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Abstract

Lifespan distributions are crucial for describing real-world events that arise
in many scientific domains, including engineering, computer science, so-
cial science, and survival analysis. Many distributions have been devel-
oped and regularly explored in order to address the problem with the
current distributions.It is challenging for the well-known distributions to
appropriately fit the real-world data due to their complexity. In order to
enhance their efficacy and more precisely reflect the complex structure of
the data.
The Gumbel distribution is one of these distributions that is well-known
for its wide applicability in both theoretical and practical sectors. The dis-
tribution’s results are useful for survival and dependability analyses. The
current study explores a novel modification using various techniques to
provide a new modified life-time distribution that is more flexible than
the current extension of the gumbel distribution.
In this research endeavor, initially introduces a new, more adaptable gen-
erator i-e, "Logistic Cotangent Topp-Leone-G"(LCTL-G) family of distri-
bution. Subsequently, a new extension of distribution is created by com-
bining a new generator with the base line Gumbel distribution distribu-
tion.The resulting form of distribution create a new three-parameter prob-
ability model called the Logistic Cotangent Topp-Leone Gumbel (LCTL-
Gu) distribution.The proposed model is more capable of representing the
monotonic and nonmonotonic hazard rate functions when compared to
other current distributions.
Numerous statistical features of the proposed distribution (LCTLGu) have
been explored, including the hazard function, quantile function, survival
function, and rth moments. A variety of probability models are compared
to the proposed model, such as the Beta Gumbel, Kumaraswamy Gum-
bel, and the Exponentiated Generalized Gumbel.It has been shown that,
in comparison to previous existing distributions, the recently established
probability model is more suited and yields more flexible results.Entropy
computation, mean residual life function and pararmeter estimation have



all been discussed in relation to certain attributes. Many statistical aspects
have been examined by considering the two real data sets, including the
quantile function, survival function, hazard function, and rth moments.
The proposed model is contrasted with a number of existing probabili-
ty models, and it is clear from the application of real data. The LCTLGu
distribution is better than the other recommended distribution and It has
been demonstrated that the proposed model is the ideal option for model-
ing.



Nomenclature

• AD Anderson-Darling

• AIC Akaike information criterion

• BIC Bayesian information criterion

• CAIC Consistent Akaike information criteri-
on

• CDF Cumulative density function

• EL Exponential Lomax

• GL Gamma-Lomax

• HQIC Hannan-quinn information criteria

• HRF Hazard Rate Function

• HLLD Half-Logistic Lomax Distribution

• IPL Inverse Power Lomax

• KSG Kumaraswamy Generalized

• LL Log-Likelihood

• lD Lomax Distribution

• KS Kolomogrov-Smirnov

• McL McDonald Lomax

• MOL Marshall-Olkin Lomax

• MOAP Marshall-Olkin Alpha Power



• MSE Mean square error

• MLE Maximum likelihood Estimation

• MGF Moment generating function

• OS Order Statitics

• PDF Probability density function

• POLO Power Lomax

• SF Survival function

• TLL Topp-Leone Lomax

• TTL Tangent Topp-Leone

• TL-E Topp-Leone Exponential

• TTLB Tangent Topp-Leone Burr

• TIITLPL Type II Topp-Leone Power Lomax

• TTL-KS Tangent Topp-Leone Kumaraswamy

• TTL-KSL Tangent Topp-Leone Kumaraswamy Lo-
max

• TIIT-G TypeII Tangent Generalized

• TTL-KSE Tangent Topp-Leone Kumaraswamy
Exponential

• TTL-KSB Tangent Topp-Leone Kumaraswamy
Burr

• W Cramer-Von Mises

• WL Weibull-Lomax

• WIL Weibull Inverse Lomax

• LCTL Logistic Cotangent Topp-Leone

• LCTLGu Logistic Cotangent Topp-Leone
Gumbel



• EGu Exponentiated Gumbel

• BGu Beta Gumbel

• KGu Kumaraswamy Gumbel
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Chapter 1

Introduction

1.1 Historical background

In survival analysis, probability distributions are mostly utilized for data
modeling since they offer valuable insights into the characteristics of dif-
ferent functions and parameters, specially the failure rate function. Prob-
ability distributions serve as both the theoretical and practical basis for
statistical techniques in a number of scientific domains, including sur-
vival analysis, inference, and reliability analysis. The collection of sta-
tistical probability distributions used in life data analysis and reliability
engineering is called a lifetime distribution. Lifetime probability distribu-
tions are used to study a variety of topics including analyzing the length
of unemployment spells and the factors affecting re-employment chances,
estimating the time to claim occurrence (e.g., life insurance, health insur-
ance),examining the survival times of species under different environmen-
tal conditions or threats, calculating the amount of time until certain occur-
rences, including death, a disease’s recurrence, or recuperation etc. Cor-
rect lifetime data analysis can offer real-world solutions to a wide range of
issues.
One of the more modern techniques for increasing the adaptability of cur-
rent distributions is the employment of trigonometric functions, due to
their numerous benefits, including their ability to improved the current
distributions’ qualities and adaptability.
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1.1.1 Trignometric Function

One significant aspect of recent research on probabilistic distributions has
been the invention of a basic class of trigonometric distributions, which
can be more or less complicated.
A lot of interest has been shown in the general classes of trigonometric dis-
tributions. These classes are of great significance because they are gener-
ally quite good at fitting various kinds of real-world data sets, have easily
comprehensible mathematical features, and are very easy to apply.
Recent advances in statistics may be found in publications by Kumar et
al., (2015); Jamal and Chesneau (2019); and Souza et al., (2019). More pre-
cisely, Souza et al.,(2019) created a novel Sin-G distribution, of which the
CDF is one of the most fundamental.

sinp(x) = sin{π
2
p(x)}, xεR

Where P(x) is baseline distribution function. They both are very simple
trigonometric classes and have a remarkable degree of flexibility in statis-
tical modeling.
Also Souza et al., (2019) introduced the Tan-G class, an entirely novel, s-
traightforward category of trigonometric distributions with the character-
istic of being centered on the tangent function. The next CDF defines it:

tanG(x) = tan{π
4
G(x)}, xεR

Tashkandy et al., (2023) devloped The Exponentiated Cotangent General-
ized Distributions

F (X) = −Cot[πG(x)α], xεR

Mahmood et al.(2022) presented A New Family of Distributions Using a
Trigonometric Function.

F (X) = −Cot[πG(x)], xεR

1.1.2 Topp-Leone Family of Distribution

A unique distribution family is the Topp-Leone family,which is likely one
of the most well-known. The TL distribution is a simple bounded J-shape
distribution that has drawn the attention of many statisticians as a poten-
tial replacement for the Beta distribution. Al-Shomrani et al. (2016) was
developed a family of Topp leone distribution. It is a well-liked genera-
tor because of its numerous positive qualities, which include the validity
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of probabilistic functions and mathematical simplicity.Moreover, the said
distribution have ambitions to manage the ability of the new TL gener-
ator, which is based on a single shape parameter. Many statistical trend
proposed in the literature commonly incorporate several parameters to
achieve flexibility.

1.1.3 Gumbel Distribution

Emil Julius Gumbel(1891-1966), a German mathematician, invented the
Gumbel distribution in 1958. In extreme value theory, a distribution of
greatest(or lowest) values from a sample or set of data has been studied.
The Gumbel distribution is a continuous probability distribution has uti-
lized in this study. There are two types of Gumbel distributions:

1. Gumbel Type I (or Gumbel Max):used to simulate how a sample of
data’s greatest value might be distributed.

2. Gumbel Type II (or Gumbel Min):used to simulate how a sample of
data’s smallest value might be distributed.

The Gumbel Distribution is also called the log-Weibull distribution and
the double exponential distribution.

1.1.4 Gumbel Type I(Max)Distribution

Another name for the Gumbel Max distribution is the Gumbel distribution
with the pdf.

g(z) =
1

σ
e−[

z − µ
σ

+ e−(
z − µ
σ

)]

here:

. µ is the location parameter

. σ is the scale parameter (β>0)

The CDF is:

G(z) = e−e
−( z−µ

σ
)
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1.1.5 Gumbel Type II (Min)Distribution

The Gumbel Min distribution has the pdf:

g(z) =
1

σ
e(

z−µ
σ

)e−e
( z−µ
σ

)

where:

. location parameter is µ

. scale parameter is σ and (σ is greater than or equal to 1)

The CDF is:

G(x) = 1− e−e
( x−µ
β

)

1.2 Preliminaries

1.2.1 Distribution Function

A distribution function, sometimes referred to as a cumulative distribution
function, or CDF, is basic idea in probability and statistics expresses the
random variable will take on a value that is less or equal to certain value.
Formally speaking a random variable X is a CDF, defined as:

FX(x) = P (X ≤ x)

Here:

. FX(x) is the CDF of the random variable X .

. The value x falls within the domain of X .

. P (X ≤ x) shows that the probability of X takes the value that is
equal or less than x.

1.2.2 Properties of Distribution Function

. FX(x) is non decreasing function. This means that if x1 < x2 then
F (x1) ≤ F (x2)

. Is x approaches to minus infinity, then CDF approaches to 0 and if x
approaches to plus infinity, then the CDF approaches to 1

. The values of F (x) range between 0 and 1 for all x.

. The CDF exhibits right-continuous behavior.
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1.3 Survival Function

The survival function denoted as S(t), is a fundamental concept in sur-
vival analysis is the branch of statistics deals with analyzing time-to-event
data. It represents the probability that an individual or an object survives
beyond a certain time point t. It deals with failure in mechanical systems
and death in natural organisms. In addition to being used in a variety of
other fields, survival functions are also known, such as event history anal-
ysis in sociology, duration analysis or duration modeling in economics,
and reliability theory (analysis) in the engineering field. Analysis of pa-
tient survival times using these functions is common in medical studies.
Survival function is also known as the survivor function or survivorship
function in biological survival problem.
Mathematically,

S(t) = P (T > t)

Here ’P’ shows probability, ’T’ (random variable) presenting the time until
the event of interest occurs and t is the specific some point. The survival
function can be increasing or decreasing and approaches to zero as time
increases.

1.4 Hazard Function

The PDF f(t) divided by the survival reliability function s(t)which is the
definition of the hazard function often called the failure rate.The hazard
function is useful for understanding the underlying risk of experiencing
an event at different time points. It is often employed in survival analysis
to simulate the influence of factors on the event occurrence rate or to assess
the relative risk of various groups. Mathematically Hazard function is:

φ(t) =
f(t)

s(t)

. The instant failure rate at any given time t is specified by hazard
function φ(t).

. The probability of any event happening at time t is higher when φ(t)
is high.

. The distribution of the event times might affect the hazard function’s
shape. For instance, depending on the underlying mechanism, it
may be rising, decreasing, constant, or have more complex shapes.
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1.5 Quantile Function

A statistical function that indicates the value below which a specific per-
centage of data falls is called the quantile function. It is the opposite of a
random variable’s CDF. In basic terms, the quantile function helps in lo-
cating the data point in a random variable’s distribution that corresponds
to a given probability.
Suppose that X is a random variable with CDF F (x). Here, Quantile func-
tion Q(p) is defined as:

Q(p) = F−1(p), 0 ≤ p ≤ 1

1.5.1 Properties of Quantile Function

. There is no declining trend in the quantile function.

