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Preface

During the last few years, there is substantial progress in the steady and unsteady
flows of non-Newtonian fluids. A huge amount of literature is now available on the
topic (see some studies [1-10] ). All real fluids are diverse in nature. Hence in view of
rheological characteristics, all the non-Newtonian fluids cannot be explained by
employing one constitutive equation. This is the striking difference between viscous
and the non-Newtonian fluids. The rheological parameters appearing in the
constitutive equations lead to a higher order and complicated governing equations than
the Navier-Stokes equations. The simplest subclass of differential type fluids is called
the second grade. In steady flow such fluids can predict the normal stress and does not
show shear thinning and shear thickening behaviors. The third grade fluid puts forward
the explanation of shear thinning and shear thickening properties. The present work
aims to study the pipe flow of a third grade fluid. Some progress on the topic can be
mentioned in the studies [11-12] and many refs there in. In all these studies, variable
viscosity is used. Massoudi and Christie [12] numerically examined the pipe flow of a
third grade fluid when viscosity depends upon temperature. Ellahi and Afzal [13]
reported such solutions when third grade fluids saturate the porous medium.

In chapter one, the basic definitions of fluids and primary concept of homotopy is
given. Maxwell’s equations for electromagnetism, laws of conservation of mass and
momentum are also discussed.

Chapter two is devoted to the study of effects of variable viscosity in a third grade
fluid with porous medium. An analytical solution for the flow of third grade fluid in a
pipe using HAM is studied. This chapter is the review work of Ellahi and Afzal [13].

In chapter three, we extend the analysis of ref. [13] and desire to understand the
magnetic field effects on the pipe flow of third grade fluid in a porous medium by
employing modified Darcy's law. Besides this Reynolds' model and Vogel's model of
temperature dependent viscosity are considered. The relevant equations for flow and
temperature have been solved analytically by using homotopy analysis method
[14-19]. Convergence of the obtained solutions is explicitly shown. The effects of the
various parameters of interest on the velocity and temperature are pointed out.
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Chapter 1

Preliminaries

This chapter deals with some basic definitions and equations which are necessary for the better

understanding of the chapter two and three.

1.1 Fluid

A fluid is the substance that deforms continuously under the application of shearing stress, no

matter how small the shearing stress is.

1.2 Types of fluid

1.2.1 Thixotropic fluids

Such type of fluid shows a decrease in apparent viscosity n with time under constant applied

shear stress.

1.2.2 Rheopectic

Fluids which shows an increase in apparent viscosity n with time.

1.2.3 ldeal fluids

All the fluids offer some resistance which opposes the flow. An ideal fluid is the one which has

no such resistance i.e., the viscosity of an ideal fluid is zero.



1.2.4 Real fluids

All the fluids for which dynamic viscosity is not zero are known as the real fluids. All real fluids

have finite viscosity but it may or may not be compressible.

1.3 Flow

A material undergoes a deformation when different forces act upon it. If the deformation

continuously increases without limit, the phenomena is known as flow.

1.4 Deformation

It is a relative change in position or length of the fluid particles.

1.5 Types of flow

1.5.1 Uniform and non uniform flow

In uniform flow, all the particles in the fluid stream have same velocities both in magnitude
and direction where as in case of non-uniform flow velocities of the particles are not same at all

sections of uniform domains.

1.5.2 Compressible and incompressible flow

A flow is said to be incompressible if there is no change in the density. Liquids are treated
as the incompressible fluids and if the density of the fluid changes then the flow is known as
compressible. All gases are considered as compressible fluids. Mathematically for incompressible

flow we have

p = p(z,vy, 2z,t) = constant, (1.1)

where as in case of compressible flow

p = p(z,y, z,t) # constant. (1.2)



1.5.3 Viscous and inviscid flow

The flow in which the fluid friction have significant effect is called as viscous flow and those in
which the inertial forces are more significant than fluid friction is termed as inviscid.

1.5.4 Steady and unsteady flow

In such flow velocity does not exhibit a change w.r.t. time i.e., for velocity we have

ov
= 1.
o (1.3)
and for the case of unsteady flow
ov
— #0. 14
5 70 (1.4)

1.5.5 Newtonian and non-Newtonian flow

A Newtonian fluid is that in which the stress verses strain rate is linear and passes through the

origin. The constant of proportionality is known as dynamic viscosity. i.e.,

du
T=p— 1.5
where 7 is the shear stress exerted by the fluid, a constant of proportionality p is the fluid
viscosity and du/dy is the velocity gradient perpendicular to the direction of shear. Water, air
and gasoline are the Newtonian fluids. A non-Newtonian fluid is that in which the shear stress

verses strain rate is non linear. i.e.,

r= n(j—";), (1.6)

where 7 is an apparent viscosity which depends upon the deformation rate. i.e.,
du,, ¢
=(—)"" . 1.
n=( dy) (1.7)

Ketchup, paint, blood, toothpaste and shampoo are the well known examples of non-Newtonian

fluids.



