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ABSTRACT

In this research work an approach for the dimensional reduction of the hyperspectral
image data is introduced. For computational and data compression reasons, it is desired to
reduce the dimensional of the data set while maintaining good performance in image
analysis tasks. Dimensional reduction is a good choice to overcome the challenges of
huge data storage, computational load, communication bandwidth and convergence
instability in the analysis of hyperspectral image data. The reduction of dimensionality is
necessary for high accuracy in unmixing of the pixels, classification and detection.

In our research work the bands are clustered and then selected based on statistical
measures of band images. The spread hyperspectral image data is measured in each band
and the calculated bands are clustered using the K-means clustering technique. The K-
means clustering of bands is performed in such a way that the intra-cluster variance is
kept minimum and the inter-cluster variance maximum. The optimal number of band
selection is done using the concept of Virtual Dimensionality (VD). The endmember or
targets are extracted through Vertex Component Analysis (VCA). The experimental
results are compared with other unsupervised band selection techniques to show the

effectiveness of the proposed technique.
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Chapter 1

INTRODUCTION

1.1 Introduction to Hyperspectral Imagery

Hyperspectral sensors- used for hyperspectral imagery collect information as a set
of images represented by different bands. This information makes it possible to extract a
continuous spectrum for each image cell and unveils materials that cannot be resolved by
multispectral sensors [1]. The concept of hyperspectral imagery developed in 1980’s,
when A.F.H Goetz and his colleagues at NASA’s Jet propulsion Laboratory began a
revolution in remote sensing. They developed new instruments such as AVIRIS
(Airborne Visible Infra Red Imaging Spectrometer) [2]. AVIRIS was able to cover the
wavelength region from .4 to 2.5 um using more than two hundred spectral channels, at
nominal spectral resolution of 10 nm. A remotely sensed image is an image in a cubic
form with the third dimension specified by spectral wavelengths. The collected image
data by hyperspectral remote sensors is simultaneously in hundreds of narrow, adjacent
spectral bands over the wavelengths that can range from the near ultraviolet through the
thermal infrared at Snm of fine resolutions. Hyperspectral image cube is shown in fig.1
which shows that every image pixel is a column vector of which each component is
denoted by a specific spectral band. Each pixel contains a hyperspectral signature that
represents different materials. Remote sensed vision systems for surveillance, object

recognition, target identification, estimation of water sedimentation and the creation of



maps are of great interest. The opportunity for more detail image analysis can be
provided by hyperspectral imagery. As a result of high spectral resolution, hyperspectral
systems produce a massive amount of data. These measurements make it possible to
derive a continuous spectrum for an image data. Sensors are adjusted and atmospheric
and terrain effects are applied, these image spectra can be compared with field or
laboratory reflectance spectra to recognize and map surface materials such as particular
types of vegetation or diagnostic minerals associated with ore deposits. Hyperspectral
data helps the analyst in detection of more materials, objects and regions with enhanced
accuracy than previously possible. Hyperspectral images provide a vast amount of
information about a scene, but most of that information is redundant as the bands are
highly correlated as shown in fig. 2. Due to the reasons of computation and data
compression, it is desired to reduce the dimensionality of the data set while maintaining

and having no effect on the good performance in image analysis tasks.

Spatal pheis N

Figure 1: Hyperspectral image cube
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Figure 2: Correlation among the band image vectors

The emergence of image data sets with large numbers of spectral bands has
presented image processing and interpretation challenges not experienced with existing
multispectral data [3] and hyperspectral data. New techniques for pixel labeling and /or
modification of the existing methods may have modification for fully interpreting the
information given by hyperspectral image data. More information about materials is
provided by hyperspectral imagery than multispectral imagery. As compare to
multispectral sensing, hyperspectral sensing can increase the delectability of pixel and
sub pixel size targets by exploiting finer detail in the spectral signatures of targets and

natural backgrounds.

Hundreds of bands in hyperspectral image data imply high dimensional data which
presents several significant challenges to image classification. The performance of many
supervised classification methods are strongly affected by the dimension of input space
[4]. There is likely to be redundancy between bands and some bands may have less

discriminatory information than others. As a result, the imposition of requirements for



storage space, computational load and communication bandwidth are against the real time

applications.

1.2 Applications

Hyperspectral remote sensing is widely used in real life applications. Mainly used
for geology and mining purpose as hyperspectral imaging identifies various minerals for
mining and oil industries. It can be used to search for ore and oil [3, 4]. Hyperspectral
surveillance is the implementation of hyperspectral scanning technology for surveillance
purposes. Hyperspectral imaging is particularly useful in military surveillance because of
measures that military entities now take to avoid airborne surveillance. The idea that
drives hyperspectral surveillance is that hyperspectral scanning draws information from
such a large portion of the light spectrum that any given object should have unique
spectral signature in at least a few of the many bands that get scanned. Hyperspectral
sensing of minerals is now well developed. Many minerals can be identified from
images, and their relation to the presence of valuable minerals such as gold and diamonds
is well understood. Currently the move is towards understanding the relation between oil
and gas leakages from pipelines and natural wells. In short Hyperspectral images can be
used for geology, forestry and agriculture mapping, land cover analysis, and atmospheric

analysis, law enforcement, military and defense.



1.3 Challenges in hyperspectral image analysis

Hyperspectral images provide a vast amount of information about a scene. However,
much of that information is redundant as the bands are highly correlated. For
computational and data compression reasons, it is desired to reduce the dimensional of
the data set while maintaining good perfom@ce in image analysis tasks. Where more
information is carried by hundreds of bands of hyperspectral image data, there are some
challenges in analysis of hyperspectral image data. First of all is huge data volume, so
there are data storage and transmission problems. Second challenge is redundancy.
Information of all the bands is not uncorrelated but some information is shared among

two or more than two bands.