. The random variable’s support is compared closely to the quantile
function’s range.

. The quantile function Q(p) will also be continuous if the CDF F(x) is
continuous.

1.6 Moment Generating Function

In statistics and probability theory , the moment-generating function (MGF)
is very a helpful concept since it gives a unique description of distribution
of random variable. It offers an efficient way of obtaining a random vari-
able’s moments, such as its variance and mean.
For a random variableX, the moment generating function Mx(t)is defined
as the expected value of etx

Mx(t) = E[etx]

1.6.1 Properties of Moment Generating Function

1. Existence:Not all values of t will have the MGF. If the expectation is
finite, then it exists for values of t in some region around 0.

2. Uniqueness:The probability distribution of the random variable X
can be uniquely determined by MGF if it exists in the interval around
t=0.
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3. Moments:The n − th moment of X (i.e E[Xn] can be obtained by
differentiating the MGF n times with respect to t and evaluating at
t = 0.

1.7 Renyi Entropy

In the 1850s and 1860s, Rudolf Clausius introduced the entropy measure
for the first time.The Renyi entropy which measures the degree of uncer-
tainty or randomness in a probability distribution, is a generalization of
the Shannon entropy. It offers a range of entropy measurements which is
sensitive to distinct regions of the distribution.Distinct values of α corre-
spond to distinct features of the distribution’s spread and form.
For a continuous probability density function f(x), Renyi entropy of order
α defined as:

Hα(x) =
1

1− α
log

∫ ∞
−∞

fα(x)dx

Where

. Hα(x) is a convex function of α.

. Hα(x) is non-negative for α > 0

1.8 Order Statistic

Order statistics are utilized in many statistical studies and applications
and are essential for knowing the distribution of a dataset. They offer
insightful information about a sample’s distribution, central tendency, and
extremes.
Particularly in non-parametric statistics, order statistics are essential for
building confidence intervals.Order statistics are values that result from
sorting a sample of random variables in ascending or descending order.
Given a sample X1, X2, X3, ..., Xn from a population, the order statistics
are shown as X(1)X(2)X(3), ..., X(n)

f1:N(x) =
f(x)

β(i, n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i
j

)
F (x)i+j−1 (1.1)
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1.8.1 Properties of Order Statistic

1. Ordering: The order statistics are arranged in ascending order;
X1, X2, X3, ..., Xn

2. Independence: In general, order statistics are not independent. How-
ever, for some specific distributions (e.g., uniform distribution), cer-
tain order statistics may be independent.

1.9 Maximum Likelihood Estimation

The unknown parameters can be estimated using a variety of techniques.
Maximum Likelihood Estimation (MLE) is a widely utilized technique in
statistical model parameter estimation. The process of estimating maxi-
mum likelihood maximizes the agreement between the chosen model and
the observed data, and gives us the appropriate estimations for the mod-
el’s parameters.A maximum likelihood estimate is an analytical approach
for maximizing data that may be applied to any type of data, whether it
is censored or not.Given a probability distribution with parameters θ and
it is a set of observed data x1, x2, ..., xn the likelihood function L(θ|x) is
defined as the probability of observing the data given the parameters θ.
For independent and identically distributed (i.i.d.) random variables like-
lihood function is a multiplication of probability density functions (pdf)
evaluated at every data point:

L(θ|x) = f(x1; θ)× f(x2; θ)××× f(xn; θ)

where f(xi; θ) is the pdf of the distribution evaluated at xi with parame-
ters θ.
It is more convenient to work with the log-likelihood function l(θ|x), which
is a natural logarithm of the likelihood function:

l(θ|x) = logL(θ|x)

To find the maximum likelihood estimates θ̂ of the parameters, one typi-
cally takes the derivative of the log-likelihood function with respect to θ
and sets it equal to zero.

1.10 Criteria for the goodness of fit test

The methods used to determine how good a data set supports the idea
that comes from specific distribution are known as goodness-of-fit tests. A
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few of these tests are employed to evaluate the probability distribution’s
quality of fit.In certain circumstances, researchers might gather data with
the intention of applying a new model to it. The majority of the time,
researchers are unable to select the best model. To assess how Several
models are applied to the data, depending on how well it functions. Model
selection is the process of deciding which model will eventually solve the
problem. The effectiveness of these models is evaluated using the GOF
criteria. Among them are HQIC, AIC, BIC, and CAIC.These parametric
specifications are all based on the likelihood function. Generally speaking,
these information requirements are as follows:

1.10.1 Akaike information criteria(AIC)

Akaike Information Criterion (AIC] (1971) introduced by Akaike. AIC is
one of the most commonly used criterion in statistical modeling for model
selection. It offers a way to contrast various models and choose the one
that most effectively achieves a balance between model goodness and the
model complexity of fit. AIC is defined as:

AIC = −2log(L) + 2k

Here is The maximum value of the likelihood function is L for the model
and the number of estimated parameters in the model k is represented as

1.10.2 Bayesian Akaike Information Criterion (BAIC)

[Schwarz(1978)] provides Gideon E. Schwarz’s Bayesian information cri-
teria.Model selection among a limited number of models is based on the
Bayesian Information Criterion (BIC). Simpler models are preferred over
overfitting ones by the BIC, which is based on the likelihood function and
adds a penalty term for the amount of parameters in the model.It can be
expressed as:

BIC = −2log(L) + klog(n)

where L is the maximum value of the likelihood function for the mod-
el.The number of estimated parameters in the model is denoted by k. The
number of observations is denoted by n.

1.10.3 Hannan-quinn Akaike Information Criterion (HQIC)

Hannan-quinn information criterion proposed by [Hannan and Quinn(1979)]
Similar to the Akaike Information Criterion (AIC) and the Bayesian Infor-
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mation Criterion (BIC), the Hannan-Quinn Information Criterion (HQIC)
is another criterion used for model selection. When it comes to punishing
model complexity, HQIC offers a compromise between AIC and BIC. It is
very helpful in econometrics and time series analysis.

HQIC = −2log(L) + 2klog(log(n))

1.10.4 Consistent Akaike Information Criterion (CAIC)

Bozdogan [1987] created the Consistent Akaike Information Criterion (CA-
IC), a novel model selection criterion.An increase in the penalty for mod-
el complexity is included in the Consistent Akaike Information Criterion
(CAIC), which is an extension of the Akaike Information Criterion (AIC).
Some of the shortcomings of AIC are intended to be addressed by the CA-
IC, also known as the Corrected Akaike Information Criterion. This is
especially true when there are several parameters in relation to the sample
size.CAIC is described as

CAIC = −2log(L) + k(log(n) + 1

where L is the maximum value of the likelihood function for the mod-
el.The number of estimated parameters in the model is denoted by k. The
number of observations is denoted by n.

1.10.5 Anderson-Darling (A*)

The Anderson Darling (AD) statistic is an empirical distribution function-
based goodness of fit test that was first presented by Anderson and Dar-
ling [1954].One statistical technique to determine whether a sample of da-
ta is representative of a given distribution is the Anderson-Darling test.
Compared to other goodness-of-fit tests like the Kolmogorov-Smirnov test,
it is especially helpful for small sample sizes and is more sensitive to de-
viations in the distribution’s tails.

A2
n = n

∫ ∞
−∞

[Fn(x)− F (x)]2ψ(F (x))dF (x)

The empirical distribution function is Fn(x), the particular cumulative dis-
tribution function is F (x), and n is the sample size. ψ(F (x)) is a non-
negative weight function.

11



1.10.6 Cramer-von Mises (W*)

Anderson (1962) proposed a set of criteria for estimating the minimal dis-
tance.An additional statistical test for evaluating the fit between an em-
pirical distribution function (EDF) produced from sample data and a the-
oretical cumulative distribution function (CDF) is the Cramer-von Mises
criterion. This test, which is well-known for its ease of use and broad ap-
plicability, focuses on the variations between the observed and expected
cumulative distributions.W 2

n is mathematically defined as:

W 2
n = n

∫ ∞
−∞

[Fn(x)− F (x)]2ψ(F (x))dF (x)

here n is the sample size, Fn(x) is the distribution function which is empir-
ically observed, F (x) is the cumulative distribution function and ψ(F (x))
is a weight function with ψ(F (x)) = 1.

1.10.7 Kolmogorov-Smirnov (KS)

Massey Jr. created the Kolmogorov-Smirnov (KS) goodness of fit test in
1951, which is one of the most popular nonparametric tests. They claimed
that the largest difference between an empirical distribution function and
the hypothesised distribution function is where KS lies. The KS test is
represented by Dn, and the KS statistic is expressed mathematically as

Dn = max|F ∗(x)− Sn(x)|

Sn(x) denotes the sample-based distribution function, F (x) is the distribu-
tion function of a particular population with partially defined parameters,
and n is the sample size.

1.11 Purpose of the study

The aim of this study is,

1. To suggest a newly created Logistic Cotangent Topp-Leone genera-
tor.

2. To create a new, more flexible Gumbel distribution extension by us-
ing a unique trigonometric generator.

3. To study the statistical aspects of the Proposed distribution.
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4. To get parameter estimates by applying the MLE approach.

5. Utilizing real life applications by using two datasets, ascertain the
effectiveness of the distribution that is being examined.

1.12 Outline of the study

In chapter 1, we include the preliminary information about Topp-Leone
generator as well as trignometic function also discuss about our baseline
Gumbel distriuibution.
In chapter 2, we discussed the existed published work on Topp-leone gen-
erator, different trignometric function and many existed form of Gumbel
distribution.
To create new, modified versions of the current probability distribution,
we have proposed a new generator and applied it to the current proba-
bility model in accordance with the first approach, which is discussed in
Chapter 3.
We modified the well-known Gumbel distributions as part of our second
strategy by increasing their parameters or substituting one function for
another. Many statistical aspects of proposed distribution (LCTGu) have
been investigated. Bias and MSE have been employed to evaluate the con-
sistency of the parameters. The three-parameter Logistic Cotangent Topp-
Leone Gumbel (LCTLGu) probability distribution introduced in Chapter
4.
In chapter 5,a variety of probability models are compared to the proposed
model, such as the Beta Gumbel, Kumaraswamy Gumbel, and the Expo-
nentiated Generalized Gumbel.The proposed model is contrasted with a
number of existing probability models.
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Chapter 2

Literature Review

Most of these statistical distributions have limited ability to model dif-
ferent kinds of datasets. Certain datasets exhibit heavy tails, reversed J
shapes, significant skewness and kurtosis levels, multimodality, and other
characteristics.Modifying the flexibility of existing statistical distribution-
s is therefore becoming more and more interesting when modeling large
datasets. In order to maximize flexibility while modeling datasets, it has
been common practice to use families of distributions, or generators, to
change previous distributions in recent years. These generators provide
control over the datasets’ characteristics.In this chapter we will talk about
various modified versions of the suggested Gumbel distributions.

