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Preface

In view of abundant applications of non-Newtonian fluids in industry and technology,
the interest in the study of such fluids has been increased during the last few years.
Mathematicians, modelers and computer scientist have been involved in carrying out
the flow analysis of the non-Newtonian fluids under various aspects. Several
constitutive expressions for these fluids have been suggested. These equations differ
between the shear stress and rate of strain in view of different characteristics of the
non-Newtonian fluids. As a consequence of these constitutive equations, the resulting
equations of non-Newtonian fluids in general are more complicated and higher order
in comparison to the Navier-Stokes equations. Considerable efforts have been devoted
to study the non-Newtonian fluids through analytic and numerical treatments. Some
progress on the topic can be mentioned in the studies [1-11]. In all these studies,
constant viscosity fluid is used. Massoudi and Christie [12] numerically examined the
pipe flow of a third grade fluid when viscosity depends upon the temperature. Ellahi
and Afzal [13] reported such solutions when third grade fluid saturates the porous
medium.

In chapter one, some basic definitions of fluids and homotopy are presented. Some
basic thermo-dynamical laws and basic concept of magneto-hydrodynamics are
introduced shortly.

Chapter two comprises the study of influence of variable viscosity and viscous
dissipation on non-Newtonian flow. This chapter concerns with the effect of constant
and variable viscosity on velocity and temperature distributions for a third grade fluid
in a pipe and the review work of Hayat et al [14].

In chapter three, the motivation comes from a desire to understand the magnetic field
effects on the pipe flow of a third grade fluid of ref. [14]. The viscosity here depends
upon the space coordinate. The relevant equations for flow and temperature have been
solved analytically by using homotopy analysis method [15-20]. Convergence of the
obtained solutions is explicitly shown. The effects of the various parameters of interest
on the velocity and temperature are pointed out. The present analysis is arranged as
follows.

In sections 2 and 3, the governing nonlinear equation is modeled and solutions are
developed, respectively for constant and variable viscosity by HAM. Convergence of
the obtained solutions is shown in section 4. Graphical results and discussion are given
in section 5 and 6, respectively.
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Chapter 1

Some elementary and basic

descriptions

1.1 Introduction

In this chapter, some basic definitions and concepts of various types of fluids are discussed.
Basic equations governing the flow are described. The basic idea of homotopy and advantages

of homotopy analysis method (HAM) are also explained in this chapter.

1.2 Basic definitions

1.2.1 Flow

A material undergoes a deformation when different forces act upon it. If the deformation

increases continuously without limit, the phenomena is known as flow.

1.2.2 Fluid

A fluid is the substance (liquids and gases) that has tendency to flow under the action of applied
shear stress, no matter how small it is. Some of the examples of liquid fluids are water, petrol,

diesel, oil, mercury etc. Fluids include liquids, gases and plasmas.



1.2.3 Fluid mechanics

Fluid mechanics is the branch of physical sciences concerned with how fluids behave at rest or
in motion. Fluid mechanics can be divided into fluid statics (the study of fluids at rest) and

fluid dynamics (the study of fluids in motion).

1.2.4 Deformation

The relative change in position or length of the fluid particles is known as deformation (strain).

1.2.5 Shear stress

A shear stress, denoted by 7 (tau) is defined as a stress which is applied parallel or tangential to

a face of a material, as opposed to a normal stress which is applied normally (perpendicularly).

1.2.6 Pressure

Pressure is an effect which occurs when a force is applied on a surface per unit area.

Mathematically,
F

P=Z,

(1.1)

where P is pressure, F' is the normal force and A is the area. The SI unit for pressure is Pascal

(Pa), equal to one newton per square meter (Nm~2 or kgm™1s72).

1.2.7 Density

The density of a material is defined as its mass per unit volume. Symbolically density is denoted

by p (the Greek letter rho). In mathematics it is written as

m

where m is the mass and V is the volume.



1.2.8 Viscosity

Viscosity of the fluid is defined as the property of the fluid that tends to resist the movement

of one layer of the fluid over adjacent layer of the fluid. Viscosity is very important property

of the fluids. While considering the fluid for various applications it is crucial to consider the

viscosity of the fluid. The top layer of the fluid flows at higher speeds, while the layers below

it move at slightly lesser speed. Thus the layers of the fluid offer resistance to the flow of the

adjoining layers. This property of the fluid is called as the viscosity of the fluid. Viscosity may

be constant or depend upon some factors like pressure, temperature, space etc. It is denoted

by the symbol yx and is given by

shear stress

b= rate of shear strain’

It is also termed as dynamic viscosity.

vetocity profile
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Fig.1.1 : The fluid flows in the form of various layers.

1.2.9 Kinematic viscosity

It is defined as the ratio of dynamic viscosity to fluid density and is denoted by v.

Mathematically, it is defined as

(1.3)

(1.4)



1.2.10 Viscous dissipation

An important consequence of the existence of shear viscosity is a loss of energy when fluid is
sheared. This frictional energy loss is referred to as viscous dissipation. The general action of
viscosity in a fluid flow is a tendency to convert the useful energy content of the fluid into heat.
The useful energy lost appears as an increase in the internal energy of the fluid, corresponding
to a rise in temperature. The rate of dissipation of energy per uI;it mass of fluid by the shear
viscosity is given by the viscous dissipation ¢. The viscous dissipation rate at any point in the

flow is given by
du

_ 2w
¢——(@

2, (1.5)

where du/dy is the rate of shear strain. Viscous dissipation has the dimension {L%*~3} and is

usually expressed in units of power per unit mass, i.e., J/(skg) in SI.