Redundancy in data can cause convergence instability. Third challenge is remarkable
high processing time either using supervised or unsupervised classification techniques.
Fourth one, Hughes phenomenon is observed in hyperspectral image data classification
because of limited training data and ratio of the training pixels to the number of band is
small. Endmember detection, unmixing and classification accuracy would not always
increase with increase of feature used. This is attributed to the fact that more training
samples are required to specify the decision boundary for classification for hyperspectral
data. It is a very complicated task to analyze information in hyperspectral imagery data
for discovering underlying structures. It is difficult to visualize or to classify such a huge
amount of data. Analytical technique may be categorized into photo interpretation and
machine analysis (classification) for multispectral image data. The former depends upon

the use of image enhancement procedures for improving the visual interpretability of



image data whereas the latter is based usually on statistical or other forms of numerical
algorithms for labeling individual pixels. These traditional analytical techniques face
problem with hyperspectral image data. These difficulties are due to enormous data
volume, redundancy, the need of calibration and very high dimension of hyperspectral

image data.

1.4 Problem Statement

The emergence of image data sets with large numbers of spectral bands has
presented image processing and interpretation challenges not experienced with existing
multispectral data [108] and hyperspectral data. The curse of dimensionality has been
known for more than three decades. There is a need for the development of algorithms for
detection, unmixing and classification that utilize the amount of information and
separability that hyperspectral image data offers while simultaneously avoiding the
difficulties inherent in hyperspectral space. No doubt more information is buried in
hundreds of narrow and adjacent bands of hyperspectral data but some information is
overlapping among them. So to get rid of this redundancy there are two methods: feature

extraction and feature selection [8].

Our concern and focus is enhancing the results for feature extraction through band
clustering and selection to reduce the dimensionality of hyperspectral image data and to

improve the endmember detections and unmixing accuracy.



1.5 Research Objective

Cost and complexity are the main disadvantages of hyperspectral imagery. Fast
processors, sensitive detectors and huge data storage are the requirements of
hyperspectral image data analysis. Also one of the hurdles researchers have had is the

cost on the transmission of such a huge data.

One way to overcome these difficulties is the reduction of dimensionality of the
hyperspectral data. The objective of our research thesis is to reduce the dimensionality of
hyperspectral data, reduce the processing time and to improve the detection and
classification accuracy. Our concern and focus is enhancing the results for feature
extraction through band clustering and selection to reduce the dimensionality of
hyperspectral image data and to improve the endmember detections and unmixing
accuracy. The reduced dimensional data would be analyzed for unmixing and detection

of targets /endmembers.



Chapter 2

Hyperspectral Image Analysis

2.1 Introduction

Hyperspectral image analysis has several steps shown in fig. 3.The first step is the
atmospheric correction. The comparison and analysis of the radiance acquired by
hyperspectral sensors with a digital spectral library or even with other radiance data sets
cannot be done due to illumination and atmospheric effects. The radiance spectra are
transformed into reflectance by the atmospheric correction. This operation holds for solar
spectrum, path radiance, sensor and sun directions, secondary illumination and
shadowing. The second step is dimensional reduction. Since the hyperspectral data is
collected in hundreds of bands and are highly correlated. This operation has a great
impact since it reduces the amount of data, helps in computational savings in the
unmixing step and improves the signal-to-noise ratio (SNR). The third step is spectral
unmixing which comprises of two steps: end member determination and inversion. The
first step estimates the signatures of the distinct end members present in the scene. The
second step estimates the abundance fractions of each end member. The hyperspectral

image analysis is shown diagrammatically in the Figure. 3.



Figure 3: Hyperspectral image analysis

2.2 Dimensional Reduction

Significant amount of information is added to the high dimensional feature space
data when the number of spectral bands increases in hyperspectral sensors. It is clear
from the previous work that hyperspectral data contains redundant information which is
in terms of spectral features [6]. The relevant information contained in hyperspectral data
can be represented in lower dimensional subspace for specific applications [6]. Therefore

dimensionality reduction of hyperspectral data preserving important information about
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specific objects of interest is a very important issue for the community of the remote
sensing. Each pixel is a vector in hyperspectral image cube data, the dimension of which
is equal to the number of bands. These bands are highly correlated due to the
contiguousness of bands. Data redundancy occurred due to the high correlation between
spectral bands. Hyperspectral imaging data contains high spectral resolution and spatial
information, the data of hyperspectral images is huge and it brings high computational
burden. The requirements for storage and the time for processing are much higher than
those of multispectral imagery. It is very complicated task to analyze the information for
discovering the underlying structures. It is difficult to unmix the pixels, the detection and
classification of the targets in the presence of the bands which are highly correlated and
also for such a huge data. The reduction of dimensionality is necessary for high accuracy
in unmixing of the pixels, classification and detection. The performance of the many

supervised classification methods are strongly affected by the dimensional reduction {7].

Methods of dimensional reduction can be divided into two categories, feature
extraction (Based on transformation) [8] and band or feature selection. In hyperspectral
imaging feature or band selection is preferable to feature extraction for dimensional

reduction due to two main reasons [9]

o Feature extraction would need the whole (or most) of the original data
representation for the extraction of new features, which always forces to obtain and deal
with the whole initial representation of the data.

° Since the data are transformed so it is possible that critical information may have

been distorted like when dealing with physical measures that are represented in the
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hyperspectral image domain, while band selection has the advantage of preserving the
relevant original information from the data [10]

The choice between feature extraction and feature selection will mainly depend on
the application domain. In feature extraction bands are transformed which provide a
better discrimination ability but there may not be a clear physical meaning in the new
bands. Therefore the feature selection is very often preferred to feature extraction for
dimensional reduction and above mentioned reasons supports this statement [9]. A great
research has been done in the field of dimensional reduction of high dimensional data
[11, 12, 13, 14, 15, 16, 17]. The techniques used for dimension reduction includes PCA,
Isomap [17], multidimensional scaling (MDS) [12], Clustering and feature/ Band

selection. [9, 14, 15]

2.2.1 Feature Extraction

In dimensional reduction of hyperspectral image data the original features are not
selected. Instead new features are selected in a lower dimension space by applying some
methods from statistics. Dimensionality reduction is done by mapping the high correlated
dimension space onto uncorrelated low dimension space and due to these projections
most desired information is preserved but the physical meaning of each spectral band is
changed. Dimensionality reduction can also be done with the help of background
knowledge and new features are constructed [31] and in addition to original features
these new constructed features are used. Some of the classical techniques include the

following
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o PCA[32,10,33,18]

o Factor Analysis [34, 35]

e Projection Pursuit [6]

o  Wavelets transform [17]

o ICA[36,37]

e Maximum Noise Transformation [2]

e Decision Boundaries based approach [38]

e Orthogonal Subspace projection approach [39]

2.2.1.1 Principal Component Analysis (PCA)

In hyperspectral Imagery, the amount of data is very large due to which some type of
transformation is performed which can preserve the necessary information and reduce the
amount of data. There is redundancy, dependency and noise in hyperspectral image data.