Saralees Nadarajah and Samuel Kotz (2004) Presented the most often used
statistical distribution for engineering challenges is the Gumbel distribu-
tion. A generalization created from logit of a beta random variable is
known as the beta Gumbel distribution. They offered an extensive analy-
sis of this novel distribution’s mathematical characteristics. Along with
graphical representations, we construct the mathematical figures of as-
sociated probability density function and the hazard rate function. We
compute an asymptotic distribution of the extreme order statistics and the
thenth moment expressions. We examine how the skewness and kurtosis
metrics change over time. They also go over the maximum likelihood ap-
proach of estimate. We anticipate that this generalization will have greater
engineering applicability. [8]

Saralees Nadarajah and Arjun K. Gupta (2007) descried the most widely
used models for hydrological processes are gamma distributions. In this
study, They explained a very flexible family that encompasses the gamma
distribution as a specific example. In the same manner that the exponenti-
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ated exponential distribution generalizes the standard exponential distri-
bution, it does the same for the standard gamma distribution. Deriving
expressions for various specific cases and bounds, as well as the analytical
figures of the corresponding probability density function and the hazard
rate function, the moment-generating function, the nth moment, skew-
ness, kurtosis, mean deviation, Shannon entropy, and the asymptotic dis-
tribution of the extreme order statistics, provide a thorough treatment of
the mathematical properties. An equation for a Fisher information matrix
and an estimation process using the maximum likelihood method are also
given. Lastly, an illustration is shown using drought statistics from the S-
tate of Nebraska. [9]

Zografos and Balakrishnan (2009) addressed the Jones’s general family of
univariate distributions produced by beta random variables. This distri-
bution family fits both skewed and symmetric models with different tail
weights and remarkable adaptability. Similarly, they describe a family of
univariate distributions here that are produced by the generalized gamma
variables proposed by Stacy. They examine the maximum entropy char-
acterizations for these two families of univariate distributions under ap-
propriate constraints. An expected ratio of quantile densities is suggested
for the purpose of differentiating between the members of these two large
families of distributions based on these characterizations. They then high-
light a few exceptional situations with these results. A different approach
to the standard moment method is also suggested for parameter estima-
tion. [13]

In order to describe univariate data, Cooray (2010) presented a variation of
the Gumbel distribution that addresses a wide area of skewness in the den-
sity function. This generalization achieved by consideration of logarithmic
transformation of an odd Weibull random variable. It makes a generalized
Gumbel distribution helpful for modeling and fitting a variety of data set-
s which are not suitable for modeling by popular distributions. Gumbel
and reverse-Gumbel distributions’ goodness-of-fit as sub-models can also
be evaluated with its aid. The generalized Gumbel distribution’s skew-
ness and kurtosis forms are demonstrated by building the Moor’s kurto-
sis plane and Galton’s skewness plane. There are two different methods
to determine parameters using the maximum likelihood method because
the reverse translation of the proposed distribution does not change its
density function. The flexibility of this generalization is demonstrated by
analyzing a data set of the wave and the upsurge heights and comparing
the fitness to both Gumbel and the generalized extreme value distribution-
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s. [2]

Cordeiro et al., (2011) conducted a study on four-parameter extension of
generalized gamma distribution, which can be used to describe a haz-
ard rate function with a bathtub shape. This distribution is also beauti-
ful and significant since it can replicate both the monotonous and non-
monotonous failure rate functions commonly encountered in the lifetime
data analysis and dependability. There are several popular lifetime-specific
sub-models of the new distribution, include the exponentiated generalized
half-normal, exponentiated gamma, exponentiated Weibull and general-
ized Rayleigh to mention a few. For its moments, we develop two infinite
sum representations. We compute the order statistics’ density as well as
two expansions for their moments. The best likely approach is used to
figure out the model parameters after obtaining the observed information
matrix. Lastly, a number of medical data sets are examined. [10]

Cordeiro et al., (2012) presented a generalization known as the Kumara-
swamy Gumbel distribution and gave a thorough explanation of its struc-
tural characteristics. The density and hazard rate functions’ analytical
forms were obtained. For generating function and moments, they com-
pute explicit expressions. As well as the asymptotic distribution of the ex-
treme values, the variation of kurtosis and skewness measurements was
analyzed. For the moments of order statistics, explicit formulations are al-
so generated. Best possibility, parametric bootstrap and Bayesian process-
es are used to find the model parameters. We get the information matrix
that was anticipated. [11]

Al-Aqtash (2013) developed the Gumbel-Lomax distribution, which comes
from Gumbel-X generator. A novel four-parameter model is presented. In
addition to a right-skewed and reversed J-shaped hazard rate, its density
function can have a decreasing and upside-down bathtub-shaped hazard
rate. An Explicit expressions for quantile function, incomplete and or-
dinary moments, Lorenz and Bonferroni curves, mean residual lifetime,
mean waiting time, probability weighted moments, generating function,
and Shannon entropy are among the structural properties of new distribu-
tion that are obtained. Additionally, they offer the order statistics’ density
function. Further characterizations of the new distribution are provided,
based on conditional expectations of certain functions of a random vari-
able. After determining an observed information matrix, model parame-
ters calculated by using the maximum appropiate technique. Pair of real-
time data sets have been used to show versatility of new model. [6]
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Vidal,I (2014) established a bayesian estimation technique for the general-
ized extreme value type I distribution (Gumbel distribution). An uninfor-
mative prior distribution for the location parameter, µ, and three different
prior distributions for the scale parameter, s, were considered in order to
forecast the maximum annual rainfall intensities in different geograph-
ical zones of Chile. We were able to acquire the posterior distribution
of (µ, s) along with summary statistics related to it, including quantiles,
expected values, modes, and credibility intervals, under these condition-
s. They acquired the posterior distribution, anticipated value, quantiles,
and credibility intervals of future observations for forecast and find re-
turn periods. To generate some of these posterior summary metrics, both
Laplace and numerical approximations were required. They also estimate
the intensity-duration-frequency and return period curves. [1]

Thiago Andrade (2015)recently proposed the exponentiated generalized
class is a class of univariate distributions. Within this class, a four-parameter
model called the exponentiated generalized Gumbel distribution has ex-
plained. We talk about the density function’s forms and derive precise ex-
pressions for mean deviations, generating and quantile functions, Renyi
entropy, Bonferroni and Lorenz curves and ordinary moments. The order
statistic’s density function is obtained. The model parameters are calcu-
lated by using the greatest appropiate method. The observed information
matrix is ascertained. To demonstrate a significance of new model, we of-
fer two uses to actual data as well as the Monte Carlo simulation analysis
to assess the highest likelihood estimates of the model parameters. [12]

Okorie et al., (2016) presented the exponentiated Gumbel (EG) type-2 dis-
tribution, a three-parameter distribution. The new distribution has a u-
nimodel, monotonically growing shape. The Gumbel type-2 (G type-2)
distribution, the Exponentiated Frechet (EF) distribution, and the Frechet
distribution are the special examples of the new distribution. They d-
educed several mathematical characteristics of the suggested model, in-
cluding the order statistics, pth Quantile function, kth crude moment, and
Renyi entropy. Model parameters were found using the greatest appropi-
ate method. Ultimately, they fitted a genuine data set to the distributions
of EG type-2, G type-2, EF, Frechet, Log Normal (LN), and Weibull and
found that the Exponentiated Gumbel (EG) type-2 model fits the data bet-
ter. [24]

Al-Shomrani et al., (2016) proposed the straightforward J-shaped alterna-
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tive for the Beta distribution, the Topp-Leone distribution has captured the
interest of many statisticians. A new family of distribution called Topp-
Leone family of distribution has been provided by [7]
Brito et al., (2017)expanded on the one-parameter distribution developed
by Topp-Leone [A family of J-shaped frequency functions] by introduc-
ing a new class of continuous distributions called the Topp-Leone odd
log-logistic family. They described two exceptional situations and looked
at some of its mathematical characteristics. Moreover, regression model
grounded in novel Topp-Leone odd log-logistic Weibull distribution was
put forth. Three real data sets are used to demonstrate the stretchiness and
usefulness of proposed family. [14]

Alizadeh et al., (2019) developed an odd log-logistic exponentiated Gum-
bel distribution which is a versatile expansion of the Gumbel distribution.
The study includes a brief tutorial on using the GAMLSS package of R soft-
ware, which was used to develop the novel model. They give a thorough
analysis of its general mathematical characteristics. In addition, They pro-
vide a fresh extended regression model that takes four regression struc-
tures into account. They talk about estimating techniques using both un-
censored and censored data. The utility of proposed approach is demon-
strated by using four real data sets and two simulated experiments. [4]

Hassan et al., (2019) invented Type II generalized Topp-Leone-G (TIIGTL-
G) family of distributions the Topp-Leone distribution that develops a
bathtub-shaped hazard function, it is a desirable model for life testing and
reliability investigations. Its hazard rates are growing, decreasing, upside-
down, J, and reversed-J, and its density function can be unimodel, left,
right or reversed-J-shaped. A few unique models are exhibited. They ex-
amine a few of its statistical attributes. The quantile and generating func-
tions, Renyi entropy, order statistics, ordinary and incomplete moments
are all given explicit expressions. Estimating the model parameters was
done by using maximum likelihood approach. Through the use of two ac-
tual data sets, significance of one particular model-the Type II generalized
Topp-Leone exponential was demonstrated. [15]

Jamal et al., (2019) developed the Topp Leone Weibull-Lomax distribu-
tion, a new four-parameter lifespan distribution. The quantile function,
ordinary and incomplete moments, probability-weighted moments, con-
ditional moments, order statistics, stochastic ordering, and stress strength
reliability parameter are among the mathematical characteristics of the
new distribution that are examined. Additionally examined are the re-
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gression model and the residual analysis for the new model. A simulation
study is conducted to investigate the behavior of the estimates of the mod-
el parameters, which are obtained by applying the maximum likelihood
criterion. We provide empirical evidence for the new distribution’s signif-
icance and adaptability in modeling four data sets. [16]

Chesneau et al., (2019) provided the novel class of (probability) distribu-
tions, derived by the compounding a baseline distribution with sine and
cosine functions and based on a cosine-sine transformation. A few of it-
s characteristics are examined. More specifically, a particular cosine-sine
transformation is examined, with the exponential distribution serving as
the baseline. It is possible to estimate the parameters of the certain sine-
cosine exponential distribution using the highest likelihood estimation ap-
proach. Simulation research looks into how well these estimations perfor-
m. Applications are provided for four real data sets, demonstrating the
superior via goodness-of-fit tests compared to several existing distribu-
tions. [23]

Al-Marzouki et al., (2019) presented new four-parameter lifespan distribu-
tion based on power Lomax distribution and type II Topp-Leone-G family.
A new distribution is distinguished from existing ones by having extreme-
ly stretchable probability functions increasing, decreasing, J and reverse J
shapes are noted for the hazard rate and probability density functions,
providing early indications of the related model’s potential for adaptabil-
ity. In light of this notion, a thorough analysis of the new distribution is
conducted, encompassing both theoretical and applied aspects. Following
an explanation of its primary mathematical characteristics, the associated
model was examined and its parameters are estimated by maximum like-
lihood technique. We implemented it on two real-world datasets, one of
which is the widely used airplane windshield data. [17]

