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PREFACE 

Artificial Neural Networks (ANN), are essential for modeling and forecasting complex 

fluid processes in fluid dynamics. ANNs allow for the rapid analysis of large datasets 

from simulations or experiments, revealing details regarding turbulence, flow patterns, 

and heat transport. This approach is beneficial for aerospace and environmental 

engineering. Non-Newtonian fluids have substantial importance in engineering and 

manufacturing industries because of the varying nature of viscosity, which changes 

with applied forces. Non-Newtonian fluids are used in the manufacturing of many 

things, including magneto rheological dampers and brakes, body armors, protective 

equipment, pipelines, printer inks, and safety gears, and have many other applications. 

The Casson viscoelastic fluid model is a non-Newtonian fluid model that deals with the 

fluid flow with yield stress. Non-Newtonian fluids are classified according to how they 

react to changes in shear stress or shear rate. Viscoplastic fluids are a type of non-

Newtonian fluid that behaves like a solid under a certain amount of stress but flows like 

a liquid when the stress is exceeded. Heat transfer in the boundary layer flow of a semi-

infinite vertical plate with a slip boundary was applied to examine the rheological 

behavior of the Casson fluid [1]. They reported that increasing the value of the slip 

parameter reduced the velocity and temperature. Prasad et.al. [2] addressed the non-

similar solution of the MHD momentum boundary layer flow of a non-Newtonian 

nanofluid over a circular cylinder with a non-Darcy medium. The governing equations 

were solved using the Keller Box Method (KBM). Ghaffar et.al. [3] Examined heat 

transfer of flow over cylinder using a tangent hyperbolic non-Newtonian fluid. A 

numerical analysis of convective transport in a vertical channel using a Casson ternary 

hybrid nanofluid was discussed by Yasir et al. [4]. The non-Newtonian fluid behavior 

in boundary layer flow and heat transfer were examined [5-8]. Mishra and Chaudhuri 
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[9] investigated the use of an artificial neural network and genetic algorithm. Using 

ANNs modeling and an experimental study, Yadav et al. [10] examined the insight flow 

properties of concentrated MWCNT in a water-base fluid. In order to address the 

properties of Hall current on MHD flow with Jeffery fluid towards a nonlinear stretchy 

sheet with thickness fluctuation, Awais et al. [11] looked at the artificial neural 

network-based solution methodology. Tian et al. [12] used hybrid machine learning 

techniques in conjunction with computational fluid dynamics to study the prediction of 

permeability in porous media. In their study, Tizakast et al. [13] investigated machine 

learning-based methods for modeling the movement of natural convection fluids and 

the movement of mass and heat in rectangular cavities containing non-Newtonian 

fluids. Machine-learning techniques for fluid flows at the nanoscale were studied [14-

17]. Researchers employ physics-informed neural networks and machine learning 

techniques in boundary layer flow and heat transfer. This approach will provide the 

classical NN with additional physics-related information. These methods are sometimes 

referred to as Physics Informed Neural Networks (PINN) when used to simulate 

engineering and physical systems that are described by differential equations. Cuomo 

et. al. [18] addressed the predicted solution of initial value problem with an 

approximation of PINN. With the advancement of technologies and use of machine 

learning approach PINN was used by Hubert Baty et al. [19] to study differential 

equations. In order to solve the Reynolds boundary value problem, Almqvist et al. [20] 

studied the fundamentals of physics-informed neural networks. Neural networks with 

knowledge of variational physics were studied [21-22]. Scholars have studied the PINN 

technique in boundary layer and heat transport [23–24]. The nonlinear fluid flow 

problem were simulate using PINN [25-26]. Nguyen and colleagues evaluated physics-

informed neural networks for non-Newtonian fluid thermo-mechanical issues [27]. 
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Data-driven solutions of nonlinear partial differential equations utilizing PINN was 

studied. [28-29]. Boundary layer thermal fluid problem utilizing PINN’s was presented 

by Hassan Bararnia et.al. [30]. 

The first chapter provides the foundation for understanding the major concepts and 

theoretical frameworks that are the pillars of the ensuing research. Basic terminology 

and key concepts related to the study of hybrid nanofluids, Casson fluids, and the use 

of machine learning techniques like Artificial Neural Networks (ANN) and Physics-

Informed Neural Networks (PINN) are introduced in this chapter. In the second chapter, 

the MHD Casson hybrid nanofluid flow simulation across a horizontal cylinder 

immersed in a porous medium with slip influence is covered. This chapter introduces 

an Artificial Neural Network (ANN) method, where the model formulation, boundary 

conditions, and important parameters are discussed. The third chapter is dedicated to 

the use of Physics-Informed Neural Network (PINN), programmed with Python and 

TensorFlow, to simulate boundary layer flow and Casson fluid temperature over a 

horizontal cylinder with magnetic effects and porous media. The chapter is critical of 

the current methods and explains how PINN can be employed to address nonlinear 

boundary value problems in complex fluid dynamics cases. It showcases the versatility 

and ability of Python and TensorFlow for effectively training and solving PINN models, 

providing a solid solution to simulate fluid flow and temperature profiles under 

different physical conditions. The chapter also states the contribution of the current 

research, with focus on the benefits of applying PINN in simulating these intricate flow 

phenomena.  
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Chapter 1 

In this chapter, the basic definitions of key terms and concepts are addressed. Through 

this section, the readers' curiosity and interest and prepare them for a deeper dive into 

the subject matter in the sections that follow. 

1.1  Basic Definitions 

1.1.1 Fluid 

Fluid is a substance that continuously deforms when subjected to a shear stress, no 

matter how small is that stress may be. 