The transformation methods can be helpful in three ways

o Effective data representation

o Effective feature extraction

o Effective image compression

Orthogonal transforms results in good representation due to the fact that they tend to
extract non overlapped information from the data. Linear operations are involved in these
transforms. Karhunen-Loeve Transforms (KLT) is the optimal orthogonal transform in
the minimum mean square error sense. KLT is also called Princibal Component Analysis.

A great research has been done on PCA and the literature is well examined in [10, 33, 32,
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3]. In PCA data is transformed from high dimensions to low dimension space preserving
the maximum information. Due to the conceptual simplicity, analytical properties and
relative efficient algorithm for computation [18] PCA is the most widely used technique
for the dimensional reduction. PCA is best known as Karhunen-Loeve transform. PCA is
a linear transformation on covariance matrix of the multi/ hyperspectral data to rotate the
spectral coordinates in to a coordinate space in which the spectral components are
uncorrelated. New coordinates are selected in result of PCA transformation for data set in
which greatest variance by any projection of the data set resides on the first axis, called
the first principal component, the second greatest variance on the second axis and so on.
In PCA the calculation of the covariance of the data is involved. Covariance matrix

characterizes the scatter of data.
If we have data setX = (x;,x; ... X)), then mean of data is defined as
u= E{X} 4.1
Where E is the expectation operator, Covariance matrix of data set is
C=E{X-w&X- w7 4.2)

Each element of covariance is the variance of between xi and xj. This variancé shows
the spread of component around the mean value, if the two components xi and xj are
uncorrelated then the variance is zero. Due to the symmetry property of the covariance
matrix, we can calculate an orthogonal basis by finding the eigenvalues and eigenvectors.

The solution of the equations is eigenvectors ei and the corresponding eigenvalues Ai

Co, = Xi&i; i=12 ..M (4.3)
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By ordering the eigenvectors in the order of descending eigenvalues, an ordered
orthogonal basis with the first eigenvector having the direction of largest variance of data
can be created. In this way the directions along which the data set has the most significant

amounts of energy can be found. After transformation of a data vector X, we get
Y = AX - ) 4.4)

This result the points in the orthogonal coordinate system defined by the
eigenvectors. The components of Y can be observed as the coordinates in the orthogonal
base, since the covariance of matrix Y is diagonal which means that the bands identified

by matrix Y are uncorrelated bands. The ordinal data can be reconstruct by

X=ATY + @.5)
We may represent the data in terms of only a few basis vectors of the orthogonal
basis by using all the eigenvectors of the covariance matrix C. if the matrix having the K

first eigenvectors as rows is denoted by Ay, taking the transformation of data as
Y= Ag(X — 1) (4.6)

This shows that we project the original data vector on the coordinate axes with K
dimensions and transforming back the vector by a linear combination of the basis vectors.
The mean-square error between the data and represented given number of eigenvectors is
minimized. The concentration in a linear subspace may provide a way to compress data
without losing much information and can simplify the representation. By selecting the
eigenvectors with the largest eigenvalues we can reduce the possibility of losing much

information as possible in the mean-square sense. In one way we can choose a fixed
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number of eigenvectors and their corresponding eigenvalues to represent and abstract the
data consistently and a varying amount of energy of the original data is preserved.
Alternatively we can choose an approximate amount of energy and the varying amount of
eigenvectors and their respective eigenvalues and approximately a consistent amount of

information is given in the expense of varying representations with regard to the

dimension of the subspace [18].

2.2.1.2 Independent Component Analysis (ICA)

Independent component analysis is a statistical method which is linear
transformation of data. In ICA the components are assumed to be mutually statistically
independent. The data is transformed into components that are independent from each
other as possible so that the bands we get are statistically independent. This way of
representing the data captures the essential structure of the data in application including
feature extraction and signal separation. The input data is a linear combination of
independent and non Gaussian variables including a mixture matrix. ICA is therefore an

essential method to extract useful information from data.

Let X = (xq,%3, X3,... ,Xy)7 be the data set and is considered as a mixture of unknown

signals S = (s1,52,53, .. ,Sk)" from independent sources. The ICA model can be

presented as
X=AS 4.7)

Since A is an M X K matrix called the mixing matrix whereM > K.
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The target is to find A and separate the source signal S. The following assumptions are

considered in ICA model to solve the problem.

e The principal assumption in ICA is independence. The sources are to be assumed as
statistical independent. The joint (PDF) probability density function is the product of two
marginal probability density functions that is
P(s1,52,53, .. ,Sk) =D(51) P(52), P(S3), .., P(Sk)

e The second assumption is that one source should have Gaussian distribution at most.
Since the higher order cumulates are zero for Gaussian distributions. And therefore the
Gaussian sources cannot beat most separated by independence assumption. The original
independent components cannot be achieved with more than one Gaussian variable.

e The third assumption is that the mixture matrix is to be squared and invertible
which means that the number of independent sources is equal to the number of mixtures.
As is in hyperspectral imagery the observed data set should be greater than independent
source signals (reflections) but the mixture matrix can be a square matrix.

There are number of ICA algorithms. Many of these algorithms start with one of the

following criteria

e Maximization of non-Gaussiannity of the components [40]
e Minimizing mutual information [41]
e Maximum likelihood estimation [42,43]

e Tensorial methods [44]
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A relationship can be observed among non-Gaussianity, mutual information and
maximum likelihood [45]. Maximization of non-Gaussianity can be done by FastICA

algorithms [40, 46].