Bantan, R.A et al., (2020) introduced and investigated the type II power
Topp-Leone-G family of continuous distributions. This way is so-called
type II Topp-Leone-G family is naturally extended. They ascertained the
principal characteristics of the novel family, demonstrating their depen-
dence on the conditions at stake. Investigated topics include quantile func-
tions, certain mixed representations, moments and derivations, stochastic
ordering, order statistics, dependability, and forms and asymptotes of sev-
eral significant functions. Subsequently, an inverse exponential distribution-
based family model was presented. [18]
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Tung Yen Liang et al., (2020) presented The Arcsine-X family of distribu-
tions is the name given to the proposed family that uses the trigonometric
function. For demonstration, the Arcsine-Weibull distribution, a particu-
lar sub-model of the suggested family, is taken into consideration. To find
the parameters of Arcsine-X distributions, the best estimation approach
has used. Thorough the investigation using Monte Carlo simulation was
conducted to evaluate the resulting estimators. To illustrate the Arcsine-
Weibull, two insurance data sets are analysed. The Arcsine-Weibull model
was compared to its familiar competitors with two and four parameters.
Weibull, Lomax, Burr-XII and beta Weibull models are among the compet-
itive models.The utility of the Arcsine-Weibull and other discussed models
is evaluated by using several goodness of fit metrics. [19]

Ibrahim Alkhairy et al., (2021)studied the new family of distributions based
on the arctangent function, an inverse trigonometric function. Heavy-
tailed probability distributions are very useful in the field of actuarial sci-
ence and are crucial for data set modeling. In order to get an outstanding
fit to complex economic and actuarial data sets, actuaries are dedicated to
searching for such distributions. In this work, a well-liked technique for
creating new distributions that are great fits for handling heavy-tailed da-
ta is reviewed. [20]

Zafar Mahmood et al., (2022) created a new G-class disbursing cotangent
function based on logistics and suggest a trigonometric generalizer/gener-
ator of distributions using quantile function with a modified Cauchy dis-
tribution. Notable mathematical properties and unique models are ob-
tained. Furthermore suggested are expanded models and new mathemat-
ical transformations. We design and analyze a logistic cotangent Weibul-
l (LCW) model with two parameters. The hazard rate of the suggested
model displays both monotonous and non-monotonous figures,while U-
nimodal and bimodal (symmetrical, right-skewed, and decreasing) forms
are displayed by density. This is what makes the model beautiful and sig-
nificant. The maximum likelihood approach is employed for parametric
estimation, and simulation analysis is carried out to guarantee the asymp-
toticness of the estimates. The significance of suggested trigonometric
generalizer, G class and model is demonstrated by two applications that
concentrate on survival and failure datasets. The outcomes of these ap-
plications attest to the model’s considerable superiority over other, well-
known competing models in terms of fit, flexibility, and capability. The
authors believed that specialists in the fields of lifetime data and analysis,
actuarial and financial sciences, and reliability analysis would find greater
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interest in the proposed classes and models. [21]

Fayomi et al., (2022) suggested a strong Gumbel distribution generaliza-
tion. The T-X paradigm is the foundation of this family of distributions.
This article also mentions three distinct models that have evolved from a
list of special distributions as a consequence of this family. Density of a
new family can be characterized using the linear combination of gener-
alized exponential distributions, which is important for evaluating some
of the family’s characteristics.This family’s statistical characteristics are i-
dentified, including precise expressions for the generating function, or-
der statistics, quantile function, and ordinary and incomplete moments.
The model parameters are estimated using the greatest likelihood method.
One of the special models has also undergone a thorough investigation.
The skewness measure is quantified using MacGillivray skewness in ad-
dition to traditional skewness measures. We can also identify several cru-
cial risk indicators using the new probability distribution, both graphically
and mathematically. To verify the validity and superiority of the proposed
model, we employ three real-world data sets and a simulated evaluation
of the proposed distribution. [5]

Tashkandy et al., (2023)produced the numerous algebraic generalized fam-
ilies and classes of statistical distributions. Objective of this study is to
develop the novel distributions generator with support on real line that is
cotangent, exponentiated, and generalized. The cotangent exponentiated
generalized (CE-G) family and the logistic cotangent exponentiated gener-
alized (LCE-G) family are two new families of distributions that incorpo-
rate the cotangent function that are proposed. This presents a thorough
examination of the mathematical and structural characteristics of Burr-
based innovative model (LCEB) and the recently proposed G-family. In
Monte Carlo simulation studies, the maximum likelihood approach as-
sesses the performance of model and predicts its parameters. To complete
these tasks, the maximum likelihood technique is applied. The waiting
and survival times data sets are statistically analyzed, and results validate
the effectiveness, superiority, and usefulness of the proposed generator.
G-family, and innovative distribution in comparison to other well-known
Burr-based models are similar and competitive. [22]

Qingyang Liu et al., (2024) develops a new single-modal distribution fam-
ily that is defined by the mode and three additional parameters that are
obtained by combining a minimal Gumbel distribution with a maximum
Gumbel distribution. The study delves into the characteristics of the sug-
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gested distribution, such as its capacity to identify heavy-tailed data and
adapt to varying skewness directions across a broad spectrum. To infer
parameters in the new distribution, frequentist and Bayesian approaches
are devised.Simulation tests are carried out to show that both approaches
perform satisfactorily. As shown in the analysis of simulated data under
the proportions of skewness and kurtosis and the analysis of the hydrol-
ogy application data, the flexible distribution has high performance for
data having far tails at both directions. In this case, the mode plays the
function of the location parameter. It can easily create a regression model
for the mode of a response given the variables by using the proposed uni-
modal distribution. We use this methodology to uncover intriguing data
elements hidden by outliers in criminology application data. [3]
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Chapter 3

A new Cotangent Topp-Leone g
family of distribution

3.1 Introduction

This chapter’s main goal is to introduce a novel generator and add to the
body of knowledge already available on probability models.The current
probability distribution is converted into a new one by applying the gen-
eral functions referred to as generators.The Topp-Leone generator of dis-
tribution presented by Sangsanit and Bodhisuwan (2016) as well as the
Tangent Topp-Leone family of distribution recommended by Nanga et al.,
(2022) and Mahmood et al., (2022) developed a novel cotangent function-
based trigonometric generator.
Further details regarding the contributions to the probability models has
been reviwed in Chapter 2.This chapter proposes a new family of distribu-
tions that have significant implications for many scientific fields, such as
survival analysis and biology. Because of the patterns in the survival func-
tion and risk function, modified families of distributions can be viewed
as meaningful lifetime distributions.Numerous statistical features and pa-
rameter estimates have been examined using the maximum likelihood
technique. The suggested model has the best match for the two real data
sets when compared to other available probability models.
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3.2 Logistic Cotangent Topp-leone Generalized
Family of Distribution

3.2.1 Topp leone Family of Distribution

Topp-Leone generator of distribution was established by Sangsanit and
Bodhisuwan (2016) as mentioned in the introduction. Next, for values of
random variable z where zεR, the CDF and PDF of Topp-Leone generator
of distribution are defined as
The cdf of Topp-Leone G family of distribution:

H(z) = FTL−G(z) = [G(z)]α[2−G(z)]α

= [1− Ḡ(z)]α[2− {1− Ḡ(z)}]α

= [1− ¯G(z)]α[2− 1 + ¯G(z)
α
]

= [1− ¯G(z)]α[1 + ¯G(z)]α

= [1− ¯G(z)
2
]α

= [1− (1−G(z))2]α (3.1)

The pdf of Topp-Leone G family of distribution:

fTL−G(z) = α[1− (1−G(z))2]α−1.− 2(1−G(z)).− g(x)

= 2αg(z)(1−G(z))[1− (1−G(z))2] (3.2)

3.2.2 Cotangent Topp-Leone Family of Distribution

Mahmood et al. (2022) created a unique trigonometric generator based on
cotangent functions.
Cdf of Cot G family of distribution:

F (z) = − cot[πG(z)], xεR

By putting the (3.1) in above expression, we get

F (z) = − cot[π{1− (1−G(z))2}] (3.3)

Suppose T represent a logistic random variable with CDF

R(t) = (1 + e−t)−1 (3.4)
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3.3 Logistic Cotangent Topp-Leone Family of Dis-
tribution

By putting the (3.3) in (3.4)
cdf of Logistic Cotangent Topp-Leone family of distribution is:

FCLTL−G(z) = [1 + ecot[π[1−(1−G(z))2]α]]−1 (3.5)

The pdf of Logistic Cotangent Topp-Leone cotG family of distribution:

fCLTL−G(z) = 2παg(z)[1−G(z)][1− {1−G(z)}2]α−1

csc2[π{1− [1−G(z)]2}α]ecot[π{1−(1−G(z))2}]α

[1 + ecot[π{1−(1−G(z))2}α]]−2 (3.6)

3.3.1 Survival Function

Survival function of LCTL−G family of distribution gain as>

SCLTL−G(z) = 1− F (z) (3.7)

By substituting (3.5) into (3.7),we get

= 1− [1 + ecot{π[1−(1−G(z))2]α}]−1 (3.8)

3.3.2 Hazard Function

The definition of hazard rate function is the ratio between the PDF and
survival function (SF), also referred to as the failure rate function of an
object. The hazard rate function of LCTL−G is given:

hCLTL−G(z) =
fCLTL−G(z)

SCLTL−G(z)

By putting 3.6 and 3.8 in above expression:

hCLTL−G(z) = 2αg(z)[1−G(z)][1− {1−G(z)}2]α−1

× csc2[π{1− [1−G(z)]2}α]ecot[π{1−(1−G(z))2}]α

×[1 + ecot[π{1−(1−G(z))2}]α ]−2

× 1

1− [1 + ecot[π[1−(1−G(z))2]α]]−1
, (α > 0), zεR (3.9)
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3.3.3 Quantile function

Data creation using the distribution of LCTL− G Since CDF has a closed
form, it is easier to understand. To replicate data from this distribution, we
must first create random integers with the typical uniform distribution.
Therefore, next step is to convert these random values into the inverse
CDF. The LCTL−G family of distribution’s quantile function is:

Q = F−1(z)

using 3.5

Q =
[
1 + ecot{π[1−{1−G(z)}2]α}

]−1
Q =

1

1 + ecot{π[1−{1−G(z)}2]α}

1 + ecot{π[1−{1−G(z)}2]α} =
1

Q

ecot{π[1−{1−G(z)}2]α} =
1

Q
− 1

cot{π[1− {1−G(z)}2]α} = ln[
1

Q
− 1]

π[1− {1−G(z)}2]α = cot−1 ln[
1

Q
− 1]

{1− [1−G(z)]2}α =
1

π
cot−1 ln[

1

Q
− 1]

Taking power 1/α on both sides

1− [1−G(z)]2 = { 1

π
cot−1 ln[

1

Q
− 1]}α

{1−G(z)}2 = 1− { 1

π
cot−1 ln[

1

Q
− 1]}α

Taking square root on both side

1−G(z) =

√
1− { 1

π
cot−1 ln[

1

Q
− 1]}α

G(z) = 1−
√

1− { 1

π
cot−1 ln[

1

Q
− 1]}α

z = G−1
[
1−

√
1− { 1

π
cot−1 ln[

1

Q
− 1]}α

]
(3.10)
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3.3.4 Linear Representation of New C.D.F

Mahmood et al.,(2022) use the linear Representation of New C.D.F [25]

F (z) = [1 + e− cot[πG(z)]]

Using the Logistic function,

(1 + e−t)−1 = 1− (1 + e−t)−1

F(z) can be easily calculated as:

F (z) = 1− [1 + ecot[πG(z)]]−1

As

(1 + x)−1 =
∞∑
i=0

(−1)ixi

so

[1 + ecot[πG(z)]]−1 =
∞∑
i=0

(−1)i
[
ecot[πG(z)]

]i
(3.11)

Now applying exponential series

ey =
∞∑
j=0

yj

j!
(3.12)

equation (3.11) becomes

∞∑
i=0

∞∑
j=0

(−1)i+j+1(i)j
cot[πG(z)]j

j!
(3.13)

Expanding by power series

(cot(x))s =
∞∑
k=0

ak(s)(x)2k−s (3.14)

equation (3.13) becomes

∞∑
i=0

∞∑
j=0

(−1)i+j+1(i)j
1

j!

