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Preface

Boundary layer flows induced by stretching sheet has gained significant importance for the
last three decades. It is only due to prominent applications of such flows in manufacturing
processes, in industry such as the aerodynamic extrusion of the plastic plate, cooling of an
infinite metallic plate in a cooling bath, boundary layer along a liquid thin film and
condensation process and many more. Large number of mathematicians, physicists,
modeler, and engineers are attracted by theses applications and are investigating such flows
in many different ways for the last so many years. The primeval researches on boundary
layer flow by a continuously moving solid surface with constant velocity have been done by
Sakiadis [1, 2]. After this Crane [3] investigated the continuously moving solid surface with
linear velocity. Later, C. Y. Wang discussed the steady three dimensional flows due to
stretching of the sheet [4] and then liquid film on an unsteady stretching sheet [5]. Till now,
extensive literature is available on the linear stretching flow disused by different authors [6-
14]. But unfortunately, a very little attention has been given to the nonlinear stretching
flows. Vajravelu [15] discussed the fluid flow over a non-linear stretching sheet first time
and then Vajravelu and Cannon [16] studied the existence and behavior of solutions of
different equations arising in viscous flow over a nonlinear stretching sheet. In addition to
the stretching surfaces, the heat and mass flow has driven many industrial applications due
to thermal diffusion, concentration difference and due to chemical reaction. Thereafter, the
viscous flow and heat transfer characteristics over a nonlinear stretching sheet have been
discussed by Cortell [17]. In recent, analytic solution has been obtained for flow and
diffusion of chemically reactive species over a nonlinear stretching sheet immersed in a
porous medium by Ziabakhsh [18]. Motivated by the above facts, the aim of this dissertation
is to investigate the effects of porous medium on the fluid flow over a nonlinear rotating
stretching sheet. The dissertation is arranged as follows:

Chapter 1 includes some basic definitions, concept of boundary layer and its
equations [19], equation of motion of fluid in rotating frame [20] for the convenience and
better understanding of the reader. The contents of chapter 2 are based on the work of
Ziabakhsh et al [18]. All the results are reproduced by shooting method [21] and by famous
implicit finite difference scheme, Keller-Box Scheme [22]. In chapter 3 the work of
reference [18] is generalized by taking the whole in rigid body rotation immersed in a
porous medium. The similarity transformations for the rotating frame are introduced to the
partial differential equations. As a result governing nonlinear ordinary differential equations
are then solved by two well known methods namely shooting method [21] and by Keller-
Box method [22]. Results obtained by both the methods are compared for different values of

emerging parameters and found in excellent agreement. The influence of rotation and porous
medium parameter are analyzed through graphs.
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Chapter 1

Some basic definitions and équations

Some basic definitions, concept of boundary layer, derivation of the equations of motion of fluid

in rotating frame are discussed in this chapter, which will be used in the subsequent chapters.

1.1 Definitions

1.1.1 Velocity field

In dealing with fluids in motion, we shall necessarily be concerned with the description of a
velocity field. If we define a fluid particle as a small mass of fluid of fixed identity of volume dv,
then the velocity at point C is defined as the instantaneous velocity of the fluid particle which,
at a given instant, is passing through point C. At a given instant the velocity field, V, is a
function oi" the space coordinates z, y and z. The velocity at any point in the flow field might

vary from one instant to another. Thus the complete representation of velocity is given by
V =V(z,y, z,t).

1.1.2 Flow

A material in which the that deformation become continuous under the action of any force

upon it. If the deformation continuously increases without limit, then such phenomenon is
called flow.



1.1.3 Fluid

Any substance that deforms continuously under the action of applied forces is called fluid.

1.1.4 Viscosity

The internal friction of a fluid produced by the movement of its molecules against each other

is called viscosity of the fluid. Viscosity causes the fluid to resist flowing.

Shear stress

, ity = .
Viscosity rate of shear strain

1.1.5 Density

Density of a fluid is defined as the mass per unit volume. Mathematically, the density p at a
point C may be defined as

v - dm
p—-&}l_n'o dv’

where dv is the total volume element around the point C and ém is the ma'ss of the fluid within
dv.

1.1.6 Kinematic viscosity

It is the ratio of absolute viscosity p to the density. It is denoted by v, and is defined as

-

v=E
p

1.1.7 Fluid rotation

A fluid particle moving in a general three-dimensional flow field may rotate about all three

coordinate axes. Thus particle rotation is a vector quantity and, in general
w = iwg + jwy + kw,,

where w;, wy, and w, are the rotation about the z, ¥ and z-axis respectively. The rotation of the

fluid element about the 2-axis is the average angular velocity of the two mutually perpendicular



line elements, in the zy - plane.

1.2 Types of fluid

1.2.1 Ideal fluid

An ideal fluid is one that possesses no viscosity. Ideal fluid do not actually exist but sometimes
it is useful to consider what would happen to an ideal fluid in a particular fluid flow situation

in order to simplify the problem.

1.2.2 Real fluid

A fluid which possess some viscosity is known as a real fluid. All the fluids in actual practice
are real fluids. Real fluids are further subdivided into two main classes.

(1) Newtonian fluid

(2) Non-Newtonian fluid

1.2.3 Newtonian fluid

A Newtonian fluid is a fluid whose stress is proportional to strain rate linearly and constant of

proportionality is the viscosity. Mathematically

du
Tyz = F‘E’

where 7y, is the shear stress,du/dy is the velocity gradient perpendicular to the direction of

shear stress.

1.2.4 Non-Newtonian fluid

A Non-Newtonian fluid is a fluid whose flow properties are not described by a single constant
value of viscosity. Many polymer solutions and molten polymers are non-Newtonian fluids.
Many commonly found substances such as ketchup, paint, blood and shampoo, etc. are exam-
ples of non-Newtonian fluids. In a non-Newtonian fluid, the relation between the shear stress

and the strain rate is proportional but non linearly. Mathematically



<)

du\"
Ty:::n(d_y) ) 'n-#l

where n is consistency index and 7 represent behavior.

1.3 Types of flow

1.3.1 Uniform flow

r

If the velocity of the fluid is same in magnitude and direction at every point in the fluid flow

then this flow is consider as uniform flow.

1.3.2 Non-uniform flow

If at a given instant, the velocity is not same at each point of the flow, it is known as non-uniform

flow.

