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PREFACE

Artificial Neural Networks (ANN), are essential for modeling and forecasting complex
fluid processes in fluid dynamics. ANNs allow for the rapid analysis of large datasets
from simulations or experiments, revealing details regarding turbulence, flow patterns,
and heat transport. This approach is beneficial for aerospace and environmental
engineering. Non-Newtonian fluids have substantial importance in engineering and
manufacturing industries because of the varying nature of viscosity, which changes
with applied forces. Non-Newtonian fluids are used in the manufacturing of many
things, including magneto rheological dampers and brakes, body armors, protective
equipment, pipelines, printer inks, and safety gears, and have many other applications.
The Casson viscoelastic fluid model is a non-Newtonian fluid model that deals with the
fluid flow with yield stress. Non-Newtonian fluids are classified according to how they
react to changes in shear stress or shear rate. Viscoplastic fluids are a type of non-
Newtonian fluid that behaves like a solid under a certain amount of stress but flows like
a liquid when the stress is exceeded. Heat transfer in the boundary layer flow of a semi-
infinite vertical plate with a slip boundary was applied to examine the rheological
behavior of the Casson fluid [1]. They reported that increasing the value of the slip
parameter reduced the velocity and temperature. Prasad et.al. [2] addressed the non-
similar solution of the MHD momentum boundary layer flow of a non-Newtonian
nanofluid over a circular cylinder with a non-Darcy medium. The governing equations
were solved using the Keller Box Method (KBM). Ghaffar et.al. [3] Examined heat
transfer of flow over cylinder using a tangent hyperbolic non-Newtonian fluid. A
numerical analysis of convective transport in a vertical channel using a Casson ternary
hybrid nanofluid was discussed by Yasir et al. [4]. The non-Newtonian fluid behavior

in boundary layer flow and heat transfer were examined [5-8]. Mishra and Chaudhuri
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[9] investigated the use of an artificial neural network and genetic algorithm. Using
ANNs modeling and an experimental study, Yadav et al. [10] examined the insight flow
properties of concentrated MWCNT in a water-base fluid. In order to address the
properties of Hall current on MHD flow with Jeffery fluid towards a nonlinear stretchy
sheet with thickness fluctuation, Awais et al. [11] looked at the artificial neural
network-based solution methodology. Tian et al. [12] used hybrid machine learning
techniques in conjunction with computational fluid dynamics to study the prediction of
permeability in porous media. In their study, Tizakast et al. [13] investigated machine
learning-based methods for modeling the movement of natural convection fluids and
the movement of mass and heat in rectangular cavities containing non-Newtonian
fluids. Machine-learning techniques for fluid flows at the nanoscale were studied [14-
17]. Researchers employ physics-informed neural networks and machine learning
techniques in boundary layer flow and heat transfer. This approach will provide the
classical NN with additional physics-related information. These methods are sometimes
referred to as Physics Informed Neural Networks (PINN) when used to simulate
engineering and physical systems that are described by differential equations. Cuomo
et. al. [18] addressed the predicted solution of initial value problem with an
approximation of PINN. With the advancement of technologies and use of machine
learning approach PINN was used by Hubert Baty et al. [19] to study differential
equations. In order to solve the Reynolds boundary value problem, Almqgvist et al. [20]
studied the fundamentals of physics-informed neural networks. Neural networks with
knowledge of variational physics were studied [21-22]. Scholars have studied the PINN
technique in boundary layer and heat transport [23-24]. The nonlinear fluid flow
problem were simulate using PINN [25-26]. Nguyen and colleagues evaluated physics-

informed neural networks for non-Newtonian fluid thermo-mechanical issues [27].



Data-driven solutions of nonlinear partial differential equations utilizing PINN was
studied. [28-29]. Boundary layer thermal fluid problem utilizing PINN’s was presented

by Hassan Bararnia et.al. [30].

The first chapter provides the foundation for understanding the major concepts and
theoretical frameworks that are the pillars of the ensuing research. Basic terminology
and key concepts related to the study of hybrid nanofluids, Casson fluids, and the use
of machine learning techniques like Artificial Neural Networks (ANN) and Physics-
Informed Neural Networks (PINN) are introduced in this chapter. In the second chapter,
the MHD Casson hybrid nanofluid flow simulation across a horizontal cylinder
immersed in a porous medium with slip influence is covered. This chapter introduces
an Artificial Neural Network (ANN) method, where the model formulation, boundary
conditions, and important parameters are discussed. The third chapter is dedicated to
the use of Physics-Informed Neural Network (PINN), programmed with Python and
TensorFlow, to simulate boundary layer flow and Casson fluid temperature over a
horizontal cylinder with magnetic effects and porous media. The chapter is critical of
the current methods and explains how PINN can be employed to address nonlinear
boundary value problems in complex fluid dynamics cases. It showcases the versatility
and ability of Python and TensorFlow for effectively training and solving PINN models,
providing a solid solution to simulate fluid flow and temperature profiles under
different physical conditions. The chapter also states the contribution of the current
research, with focus on the benefits of applying PINN in simulating these intricate flow

phenomena.
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Chapter 1

In this chapter, the basic definitions of key terms and concepts are addressed. Through
this section, the readers' curiosity and interest and prepare them for a deeper dive into

the subject matter in the sections that follow.

1.1 Basic Definitions

1.1.1 Fluid
Fluid is a substance that continuously deforms when subjected to a shear stress, no

matter how small is that stress may be.

1.1.2 Properties of Fluids
Pressure: The symbol P stands for pressure, which is the amount of force per unit area

applied in the direction normal to that area. Mathematically P = F /A

Temperature: The average kinetic energy of the particles in a substance is measured

by a physical quantity called temperature.

Density: The mass per unit volume is the fluid's density, represented by the symbol p.

If a mass m is contained in a volume V, then p = m/V.

Compressibility: The degree of variation in a fluid's volume under the influence of
external forces is known as its compressibility. Fluids are referred to as compressible if
their volume changes in response to changes in temperature or pressure; otherwise, they
are referred to as incompressible fluids.

Viscosity: Viscosity of the fluid is the measure of resistance to its deformation.

Mathematically T = uZ—;, where u is viscosity of the fluid.

1



1.1.3 Types of Fluids
Compressible and Incompressible fluid: A fluid is considered compressible if its
density or volume varies in response to changes in pressure or temperature. If not, the

fluid is referred to as incompressible.

In-viscid Fluid: An idealized fluid with zero viscosity is called an inviscid fluid

because it offers no internal resistance to deformation.
Ideal Fluid: Fluid which is incompressible and in viscid is known as ideal fluid.

Real fluid: Real fluid also known as viscous fluid is a type of fluid having finite

viscosity. The flow of viscous fluid is called viscous flow.

Newtonian Fluid: Newtonian fluid is a type of fluid that obeys Newton’s law of

viscosity(r =uU Z—;) . In this case shear stress is linearly related to the velocity gradient.

Non-Newtonian Fluid: Non-Newtonian fluid is a type of fluid that does not obeys
n
Newton’s law of viscosity. T = K (Z—;‘) , Where K is the consistency index and n is flow

behavior index.

1.1.4 Classification of Fluid Flow:
Compressible and Incompressible Flow: A compressible fluid flow is referred to as
compressible flow, whereas an incompressible fluid flow is referred to as

incompressible flow.

Ideal and Real Flow: Real or viscous flow explains the motion of fluids that exhibit
viscosity and are compressible, while ideal flow depicts the motion of an ideal (in-

viscid and incompressible) fluid with no viscosity or thermal conductivity.



Uniform and Non-uniform Flow: If the velocity vector and other fluid
characteristics stay the same throughout the flow field, the flow is considered

uniform; if not, it is referred to as non-uniform flow.

Steady and Un-steady Flow: When the velocity vector and other fluid characteristics
at each place in the fluid do not alter over time, the flow is considered steady. Flow is
said to be un-steady when the fluid properties from point to point changes with time.

Eqgn. (1.1) represent steady flow and Eqgn. (1.2) represent unsteady flow.

v aP ap
= ="—=..=0 11
at oJdt 0t ()
v ap , dp

S F o F o E o #O (1.2)
v ap , dp

e e R (1.2)

Laminar Flow: A type of fluid motion known as laminar flow occurs when fluid
particles travel parallel, straight, and smooth routes without coming into contact with
one another. This flow produces stratified and ordered motion since the trajectories of

the many particles do not overlap.

Turbulent Flow: Turbulent flow is defined as a flow in which fluid particles move
erratically in all directions. The trajectories drawn by any two distinct fluid particles

intersect in this kind of flow.

1.1.5 Differential Equation of Motion

Total Derivative: The total derivative % is the rate of change of fluid property

following a fluid particles. % =%+ V.V , where % is the operator which act on

0

oz

velocity, gives the acceleration in Eulerian Systemand V.V = uaa_x + v% +w



Continuity Equation: This equation state that rate of change of mass contained in the

volume plus the net rate of mass flow out of the volume must be zero.

MathematicallyV.V = — %% . In case of incompressible flow,% = 0 so the continuity

equation become V7.V = 0.

Momentum Equation: Euler's equation is the momentum equation that results when
the fluid is inviscid. The Navier-Stokes equation is the momentum equation that results

when the fluid is viscous.

Euler’s equation: According to this equation, the inertial forces exerted on fluid
particles at any given position in an inviscid fluid's flow are equal to the total of the
forces caused by gravity and pressure differences. The following is the differential form

of the linear momentum equation for an in-viscid fluid in vector form:

DV
— — 1.3
p Dt Vp + pg (1.3)

Navier-Stokes Equation: The Navier Stokes equation describes the motion of viscous

fluid. The general form of Navier Stokes equation is given as:

Dv
por="Vp+pg+ uv2v.
% Energy Equation: The first law of thermodynamics generally known as the law

of conservation of energy, mathematically form is

*

0

1.1.6 Boundary Layer Theory
The boundary layer is defined as the thin layer of the flow on the boundary within which
the velocities changing from zero at the solid boundary to the free stream velocity in

the direction normal to the boundary. In the boundary layer the velocity gradient is large

(1.4)



and the shear exerted by the fluid is given as 7 = MZ—;- Outside the boundary, velocity

is constant and velocity gradient is zero and hence shear stress is zero. Imagine a fluid
flowing laminarly in two dimensions across a fixed semi-infinite flat plate with a high
Reynolds number and low viscosity. In contrast to ideal fluid flow, which would cause
the fluid to slide across the surface, a real fluid clings to the plate and exhibits the no-
slip condition. The fluid velocity at the surface is likewise O because the plate is
motionless. In the direction corresponding to the surface, the fluid velocity
progressively rises as one advances away from the plate. When the velocity is far
enough away from the plate, it asymptotically gets closer to the free-stream velocity U.
Known as the boundary layer, this narrow area close to the plate is where the velocity

shifts from zero to U.