1.5.6 Laminar and turbulent flows

A flow in which each fluid particle traces out a definite curve and the curve traced out by two
different particles do not intersect is said to be laminar. On the other hand, the flow in which
each fluid particle does not trace out a definite path and path traced out by different fluid
particles intersects is known as the turbulent flow. Rising smoke at start is laminar flow but

soon it becomes turbulent.

1.6 Basic characteristics of fluid

1.6.1 Density

Mass per unit volume is known as density. Mathematically the density p is defined by the

following expression

m
p=1 (1.8)

where m is the mass and V is the volume.

1.6.2 Kinematic viscosity

The ratio of the dynamic viscosity to the fluid density is called kinematic viscosity. It is defined
by

(1.9)

<
i
®I®

1.6.3 Pressure

Pressure is the magnitude of force per unit area applied in a direction perpendicular to the

surface of an object. Mathematically

F

P=2, (1.10)

in which F is the magnitude of force, A is the surface area and P is the pressure.



1.7 Forces

1.7.1 Surface force

The forces acting on the boundaries of a medium either internally or externally are known as
surface force. Surface force can be divided in to two components: pressure and stress forces.
Pressure forces acts normally over an area and stress forces act tangentially on an area.

1.7.2 Body force

The forces which acts throughout the volume of a body without any physical contact are known

as the body forces. Gravity and electromagnetic forces are the examples of body forces.

1.8 Magnetohydrodynamics

1.8.1 Magnetism

The phenomena under which materials exert an attractive or repulsive force on other materials
is known as magnetism.

1.8.2 Magnetic field

The region or space around a magnet in which the influence of a force exists by a magnet is
called its magnetic field. The path of small magnet in a magnetic field is called magnetic field

line. The SI, unit of magnetic field is tesla or weber per square meter.

1.8.3 Electric field

A region in which an electric charge experiences a force. That is force per unit charge situated

at a point is the electric field at that point

E="
q

: (1.11)

where F is the electric force experienced by the charge q and E is the electric field at the

point where charge g is located. The SI, unit of electric field is volt per meter or newton per



coulomb.

1.9 Maxwell’s equations

A set of four partial differential equations that relate the electric and magnetic field with each

other are known as Maxwell’s equations. These are due to the name of James Clark Maxwell.

1.9.1 Gauss’s law

This law relates that the electric flux through the enclosed surface is proportional to the electric
charge density. i.e.,

divE = Ze. (1.12)

€o
1.9.2 Gauss’s law for magnetism

It states that the total magnetic flux through a close surface is zero and that field whose flux

is zero is known as solenoidal vector field. i.e.,
divB = 0. (1.13)

1.9.3 Faraday’s law of induction

This law relates the induced electromagnetic force to the change in magnetic flux that produces
it. Mathematically, we have
0B

curlE = 5 (1.14)

1.9.4 Ampere-Maxwell equation

This states that magnetic field can be produced from electric current and by changing electric

field. This law allows that the electric current can produce the magnetic field;

0E

curl B = p,J + “°€°5[’

(1.15)

where B is the total magnetic field, E is the electric field, J is the current density, p, is the

charge density, 4, is the magnetic permeability and ¢, is permittivity of the free space.

9



1.10 Generalized Ohm’s law

In 1827 George Simon Ohm states that the current through a conductor between two points
is directly proportional to the voltage across the two points, and inversely proportional to the

resistance. Mathematically

|4
I=— 1.16
R 1 ( )
where V; is the potential difference and I is the current flowing through resistance R.
The distribution of the flow of electric charge is known as current density J given as
J =oE. (1.17)

The electric field intensity E,, induced due to the motion of the conductor across the transverse

magnetic field is given by

E,=V xB. (1.18)
The net electric field intensity is
E: = E+Ep,
E, = E+(V xB). (1.19)
Therefore,
J=0(E+V xB). (1.20)

1.11 Fundamental laws

1.11.1 Equation of continuity
In fluid mechanics, conservation of mass is described by the continuity equation.

Mathematically, we can write

op

5 + V.(0V) =0. (1.21)

The above equation for an incompressible fluid becomes

10



V.V =0. (1.22)

1.11.2 Equation of motion

It represents the law of conservation of linear momentum. For an incompressible fluid, the

equation of motion in vector form is

p% =V.T + pb. (1.23)

where V is the velocity field, p is the fluid density, T is the Cauchy’s stress tensor, b is the
body force, p is the pressure and 4 is the dynamic viscosity.