1.3.3 Laminar flow

The smooth flow of a fluid in which adjacent layers of the fluid, flow parallel to each other is
called a laminar flow. In simple words, during this flow, all the fluid particles move in distinct

and separate layers, i.e. there is no mixing occurs between two adjacent layers.

1.3.4 Turbulent flow

The flow of a fluid in which the motion of particles at any point varies rapidly in both magnitude
and direction is called turbulent flow. It is characterized by mixing of adjacent fluid layers.

1.3.5 Steady flow

If some properties of the fluid does not change with time during the flow, such a fluid flow is
called steady flow.

1.3.6 Unsteady flow

A flow in which time effect some properties of fluid during the flow is said to be unsteady flow.



1.3.7 Compressible flow

All those flows in which density of the flowing fluid changes then such fluid flow is called
compressible flow. .

1.3.8 Incompressible flow

If the flow is not compressible then it is called an incompressible flow. Flow of liquids are

generally lie into the category of incompressible flow.

1.4 Stretching flow

The flow in which the sheet is stretched in its own plane with the velocity proportional to the
distance from a fixed point is known as the stretching flows. There can be different types of

stretching flow, e.g. linear stretching, non-linear stretching and exponential stretching etc.

1.5 Porous medium

The porous medium is a material that contain interconnected pores (voids) in it. Due to
interconnectedness of the voids (pores), the fluid may travel from the material.

.

1.6 Mass transfer

It is the phenomenon in which mass is transfer from high concentration to low concentration.

1.6.1 Diffusion

Diffusion is a process by which molecules spread from areas of high concentration to areas of

low concentration. - -

1.6.2 Mass convection

Mass convection is the movement of molecules within fluids.



1.6.3 Fick’s law of diffusion

According to Fick’s law of diffusion, the rate of mass diffusion 74iss of a chemical species A in
a stationary medium in the z direction is proportional to the concentration gradient dC/dz in

that direction. It is mathematically expressed as

4Gy

aiff = —DapA T2

where Dap is diffusivity of the species and C, is the concentration of the species in the mixture

at that location.

1.6.4 Schmidt number

Schmidt number is a dimensionless number defined as the ratio of momentum diffusivity (vis-

cosity) and mass diffusivity. It is denoted by Sc and defined as

viscous diffusion rate

Sc=-E .
pD  molecular diffusion rate

1.7 Equation of continuity

Let us consider the control volume chosen as an infinitesimal cube with sides of length dz,
dy and dz in rectangular coordinate system. The density of the control volume is p and the
velocity there is V = (u, v, w).

The net rate of mass flux coming out of control surface is given by

Opu Opv Bpw
(81‘ + E + —52_ da:dydz.
Since the mass inside the control volume at any instant is the product of the mass per unit
volume p, and its volume dzdydz. Thus the rate of change of mass inside the control volume is
given by

%ﬁdzdydz.

It is noted that fixed control volume dxdydz is independent of time. Combination of these two



expressions is giveh by '
dp , 9(pu) , 8(pv) , O(pw) _ 11
% oz T oy T os =0. (1.1)

V_p‘,=¢9(/zm) + 4 (pv) + 4 (pw)

Oz &y 8z '

therefore Eq. (1.1) becomes

dp
ol .oV = 1.2
6t+v P 0, (1.2)

which is known as equation of continuity.

For incompressible flows, density is neither a function of space coordinate nor a function of

time. This imply that p = constant, then Eq. (1.2) is simplified
V.V=0. ‘ (1.3)

1.8 The Momentum Equation
The equation of motion in vector form is

pgal: =pb+V.T, (1.4)

in which b are the body forces per unit mass. Here Cauchy stress T is

Tex Tzy Tzz

T=17Tye Tyy Tyz |

Tzxz Tzy Tzx

where T3z, Tyy and 7, are the normal stresses and Ty, T2z, Tyz, Tyz, Taz, and T,y are called

shear stresses.

1.9 Equation of motion in rotating system

Let us consider two coordinate systems in which simed coordinate system is rotating with

respect to an unsimed system, which is fixed. The instantaneous angular speed of the rotation

10



is designated by w. The product, wn, is the angular velocity of the rotating system
w =wn.

The position of any point P in space can be designated by the vector r in the fixed, unsimed

system and by the vector r™ in the rotating system. These vectors are equal, that is,
r=iz+jytkz=r"=i"z"+j"y~ + k~2". (1.5)

Differentiating with respect to time where i~, j~ and k™ in the rotating system are not
constant. Thus we can write
= ~ N— N—_— ~ . 1.
v=v"4z dt+y dt+z_dt (1.6)
Where v and v~ are the velocity vectors in the fixed and rotating coordinate system. To find
the time derivatives we show the change Ai™ in the unit vector i~ due to a small rotation Af
about the axis of rotation. From the figure we see that the magnitude of Ai™ is given by the

approximate relation

|AT™| & (i™| sin ¢) Af= (sing)AH,

where ¢ is the angle between i~ and w. Let At be the time interval for this change, then we
can write '
di~
dt

At

= sin ¢%to— = (sin¢)w. (1.7)

m
At—0



Fig. 1.1: Change in the unit vector i~ produced by a small rotation A#f.
Now the direction of Ai"’ is perpendicular to both w and i™; consequently, form the definition

of the cross product, we can write Equation (1.7) in vector form as

537 =wx i (1.8)
Similarly, we find 3 = w x §~, and T = w x k™
’ dt » and —

Using the last three terms in Equation (1.6), we can write

v=v"4wxr”, (1.9)

or, more explicitly

(8)(E) rer-[@ ol o
dt fized dt rot dt rot ) '

12



In particular, if that vector is the velocity, then we have

dv) (dv)
i =(=]) +wxw. (1.11)
(dt Jized dt rot

Using Eq. (1.9) in Eq. (1.11), then we can express the final result as follows

Fig. 1.2: Geometry for the general case of translation and rotation of the moving coordinate

system.
a=a"+0xr"+2wx v’ +wx(wxr’). ) (1.12)

Where (é‘i) = (é‘i) =w, Vv’ = (dL) and a~ = (i—) , The simed system
dt rot dt Jized dt rot dt

is undergoing both translation and rotation, so we must add the velocity of translation Vj in
Eq. (1.9) and the acceleration Ap of the moving system in Eq. (1.12). This gives the general

equations for transforming from a fixed system to a moving and rotating system:

v=vT4wxr™+Vp,

13



a=a"+wXxr"+2wXx v”+wx(w xr~)+ Agp. (1.13)

The term 2w x v~ is known as the Coriolis acceleration, and the term wx(w x r™) is called
the centripetal acceleration. The term & x r™ is called the transverse acceleration.

