach to Attacks

Although the key generated is assumed to be truly random however, we have tried to see the
differences in the out put key by the input key values and also to correlate the certain internal

state values.
3.3.1 Ladder Approach

We’ve analyzed the model with Ladder Approach. In this approach, we divide the key into
8bits and then analyze them by examining different values against the input key values and
the correlation between the different octets of the key generated and the input key, and also
between the various state variables during key generation process.

During this, we did the following
¢ One by one changing the octet of the input key
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¢ Noting down the result for each different output

e Saw the affect of changing key on the state variable

e Saw the affect of changing key value the ciphertext

¢ Found some correlation between state variables and the output text

e Then checked the correlation, thus found, against the different values to generalize
the result.

e Tried to recover some part of key on that basis.

The assumptions about the ladder approach are:

3.3.1.1 Initial guess

We modify cipher to plaintext and on the basis of similarity we modify our guess.

3.3.1.2 Strong Correlation between the states

We try to find out the strong correlation between the states as for example in the case of
implementation in Turbo C++ the equation (4) of the next state function of Rabbit is reduced

to:

Xo,i+1 = 80,i T (87,) + (86,)

X101 = 81, T (80, <<<8) + gy

Xp,ie1 = 82,1 + (81,) + (80,)

X301 = 83,1 + (82,;<<<8) + gy,

Xair1 = 841+ (83) + (825) (A)

Xsir1 = 85,1 + (g4;<<8) + g3;

3.3.1.3 Weak encryption keys

We apply weak encryption keys and check the attack and see after how much attempts we are
supposed to recover the key. That is, in the beginning we have tried to take the out put key
with simple key values.

e.g. In the beginning we used the input key as {00,00,00,00,00,00,00,00}, then saw the
values of the last updated state variables and the output text and then changed the input key
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values gradually, i.e. {01, 00, 00, 00, 00, 00, 00, 00},{01, 01, 00, 00, 00, 00, 00, 00}, {01, 01,
01, 00, 00, 00, 00, 00}, {01, 01, 01, 01, 00, 00, 00, 00}, {01, 01, 01, 01, 01, 00, 00, 00}, {01,
01, 01, 01, 01, 01, 00, 00}, {01, 01, 01, 01, 01, 01, 01, 00}, {01, 01, 01, 01, 01, 01, 01, 01}
to see if they make any difference and the extent to which they are affecting the output.

3.3.1.4 Strong chosen plaintext

We have a probabilistic approach towards the selection of the plaintext that is to be chosen
for the attack.

In the beginning we used the input text with small input values so they may not make any
difference to the output text and hence the ease for the analysis.

e.g. To find out the correlation between various state variables and the output text, I took the
small values of the input text as {‘a’,00,00,00} .Here the last three input text elements are not
going to affect the second third and fourth part of the out put text. And so they let us find

some relation, if possible, between the output text and the state variables.
3.3.2 Limits of my attack

During the analysis procedure I adopted, following are the limits to which I bound my
implementation:

e Most of the correlations I found were XOR based.

e [ focused mainly on the values of the last updated state variables and not the values in
earlier iterations as the state variables being XOR’ed with input text are the last
updated.

e [ found the results mainly on the basis of the code given to check their functionality
on the two plate forms i.e. Turbo C++ and VC++
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4. Implementation

Implementation includes all the details that were required to make the system operational.
The development tools and technologies to implement the system and also reasons for
selecting particular tool are discussed. Then the algoritim being translated into the

implementation tool will be descried.

Software selection is very important step in developing a computer based system. The
software that is used is capable of meeting the requirement of the proposed system. After
considering the number of tools available these days such as Turbo C++, Visual Basic,
Visual C++.Net, Visual C ,MS Excel, Visual Basic.Net and MATLAB we chose Turbo C ++
v3.0 and Visual C++ 6.0

4.1 Turbo C++ 3.0

Turbo C++ is a Borland C++ compiler and Integrated Development Environment (IDE),
famous for its high compilation & linkage speed - hence the term "Turbo". It was a part of
Borland's highly popular family of compilers including Turbo Pascal, Turbo Basic, Turbo
Prolog and Turbo C. Turbo C++ was a successor of Turbo C.

Turbo C++ 3.0 was released in 1991 (shipping on November 20), and came in amidst

expectations of the coming release of Turbo C++ for Microsoft Windows.

4.2 Microsoft Visual C++ 6.0

Visual C++ has features such as syntax highlighting, IntelliSense (a coding autocompletion
feature) and advanced debugging functionality. For example, it allows for remote debugging
using a separate computer and allows debugging by stepping through code a line at a time.
The "edit and continue" functionality allows changing the source code and rebuilding the
program during program debugging, without restarting the debugged program.
The compile and build system feature, precompiled header files, "minimal rebuild"
functionality and incremental link: these features significantly shorten turn-around time to
edit, compile and link the program, especially for large software projects.
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Visual C++ 6.0, which included MFC 6.0, was released in 1998. The release was somewhat
controversial since it did not include an expected update to MFC. Visual C++ 6.0 is still quite

popular and often used to maintain legacy projects.