1.1.7 Importance of Boundary Layer Theory in Fluid Dynamics

The boundary layer flow is significant in fluid dynamics because it controls the
interaction between a solid surface and the surrounding fluid, influencing drag, heat
transfer, and mass transport significantly. It helps in the understanding of skin friction
drag, which directly influences the efficiency of vehicles and aircraft. The phenomena
is also crucial in heat transfer analysis, especially thermal boundary layers, which effect
cooling and heating operations in engineering systems. Also, separation of
the boundary layer, where flow separates from the surface, creates greater pressure
drag and flow instability and negatively affects turbine, aircraft wing,

and submarine performances. Some basic definition are:

Boundary Layer Thickness: The distance between a solid boundary, like a surface,
and the point in a fluid flow when the fluid velocity approaches ninety percent of the

free stream velocity is referred to as the boundary layer thickness. It denotes the area of



the fluid in which the viscosity impacts are most prominent resulting in a gradient in
velocity from the boundary (fluid sticks to the wall) to the boundary layer's outer edge.
Grasp and evaluating fluid dynamics near surfaces—which affect heat transfer, drag,

and overall flow characteristics—needs a grasp of the term of boundary layer thickness.

Displacement Thickness: Displacement thickness, denoted as § is a measure of the
reduction in flow rate due to the presence of the boundary layer. It represents the
distance by which the external inviscid flow is displaced outward due to the slowing

down of the fluid near the boundary.

§= [ (WUe—w)dy (L.6)
Momentum Thickness: The loss of momentum in the boundary layer compared to the

free-stream flow.

0= J, U —wdy (1.7
1.1.8 Important Dimensionless Parameters
Reynold number: The Reynold number (Re) is a dimensionless quantity that helps
predict fluid flow patterns in different in different situation by measuring the ratio
between inertial and viscous forces. At low Reynold numbers, flow tends to be

dominated by laminar, while at high Reynolds number, flow tends to be turbulent.

_pva* _v'a
===

R, (1.8)

Prandtl Number: The Prandtl number (Pr) is a dimensionless number that represents
the ratio of momentum diffusivity to thermal diffusivity in fluid. Mathematically

Prandtl number expressed as:

o M e
P. = — = k/pcp =—" (1.9)




Nusselt Number: The ratio of convective to conductive heat transport in a fluid is
represented by the dimensionless Nusselt number (Nu). The definition of the Nusselt

number in mathematics is:

(1.10)

Grashof number: The Grashof number (Gr) is a dimensionless number that which
approximates the ratio of the buoyancy to viscous forces acting on a fluid.

Mathematically expressed as;

Gr = JLBAT (L.11)

2

Casson fluid model: The Casson fluid model is a non-Newtonian fluid
model used to describe the properties of fluids that contain yield stress. Unlike
Newtonian fluids, where there is a linear relationship between shear stress and shear
rate, Casson fluids must have a certain minimum shear stress (yield stress, t,)
before it begins to flow. Once this threshold is reached, the fluid behaves in a shear-
thinning manner, i.e., its viscosity decreases with an increasing shear stress. Casson
fluid are used in blood flow modeling, food processing, polymer solution etc. The

Mathematical model of Casson fluid are described as:

1 1 1

T2 = T; + nyz (112)
T the shear stress, t,, is the yield stress (minimum stress required for fluid flow),n is
the plastic viscosity and y is the shear rate.

1.2 Artificial Neural Network

ANN form the basic building block of contemporary artificial intelligence and machine

learning. Based on the architecture of biological neural networks in the human brain,



ANNSs are made up of interlinked nodes (neurons) laid out in layers that handle data by
mimicking the functioning of biological neurons passing signals. While abridged
compared to the human brain, ANNSs can learn from data, identify patterns, and predict
outcomes. The theoretical basis for ANNs was originally presented in 1943, being an

important step towards the creation of intelligent computational models.

1.2.1 Architecture of ANN

Neural activity in the human brain can be simulated to create artificially intelligent
systems. The information processing architecture of this network is its primary
characteristic. ANNSs function through information processing, a method similar to that
of the human brain. Several networked neurons, or processing units, make up this
system, which works together to do specific tasks at the same time. Neural computing
is a paradigm for mathematics that draws inspiration from biological principles. The

neural architecture of the human brain is replicated by this computer model.

Fig. 1. 1: Structure of ANN.
It is made up of layers of interconnected nodes, or neurons. Based on the data these

nodes process, the network adjusts their weights (connection strengths) throughout



training. Consequently, the network can execute a range of machine learning and
artificial intelligence tasks, including pattern identification and outcome prediction.
Following the connection of the hidden layers, the "output layer," where the result is

output, is displayed in Fig. 1.1.

Neurons (Nodes): Simple processing units called neurons (also known as nodes) take
in input data, apply weight, add bias, and then run the outcome via an activation

function.

Input Layer: Raw input data is sent to the next layers by the first layer. It does not do

any calculations; it merely distributes the inputs.

Hidden Layers: The intermediate levels that lie between the input and output layers
are known as hidden layers. They perform intricate calculations to generate more
abstract representations of the input data using the weights, biases, and activation
functions. The complexity of the issue will determine how many hidden layers and

neurons are used.

Output Layer: The output layer is the final layer that produces the network's output.

Weights: Weights are the parameters for adjusting the input signals, the weight given

to each neuronal connection determines the importance of the input.

Bias: This parameter is applied prior to the activation function being applied to the
weighted sum of the inputs, allowing the activation function to be shifted to the left or

right, increasing the model's adaptability.

Activation Function: An activation function, also known as a transfer function, applies
a transformation to the input of a neuron to determine its output. Usually, this

transformation squashes the output to a range like 0 to 1 or —1 to 1. Common varieties



include Gaussian, piecewise linear, unit step, sigmoid (unipolar and bipolar), and

hyperbolic tangent functions.

1.2.2 Types of Artificial Neural Network:

An ANN's architecture greatly influences its capacity to recognize intricate patterns,
generalize to previously unobserved data, and achieve high predicted accuracy. There
are several types of ANNSs, such as feedforward neural networks, recurrent neural
networks, convolutional neural networks, and more, each of which is appropriate for a
particular set of data and tasks.

Feed-Forward Neural Network: The feedforward neural network (FNN) is a basic
kind of artificial neural network (ANN) in which the connections between the neurons
do not cycle. Information flows from the input layer to the output layer, via any hidden
layers, and then to the output layer. Network connections to the same or earlier tiers are
prohibited in an FFN, where data flows strictly feed-forward from the input node to the
output node. The feedforward neural network (FNN) block diagram is shown in Fig.

1.2.

Fig. 1. 2: Block diagram of the (FNN)

Where X = (xq, x3,.....,x,) denotes the input vector, O = (04,05 ....., 0,,) denotes

the output vector, and 1 is the activation function. The symbol W = w;; , represents

10



the weight matrix or connection matrix, and the scalar product of the input vectors and
the weight vectors, w;; _is the net input value, or WX.

Feedback Neural Networks: Feedback neural networks, sometimes referred to as
recurrent neural networks (RNNs), are artificial neural networks (ANNSs) where
feedback loops are made possible by the cycles created by connections between
neurons. By using loops, signals in this network can move in both directions. Although
this network is very strong, it can occasionally become very confusing. Neuronal
connections of any kind are allowed. By maintaining internal state memory, recurrent
neural networks (RNNs) are able to exhibit dynamic temporal behavior in contrast to
feedforward neural networks, which only transport information from input to output.
This neural network starts with the same front propagation as a feed-forward network
and saves all of the data it has processed for subsequent use. Backpropagation lets the
system self-learn and keep trying until it gets the right forecast if the network’s initial
prediction turns out to be incorrect. Feedback neural networks are used to find the
optimal configuration of interdependent variables in optimization problems. Because

they are dynamic, their states change continuously until they reach equilibrium

Backpropagation Neural Network (BPNN): A Backpropagation Neural Network
(BPNN) is an artificial neural network that uses the backpropagation technique for
training. It is composed of an input layer, an output layer, and one or more hidden
layers. The forward pass calculates the network’s output, while the backward pass
modifies the weights and propagates the error gradient back through the network to
minimize the loss function. BPNNs are widely used for applications such as pattern
recognition, regression, and classification because of their ability to identify complex

patterns in data.
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1.3 Physics Informed Neural Network

Physics-Informed Neural Networks (PINN) are a type of scientific machine learning
models that explicitly integrate physical laws, typically represented as partial
differential equations (PDESs) or ordinary differential equations (ODES) into artificial
neural network training. This method has gained a lot of traction in many branches of
computational science and engineering, particularly in fields where labeled data or high
processing costs limit the use of classic numerical methods. While traditional neural
networks mainly rely on supervised learning with large datasets, the governing
equations of many physical systems, particularly fluid mechanics, heat transfer, and
boundary layer theory, are often well understood, and PINN take advantage of this prior
knowledge by embedding the physics into the neural network's loss function, which
enables the network to learn solutions that naturally satisfy the underlying physical

laws, even in the absence of extensive training data.

PINN are especially helpful in tackling inverse problems (inferring unknown
parameters or inputs from observed outputs), forward problems (predicting the state of
a system given initial/boundary conditions and parameters), and data assimilation tasks

within a single, cohesive framework.

1.3.1 General work flow of PINN:

The implementation of a PINN for solving a physical problem involves several key

components. The general workflow is outlined below:
Problem Formulation:

i. Determine the governing equations: These may be ODEs or

PDEs formulated from conservation laws, constitutive relations, or empirical
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models. For example, in boundary layer theory, it is common to work with
nonlinear ODEs that govern the momentum and energy transport.