In scalar form Eq. (1.23) becomes

du _ 0(0m) , O(Tw) , O(Tu)

pE 6:1: ay 62 + pb:c)
dv  0(Ty) , O(oy) | 0(Ty:)

Px T o oy ez P .
dw _ 6 (Tz:c) 6 (sz) 6 (022)

p o = o + By + 52 + pb,,

where b;, by and b, are the body forces in z, y and z— directions respectively; u, v and w
are the velocity components in z, y and z—directions; 04, 0y, and o, are the normal stresses;

Tey, Tazy Tyz, Tyz, T2z and Ty are the shear stresses and d/dt is the material derivative.

1.11.3 Equation of energy

Energy in a system may take on various forms (e.g. kinetic, potential, heat, light). Equation
of energy is represented by the law of conservation of energy. This law states that energy may

neither be created nor destroyed. Therefore, the sum of all the energies in the system is a

11



constant. The laws of conservation of energy is described as

D6
pcpﬁ=T-L—V-q,

where ¢, is specific heat of the material and ¢ is the heat flux.

1.12 Homotopy analysis method

In topology two functions are said to be homotopic if one function can transform continuously
into the other. |
Definition: Formally a homotopy between two continuous functions f and g from a topo-

logical space X to a topological space Y is defined to be a continuous function
H:X x[0,1 -Y, (1.25)

from the product of the space X with the unit interval [0,1] to Y such that for all point z in
X and

H(z,0) = f(z), H(z,1) = g(z). (1.26)

If we consider second coordinate as time ¢ then at time ¢ = 0 we have a function f and at time
t =1 we have a function g.

In fluid mechanics sometimes governing differential equations become non-linear, which is
very difficult to deal with. So we have no choice but to solve these numerically. Fortunately we
have some method in which we can solve non-linear differential equations by HAM.

The zeroth order deformation is defined as

(1 - p) L{u(y ; p) — uo| = pliRm, (1.27)

in which p € [0,1] is the embedding parameter, / is auxiliary non-zero parameter and R,, is

non-linear differential operator. For p =0 and p = 1 we have

u(y,0) = uo , u(y,1) =u(y), (1.28)

12



where ug is the initial guess and u(y) is a solution of a given differential equation. By Taylor’s

theorem -
u(y,p) = uo(y) + ¥ um(®)p™, (1.29)
m=1
where
1 8™u(y;
Um(y) = ;1—!———;;,3{1 Pl 4 p=o. (1.30)

Note that convergence is depending upon auxiliary parameter . Thus we can write

u(y) = uo(y) + Y um(y); (1.31)
m=1

which is a solution of given differential equation.

The advantages of HAM are

1. It is valid even if a given non-linear problem does not contain any small/large parameters

at all.

2. It can provide us with a convenient way to control the convergence of approximation series

and adjust convergence regions where necessary.

3. It can be employed to efficiently approximate a nonlinear problem by choosing different

sets of base functions.

13



Chapter 2

Effects of variable viscosity in a

third grade with porous medium

2.1 Introduction

This chapter is the review work of R. Ellahi and S. Afzal [13]. In this chapter we seek the effects
of variable viscosity in a third grade fluid in a porous medium. The resulting equations are non
linear and solved by homotopy analysis method (HAM). Different graphs have been drawn for

different parameters.

2.2 Problem formulation

Let us consider an incompressible third grade fluid in a pipe. The fluid saturates the porous

medium. The velocity filed is given by

V= [0a07 ’U(’I‘)], (21)
and the governing equations are
V.V =4, (2.2)
dv .
—d? = d’l«'UT, (2.3)

14



pc,,fif =T -1- V2, (2.4)
dt
where 6 is the temperature and the Cauchy stress T is
T=-pI+pA;1+01A0+ azA% + B1A3+ B2(A1A2 + AgA ) + ,33(t7‘A¥)A1, (2.5)

in which p; is hydrostatic pressure, I is the identity tensor, y is the dynamic viscosity and
ai(i = 1,2) and S;(j = 1 — 3) are material constants. The first three Rivlin — Ericksen tensors
(A; — A3) are defined through the following expressions

A = VV + (VV), (2.6)
An = dA(;;_l +Ap 1L+ LtAn—l, n>1, (2.7)
L=VV =gradVv, (2.8)

in which V is the gradient operator and V is the velocity field. For thermodynamic third grade
fluid the coeflicients p, a1, ag, B, Bq,and S5 satisfy the following conditions [20]

#20,(11 20,|01+a2| S V24)U'IB3751 =IB2 =05ﬁ3 20 (2'9)
(2)?*+(3)" o o
A} = 0 =2 o |,
0 -m (@)

A=A (VV)+ (VV)tAl,

2(22)% o 0
A2=10 2 (%)
0 ~ndw

2_g((%)? 4 (%)
TraceAl—Z[(r> +(8r> ]

3 3
(1 + ’\E) R= —%gb (1 + ’\'E) Vv, (2.10)

(V]

Y
r

Sw
¥ )

15



where R is Darcy’s resistance, A and A, are the relaxation and retardation times, ¢ is
porosity and & is the permeability.