4.3 Implementation of the Attack

We now give implementation of the attack.
Here I am going to describe the code of rabbit I modified a little to analyze by getting outputs
of all the state variables and the sub_keys and hence to implement the attack:

4.3.1 Implementation in Turbo C++

Note that the basic program code has been taken from Rabbit [1#] with some amendments (

but not in the way that the whole code sense was changed) to analyze it.

4.3.1The g-Function

Square a 32-bit number to obtain the 64-bit result and return the upper 32 bit XOR
the lower 32 bit

¥[=============z==c==ss==============x*/
*/============g_function=============*/
[f===============z=================x*/

uint32 g_func(uint32 val)
{
/I Construct high and low argument for squaring
uint32 a = val&0OxFFFF;
uint32 b = val>>16;// Calculate high and low result of squaring
uint32 high = ((((a*a)>>17) + (a*b))>>15) + b*b;
uint32 low = val*val;
cout<<"\nhigh="<<h<<"\nlow="<<|<<"\n";
I/l Return high XOR low;
return high*low;
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}

4.3.2 The next_state Function

Calculate the next internal state

[f=================== S =*/

[*======== next_state_function=====*/

P ————

void next state(t_instance *p_instance)

{

//short s[81={0,0,0,0,0,0,0,0};

// Temporary data

uint32 g[8], c_old[8], i:

// Save old counter values

for (i=0; i<8; i++)

c_old[i] = p_instance->cl[i];

// Calculate new counter values

p_instance->c[0] += 0x4D34D34D + p_instance->carry;
p_instance->c[1l] += 0xD34D34D3 + (p_instance->c[0] <
c_old[0]);

p_instance->c[2] += 0x34D34D34 + (p_instance->c[1]
c_old[1l]);

p_instance->c[3] += 0x4D34D34D + (p_instance->c([2]

c old[2]);

p_instance->c[4] += 0xD34D34D3 + (p_instance->c[3]
c_o0ld([3]1);

p_instance->c[5] += 0x34D34D34 + (p_instance->c[4]
c_old[4]):

p_instance->c[6] += 0x4D34D34D + (p_instance->c[5]

c old[5]):
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p_instance->c[7] += 0xD34D34D3 + (p_instance->c[6] <

c_old[e6]);

p_instance->carry = (p_instance->c[7] < c_old[7]};

// Calculate the g-functions

for (i=0;i<8;i++)

{gli] = g func(p_instance->x[i] + p_instance->c[i]);

//cout<<"g["<<i<<"]="<<g[i]<<"\n";//by asmara

}

// Calculate new state values

g{0] + rotl(gl[7],16) +

_rotl(gl0], 8) + gl7];

_rotl(g([1l],16) + _rotl(g[0],16);

_rotl(g[2], 8) + gll];
+
+
+
+

p_instance->x[0] _rotl(g[6],16);

-+

p_instance->x[1] = g[1]
p_instance->x[2] = g[2]
p_instance->x[3] = g[3]
_rotl(g[2],16);
gl3];

_rotl(gl4],16);
gls];

p_instance->x[5] = g[5] _rotl(gl4], 8)

+
+
p_instance->x[4] = g(4] + _rotl(g[3],16)
+
+ _rotl(g[5],16)

p_instance->x[6] = g[6]
p_instance->x[7] = g[7] + _rotl(g[é], 8)
//for (int cnt=0;cnt<8;cnt++)

//s[cnt]=p instance

//for ( cnt=0;cnt<8;cnt++) //asmara
{//cout<<"\nx["<<cnt<<"]"<<p instance->x[i]; //asmara
//exl=(p_instance->x[2*cnt]<<16)" (p_instance-

>x[ (2*cnt+5)%8]>>16) ;

//cout<<"exl="<<exl;

cout<<"\nX0="<<p instance->x[0];binary(p instance->x[1]);
cout<<"\nX1="<<p instance->x[1l];binary(p instance->x[2]);
cout<<"\nX2="<<p instance->x[2];binary(p instance->x[3]);
cout<<"\nX3="<<p instance->x[3];binary(p instance->x[4]);

cout<<"\nx4="<<p instance->x[4];binary(p instance->x[5]);
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cout<<"\nx5="<<p instance->x[5];binary(p_instance->x[6]);
cout<<"\nX6="<<p instance->x[6];binary(p_instance->x[7]);

cout<<"\nX7="<<p instance->x[7];binary(p_instance->x([8]);

/*s=(p_instance->x[i]"
(p_instance->x[(i+5)%8]))>>16)"

(p_instance->x[i] " (p_instance->x[(i+3)%8]<<16);*/

//ex2=(p_instance->x[2*cnt]>>16) " (p_instance-
>x[(2*cnt+3) $8]1<<16) ;
//cout<<"ex2="<<ex2;

}

4.3.3 The Key Set Up Function

This function takes the pointers to the initial key value as an input and does the following
tasks:

¢ Divides the initial key into four subset keys and gives their output in parallel.

e Generates the initial state variables and prints their values.

e Generates the counter variables and prints their value.
This function is being called from the main function and it calls the next_state_function

five times to iterate the system and hence to make the state variable more random and

nonlinear.