∞∑
k=0

ak(j)(πG(z))2k−j (3.15)
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Now putting the Cdf of Topp-leone G family of distribution in equation
(3.15), we get

∞∑
i=0

∞∑
j=0

(−1)i+j+1(i)j
1

j!

∞∑
k=0

ak(j)
[
π{1− [1−G(z)]2}α(2k−j)

]
(3.16)

Now taking

{1− [1−G(z)]2}α(2k−j)

From binomial series [Yahaya and Doguwa(2021)] is:

(1− x)n =
∞∑
i=0

(−1)ixi
(
n
i

)

∞∑
l=0

(−1)l
(
α(2k − j)

l

)
[1−G(z)]2l

Again apply binomial series

∞∑
l=0

(−1)l
(
α(2k − j)

l

) ∞∑
m=0

(−1)m
(

2l
m

)
equation (3.16) becomes

F (z) =
∞∑
i,l=1

∞∑
j,k=0

(−1)i+j+l+m+1(i)j
1

j!
ak(j)π

2k−j
(
α(2k − j)

l

)
∞∑
m=0

(
2l
m

)
(G(z))m (3.17)

F (z) =
∞∑
m=0

W (i, j, k)Hm(z) (3.18)

where

W (i, j, k) =
∞∑
i,l=1

∞∑
j,k=0

∞∑
m=1

(−1)i+j+l+m+1(i)j
1

j!
ak(j)π

2k−j

(
α(2k − j)

l

) (
2l
m

)
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And

Hm(z) = (G(z))m

f(z) =
∞∑
m=1

∞∑
i,l=1

∞∑
j,k=0

(−1)i+j+l+m+1(i)j
1

j!
ak(j)π

2k−j

(
α(2k − j)

l

) ∞∑
m=1

(
2l
m

)
mG(z)m−1.g(z) (3.19)

f(z) =
∞∑
i,l=1

∞∑
j,k=0

Vi,j,k,lhm(z) (3.20)

where

Vi,j,k,l =
∞∑
m=1

(−1)i+j+l+m+1(i)j
1

j!
ak(j)π

2k−j

(
α(2k − j)

l

) (
2l
m

)
and

hm(z) = mG(z)m−1.g(z)

3.3.5 Moment Generating Function

To correctly know the structure of the data being investigated, unique mo-
ments are often calculated using MGF. MGF can be defined as:

Mzt = E[exptz] =

∫
R

exptzfzdz

and

exptz =
∞∑
r=0

tzr

r!

Mzt =
∞∑
r=0

trµ′r
r!
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using equation (3.19)

Mzt =
∞∑
m=1

∞∑
i,l=1

∞∑
j,k=0

(−1)i+j+l+m+1(i)j
1

j!
ak(j)π

2k−j

(
α(2k − j)

l

) ∞∑
m=1

(
2l
m

)
trµ′r
r!∫

R

mG(z)m−1.g(z)dz

Mzt =
∞∑
i,l=1

∞∑
j,k=0

Vi,j,k,l
trµ′r
r!

∫
R

mG(z)m−1.g(z)dz (3.21)

3.3.6 nth Moments

E(Zn) =
∞∑
i,l=1

∞∑
j,k=0

Vi,j,k,lE[Ym
n]

E(Zn) =
∞∑
i,l=1

∞∑
j,k=0

Vi,j,k,l

∫ ∞
−∞

znfzdz

using equation 3.19

E(Zn) =
∞∑
m=1

∞∑
i,l=1

∞∑
j,k=0

(−1)i+j+l+m+1(i)j
1

j!
ak(j)π

2k−j

(
α(2k − j)

l

)
sum∞m=1

(
2l
m

) ∫ ∞
−∞

znmG(z)m−1.g(z)dz

E(Zn) =
∞∑
i,l=1

∞∑
j,k=0

Vi,j,k,l

∫ ∞
−∞

znmG(z)m−1.g(z)dz

E(Zn) =
∞∑
i,l=1

∞∑
j,k=0

Vi,j,k,l(m)

∫ ∞
−∞

znG(z)m−1.g(z)dz (3.22)

E(Zn) =
∞∑
m=0

dm−1τn,m−1
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where

dm−1 =
∞∑
i,l=1

∞∑
j,k=0

Vi,j,k,l(m)

and

τn,m−1 =

∫ ∞
−∞

znG(z)m−1.g(z)dz

By putting n=1,2,3... we can obtain 1st,2nd,3rd... ordinary moments
of distribution

3.3.7 Mean Residual life

An estimated remaining life duration of the unit that survives at the time
t, given as:

m(t) =
1

1− F (t)
[U −

∫ t

−∞
zf(z)dz]− t (3.23)

Mean residual life of LCTL-G family of distribution by using 3.19

m(t) =
1

1− F (t)

[
U −

∞∑
m=0

∞∑
i,l=1

∞∑
j,k=0

(−1)i+j+l+m+1(i)j

1

j!
ak(j)π

2k−j
(
α(2k − j)

l

) (
2l
m

)
tr

r!

∫ t

−∞
mG(z)m−1.g(z)

]
− t (3.24)
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3.3.8 Renyi Entropy

As stated by Renyi (1961), the Renyi entropy is:

IR(δ) =
1

1− δ
log

∫ ∞
0

f δ(z)dz, δ 6= 1, δ > 0

=
1

1− δ
log

∫ ∞
0

{
2παg(z)[1−G(z)][1− {1−G(z)}2]α−1

csc2[π{1− [1−G(z)]2}α]ecot[π{1−(1−G(z))2}α]

[1 + ecot[π{1−(1−G(z))2}]α ]−2

}δ

=
1

1− δ
log

∫ ∞
0

(2πα)δ(g(z))δ[1−G(z)]δ[1− {1−G(z)}2](α−1)δ

csc2[π{1− [1−G(z)]2}α]δecot[π{1−(1−G(z))2}α]δ

[1 + ecot[π{1−(1−G(z))2}]α ]−2δ (3.25)

Let

[1 + ecot[π{1−(1−G(z))2}]α ]−2δ (3.26)

By using the binomail series

(1 + x)n =
∞∑
i=0

xi
(
n
i

)

=
∞∑
i=0

(
−2δ
i

)
ecot[π{1−(1−G(z))2}]α ]δ+i (3.27)

using exponential series

ey =
∞∑
j=0

yj

j!
(3.28)

Using (3.28) in (3.27) and substitute in eq(3.26)

=
∞∑
i=0

∞∑
j=0

(
−2δ
i

)

32



∞∑
i=0

∞∑
j=0

(−1)i+j+1(δ + i)j
[cotπ{1− (1−G(z))2}α]j

j!
(3.29)

By putting eq(3.29) in eq (3.25)

IR(δ) =
1

1− δ
log

∞∑
i,j=0

Di,j,δ

∫ ∞
−∞

[g(z)]δ[1−G(z)]δ[1− {1−G(z)}2]δ(α−1)

csc2δ[π{1− [1−G(z)]2}α][cotπ{1− (1−G(z))2}α]δj (3.30)

Where

Di,j,δ = (2πα)δ
(
−2δ
i

)
(δ + i)j

j!

Expanding by power series, we get

(cot(x))s =
∞∑
k=0

ak(s)(x)2k−s

[cotπ{1− (1−G(z))2}α]δj =
∞∑
m=0

am(δj)π2m−δj

[1− {1−G(z)}2]α(2m−δj) (3.31)

Here, we will use the series of

csc2[π(G(x))] =
∞∑
l=0

cl(2)(x)2l−2

csc2δ[π{1− [1−G(z)]2}α] =
∞∑
l=0

cl(2δ)[π{1− [1−G(z)]2}α(2l−2δ)(3.32)
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By using (3.32) and (3.31)in equation (3.30).
The equation becomes:

=

∫ ∞
−∞

g(z)δ[1−G(z)]δ[1− {1−G(z)}2]δ(α−1)
∞∑
l=0

cl(2δ)π
2l−2δ[1− {1−G(z)}2]α(2l−2δ)

∞∑
m=0

am(δj)π2m−δj[1− {1−G(z)}2]α(2m−δj)

=

∫ ∞
−∞

g(z)δ[1−G(z)]]δ
∞∑
l=0

cl(2)
∞∑
m=0

am(δj)π2(l+m)−δ(2+j)[1− {1−G(z)}2]α−1

[1− {1−G(z)}2]α(2l−2δ)[1− {1−G(z)}2]α(2m−δj)

=

∫ ∞
−∞

g(z)δ[1−G(z)]δ
∞∑
l=0

cl(2δ)
∞∑
m=0

am(δj)π2(l+m)−δ(2+j)

[1− {1−G(z)}2]α[2(l+m)−δ(j+2)+1]−1

As the binomial series Yahaya and Doguwa(2021) is:

(1− x)n−1 =
∞∑
i=0

(−1)ixi
(
n− 1
i

)

=

∫ ∞
−∞

g(z)δ[1−G(z)]δ
∞∑
l=0

cl(2δ)
∞∑
m=0

am(δj)π2(l+m)−δ(2+j)

∞∑
h=0

(−1)h[1−G(z)]2h
(
α[2(l +m)− δ(j + 2) + 1]− 1

h

)

=

∫ ∞
−∞

g(z)δ
∞∑
l=0

cl(2δ)
∞∑
m=0

am(jδ)π2(l+m)−δ(2+j)

∞∑
h=0

(−1)h[1−G(z)]2h+1

(
α[2(l +m)− δ(j + 2) + 1]− 1

h

)

IR(δ) =
1

1− δ
log

∞∑
i,j=0

Di,j,δ

∫ ∞
−∞

g(z)δ
∞∑
l=0

cl(2δ)
∞∑
m=0

am(δj)π2(l+m)−δ(2+j)

∞∑
h=0

(−1)h[1−G(z)]2h+1

(
α[2(l +m)− δ(j + 2) + 1]− 1

h

)

34



IR(δ) =
1

1− δ
log

∞∑
i,j=0

Di,j,δ

∞∑
l=0

cl(2δ)
∞∑
m=0

am(δj)π2(l+m)−δ(2+j)

∞∑
h=0

(−1)h
(
α[2(l +m)− δ(j + 2) + 1]− 1

h

) ∫ ∞
−∞

g(z)δ[1−G(z)]2h+1

using Binomial series

(1− x)n =
∞∑
i=0

(−1)ixi
(
n
i

)

IR(δ) =
1

1− δ
log

∞∑
i,j=0

Di,j,δ

∞∑
l=0

cl(2δ)
∞∑
m=0

am(δj)π2(l+m)−δ(2+j)

∞∑
h=0

(−1)h
(
α[2(l +m)− δ(j + 2) + 1]− 1

h

)
∫ ∞
−∞

g(z)δ
∞∑
k=0

(−1)kG(z)k
(

2h+ 1
k

)

IR(δ) =
1

1− δ
log

∞∑
i,j,l,m,h=0

Ai,j,l,m,h,δ

∫ ∞
−∞

g(z)[1−G(z)]k (3.33)

where

Ai,j,l,m,h,δ =
∞∑

i,j=0

Di,j,δ

∞∑
l=0

cl(2)
∞∑
m=0

am(j)π2m−j

∞∑
h=0

(−1)h
(
α[2(l +m)− (j + 1)]− 1

h

)
(

2h+ 1
k

)
(3.34)

3.3.9 Order Statistic

We will concentrate on one of the most significant attributes in this section
that is order statistics. Ith order can be write with ease and arrange the
density’s function of statistics as follows:

f1:N(z) =
f(z)

β(i, n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i
j

)
F (z)i+j−1
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1

β(i, n− i+ 1)
=

n!