1.2.11 Shear thinning effect

Shear thinning is an effect where viscosity decreases with increasing rate of shear stress. Mate-
rials that execute shear thinning are called pseudoplastic. There are certain complex solutions

such as lava, ketchup, whipped cream, blood, paint and nail polishi, which describe such effects.

1.2.12 Shear thickening effect

A shear thickening effect is on€ in which viscosity of a fluid increases with the rate of shear
stress. Fluids which describe such effects are termed as dilatant. Mixture of cornstarch and

water (sometimes called oobleck) can easily be seen to perform this effect.

1.3 Classification of fluid

1.3.1 Ideal fluid

A non-existent, assumed fluid without either viscosity or compressibility is called an ideal fluid
or perfect fluid. In nature this type of fluid does not exist. Fﬁrthermore, a gas subject to
Boyle’s-Charle’s law is called a perfect or an ideal gas. It is the hypothetical form of fluids.

However, the fluid with negligible viscosity may be considered as an ideal fluid.



1.3.2 Real fluid

Real fluids are those in which fluid friction has significant effects on the fluid motion. In
otherwords we can not neglect the viscosity effects on the motion. Real fluids are further
classified into two classes on the basis of Newton’s law of viscosity. According to this law

“shear stress is directly proportional to the rate of deformation”. For one dimensional flow
it can be written as

du
Tyz = ,U'Ey‘a (1.6)

where Ty, is the shear stress and du/dy is the rate of deformation.

Newtonian fluid

A Newtonian fluid (named after Isaac Newton) is a fluid whose stress versus strain (deformation)
rate curve is linear and passes through the origin, i.e., Newtonian fluid obeys Newton’s law of
viscosity. Water, gasoline and mercury are some examples of Newtonian fluids.
Non-Newtonian fluid

A non-Newtonian fluid is a fluid whose flow properties are not described by a single constant

value of viscosity, i.e., it does not satisfy Newton’s law of viscosity. For non-Newtonian fluids

"Tyz=k(3—z>n, n#1 (1.7)

or

Tye =1 (%) ; (1.8)

on(2) "

is the apparent viscosity. Examples of non-Newtonian fluids are tooth paste, ketchup, gel,

where

shampoo, blood, soaps etc.



1.4 Types of flow

1.4.1 Steady flow

A flow for which the fluid properties (velocity, temperature etc.) remain independent of time.

For such flow

vV _y (1.10)
t b

where V is the velocity field and t is the time.

1.4.2 Unsteady flow

A flow for which fluid velocity depends upon time, i.e.,

ov

L #0. (1.11)

1.4.3 Laminar flow

Fluid flow in which the fluid travels smoothly or in regular paths. The velocity, pressure and
other flow properties at each point in the fluid remain constant. Laminar flow over a horizontal
surface may be thought of as consisting of thin layers, all parallel to each other, that slide

over each other. Examples include the flow of oil through a thin tube and blood flow through

capillaries.

1.4.4 Turbulent flow

Turbulent flow is a type of fluid flow in which the fluid undergoes irregular fluctuations or
mixing. Most kinds of fluid flow are turbulent, except for laminar flow at the leading edge of
solids moving relative to fluids or extremely close to solid surfaces, such as the inside wall of
a pipe, or in cases of fluids of high viscosity flowing slowly through small channels. Common

examples of turbulent flow are lava flow, atmosphere and ocean currents, the flow through



pumps and turbines and the flow in boat wakes and around aircraft-wing tips.

T

laminar \

o~ el | N
C S L
NS A

turbulent

o
=J
- —

Fig. 1.2 : Laminar and turbulent flow.

1.4.5 Compressible and incompressible flow

All fluids are compressible to some extent, that is changes in pressure or temperature will result
in changes in density. However, in many situations the changes in pressure and temperature
are sufficiently small that the changes in density are negligible. In this case the flow can be
modeled as an incompressible flow. Otherwise the more general compressible flow equations
must be used. Mathematically, incompressibility is expressed by saying that the density p of a
fluid particle does not change as it moves in the flow field, i.e.,

Dy _

= =0, (1.12)

where D/Dt is the material derivative, which is the sum of local and convective derivatives.

10



1.5 Force

Force is a vector quantity, used to demonstrate an impression which causes a free body to

undergo a change in velocity, i.e., acceleration.

1.6 Types of force

1.6.1 Surface force

Surface force is short-range force applying on a fluid element through physical contact between
the element and its surroundings, e.g. force asserted by pressure or shear stress represents the

surface force.

1.6.2 Body force

Body force is long-range force that acts on a small fluid element in such a way that the magnitude
of the body force is proportional to the mass of the element. Since the mass is defined to be
the product of density and volume, the magnitude of a body force is also proportional to the
volume of a fiuid element. Thus body force is expressed on a per-unit-volume basis in units
such as newtons per cubic meter (Nm™3) or pound-force per cubic foot (Ibfft3) and on a
per-unit-mass basis with units of acceleration. Gravitational and electromagnetic forces are the

common examples of body force. It is usually denoted by the symbol f.

1.7 Heat transfer

Heat transfer is that science which seeks to predict the energy transfer which may take place

between material bodies as a result of temperature difference.

1.8 Fundamentals of heat transfer

1.8.1 Conduction

When a temperature gradient exists in a body, experience has shown that there is an energy

transfer from higher temperature region to lower temperature region. We say that energy is

11



transferred by conduction and that the heat transfer rate per unit area is proportional to the

normal temperature gradient:

g 06
2 x == 1.13
A% bz (113)
When the proportionality constant is inserted, we reach
q= —kA%, (1.14)
Ox

where ¢ is the heat transfer rate and 86/9z is the temperature gradient in the direction of heat

flow. The positive constant k& is called the thermal conductivity of the material.