[¥*===========ss=========c==s===========%/
/*===========key_setup_function==========*/
[*===================ocoocs=mss==========%/

// key setup

void key setup(t_instance *p_instance,const byte *p key)
{

// Temporary data

uint32 kO, k1, k2, k3, i;

Differential Key Attacks On Rabbit 41



Chapter 4

Implementation

// Generate four subkeys
kO = *(uint32*) (p_key+ 0);
cout<<"k0="<<k0<<endl;

kl = *(uint32*) (p_key+ 4);
cout<<"kl="<<kl<<endl;
//k2=45;

k2 = *(uint32*) (p_key+ 8);
cout<<"k2="<<k2<<endl;

k3 = *(uint32*) (p_key+12);
//k3=1786;
cout<<"k3="<<k3<<endl;

// Generates initial state
p_instance->x[0] = kO;
p_instance->x[2] = kl;
p_instance->x[4] = k2;
p_instance->x[6] = k3;
p_instance->x[1] = (k3<<16)
p_instance->x[3] = (k0<<16)
p_instance->x[5] = (k1l<<16)
p_instance->x[7] = (k2<<16)

//outputs state variables

variables

k2>>16) ;
k3>>16) ;
k0>>16) ;

(
(
(
(k1>>16) ;

cout<<"\tKx[0]="<<p instance->x[0];

cout<<"\tKx[2]="<<p_instance->x[2];

cout<<"\tKx[4]="<<p instance->x[4];

cout<<"\tKx[6]="<<p instance->x[6];

cout<<"\tKx[1]="<<p instance->x[1];

cout<<"\tKx[3]="<<p_ instance->x[3];

cout<<"\tKx[5]="<<p_ instance->x[5];

cout<<"\tKx[7]="<<p instance->x[7];
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/*for (int k=0;k<8; k++)

cout<<"\tKx{"<<k<<"]="<<p_ instance->x[k];*/

// Generate initial counter values
p_instance->c[0] = rotl(k2,16);
p_instance->c[2] = rotl(k3,16);
_rotl(k0,16);
_rotl(kl,16);

p_instance->c[4]

p_instance->c[6]

p_instance->c[1l] = (k0&OxXFFFF0000) | (kl&O0xFFFF);
p_instance->c([3] = (k1&0xFFFFO0000) | (k2&0xFFFF);
p_instance->c[5] = (k2&0xFFFF0000) | (k3&0xFFFF);

p_instance->c[7] (k3&0xFFFF0000) | (kO&OXFFFF);
// Reset carry flag

p_instance->carry = 0;

// Iterate the system four times

for (i=0;i<4;i++)

next_state(p_instance);

// Modify the counters

for (i=0;i<8;i++)

p_instance->c[(i+4)&0x7] "= p instance->x[i];

}

4.3.4The Cipher Function

This function takes, as arguments, the value where the input data to be stored, the input data
and the size of data.

This accomplishes the following tasks:

e Stores the value of the key extracted into a variable.

Differential Key Attacks On Rabbit 43



Chapter 4

Implementation

e XOR’s the plaintext/Ciphertext with the

plaintext/ciphertext.
[fe================================*/
[*===========cipher function========= */
[f=============================== */

key extracted to recover the

void cipher(t_instance *p_instance, const char *p_src,

byte *p_dest, size t data_size)
{
uint32

i, fr,*frPtr, *secPtr, *thdPtr, *fthPtr, sec, thd, fth,decl=0,dec2=0,

dec3=0,decd4=0,varl,var2,var3, vard;

for (i=0; i<data size; i+=16)
{

//next_state(p_instance);

// Encrypt 16 bytes of data
varl=p_instance->x[0] *
(p_instance->x[5]>>16) *

(p_instance->x[3]<<16);

fr=*(uint32*) (p_dest+ 0) = *(uint32*) (p_src+ 0) “varl;

cout<<"\n\nFirst="<<fr<<" Binary:";

binary(fr);

var2= p_instance->x[2] *
(p_instance->x[7]>>16) *

(p_instance->x[5]<<16);

sec=* (uint32*) (p_dest+ 4) = *(uint32*) (p_src+ 4) “var2;
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cout <<"\tSec="<< sec <<" binary: ";

binary(sec):

var3=p_instance->x[4] *

(p_instance->x[1]1>>16) *

(p_instance->x[7]<<16);

thd=* (uint32*) (p_dest+ 8) = *(uint32*) (p_src+ 8) “var3;
cout<<"\nThd="<<thd<<" binary:":;

binary(thd);

vard=p instance->x[6] "

(p_instance->x[3]>>16) *

(p_instance->x[1]<<16);

fth=* (uint32*) (p_dest+12) = *(uint32*) (p_src+12) ~"var4;
cout<<"\tFourth="<<fth<<" binary:";

binary (fth);

//Increment pointers to source and destination data
p_src += 16;
p_dest += 16;

//decrypt the data

frPtr=&fr;
decl=* (uint32*) (p_dest+0)= *(uint32*) frPtr*varl;
cout<<"\tDEC1l:\t"<<dec<<" binary: ";

binary (decl):;

secPtr=é&sec;
dec2=* (uint32*) (p_dest+ 4) = *(uint32*)secPtr “var2;
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cout <<"\tDEC2="<<dec2<<" binary: ";

binary(dec2);

thdPtr=&thd;

dec3=* (uint32*) (p_dest+ 8) = *(uint32*)thdPtr *
var3;

cout<<"\nDEC3="<<dec3<<" binary:";
binary(dec3);

fthPtr=&fth;

decd=* (uint32*) (p dest+12) = *(uint32*)fthPtr *
vard;

cout<<"\tDEC="<<dec4<<" binary:";

binary (dec4d);

4.3.6 Binary Function

It’s an additional function to get the values of different variables in binary form for the ease

of correlations and analysis.