(i− 1)!(n− i!)!

F (z)i+j−1 =
[
{1 + eCot[π[1−(1−G(z))2]α]}−1

]i+j−1
F (z)i+j−1 = {1 + eCot[π[1−(1−G(z))2]α]}−1(i+j−1)

f(z).F (z)i+j−1 = 2παg(z)[1−G(z)][1− {1−G(z)}2]α−1

× csc2[π{1− [1−G(z)]2}α]ecot[π{1−(1−G(z))2}]α

×[1 + ecot[π{1−(1−G(z))2}]α ]−2

×[1 + eCot[π{1−(1−G(z))2}]α ](−i−j+1)

f(z).F (z)i+j−1 = 2παg(z)[1−G(z)][1− {1−G(z)}2]α−1

× csc2[π{1− [1−G(z)]2}α]ecot[π{1−(1−G(z))2}]α

×[1 + eCot[π{1−(1−G(z))2}]α ]−1(i+j+1)

Let

[1 + eCot[π{1−(1−G(z))2}]α ]−1(i+j+1)

By Binomial expansion in above equation, we get

(1 + x)−n =
∞∑
k=0

(
−n
k

)
xk

We get

∞∑
l=0

(
−(j + i+ 1)

l

)[
eCot[π{1−(1−G(z))2}]α

]l

f(z).F (z)i+j−1 = 2παg(z)[1−G(z)][1− {1−G(z)}2]α−1

csc2[π{1− [1−G(z)]2}α]ecot[π{1−(1−G(z))2}]α

∞∑
l=0

(
−(j + i+ 1)

l

)[
eCot[π{1−(1−G(z))2}]α

]l
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= 2πα
∞∑
l=0

(
−(j + i+ 1)

l

)
g(z)[1−G(z)][1− {1−G(z)}2]α−1

× csc2[π{1− [1−G(z)]2}α]
[
eCot[π{1−(1−G(z))2}]α

]l+1

After using exponential series ,we get

[
eCot[π{1−(1−G(z))2}]α

]l+1

=
∞∑
m=0

cot [π{1− [1−G(z)]2}α.(l + 1)]
m

m!

= 2πα
∞∑
l=0

∞∑
m=0

(
−(j + i+ 1)

l

)
(l + 1)m

m!
g(z)[1−G(z)]

[1− {1−G(z)}2]α−1 csc2[π{1− [1−G(z)]2}α]

cot
[
π{1− [1−G(z)]2}α

]m
Using cotangent series

cot
[
π{1− [1−G(z)]2}α

]m
=

∞∑
p=0

ap(m)
[
π{1− [1−G(z)]2}α

]2p−m
=

∞∑
p=0

ap(m)π2p−m [{1− [1−G(z)]2}α
]2p−m

using (3.32)

csc2[π{1− [1−G(z)]2}α] =
∞∑
N=0

cl(2)
[
π{1− [1−G(z)]2}α

]2N−2
=

∞∑
N=0

cl(2)π2N−2 [{1− [1−G(z)]2}α
]2N−2

= 2πα
∞∑
N=0

∞∑
p=0

ap(m)cl(2)π2N−2π2p−m
∞∑
l=0

∞∑
m=0

(
−(j + i+ 1)

l

)
(l + 1)m

m!
g(x)[1−G(z)][1− {1−G(z)}2]α−1[

{1− [1−G(z)]2}α
]2N−2 [{1− [1−G(z)]2}α

]2p−m
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= 2π2(N+p)−(m+1)αg(z)
∞∑
N=0

∞∑
p=0

∞∑
l=0

∞∑
m=0

cl(2)ap(m)

(
−(j + i+ 1)

l

)
×(l + 1)m

m!
[1−G(z)][1− {1−G(z)}2]α−1

×
[
{1− [1−G(z)]2}α

]2N−2 [{1− [1−G(z)]2}α
]2p−m

= 2π2(N+p)−(m+1)αg(z)
∞∑
N=0

∞∑
p=0

∞∑
l=0

∞∑
m=0

cl(2)ap(m)

(
−(j + i+ 1)

l

)
×(l + 1)m

m!
[1−G(z)]{1− [1−G(z)]2}2α(N+p)−α(m+1)−1

using binomial series

(1− x)n−1 =
∞∑
k=0

(
n− 1
k

)
(−1)kxk

{1− [1−G(z)]2}2α(N+p)−α(m+1)−1 = (−1)q[1−G(z)]2q

∞∑
q=0

(
2α(N + p)− α(m+ 1)− 1

q

)

= 2π2(N+p)−(m+1)αg(z)
∞∑
N=0

∞∑
p=0

∞∑
l=0

∞∑
m=0

cl(2)ap(m)

(
−(j + i+ 1)

l

)

×(l + 1)m

m!
[1−G(z)]

∞∑
q=0

(
2α(N + p)− α(m+ 1)− 1

q

)
×(−1)q[1−G(z)]2q

= 2π2(N+p)−(m+1)α(−1)q
∞∑
N=0

∞∑
p=0

∞∑
l=0

∞∑
m=0

cl(2)ap(m)

(
−(j + i+ 1)

l

)

×(l + 1)m

m!

∞∑
q=0

(
2α(N + p)− α(m+ 1)− 1

q

)
g(z)[1−G(z)]2q+1

Again using Binomial series

[1−G(z)]2j+1 =
∞∑
h=0

(
2q + 1
h

)
(−1)hG(z)h
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= 2π2(N+p)−(m+1)α(−1)q
∞∑
N=0

∞∑
p=0

∞∑
l=0

∞∑
m=0

cl(2)ap(m)
(l + 1)m

m!(
−(j + i+ 1)

l

) ∞∑
q=0

(
2α(N + p)− α(m+ 1)− 1

q

)
∞∑
h=0

(
2q + 1
h

)
(−1)hG(z)hg(z)

f(z).F (z)i+j−1 = 2π2(N+p)−(m+1)α(−1)h+q
∞∑

m,N,p=0

∞∑
q,l,h=0

cl(2)ap(m)

(l + 1)m

m!

(
−(j + i+ 1)

l

)(
2q + 1
h

)
(

2α(N + p)− α(m+ 1)− 1
q

)
g(z)G(z)h

f1:N(z) =
n!

(i− 1)!(n− i!)!

n−i∑
j=0

(−1)j
(
n− i
j

)
(−1)h+q2απ2(N+p)−(m+1)

∞∑
m,N,p=0

∞∑
q,l,h=0

cl(2)ap(m)
(l + 1)m

m!

(
−(j + i+ 1)

l

)(
2q + 1
h

)
(

2α(N + p)− α(m+ 1)− 1
q

)
g(z)G(z)h (3.35)

3.3.10 Parameter Estimation

Since the parameters of the probability model are unknown, it is through
the sample data that they will have to be estimated. In this section, aram-
eters of probability model will be estimated using with the help of maxi-
mum likelihood estimation.
Suppose, x1, x2, x3,...,xn are independent random sample having size n
taken from the LCTL − G distributions family. The likelihood function
(L) is defined as
Takaing the pdf of LCTL-G from 3.6:

f(z) = 2παg(z)[1−G(z)][1− {1−G(z)}2]α−1

csc2[π{1− [1−G(z)]2}α]ecot[π{1−(1−G(z))2}]α

[1 + ecot[π{1−(1−G(z))2}]α ]−2

39



L =
n∏
i=1

f(z, θ)

L =
n∏
i=1

{
2παg(z)[1−G(z)][1− {1−G(z)}2]α−1

× csc2[π{1− [1−G(z)]2}α]ecot[π{1−(1−G(z))2}]α

×[1 + ecot[π{1−(1−G(z))2}]α ]−2
}

logL = nlog(2) + nlogπ + n logα + log
n∑
i=1

g(z)

+log
n∑
i=1

[1−G(z)] + (α− 1)log
n∑
i=1

{1− [1−G(z)]2}

+2log csc2[π{1− [1−G(z)]2}α] +
n∑
i=1

cot[π{1− [1−G(z)]2}α]

+2log
n∑
i=1

[
1 + ecot[π{1−[1−G(z)]2}α]

]
(3.36)

3.3.11 Some special cases

LCTL Inverted Rayleigh Distribution

The inverse Rayleigh distribution was presented by Trayer (1964) as a way
to model the survival and accuracy of data sets.
The c.d.f & p.d.f of Inverted Rayleigh distribution are

F (z) = e
−λ
z2 (3.37)

f(z) = e
−λ
z

2λ

x3
(3.38)

where z, λ > 0 Putting the vaue of 3.37 in 3.5 and 3.38 in 3.6:

TLCTL−IR(z) = [1 + ecot{π[1−(1−e
−λ
z2 )2]α}]−1

tLCTL−IR(z) = 2παλe
−λ
z2

2λ

z3
[1− e

−λ
z2 ]
[
1− {1− e

−λ
z2 }
]α−1

× csc2
[
π[1− {1− e

−λ
z2 }2]α

]
ecot[π{1−(1−e

−λ
z2 )2}]α

×[1 + ecot[π{1−(1−e
−λ
z2 )2}]α ]−2
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Figure 3.1: Shapes of the PDF & CDF of LCTL-IR

The survival and Hazard rate function are:

SLCTL−IR(z) = 1− [1 + ecot{π[1−(1−e
−λ
z2 )2]α}]

hLCTL−IR(z) = 2πλe
−λ
z

2λ

z3
[1− e

−λ
z2 ]

×
[
1− {1− e

−λ
z2 }
]α−1

csc2
[
π[1− {1− e

−λ
z2 }]α

]
×ecot[π{1−(1−e

−λ
z2 )2}]α [1 + ecot[π{1−(1−e

−λ
z2 )2}]α ]−2

× 1

1− [1 + ecot{π[1−(1−e
−λ
z2 )2]α}]
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LCTL Pareto distribution

It holds the name Vilfredo Pareto in honor of the Italian economist (1848−
1923), who created the distribution model in the 1890s to explain how
wealth is distributed in society. The CDF & PDF of Pareto distribution
are:

F (z) =
aka

za+1
(3.39)

f(z) = (
k

z
)a (3.40)

wherek > 0, a > 0
by using equation (3.39) in (3.5) and (3.40) in (3.6):