For equations of the rotating system, the simed coordinate system is fixed with respect to
the rotating system, it does not translate, it does not undergo translational acceleration, and
the rotation is constant, so the equation of motion (1.4) for rotating system becomes after
neglecting simes

‘ av
p.ﬁ+2wxv+wx(wxr) =V.-T+ pb. (1.14)

1.10 Boundary layer

In 1904, Ludwig Prandtl noted that, far away from a solid wall, viscous interactions are not
significant in determining the flow field. However, in a thin region near a solid boundary, the
viscous interactions have a significant effect on fluid motion. Prandtl's idea of a boundary layer
made tractable the flow calculations that take viscosity into account. A boundary layer is a
buffer region between the wall and the inviscid free stream above. Mathematically, its main

purpose is to allow inviscid flow solutions to satisfy the no-slip condition at the wall.

1.10.1 Boundary layer equation

For developing a mathematical theory of boundary layers [19], the first step is to show the
existence, as the Reynolds number Re tends to infinity, or kinematic viscosity v tend to zero
of a limiting form of equations of motion, different from that obtained by putting v = 0 in the
first place.” A solution of these limiting equations may thus reasonably be expected to describe
approximately the flow in a laminar boundary layer for which Re is large, but not infinite. This
is the basis of the classical theory of laminar boundary layers.

The full equations of motion for steady two dimensional flow are [19]

du Ou_ -10p Pu  8%u

"o "oy poxt” (a? * —ayz) ’ (119)
-’61; 6@_—16;7 v

‘l.l.£+‘v-—,j—--p——a +v (ﬁ + _32) ) (1.16)

14



Ou By
8z Oy

where v is the kinematic viscosity,  and y variables are horizontal and vertical coordinates and

=0, (1.17)
u and v are respectively, the horizontal and vertical fluid velocities. A wall is located in the
plane y = 0, we consider following non-dlmensmna.l variables

w‘=%,y =%,u =

L
3’

iy
v (1.18)

*

v P

U T pU?
where, L is the horizontal length scale, § is the boundary layer thickness at z = L, which is
known. We will obtain an estimate for it in terms of Reynolds number Re. U is the fluid

velocity which is aligned in thé z-direction parallel to the solid boundary. The non-dimensional

form of the governing equations are

LOout JGut Gp* v *u* v
wo st o~ oz +UL3:B‘2 ( ) 552 (1.19)
WSOt OV Bp v &%

wi v it ( ) e ( ) (1.20)

ou  Gv*
3o "oy =Y (1.21)

whéfe the Reynold number for this problemi is

Re = % ‘ (1.22)

Inside the boundary layer, the viscous forces balance inertial and pressure gradient forces. In

other words, inertial and viscous forces are of the same order, so

5 L( 5)"’ =0(1), (1.23)

which gives
§ = O(R™V2L). (1.24)

Now we drop the asteriks from the non-dimensional governing equations and with Eq. (1.24),

15



we have

Su Ou dp 1 (% a’-u)
— — I — — — ———— 1.2
Yoz V5 6a:+R<6x2+6y2 ’ (1.25)
1( v v dp 1 (0% 621))
—fu—Fr—)=—E | o=+ — 1.2
ou v
—— — = {), 1.2
6m+6y 0 (1.27)
In the limit B — oo, the above equation reduces to
u Ou op &u
u-a—x- + ’U-a—y- = "3z + Ey—z, | (1.28)
op
- =0, 1.29
3 (1.29)
ou Ov
5:; + -5!—1 =0, (1.30)

where from Eq. (1.29), the pressure is constant across the boundary layer. In terms of dimen-

sional variable, the system of the above equations assume the form

du Ou 1dp 8%u

‘U.E:"Fvg = —;B;-Fll-a?, (1.31)
10p
-=== =0, 1.32
2y (1.32)
Ou  Ov
9 + v 0. (1.33)

1.11 Numerical scheme

The mathematical formulation of most of the physical problems in science that involve rate of
change with respect to two or more independent variables representing time, length or angle
leads either to a partial differential equations or to a set of such equations. For such problems it
is normally impossible to find the exact analytic solutions of such partial differential equations.
We are only left with the numerical scheme to find the solution of such problems whether
they are linear or not. Amongst the numerical approximation methods available for solving

differential equations, finite difference and finite element methods are more frequently used.

16



1.11.1 Finite difference method

Finite difference method is an approximate method in the sense that derivative at a point

are approximated by difference quotient over a small interval. It was first utilized by Euler,
probably in 1768.

Assume that a function F and its derivatives are single-valued, finite and continuous func-

tions of z, then by Taylor’s theorem:

F(z+ h) = F(2) + hF'(2) + E;-F"(z) + -’;—3F'"(z) + O(h%), (1.34)

and

h? h3
F(z = h) = F(2) - hF'(z) + EF”(z) - -E—F”’(z) + O(hY), (1.35)

where O(h*) denotes terms containing fourth and higher powers of h. These expansions give

dF _ F(z+h) = F(z)
(E‘) )=l (1.36)

=z

with an error of order h. We assume that the containing second and higher powers of h
are negligible. Eqs. (1.36) and (1.37) are called forward and backward difference formulae
respectively.

Subtraction of the Eq. (1.35) from (1.34) gives

(&), ==, 139

with a leading error is of order h2. This approximation is called a central difference formula.
Similarly we can find the approximation for second and third order derivatives.
There are several numerical methods for solving the boundary layer equations in differential

form but here in fhis thesis we used implicit finite difference scheme known as Keller-Box
method.