//conversion from uint32 to binary
void binary(uint32 nmbr) {

uint32 remainder;

cout<<".";

if (nmbr <= 1) {

cout << nmbr;

return;
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remainder = nmbr$%2;
binary(nmbr >> 1);
cout << remainder;

}

4.3.7 The main function

I wrote the main function to work as described in the Rabbit algorithm by declaring

variables, calling functions by passing the parameters accordingly.

[f===============================c=*/
[f============ main function==========*/
[f================================*/

void main(void)
{
clrscr();

uint32 sec, x2, rec;

t_instance instnc([8]={0,0,0,0,0,0,0,0};
t_instance *abc;

abc=instnc;

byte key[8]={01,01,01,01,01,01,01,01};
const byte* ky=key;

char dta[4]={'A',00,00,00};

const byte *def, *source=dta;

byte *destntn;
byte des=0;

destntn=&des;
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size_t dt_sz=16;

key setup (abc, ky) ;

cipher (abc, source,destntn, dt_sz);

getch () ;

4.3.8 Variables:

Beside the variables declared in the functions, the following variables have been defined in

the Rabbit header file.
o Uint32 is defined in the Rabbit header file as of type unsigned int

e Byte is defined as unsigned char

e ¢ instance is the structure to store the instance data (internal state) uint32 x[8],
uint32 c[8], uint32 carry.

4.3.2 Implementation In Visual C++

About all the code was same as that in Turbo C++
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5 Analysis and Results

5.1In Turbo C++

5.1.1 XOR’ing the int variables in Turbo C++

In the given Rabbit code the following variables are defined as of type unsigned int with the
type defined as uint32
e State variables

o Counter variables

The following were defined as of type unsigned char with the type name as byte

e The initial key value

In Turbo C++ v3 the int is of 2 byte and char is of 1 byte on this processor and hence ifa

variable is shifted left or to right by 16 bits it gives a simple zero result for example:

0101111101011011

If this is shifted to left the result is shown bit by bit as:
(0101111101011011) <<16
1011111010110110
0111110101101100
1111101011011000
1111010110110000
1110101101100000
1101011011000000
1010110110000000
0101101100000000
1011011000000000
0110110000000000
1101100000000000
1011000000000000
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0110000000000000
1100000000000000
1000000000000000
0000000000000000

if rotated towards right then:
(0101111101011011)>>16

0010111110101101
0001011111010110
0000101111101011
0000010111110101
0000001011111010
0000000101111101
0000000010111110
0000000001011111
0000000000101111
0000000000010111
0000000000001011
0000000000000101
0000000000000010
0000000000000001
0000000000000000
0000000000000000

That’s what being done in the cipher function during key extraction from the state variables.

By this,before the XORing with plaintext, the extraction scheme of the code is trimmed as:

Cl= P1 ~ p instance->x[0]
C2= P2 ~ p_instance->x[2]
C3= P3 ” p_instance->x[4]

C4= P4 "~ p_instance->x[6]
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So the encryption text is XOR’ed with some of the values of state variables directly, Key
extraction system is no more handy here.

On this basis, most of the following results find clues towards weaknesses.

5.1.2 The Affect, on the State Variables, of Calling Next State Function More
Than Once

Simply, it means simple iteration of the system more than once.

a)

When there was no function call to key-setup function and just a next_state function from the
cipher function, the resﬁlts were:

Input key value:{0,0,0,0,0,0,0,0}

Input text: {*A’,00,00,00,00,00,00,00}

The values of State Variables are:

X0=28731.....cceuencn. 1111010011010111
X1=62679................ 1011110110100010
X2=48546................ 1111101101100100
X3=64356................ 1011110110100010
X4=48546............... 100000100011110
X5=16670................ 1011110110100010
X6=48546................ 1110000101111110
X7=57726................ 1101001101001101
Ciphertext output is:

C1=28794 binary................ 111000001111010
C2=48546 binary: ................ 1011110110100010
C3=48546 binary................. 1011110110100010
C4=20898 binary................ 101000110100010
Result:

e Here, for the values of the state variables, it’s obvious that
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X2=X4=X6

It’s because of the fact that the input key is not taken to initialize the sub-key and

hence to initial state variables

¢ Beside this If we note the second , third and fourth part of the cipher text,

C2=X2
C3=X4

The reason is that if we go the previous trimmed function as described in equ(A),The
first part of the cipher is dependent on X[0], the second on X][2], the third on X[4],

and the fourth on X[6].