TLCTL−P (x) = [1 + eCot[π{1−[1−
aka

za+1 ]
2}α]]−1

tLCTL−P (x) = 2πα(
k

z
)a[1− aka

za+1
][1− {1− aka

za+1
}2]α−1

× csc2[π{1− [1− aka

za+1
]2}α]ecot[π{1−(1−

aka

za+1 )
2}]α

×[1 + ecot[π{1−(1−
aka

za+1 )
2}]α ]−2
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The survival and Hazard rate function are:

SLCTL−P (x) = 1− [1 + eCot[π[1−
aka

za+1 )
2]α ]−1

hLCTL−P (x) = 2πα(
k

z
)a[1− aka

za+1
][1− {1− aka

za+1
}2]α−1

× csc2[π{1− [1− aka

za+1
]2}α]ecot[π{1−(1−

aka

za+1 )
2}]α

×[1 + ecot[π{1−(1−
aka

za+1 )
2}]α ]−2

× 1

1− [1 + ecot[π{1−(1−
aka

za+1 )
2}]α ]−1
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Chapter 4

Logistic Cotangent Topp-Leone
Gumbel (LCTLGu) Distribution

4.1 Introduction

Chapter 3 describes the Logistic Cotangent Topp-Leone-G (LCTL-G) fam-
ily of distributions, a novel method for generating lifetime probability
distributions. The Cotangent Logistic Topp-Leone Gumbel distribution
(LCTL) is one example of a LCTL-G distribution that has been examined,
with the Gumbel distribution serving as the baseline distribution.
We look at its quantile function, moments, order statistics (OS), and en-
tropies, among other statistical properties. There are closed-form formu-
lations for entropies, moment-generating functions, and order statistics.
Parameter estimation frequently makes use of the MLE technique.
Furthermore, a simulation study would be carried out. The value of the
new family of distributions has been demonstrated through the applica-
tion of real-world data collection.To compare, goodness of fit criteria such
as AIC, CAIC, BIC, & others are employed. This findings demonstrate
that, when applied to the identical data set, the suggested distribution,
i.e., CLTL-GU, performs significantly better.

4.2 LCTLGu Distribution

The German mathematician and statistician Emil Julius Gumbel(1891-1966)
is honored with the Gumbel distribution. Around the 1930s, he was the
one who first established the distribution in the early 20th century. Emil
Gumbel made important contributions to probability theory and statistics.
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The CDF & PDF of Gumbel distribution are:

G(z) = e−e
−( z−µ

β
) (4.1)

g(z) =
1

β
e−[

z − µ
β

+ e−(
z − µ
β

)] (4.2)

By putting the eq (4.1) in eq (3.5) and eq (4.2) in eq (3.6)
The CDF & PDF of Logistic Cotangent Topp Leone Gumbel distribution
are:

TLCTLGu = [1 + eCot[π[1−(1−e
−e−(

z−µ
β

)
)2]α]]−1 (4.3)

tLCTLGu = 2πα
1

β
e−[

z − µ
β

+ e−(
z − µ
β

)]
[
1− e−e

−( z−µ
β

)
]

[
1− {1− e−e

−( z−µ
β

)}2
]α−1

csc2
[
π{1− [1− e−e

−( z−µ
β

)]2}α
]

e
cot

[
π{1−(1−e−e

−(
z−µ
β

)
)2}
]α [

1 + ecot[π{1−(1−e
−e−(

z−µ
β

)
)2}]α

]−2
(4.4)
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4.2.1 Validity of LCTLGu distribution

Total area under the normal curve is unity∫ ∞
−∞

f(z)dz = 1

Using 4.4 the Pdf of Logistic Cotangent Topp-Leone Gumbel Distribution:∫ ∞
−∞

2πα
1

β
e−[

z − µ
β

+ e−(
z − µ
β

)]
[
1− e−e

−( z−µ
β

)
] [

1− {1− e−e
− z−µ

β }2
]α−1

×csc2
[
π{1− [1− e−e

−( z−µ
β

)]2}α
]
e
cot

[
π{1−(1−e−e

−(
z−µ
β

)
)2}
]α

×
[
1 + ecot[π{1−(1−e

−e−(
z−µ
β

)
)2}]α

]−2
Let

u = 1 + ecot[π{1−(1−e
−e−(

z−µ
β

)
)2}α]dz

When
z → −∞ then u→ 1

When
z →∞ then u→∞

du = 2πα
1

β
e−[

z − µ
β

+ e−(
z − µ
β

)]
[
1− e−e

−( z−µ
β

)
] [

1− {1− e−e
−( z−µ

β
)}2
]α−1

×csc2
[
π{1− [1− e−e

−( z−µ
β

)]2}α
]
e
cot

[
π{1−(1−e−e

−(
z−µ
β

)
)2}α

]

so, ∫ ∞
−∞

f(z)dz =

∫ ∞
1

u−2du∫ ∞
1

u−2du = −1

u

= − 1

∞
+

1

1
= −0 + 1

= 1
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4.3 Statistical Properties:

4.3.1 Survival Function

The following is the Logistic Cotangent Topp Leone Gumbel distribution’s
survival function:
using the CDF from equation (3.33):

SLCTL−GU = 1− [1 + eCot[π[1−(1−e
−e−(

z−µ
β

)
)2]α]]−1 (4.5)

4.3.2 Hazard rate Function

By using equation (4.4) and (4.5)

hCTL−GU = 2πα
1

β
e−[

z − µ
β

+ e−(
z − µ
β

)]
[
1− e−e

−( z−µ
β

)
]

×
[
1− {1− e−e

−( z−µ
β

)}2
]α−1

csc2
[
π{1− [1− e−e

−( z−µ
β

)]2}α
]

×e
cot

[
π{1−(1−e−e

−(
z−µ
β

)
)2}
]α [

1 + ecot[π{1−(1−e
−e−(

z−µ
β

)
)2}]α

]−2
× 1

1− [1 + eCot[π[1−(1−e
−e−(

z−µ
β

)
)2]α]]−1

(4.6)
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4.3.3 Quantile function

The Quantile function of Logistic Cotangent Topp-Leone Gumbel distribu-
tuon is:

q = F−1(z)

q = [1 + ecot[π[1−(1−e
−e−(

z−µ
β

)
)2]α]]−1

q =
1

[1 + ecot[π[1−(1−e
−e−(

z−µ
β

)
)2]α]]

1

q
= [1 + ecot[π[1−(1−e

−e−(
z−µ
β

)
)2]α]]

1

q
− 1 = ecot[π[1−(1−e

−e−(
z−µ
β

)
)2]α]

ln(
1

q
− 1) = cot[π[1− (1− e−e

−( z−µ
β

))2]α]

cot−1[ln(
1

q
− 1)] = π[1− (1− e−e

−( z−µ
β

))2]α

1

π
cot−1[ln(

1

q
− 1)] = [1− (1− e−e

−( z−µ
β

))2]α[
1

π
cot−1[ln(

1

q
− 1)]

] 1
α

= [1− (1− e−e
−( z−µ

β
))2]

1− (1− e−e
−( z−µ

β
))2 =

[
1

π
cot−1[ln(

1

q
− 1)]

1
α

]
(1− e−e

−( z−µ
β

))2 = 1−
[

1

π
cot−1[ln(

1

q
− 1)]

1
α

]
(1− e−e

−( z−µ
β

)) =

√
1−

[
1

π
cot−1[ln(

1

q
− 1)]

1
α

]

e−e
−( z−µ

β
) = 1−

√
1−

[
1

π
cot−1[ln(

1

q
− 1)]

1
α

]

−e−(
z − µ
β

) = ln

(
1−

√
1−

[
1

π
cot−1[ln(

1

q
− 1)]

1
α

])

e−(
z − µ
β

) = − ln

(
1−

√
1−

[
1

π
cot−1[ln(

1

q
− 1)]

1
α

])
−(
z − µ
β

) = ln
1(

ln

[
1−

√
1−

[
1
π

cot−1[ln(1
q
− 1)]

1
α

]])
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−z + µ = β ln
1(

ln

[
1−

√
1−

[
1
π

cot−1[ln(1
q
− 1)]

1
α

]])
z = µ− β ln

(
ln

[
1−

√
1− { 1

π
cot−1[ln(

1

q
− 1)]

1
α}
])

(4.7)

4.3.4 Moments

As the nth moments of LCTL-G family of distribution from eq(3.22):

µ′n =
∞∑
i,l=1

∞∑
j,k=0

Vi,j,k,l(m)

∫ ∞
−∞

znG(z)m−1.g(z)dz

where

Vi,j,k,l =
∞∑
m=1

∞∑
i,l=1

∞∑
j,k=0

(−1)i+j+l+m+1(i)j
1

j!
ak(j)π

2k−j
(
α(2k − j)

l

)
(

2l
m

)
consider,

m

∫ ∞
−∞

znG(z)m−1.g(z)dz

By using the PDF & CDF of Gumbel distribution from eq (4.1)and(4.2):

m

∫ ∞
−∞

zn[e−e
−( z−µ

β
)]m−1

1

β
e−(

z − µ
β

)e−e
−( z−µ

β
)

Let

e−(
z − µ
β

) = θ

− 1

β
e−(

z − µ
β

) = dθ

(µ− βln θ) = z

When
z → −∞ then θ →∞

When
z →∞ then θ → 0
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m

∫ 0

∞
(µ− βln θ)n[e−θ]m−1e−θ − dθ

m

∫ 0

∞
(µ− βln θ)n[e−θ]m − dθ

m

∫ ∞
0

(µ− βln θ)ne−θmdθ

m

∫ ∞
0

(µ− βln θ)n[e−θ]mdθ

Using the binomial expansion for

(µ− βln θ)n =
n∑
h=0

(−β)hµn−h[log(θ)]h

m
n∑
h=0

(−β)hµn−h
∫ ∞
0

[log(θ)]he−θmdθ

Using a result by [4]

Ii,j =

∫ ∞
0

[log(u)]ie−u(j+1)du

Ii,j = [
∂

∂a
]i[(j + 1)aΓ(a)]|a=1

n∑
h=0

m(−β)hµn−h
∫ ∞
0

[log(θ)]he−θmdθ =
n∑
h=0

m(−β)hµn−h

[
∂

∂a
]h[(m)aΓ(a)]|a=1

µ′n =
∞∑
m=1

∞∑
i,l=1

∞∑
j,k=0

(−1)i+j+l+m+1(i)j
1

j!
ak(j)π

2k−j
(
α(2k − j)

l

)
(

2l
m

) n∑
h=0

m(−β)hµn−h[
∂

∂a
]h[(m)aΓ(a)]|a=1 (4.8)

µ′n = Vi,j,k,l

n∑
h=0

m(−β)hµn−h[
∂

∂a
]h[(m)aΓ(a)]|a=1 (4.9)
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4.3.5 Renyi Entropy

Using the LCTL-G’s generic form of Renyi entropy from eq (3.33):

IR(δ) =
1

1− δ
log

∞∑
i,j,l,m,h=0

Ai,j,l,m,h,δ

∫ ∞
−∞

g(z)[1−G(z)]k (4.10)

Putting eq (4.1) (4.2) in above equation

IR(δ) =
1

1− δ
log

∞∑
i,j,l,m,h=0

Ai,j,l,m,h,δ

∫ ∞
−∞

1

β
e−[(

z−µ
β

)+e−( z−µ
β

)]
[
1− e−e

−( z−µ
β

)
]k

Using the Binomial Series in above expression

(1− x)n =
∞∑
i=0

(−1)ixi
(
n
i

)

IR(δ) =
1

1− δ
log

∞∑
i,j,l,m,h=0

Ai,j,l,m,h,δ

∫ ∞
−∞

1

β
e−[(

z−µ
β

)+e−( z−µ
β

)]

∞∑
p=0

(−1)p
[
e−e

−( z−µ
β

)
]p( k

p

)

IR(δ) =
1

1− δ
log

∞∑
i,j,l,m,h=0

∞∑
p=0

(−1)pAi,j,l,m,h,δ

(
k
p

)
1

β

∫ ∞
−∞

e−(
z−µ
β

)

×
[
e−e

−( z−µ
β

)
]p+1

(4.11)

4.3.6 Order Statistic

The LCTL Order statistics in its general format from eq(3.35):

f1:N(z) =
n!