17



1.11.2 Keller - Box method

Keller - Bc;x Method is a two point finite-difference scheme, which is going to be used extensively
by the researchers of this field. Here higher order differential equations are reduced to system
of first-order differential equations by introducing new functions. The first-order differential
system is approximated on an arbitrary rectangular net with "centered-difference" derivatives
and averages at the midpoints of the net rectangle difference equations. As a result, the system
of first order differential equa.fion is reduced to system of linear/nonlinear algebraic equations.
The resulting system of equations which is if nonlinear then linearized by Newton’s method and
then solved by the block-elimination method.

The main features of this method are

1. Only slightly more arithmetic to solve than the other implicit methods.

2. Second-order accuracy with arbitrary (nonuniform) x and y spacings.

3. Allows very rapid x variations.

4. Allows easy programming of the solution of large numbers of coupled equations.

18



Chapter 2

Flow and diffusion of chemically
reactive species over a non-linearly
stretching sheet immersed in a

porous medium

2.1 Introduction

This chapter deals with the flow and diffusion of chemically reactive species over a non-linearly
stretching sheet immersed in a porous medium. The governing system of coupled ordinary
differential equations are solved by an implicit finite difference scheme. The numerical val-
ues of the velocity and mass transfer coefficients have been computed. The effect of various
emerging parameters on velocity and concentration distributions have been discussed through
graphs. This chapter is a review of the paper by Z. Ziabakhsh et. al [18]. However, detail of

mathematical calculations of used numerical scheme is incorporated in this chapter.

2.2 Mathematical Formulation

Let us consider a steady, two-dimensional, incompressible fluid flow over a semi-infinite sheet

immersed in a porous medium, which is stretching nonlinearly. The z-axis is chosen along the

19



sheet and y-axis perpendicular to it. The stretching is kinematically imposed and the motion of
the fluid in porous medium is generated due to the stretching of the sheet. The sheet is stretched
with a nonlinear velocity by applying equal and opposite forces along the z-direction, while the
reactive species is emitted from the sheet and diffuses species is destroyed. The concentration

of the reactant at the wall is maintained at a constant value Cw and is assumed to be negligible

at the distance far away from wall.

The equations that govern the flow and mass transfer analysis are

Vv -V =0, (2.1)

av B
p—‘E'— V-T- -I—{-V, . (2.2)
%f-:pv”c +, (2.3)

where V the velocity, T the Cauchy stress tensor, K the permeability of the porous medium, C
the species concentration, D the mass diffussivity and r the species production flux (reaction

term). For viscous fluid the Cauchy stress tensor T is defined as

T= _pI + P'Al; (2‘4)

in which p is pressure, I is unit tensor, p is the viscosity and A, is the first Rivlin Ericksen

tensor defined as

A;=L+1LT, (2.5)

where L =gradV and T represent the matrix transpose. Reaction term r is defined as

r = ~kC, (2.6)

where k; is the rate of chemical reaction. The subscript index 1 indicates that it concerns a first
order homogeneous chemical reaction. The reaction term r is negative because species is con-

sumed in the reaction. For steady two-dimensional flows, we define velocity and concentration
field of the form:

V = V(u(z,y),v(z,¥),0), C=C(zx,y). 2.7

20



In view of Egs. (2.4) - (2.7), we can write Egs. (2.1) - (2.3) in the following forms:

o %’ —o, - (28)
W2y o2 (%222 + %) -2, (2.9)
U+ v% =v (g—:—z + gz%) - %v, (2.10)
u%—i + v% =D (%2;2‘ + %‘;) —kC. (2.11)

Under the usual boundary-layer approximations, the governing equations for the momentum

and concentration fields are

du Bu  u v
‘U.E + ‘U% = V—a—y-i- - Eu, (2.12)
oc acC ac
‘u—a'; + ‘Ua = Da—yz— - kC. (2.13)

Since the fluid flow is driven by the stretching of the sheet, we may assume the pressure gradient

to be negligible. The boundary conditions applicable to the present flow are
u(z,0) = ax + cz?, v(z,0)=0, C(z,0)=Cu, (2.14)

u—0, C—0, as y— oo, (2.15)

where a and c are constants verses linear and quadratic stretching of the sheet and the subscript

w denotes concentration at the wall. Introducing the following similarity. transformation and

parameters
n=y2  u=aaF)+ ) (216)
v=—VavF(n) - 3ﬁc(n), (2.17)
C=Ca [H(n) + 2—2"55(17)] , (2.18)
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g =< k=%, Se= <. - (2.19)

After using the transformation Egs. (2.16) - (2.19), the governing Eqs (2.8) , (2.12) and (2.13)

take the following form

F" + FF" — F'* —kF' =0, (2.20)
G" + FG" -3F'G' +2F"G - kG' =0, (2.21)
H” + ScFH' — BH =0, | (2.22)
S" — SqF'S + ScGH' + ScFS' — 88 =0, (2.23)
with boundary conditions
F(0)=0, F'(0)=1, F'(00) =0, (2.24)
G(0) =0, G'(0)=1, G'(00) =0, (2.25)
H(0) =1, H(oo) =0, (2.26)
S(0) =0, S(o0) =0, - (2.27)

where dimensionless similarity functions F' and G are functions associated with velocity field, H
and S represent concentration distribution, k is the permeability parameter, Sc is the Schmidt
number and B is the reaction rate parameter. The primes denotes differentiation with respect
to dimensionless variable 7).

Since the above system of equations is nonlinear, it is not easy to find their exact solution.
Therefore, In order to solve the system of Eqs. (2.20) - (2.23) subject to the boundary conditions
(2.24) - (2.27), a numerical implicit finite difference scheme is used.