The general result was same for any value of input text and for any value of input key.

b)

By deleting the “next_ state” function call from the function “cipher” and simply calling

key_setup function(function that actually initializes the state variables and also calls the next

state function four times) from the main, the results are shown in table 5.1

Input Output
Initial state | Last updated | Cipher
key text sub-key | variables state texts
variables
{00,00,00,00,00,00,00,00} | {'A",00,00,00} | k0=0 Kx[0]=0 X0=42338 | C1=42275
k1=0 Kx[2]=0 X1=29562 | C2=24211
k2= Kx[4]=0 X2=24211 C3=57907
k3=0 Kx[6]=0 X3=39214 | C4=18971
Kx[1]=0 X4=57907
Kx[3]=0 X5=10505
Kx[5]=0 X6=42011
Kx[7]=0 X7=15259
{11,00,00,00,00,00,00,00} | {'A',00,00,00} | k0=11 Kx[0]=11 X0=50178 | C1=50243
k1=0 Kx[2]=0 X1=28072 | C2=2101
k2= Kx[4]=0 X2=2101 C3=23826
k3=0 Kx[6]=0 X3=14324 | C4=21854
Kx[1]=0 X4=23826
Kx[3]=0 X5=10583
Kx[5]=0 X6=47966
Kx[7]=0 X7=59605
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{11,11,00,00,00,00,00,00] | {A,00,00,00} | k0=2827 | Kx[0]-2827 | X0=63365 | C1=63428
KI=0 | Kx[2]=0 |X1=19778 |C2=18613
K2=0 | Kx[4]=0 | X2=18613 |C3=27851
K3=0  |Kx[6]=0 |X3=51744 |C4=41478
Kx[1]=0 | Xd=27851
Kx[3]=0 | X5=17033
Kx[5]=0 | X6=19462
Kx[7]=0 | X7=22355
{11,11,11,00,00,00,00,00} | {A,00,00,00} | K0=2827 | Kx[0]=2827 | X0=63645 | C1=63708
Ki=11 |Kx[2]=11 |X1=18447 |(C2=49334
K2=0 | Kx[4]=0 | X2=49334 | C4=55550
K3=0 | Kx[6]=0 | X3=16346 |C3=36078
Kx[1]=0 | Xd=36078
Kx[3]=0 | X5=14413
Kx[5S]=0 | X6=14078
Kx[7]=0 | X7=1583
{11,11,11,11,00,00,00,00} | {A,00,00,00} | kK0=2827 | Kx[0]=2827 | X0=40781 | C1=40716
K1=2827 | Kx[2]-2827 | X1=56176 | ._
K2=0 | Kx[4]=0 |X2=39774 |C2739774
K3=0 | Kx[6]=0 | X3=56624 |C3=13838
Kx[1]=0 | X4=13838 | .
Kx[3]=0 | X5=44959 | C4=27502
Kx[5]=0 | X6=34158
Kx[7]=0 | X7=46413
K0=2827 | Kx[0]=2827 | X0=55618 | C1=55555
K1=2827 | Kx[2]=2827 | X1=12686 | C2=28202
K2=11 | Kx[4]=11 | X2=28202 |C3=19203
K3=0 | Kx[6]=0 | X3=11487 | C4=48021
Kx[1]=0 | X4=19203
Kx[3]=0 | X5=52744
Kx[5]=0 | X6=21909
Kx[7]=0 | X7=47675
{1T,11,1L,11,11,11,00,00} | {A',00,00,00} | k0=2827 | Kx[0]=2827 | X0=38106 | C1=38043
K1=2827 | Kx[2]=2827 | X1=62208 | C2=21754
K2=827 | Kx[4]=2827 | X2=21754 | C3=13418
K3=0 | Kx[6]=0 | X3=1049 | C4=8101
Kx[1]=0 | X4=13418
Kx[3]=0 | X5=50216
Kx[5]=0 | X6=61861
Kx[7]=0 | X7=2669
(ILILILILILILIL,00) | {A,00,00,00} | K0=2827 | Kx[0]=2827 | X0=51417 | C1=51352
K1=2827 | Kx[2]=2827 | X1=26344 | C2=40610
K2=2827 | Kx[4]=2827 | X2=40610 | C3=59696
I3=11 |Kx[6]=11 |X3=52220 |C4=54125
Kx[1]=0 | X4=59696
Kx[3]=0 | X5=35258
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Kx[5]=0 X6=15725
Kx[7]=0 X7=6075
{11,11,11,11,11,11,11,11} | {'A',00,00,00} | k0=2827 | Kx[0]=2827 | X0=41337 | C1=41272
k1=2827 | Kx[2]=2827 | X1=55000 | C2=52433
k2=2827 | Kx[4]=2827 | X2=52433 | C3=16816
k3=2827 | Kx[6]=2827 | X3=56549 | C4=37117
Kx[1]=0 X4=16816
Kx[3]=0 X5=43181
Kx[5]=0 X6=32509
Kx[7]=0 X7=13608
Table 5.1
Conclusion:
. The values of state variables reflect the input key properties if the system is not

iterated four times

o After getting different values of state variables against different input values show

that the values of state variables and hence the output key repeat for each element

value by val%256 where val is any input key value of the element.