Having in mind the above equation the z—components of R for steady flow of a third grade

fluid is
_ ¢ dv
R, = P { +A <dr v. (2.11)
By the virtue of above set of equations, momentum and energy equations reduce to
ld dv 5 dv R/
2 (ruty + s L (R ¢ [*A(d)]”"az’ (212
dv., dv\* 1d ( df

where k is the thermal conductivity and $ is

dv\ 2
p=p— o (dr) . (2.14)

The boundary conditions are

v(R) = 6(R) =0, - = 0. (2.15)

Equations (2.13), (2.14) and (2.16) in dimensionless variables become

dudv pdv v A (dv\? v [dv\? dv\?
ar d1"+;d_1"+ d1"2+ <d_1") +3Aa—13 E) - P ;L—l-A(a—;) v =g, (2.16)

2 2
%+%-Z—f+r<%) (,u(r)+A(%> ) ~0, (2.17)
v(1) = 8(1) =0, d‘;(f) = di(f) =0, (2.18)

16



where

2 1 P2
A:Mc:iﬁ ¢ P,T

T ] I
, y T = = =, v = -, = -— 2.19
R2vo poVo ' kR? R % " (2.19)
g = 9-06 _ Fov3
61—0 k(61— 6o)’

where R, vo, g, 60, 8 and 0; are the radius, reference velocity, reference viscosity, reference
temperature and pipe fluid temperatures respectively. Here ¢ is the pressure drop, P is porous

medium parameter and T’ is viscous dissipation and bars have been suppressed for simplicity.

2.3 Series solutions

In this section, Egs. (2.17) and (2.18) with boundary conditions (2.19) will be solved by using
HAM.
Case- I Reynold model
For Reynold model
p=e50 (2.21)

For HAM solutions we select
c 2 c 2
vo (1) = Z(T -1), 6p(r)= 5(1‘ -1) (2.22)

as the initial approximations of v and 8. Further we choose the following auxiliary linear oper-

ators
#? 1d
such that
L1(C1+ Colnr) =0, (2.24)
where C; and Cy are arbitrary constants.
The zeroth — order problems are
(1 = p) L1 [v* (r,p) — vo (r)] = phN1 [v* (1, p), 6" (r,P)], (2.25)

17



(1—p) L1 8" (r,p) — 60 (r)] = phN2 [v* (r,p) , 6" (7, p)], (2.26)

ormp)| _, 99(np)

v (l,p)=0, 6 (L,p)= g o g Y

=0. (2.27)

After the Taylor’s series expansion of Eq. (2.21) and retrieving only first two components, we
get
p~1-6B. (2.27a)

In view of Eq. (2.17) and 2.27a we can write

1dv* &2 Bd-u * A (dv dv\2 &y

lat  Lu Bdrp pIvo+d () +an(P)' R
Ni[o* (r,p), 6" (r,p)] = [ o ! R T (2.28)

+BPvd ~ Pv— PA($)*v -],
14+ 45 -TB (%) 0+T (R’
Ne[v* (r,p), 0" (r,p)) = L7 ¢ ) g d (2.29)
+AT ($)*]
For p =0 and p = 1, we have

v* (r;0) = v (r), 0(r;0) = 6o (y) and v*(r;1) =v(r), 6% (r;1) =6(r). (2.30)

When p increases from 0 to 1, v*(r,p), 8*(r,p) varies from vy (r), 6o (r) to v(r) and 6(r)
respectively. By Taylor’s theorem and Eq. (2.30) one can write

v (rp) = (r)+ D vm(r) P, 0" (r,p) =00 (r) + ) O (r) P™, (2.31)
m=1 m=1
o () = L O™ () il )

m (1) = — N y O (r) = e (2.32)

Clearly, the convergence of the series (2.31) depends upon k. We choose i in such a way that
the series (2.31) is convergent at p = 1, then due to Eq. (2.30) we have

v(r)=vw )+ Y, vm(r), 0 (r) = 6o (r) + i O (7). (2.33)
m=1 m=1

18



The mth order deformation problems are
L1 [Um (T) = XpmUm—1 (7)] = ARy (1), (2.34)