1.8.2 Convection

It is well known that a hot plate of metal will cool faster when placed in front of a fan than
when exposed to still air. We say that the heat is convected away and we call the process

convection heat transfer.

1.8.3 Radiation

Radiation heat transfer is concerned with the exchange of thermal radiation energy between
two or more bodies. No medium need exist between the two bodies for heat transfer to take

place (as is needed by conduction and convection).

1.8.4 Specific heat

Specific heat is the amount of heat or thermal energy required to raise the temperature of a unit
quantity of a body by one unit. It is denoted by the symbol ¢,. For example, at a temperature
of 15°C, the heat required to raise the temperature of a water sample by 1K (equivalent to

1°C) is 4.186 kJkg 'K 1.

1.8.5 Fourier’s law of heat conduction

The Fourier’s law states that the time rate of heat transfer through a material is proportional
to the negative gradient in the temperature and to the area at right angles to that gradient

through which the heat is flowing.

12



Mathematically, it is given by

dQ 9
= —kA—, (1.15)

in which @ is the amount of heat transferred.

Differential form

The differential form of Fourier’s Law of thermal conduction shows that the local heat flux q
is equal to the product of thermal conductivity k and the negative local temperature gradient
V8. The heat flux is the amount of energy that flows through the surface per unit area per unit
time, i.e.,

q=—kVé. (1.16)

Integral form

If we integrate the differential form over the whole surface S, we get the integral form of Fourier’s
law, that is
oQ

v _ _ . 1
= k?{VG dA, | (1.17)
S

where d A is total surface area.

1.8.6 Thermal conductivity

Thermal conductivity k is the property of a material that indicates its capability to conduct
heat. It appears basically in Fourier’s Law for heat conduction. Thermal conductivity is
measured in watts per kelvin per metre (WK ‘lm—l) . The reciprocal of thermal conductivity

is called thermal resistivity.

1.9 Some Basic laws

1.9.1 Law of conservation of mass

This law states that in any closed system, the mass is always invariant regardless of its changes
in shape when external forces are absent or the principle that matter cannot be created or

destroyed. In fluid mechanics, this law is also named as equation of continuity.

13



Mathematically, it is described as

dp
FLiv. =0. 1.1
5 TV (V) =0 (1.18)

1.9.2 Law of conservation of momentum

The law of conservation of momentum states that when some bodies constituting an isolated
system act upon one another, the total momentum of the system remains same. It is also
recognized as the Navier-Stokes equations derived by Claude-Louis Navier and George Gabriel
Stoke, used to describe the motion of the fluid. In an inertial frame of reference, the general

form of the equations of fluid motion is

v
p%—t-_—V-T-l-f, (1.19)

where T is the Cauchy stress tensor which is different for different fluids.

1.9.3 Law of conservation of energy

Energy in a system may take on various forms (e.g. kinetic, potential, heat, light). The law of
conservation of energy states that energy may neither be created nor destroyed. Therefore, the
sum of all the energies in the system is a constant. The laws of conservation of energy which is

also called the energy equation is described as

Do
pcpﬁzT-L—V-q, (1.20)

in which

L=VV. (1.21)

1.10 Magnetohydrodynamics (MHD)

Magnetohydrodynamics (MHD) is the academic procedure which studies the dynamics of elec-
trically conducting fluids. Examples of such fluids include plasmas, liquid metals and salt

water. The word magnetohydrodynamics (MHD) is derived from magneto- meaning magnetic

14



field; hydro- meaning liquid and dynamics- meaning movement. The field of MHD was initiated
by Hannes Alfvén for which he received the Nobel Prize in Physics in 1970.

The idea of MHD is that magnetic fields can induce currents in a rﬁoving conductive fluid,
which create forces on the fluid and also change the magnetic field itself. The set of equations
which describe MHD are a combination of the Navier-Stokes equations of fluid dynamics and

Mazwell’s equations of electromagnetism.

1.10.1 Lorentz force

The Lorentz force is the force on a point charge due to electromagnetic fields. It is given by

the following equation in terms of the electric and magnetic fields
F =¢(E+V x B), (1.22)

where F is the Lorentz force, g is the point charge, E is the electric field , V is the instantaneous
velocity of the particle and B is the magnetic field. When there is no electric field present, we

can write it as

F=1JxB, ' (1.23)

where J (=¢V) is the total current density.

1.10.2 Magnetic field

Magnetic fields are produced by electric currents, which can be macroscopic currents in wires
or microscopic currents associated with electrons in atomic orbits. The magnetic field B is
defined in terms of force on moving charge in the Lorentz force law. The SI unit for magnetic
field is Tesla. We can obtain the expression for magnetic force by neglecting electric field from
Eq. (1.22), i.e.,

F,, = ¢(V x B), (1.24)

where F, is the magnetic force.

15



1.10.3 Maxwell’s equations

; ‘ : etic field
Maxwell’s equations are the set of four equations which relate the electric and magn
to their sources, charge density and current density. Individually, these equations are known
as Gauss’s law, Gauss’s law for magnetism, Faraday’s law of induction and Ampere’s law with

Mazuwell’s correction. These equations are described as

vE=2 (1.25)
€0
v.B=0, (1.26)
oB
= 1.27
VxE T ( )
E
vV xB =#oJ+No€0%;- (1.28)

In the above equations g is the permittivity of the free space also called electric constant, yg
is the permeability of free space which is also called magnetic constant, g is the total charge
density and J is the total current density. The total magnetic field is B (=Bg + b), where b is

induced magnetic field. By Ohm’s law in generalized form we have
J=0(E+V xB), (1.29)

where o is the electric conductivity of the fluid. In the present case there is no applied electric
field, also the induced magnetic field is neglected due to the assumption of low magnetic Reynold

number. Therefore, the Lorentz force in the direction of the flow in a pipe becomes
(3 x B), = —0B}v, (1.30)

where By is the applied magnetic field and v is the velocity component normal to the magnetic

field and parallel to the flow.