Specify the solution domain: This is the spatial and/or time domain over which
the solution should be approximated.

Identify boundary and initial conditions: These
are essential for a properly posed problem and are imposed within the PINN

framework.

Neural Network Design: A fully connected feed-forward neural network (FNN) is

constructed:

Input layer: The input layer receives the data or coordinates in the form of
spatial location x,n or time t.

Hidden layer: The hidden layers consist of neurons with nonlinear activation
function such as tanh, sigmoid, ReLU, which enable the network to approximate
complex, non-linear mappings.

Output layer: The output layer provides the predicted values of the solution

variables, such as velocity f(n,), temperature 6(n;), or concentration.

Collocation and Boundary Points: To train the model, a set of collocation points

within the domain is selected. These are the points where the governing equations are

enforced. Additionally, boundary points are sampled to enforce the prescribed

conditions. Unlike traditional numerical methods, PINNs do not require grid-based

discretization and are thus mesh-free.

Loss Function Formulation: The total loss function contains several components:
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I.  Physics loss: Quantifies the residual of the governing equations at the
collocation points. This is computed using automatic differentiation, which
allows for exact gradients of the network output with respect to inputs.

ii.  Boundary condition loss: Measures the discrepancy between the network
prediction and the known boundary or initial values.

iii.  Data loss (if applicable): Incorporates any available empirical data to further

guide the learning process.

The total loss function will be:

Lrotar = Lpnysics + Lec + Lpata (1.13)
Optimization and Training: The network weights and biases are adjusted by
minimizing the entire loss function through gradient-based optimization methods like
Adam for initial convergence and L-BFGS for precise, high-accuracy training. The
training is iterative and goes on until the loss function converges to a low value, which

means that the physical constraints and boundary conditions are being met.

Prediction and Post-Processing: After training, the PINN can be employed to predict
at any location within the domain. The solution is continuous and differentiable, which
is beneficial for subsequent analysis, for instance, calculating derived quantities. PINNs
also allow for parameter inference and model validation when inverse problems are

formulated.
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Chapter 2

Artificial Neural Network Simulation of Convective Heat

transfer of hybrid nanofluid flow around a Circular Cylinder

2.1 Introduction

The current chapter investigates the magnetohydrodynamic (MHD) boundary layer
flow of Casson hybrid nanofluids (CHNFs) over a porous cylinder with thermal
radiation and velocity slip using an Artificial Neural Network approach. Al,05 and
CuO hybrid nanoparticles floating in a Casson base fluid form the basis of the Tiwari-
Das nanofluid model, which is used to develop the flow equations. Reference [31] is
consulted for the appropriate physical correlations for viscosity, electrical conductivity,
thermal conductivity, and specific heat capacity. Suitable non-similar transformations
are used to convert dimensional equations into a dimensionless form. A set of ordinary
differential equations is obtained by applying the Local Non-Similarity (LNS)
technique up to the third truncation level in order to simplify the system. To obtain the
reference solution, the system of Eqns. are then solved by MATLAB's built-in solver,
bvp4c. Supervised machine learning methods based on Artificial Neural Network
(ANN) simulations are used to calculate an approximate solution. A comparison of the
reference solution and the ANN's anticipated solution reveals that they are well suited.
The effect of dimensionless parameter M(magnetic parameter), Da(Darcy number),
B(Csson parameter) Sg(velocity slip parameter) and Sr(thermal jump parameter) on

momentum boundary layer flow are examined.
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2.2 Problem Formulation

2.2.1 Geometry of the Problem

The flow geometry of the problem under consideration is shown in Fig. 2.1. In the
cylinder, the x coordinate is displayed in its tangential direction, whereas the y
coordinate is normal to the surface. A horizontal cylinder's radius is represented by the

letter a, which is parallel to the y-axis. The angle of y —axis with regard to the vertical

(0< ¢ <m)isgivenby ¢ ==

.
2.2.2  Flow Physics

Consider the steady, two dimensional MHD flow of an incompressible, electrically
conducting Casson hybrid nanofluid over a horizontal permeable circular cylinder with
saturated porous medium and thermal radiation. The magnetic field is uniform having
magnitude B, and is applied in radial direction. The gravitational force g is acting in
downward direction. It is assume that Boussinesq approximation holds. Let T,, is
constant temperature and T, is ambient temperature of the fluid. The governing

boundary layer equation are follow as [2]
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Fig. 2.1: Physical model and coordinate system
ou 0w _o (2.1)
ax dy
du du 1\ 0%u  OpnysBS Vhnf 2 (PBORns (22)
U—+v—-—=v (1+—)—— u-— u—cu‘+g—— (T —
dx dy hnf B/ 0y? Phf K g Phnf (
. (x
T,) sin (Z)’
oT oT 9°T 1 0qy (2.3)
U—+V—=xur— — =, .
ox oy hnf 5y2 (pcp)hnf oy

Whereas thermal radiation is denoted by

94x

ay

_ 160*T3, (BZT)
- 3k* ay2)’

In Eqns. (2.2) and (2.3), u and v represent the velocity components in the x and y

directions, respectively, £ is the non-Newtonian Casson parameter and v is the

conducting fluid's kinematic viscosity. a Stands for thermal diffusivity, T for

temperature, and K and c for the porous medium's permeability and inertia coefficient,

respectively. T.- the free stream temperature, and S is the coefficient of thermal

expansion.
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The slip boundary condition are as follow [31].

My=&u=%(H%E§v=QT=m+%%; (2.4)

Asy - oo,u— 0,T - T,.
Where N, the velocity is slip factor and K|, is the thermal slip factor. For N,=0=K,, one

can recover the no slip case.

2.2.3 Transformation

Similarity transformation is a powerful mathematical techniques employed to reduce
the complexity of partial differential equations (PDEs), typically arising in fluid
mechanics problems. The reduction is achieved by introducing dimensionless variables.

In current study the dimensionless variables is used from [2] as follow:

_Xx _Ys __ ¥ _y 9y (2.5)
£==, n—a\/ﬁf(f,n) vff‘i/ﬁ’u 3" . 0(5,1)
_T-T,
T, =T

_ gﬁf(TW_Too)a3
=
vy

Gr

In view of dimensionless variables Eqns. (2.5), Egns. (2.2)-(2.4) reduce to the following

coupled, nonlinear, dimensionless partial differential equations:

v of Phnf

()0 (2) 2

(2.6)
Vanf\ 1\ o, sing |[ (Brns _ 19f L df
(o)) (g2 )o] < 20
a (pep) ! (2.7)
1| (#nns Pr |4 " - 109 001
prl( as >+<(pcp)hnf)3Rle +f0 _E(f o0& o0& )

Dimensionless boundary conditions are as follow
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atn=0,f" =S (1+ %) £7(0),f = 0,0 =1+ S;0'(0), (2.8)

Asn— oo, f'=>0,6 > 0.

The physical parameter that arises in Eqns. (2.6)-(2.8) are given below

ofpiad v KNGr 40*TE
= UBe? pr — Y pg =5 A= cqRd =221,
PfVFVGr ar a k*kg
4 4
Ko VGr Ny VGr
Sp == , Sp = -

a a

In above equations, the prime denote the differentiation with respect ton, nis the
dimensionless radial coordinates, and ¢ is the dimensionless tangential coordinate, A is
the local inertia coefficient (Forchheimer parameter), Da is the Darcy parameter, M is
the magnetic parameter and Gr is the Grashof (free convection) parameter. Pr is the
Prandtl number, Rd is the radiation parameter, Sy and S are the dimensional velocity

and thermal slip parameter respectively.

2.2.4 Physical Quantities

Physical quantities i.e. Skin friction and Nusselt number are presented below

SCVGT = (1+3)F7(5,0), (2:9)
Nu¥Gr = —6'(§,0). (2.10)

2.2.5 Thermo physical properties of hybrid nanofluid

Thermo physical properties of hybrid nanofluid are follow as [32];
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Hinf = [a—pna-p P

Phny = (1- <p2){(1 - (Pl)Pf + <P1P1} + @2p2,
(pcp)hnf =(1—-¢,) {(1 - %)(pcp)f} + <p2(pcp)2,

B hns = 1 — @ ){(1 — ) (B s + 91(pP)1} + 2(pB) 2,

(7)o (1)
g a. 0. e}
k=1 =14 ,
nf 72 ) &_1> f <£+2>_<ﬂ_1>
<"nf ) ("nf vz of or)¥?
Thnf _ 2anf—(anf—az)z+az anf _ 20— (anf—a1)p1+a;
Anf (anf—az)pz+2ans+ay ’ as (af—ar)pi+2ar+ay

2.3 Solution of Problem

The system of non-linear PDEs are solve using the Local Non-Similarity solution
method. The local non-similarity solution was developed by Sparrow and coworker and
has been since applied by many researches to solve various non-similar boundary layer
problem. To employ the local non similarity techniques to the problem under

consideration, we follow [33] and [34] as:

2.3.1 First Truncation Level

The term on right hand side of Eqns. (2.6)-(2.7) are neglected under the first level
truncation i.e. £ << 1. Consequently the terms involving faa%) are small. The system

of Egns. (2.6)-(2.7) subject to this truncation get the following forms:

(”Z:f) (1+ %) F" 4+ ff" = (L +EAF2 — <(ag_:f) (;Tflf) v 2.11)
(ﬂ)@f +T"§K%) 9] =0,
pir l (aZ:f> + ((l(,:;z;)gl?dl 0" +f6' =0, (2.12)
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atn=0,f" =S (1+ )f"(O) f£=00=1+S0'(0),

(2.13)
Asn— oo, f'=>0,6 > 0.