L1 [0m (1) = XmIm-1 (r)] = AR2m (r), (2.35)

0, (2.36)

vm (1) =0, v, (0)=0, 6m(1)=0, &, (0)

Rl (T) _ .}:d%nr;l 4 S¥mo1 d? vm 1 Bzm—l dvy, — 1 kd_{_& B Zm_l dvm_l"ka
m =
—-B Z'Z‘_"‘ol dvm—l k0k+
Am_l u (d'vm—l—k) dvg_. ld'Ul m1 k dUpm—1—k dvg_; d2v1
DY TN NCE )
T k=0 I=0 dr =0 1=0 dr dr dr
T dy dug_y m-1
—PA Z n:i-;l —k dk v — (1 = Xp)c+ BP Z Vm—1-k0k — PUm-1] ,
k=0 =0 k=0

186m1 ao_ \ Om1 O
R2m(r) = [; et I‘Z Tk "é’T’ﬁ

_TB Z 3vm—1 k 6’”k 191

k=0
m-1 k 1
v _1 k 8vk lav, ~f 3vf
+AT ZZ m . (2.38)
kZo == or or or
Case 11 Vogel model
Here
= “06(3_'3—’6_9). (2.39)
The problems at the zeroth order are
(1 —p) L1[v* (r,p) — v (r)] = pAN3 [v* (7, p) , 6" (7, p)], (2.40)
(1 - p) L1[v" (r,p) — vo (r)] = pANy [v* (7, p) , 6" (7, P)], (2.41)

19



v* (r, p) 86" (r,p)
* = 6% (1,p) = —_ = =0 2.42
vp=0 rap=o 28— ZoE (242
By Taylor’s series, Eq. (2.39) can be approximated as
c 0A c
=={l1-—= where S=-—-7F7—. 2.42a
w=5(-%) 3w (2420)

In view of Eq. (2.17) and 2.42a we can write

c dvt _ _Ac dv'9+gd2v“ _ €A dzu“9+ A (dv')3
N3 [’U* (’I‘ p) 9 (’I‘ p)] _ rSdr = rSBZdr S dr? SB? dr? r \dr (2 43)
) ) ) - - - 2 . . .
+3A (90)2 Byt _ pA (d)?y _ Bye _ Phgyegr ¢

r dr dr? dr SB2
dv*\*
(2]

The mth order deformation problems are

* * *\ 2 *\ 2
Wb o) = [F SRS T () g

Ly ['Um (T) ~ XmVYm—1 (7')] = hR3, (1‘) ) (2-45)
L1 {vm (1) = XmVUm=1 (1)] = ER4m (1), (2.46)
vm(1)=0, ,(0)=0, 6,(1)=0, €,(0)=0, (2.47)
Ran(r) = “AC " dvp 1k 4k € dvmo1 Ac ™ dup_ 1k - cmz—ld'um_l_k dvy
B4S = dr dr rs dr rsB pard dr s = dr dr
cA d2’l}m_1 A ek d'Um—l—k d’l}k_l d’Ul
sB2?  dr2 9+FZZ dr dr dr
k=0 =0
m-1 k
dv,,_,_, dvg_; d®y 2 Vmn—1—k d'u,c Pcdvy,—1
3A Z Z dr dr dr? ~PA Z T drz T s dr
k=0 =0
PAcT 1k
—57 2 2 Um-1-k6k — (1= xm) | , (2.48)
k=0 =0
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1 00m—1 a 0,,,_ —1 dvp— d
1l ) Phos 4 PR Sopishda
Rém (r) = 1“32;,c o Lmelo del g : (2.49)
d m_. ke dug_; dui_ dv
FAL T T Cppmo S S~

The above equation can be solved by Mathematica.

2.4 Convergence of the solution

The auxiliary parameter # is responsible for convergence region and rate of approximation given
by the HAM as pointed out by Liao [21]. In order to determine the admissible values of i, we
plot the curves 2.1 and 2.2 , 2.3 and 2.4. It is noted from these Figs. that the range for the
admissible values for £ is —1.4 < A < —0.5. The solution calculated finally converges for the

whole region of », when # is in the neighborhood of —1.
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Fig. 2.1 ii — curve for velocity of Reynolds model
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Fig. 2.2 i — curve for temperature of Reynolds model.
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Fig. 2.3 h — curve for velocity of Vogel’s model.