16



1.11 Dimensionless numbers

1.11.1 Prandtl number

It is the ratio of the product of dynamic viscosity and specific heat to the thermal conductivity.

It is denoted by the symbol P, and is given by
p =tz (1.31)

1.11.2 Eckert number

The ratio between square of the free stream velocity to the product of specific heat and tem-
perature difference between the body and the surface is recognized as Eckert number and is

denoted by E,, i.e.,
2
Yo
%(00 —6c0)’

where vg is the free stream velocity and 8y — 8 represents the temperature difference.

1.12 Boundary layer

The flow region adjacent to the wall in which the viscous effects are significant is called boundary

layer.

1.12.1 Boundary layer thickness

The boundary layer thickness, signified by § is simply the thickness of the viscous boundary
layer region. Because the main effect of viscosity is to slow the fluid near a wall, the edge
of the viscous region is found at the point where the fluid velocity is essentially equal to the

free-stream velocity.

17
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thickness
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Velocity —m-
Fig 1.3 : Boundary layer thickness

1.13 Boundary conditions

The set of conditions specified for the behavior of the solution to a set of differential equa-
tions at the boundary of its domain. Boundary conditions are important in determining the

mathematical solutions to many physical problems.

1.14 Homotopy

A homotopy between two functions f and g from a space X to a space Y is a continuous map

H,

H:Xx[0,1] —Y, (1.35)
such that
H(z,0) = f(z) ‘ (1.36)
and
H(z,1) = g(z), (1.37)

18



where X denotes set pairing and x € X. If we consider the second element in the set X x [0,1],
then we can say that at time ¢t = 0, the function H equals f and at ¢ =1, H becomes g. Two
mathematical objects are said to be homotopic if one can be continuously deformed into the
other. The concept of homotopy was first formulated by Poincaré around 1900 ( Collins 2004).

When two functions f and g are homotopic, we relate them as

f~g. (1.38)

1.14.1 Homotopy analysis method (HAM)

HAM is the more efficient technique than the others to solve the non linear equations. Liao
developed this analytical method which is derived from the basic concept of homotopy from

topology.

1.14.2 The advantages of HAM

It is valid even if a given non-linear problem does not contain any small/large parameters at
all. It provides us an appropriate way to control the convergence of approximation series and
adjust convergence regions where essential. It can be employed efficiently to approximate a

non-linear problem by selecting various sets of base functions and linear operators.
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Chapter 2

The influence of variable viscosity
and viscous dissipation on the
non-Newtonian flow: An analytical

solution

2.1 Introduction

This chapter concerns with the effect of constant and variable viscosity on velocity and temper-
ature distributions for a third grade fluid in a pipe and the review work of Hayat et al [14]. The
governing equations are formulated mathematically. The resulting equations are second order
non-linear ODE’s and solved analytically by well known homotopy analysis method (HAM)
upto second order approximation. The impact of different material parameters occurring in the

concerned equations is verified graphically.
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2.2 Mathematical analysis of the problem

We analyze the steady flow of an incompressible, third grade fluid in a pipe. The z—axis is

taken along the axis of the flow. The velocity field (in cylindrical coordinates) is given by
V =1{0,0,v(r)]. (2.1)
By definition of incompressible fluids, the continuity equation (1.18) is
V.V =0 (2.2)
Using Eq. (1.16) in Eq. (1.20), we obtain
pcp%f =T -L+kV2. (2.3)
For third grade fluid, we have
T=—pI+pA+a1A2 + A2 + A3+ Bo(A1Ag + AgA)) + B3(trA2)A, (2.4)

where p; is hydrostatic pressure, I is the identity tensor and (i = 1,2) and §;(j = 1,2)
are material constants. The first three Rivlin-Ericksen tensors (A; — Aj) are defined by the
following general relations

Ay =L+ L, (2.5)

_ DAn—l
An = Dt

+A,(L+L'A,_;, n>1. (2.6)

Thermodynamical limitations [21] comprise

I Z 0, a1 Z 0, lal + a2| < AV 24[.1,53, ﬁl = ﬁg = O, ,63 > 0. (27)

Using Eq. (2.7) in Eq. (2.4), we have

T = —pI1+ pA; + 1Ay + A2 + B, (trA2)A;. (2.8)
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Using the velocity field given in Eq. (2.1), we obtain

0 00 00 &
L=|0 00], L'={0 0 0], (2.9)
dv
&9 0 00 0
0 0 &
Ai=L+L'=| 0 0 0 |, (2.10)
& 0 0
2(%)* 0 0
0 00
For steady fow
OA,
5 =0 (2.12)
SO
2()* 0 0
DA
A2=Tt1+A1L+LtA1= o o0 0|, (2.13)
0 00
()’ 0 o
Al = 0 0 0 ) (2.14)
0 0 (&)
0 2(%)°
tr(ADA, = o o |, (2.15)

2 cl v)3
Trr = —p1 + (26!1 + a2) (‘—j—:’j) s, Tre=0=7Tgp, Try = luf‘i_r_ + 2133 ((cil_'r) = Tar } (2 16)