2.3 Numerical solution

Here all the highest order ordinary differential equations are converted to the system of first

order ODE by introducing new functions as
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F=U U=V, G=W, W=M H=L =P (2.28)

Here the prime denote differentiation w.x.t . Next all first order derivatives are approximated

by central difference gradients and average centered at the mid-points of the net defined by

170 = 0, T’j = T’J_l + h, T’J .= 1700, j = 1, 2, ...... J_ 1. (2-29)

Central difference and average centered at the midpoint 7;_,, are defined as

_ Fi—Fiq _ Fjt+Fja
F=—tmg= F==ryp -

After discretization, system of ordinary differential Egs. (2.20) - (2.23) become

. h h kh
Vi=Visi+ 3 (Fj + F—)(Vi + Vi) ~ 2 (U + Uja)? - - (Ui +Uj-1) =0, (2-30)

h h
M; — Mj—r+ 4 (F + Fi1)(Mj + M) + 5(Gi +Gj-1)(V; + Vi-1)—

| (2.31)
3h kh
= U5 + Ui )(Wj + Wjea) = o (Wj + Wja) =0,
' Sch h
Lj = Lj-r+ —~(Fj + Fj-1)(Lj + Lj—1) — %(Hj + Hj1) =0, (2.32)
Sch Sch :
Pj = Pj-1 = —~U; + Uj=1)(5; + Sj-1) + (G5 + Gj-1)(L; + Lj-1)
o . | (2.33)
+22R(E 4 ) (B + Bn) - BS54 550 =0,
Equations (2.28) become
h
Fj = Fj-1= 5(U; +Uj-1), (2.34)
h
Uj = Uj1 = 5(Vi + V), (2.35)
h
Gj -Gj1= -2-(W_1 + Wj_l), (2.36)
h
Wi — Wi = 5(Mj + M;1), (2.37)
: h
H;-H; = -2-(Lj + Lj_1), (2.38)
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h
S; —Sj—1 = E(Pj + Pj_1). (2.39)

Since equations (2.30 - 2.33) are non linear algebraic equations and therefore, linearized by
using Newton’s Method. We introduce the (2 4+ 1)th iterates as

(i+1) _ p() (#)

Similarly for all other dependent variables. By substituting the above expression into the
equations (2.30 - 2.39) and dropping the quadratic and higher order terms in JF}i), JU}i),
6‘/j(i),...etc. We arrived at .

h
0F; — 0Fj—1 — 5(8U; + 8Uj-1) = (m)j» (2.40)

0G; - 6Gj-1 — %(JWJ' + 0Wj_1) = (r2);, (2.41)
(1)50V5 + (£2)50Vi—1 + (€3)0F; + (£4)j0Fj-1 + (£5)i0U; + (6)i0Uj-1 = (r3)5, = (2.42)

(€1)i0M; + (62)i0Mj—1 + (£7)50F; + (€3)i0Fj—1 + (£9)0W; + (§10)i6 Wi+
(€11)i0U; + (£12)30Uj-1 + (613)39G; + (£14)30Gj—1 + (£15)50V; + (§16)30Vi-1 = (r4);,
(2.43)
(€17)50L; + (£18)50 L1 + (§10)i0F; + (€20)i0Fj—1 + (€21)i0Hj + (€32)36Hj1 = (rs);, (2.44)

(€17)i0P; + (£18)50 P51 + (£23)50F; + (§24);0Fj—1 + (£25)i0Uj + (€26);0Uj1+
(€27)7655 + (€28)7655-1 + (€0)i0L; + (€30)i0Lj—1 + (£19);6C; + (€20)i6Gj-1 = (re);,

(2.45)
h

8Uj — 8Uj-1 = 5(8V; + 8Vj1) = (r)s, (240
h

SW; — 6Wj-1 ~ 5 (6M; + M) = (rs);, (247)
h

0Hj — 6Hj—1 — 5(8L; + 6Lj—1) = (re);, (2.48)
h

§8; — 8Sj-1 — 5(8P; + 8Pj-1) = (r0); (2.49)
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where the coefficients of unknown and non homogeneous terms in above linear system of alge-
braic Eqs. (2.40 - 2.49) are defined as

(€5 =1+ (B +Fa), (@)= € -2 )
(6a)s = V3 + Vi) = (£a)s

(¢5)i = —

LSl

(k+U; +Uj-1) = ($s)s
(&7)j= %(Mj + Mj-1) = (£);
(€9)s = ~3 (503 + Uj-1) + K} = (610)s
(En)s = -5 W, + W) = (€
(£13)i = 2(£3)5 = (14);

(€15)5 = 5(Gs+ Gj-1) = (Euo) | 250)
(€ =1+ 222 (F 4 Fra), (6ae)s = (6 -2
(fw)j = -S-EE(L} + Lj-1) = (£20);

(En)s = -5 = ()
(€)s = 225y + Prr) = (6an)s
(§25)5 = —%—h(sj +8j1) = (€26)i
—h _Sc

()i = S5 (U3 + Uja) + B} = (an)y

(€20); = STCh(Gj + Gj-1) = (£30)j
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A e

. ea

. h
(ra)s = Fy-1 — By + 505 + Uy) W
h
(r2)j = Gj1 = Gj + 5(Wj + Wj—1)
- h h ,  kh
(ra)j = Vi1 — V5 — Z(FJ' + Fi) (Vi + Vi) + Z(Uj + Uj-1)* + '2—(Uj + Uj-1)
h 3h .
(ra)j = Mj_1 — M; — Z(F}' + Fj-1)(Mj + Mj—1) + T(Uj + Uj-1)(Wj + Wj-1)
h kh
—§(VJ + Vj_l)(Gj + GJ'_1) + —2—(WJ + Wj-l)

Sch h
(rs)j = Lj—1— Lj — T(Fj’+ Fj_1)(Lj + Lj—1) + %—-(H,- + Hj-1)

Sch Sch .
(r6)j = Pj—1— Pj - —:-(Fj + Fj1)(Pj + Pj-1) + %(U,- + Uj-1)(Sj + Sj-1)+
h Sch
%(Sj + 8j-1) — T(Gj + Gj-1)(Lj + Lj-1)
h,,.
(r1)j=Uj-1 - Uj + -2—(V:' + V1)
' h -
(r8)j = Wj—1 — W; + -2-(M,- + Mj_,1)

h
(ro); = Hj—1 — Hj + (L + Lj1)

h
(r10); = Sj—1— S + 5 (P + Pj-1)

(2.51)

Boundary conditions can be rewritten as

dFp =0 =0 0Go =0 Wo=0 6Hy=0
S =0 U;=0 W;=0 0H; =0 0S;=0

Now the linear algebraic system of Egs. (2.40 - 2.49) subject to the boundary condition can be

written in matrix-vector form as

Ajd =¥, (2.52)
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where

(40 Co Y (%) )