2.3.2 Second Level Truncation

To derive equation of higher order truncation, the following functions are defined as:

9 -9 5 _9 099 (2.14)

Secondary equation for g and ¢ and their boundary condition are obtained by taking

derivative of Eqns. (2.6)-(2.7) and boundary condition Eqn. (2.8) with respect to ¢.

wing\ (1 4 1) o _ ((omr) (s (2.15)
( » )(1+B)f +ff" = (1+ A" (( . )(phnf)M+
Vhnf) 1 , ﬂ (PP hns _ o e
<vf>pa>f+ f 1<—(p6p)hnf>el-«fg
P/pnf
(Wmf)( ) m + fgll + ang f (1 + EA)gIZ _Afl _ (217)
Ohnf vpr\ 1 (PP hns sin§ ¢ cos(§)—sin(§) _
() G2 m ()3 ) + (—W,mf) (556) (==G19)o] -
§(9'g" = 9"9).
a (pep) s (2.18)
1 hnf "
p[( . )+((pcp)hnf> Rd]qb FfY —f'd+200g = E(g'd—¢'9),
Boundary conditions for second level of truncation are describe as;
atn =0, f'=S;(1+ %)f”(O), f=0 6=1+5.0(0),g"=S(1+
(2.19)

29 "(0),
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9=0¢=5r¢'(0),

Asn—oo,f'-50,6-0g —-0,¢-0.
2.3.3 Third Level Truncation
The conservation equations for f and 8 function and their corresponding equations for
g and ¢ are preserved without approximation at the third level of truncation. The
process of determining the first derivative of the equations (2.15) - (2.16) generates
additional subsidiary equations for h and y as well as boundary conditions. £ << 1 is

approximated to arrive at the system of equations for the third degree of truncation. So
. . oh on' ox . .
the terms involvingé % fa—f and Ea—f are small. The system of Egns. Subject to this

truncation get the following form:

(_ff) (L+3) F 417 =+ emf - ((—ff) (p”—ff) M+ (220)
() ) 722222 o = 60 - 17
= l (er) + (ép))ff) §Rdl 6" +f6' = £(f'0 — 6'g), (2.21)
(”i‘,—;‘f) (1 + %) g"+fg"+2f"g—f'g' — (A +ENg"? - Af' - (2.22)
() G+ ()5 +
()2t g) (0 ] (g1 g5 41 70,

(2.23)

S [ (222) + ( o >§Rdl P [P —f'p+20g=S(g'p—d'g+

pr afg (pcp)hnf

f'x—0'h),
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(”Z—;’f) (142 R+ fh" +3f"h+4g"g = 2f W' = 29'g' = (1 + (2.24)
2 _ 2 _ [ (Zhnf ) (L Uhnf) 1\ pr
Mk 249 <( of )(Phnf) M+ ( vr )Da> ot
(B nns & cos(&)—sin(§) sing  (§?sin§+2§ cos§—2sin§ _
<<pcp>,mf> (=) e - (g )o
E(3h1gl _ hllg _ Zgllh)’
1| (%hnf (pcp)f 4 "n__ / r_ I r o — (225)
pr[((xf)-l_((pcp)hnf 3Rd)( 20'g+fx' —29'¢ —2f'x+60'h=
§Qg'x—x'g+hé—-2¢'h).
Boundary condition for third level of truncation are given below;
atn=0, f'=S(1+ %)f”(O), f=0 6=1+5.6'(0),g =S:(1+
29" (0),
(2.26)

g=0¢="5¢'(0) h=0k=S(1+)h"(0),x = Srx'(0),
Asn—> oo, f' 50,6 50,9 >0, >0,h" ->0,5y—>0.

Table 2. 1: Comparison of 1%, 2nd and 3™ level truncation

15t Level Truncation | 2" Level Truncation | 3™ Level Truncation

M | n| f 6(n) ' 6(m) ' 6(n)

0.6 | 0 |0.039457 | 1.222876 | 0.037808 | 0.708338 | 0.032126 | 0.705263

06 | 1 | 0.28513 | 0.940597 | 0.201848 | 0.384346 | 0.161920 | 0.382956

0.6 | 2 |0.329241 | 0.689143 | 0.164008 | 0.185686 | 0.124797 | 0.176915

0.6 | 3 | 028705 | 0.46254 |0.093917 | 0.070168 | 0.071069 | 0.073208

0.6 | 4 |0.218836 | 0.296122 | 0.046245 | 0.022563 | 0.034546 | 0.027471

0.6 | 5 |0.146061 | 0.170395 | 0.01907 | 0.005172 | 0.015471 | 0.009913

0.6 | 6 | 0.08415 | 0.086437 | 0.006894 | 0.000570 | 0.006354 | 0.003328
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0.6 | 7 |0.037761 | 0.034777 | 0.002149 | 0.000165 | 0.002118 | 0.000877

06 | 8 0 0 0 0 0 0

2.4 Artificial Neural Network

An estimated solution to the current problem is investigated using an ANN approach, a
machine learning algorithm. The Multilayer Perceptual (MLP) method is a well-known
illustration of an ANN algorithm. It is essential to use the MLP-ANN structure in order
to get a more precise response. Fig. 2 displays the general flowchart utilized in the
design for (MLP-ANN) schemes. Three tiers made up the MLP-ANN system. The input
data is sent to level 1, also known as the input layer. The hidden layer, the second level,
examines the neurons that comprise the calculation. There could be one or more hidden
layers in an MLP system. The output layer, sometimes referred to as the third or output
layer, shows the outcomes of the forecasts. To reduce the difference between the target's
estimation and the actual estimation, the data that is sent upstream from the input layer
is sent back into the input layer via back propagation. For as long as the error rate is
kept to a minimum, this process continues. This process ends when the MLP-ANN
training is finished and the minimum prediction productivity is attained. The dataset is
separated into testing, training, and validation phases in order to use the MLP-ANN
method. Seventy percent of the data is used for training, with the remaining twenty
percent being used for results validation and testing. In this study, we employed ANN
to predict the output in the output layer using tan Sig and Purelin [35] as the activation
function in a hidden layer. To improve the model's accuracy, we employed 36 neurons
and 10 hidden layers in the current investigation. The transport function can be

represented mathematically as follows:
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f)=—= Purelin () = x, (2.27)

The next phase of the MLP-ANN system's development will evaluate the forecasting
model's accuracy. Mean square error (MSE), average relative error (ARE), and
correlation coefficient (R) are the variables to be studied. These variables are expressed

mathematically by the following equations:

1 2
MSE = ;Z?Iﬂ(xtarg(i) - XANN(i)) . (2.28)
2.29
R= [1-— Z?Ll(xtarg(i)_XAN;V(i))z ( )
ZIiV=1(Xtarg(i))
Error rate (%) = [er;’_ﬂ] x 100. (2.30)
targ

I Numerical Data Entry

Training of the ANN
Model

L Evaluation of the ANN
Performance
LI Choosing of ANN Model

LI Prediction

Fig. 2.2: Workflow of ANN

Further the graphical representation of ANN and numerical values such as MSE,
training, validation and gradient are discussed in detail in result and discussion section

of this chapter.
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2.5 Results and Discussion

The work focuses on the flow behavior of a non-Newtonian hybrid nanofluid over a
cylinder with thermal radiation embedded in a porous media. The Tiwari-Das model is
used to design a flow problem over a cylinder for hybrid nanoparticles [32]. Using the
Local Non-Similarity solution approach up to the third level of truncation in Eqns.
(2.20)-(2.25) and the boundary condition Eqn. (2.26), the numerical solution of the
boundary layer flow of the hybrid nanofluid over a cylinder is assessed. The projected
solution is obtained using an ANN-based method known as MLP-ANN. An ANN-
based technique called MLP-ANN is used to obtain the projected solution. The
pertained parameters of interest i.e.M,Da, Sy S and thermal radiations are displayed in

Table 2.2.

Table 2.3 presents the numerical values of gradient, Mu and MSE for scenario 1 for
different case 1-3. Performance of the MLP-ANN is obtained 1.27x 10719, 1.25x 10710,
and 1.46x 10719 against epoch 332, 500, and 416 for scenario 1 of case 1-3. The
numerical values of Mu and gradient for an estimated result of the current problem are
[1.0x 1078, 1.0 1078, 1.0x 1078], and [9.95% 1078, 9.95x 1078 and 9.94x 1078]
for scenario 1 of case 1-3 respectively. In an ANN, an error or cost functions is defined
that quantifies the difference between the actual outputs and predicted outcomes using
an MLP-ANN. The MSE simple measure of error. The training results of the designed
ANN schemes are illustrated in Fig. 2.3(a) for Scenario 1 in case 1-3. It can be observed
that the MSE values, which are high in the initial stages of the training sections,
decreases with higher values of epochs. Based on the function of the MLP model, MSE
values are decrease when the number of iterations is increases, and as a result, the

training session of the ANN scheme vanishes as the maximum accuracy is reached. The
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training set-up of the ANN schemes is depicted in Fig. 2.3(b). Gradient descent allows
the optimization of the network parameters by moving in the opposite direction to the
gradient of the loss function. In Fig. 2.3(b), it is observed that the gradient decreases
with increasing values of epochs. The training phase was finished error-free for each
scheme, and there is no error repetition. Zero is the valuation of the verification test. A
histogram of the error between the desired and expected values during feed forward
neural network training is called an error histogram. These flaws show how the intended
outputs and the predicted outputs diverge. The error histogram of the numerical data of
the suggested problem shows the difference between the expected and actual values
(Fig. 2.3(c)). However, it is obtained that numerical evaluations of error presented on
x-axis of plots are minor. The existing situation of data utilized in testing, training, and
validation of ANN schemes are presented in Fig. 2.3(d). The y-axis shows the results
of the ANN scheme, while the x-axis shows the goal numerical values. The proximity
of data points representing target and predicted values is found to have very little
inaccuracy. An dramatic reduction in average error is indicated by the fitted line near
the zero line. A high correlation exists between an ANN's accuracy and R values that
are almost equal to 1. It should be highlighted that the computed R values for each stage
are almost equal to 1. Fig. 2.3(d) illustrates how the ANN is built to produce predicted
values with extremely low error rates. Fig. 2.3(e) shows a visual evaluation of the
performance of ANN model. When the graphs are researched, it is observed that the
model-predicted output and the actual output are well matched, and the ANN model
vanishes at almost zero error-line. It is also demonstrated that the optimal curve fitness
function asymptotically satisfies the boundary condition. In the presence of a magnetic
force in the system, a resistive force is generated, known as the Lorentz force. The

resistive Lorentz force in a hybrid nanofluid causes the magnetic parameter M to start
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dampening the velocity. According to Fig. 2.3 (f), the non-Newtonian hybrid

nanofluid's boundary layer flow velocity significantly decreased as M increased. Fig.