2
Tog = —P1, Te: =0="Tp, Tz = —p1+ g (%g) .
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Neglecting body forces and using cylindrical coordinates (for the flow in a pipe), the momentum

equation (1.19) will be in simplified form as

1d dv 253 d dv 3 B Bp
;-d—r [Tﬂ (?E)jl + T% [7' (E) :| = 5, (2_17)

subject to the boundary conditions

dv ;
where
5= dv® (2.19)
p=pL— g ar .

is the modified pressure. Now using the definition of product of two tensors, we have

T.L =tr(TL) = T,Tg-zi, (2.20)
SO 0 4
TL =4 (%) + 285 (%) (2.21)
and )
v = '—rl'-ZZCir (#;—f) . (2.22)

The energy equation (2.3) becomes

2 4
W (%) + 28, (%) +E Edii_ (%’;)] ~0. (2.23)

The relating boundary conditions are

dé
8(R)=0 —(0) = 0. .
(R) =0, - (0) (2.24)
Using non-dimensionalization criteria, we set
] 7 0 9 -6,
V= —, T = —, =——,9= 2.25
% R 91— 8, (225)

23



and introducing the dimensionless parameters

A 2 2 2
o _aBl® 2Bz L _ _ Ho% (2.26)

=5 7 vopg  MoR2’ k(61 — 6o)’

the boundary value problems consisting of Eqgs. (2.17), (2.18), (2.23) and (2.24) become

4 pe(2)] 24 ()]

d?6  1dg dv\* dv\?
W+;J+F<%> u+A($> :l =0, (2.28)
‘ dv df
W =om =0, Loy=%w0)=o (2.29)

in which R, vp, ttp, 6o,  and 6; are the radius, reference velocity, reference viscosity, reference
temperature, pipe and fluid temperatures, respectively. Also, ¢; is the axial pressure drop, A is
third grade parameter and I' is related to the Prandtl and Eckert numbers. For simplicity we

have omitted the bar symbols.

2.3 Solution of the problem

We use homotopy analysis method (HAM) to solve the problem under consideration.
Case I: For the constant viscosity u=1

When we use yu = 1, the governing equations (2.27) and (2.28) in simplified form reduce to
dv  1ldv dv\?d?v A [dv\®
gﬁ+;a+3A(a:) m*:(a) =c (2.30)

d*0 146 dv\ 2 dv\*
W+FE+F(E> + AT (?d—'r‘) =0, (2-31)

respectively. We use the method of higher order differential mapping [22], to choose the linear

and

operator L, i.e.,
& 1d

L= pa) + e - ~ (2.32)
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The above operator satisfies the following relation
L[C1+ Calnr] =0. (2.33)
Here C; and Cy are the arbitrary constants. Integrating the linear part of Eq. (2.30), we get
1 9
vo(r) = Zc('r - 1), (2.34)

as the initial approximation of velocity v, which satisfies the linear operator L and boundary
conditions too.

Zeroth order deformation equation

For non-zero auxiliary parameter i and an embedding parameter p € [0, 1], the zeroth order

deformation equation in HAM is given by the following relation

. d*v*  1dv* dv*'\? d?v A [dv*\?®
(1 =p)L[*(r,p) — vo(r)] = ph [W + e +3A (E-) =y + p ( ar ) —c|, (2.35)

subject to the following boundary conditions
x dv*

mth order deformation equation
If we differentiate m—times the zeroth order deformation equations (2.35) and (2.36) with
respect to p, dividing by m! and finally taking p = 0, we have the mth order deformation

equation, of the following form -

E['Um - Xm'Um—l] = ﬁR'm('r): (2'37)
where
0, m<1
Xm = (2.38)
1, m>1
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and

1 m—1 k 1
Rp(r) = vy _1 + —T-vin_l +A Z Y1k Zv;c_j(;v;- +3v]) — c(1 = X,n)- (2.39)
k=0 =0

Corresponding boundary conditions take the following form
U (0) = v (1) =0, (2.40)

where prime denotes the differentiation with respect to r. From Eq. (2.35) by setting p = 0, it
can be shown that

v*{(r,p) = vo(r). . (2.41)

By the definition of homotopy, as p varies from 0 to 1, v*(r, p) varies from initial guess vg(r) to

the exact solution v(r), that is for properly chosen A, we get
v*(r,p) =v(r) forp=1. (2.42)

Then employing the Taylor’s theorem, we can write

v'(r,p) =w(r) + Y vm(r)p™, (2.43)
m=1
where
_ 1 0™v*(r,p)
Um(T) o R N (2.44)

Now using Eq. (2.42) in Eq. (2.43), we get

[e o]
v(r) = vo(r) + Z vm(r). (2.45)
m=1
Differentiate Eq. (2.35) with respect to p and set p = 0, then after solving the resulting equation
we obtain the following
1

v (r) = §§fuxc3(7~4 -1). (2.46)

Again differentiating Eq. (2.35) with respect to p, putting p = 0 and using the similar procedure,
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we get
1

1
vo(r) = -3—2-f'LAc3(1'4 -R+1)+ 7

K2 (7‘6 -1). (2.47)
Now from Taylor series, we have the three terms solution as
v(r) = vo(r) + va(r) + va(r). (2.48)

Finally, inserting Eqgs. (2.34), (2.46) and (2.47) in above relation, we get the expression for

velocity as follows
v(r) = %c(r2 -1+ %mc“(r“ ~)(h+2)+ 6—1452/\%5(7"6 - 1). (2.49)