Fig. 2.4 h — curve for temperature of Vogel’s mode.
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2.5 Grapphs

2.5.1 Graphs for Reynolds model.
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Fig. 2.6. Influence of A on the velocity.
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Fig. 2.12. Influence of B on the temperature,
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2.5.2 Graphs for Vogel’s model
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Fig. 2.14. Influence of A on the velocity.
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Fig. 2.19. Influence of A on the velocity.
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Fig. 2.20. Influence of ¢ on the temperature.
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Chapter 3

Effects of MHD and porosity in
Reynold and Vogels’ models of

variable viscosity in third grade fluid

3.1 Introduction

This study extends the analysis of ref. [13] and desires to understand the magnetic field effects
on the pipe flow of a third grade fluid in a porous medium by employing modified Darcy’s
law. Besides this Reynolds model and Vogel’s model of temperature dependent viscosity are
considered. The relevant equations for flow and temperature have been solved analytically by
using homotopy analysis method [14-19]. Convergence of the obtained solutions is explicitly
shown. The effects of the various parameters of interest on the velocity and temperature are

pointed out.

3.2 Mathematical description

Let us consider an electrically conducting MHD steady flow of a third grade fluid in a pipe.
No electric field is present. The induced magnetic field is neglected by considering the small

magnetic Reynolds’ number. The fluid is induced due to a constant pressure gradient. The
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appropriate velocity field is designated as follows.

V =[0,0,v(r)]. (31)

The relevant equations governing the flow can be expressed as

V.V =0, (3.2)
p%f —divT+J x B, (3.3)
pc,,fjl—f =T -L-V?, (3.4)

J x B = ~oB%y, (3.5)

in which d/dt is the material derivative, ¢, represents the specific heat, the temperature is
denoted by 6, J indicates the electric current density, By is the applied magnetic field, L is the
velocity gradient and o the electrical conductivity of the fluid. The Cauchy stress tensor T is
defined by

T = —pil+ puA; + 1Az + A% + B Az + Bo(A1A2 + AgA)) + B3(trA2)A,, (3.6)

where p; is hydrostatic pressure, u the dynamic viscosity, I the identity tensor and ;{3 = 1,2)

and B;(j = 1 — 3) the material constants. The Rivlin—Ericksen tensors are defined as

A = VV + (VV), (3.7)

_ dAn—l

An dt

+ A, VV +(VV) 4,1, n>1, (3.8)

where V is the gradient operator and the material parameters arising in Eq. (3.6) satisfy the
condition given in Eq. 2.9

By [22] we have
0 o 0

in which X and A, are the relaxation and retardations times respectively in an Oldroyed —B
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fluid, ¢ and k are the porosity and permeability of the porous medium.

The Darcys resistance R is

7] o 7]
(1 + ’\?a't') R=-£g (1 + A,-a—t) V. (3.10)

Following above expression we have in steady flow of a third grade fluid as follows

2
Rz = -% [u +A (j—’t’) ] Vv, (3.11)

Where R, is the 2—component of R and A is the third grade parameter. The Equations (3.3)
and (3.4) reduce to

1d dv\ 283 d dv\3\ ¢ w\*| _ 9p )
rdr (Tp‘J) + - dar (T (‘E) > ~z Bt A pr V=5 +oBg v, (3.12)

2 4
s o () < [ ()] -0 629

subject to the boundary conditions
dv dé
v(R) =6(R) =0, E;(O) =0 =0, (3.14)

where k is the thermal conductivity and the modified pressure p is

~ dv\?
P=p1— 0 (d_’l'> ) (3-15)

where p; indicates the pressure and oy and (3(> 0) are the material constants of third grade

fluid.

Writing
2 p2
M2 = TB &% (3.16)
Ho
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The non—dimensional problems become

3 2 2
d? d? d
dﬂ@"*-“dv‘f'}lar—g‘l'%(d—v) +3A<'d—1{) v P[}L-‘-A(E—Tt{) ]—Mz’v:C, (3.17)

drdr ' rdr dr dr ) dr2
426 1df dv\? dv\?
) + ;5 +T (ET_:) l:/,l.(’r‘) +A ('(;) =0, (3-18)
dv db
v(1) =6(1) =0, 5(0) =50 =0, (3.19)

3.3 Solution of the problem

We will solve Eqs. (3.18) — (3.20) by taking into account the two models of variable viscosity,
namely the Reynolds’ model and Vogel’s model.
Casel:Reynolds’ model

Here we have

p=eB0 (3.20)
and for HAM solution we select the

c(r? —1)

- (3.21)

w(r)=302-1), =

as the initial approximations of v and 6 respectively, which satisfy the linear operator and
corresponding boundary conditions. We use the method of higher order differential mapping
[23], to choose the linear operator £y which is given by

2 1d

b=gm*ry

(3.22)

such that
L1(Ci + Calnr) =0, (3.23)

with Cj and Cs as the arbitrary constants.
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Zeroth — order problems are given by