By, A G & LB
B, Ag Co » do T

k]

il
&l
i

* * f= *
: By, Ay Cia 07-1 Ty-1
k By As ) \ 6s k 2,
(2.53)
(o \ ( (r1)j \ ((H)J\ (5FJ'
0 (ra); (ra)s oU;
0 (r3); (r3)s 17
- 0 (ra); (ra)s 8G;j
0 T5): T :
ro = Jrj = (rs); . ) ,8; = oW ,§=0,1,2,..0, (254)
0 (re); (re) oM;
(rh (r7)in1 0 6H;
(rah (r8)j+1 ] o0 oL;
(roh (r9)j+1 . 0 45;

\ean) o) N o) \on)
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and A;, B;, Cj, are 10 x 10 matrices defined as

( 10 000 0 0 0 0 0)
01 000 0 0 0 0 0
00 0 10 0 0 0 0 O
00 0 01 0 0 0 0 ©
00 0 00 O 1 0 0 O
A=1o 0 000 0o 0o 0o 1 o]l (2:55)
0 -1 -g 00 0 0 0 0 O
00 0 0 -1 —52‘- 0 0 0 0
00 0 00 0 -1 —% 0 0
\0 0 0 00 0 0 0 -1 b )

§ (1 —g 0 0 0 0 0 0 0 0
0 0 0 1 _g 0 0 0 0 0
€s)i ()i (&); 0 0 0 0 0 0 0
(€7)i (€u1)i (6as)i (§aa)i (Go)i ()i O 0 0 0
(§19); O 0 0 0 0 (fa)i ()i O 0

A=1 . . . , (2.56
(23)i (€a5)i O ()i O. O 0 (&29)i (€am)i (&17)j (2.56)

0 -1 —g 0 0 0 0 0 0 0
0 0 0 0 -1 ~g 0 0 ) 0
0 0 0 0 0 0 -1 —g 0 )
h
0 0 0 0 _ _h
\ 0 0 0 0 1 5 /
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A

7% 48

o O o ©

(én)s (&a1)a
(620)0 (an)a (€a7)s

o o O

o

0
0
0
0
0

0
0
1
0

0
0
0
0

0
0
0
0

0

[ == = I =

(€22); (£18)s

o

[ 1 _g 0 o 0 0
0 0 0 1 —g 0
(Ea)s () (&g O 0 0
(57).! (Eu)J (5_15).! (513).! (59)-! (fl)J
_| s O 0 0 0 0
(Ex0)s (Eas)s O (Ex9)s O 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
\o o o 0 o0 o
[ -1 —g o 0 0 o0
0 0 0 -1 —% 0
€4); @); (€25 O 0 0
(fs)j. (L12); (616)i (£aa)i (620)i (€2);
(620); O 0 0 0 0
(€24); (€26)i O (620)i O 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
\ 0 0 -0 0 0 0
i=12,..J,

29

(30); (€28); (€18)j

0

0
0
0

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 0

o o0 )
o 0
0o 0
0. 0
0 0
0o 0
0o 0
o 0 )

, (2.58)



(00 0 00 0 0 0 0 0)

00 0 00 0 06 0 0 0

00 0 .00 0 0 0 0 0

00 0 00 0 0 0 0 0 -

00 0 00 0 0 0 0 0

%=lo0o 0o 00 0 0 0 0 o (2:59)

0 1—5 00 0 0 0 0 0

00 0 01 —%o 0 0 0

00 0 00 0 1—%0 0

\0 0 0 00 0 0 0 1 -%)

j=0,1,2,..0 1.

Where A is a tridiagonal matrix and each entry of it is a 10 x 10 matrix. For solution of system
of Egs. (2.52), A can be reduced to the form of LU as

(1 - \

nhn I

[l
il

: (2.60)

Ty, I

\ Ty I)
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and
(Ao Co \
AN Gy

As Ca

ch
]

, (2.61)

. : : ' Ay Cya
\ Ny,

are lower and upper strip diagonal matrices and are solved by using block-elimination method.

The block-elimination method consists of two sweeps
(1) Forward sweep
(2) Backward sweep

2.3.1 Forward sweep

In the forward sweep we compute I';, 4;, and w; from the recursion formulas given by

Ag = Aqg, (2.62)

L5851 =B (2.63)
A5 = A; ~T;C5

wg =19, (2.64)

wj = r; — Djwj_ ' (2.65)

where1 <j<J

where w; are the elements of matrix W which is defined as W =U3. The recursion formulas

from Egs. (2.62 - 2.65) are obtained from the system of equations LW =F.
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2.3.2 Backward sweep

In backward sweep, compute &; from the recursion formulae given by
Ajdy = wy, (2.66)

Ajdj = wj - Cjdj41, j=J—-1,7J-2,..0. (2.67)

The recursion formulas from Eqgs. (2.66) and (2.67) are obtained from the system of equations
U3 = W. After solving this system of equation, we obtain 3 which is our unknown vector.
Iteration is performed on § so that the accuracy upto 10~10 is achieved.

HAM (18] SM[18] KBM
k —F"0) -F"(0) -F"(0)
0.6 1.264934 1264911 1.264911
0.8 1.341624 1.341640 1.341641
1.0 1414017 1414213 1.414214
1.5 15802313 1.581113 1.58114

Table 1: Comparison of the KBM solution with HAM solution and SM solutions [18] of velocity
profile for various k& when 8 = 0.2 and Sc = 0.24.

HAM (18] SM[18] KBM HAM[18] SM[18] KBM
“k  —H'(0) —H'(0) —H'(0) -S'(0) -S'(0) -—S'(0)
0.6 0505010 0.50590 0.505910 0.040063 0.04035 0.04037
- 0.8 0.503601 0.50380 0.50382 0.040320 0.04022 0.04027
1.0 0501943 050191 0.501971 0.040070 0.04004 0.040081
1.5 0.498112 0.49813 0.49814 0.039380 0.03937 0.03936

Table 2: Comparison of the KBM solution with HAM and SM solutions [18] of concentration
profile for various & when = 0.2 and Sc = 0.24.
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| HAM [18] SM [18] -+ KBM HAM [18] SM [18] KBM
"Se  —H'(0) —H'(0) -H'(0) -S§0) -80) -8(0)
0.24 0503601 0.50381 0.50382 0.0403201 0.04022 0.04027
04 0544218 0.54429 0.544217 0.0673822 0.06795 0.06808
0.6 0506620 0.59650 0.596607 0.1014366 0.10221 0.10232

0.8 0.650062 0.65001 0.65004 0.1338458 0.13469 0.13490

Table 3: Comparison of the KBM solution with HAM and SM solutions [18] of comcentration
profile for various S¢ when 8 = 0.2 and k = 0.8.