Now using Eqgs. (2.31) and (2.49), with boundary conditions (2.29), we can find 8 by using

Cauchy-Euler equation and computer software, ‘mathematica’. The result is given below

6(r) = Bi(r*—1)+ Ba(r® — 1)+ Ba(r® — 1) + By(r'* - 1)
+B5(r'2 — 1) + Bg(r** — 1) + By(r'® — 1) + Bg(r}® — 1)

+Bg(r?® — 1) + Byo(r? ~ 1), (2.50)

The calculated values of coefficients B;(: = 1,2,...10) are given in Appendix A.
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Case II: For the variable viscosity pu=r

Let us now assume that the viscosity is space dependent and choose y = r. From Eq. (2.27),

we have .
1d [ ,dv Ad
il = 2.51
rdr( dr>+rdr[<dr>} © (25
d2v do\*d2 A [dv\®
— —t =] = 2.52
R 2 3A(7‘) dr2+r(dr> & (252)
Py 2dv 3A [dv\ d A [dv\® ¢
mrretT (d) ) (I) = (2:53)
with boundary conditions (2.29). Similarly, Eq. (2.28) simplifies to
2
ZTZ + = (flf) +Tr (%) +TA (Z:) =0, (2.54)

which corresponds to the boundary conditions (2.29). The linear operator in this case will be

2 2d
Ly = ar— + —'a—r (2.55)
which gives
Ly [03 + 9;—4] =0, (2.56)

where C3 and C, are constants of integration. Thus the initial approximation for the velocity
v is

vo (r) = éc(r2 - 1). (2.57)

With the use of Eq. (2.53), one can define the zeroth order deformation equation for v as

2, % * *\ 2 2,&: o 3
(1 -p)Lafo*(r,p) —vo(r)] =p {d—+2iv—+§é<i”—> d—+r—ﬁ<i—) -5] (2.58)

r dr r \dr dr? dr r

and boundary conditions will be same as in Eq. (2.36). The expression for # can also be defined
in the same manner. The mth order deformation equation can be obtained by using similar

procedure like that of given in case 1. Following the same procedure, we find three terms series
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solution of v as follows

1

o(r) = %c(rz -1)+ %hc(rz —1D(h+2)+ %hAc3(2h+ D -1) - §nc(n+ 2)(r~1)+
izzs 4 __ _iz 30,2 2.59
324h AP (r® —1) - 12h Ac’(r® - 1). (2.59)

For finding the solution of temperature #, we use ‘mathematica’ to solve the Cauchy-Euler

equation. Then we obtain

8(r) = Bu(r® —1) 4+ Bia(r® —1) + Bia(r* = 1) + B1a(r® — 1) + Bys(r® - 1) +
Big(r” — 1) + Biy7(r® — 1) + Big(r® — 1) + B1o(r'® — 1) + Bao(r'' — 1) +

Bo1(r'? = 1) + Baa(r'® — 1) + Baa(r'* - 1), (2.60)
where the coefficients B;(j = 11,12, ...23) are given in Appendix A.

2.4 Graphical explanation

In this section, we discussed the results of velocity and temperature profiles for both constant

and variable viscosity with the help of graphs.

=5
c=-4

=3
C:—Zf
c=-1

Fig. 2.1 : Influence of ¢ on velocity when A = 1.
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Fig. 2.4 : Influence of A on temperature when ¢ = -1, I" = 10.

Fig. 2.5 : Influence of T on temperature when ¢ = —1.75, A = 1.
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Fig. 2.6 : Influence of ¢ on velocity when A = 1.

Fig. 2.7 : Influence of A on velocity when ¢ = —1.
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Fig. 2.8

Fig. 2.9

Influence of ¢ on temperature when I = 30, A = 3.35.
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Influence of A on temperature when I' = 20, ¢ = —5.4.
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Fig. 2.10 : Influence of I' on temperature when ¢ = —8.8, A = 1.35.

2.5 Results and discussions

As mentioned above, the solution for the velocity and temperature distributions are plotted
against the pipe radius. Figs. 2.1 to 2.5 show the variation of velocity and temperature profiles
for constant viscosity case and for space dependent viscosity, Figs. 2.6 to 2.10 are presented. In
these figures, the variation of the velocity v and temperature § with the emerging parameters
A, ¢ and T is revealed.

In Fig. 2.1, the effect of pressure gradient c is dépicted (when £ is approximately equal to
—0.05). It is clear that the velocity approaches its maximums at the center of the pipe and
varies inversely with c¢. Also, the effect of ¢ on 6 ( in Fig. 2.3) is similar to that of velocity.
The effect of third grade parameter A on the velocity and temperature distributions are shown
in Figs. 2.2 and 2.4, respectively. As expected, an increase in A results in a decrease in both
velocity and temperature. However, the temperature profile is more flatter than the velocity
profile for same values of A. Fig. 2.5 illustrates the effect of the parameter I on temperature
distribution 6. It is concluded that @ increases with the increase of I' and hence the thermal
boundary layer thickness decreases.

So far, we disclosed the results of the velocity and temperature for constant viscosity model.
Now we turn our consideration to the discussion of above mentioned parameters for space

dependent viscosity. Figs. 2.6 to 2.10 represent the influence of all dealing parameters (¢, A
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and I') on both, velocity and temperature solutions when viscosity is depending upon space.
From these figures, it is observed that the impact of ¢, A and T on v and 8 (when £ is nearly

equal to —0.01) is similar to that of constant viscosity case.
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Chapter 3

Effects of MHD on variable viscosity

and viscous dissipation in a third

grade fluid: HAM solution

3.1 Introduction

In this Chapter, we extend the work of the preceding chapter by imposing the MHD term in
momentum equation. Analytic solutions have been obtained by homotopy analysis method
(HAM). The influence of different parameters appeared in the resulting equations is described

graphically and obtained consequences are discussed.