2.3 () illustrates how the magnetic parameter M affects the temperature profile. A

stronger magnetic field, which resists fluid motion and produces more heat, is the

outcome of a higher M value. Consequently, as M grows, the fluid's temperature rises.

Table 2. 2: Relevant parameters for the suggested model's flow analysis.

Scenario Case Pertained parameter
M Da Sf Sr Rd
1 0.3
1 2 0.6 0.5 0.1 0.5 3.4
3 0.9
1 0.5
2 2 0.6 0.7
3 0.9
1 0.1
3 2 0.2
3 0.3
1 0.5
4 2 0.7
3 0.9
1 3.4
5 2 4.4
3 5.4

Table 2. 3: Relative assessment over backpropagation networks for scenario 1

Sce | Case | Error analysis for different level Performance | Gradient Mu Epoch
nari
0
Training Validation Testing
1 5.6834x 10~° 1.08339% 1077 | 2.8634x 10~° 5.68x 10~° 9.87x 1078 | 1x 1078 | 151
1 2 5.2823x 10~° 5.50863x 10~° | 1.0798x 1077 5.28x 107° 9.82x 107° | 1x 1078 | 146
3 3.2678x 107° | 1.78245x 1078 | 1.15376x 10~° | 3.27x 107° 9.87x107° | 1x 1078 | 108
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Best Validation Performance is 1.0834e-07 at epoch 151
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Fig. 2.3: A visual representation of the data analysis for case 1 in scenarios 1.
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The gradient, Mu, MLP ANN performance, and MSE tabulated data for cases 1-3 of
scenario 2 are shown in Table 2.4. An illustration of the MSE for scenario 2 may be
found in Fig. 2.4(a). The accuracy of the suggested MLP-ANN model was determined
to be at 10719, as shown in Fig. 2.4(a), which shows its convergence. For Scenario 2,
the gradient is represented graphically in Fig. 2.4(b). By moving in the opposite
direction as the loss function's gradient, the gradient enables network parameter
optimization with a convergence rate of 10~> as illustrated in Fig. 2.4(b). Fig. 2.4(c)
shows the error histogram, which shows the discrepancy between the fluid model's
actual and anticipated values over a cylinder. It is calculated how accurate and valid the
predicted solution is. Fig. 2.4(d) displays the correlation index and linear regression for
Scenario 2. The best fit of the model was achieved when the correlation index value
was near 1. Fig. 2.4(e) displays the curve fitness function that works well in scenario 2.
Additionally, the asymptotic satisfaction of the boundary condition by the optimal
curve fitness function is shown. Darcy number Da effects on velocity of the MHD
boundary layer flow of a hybrid nanofluid over a cylinder is shown in Fig. 2.4(f). The
fluid velocity and heat transfer study of the MHD boundary layer flow of a non-
Newtonian hybrid nanofluid is significantly influenced by the Darcy number. When the
Darcy number is high, the fluid velocity is less resistive due to the high permeability
factor of the porous media. The velocity of the Casson hybrid nanofluid increases as
the Da number grows. As the Darcy number Da increases, the fluid's temperature drops.

The impact of Da on the temperature profile is depicted in Fig. 2.4(g).
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Table 2. 4: Relative assessment over backpropagation networks for scenario 2 case 3.

Sc | Cas | Error analysis for different level Performance | Gradient Mu Epoch
en | e
ari
0
Training Validation Testing

1 1.3936x 10~° | 3.1286x 10~° 1.3226x 10~° 1.39x 10~° 9.73x 1078 | 1x 10~° | 189
2 2 5.0949% 107° | 5.5887x 10~° 5.23985x 10~° | 5.09x 10~° 9.72x 1078 | 1x 1078 | 190

3 4.9633x 107° | 5.03200x 10~° | 1.60619x 1078 | 4.96x 10~° 9.71x 1078 | 1x 1078 | 108

Best Validation Performance is 3.1286e-09 at epoch 139
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Fig. 2.4: A visual representation of the data analysis for case 1 in scenario 2.
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Table 2.5 presents the tabulated values of the gradient,Mu, performance of MLP ANN
and MSE for case 1-3 of Scenario 3. Fig. 2.5(a) depict the graphical representation of
the MSE for scenario 3. The suggested ANN model's convergence is depicted in Fig.
2.5(a), where accuracy is found to be at 1078 and 10710 respectively. Fig. 2.5(b) shows
the convergence of the gradient curve for the predicted solution of the non-Newtonian
hybrid nanofluid over a cylinder for scenario 3 respectively. The error histogram is
displayed in Fig. 2.5(c) for scenario 3 respectively. The correlation indexand linear
regression for scenario 3 are shown in Fig. 2.5(d). The optimal curve fitness functions

for scenario 3 are shown in Fig. 2.5(e). The effect of 5S¢ on velocity profile is depicted
in Fig. 2.5 (f). As slip parameter Sy increases the velocity of the fluid near the surface
increases, showing an enhancement in flow due to stronger stretching of the cylinder
surface. However, beyond a certain distance from the surface, the velocity gradually
decrease due to higher viscous and inertial resistance. The impact of slip parameter S¢
on the fluid temperature is shown in Fig. 2.5 (g). The temperature of the flow field
reduces and thereby decrease the thermal boundary layer thickness as there is a growth

in the value of slip parameter Sy as displayed in Fig. 2.5 (g).

Table 2. 5: Relative assessment over backpropagation networks for scenario 3

Sce | Case | Error analysis for different level Performance | Gradient Mu Epoch
nar
io
Training Validation Testing
1 8.7602x 10~° 4.66882x 107° | 6.7907 x 10~° | 8.76x 10~° 9.69%x 1078 1x 1078 | 95
3 2 6.4703x 10~° 8.24242x 107° | 5.8979x 10~° 6.47x 10~° 9.53x 1078 1x 1078 | 108
3 3.933x 107° 6.64022x 1072 | 6.3471x 10~° 3.93x 107° 9.80x 1078 1x 1078 | 76
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Best Validation Performance is 4.6688e-09 at epoch 95 Gradient = 8.68e-08, at epoch 95
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Fig. 2.5: A visual representation of the data analysis for case 1 in scenarios 3.
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Table 2.6-2.7 presents the tabulated values of the gradient,Mu, performance of MLP
ANN and MSE for case 1-3 of Scenario 4-5. Fig. 2.6(a)-2.7(a) depict the graphical
representation of the MSE for scenario 4-5 The suggested ANN model's convergence
is displayed in Figs. 2.6(a)-2.7(a), where accuracy is found to be at 1078 and 10710
correspondingly. Fig. 2.6(b)-2.7(b) show, the convergence of the gradient curve for the
predicted solution of the non-Newtonian hybrid nanofluid over a cylinder for scenario
4-5 respectively. The error histogram is displayed in Fig. 2.6(c)-2.7(c) for scenario 4-5
respectively. The correlation index and linear regression for scenario 4-5 are shown in
Fig. 2.6(d)-2.7(d). The optimal curve fitness functions for scenario 4-5 are shown in
Fig. 2.6(e)-2.7(e). The effects of the thermal jump parameter S; are shown in Fig. 2.6
(F). When the effects S, get improve, the interaction between the wall and fluid become
relatively weak, and as a result, the velocity near the surface decrease. Fig.2.6 (g) shows
the effects of thermal jump parameter S; on the thermal boundary layer of a Casson
hybrid nanofluid. It should be noted that as the thermal jump S; increases, then thermal
boundary layer decrease. Additionally, it is examine that the thermal slip parameter has
its greatest impact close to the surface wall surface. Figures 2.7(f) and 2.7(g) show how
the radiation parameter Rd affects the velocity and temperature profile. The thermal
boundary layer's thickness rises in tandem with the radiation parameter. This means
that a greater proportion of the fluid is undergoing the heating effect, which raises the

temperature and causes the velocity to rise in tandem.
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Table 2. 6: Relative assessment over backpropagation networks for scenario 4

Scen | Case | Error analysis for different level Performance | Gradient Mu Epoch
ario
Training Validation Testing
1 1.5996x 10710 1.75631x 10710 | 2.5186x 10710 | 1.60x 1071° 9.94x 1078 1x 1078 244
4 2 1.0187x 10710 5.68581x 10711 | 1.7961x 10710 | 1.02x 10710 9.50x 1078 1x 107° 193
3 2.7781x 10710 2.11341x 10710 | 3.0402x 10710 | 2.78x 10710 9.99x 1078 1x 1078 260
Table 2. 7: Relative assessment over backpropagation networks for scenario 5
Scen | Case | Error analysis for different level Performance Gradient Mu Epoch
ario
Training Validation Testing
1 7.1889x 10710 | 6.35115% 10710 7.6243x 10710 7.19%x 10710 9.67x 1078 1x 1078 | 189
5 2 4584 x 10710 | 6.73473%x 10710 3.1610x 10710 458% 10710 9.72x 1078 1x 1078 | 242
3 1.6488x 1071° | 1.03590x 10~10 1.607 x 10710 1.65x 10710 9.92x 1078 1x 1078 | 146
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Best Validation Performance is 1.7563e-10 at epoch 244
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(d) Linear regression analysis with ANN
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Best Validation Performance is 5.6104e-10 at epoch 107 Gradient = 9.9981e-08, at epoch 107
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The impact of magnetic parameter M on the coefficient of skin friction is depicted in
Fig. 2.8 (a). As the magnetic field intensity increases, the Lorentz force generation
becomes stronger, which causes a decrease in velocity. The fluid motion near the
surface of the circular cylinder decreases as a result of the Lorentz force acting against
the direction of fluid flow. Taking into account that fluid speed and magnetic field
intensity are inversely correlated, which lowers the skin friction coefficient. The impact
of the Forchheimer parameter A on the skin friction coefficient is seen in Fig. 2.8 (b).
The inertia effect intensifies as the flow slows down on the cylinder surface as the
Forchheimer parameter rises. Figure 2.8 (c) illustrates how the Darcy number Da
affects the skin friction coefficient and shows that the skin friction coefficient C tends
to increase in tandem with the Darcy number's growth. Fig. 2.8 (d) shows how the
Radiation parameter Rd affects the Nusselt number. The findings show that the local
Nusselt number decreases as the radiation parameter Rd increases. This process is
caused by the boundary layer's radiative heat transport being stronger, which lowers the
temperature gradient at the solid-fluid interface. The impact of Prandtl number Pr on
the Nusselt number coefficient is shown in Fig. 2.8 (e). The results demonstrates that a
higher Prandtl number Pr decreases the thermal diffusivity of the fluid and hence makes
the thermal boundary layer thinner near the cylinder surface. This increases the

temperature gradient at the wall, which increases the local Nusselt number.
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2.6 Conclusion

An Atrtificial Neural Network (ANN) is used in this work to examine boundary layer
flow and heat transfer enhancement in a Casson hybrid nanofluid over a cylinder, taking
into account partial slip, non-Darcy porous medium, and thermal radiation effects. The

following are the main findings from the analysis:

Velocity profile against the dimensionless parameter decrease with increasingM,p,
Srand Sy parameters, whereas velocity profile increases with increasing Da parameters.
Temperature profile is increases with increasing dimensionless parameter Rd and
decreases with increasing pr, Sy andSr.