Noe: The results shown above are found after some changes of the destination and the source

bits of the Rabbit code according to the size of variables rather the one given in the Rabbit

code to see the impact of key_set_up function exclusively.

5.1.3 Partial recovery of the key from state variables.

Wetook the Input key value as an array of unsigned char as defined in the Rabbit header file.

It consisted of 8 elements of 8*8=64 bits (imaginary 8*16=128bits).

To get another interesting fact yet a flaw of the Rabbit code,wechecked the affect of

changing values of different elements of the key and saw the result on the final state variables

and hence on the output. By analyzing the results, it was possible to recover the certain

elements of the input key partially. The results are shown in table 5.2

# Input

Output
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key Text sub-key | Initial state Last Cipher
variables updated texts
state
variables
a| 00,00,00,00,00,00,00,00 | “A’,00,00,00 |k0=0 Kx[0]=0 X0=63358 | C4=21706
k1=344 | Kx[2]=344 |X1=2779 | C3=20580
k2=0 Kx[4]=0 X2=13357 | C2=13357
k3=0 Kx[6]=0 X3=25539 | C1=2184
Kx[1]=0 X4=20580
Kx[3]=0 X5=40711
Kx[5]=0 X6=21906
Kx[7]=0 X7=8620
b| 01,00,00,00,00,00,00,00 | °A’,00,00,00 | k0=0 Kx[0]=0 X0=63358 | C1=2184
k1=344 | Kx[2]=344 | X1=2779 | C2=13357
k2=0 Kx[4]=0 X2=13357 | C3=20580
k3=0 Kx[6]=0 X3=25539 | C4=21706
Kx[1]=0 X4=20580
Kx[3]=0 X5=40711
Kx[5]=0 X6=21906
Kx[7]=0 X7=8620
¢| 01,01,00,00,00,00,00,00 | °A’,00,00,00 | k0=0 Kx[0]=0 X0=63358 | C1=2184
k1=344 | Kx[2]=344 | X1=2779 | C2=13357
k2= Kx[4]=0 X2=13357 | C3=20580
k3=0 Kx[6]=0 X3=25539 | C4=21706
Kx[1]=0 X4=20580
Kx[3]=0 X5=40711
Kx[5]=0 X6=21906
Kx[7]=0 X7=8620
d} 01,01,01,00,00,00,00,00 | ‘A’,00,00,00 | k0=0 Kx[0]=0 X0=63358 | C4=21706
k1=344 | Kx[2]=344 | X1=2779 | C3=20580
k2= Kx[4]=0 X2=13357 | C2=13356
k3=0 Kx[6]=0 X3=25539 | C1=2184
Kx[1]=0 X4=20580
Kx[3]=0 X5=40711
Kx[5]=0 X6=21906
Kx[7]=0 X7=8620
e| 01,01,01,01,00,00,00,00 | “A’,00,00,00 | k0=0 Kx[0]=0 X0=63358 | C3=21706
k1=344 | Kx[2]=344 | X1=2779 | C3=20580
k2=0 Kx[4]=0 X2=13357 | C2=13612
k3=0 Kx[6]=0 X3=25539 | C1=2184
Kx[1]=0 X4=20580
Kx[3]=0 X5=40711
Kx[5]=0 X6=21906
Kx[7]=0 X7=8620
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f{ 01,01,01,01,01,00,00,00 | ‘A’,00,00,00 | k0=0 Kx[0]=0 X0=63358 | C1=2184
k1=344 |Kx[2]=344 |X1=2779 | C2=13612
k2= Kx[4]=0 X2=13357 | C3=20580
k3=0 Kx[6]=0 X3=25539 | C4=21706
Kx[1]=0 X4=20580
Kx[3]=0 X5=40711
Kx[5]=0 X6=21906
Kx[7]=0 X7=8620
g| 01,01,01,01,01,01,00,00 | “‘A’,00,00,00 |kO0=0 Kx[0]=0 X0=63358 | C4=21706
k1=344 | Kx[2]=344 |X1=2779 [ C3=20580
k2=0 Kx[4]=0 X2=13357 | C2=13612
k3=0 Kx[6]=0 X3=25539 | C1=2184
Kx[1]=0 X4=20580
Kx[3]=0 X5=40711
Kx[5]=0 X6=21906
Kx[7]=0 X7=8620
h{ 01,01,01,01,01,01,01,00 | °A’,00,00,00 | k0=0 Kx[0]=0 X0=63358 | C4=21706
k1=344 | Kx[2]=344 | X1=2779 | C3=20581
k2= Kx[4]=0 X2=13357 | C2=13612
k3=0 Kx[6]=0 X3=25539 | C1=2184
Kx[1]=0 X4=20580
Kx[3]=0 X5=40711
Kx[5]=0 X6=21906
Kx[7]=0 X7=8620
i| 01,01,01,01,01,01,01,01 | °A’,00,00,00 [kO=0 Kx[0]=0 X0=63358 | C1=2184
k1=344 |[Kx[2]=344 | X1=2779 | C2=13612
k2=0 Kx[4]=0 X2=13357 | C3=20837
k3=0 Kx[6]=0 X3=25539 | C4=21706
Kx[1]=0 X4=20580
Kx[3]=0 X5=40711
Kx[5]=0 X6=21906
Kx[7]=0 X7=8620
Table 5.2
Conclusion:
1. In case (c), we can clearly see the following relation:
C2gpX2-Kk3
K3 is the value of input key of the third element of the input key array
The above result is same for the following form of input key:
Input key ={ k1,k2,k3,0,0,0,0,0}
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Where k1, k2, k3 are any value for the first second and third element of the input

key array respectively

It’s also important to mention that values are taken of the form (key %255) here

key is the given input key value

2.In case (h), there is an obvious relation:

The above result is same for the following form of input key:
Input key={k1,k2,k3,k4,k5,k6,k7,0}

C3Dx4=k7
K7 is the value of input key of the seventh element of the input key array.