2.2.1.3 Minimum Noise Fraction (MNF) Transform

Minimum Noise Fraction (MNF) transform is modified version of PCA. Since both
depend on the second order moments. The difference between PCA and MNF is that
PCA finds out the principal components on the basis of maximum variance of data
matrix. But it doesn’t work effectively in some cases. There is a linear transformation
introduced by Green [47] which transforms the data by arranging the principal
components with the signal-to-noise (SNR) decreased. That linear transformation is
named as Minimum Noise Fraction Transformation. There are two cascaded Principal
Component Analysis (PCA) transformations in MNF transform. In the first step the noise
is uncorrelated and resealed and in result the noise in the transformed data has unit
variance. This is the noise-whitening of data. In the second step PCA is applied on the
noise whited data. Therefore the data is divided in to two parts. The first part, the
eigenvalues are large and eigenimages are coherent. The second part has eigenvalues
near-unity and noise dominated images. A detailed review is given by Neilsen in [48].
MNF transform is reformulated as the Noise Adjusted Principal Component (NAPC)
transforms and is given by Lee at al [49]. The NAPC transform matrix combined these

two PC transform matrices and in detail the NAPC transform consists of these stages.
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2.2.2 Feature Selection

The method of dimensional reduction by selecting a subset of the original
dimensions is called as feature selection. The selected minimum subset (bands, features)
has great importance and sufficient for particular application for the improvement of
accuracy and reduction of the data size [30]. Feature selection is carried out in the
original feature space and the techniques of feature selection do not change the original
representation of the variables, but only a subset of the original is selected. There is no
transformation taken in selecting the subset o features to reduce the dimensionality, but

the concentration is on the selection of features among the original features [22].

Let X be the original feature set, with L dimensions and X’ be the subset feature
that is X € X with dimensions K < L. We suppose that J(X) be the objective function
that is the feature selection criterion function. The higher value of ] is assumed to be a
better feature subset. If the probability of error is P, then (1 — P,) is one criterion for
maximizing/. Probability error as criterion function make feature selection dependent on
the size of the data set, classifier/ detection technique and training use as well. Feature
selection problem is mathematically an optimizing problem of finding subset features and

is given by

J(X) = maxyex 51=¢ J (V) (4.8)

Both search algorithm and a criterion function are involved in feature selection
techniques [13]. Possible solutions of the feature selection problem which are subsets of

features are generated and compared by the search algorithms by applying the criterion
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function. Several optimal and suboptimal search algorithms have been proposed [50, 51,
52]. The subset that contains a prefixed number of features and is the best in terms of
adopted criterion, is identified by the optimal search algorithm where as suboptimal
search algorithms select a good subset that contains a prefixed number of features but that
is not necessarily the best one. An algorithm named as “A Branch and Bound Algorithm
for Feature Selection” is proposed by Nerendra and Fukunaga [50] to find the optimal
subset of features much more quickly than exhaustive search. Combinatorial complexity
is the reason that optimal search algorithms cannot be used when the number of features
exceeds a few tens as in hyperspectral image cube data. In remote sensing a suboptimal
search strategy is applied for searching the best subset to minimize the objective function.
In literature the information based measure criterion is proposed in [27]. In [53] an
unsupervised feature selection algorithm is used together with the maximum information.
And compression index as the similarity measure among the feature. Feature selection
has a great research work since 70°s [54]. Research work has been done in the areas such
as statistics [50, 12], data mining [54], pattern recognition [55], machine learning [56]

and neural networks [57].

2.3 Band Selection

In remote sensing, the hyperspectral data face many challenges. Some of the
challenges include acquisition, transmission analysis, storage process and the extraction
of information [58)]. There are hundreds of non-overlapping bands along the spectrum

covered by the high resolution of hyperspectral sensors. This high resolution results with
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huge data and high dependency on band images. Hyperspectral data has high correlation,
presented in the spatial domain similar to the natural image. There are similar spectral
signatures and high correlation in the adjacent locations of hyperspectral images. Due to
this high correlation a lot of redundant information is found. Hyperspectral data cannot be
analyzed by the traditional techniques of multispectral, as they are not so effective. For
this reason it is necessary to reduce dimensionality of hyperspectral image data
preserving the important information. Dimension can be reduced by two ways, as
discussed above. One is Feature Extraction [23, 59, 60] and the other is Feature/ Band
Selection [7, 61]. Feature selection is given the preference on feature extraction as we
have discussed above. Bands election is one of the techniques of feature selection in
which there is a very low correlation among the selected bands having maximum useful
information. There are two main reasons that bands selection is preferred to feature
extraction [9]. One is, feature extraction use most of the original data representation for
the extraction of new features and the other is, due to the transformation process some
critical and crucial information may have been distorted. While on the other hand band
selection has a great advantage, that it preserve the important original information of the
data [10]. Therefore band selection is considered as an effective means to overcome the
problem of dimensionality of remotely sensed image data. Methods for band selection

can be categorized in the following four groups [8, 62].

1. Search-based Methods [63, 64, 6]
2. Transform-based Methods [65, 66]
3. ICA-based Band Selection [67]

4, Information-based Methods [68, 62, 10, 20]
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2.3.1 Search-based Methods

In hyperspectral data the bands are in order of hundred so the search-based methods
are not feasible due to “Combinatorial explosion”. Several approaches to optimize
algorithms have been applied such as genetic algorithm, hill climbing and greedy for the
improvement of search efficiency. Several optimal and suboptimal algorithms are
present in literature [50, 51, 52], but since for such number of band combinations,

computational cost is still high and the problem of local minima occur [62, 69].

2.3.2 Transform-based Methods

In transform-based methods, there is matrix transformation such as ICA or
eigenvector analysis for the projection of data on to lower dimension space [65, 66]. This
type of transformation causes loss of the original meaning of spectral data and the
interpretation becomes very difficult. Another problem of transform-based method is that
it requires the full data cube in original form before the transformation, which is a big

disadvantage for real time processing.

2.3.3 ICA-based Band Selection

Pierre Common in 1994 first proposed ICA which has been used in many
applications like Blind Source Separation (BSS) [70, 71] recognition etc. Chiang et al and
Lennon et al has used ICA in [17] and [36] as a feature extraction method. In this method

hyperspectral images are presented in lower dimensional feature space. In [67] ICA-
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based Band Selection was proposed, in which this method avoids transformation of the
original hyperspectral image data to the feature space. Instead of transformation
comparison of the average absolute weight coefficients of individual spectral bands is
performed and independent bands are selected, which has maximum information.
Thereby reducing the dimensionality and preserving most spectral features of

hyperspectral image data.
2.3.4 Information-base Band Selection

Information-based Band Selection methods measure the information contains in the
individual band. If the information content is related and capable to discriminate, the
bands are selected which has higher information. The entropy, the contrast and
correlation are the commonly used information metrics [64,20]. As compared to the
transformed-base methods, the advantage of the information-based methods is the
selection of the subset of hyperspectral data in such a way that the original information
retains. There are other band selection techniques which include a trade-off scheme
between the resolution and spatial resolution [72], Spectral Angle Mapper maximization
[73], high order moments [74], wavelet analysis [75]. Entropy [64, 20] and mutual
information [76, 77] has a good role and obviously have a ‘good potential for band
selection [69]. In Shannnon’s information theory the information content measured by

entropy is in terms of uncertainty.