(i− 1)!(n− i!)!

n−i∑
j=0

(−1)j
(
n− i
j

)
(−1)h+q2απ2(N+p)−(m+1)

∞∑
m,N,p=0

∞∑
q,l,h=0

cl(2)ap(m)
(l + 1)m

m!

(
−(j + i+ 1)

l

)(
2q + 1
h

)
(

2α(N + p)− α(m+ 1)− 1
q

)
g(z)G(z)h (4.12)
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By using PDF and CDF from eq (4.1)and eq (4.2)in above equation

f1:N(z) =
n!

(i− 1)!(n− i!)!
(−1)h+q+j

n−i∑
j=0

∞∑
m,N,p=0

∞∑
q,l,h=0

(
n− i
j

)
2απ2(N+p)−(m+1)

(
−(j + i+ 1)

l

)(
2q + 1
h

)
(

2α(N + p)− α(m+ 1)− 1
q

)
cl(2)ap(m)

(l + 1)m

m!
1

β
e−[

z − µ
β

+ e−(
z − µ
β

)][e−e
− z−µ

β ]h (4.13)

4.3.7 Parameter Estimation

Taking eq (3.36) after putting the pdf and cdf of Gumbel distribution from
eq (4.1) & (4.2)

logL = nlog(2) + nlogπ + n logα + log
n∑
i=1

1

β
e−[

zi − µ
β

+ e−(
zi − µ
β

)]

+log
n∑
i=1

{1− [e−e
−(

zi−µ
β

)]}+ (α− 1)log
n∑
i=1

[
1− {1− [e−e

−(
zi−µ
β

)]}2
]

+2log csc2
[
π{1− [1−

(
e−e

−(
zi−µ
β

)
)

]2}α
]

+
n∑
i=1

cot[π{1− [1− (e−e
−(

zi−µ
β

))]2}α]

+2log
n∑
i=1

[
1 + e

cot

[
π{1−[1−(e−e

−(
zi−µ
β

)
)]2}α

]]
(4.14)
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Taking the derivative of (eq 4.14) w.r.t to α:

∂ logL

∂α
=

1

α
− 4 cot
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(4.15)
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Taking the derivative of eq (4.14) w.r.t to β:

∂ logL

∂β
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(4.16)
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Taking the derivative of eq (4.14) w.r.t to µ:

∂ logL
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Equations don’t have a closed form. It appears challenging to only com-
pute the parameter values as a result. In order to derive MLEs, we apply
an iterative procedure similar to the mathematical Newton-Raphson tech-
nique.
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Chapter 5

Application

Two distinct applications of two real datasets to demonstrate how ben-
eficial the suggested Gumbel distribution (LCTLGu) are presented here.
The goodness of fit criteria demonstrated that it can be substituted for
numerous other models, including well-known two, three, and four pa-
rameter models. The R script Adequacy Model is used for all computa-
tions. Additionally, the suggested CLTL-GU is contrasted with the Ex-
ponentiated Generalized Gumbel (EGGU) [Andrade et al. 2015] and the
Kumaraswamy Gumbel (KumGU) [Cordeiro et al. 2012] and the four-
parameter Beta Gumbel (BGU) Nadarajah and Kotz (2004).

5.0.8 Application 1:

The first data set which came from [26]. The dataset is readily accessi-
ble in [26]. Data contains 30 successive values of March precipitation
which is: 0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09,
1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48,
0.96, 1.89, 0.90, 2.05 (in inches) in Minneapolis/St Paul. The following
are the dataset’s summary statistics. Table 5.1 provides a number of de-
scriptive statistics, including central tendency statistics, for these data. Ta-
ble 5.2 displays the MLE for the CLTL-GU distribution. Table 5.3 gives
the Information criteria Akaike information criterion (AIC), Consistent
information criterion (CAIC),Bayesian Akaike information criterion (BA-
IC),Hannan Quinn informatio (HQIC) ,W*,A* and p-value of fitted model.
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Table 5.1: Summary of the data set.
Min. Max. Q1 Median Mean Q3

0.320 4.750 0.915 1.470 1.675 1.773

Table 5.2: MLEs of the data sets’ considered distributional parameters.
α β µ σ

LCTL-GU -15.4823 20.85592 21.19220 -
EGGu 0.0358 1.3392 2.5508 0.0078
B −GU 2.0008 0.4855 1.5573 0.3628
KUM −GU 0.2094 0.4428 0.3800 0.3151

Table 5.2 displays the MLE for the LCTLGu distribution.

In both its theoretical basis and empirical density and distribution func-
tion versions, the Tangent Topp-Leone Kumara Swamy distribution for
strength data is seen in Figure 5.1. Figure 5.2 displays the data’s Q-Q and
P-P plots.Table 5.1 displays a summary of the dataset.
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Histogram and theoretical densities
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Figure 5.1: LCTL’s empirical and theoretical CDF and PDF

61



Figure 5.2: Empirical and theory-based CDF and PDF of LCTLGu with
Q-Q and P-Plots

5.0.9 Application 2:

The second set of data is provided by [27]. The data refer the time between
failures for repairable item: 1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59,
0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23, 0.45, 0.70, 1.06, 1.46, 0.30, 1.82,
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Table 5.3: Goodness of fit tests.
AIC CAIC BIC HQIC W* A* P-value

LCTL-GU 62.05802 62.98109 66.26161 63.40278 0.0122 0.1154 0.9941
EG−GU 84.1 89.7 85.7 - 0.0151 0.1169 0.9932
B −GU 84.7 90.3 86.3 - 0.0205 0.1606 0.9611
KUM −GU 84.7 90.3 86.3 - 0.0193 0.1520 0.9718

2.37, 0.63, 1.23, 1.24, 1.97, 1.86, 1.17.
The dataset has the following summary statistics.For these data, Table 5.4
offers several descriptive statistics, including statistics on central tenden-
cy.The MLE for the CLTL-GU distribution are shown in Table 5.5. The in-
formation criteria and the values of W*, A* and p-value of the fitted model
are listed in Table 5.6
Table 5.5

Table 5.4: Summary of the data set.
Min. Max. Q1 Median Mean Q3

0.1100 4.7300 0.7175 1.2350 1.5427 1.9425

Table 5.5: MLEs of the data sets’ considered distributional parameters.
α β µ σ

LCTL-GU -10.80047 20.733212 20.37893 -
EGGu 0.2914 1.3294 0.3146 0.3004
B −GU 7.7144 0.2089 -0.2351 0.2600
KUM −GU 2.4766 0.2749 0.1804 0.3115

Table 5.4 displays the MLE for the LCTLGu distribution.
In both its theoretical basis and empirical density and distribution func-
tion versions, the Tangent Topp-Leone Kumara Swamy distribution for
strength data is seen in Figure 5.3. Fig. 5.4 displays the data’s Q-Q and
P-P plots.Table 5.3 displays a summary of the dataset.
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Figure 5.3: LCTL’s empirical and theoretical CDF and PDF
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Figure 5.4: Empirical and theory-based CDF and PDF of LCTLGu with
Q-Q and P-Plots

Having the lowest BIC, AIIC, CAIC, and HQIC values, the distribution
that best fits the data is found in Table 5.3 and Table 5.7
The Cotangent ToppLeone Gumbel distribution clearly has lower AIC,
BIC, CAIC, and HQIC values than other distributions (see Table 5.3)and(see
Table 5.7). Therefore, compared to the Exponentiated Generalized Gum-
bel(EGGU), Kumaraswamy Gumbel(KumGU) and the Beta Gumbel(BGU),
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Table 5.6: Goodness of fit tests.
AIC CAIC BIC HQIC W* A* P-value

LCTL-GU 86.16066 87.08374 90.36426 87.50543 0.0162 0.1195 0.9902
EG−GU 87.55 89.15 93.16 - 0.0168 0.1198 0.9885
B −GU 87.82 89.42 93.43 - 0.0181 0.1231 0.9821
KUM −GU 87.55 89.15 93.16 - 0.0176 0.1204 0.9848

The CLTL-GU distribution provides a superior fit for the strength data.

5.1 Conclusion

In this research work, we introduced the newest distribution i-e The Lo-
gistic Cotangent Topp-Leone Gumbel (LCTLGu) Distribution. To create
new modified versions of the current probability distribution, we have
proposed a new generator and applied it to the current probability model.
After that we modified the well-known Gumbel distributions by increas-
ing their parameters or substituting one function for another. Bias and
MSE have been employed to evaluate the consistency of the parameters.
The three-parameter Logistic Cotangent Topp-Leone Gumbel (CLTLGu)
probability distribution was introduced. This distribution is derived from
a generator that is Logistic Cotangent Topp-Leone. The PDF and CDF of
LCTLGu are in closed form, and several of its statistical properties such
as Hazard Functions, Survival Functions, Order Statistic, Renyi entropy,
mean residual life, and MGF are also given. The MLE method is used to
calculate the parameters. Furthermore, we examined the various hazard
function forms and found that this distribution (LCTLGu) might bridge a
gap in the literature by representing real data in either a monotonic man-
ner. We have also shown that this probability distribution provides a very
good fit when compared to the current probability models. The strength
data is used to evaluate the LCTLGu goodness of fit to established lifes-
pan distributions, including the Exponentiated Generalized Gumbel, Ku-
maraswamy Gumbel, and Beta Gumbel distributions. By contrasting the
values of criterion BIC, HQIC, AIC, CAIC, AD, KS, and W statistics, it is
evident that the LCTLGu values are significantly lower than those of oth-
er distributions currently in use. It is possible to conclude that LCTLGu
provides a better match than other distributions.
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5.2 Recommendations

This section discusses the future recommendation on the Logistic Cotan-
gent Topp-Leone G family (LCTL-G) distribution. The suggestions are
grounded in several statistical fields, including quality control and math-
ematical statistics. New studies based on other distributions such as the
Inverted Rayleigh distribution, the Frechet distributions family and the
Pareto distributions family are listed, can be conducted by employing the
PDF & CDF of proposed (LCTL-G) distributions family. Additionally, the
parameter’s estimation study using various techniques such as parametric
bootstrapping, Bayesian estimation, weighted least squares, and ordinary
least squares can be undertaken. Examining the proposed LCTLGu dis-
tribution control charts is advised for those working in the quality control
industry. By employing the current generators, further families of distri-
butions utilizing tangent,cotangent or other trigonometric functions can
be created to suggest more adaptable versions of the baseline distribution-
s that are now in use.
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