. HAM[18] SM[18)] KBM HAM[18] SM[18] KBM
g —H'(0) -H(0) -H(0) -5(0) -5'(0)  —-5'(0)
0.2 0503601 0.50380 0.50382 0.040320 0.040220 0.04027
0.8 0933541 093358 093354 0.030445 0.030667 0.030677
1.0 1.036527 1.03652 1.03653 0.028971  0.029101 0.029110
12 1120936 112992 1129920 0.027672 0.027822 0.027832

Table 4: Comparison of the KBM solution with HAM and SM solutions [18] of concentration
profile for various 8 when S¢c =0.24 and k = 0.8.

~F'(0) -G"(0) -H'(0) —S'(0)
SM [18] 13416 20238 0.5038 0.0402
20th -order app. 1.3416 2.0235 0.5036 0.0403
18th -order app 13415 20228 0.5022 0.0434
15th -order app. 13414 2.0227 0.4979  0.0499
KBM 13416 20238 05038 0.0403

Table 5: Comparison of the KBM solution with different order of HAM and SM solutions [18]
for concentration profile when Sc = 0.24, 8 = 0.2 and k = 0.8.
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2.4 Graphical results
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Fig. 2.2: Velocity profiles G’(n) for different values of k when Sc = 0.24 and 8 = 0.2.

34



o8}

06}

Hn)

k=06,08,10,15
04l

0.2}

0

-0.01¢

- -0.02
E
7y

-0.03}

k=06,08,1,15
-0.04 |
0 5 10 15 20
"

Fig. 2.4: Concentration profiles S(n) for different values of k when Sc = 0.24 and 8 = 0.2.
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Fig. 2.6: Concentration profiles S(n) for different value of Sc when k = 0.8 and g = 0.2.
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Fig. 2.8: Concentration profiles S(z) for different values of 8 when k = 0.8 and Sc = 0.24.
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2.5 Discussion

Boundary value problem (2.20) - (2.23) under the boundary conditions (2.24) - (2.27) are solved
numerically for different values of the parameters, Darcy permeability (k), Schmidt number (Sc)
and reaction rate parameter () using the Keller Box method described by Cebeci and Bradshaw
[22]. It is pertinent to mention here that the value of 7, h is adjusted according to the value
of the involved parameter. The effects of velocity and concentration profiles due to variation of
parameters are shown in Figs. (2.1)—(2.8). Fig. 2.1 depicts the effects of the Darcy permeability
parameter k on dimensionless stream function F’ against 7). It is observed that by increasing
the permeability parameter, F’ decreases. In the similar way boundary layer thickness is also
reduced by increasing k. Dotted curve represents the solution obtained by shooting method
[21] in which fourth order Runge-Kutta method is used to integrate the reduced initial value
problem. It demonstrate the confidence on the implicit finite difference scheme, as it provide
an excellent agreement with shooting method as shown in Figs (2.1) — (2.8). Fig. 2.2 show
the effects of permeability parameter k on the velocity profile G’. It is noted that the effect is
similar to that of F/ qualitatively but in quantitatively, these effects are minimum on G’. The
variation of the concentration field H and S due to permeability parameter is shown in Fig.
2.3 and 2.4. it is interesting to see that the consumption of the low concentration H continues
and reachés its least.almost-at the s@e distance of 1 from the wall. Through Fig. 24, it is
seen that negative concentration profile is generated for permeability parameter k and it has no
physical nieaﬁing. Fig. 2.5 and 2.6 shows the effects of Schmidt number on the concentration
field H and S, it is observed that by increasing the Schmidt number H and S decreases rapidly.
This is due to the fact. that Schmidt number representing the ratio of the momentum diffusion
and méss diffusion. And as soon as the schmidt number increases, mass diffusion become less
significant and causes the decrement in the concentration field. Fig. 2.7 and 2.8 illustrate that
increase in destructive chemical reaction rate parameter (8 > 0) reduces the concentration of
H and made to inc;ease of S contrarily very r.apidly. This shows the fact that the diffusion rate
can be signiﬁcantlj altered by chemical reaction rate. Table. 1-5 are prepared to compare our
calculated results with that of [18]. It is observed that in general calculated results obtained by
shooting method and implicit finite difference scheme are in good agreement with the solution

obtained by homotopy analysis method and shooting method of order 2 by Ziabakhsh et al [18].
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Chapter 3

Stretching a surface non-linearly in

a rotating frame

3.1 Introduction

This chapter deals with the steady flow of an incompressibie rotating boundary layer fluid over
a non linear stretching surface. The similarity transformations are introduced for the rotating
systém. The obtained non-linear ordinary differential equations are solved numerically with the
help of quite sufficient implicit Finite Difference scheme Keller Box scheme and with shooting
method of order 4. The effect of various pertinent parameters on velocity profiles have been

discussed through graphs. It is observed that the solution obtained by both the scheme agree

excellently with each other.

3.2 Mathematical Formulation

We consider the steady three-dimensional incompressible rotating fluid flow over a nonlinearly
semi-infinite stretching sheet in a porous medium. We consider a cartesian coordinate system
rotating uniformly with an angular velocity € in the z-direction take positive in the vertically
upward direction and the plate coinciding with the plane z = 0. The motion of the fluid in the
porous medium is generated due to the stretching of the sheet. The sheet is stretched with a

nonlinear (quadratic) velocity by applying equal and opposite forces along the z-direction.
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For steady three dimensional flow, we define the velocity field of the form
v =V(u(z,.z),v(z,z),w(z,z)), (31)

in which u, v and w are the velocity components in z , y and z directions respectively.