Let X is a random variable and the set § is the values of X with the probability

distributionsPX (), then the definition of entropy is
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H(X) = — £ PX () log PX (6) (4.9)

Methods in [64,20] directly use entropy for band selection, in which the entropy is
calculated to estimate the level of the information content in individual band or in
wavelength interval. According to entropy values of the spectral bands, the spectral bands
are ranked in certain order. Band selection is done by choosing those bands which have
higher entropy values. From equation 4.9 entropy is a function of single variable and
H(X) is calculated on a single signal, which clearly means that the information measured
by entropy has no point of reference. Therefore there is no guarantee of matching the
amount of entropy and the information content, which is useful for target classification
[62]. Mutual information provides an ideal framework in the sense that it measures the
similarity between two random variables. It was introduced for band selection in [76, 77].
MI in information theory is a basic concept of measurement of the statistical dependence
between two variables [62]. For two random variables X and Y having the marginal
probability distributions Py (6§) and Py (J) and Pyy (8,]) is the joint probability

distribution. M1 is defined as

P 8,
IX,Y)=Xs, logg’g)(Ty()]—) (4.10)

The following equations can be derived from equation4.10 between MI and entropy
I(X,Y) = H(X) + H(Y) - H(X,Y)

= H(X) — H(X|Y)
= H(Y) - H(Y]X)
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Where H (X) and H (Y) are the entropy of X and Y respectively and H(X,Y) is the joint
entropy. H(X/Y) is the entropy of X given Y and H(Y/X) is the entropy of Y given X.
The dependency between a spectral image and the reference map can be estimated by
using MI. It is helpful in investigating how much information a spectral image contains
about the reference map [62]. A reference map is always required for MI based band
selection. As the reference map is unavailable so it is required to estimate the reference
map. An adaptive method is proposed in [62] in which MI is calculated by using the

estimated reference mapR. Using the prior knowledge the estimated map can be

approximated.

The region of the spectrum or key spectra denoted by Z is assumed to contain the most
discriminatory information. If j€Z; 1 < ] < M is the set of spectral images as

important bands then the estimated reference map can be calculated as

R=1Y 1 4.11)

Following are the few unsupervised methods of comparison for band selection.

o WaLuMI: Ward's Linkage strategy using Mutual Information [27],

. WaLuDi: Ward's Linkage strategy using Divergence [78,10],

o CBS methods: Constrained Band Selection [9]

o MVPCA: Maximum Variance Principal Component Analysis [77, 78, 10],

o Information Divergence [9].
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2.3.4.1 Constrained Band Selection (CBS)

Constrained Band Selection (CBS) was developed in [9] which is a different method
from the variance-based or information-based approaches. In this approach there is a
linear constrain on a band while minimizing the correlation in hyperspectral image. CBS
methods have four solutions for optimizing a problem. Two methods are based on
correlation and two on dependency. The Linearly Constrained Minimum Variance
(LCMYV) and the Constrained Energy minimization (CEM) [79] approaches derives the
CBS presented in [9]. Therefore, there are two ways to implement these approaches. The
implementation based on CEM has a high computational cost and the implementation
based on (LCMV) reduces this complexity substantially. From the experimental results it
is clear that the performance of LCMV-CBS and CEM-CBS has a great similarity [9],

therefore we use LCMV-CBS for comparison

2.3.4.2 MVPCA: Maximum Variance Principal Component Analysis

For band selection, a joint approach named as band prioritization and band-decorrelation
is presented in this section and is used in [77] for classification in hyperspectral image. It
is used for comparison of band selection methods in [9]. The band prioritization depends
on the eigen analysis in which a matrix is decompose into an eigen form matrix. From
eigen form matrix a loading factors matrix could be generated and this loading factor
matrix is used to prioritize bands. The priority of each band is determined and according

to the associated priorities the bands are ranked and are sorted from high to low variance.
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2.4 Unmixing of Hyperspectral Data

The low resolution of hyperspectral sensor causes the existence of distinct substances
in a hyperspectral image pixel. Individual spectrum of each material is composed of
measured spectral in that pixel [80]. Homogeneous mixture of different material cause is
the main cause of mixed pixel and mixed pixel is independent of sensor resolution [80].
The decomposition of the pixel spectrum into a collection of endmember spectral
signatures and their respective abundance fractions [73, 80] is called unmixing of
hyperspectral image. The unmixing changes the spectral and spatial resolution [81, 82].

The classification of multispectral and hyperspectral analysis is as follows [83, 84].

e Detect known or unknown objects or materials [85, 86]

e C(lassification [84, 87, 79]

¢ And estimation of material and respective area occupied with in a pixel [88, 89]

The target spectrum and background spectrum may also be used for endmember
detection to observe the spectrum of the mixed pixel [90, 91]. The two main classes of
endmember derivation methods are: the algorithm in which the assumption is that end
member exist in the image either in pure or mixed pixel and use selection of n-
dimensional scatter plot method and convex cone method [92, 93], and the algorithm in
which the assumption is that endmembers are derived analytically [81, 82, 86, 94]. To

model mixed pixel two models are used:
Linear mixture model [95, 96, 97]

Non linear mixture model [98]
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Mostly linear Mixture Model is used widely for source separation [86, 99, 100]. In LMM
modeling there is an assumption that the observed pixel spectrum is the linear
combination of unique and distinct deterministic spectral signatures i.e.

endmembers/targets. The mathematical model of LMM for mixed pixel [101]

K
x=) ase+w=8a+w 4.12)
k=1

Where S = [sy,53, 53, ... , SgJthe k endmember spectral or targets and these targets are
are assumed to be linearly independent. a = [a,,a,, a3 ...a,]" are abundance fractions
for the endmember spectra. w is the additive noise vector and considered as model error.
If L is the number of spectral bands then X is a L X 1 column pixel vector and S target

signatures matrix of sizel X K.