(1 — p)La[v*(r, p) = vo(r)] = pAN1[v*(, p), 6" (T, p)], (3:24)
(1 — p)L1[6*(r,p) — b0(T)] = phN2[v*(r, p), 6* (T, )], (3.25)
o _ o _o S| _ 9P| _, 26
(1,p) = 6*(1,p) =0, -t P =t I 0 (3.26)
Taking
p=~1-6B. (3.27)

We have through Egs. (3.18) to (3.27) as

dv* d2 * dv* 3 duv* 2d2 *
Niv*(r,p),6%(r,p)] = 1l+——v—+A< v) +3A (l) £+ BPy

rdr ' dr2 1 \dr dr dr?
dv\? 2
—Pv— — ) - * - 2

Py—PA (dr) M*v* —¢, (3.28)

. . 1do*  d%* dv*\? dv*\*
No[v*(r, ), 6*(r,p)] = e + ) +T (71-‘-) +TA ( - ) . (3.29)

For p =0 and p = 1, we have

v*(r,0) = vo(r), 6*(r,0) = 6o(r) and v*(r,1) = v(r), 6*(r,1) = 6(r). (3.30)

When p increases from 0 to 1, v*(r, p), 8*(r, p) varies from vp(r), 8p(r) to v(r), 8(r), respec-
tively. By Taylor’s theorem and Eq. (3.27) we can write

v*(r,p) = w(r) + Y _ vm(r)p™, 6°(r,p) = 6o(r) + Y, Om(r)p™, (331)
m=1 m=]
_ 1 0™ (np) _ 1 0m6"(r,p)
vm(r) = m o o’ Om(r) = m o | (3.32)

The convergence of the series (3.31) depends upon A. We choose A in such a way that the series
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(3.31) is convergent at p = 1, then due to Eq. (3.30) we have
[o ] o0
o) =w(r) + S (), 0(r) = o(r) + 3 Om(r).
m=1 m=1
The mth order deformation problems are
‘Cl[vm(r) - vam—l(r)] = ﬁ?le(T),
[’l[em(r) - Xmom—l(r)] = ﬁ‘SR2m(T)7

V(1) = 0m(1) =0,  vjp(0) = 61, (0) = 0.

m—1
Rin(r) = ldvm-—l d*vm—1 _Bzdvmrl —k dbk EZ dvm—l—kek

r dr dr2 prd ri dr
m—1 m—l k
d2'vm—1 k Avm_1_k \ dvg_1 dv;
_B o m-1-kg k)
= et kz_;);( dr ) dr dr
m—1 k m—l k
1k ) dvg—1 d2v; dvm—z k dvk—z
+30 Y ( m ) > —PAY Y~k u
k=0 =0 dr dr dr k=0 i=0
m—1
+BP Z Vm—1-k0k — Pom—1 — (1 — X;n)c — M3v,_y,
k=0

§R2m(r) - %dﬁm 1 d29m_ FE (d'vm 1— k) d’l}k FBZ d’”m-—l K

dr = dr
d’l)k 1 mlk J dvm—l k d’l)k_‘ dv;_; dv;
7] Rt bl i
I+AFZZZ dr dr dr’
k=0 j=0 i=0
where
0, m<I,
Xm =
I, m>1

Case II Vogel’s model

Here

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)



which can be approximated as

_c(y_ A
,U. - s Bz )
and
8§ = p,oe(%_oo),

The zeroth— and mth—order order deformation problems are
(1 —p)La[v*(r, p) — wo(r)] = pAN3[v*(r, ), 6% (r, P)],

(1 = p)L1[6*(r, p) — bo(r)] = PAN4[v*(r, p), 6™ (r, D)),

. . _ ov*(r,p) _86*(r,p)
v (lap) =0 (]-’p) - 0, 61' =0 - 6r

Ll[’Um,(T) - vam-—l(r)] = ﬁ"sR3m(r)7

r=0

L1[0m(r) = XmOm-1(r)] = hR4m(r),

um(1) =0m(1) =0,  v;,(0) = 6,(0) = 0.

. . c dv* Ac dv* cd®v*  cA d?v*
M), 0°(np)l = S T e T B e

A [dv*\3 dv*\? v dv*
tr ( dr) +3A(E'_) dr? —PA(dr

3 Pv*c¢ PAc
s sB?2

. . 1dg*  d26* Tc (dv*\? dv*\* TeA
M[v (T,p),0 (T,p)] = ;? + W - ? (Er—) +TA (FT—) + -S—B—2'9 (

v - M2y* —c.
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=0.

dvr
dr

)
).