Skin friction coefficient decrease with increasing magnetic parameter M and
Forchhiemeter parameter A, while decreasing with increasing darcy parameter Da.
Coefficient of Nusselt number decrease with increasing radiation parameter Rd while
increasing with higher value of prandlt parameter Pr.

A very small error margin was found when comparing the calculated results with the
output anticipated by the ANN and the supervised machine learning method.

The proposed ANN model is considered reliable for of its high accuracy, which is
consistent across training, testing, and validation when compared to the computational

techniques.
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Chapter 3

Physics Informed Neural Network Simulation of Non-

Newtonian Flow around Cylinder

3.1 Introduction

In the domain of artificial intelligence and machine learning, physics informed neural
networks become hot topic due to its wide range of application in flow problem. Physics
Informed Neural Network (PINN) are a successful approach for identifying the hidden
physics underlying transport phenomena through training on big set of data. This work
addresses non-Newtonian Casson fluid flow over cylinder with magnetic effect through
porous medium. The models are constructed and trained using TensorFlow, and the
predicted solution that are generated are compared to those derived through bvp4c

techniques.
3.2 Problem Formulation

The geometry and flow physics of the problem are discussed in section 2.2. The

governing boundary layer equation are follow as [31]

u | v _ 3.1
6x+ay_0’ 3

] ] 1) 22 B} . 3.2
u—u+v—u=v(1+—)—u—a—°u—£u—cu2+gﬁl(T—Too)sm(§), (32)

ox dy B/ dy? p
oT oT 2T @

U=+ V= o — =X, (33)
ox oy dy? dy

Whereas thermal radiation is denoted by

%y 16013 (1)
ay 3k* ay2)’
The no slip boundary condition are as follow [2]
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Aty =0, u=0,v=0T=T,

Asy > oo,u— 0,T = Ty . (3.4)
: : : oy oy . : .
Stream function ¥ is defined by u = E andv = — P The dimensionless variable are

expressed as follow [31]

T Teo (T _Too) 3 .
= =g Vor.fEm = vgif/ﬁ’e(f'n) ==, Gr = IhrTw Tesle? (3.5)

Applying non-similarity transformation, Eqn. (3.1) i.e. continuity equation satisfied

identically, however of Eqns. (3.2)-(3.3) are obtained as follow;

(1+3)F7+ £ = A enf2 = (M4 o) f+ 2 [0) = £ (1%L -

3 0¢

3.6

£ a_f) (3.6)
as /)’

1 4 " r_ 06 _ 6'af (3.7)
pr[1+3Rd]9 +f6_§(f a¢ 65)
Dimensionless boundary conditions are obtained as follow
atn=0,f"=0,f=0,60=1 (3.8)

Asn—> oo, f'>0,06 -0

The physical parameter that arises in Eqns. (3.6)-(3.8) are discussed in section 2.2.

3.3 Solution of the Problem

To numerically solve the considered problem, we use the local non similarity solution

method as discussed in section 2 as:

3.3.1 First Level Truncation:

By using first level truncation, the terms on the right side of Eqgns. (3.6)-(3.7) are
disregarded, presuming that the terms involved EZ—? are minimal. The system of

Equations (3.6)—(3.7) is true when & << 1.
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(L43) "+ =+ Enf7 = (M+52) f + 2501 = 0 (3.9)

~[1+3Rd|6"+ 0" =0, (3.10)
pr 3

Boundary condition for first level

atn=0,f"=0,f=0,0 =1,
(3.11)
Asn—> oo, f' > 0,6 - 0.

3.3.2 Second Level Truncation

The following terms are defined in order to construct the equation of higher order

truncation:
_o _9% ,_9¢ _ _ 99 (3.12)
g_af, _af, ¢_a€;)(_af

The derivative of equations (6-7) and the boundary condition Eqn. (8) with respect to

&yields the subsidiary equations for g and ¢ and their boundary condition.

(L3 - Qe -(m+ ) f + @ =59 - G

f'9),

[ 1+5Rd|0"+ 10" =é(f'0-0'g), (3.14)

1
pr

(1 + 1)9”’ +fg"+2f"g—f'9' — (1 +ENgG?* - Af' - (M + ﬁ)g' 4+ (315)

B
[(% %) (w) 6| =¢g'g' - g"9).
| 1+3Rd|¢"+ f' —f'$+20'g = E(9'D — B'9), (3.16)

The boundary conditions are describe as;

atn=0, f'=0, f=0, 6=1,9g"=0,

Asn—> oo, f'">0,6-0,g -0,¢ - 0.
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3.3.3 Third Level Truncation:

At the third truncation level, the conservation equations for the f and 6 functions, as
well as their corresponding equation for g and¢, are maintained without
approximation. The first derivative of Eqns. (3.13)—(3.14) is used to define boundary
conditions and other subsidiary equations for h and y. The equation system for the

third level of truncation is obtained by eliminating terms that

. oh on' ox
mvolveaf, & T andéaf.

(L+g)f+fr—aremf?-(Mm+ )+ Fo=¢¢rg - @18
9,
%[ 1+3Rd|6" +f6' = £(f'6 - 0'g), (3.19)

(1+5) 9" +fa" +2f"g—f'g' — A+ ENg? = af = (M+5)g'+ G20
[(FF0) 5=2) 6] = 6’9’ —g"g +f' — "B,
l1+iRd|9" +fe —fp+20g = ¢~ d'g+fx—0m), B2

(1 + %) h" + fh" +3f"h+4g9"g — 2f'h' —2g'g" — (1 + EAR'? —

)2 1 , & cos(&)—sin(é) siné
249" — (M +=-)h +2(f—2)¢+7;(—
§2siné+2¢ §—2sing o ” "
( sin €c3os sin. )9 = .f(3h g - h g— Zg h), (3.22)

pl—r[l +§Rd])(” — 2¢/g +fX/ _ Zg/¢ _ 2f’)(+ elh — f(Zg'X—X'g + (3.23)
R'¢p —2¢'h).

Boundary condition for third level of truncation are given below;

atn=0, f'=0, f=0 6=1,g"=0,
(3.24)
g=0,¢=0 h=0,h’=0,){=0,
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Asn—> oo, f' 50,6 50,g'>0,¢>0,h >0,y > 0.

Table 3.1: Comparison of Numerical results of 1%, 24 and 3 level truncation

1% Level Truncation | 2" Level Truncation | 3 Level Truncation
M |n| ff) o (m) f'(m) 6(n) f'(m) 6(n)
15| 0 0 1 0 1 0 1
1.5 110.747233 | 0.504009 | 0.684976 | 0.572098 | 0.648984 | 0.590136
15 21 0.509204 | 0.191026 | 0.344373 | 0.257344 | 0.362810 | 0.260877
1.5 | 3]0.229760 | 0.054301 | 0.119951 | 0.089297 | 0.140155 | 0.093915
15 | 4{0.090951| 0.014795 | 0.040461 | 0.029879 | 0.046481 | 0.030022
15 51 0.030818 | 0.003560 | 0.012079 | 0.009042 | 0.014496 | 0.009359
15 6 | 0.009585 | 0.000813 | 0.003234 | 0.002582 | 0.004074 | 0.002753
1.5 7 | 0.002689 0.00017 | 0.000690 | 0.000065 | 0.000839 | 0.000645
1.5 8 0 0 0 0 0 0

3.4 Physics Informed Neural Network

A neural network's input layer, hidden layer, and output layer are a sequence of parallel

layers that make up its fundamental architecture. Fully Connected Networks (FCN) are

designed to collect data, process it, and then provide output. By dividing the one-

dimensional space in direction 1 into discrete nodes, we begin the fundamental

procedures of implementing PINN to solve the following equations. The use of PINN

requires consideration of a finite range for n. Two distinct node types are shown in Fig.

3.2: the green nodes, also known as collocated nodes, and the blue nodes, also known

as boundary nodes. When the boundary condition is applied at zero and infinity, the

first and last nodes are assessed as boundary nodes. The intermediate nodes, which are

considered to be collocated nodes scattered along the n-axis, are in charge of obeying

odes or physical laws at the positions between 7, and 7.
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Fig. 3.1 : PINN Architecture

The first layer in Fig. 3.2 is referred as input layer that keep the input data(n;). The next
is to setup a function that maps the input data x; = n; to the outputy, = [f(1,),0(;)].
The function y, = F(x;, w, b) involve some learning parameter that is known as weight
and bias. These learning parameters need to be trained to get suitable approximation
function, such that y, appropriately expect preferred value y; (sample output data). The
difference between (y;) and (¥,) are calculated by a function termed as Loss function.