Stochastic mixture model is considered if the end member spectra are random and
independently drawn from multivariate normal distributions [85, 102]. The assumption to
choose a pixel composition i.e. pure or mixed model selection for spectral variability and
selection of mixture procedure leads to different types of target detection algorithms. A

binary hypothesis test for detection is formulated with two hypotheses
-Background only (Ho)
-Target and background (H;)

These two hypotheses have unknown parameters e.g. covariance matrix of the
" background to be calculated and adaptive detector usually designed using likelihood ratio

test approach [103]. Target detection algorithm using the stochastic mixing model, called
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as finite matched filter is explained in [85] and [102]. Mathematical expression for non

linear mixture model is given as
x = f(s,a)+w 4.13)

Where () is non linear function for the non linear relation between a and w.

2.4.1 N-FINDER Method

N-FINDER is an algorithm for finding endmember/ targets in mixed pixels of
hyperspectral image data; developed by Winter et al [93]. It is assume that pure pixels of
endmembers are present in image data and from this assumption, I. dimensional
spectrum, volume of L dimension is created by a simplex in which the purest pixel locate
the vertices. A simplex is the geometric object which spans a given space. N-FINDER is
an iterative simplex volume expansion approach and it takes start with a random selection
of set of pixels from the scene as initial endmembers. An iterative process continuous and
replace the initial endmembers with the pixel tested and calculating the simplex volume.
If there is increase in volume, the pixel being tested replaces the initial endmember. The
process is repeated again until each pixel is tested as potential endmember. The pixel
which are endmember every time at the end of the process are considered as final
endmember. Endmember is determined by the N-FINDER from the image regardless of
noise and with no prior knowledge. This algorithm doesn’t determine a way to find the
number of endmember in data. Virtual Dimensional (VD) [79, 88] is used to determine
how many endmember exist in the data needed. We have used the new concept of VD

[79] for the number of endmembers needs to be calculated by N-FINDER. This algorithm
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starts with a random set of pixels and this randomness can affect the convergence rate of
algorithm and the final results. The Unmixing of image data using N-FINDER is a five

step process

o The initialization algorithm (EIA) can be used to select an appropriate set of
endmembers for N-FINDER initialization.

. Estimation of total number of endmembers in data (by VD concept)

o The preprocessing in which data redundancy is reduced by MNF-transformation
or some other transformation

° Initialization (EIA algorithm)

. Volume finding of simplex with initial endmember considered as vertices and
replacing the vertices with testing pixel if the volume of simplex is increased with testing

pixel by technique [107] using endmembers.

2.4.2 Independent Component Analysis

ICA is an unsupervised source separation process ICA has applied to linear blind
separation problems. The literature for ICA is present in {70, 71, 81, 103, 104]. ICA
extracts each source automatically from the observation of linear combination of these
sources and assumes the sources to be statistical independent [48]. ICA can work only

with sources less than 10 with many observations which is the disadvantage of ICA [48].
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2.4.3 Vertex Component Analysis

For multispectral and hyperspectral data as linear mixture model, the vertices of a
simplex are the endmembers. To exploit this simple geometry features of data there are
several approaches [82, 92, 105, 106]. .Minimum Volume Transform (MVT) was
proposed by M. D Craig [110], which determines the minimum volume simplex
containing the data like N-FINDER method. Method developed by C. Bateson et al [107]
was also like MVT but that method considers variability of spectral pixels present in
hyperspectral mixtures. VCA was proposed by Jose M. P Nascimento and Jose M.
Bioucas Dias [82], is an unsupervised endmember extraction algorithm like N-FINDER,
VCA also exploits that the endmember are the vertices of a simplex and works on the
assumption that pure pixels of endmember are present in data. Jose M. P Nascimento
claimed that the performance of VCA is much better than PPI and better than N-
FINDER, but it has a computational complexity between one and two orders of

magnitude lower than N-FINDER.
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Chapter 3

Proposed Method of Dimensional Reduction

3.1 Band Clustering and Selection

Band Clustering and Selection are two steps used in our work. Clustering of band
images keeps the intra-cluster variance minimum and the inter-cluster variance
maximum. The method in which dimensionality is reduced by selecting a subset of the
original dimensions are known as band/ feature selection. The hyperspectral data is
spread in some direction. This data can be measured by using different statistical
methods which include MAD (Mean Absolute Deviation), moment, variance, mean,
geometric mean and standard deviation. We have used Standard Deviation, MAD and,
Variance in our proposed work. Suppose that we have {Bi};-," band images in our
hyperspectral image data cube where L is the total number on bands, if each band image
is of size MxN and By the mean of the /; band image. The statistics we use for data are

given below.

MAD for the /4 band is
| MW

= . — B 3.1
dy MF 2 | — Bi (3.D
i=1

Standard Deviation for the 1 band image is

d, = (—1- MN(bi — El)z)% (3.2)

MN
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Variance for the /,;, band image is

dl

1 “"MN(p: _ BIN2
L3N (bi — BI) (3.3)
The result from the above statistical methods for L band images is given by

d= {di}f;l

3.1.1 K-means Clustering

For clustering the bands (band images) K-means clustering technique is used. For K-
means clustering city block and Square Euclidean distance metrics are used. K-means
clustering is one of the simplest unsupervised algorithms and is well-known for solving
the problem of clustering. The flowchart of K-means clustering is shown in figure 4. K-
means follows a simple and easy way to classify a given data set through clusters; the
number of clusters is fixed and is given a prior. The number of centroids i.e. K are
defined for each cluster and which are placed far away from each other as possible. The
points which belong to the given data set are taken and are associated to the nearest
centroid which results in K number of groups. Again K new centroids are recalculated
for new centers of the cluster and a new binding has to be done between the same data set
points and the nearest new centroid. A loop is run for the K centroids to change their
location step by step until there is no change and the centroids are fixed. The centroids of
the clusters are calculated by minimizing the sum of squared errors. The K means

algorithm performs three steps until convergence.