Where k1-k7 are any value for the first to seventh element of the input key array

respectively.

5.1.4 Repetition of Output key value from the different output

5.1.4.1 Single Input key

In this case the key is repeated simply after 256 as it is the maximum number range for

ASCII character in this window system.

5.1.4.2 Character array of 8 elements

If the code is run as it’s done in 5.1.3 , the results are obvious in that case.

5.1.5 Affect of Length of Input Text on the cipher function

I got the following results by changing the value of input text. The results are as in table 5.3

Input Output
Last updated | Cipher texts
Text state variables
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Conclusion:

’a” X0=58302 C1=58335
X1=4190 C2=22472
X2=22472 C3=1237
X3=3759%4 C4=39182
X4=1237
X5=43520
X6=33038
X7=44703

’ab” X7=44703 C1=33247
X6=33038 C2=22442
X5=43520 C3=1237
X4=1237 C4=33038
X3=3759%4
X2=22472
X1=4190
X0=58302
”abc” X0=58302 C1=33247
X1=4190 C2=13482
X2=22472 C3=1206
X3=37594 C4=33038
X4=1237
X5=43520
X6=33038
X7=44703
?abcd” X0=58302 C1=33247
X1=4190 C2=13482
X2=22472 C3=24758
X3=37594 C4=33130
X4=1237
X5=43520
X6=33038
X7=44703
Table 5.3

¢ In the first case the C2 and C4 are not affected by the input or in other
words(according to equ B) C2=X2, C3=X4
e In the second case C2 D X2 gives the input text, and also C3=X4, C4= X6

¢ In the Third case C3X4=input text on the cotresponding place, and C4=X6.
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¢ In the Fourth Case C4 gy X6=intput text on the corresponding place.
The above results can be written as:
For each nl there is a relation such that
Co1=X’ and Cpp=X"’
And also C, ® X’=I,
Here
nl is the number of input characters
C, is the n™ output cipher
X’ and X’ indicate the corresponding state variable affecting the output according to
equation B.

I, is the n® input character

It shows the clear evidence of the fact that the state variables are not being mixed randomly
before they are XOR’ed with the input text.

Note:In the above analysiswelimit the input text length up to four characters only.

5.2 Implementation in Visual C++

5.2.1 XOR’ing the int variables in VC++
In Visual C++ the int variable is of 4 bytes and a char variable is of 2 bytes so the problem

for an int variable to reduce to zero after 16 left or right shifts is eliminated here and the key
extraction function does a good work to extract the key from different values of the state
variables.

So now the game is as:
(10100010111101110011100101110111)>>16=00000000000000001010001011110111
(10100010111101110011100101110111)<<16=00111001011101110000000000000000

in the first step 16 most significant bits are shifted to the least significant location while in

the latter 16 least significant bits are shifted to the most significant location.

 5.2.2 The Affect, on the State Variables, of Calling Next State Function More
Than Once
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When there was no function call to key-setup function and just a next_state function from the

cipher function, the results were as in table 5.4

Input Output
key Text Last updated state Cipher texts
variables

00,00,00,00,00,00,00,00 | ‘A’,00,00,00, | X0=3520701919 C1=308037007

X1=340762410 C2=377978021
00,00,00,00 | x»194122249 C3=216370198

X3=3045877329 C4=129571995
X4=3158142099
X5=4011418509
X6=3523434189
X7=2021276874

99,00,00,00,00,00,00,00 | ‘A’,00,00,00, | X0=3520701919 C1=3080370070
X1=340762410 C2=3779780112(affecte

00,00,00,00 | %5_7194122249 d)

X3=3045877329 C3=2163701980
X4=3158142099 C4=1295719957
X5=4011418509
X6=3523434189
X7=2021276874

99,99,00,00,00,00,00,00 | °A’,00,00,00, | X0=3520701919 C1=3080370070

00,00,00,00 X1=340762410 C2=3779771664(affecte

X2=2194122249 d)
X3=3045877329 C3=2163701980
X4=3158142099 C4=1295719957
X5=4011418509
X6=3523434189
X7=2021276874

99,99,99,00,00,00,00,00 | A’,00,00,00, | X0=3520701919 C1=3080370070

00,00,00,00 X1=340762410 C2=377608976(affected)