The equations which govern the flow are Eq. (2.1) and

p[%—+23xv+ﬂx(ﬂxr)]=V-T-£—V, , (3.2)

where €2 =2k, k is a unit vector parallel to the axis of rotation, 2 is the angular velocity, d/dt
denotes the material derivative, p is viscosity and K is the permeability of the porous medium.
(292 x V) and p(£2 x (2 x r)) are the Coriolis and centripetal acceleration and r the radial
coordinate given by r? = 22 + y2. Pressure gradient is assumed to be negligible because of the
flow is driven by the stretching sheet. Using Eq. (2.1) and (3.1) into the Eq. (3.2), and the

governing equations for the momentum for the boundary layer flow become

Bu Pu v
‘U.-a—z + wg - 200 = V-a—z2' - -I?‘U., (33)
v v v v
‘U.ga-: + ‘an + 2uf) = Vb? - F{-'U. (3.4)

The boundary conditions representing flow are

u(z,0) = ez + cz?, v(z,0)=0, w(z,0)=0, . (3.5)

u—0, v—0, as z—o00, °

(3.6)

where a and ¢ are constants related to the stretching of the sheet. Introducing the following

simjlarity transformation and parameters

7= \/gz, u = azF'(n) + cz®G'(n), (3.7
v = azH(n) + cz*M(n), (3.8)
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2cx
w = —/avF(n) — —\/—;G(n)’

k=Y 2
a

K YT
After introducing the Egs. (3.7 - 3.10), the Eqgs. (3.3, 3.4) take the following form

F" y FF" — F'2 _ kF' +wH =0,

G" + FG" —3F'G' +2F"G — kG’ + wM =0,
H"+ FH' - HF' —wF' - kH =0,
M" —2F'M 4+ 2GH' - HG' + FM' —wG' — kM =0,
subject to the boundary conditions (2.24), (2.25) and

* H(0) =0, H(co) =0,

M(0) =0, M(o0) =0,

(3.9)

(3.10)

(3.11)

(3.12)
(3.13)

(3.14)

(3.15)

(3.16)

where k& is the permeability parameter, w is the dimensionless angular velocity parameter and

primes denotes differentiation with respect to dimensionless variable 1.

3.3 Numerical Solution

To solve the system of coupled ordinary differential Egs. (3.11 - 3.14) subject to the boundary

conditions (2.24, 2.25, 3.15, 3.16) numerically for several values of the parameters, k porosity

parameter and w, rotation parameter using the Keller Box as deseribed in the book by Cebeci

and Bradshaw [22] and by shooting method [21], the solution is obtained in generally four

following steps by Keller-Box method as

1. Reduce Egs. (3.11 - 3.14) to a system of first order differential equation.

2. Conyert the differential system to the difference system using central differences formulae.
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3. As the given system of Egs. (3.11 - 3.14) is non-linear, so linearize the difference equations

by using Newton’s method and write them in matrix-vector form

4. Solve the obtained linear system by the block-tridiagonal-elimination scheme.

The step size of 7, A7, and the edge of the boundary layer 7, are adjusted with different
values of the parameters involved. To conserve space, the detalls of the solution technique is

presented only in chapter 2.

3.4 Graphical results . —
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Fig.3.1 : Variation of velocity profile F'(n) for different values of k when w is fixed at 0.8.
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Fig.3.3 : Variation of veloéity profile H(n) for different values of k when w is fixed at 0.8.
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Fig.3.5 : Variation of velocity profile H(n) for different values of w when k is fixed at 0.8.
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Fig.3.7 : Variation of velocity profiles F'(n) for different values of w when k is fixed at 0.8.
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Fig.3.9 : Variation of the skin friction coefficient F”(0) with k for various values of w.
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Fig.3.11 : Variation of the skin friction coeflicient H’(0) with k for various values of w.
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Fig.3.12 : Variation of the skin friction coefficient M’(0) with k for various values of w.

3.5 Discussion

The effects of rotation parameter (w) and Darcy permeability (k) on the dimensionless stream
function F/, G', H and M against similarity variable 5 are shown through Figs. 3.1 —-3.8. It is
observed through Fig. 3.1 that when the whole system in which the fluid is placed is rotating
with angular veloc:ity parameter w = 0.8, by increasing the porosity of the medium on the
plate, the velocity of the fluid decrease and causes to reduce the boundary layer thickness as
well. It is the universal observation of the porous medium whether the system is rotating or
kept fixed. Similar effect are observed through Fig. 3.2 for the velocity field G’ qualitatively
as expected. But it is interesting here to see that the the profile of G’ reaches to minimum
at zero very shortly after the wall of the plate at n = 0 as compare to that of Fig. 3.1. The
effects of the porosity parameter k on the dimensionless stream function H and M which are
due to rotation, are shown in Figs. 3.3. and 3.4 respectively. It is noted that the magnitude
of the veldcity increz;se by decreasing the porosity parameter. Furthermore, boundary layer
thickness is quite high and increases with the decrease in porosity parameter as shown in Fig.

3.3. Fig. 3.4 depicts the effects of the porosity parameter on M and it is observed that there
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is an oscillation in this proﬁlé. It oscillate just after the wall and attain its peak maximum by
decreasing the parameter and then diffuse to minimum onward. This effect is only due to the
rotation of the system. If the system is kept fixed with no rotation, then the profile become
coincident with n—axis. It is observed through Fig. 3.5 and 3.6 that by increasing the rotation
of the systemn the magnitude of the profile H and M increases, but in the negative phase.
Oscillation is there in Fig. 3.6, because dimensionless stream function M is proportional to the
norﬂinea.r (quadratic) stretch of the sheet. However the velocity profiles F¥ and G’ is decaying

exponentially with the increase in the rotation parameter as shown in fig. 3.7 and 3.8. These

- profiles decreases oscillatory for larger values of the rotation parameter w. Similar behavior

is reported by Wang [4] and R. Nazar et al [10]. Since the values of the skin friction along
z, y—directions are proportional to the linear combination of F*/(0) G” (0), H'(0) and M’'(0)
respectively. It is noted from Fig. 3.9 that, by increasing the porosity of the porous medium
skin friction coefficient is decreasing rapidly. However the effects on G”(0) is observed minimum
for all values of the rotation parameter as the log plot is show;l along vertical in this Figure
3.10. On the other hand curves for all values of the rotation parameter w remain almost parallel
for 0 < k < 1 as shown in Fig. 3.9. Significant contribution of skin coefficient along y—axis
is observed through Fig. 3.11 and 3.12 for all values of w. Furthermore, it is observed that

the solution obtained by implicit finite difference scheme and shooting scheme (dotted curves)

agree excellehtly as shown through Fig. 3.1 — 3.8.
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