The loss function can be calculated in a mean square error format, defined as,

Loss = [231(:1—‘?)2] (3.25)

Network structure illustrated in Fig. 3.2 indicates the input data n; supplied to the
network. The first layer of inputs has single neuron storing given data. Thereafter there
are three number of hidden layers containing arbitrary number of neuron and then the
output layer illustrated in Fig. 3.2 consists of two neurons. The number of output layer
neurons varies based on the unknown functions of the provided problem. There is a link
connecting each neuron in the provided architecture in which the data flows between

neurons. There is a weight for every link, which reduces or amplifies the data from the
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origin node to the destination nodes. The weight analyzes the extent to which each node
contributes to the results of the output. Weighted inputs are added together and a bias

term is included for the calculation of participation of all nodes on predicted nodes.

z; =b; + (ijrf aj.wl-’fj ) (3.26)
The bias term (b;) is added to only input and hidden layers and it has a value of one. z;
is a conventional regression analysis that is manifested as f(x) = ax + 8, where a and
B are corresponding to weight and biases in the neural network simulations. After that
an activation function is used which restricted the output in particular range. In current
study the tangent hyperbolic function is utilized and the resulted z; is passes through

the given activation function.

Output(i) = tanh(z;) (3.27)
To compute the output(z;), the information passes through forward direction between
each neuron. The process is preceded layer by layer until the estimated value ¥y, is
computed. Since the process is started by the guessed value of weight and biases so it
is presumed to see meaningful deviation in between the ¥, and y;. The value of weight

and biases should be adjusted to reduce the computed loss function.

Iteratively adjusting the weights and biases to lower the loss function is the optimization
process. This is accomplished by employing the backpropagation method and the chain
rule to compute gradients of the loss with respect to the network parameters. These
updates are performed in this study using the Adaptive Moment Estimation (Adam)
optimizer. The optimization process keeps going until the network has sufficiently
learned the patterns present in the data and the loss function satisfies the given
convergence criteria. A paradigm for creating loss functions with ordinary differential

equations (ODESs) was presented by Raissi et al. [28—-29]. The loss quantifies the degree
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to which the expected outputs ¥, satisfy the underlying physical principles. In this work,
we apply this approach to examine the boundary layer flow and heat transfer of a
Casson fluid over a horizontal cylinder, taking into account the effects of a magnetic
field and a porous medium. The governing equations are then non-dimensionalized
and truncated to a system of ODEs (Equations (3.18)—(3.24)) through the Local Non-
Similarity technique. This system is solved through a composite loss
function, which includes momentum loss, energy loss, and boundary condition loss,
each being the residual of the respective governing equation or condition. The solution
is approximated by a PINN, and the performance of the PINN is assessed by comparing
the solutions with a reference solution that has been achieved through a standard
numerical procedure. The convergence and accuracy of the PINN model in simulating
the flow and thermal behavior within the given physical constraints are verified by
exploring the total loss. We define separate loss functions for each of the problem's
boundary conditions. Each of the three major components of the overall loss function
is data loss, physics-informed loss, and boundary condition loss is constructed to ensure
that the solution of the neural network complies with the respective boundary
constraints and differential equations. The following definitions hold for these

components:

For physics loss we first define the residual functions as

Re=(1+ %)f I = A+ ENf = (M) f 4 %(9) (3.28)
Ry = pi[ 1+3Rd|6" + fo’ (3.29)

1
Lphysics =N Iivzl(R]g + Rs + Lgc) (3.30)

Boundary condition loss can be defined as:
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Lpc = % MALf0)% + £(0)% 4+ (8(0) — 1)% + f'(0)? + 0(0)?]  (3.31)

Data Loss is define as

Laata = 3 211 — y1)? (3.32)

Then the total loss can be calculated as:

Total Loss = Ldata + Lphysics + LBC (333)

3.5 Results and Discussion

To start the discussion, we first investigate the PDEs Eqn. (3.6)-(3.8) which is computed
by a well-known Local Non-Similarity method. Applying first level of truncation of
Local Non-Similarity methods to Egn. (3.6)-(3.8), the given PDEs is truncated to
system of ODEs given in Eqgn. (3.18)-(3.24). The system of ODEs then solved using
PINN. Solution process is started by developing a neural network with thirty-two
number of neuron and four number of hidden layers. For Adam optimizer the learning
rate is set as 107*. The concern equation is also computes using a bvp4c method. The
L? error is measure to examine the consistency of the predicted results. It is evaluated
that the PINN result depicts excellent agreement with numerical solution, illustrating
the consistency and reliability of our PINN methodology. However, it is noted that as
the number of iteration and learning rate increases the L?error decreases and PINN
predicted solution and numerically computed solution match very well. The computed
PINN solution and Numerical solution of f, f’, f" and 6,8" are depicted in Fig. 3.3
using one thousand number of iterations. It is observed that the PINN predicted solution
and the Numerical solution are far from each other. To achieve best results so that PINN

and Numerical solution matched well we increased the number of iteration up to
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twenty-five thousands as well as increase the number of hidden layer and neuron and
achieve well matched solution (PINN and Numerical) that is shown in Fig. 3.4.Fig. 3.5
shows the total loss function and physics loss of the computed solution. L? Error
describes about the difference between NN predicted results and numerical results. L?
Error of our consider problem for various number of iteration and learning rate are

illustrated in Table 3.1
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Fig. 3.2: PINN vs. numerical solution using 1000 epochs.
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Fig. 3.3: PINN vs. numerical solution using 25000 epochs and deeper network.
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Fig. 3.4: Total and physics-informed loss convergence during training.
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Table 3. 2: L? error between the predicted and numerical solution for different
number of iterations and training steps.

Training Training
Index | Iteration | Step L? Error | Index | lteration | Step L? Error
0 100 10000 0.560829 | 119 12000 1200000 | 0.004366
9 1000 100000 | 0.174006 | 129 13000 1300000 | 0.004468

19 2000 200000 | 0.073053 | 139 14000 1400000 | 0.004526
29 3000 300000 | 0.029032 | 149 15000 1500000 | 0.004196
39 4000 400000 | 0.016682 | 159 16000 1600000 | 0.003862
49 5000 500000 | 0.014043 | 169 17000 1700000 | 0.003606
59 6000 600000 | 0.012162 | 179 18000 1800000 | 0.003418
69 7000 700000 | 0.010637 | 189 19000 1900000 | 0.003284
79 8000 800000 | 0.009175 | 199 20000 2000000 | 0.003184
89 9000 900000 | 0.007606 | 219 22000 2200000 | 0.003018
99 10000 1000000 | 0.006101 | 239 24000 2400000 | 0.002909
109 11000 1100000 | 0.004943
The tables 3.3-3.6 show the effect of hidden layers, neurons, and mesh size (&) on the

L? error of velocity f, temperature 8, and their derivatives. Tables 3.3 and 3.4 analyze
a fixed domain size n=5 and then Tables 3.5 and 3.6 take the computational domain out
to n =10. In each situation, adding more hidden layers and neurons results in a
considerable decrease in L? error, which is an evidence to the relevance of network
depth and width for enhancing model accuracy. Comparing mesh sizes, a smaller mesh
size (6=0.02 ) always gives smaller errors than a larger mesh size (§ = 0.05), as evident
from comparing Table 3.3 vs. Table 3.4 and Table 3.5 vs. Table 3.6. For instance, the
L? error for f goes from 0.1489 to 0.0689 in Table 3.3 and from 0.1472 to 0.0406 in

Table 3.4 as the mesh size is made smaller.

However, a significant observation is made when considering the impact of expanding
the number of neurons (network width) with a constant number of hidden layers. Table
3.4 illustrates that merely expanding the number of neurons from 8to 64 atn = 5 fails
to notably improve solution accuracy; although the loss function does reduce,

improvement in L2 error is negligible. This implies that the issue is not one of the
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network topology but of the small domain size. To avoid this, the third approach
enlarges the domain size to n = 10 with a fine mesh size § = 0.02, as observed in
Table 3.6. This method, coupled with the added number of neurons, enhances the
accuracy of the solution. As compared to Table 3.4, Table 3.6 has significantly reduced
L? errors with the same number of neurons, verifying that the combination of a large
enough computational domain and broader network architecture provides better
performance. For example, the L? error for f is reduced to 0.0112 in Table 3.6 from
0.0406 in Table 3.4 despite having the same number of layers and neurons. These
results verify that the robustness and accuracy of PINN solutions are extremely
sensitive to both the selection of domain size and network architecture, and are best

acquired through the accurate adjustment of these hyper-parameters.
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Table 3. 3: L? errors of f, f', f", 0 and 8'using PINN for n = 5 and finer mesh size
6 = 0.05 with varying hidden layers and neurons

Index | Hidden | Neurons | L%error | L2error | L2error | L2error | L2error
layers of f() | of f'(m) | of f"(m) | of O(n) | of O(n)

0 4 8 0.148939 | 0.142604 | 0.043511 | 0.075944 | 0.033358

1 4 16 0.068957 | 0.064673 | 0.044154 | 0.042902 | 0.048436

2 4 32 0.040901 | 0.030414 | 0.031113 | 0.023889 | 0.003824

3 4 64 0.017434 | 0.015053 | 0.022886 | 0.039255 | 0.016300

Table 3. 4: L? errors of f, ', f", 8 and 8'using PINN for n = 5 and finer mesh size
& = 0.02 with varying hidden layers and neurons

Index | Hidden | Neurons | L?error | L?error | L?error | L?error | LZerror
layers of f(m) | of f'(n) | of f"(n) | of O(n) | of 6(n)

0 4 8 0.147182 | 0.136272 | 0.070664 | 0.103261 | 0.033256

1 4 16 0.040688 | 0.059677 | 0.022326 | 0.029227 | 0.053189

2 4 32 0.019299 | 0.014726 | 0.013675 | 0.011647 | 0.004402

3 4 64 0.014152 | 0.012186 | 0.012448 | 0.006135 | 0.003267

Table 3. 5: L2 errors of f, f',f",6 and 6'using PINN for n = 10 and finer mesh size
6 = 0.05 with varying hidden layers and neurons

Index | Hidden | Neurons | L%error | L?error | L?error | L2%error | L2error
layers of f(n) | of f'(m) | of f"(m) | of 6(n) | of ()

0 4 8 0.268813 | 0.163087 | 0.057719 | 0.113374 | 0.050122

1 4 16 0.047539 | 0.058031 | 0.057354 | 0.050636 | 0.041342

2 4 32 0.032227 | 0.026190 | 0.028598 | 0.020872 | 0.004863

3 4 64 0.017699 | 0.018704 | 0.022899 | 0.021682 | 0.006868

Table 3. 6: L errors of f, f', f",0 and 6'using PINN for = 10 and finer mesh size
6 =0.02 with varying hidden layers and neurons

Index | Hidden | Neurons | L?error | L?error | L?error | L?error | LZerror
layers of f(m) | of f'(n) | of f'(m) | of O(n) | of 6(n)

0 4 8 0.253188 | 0.159095 | 0.075647 | 0.145722 | 0.044483

1 4 16 0.038113 | 0.056815 | 0.059722 | 0.044117 | 0.034429

2 4 32 0.019958 | 0.015051 | 0.015451 | 0.013998 | 0.004193

3 4 64 0.011155 | 0.008880 | 0.007168 | 0.006232 | 0.002676
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The next step is to evaluate the comparison between numerical results and PINNs
predicted results for varying parameter values. For this purpose, we take one parameter
values varying while the rest of parameter values are keeping constant. Then we train
our neural network for different values of parameter and finally by taking one hundred
and fifty-six number of neurons, eight number of hidden layer and learning rate 1 =
0.0001, over numerical results and PINNs prediction are match and ensuing very small

L? error.