1. Determine the centroid coordinate
2. Determine the distance of each object to the centroids

3. Group the object based on minimum distance
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Figure 4: K-Means Clustering Flow Chart

For the observations X = (x4, X3, X3 ... X), the K-means clustering method divides
the n observations into k sets (k < n),K = {S;,5;,S3 ... S}, minimizing the sum of

squares with-in clusters i.e.

k 2
min) ) = ul
i=1

XjES;
Where y; is the mean of points in cluster Cy

K-means computes centroid clusters differently for the different supported distance

measures. We have used the following distance metrics in K-means clustering.
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¢ Square Euclidean

For an m-by-n data matrix X = (x;, x5, X3 ... X;,,) the distance between the vector x,.

and x; is given as:

d%; = (Xp- Xs) D™ (xr - x5) C))
Where D is the diagonal matrix

e City Block metric

For an m-by-n data matrix X = (x;,x2, X3 ... X;n) the distance between the vector x,

and x; is defined as
drs = ?=1|xrj — Xsj (5)

3.2 Proposed Algorithm

Following are the steps of the proposed algorithm to summarize the band clustering and

selection.
1. Calculate the number of bands i.e. VD.

2. Calculate or measure the data of each band image using Variance (VAR), MEAN

Absolute Deviation (MAD) and Standard Deviation (STD).

3. Band clustering using K-means clustering and using distances among the measured

values to examine the proximity of band images to each other.
4, According to VD, clusters are created which contain all the measured values.

5. From each cluster, one band having maximum value is picked.
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Now the question is how many bands need to be selected preserving the necessary
information. This problem can be solved by using the new concept of Virtual
Dimensionality (VD) [113] to estimate the minimum number of bands and preserve the
maximum useful information. The selected bands are analyzed for the endmember

detection. VCA [82] is then used for the unmixing process of the hyperspectral image and

the results are compared.

Figure 5: Flow Chart of the Proposed Algorithm
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Chapter 4

Experimental Results

4.1 Hyperspectral Image Data

We have used a well known Airborne Visible/ Infrared Imaging Spectrometer [110]
for our research work. The Cuprite image is used to compare and evaluate the proposed
research work. The image scene is shown in Figure. 6 and it is available at website [111].
It was collected by 224 spectral bands having 10 nm spectral resolutions. These are
collected over the Cuprite mining site, Nevada in 1997. Cuprite is a mining area in the
south of Nevada with minerals and little vegetation. The geologic summary and mineral
map can be found in [112]. Cuprite has been widely used for experiments in remote
sensing and has become a standard test site to compare different techniques of
hyperspectral image analysis. In our research work, a sub image of size 350x350 with
224 bands of a data set taken on the AVIRIS flight of June 19, 1997. The instrument of
AVIRIS covers 0.41 — 2.45 um regions in 224 bands with a 10 #nm bandwidth and flying
at an altitude of 20 km, it has an Instantaneous Field Of View (IFOV) of 20 m and views
a swath over 10 km wide. Prior to the analysis of AVIRIS Cuprite image data, low SNR
bands 1 — 3, 105 — 115 and 150 — 170 have been removed and the remaining 189 bands
are used for experiments. The ground truth of spatial positions of four pure pixels

corresponding to four mineral alunite (A), buddingtonite (B) , calcite (C) and kaolinite
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(K) are indicated by “A”, “B”, “C”, and “K” respectively. Endmembers extracted by

VCA are verified by using these labels of spatial positions. The USGS signatures of “A”,

i “B”, “C” and “K” are also shown in Figure. 7.

Figure 6: Spatial positions of four pure pixels which shows correspondence to
the minerals: Alunite (A), Buddingtonite (B), Calcite (C), and Kaolinite
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Figure 7: USGS spectral signatures of Alunite (A), Buddingtonite (B), Calcite (C),
and Kaolinite (K)
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4.2 Results and Discussion

Preserving the maximum information, the number of bands required and estimated
VD are 22. In our research work we have tabulated 22 bands. The bands selected by
(Linearly Constrained Minimum Variance based Constrained Band Selection) LCMV-
CBS, (Minimum Variance Principal Component Analysis) MVPCA and our proposed
techniques of clustering according to 22 VD are given in table 4.1. The proposed methods
are Mean Absolute Deviation with City Block as distance metric in Clustering
abbreviated by MAD-CB, similarly Mean Absolute Deviation with Square Euclidean is
MAD-SE. Variance with City Block is VAR-CB and VAR with Square Euclidean is
VAR-SE. Standard Deviation with City Block is STD-CB and Standard Deviation with
Square Euclidean is STD-SE. Figure. 8 shows the extraction of four end members and
also the extracted endmembers by VCA using the 22 selected bands given in table 4.1,
the detected endmember/ targets are labeled with “a”, “b”, “c”, “k”. the detected
endmembers are compared with the ground truth endmember pixels which are labeled as
“A”, “B”,”C”,”K”. In addition the measurement of the spectral similarity between the
endmember pixels “a”,”’b”,’c”,”’k” and the ground truth actual endmember pixels
“A””B”,”C”,”’K”, we have calculated the Spectral Angle Mapper (SAM), the results of
which are tabulated in table 4.2. The location of the “A”,”B”,”’C”,”K” and
“a”,”b”,.”c”,”k” in the image scene are also included in the form of (X,Y) coordinates in
brackets. For example the actual location of “A” is (61,161), “B” is (209,234), “C” is
(22,298) and “K” is (22,298). Similarly the coordinates for found target/endmembers in

brackets shows the location in the image scene.
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Criteria Selected bands

MAD-CB 92,77,12, 57,99, 65, 129, 102, 35, 18, 87, 5, 119,
155,69, 131, 11, 149, 105, 178, 116, 163

VAR-CB 39, 100, 89, 154, 13, 51, 18, 177, 148, 22, 168,
102, 64, 4, 183, 61, 67, 87, 70, 32, 81, 35

STD-CB 5, 85,13, 170, 51, 89, 151, 33,73, 177, 18, 81, 64,
147, 67, 155, 168, 87, 9, 176, 23, 61

MAD-SE 53,19, 102, 87,17, 170, 168, 35, 155, 69, 183, 39,
178, 149, 112, 4, 24, 48, 94, 107, 65, 164

VAR-SE 82, 107, 39, 26, 163, 128, 57, 51, 21, 177, 5, 147,
89, 99, 14, 151, 78, 34, 72, 18, 87, 67

STD-SE 91,61, 36,117, 74, 177, 125, 130, 21, 67, 135, 57,

141, 14, 87, 5, 51, 131, 83, 26, 99, 70

LCMV-CBS CM/BDM

26,117, 48,37, 189, 64, 1, 185, 10, 172, 47, 4, 60,
28,165,17,5,2,151, 158, 3, 94