(3.41)

(3.42)

(3.43)
(3.44)
(3.45)
(3.46)

(3.47)

(3.48)

(3.49)



—Ac ™ dv, 1k dOr ¢ dvm_ ! dv _1 k
R3n(r) = Z Lal buid R rsB2 Z =" O

B%s &= dr dt 7s
+gm = dum_1_k dvk _C_A_dva- ZZ (d’vm—1 -k ) dvk—1 dvi
s " dr dr sB? dr? dr dr
k=0 1—0 =0
m—1 k m—1
dvm—1-k \ dvg—1 d?v; vy 1k dvg  Pcdvm—y
+3A Z Z ( dr ) dr dr? PA dr2 dr s dr
k=0 i=0 k=0
PAc m-k k
- sB? va-l—kak - (1 - Xm)c - M2'Um—11 (3.50)
k=0 i=0

I dzem._ dUm_1-k \ dug
Rim) = 1= dr? FZ( dr )dr

m-1 k

_FBZZdUm-z kdvk Lo,

k=0 I=0

m-1 k J
d‘Um_l k d’Uk_j d’Uj_i d'ui
HAT Y DD ( ) e (3.51)

k=0 j=0 i=0

3.4 Convergence of the solution

In order to determine the admissible values of ki, we plot the curves 3.1, 3.2, 3.3 and 3.4. It
is noted from these Figs. that the range for the admissible values for fi is ~1.5 < 2 < 0. The
solution calculated finally converges for the whole region of r, when fi is in the neighborhood

of —1.
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Fig.3.1. h—curve for velocity in case of Reynolds’ model at 14th order approximation.
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Fig.3.2 h—curve for temperature in case of Reynolds’ model at 14th order approximation.
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Fig.3.3. h—curve for velocity in case Vogel's model at 14th order approximation.

Fig.3.4. hi—curve for temperature in case of Vogel’s model at 14th order approximation.
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3.5 Graphs

Graphs of Reynolds model
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Fig.3.5. Influence of porosity parameter P on velocity.
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Fig.3.8. Influence of A on velocity.
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Fig.3.11. Influence of porocity parameter P on temperature.
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3.5.1 Graphs of Vogel’s model
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Fig.3.18. Influence of C' on velocity.
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Fig.3.20. Influence of I" on velocity.
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Fig.3.22. Influence of B on velocity.
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Fig.3.25. Influence of MHD parameter M on temperature.
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Fig.3.28. Influence of " on temperature.
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Fig.3.30. Influence of B on temperature.
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3.6 Discussion

We have analyzed the effects of MHD and porosity in Reynolds and Vogel’s model of variable
viscosity in third grade fluid. Analytical solutions are computed. These solutions are valid
not only for small but also for large values of all emerging parameters. In order to predict
the salient features of the key parameters involved into the present analysis, we display Figs.
3.1 — 3.32. The convergence of the solutions are shown in Figs. 3.1 — 3.4. The dimensionless
numbers which vary are P, M, A, T', A and B. The dimensionless number P is related to the
porosity: M is magnetic parameter, A is measure of non newtonian behaviour of the fluid,
T’ is related to viscous dissipation, B and A indicates how the viscosity of Reynolds model
and vogel’s model varies. Figs.3.5 — 3.16 show solutions obtained for velocity and temperature
profiles for Reynolds vicosity model, while Figs. 3.17 — 3.32 are for Vogel's model. The effect
of P on velocity for Reynolds model is shown in Fig. 3.5. It is found that the profile of velocity
v decreases by increasing P. It is observed that the profiles of velocity v and temperature
6 decrease monotonically by increasing the MHD parameter M (see Figs. 3.6 and 3.12) in
Reynolds model.It means that electromagnetic forces provide some mechanism to control the
boundry layer thickness. The effects of A, B and I" on v and 6 for Reynolds model are shown in
Figs.3.8—3.10. and 3.14—3.16, respectively. It is noted that v and 6 increase by increasing A, B
and I'. In Fig. 3.11, it is seen that the temperature 6 increases by increasing P. It is also noted
that the behaviour of velocity and temperatuer profiles for Reynolds model and Vogel’s model
are same but the penetration depth in Reynolds model mostly decreases more rapidly when
compared with that of Vogel’s model. Moreover, the obtained analytical solutions have also
been compared with the previous studies in the literature which provides a confidence into the
presented mathematical descriptions. For instance, the solutions with zero magnetic field and
non porous plate obtained by [12] can be recovered by taking P = M = ( and one can achieve
the results of [13] when M = 0. To the best of our knowledge, no such analysis is available in
the literature which can describe the porosity, heat transfer and MHD effects simultaneously

on variable viscosity in Reynolds model and Vogel’s model.
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