3.2 Mathematical structure

Consider the MHD steady flow of a third grade fluid in a pipe. The fluid is electrically conduct-
ing in the presence of an applied magnetic field By. The electric and induced magnetic field are
neglected. The viscosity of the fluid is not constant. The flow is maintained due to constant
pressure gradient. In the presence of MHD as a body force, the momentum equation (1.19)
becomes

DV
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After simplification, the governing equations (3.1) and (2.3), respectively reduce to

1d dv 285 d dv\® 0p 2
- = - o Bled — = £ + 0B? v,
rdr (T'Ltdr) T | \ar 0z oFew

dv\? dv\* 1d [ df
: (%) + 26 (%) T [;;,; (rg;)] =0

with respect to the boundary conditions (2.29).
Now using Eqs. (2.25), (2.26) and introducing a new parameter
oBER?

M? =
o ’

the above Egs. (3.2) and (3.3) are non-dimensionalized as

dudv pdv d*v dv\2d*v A [dv\? 9
pov  pov, &V T e N ¥
drar | rar P2 +3A (dr) a2 T \@ et M

4260  1d6 dv\? dv\?
aﬁ+;d—r+r(5) [/J,-I-A(J) =0,

respectively, where M is representing the MHD parameter.

and

3.3 Solution of the problem

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

Our interest in this section is to carry out the analysis for the homotopy solutions for two cases

of viscosity and viscous dissipation.
Case I: For constant viscosity model p =1

The zeroth-order deformation problems become
(1 - p)L[’U*(’I‘,p) - 'UO(T)] = thI [’U*(Tap)7 6* (T7 p)])

(1 - p)L[0" (r,p) — Bo(r)] = phN[v*(r, p), 8" (r, )],

dv*(r,p)| _ 96"(r,p)

or o

v*(1,p) = 0*(1,p) =0, 5
r=0 T

=0,
r=0
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. . 1dv*  d?v* A [(dv*\? dv*\? d2v* .
Nl[v (’l‘,p),9 (r,p)] = ;7_’_?17_*-; ( d7‘> +3A (Ti:) dr? —M2’U -6

. . 1de*  d%0* dv*\? dv*\*
Nl (), 67,9 = 2+ T+ D () e ra (42)

For p =0 and p =1, we have

v*(r,0) = vo(r), 6*(r,0) = bo(r) and v*(r, 1) = v(r), 6*(r,1) = 6(r).

By Taylor’s theorem, we have

o0 o0
v*(r,p) = vo(r) + ¥ vm(r)p™, 8*(r,p) = Bo(r) + Y _ Bm(r)P™,
m=1 m=1
where
_ 1 9™v*(r,p) 1 9™8*(r,p)
’Um(’r) il op™ p=0; em(’r) ~m! apm pzo.

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

The convergence of the series (3.13) depends upon h. We choose 4 in such a way that the series

(3.13) is convergent at p = 1, then due to Eq. (3.12) we have

v(r) =wu(r) + Y vm(r), 8(r) = bo(r) + > _ Om(r).

m=1 m=1

The mth order deformation problems are
Lvm(r) = XmVm-1(r)] = AR1m(r),

L8m(r) = XonBm1 ()] = BR20m (1),

Um(1) = 0m(1) =0, v, (0) = 6,(0) =0,

where
-1 k
ldvm_y d?vm_1 A'g AU 1_k \ dvg_; dy;
Rlm(r) = dr dr? + r E Z dr dr dr
k=0 i=0
m-1 k
dvg,_1—k \ dvg_; d°v
34 Z( Tr:irl ) dizd;_(l Xm) ¢ = M0
k=0 i=0

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)



and

dbp 1 20, ! du,, d
Rom(r) = % m-1 , @0m-1 | (J’M)_”ﬁ+

dr dr

m-1 k J
AVm_1-k \ dVk—; dvj_; dy;
AFZZ, ( dr dr dr dr’

Case II: For space dependent viscosity pu=r

The zerotfi— and mth—order deformation problems are
(1 - p)ﬁl[’ll‘(r,p) - UO(T)] = pﬁ-/\[3[’l)*(7', p)a 0*(1", p)])

(1 - p)E[G*(r,p) - HO(T)] = PW[U*(T, p)1 9‘(7‘7 p)]’
L1[vm(r) = XmVm—1(r)] = AR3m(r),
L(Om(r) = Xmbm-1(r)] = hR4m(r).

Here

Nalv*(r,p), 6"(r,p)] =

rdr + dr? dr r dr?

. . 1d6*  d26* dv*\ 2 dv*\*
Nalo* (r,),6°(r, )] = = +W+r(d_r> +m(dr) m(

m—1

2dv* | o A(dv*)3+@(@_*)2d2v* M2y*
dr

dr dr? dr

dv %u £ (dv dvg—; dv;
Rin(r) = 2rmsl 2 mlmzz( mo1- k) i

k=0 =0

k
3A 21 d’Um_l k d’Uk_.-L' d Ui (1 M2
r 2 dr ar: v Xm)er — M rvm_y

k=0 i=0
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(3.20)

(3.21)

(3.22)
(3.23)

(3.24)

(3.25)

(3.26)

(3.27)



and

m—

dr

dr

1d6,,, d29m_ A1\ dug
- Z

=0

k 3
dVmn—1—k k—j AU dvl
+AT Z ( ) dr dr dr’