The effect of Prandtl number Pr on velocity and temperature profile is examined.
Higher Prandtl number implies that momentum transfer is more capable than heat
transfer. This result to a thinner velocity boundary layer near the cylinder, leading to
reduction of velocity profile. So, as the Pr increase the velocity of fluid become
decrease. Conversely, higher Prandtl number leads to thicker thermal boundary layer,
implying that temperature gradient near the cylinder surface is smaller resulting in a
high temperature closer to the cylinder. Fig. 3.6 demonstrates the velocity and
temperature profile for different values of Pr .The L? error for varying number of Pr
are given in Table 3.7. The PINNSs predicted results are represented by dotted lines and

numerical results are shown by solid lines. It is observed that both results are matched.
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Table 3. 7: L-error of f'(n) and 8(n) for varying values of Pr.

index | Pr | L2error of f'(n) | L?error of 8(n)
0 1.7 0.005598 0.001599
1 5.7 0.020155 0.003462
2 1.7 0.005921 0.001649
3 9.7 0.005051 0.003471
f'(n) for different Pr 0(n) for different Pr
0074 —— Num f'(n), Pr=1.7 10 —— Num 8(n), Pr=1.7

f(n)

PINN f(n), Pr=1.7

—— Num f'(n), Pr=5.7
= PINN f(n), Pr=5.7
—— Num f'(n), Pr=7.7
¢ PINN f'(n), Pr=7.7
—— Num f'(n), Pr=9.7
a  PINN f'(n), Pr=9.7 06

0.8

0.2

0.0

PINN 8(n), Pr=1.7
—— Num 6(n), Pr=5.7

\ = PINN 8(n), Pr=5.7

N\ —— Num 6(n), Pr=7.7
¢ PINN O(n), Pr=7.7

\ —— Num 6(n), Pr=9.7
N\ 4 PINN 8(n), Pr=9.7

Fig. 3.5: Velocity and temperature profiles for different values Pr with PINN and

Effect of magnetic effect on fluid velocity and temperature is examined in the current
study. For different values of magnetic parameter M both the numerical results and
PINNSs result are plotted in Fig. 3.7. It is depicted that both PINNs and Numerical results
are overlapping which shows better accuracy of the predicted PINNs solution. The
L?error for varying values of magnetic parameter M is represented in Table 3.8.
Furthermore, it is detected that as the values of M enhances the Lorentz force become
stronger leading to increase the resistance to the flow thus lowering the velocity of the

fluid. As magnetic effect M increase the temperature rises because of additional energy

lead by Lorentz forces.

numerical solutions.
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Table 3. 8: L?-error of f'(n) and 8(n) for varying values of M.

index | M | L%error of f'(n) | L?error of 8(n)
0 1.5 0.007729 0.001469
1 3.5 0.003324 0.000793
2 6.5 0.011567 0.000924
3 7.5 0.004145 0.000515
f'(n) for different M 8(n) for different M
~ —— Num f'(n), M=1.5 1.0 —— Num 8(n), M=1.5
0.14 / AN PINN f'(n), M=1.5 PINN 8(n), M=1.5
/ \ T || & b sk
— Num f'(n), M=6.5 ’ —— Num 0(n), M=6.5
o104 \ 4 PINNf'(n), M=6.5 4 PINN 8(n), M=6.5
i —— Num f'(n), M=7.5 \ —— Num 8(n), M=7.5
oo 4 PINNf'(n), M=7.5 06 \ 4 PINN8(n), M=7.5

a(n)

0.4+

024

0.0+

Fig. 3.6: Velocity and temperature profiles for different values M with PINN and
numerical solutions.

The Darcy parameter Da has linear relationship with permeability of the porous
medium. As Da increases it shows that the medium is more permeable which lead to
low resistance to the fluid flow and hence velocity of the fluid rises. A higher Darcy
number cause lower temperature because the fluid flow through more permeable porous
medium face less resistance which reduces the heat generation . So the temperature of
the fluid decrease as Darcy umber Da increases. Fig. 3.8 illustrate the effect of Da on
velocity and temperature, both numerical and PINNSs results are depicted for various
values of Da. Table 3.9 symbolizes the L%error between the PINNs and Numerical

results for numerous values of Da.
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0.175 4

Table 3. 9: L2-error of f'(n) and 8(n) for varying values of Da.

Index | Da | L?error of f'(n) | L?error of 6(n)
0 0.2 0.007851 0.001058
1 0.4 0.002301 0.000371
2 0.5 0.000909 0.00026
3 0.6 0.003406 0.001206

f'(n) for different Da

6(n) for different Da

—— Num f'(n), Da=0.2 1.0 1
PINN f'(n), Da=0.2
—— Num f'(n), Da=0.4

—— Num 6(n), Da=0.2
PINN 6(n), Da=0.2
—— Num 8(n), Da=0.4

0150 | = PINNf(n), Da=0.4 | | = PINN 8(n), Da=0.4
—— Num (n), Da=0.5 ) N\ —— Num 6(n), Da=0.5
¢ PINN f'(n), Da=0.5 \ ¢ PINN 6(n), Da=0.5
01251 —— Num '(n), Da=0.6 \ —— Num 8(n), Da=0.6
P 4 PINN f'(n), Da=0.6 061 4 PINN 6(n), Da=0.6
-~ 0.100 N - \
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Fig. 3.7: Velocity and temperature profiles for different values Da with PINN and
numerical solutions.

Effect of Radiation parameter on velocity and temperature is discussed in the current
study. In Fig. 3.9 both the numerical and PINNs results are illustrated for various
number of Radiation parameter Rd. Table 3.10 present the L? error between PINNs
predicted results and Numerical results which show better consistency. Furthermore it
is examine that when the radiation parameter is raised the fluid receive more thermal
radiation which leads to raise the temperature of the fluid. As by increasing the
Radiation parameter Rd, temperature enhances lead to reduce the viscosity of non-
Newtonian fluid. This reduction in viscosity of the fluid facilitate fluid to move easily

and hence the velocity of the fluid slightly increases.
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Table 3. 10: L?-error of f'(n) and 8(n) for varying values of Rd.

Index | Rd | L?error of f'(n) | L?error of 6(n)
0 0.1 0.020539 0.000976
1 0.3 0.003182 0.000556
2 0.6 0.003282 0.003078
3 0.8 0.003133 0.000412
f'(n) for different Rd 8(n) for different Rd
—— Num f'(n), Rd=0.1 1.0 —— Num 8(n), Rd=0.1
0.06 PINN f'(n), Rd=0.1 PINN 6(n), Rd=0.1

— Num f(n), Rd=0.3 — Num 8(n), Rd=0.3

005 = PINN f(n), Rd=0.3 . = PINN 8(n), Rd=0.3
' — Num f'(n), Rd=0.6 ) \ — Num 6(n), Rd=0.6
¢ PINN £(n), Rd=0.6 ¢ PINN 8(n), Rd=0.6

—— Num f'(n), Rd=0.8
4 PINN f'(n), Rd=0.8 06 1

—— Num 8(n), Rd=0.8
4 PINN 8(n), Rd=0.8

0.04 1

a(n)

0.4 4

0.02 1

024
0.01 4

0.0+

Fig. 3.8: Velocity and temperature profiles for different values Rd with PINN and
numerical solutions.
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3.4 Conclusion

The current research uses a Physics-Informed Neural Network (PINN) scheme to study
the boundary layer flow and heat transfer behavior of non-Newtonian fluid flow around
an embedded horizontal cylinder placed in a non-Darcy porous medium under a
transverse magnetic field. The Local Non-Similarity technique is utilized to transform
the nonlinear partial differential governing equations into a system of ordinary
differential equations, and the resulting equations are solved with PINNs in PyTorch
(Python). The study highlights the importance of selecting optimal neural network
hyper parameters such as learning rate, number of hidden layers, neurons per layer, and
training iterations for achieving reliable and precise results. A learning rate of less than
10~* was shown to produce very accurate predictions. As illustrated in Fig. 3.1 and
Fig. 3.2, the comparison of PINN outcomes with traditional numerical solutions shows
a high degree of agreement, confirming the efficacy of the suggested method. A detailed
parametric analysis is conducted to examine the impact of various physical parameters

on the velocity and temperature profiles. The results indicate the following:

When the Prandtl number Pr rises, the temperature and velocity profiles simultaneously
decrease, suggesting less thermal diffusion.

An increase in the magnetic parameter M suppresses velocity due to the Lorentz force,
while slightly elevating the temperature due to resistive heating.

Higher Darcy number Da enhances velocity by increasing permeability, while slightly
decreasing the temperature field due to enhanced fluid infiltration.

An increase in the radiation parameter Rd results in elevated velocity and temperature

profiles due to enhanced radiative heat transfer effects within the boundary layer.
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From an industrial standpoint, the study's findings are useful for processes involving
flow control and thermal management in porous media environments, such as heat
exchangers, thermal insulation systems, energy storage devices, and magnetic field-
assisted flow systems in the polymer processing and biomedical industries.

On the computational front, this research demonstrates the capability of PINNs as a

robust and flexible alternative to traditional numerical solvers.
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