LCMV-CBS CC/BDC

185,37,2,3,5,64,8,9,6,7, 10, 165, 4, 11, 12,
14, 151, 13, 28, 15, 16, 153

MVPCA

87, 85, 88, 86, 89, 84, 91, 80, 78, 90, 92, 83, 82,
79, 93, 81, 98, 99, 97, 189, 77, 76
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(a)Full Bands (b) MVPCA

(c) LCMV-CBS BDM (d) LCMV-CBS BCC/ BDC

(e) MAD-CB (f) VAR-CB



41

(g) STD-CB (h) MAD-SE

2 5N

(i) VAR-SE () STD-SE

Figure 8: Extraction of Endmembers by VCA from Full bands and the selected
bands given in Table 4.1

The result obtained from the simulations shows that the performance of the

clustering-based band selection techniques, using K-means clustering are better than the

band selection using LCMV-CBS and MVPCA and Full bands. The Spectral Similarity is

s
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calculated by SAM (Spectral Angle Mapper). The SAM computes the angle between the
actual pixel spectrum and the found target spectrum. The smaller the spectral angle the
more similar the actual and found target spectra. The values of (SAM) among the same
target/ endmembers minerals are highlighted which shows a good similarity. The results
of bands selection using Full bands, LCMV-CBS and MVPCA shows that the (SAM)
values for some found endmembers are very high as compared to our proposed band
selection methods. The best results among all the proposed techniques are STD-SE and
MAD-SE due to the good similarity values. Results from the techniques MAD-CB, VAR-
CB, STD-CB and VAR-SE are also better than the previously proposed techniques as
they too have results in good similarity with the actual endmembers. The detection of the
endmember pixel using the selected bands and K-means clustering by VCA gives better
results compare to the LCMV-CBS and MVPCA, therefore the detected endmember

pixel have high spectral similarities.



Table 4.2 Spectral similarity measurements (SAM)
among found endmembers and the ground truth

endmembers
A B C K
(61,161) | 209,234) | (22,298) | (22,298)
Full Band
a (267,113 0.2146 0.2578 0.1136
b (215,229) | 0.1330 0.1089 0.1378
¢ (349,78) 0.2172 0.1141 0.2408
k(23,300) | 0.1043 | 0.1734 0.2165
LCMV-CBS BCC/BDC
a (23,305 0.1959 0.2354 0.1092
b (277,165) | 0.1247 0.1477 0.1403
¢ (342,312) | 0.1680 0.1017 0.1975
k (224,168) | 0.0888 0.1834 0.2283
LCMV-CBS BCM/BDM
a (23,300 0.1353 0.1807 0.1075
b(77,231) | 0.2046 0.1027 | 0.2071
¢ (121,191) 0.1839 0.1027 0.2012
k (243,171) | 0.1043 0.1734 | 0..2165
MVPCA
{ a(80,232 0.1727 0.2202 0.0913
b (44,216) 0.1763 0.1076 0.1626
¢ (257,72) 0.1944 0.0748 0.2067
k (288,163) | 0.0684 | 0.1702 0.2097
MAD-CB
a(22,298) 0.1413 0.189 0.0969
b (788,248) | 0.1643 0.1035 | 0.1928
¢ (38,349) 0.1871 0.0839 0.192
k (68,135) 0.0961 0.1733 0.2114
VAR-CB
0.1654 0.2125 0.0933

b (23,305) | 0.1329 0.1468
c(194,45) 102202 | 0.1002
k(93,291) | 0.0889 | 0.1834

STD-CB
2 (61,160 0.1654 02125 ] 0.0933
b (23,305) | 0.202 0.0925 | 0.2179
c(38,349) [0.1871 | 0.0839 0.192
k(86,309) | 0.0889 | 0.1834 0.2283

MAD-SE
a (61,161 0.1645 02115 | 0.0962
b (23,305) | 0.1412 0.0827 | 0.1541
c(112,62) | 0.1962 | 0.0995 0.209
k(92,288) | 0.0889 | 0.1834 0.2283

VAR-SE
2 (61,160 0.1654 02125 | 0.0933
b (23,304) | 0.1966 0.0889 | 0.1996
¢ (101216) | 02021 | 0.0813 0.1989
k(33,243) | 0.104 0.1787 02215

STD-SE

0.1654 0.0933

b(24,304) | 0.1412 0.1541
¢ (79,16) 02465 | 0.1204 0.2528

k (92,288)

0.0938 0.1766 0.2207

43
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Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

The proposed techniques for dimensional reduction and target detection give better
results as compare to LCMV-CBS and MVPCA. The results shows that if the dimensions
of Hyperspectral data are reduced by clustering the band images using their statistical
parameters, then it gives better results for unmixing and detection than other techniques
like LCMV-CBS and MVPCA etc. In proposed technique of band clustering and
selection using K-means method, a band from each cluster is selected such that intra-
cluster variance is maximum and inter-cluster variance is minimum. Furthermore STD-
SE is better amongst our proposed technique. The proposed techniques are simple to
implement and computes the result very fast. The computation takes seconds for band -
clustering and selection. Comparing the computation time at any computer with the
previously proposed methods of band selection, the results computed on the basis of
proposed methods takes very less time. All the endmember/targets are detected well and
have high spectral similarities. The proposed method can be used in other applications
where data dimensional reduction is a problem. In resultant the proposed clustering

techniques are promising techniques for band clustering and band selection.
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5.2 Future Work

Bands selection is a one way of feature selection. New techniques may be developed
for the bands selection to reduce the dimensionality of hyperspectral image data that can
be search based, transform based, ICA based or information based methods. With
development of new technique for dimensional reduction, other techniques for unmixing
and detection would be implemented for the evaluation of proposed method. Furthermore
reduced dimensional data would be analyzed for unmixing and detection of multiple
targets. Purpose of development of feature selection technique is not only to reduce
dimension but also to improve the detection accuracy not only for single target but also
multiple target. For multiple targets, multiple dimensional reduction technique would be

developed to get high accuracy through the development of decision fusion techniques.
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