3.4 Convergence of the solution

(3.28)

It is noticed that the explicit, analytical expressions (3.16), (3.17),-(3.23) and (3.24) contain the

auxiliary parameter h. As specified by Liao (23], the convergence region and rate of approxima-

tions given by the HAM are strongly dependent upon A. Figs. 3.1 and 3.2 potray the A—curves

of velocity and temperature profiles, respectively just to find the range of % in case of constant

viscosity. The range for admissible values of & for velocity in this case is ~2.4 < h < 0.4 and for

temperature is —2.2 < A < 0.5. Figs. 3.4 and 3.5 represent the i—curves for variable viscosity

when p = r. The admissible ranges for both velocity and temperature profiles are —3 < A <

0.4 and —2.8 < h < 0.8, respectively. In Figs. 3.3 and 3.6, the graphs of residual errors for

constant and variable viscosity are plotted, respectively. The error norm 2 of two consecutive

approximations over (0, 1] with HAM by 10t/ order approximations are calculated by

Ey = llz[vlo(z/IO] =f (say).

=0
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It is seen that the error is minimum at A = —0.05 for constant viscosity and i = —0.01 for

variable viscosity. These values of k also lie in the admissible range of A.
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Fig. 3.1: h—curve for velocity in case of constant viscosity at 10tk order approximation when

c=-01,A=01T=1 M=02.
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Fig. 3.2: h—curve for temperature in case of constant viscosity at 10t/ order approximation

whenc=-~0.1,A=01,T=1 M =0.2.
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Fig. 3.3: Residual error curve for constant viscosity when c=—-13, A=9,T=1, M =7.
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Fig. 3.4: h—curve for velocity in case of variable viscosity at 10th order approximation when

c=-01,A=01T=1, M =02
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Fig. 3.5: h—curve for temperature in case of variable viscosity at 10t% order approximation

whenc=—-0.1,A=01,T'=1, M =0.2.
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Fig. 3.6: Residual error curve for variable viscosity when c= -2, A=1.17,T'=1, M = 1.
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3.5 Graphical results

Here, the solutions of the velocity v and temperature 6 distributions are plotted against the pipe
radius. The velocity and temperature plots for constant viscosity are described in the Figs. 3.7
to 3.13 and Figs. 3.14 to 3.20 represent the graphs for the case of space dependent viscosity. In
these figures, the variations for pressure gradient c, third grade parameter A, I which is related
to the Prandtl and Eckert numbers and MHD parameter M are illustrated. From Figs. 3.7 to
3.9, It can be seen that velocity is inverse function of ¢ and A. The effects of above mentioned
parameters on temperature is similar to that of velocity which are shown in Figs. 3.10 and
3.11. In Figs. 3.9 and 3.13, it is clear that both v and 6 are decreasing functions of M. From
Fig. 3.12, one can easily observe that @ increases with increasing I'. For variable viscosity, the
effects of ¢, A, I and M are qualitatively same, but differ quantitatively as compared with the

constant viscosity case (see Figs. 3.14 — 3.20).

Fig. 3.7: Influence of c on velocity when A =1, M =1, h = —0.05.
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Fig. 3.8: Influence of A on velocity when ¢ = —1.2, M =1, h = —0.05.
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Fig. 3.9: Influence of M on velocity when A =1, ¢ = -1, h = —0.05.
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Fig. 3.10: Influence of c on temperature when A=1, =1, M = 1.5, h = —0.05.
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Fig. 3.11: Influence of A on temperature when ¢ = —-3.1,I'=1, M =1, h = —0.05.
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Fig. 3.13: Influence of M on temperature whenc= ~5, A =1, I' = 1.5, h = ~0.05.
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Fig. 3.14: Influence of ¢ on velocity when M =25, A =1, h = —0.01.
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Fig. 3.15: Influence of A on velocity when M = 2, h = —0.01.
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Fig. 3.16: Influence of M on velocity when A =1, h = —0.01.
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Fig. 3.17: Influence of ¢ on temperature when h = —0.01, T =16, A =85, M = 2.
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Fig. 3.18: Influence of A on temperature when h = —0.01, ' =10, M = 2.

03 -~ T — I=2
‘," -~T=4
025} f e _ e |- =6
R "{-— I'=8
02} ~ %
i
J AAY
01} fiy \3{ 1
0.05 ;;/ N
Ot . . - ]
~1 -05 0 05 1
r

Fig. 3.19: Influence of I" on temperature when h = —0.01, A =2, ¢ = -5, M = 2.5.
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Fig. 3.20: Influence of M on temperature when h = —0.01, c = —10, ' = 1.

3.6 Concluding remarks

In this study, we examine the influences of MHD on a constant and variable viscosity for steady
flow of a third grade fluid in a pipe. Analytical solutions are co;nputed. These solutions are
valid not only for small but also for large values of all the emerging parameters. To the best
of our knowledge, no such analysis is available in the literature which can describe the heat
transfer and MHD effects simultaneously on variable viscosity. Convergence values and residual

errors are also examined. The main results are listed below.

e An increase in pressure gradient ¢ leads to a decrease in the velocity v.

It is found that both are decreasing functions of A.

1t is observed that the profiles of velocity v and temperature 8 decrease monotonically by

increasing the MHD parameter M.

It is seen that the temperature 8 increases by increasing I'. -

It is concluded that M suppresses the graphs of v and 6 in both the cases.

The residual error is found almost negligible (see Figs. 3.3 and 3.6).

The results of [14] can be recovered by taking M = 0.

51



Appendix A

The related coefficients are given by
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