X2=2194122249
X3=3045877329
X4=3158142099
X5=4011418509
X6=3523434189
X7=2021276874

C3=2163701980
C4=1295719957
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99,99,99 ,99,00,00,00,00 | °‘A’,00,00,00, | X0=3520701919 C1=3080370070
00,00,00,00 X1=340762410 C2=2183773456(affecte
X2=2194122249 d)
X3=3045877329 C3=2163701980
X4=3158142099 C4=1295719957
X5=4011418509
X6=3523434189
X7=2021276874
99,99,99,99,99,00,00,00 | ‘A’,00,00,00, | X0=3520701919 C1=3080370070
00,00,00,00 X1=340762410 C2=218377345(as
' X2=2194122249 previous)
X3=3045877329 C3=2163701951(affecte
X4=3158142099 d) ‘
X5=4011418509 C4=1295719957
X6=3523434189
X7=2021276874
99,99,99,99,99,99,00,00 | ‘A’,00,00,00, | X0=3520701919 C1=3080370070
00,00,00,00 X1=340762410 C2=218377345(as
X2=2194122249 previous)
X3=3045877329 C3=2163678143(affecte
X4=3158142099 d)
X5=4011418509 C4=1295719957
X6=3523434189
X7=2021276874
99,99,99,99,99,99,99,00 | ‘A’,00,00,00, | X0=3520701919 C1=3080370070
00,00,00,00 X1=340762410 C2=218377345(as
X2=2194122249 previous)
X3=3045877329 C3=2157190097(affecte
X4=3158142099 d)
X5=4011418509 C4=1295719957
X6=3523434189
X7=2021276874
99,99,99,99,99,99,99,99 | ‘A’,00,00,00, | X0=3520701919 C1=3080370070
00,00,00,00 X1=340762410 C2=218377345(as
X2=2194122249 previous)
X3=3045877329 C3=3818134463(affecte
X4=3158142099 d)
X5=4011418509 C4=1295719957
X6=3523434189
X7=2021276874
Table 5.4
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Conclusion:
Since there is no key setup_function call, any value of input key does not affect on state
variables.
However, the input key value does make a change in the out put text in a way that a change
in the first 8 bytes of the key changes the value of C2, while any change in the last 8 bytes of
the input key makes a change in the value of C3 leaving the values of C1 and C4 unchanged.
Note:
e The result was tested by different values of input key with a constant vale of input
text.

o The results are gotten by the same code as that used in the 5.1.2 a) case.

5.2.4 Repetition of Output key value from the different input.

e We took the code we changed in the case of 5.1.2 b) and got the results against
different input values to get the output
o When there is no key setup function call then the result of the above case is
obvious from 5.2.2 where the output values are repeated as they don’t remain
dependent on the input key
o If the Rabbit code is implemented smoothly it gives that:
o If the input key in form of single byte variable, it’s repeated after every 256
value.
o Whereas if it’s in the form of an array element, the values of the output key
generated is repeated for the value of each of the elements after every 256
provided that rest of the elements are constant. In short, for each element the

affective value of the input key in decimal is val%256
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Chapter6 conclusion

6. Conclusions and Future Enhancement

We analyzed the security of the stream cipher Rabbit against cryptanalytic attacks, i..
attacks based on the given code of the rabbit and the mathematical description of the
algorithm at two platforms.

6.1Conclusion:

6.1.1 Implementation in Turbo C++

As a result of implementation of the Code in Turbo C++ we are able to redefine the two
equations formerly defined in the Rabbit [18] as:
A,

Xo,i+1 = 8o, * (87,) + (86,

X1,ir1 = 81, t (80, <<<8) + g7,

Xo,ie1 = 82,1 + (81) * (80,)

X3ir1 = 83,1 +(g2,i<<<8) + gy

Xgi+1 = g4+ (g3,) + (82,) (A)

Xsir1 = 83,1 + (g4,;<<8) + g3

Here X; , ; is the state variable i at iteration j and g;; is the g_function defined
in the Rabbit[18]

The equation (A) gives the core equation for next state function that’s believed to
introduce the nonlinearity in the output key, but in this case it’s simple mixing of g
function. By this the formerly described model of rabbit will be reduced to as shown
in fig 6.1.
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° B

Fig 6.1: The model of Rabbit code when implemented in Turbo C++

B. The second equation thus formed from the described code is:

C1="P1 * p_instance->x[0]

C2=P2 ~ p_instance->x[2] B)

C3=P3 * p_instance->x[4]

C4=P4 » p_instance->x[6]
Here C; is the cipher text, and P; is the plaintext and p_instance->x[i] is the values of
state variable.

This equation leaves no transparency for the values of state variables those are needed

for the encryption/decryption of plaintext/ciphertext

Differential Key Attack On Rabbit 33



Chapter6 conclusion

6.1.2 Implementation in VC++

e Although the weaknesses don’t appear easily in this case yet one of them is the
affective input key value is limited to val %256 where val is any value of the input
key element.

e Beside that, without the explicit call of the key_setup function, as is in Rabbit
codef1 %the input key values don’t affect the state variables and hence on the output
key generation. To make it function properly we have to incorporate the keyset_up
function explicitly rather a function call of next state function given in
cipher_function of Rabbit [18]

6.2Future enhancements:

We openly invite the world to further analyze the cipher to get the key recovered fully or

partially even in more efficient way.
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