1.1.2 Properties of Fluids  

Pressure: The symbol 𝑃 stands for pressure, which is the amount of force per unit area 

applied in the direction normal to that area. Mathematically 𝑃 = 𝐹/𝐴 

Temperature: The average kinetic energy of the particles in a substance is measured 

by a physical quantity called temperature. 

Density: The mass per unit volume is the fluid's density, represented by the symbol 𝜌. 

If a mass 𝑚 is contained in a volume 𝑉, then 𝜌 = 𝑚/𝑉. 

Compressibility: The degree of variation in a fluid's volume under the influence of 

external forces is known as its compressibility. Fluids are referred to as compressible if 

their volume changes in response to changes in temperature or pressure; otherwise, they 

are referred to as incompressible fluids. 

Viscosity: Viscosity of the fluid is the measure of resistance to its deformation. 

Mathematically 𝜏 = 𝜇
𝑑𝑢

𝑑𝑦
, where 𝜇 is viscosity of the fluid. 
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1.1.3 Types of Fluids 

Compressible and Incompressible fluid: A fluid is considered compressible if its 

density or volume varies in response to changes in pressure or temperature. If not, the 

fluid is referred to as incompressible. 

In-viscid Fluid: An idealized fluid with zero viscosity is called an inviscid fluid 

because it offers no internal resistance to deformation.  

Ideal Fluid: Fluid which is incompressible and in viscid is known as ideal fluid.  

Real fluid: Real fluid also known as viscous fluid is a type of fluid having finite 

viscosity. The flow of viscous fluid is called viscous flow. 

Newtonian Fluid: Newtonian fluid is a type of fluid that obeys Newton’s law of 

viscosity(𝜏 = 𝜇
𝑑𝑢

𝑑𝑦
) . In this case shear stress is linearly related to the velocity gradient. 

Non-Newtonian Fluid: Non-Newtonian fluid is a type of fluid that does not obeys 

Newton’s law of viscosity. 𝜏 = 𝐾 (
𝑑𝑢

𝑑𝑦
)

𝑛

, where 𝐾 is the consistency index and 𝑛 is flow 

behavior index. 

1.1.4 Classification of Fluid Flow: 

Compressible and Incompressible Flow: A compressible fluid flow is referred to as 

compressible flow, whereas an incompressible fluid flow is referred to as 

incompressible flow. 

Ideal and Real Flow: Real or viscous flow explains the motion of fluids that exhibit 

viscosity and are compressible, while ideal flow depicts the motion of an ideal (in-

viscid and incompressible) fluid with no viscosity or thermal conductivity. 
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Uniform and Non-uniform Flow: If the velocity vector and other fluid 

characteristics stay the same throughout the flow field, the flow is considered 

uniform; if not, it is referred to as non-uniform flow. 

Steady and Un-steady Flow: When the velocity vector and other fluid characteristics 

at each place in the fluid do not alter over time, the flow is considered steady. Flow is 

said to be un-steady when the fluid properties from point to point changes with time. 

Eqn. (1.1) represent steady flow and Eqn. (1.2) represent unsteady flow.     

 
𝜕𝑉

𝜕𝑡
=

𝜕𝑃

𝜕𝑡
=

𝜕𝜌

𝜕𝑡
= ⋯ = 0 (1.1) 

 
𝜕𝑉

𝜕𝑡
≠

𝜕𝑃

𝜕𝑡
≠

𝜕𝜌

𝜕𝑡
≠ ⋯ ≠ 0        (1.2) 

 

 
𝜕𝑉

𝜕𝑡
≠

𝜕𝑃

𝜕𝑡
≠

𝜕𝜌

𝜕𝑡
≠ ⋯ ≠ 0        (1.2) 

Laminar Flow: A type of fluid motion known as laminar flow occurs when fluid 

particles travel parallel, straight, and smooth routes without coming into contact with 

one another. This flow produces stratified and ordered motion since the trajectories of 

the many particles do not overlap. 

Turbulent Flow: Turbulent flow is defined as a flow in which fluid particles move 

erratically in all directions. The trajectories drawn by any two distinct fluid particles 

intersect in this kind of flow. 

1.1.5 Differential Equation of Motion 

Total Derivative: The total derivative 
𝐷

𝐷𝑡
 is the rate of change of fluid property 

following a fluid particles. 
𝐷

𝐷𝑡
=

𝜕

𝜕𝑡
+ 𝑉. 𝛻 , where 

𝐷

𝐷𝑡
 is the operator which act on 

velocity, gives the acceleration in Eulerian System and 𝑉. 𝛻 = 𝑢
𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
+ 𝑤

𝜕

𝜕𝑧
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Continuity Equation: This equation state that rate of change of mass contained in the 

volume plus the net rate of mass flow out of the volume must be zero. 

Mathematically𝛻. 𝑉 = −
1

𝜌

𝐷𝜌

𝐷𝑡
 . In case of incompressible flow,

𝐷𝜌

𝐷𝑡
= 0 so the continuity 

equation become 𝛻. 𝑉 = 0. 

Momentum Equation: Euler's equation is the momentum equation that results when 

the fluid is inviscid. The Navier-Stokes equation is the momentum equation that results 

when the fluid is viscous.  

Euler’s equation: According to this equation, the inertial forces exerted on fluid 

particles at any given position in an inviscid fluid's flow are equal to the total of the 

forces caused by gravity and pressure differences. The following is the differential form 

of the linear momentum equation for an in-viscid fluid in vector form: 

    𝜌
𝐷𝑉

𝐷𝑡
= −𝛻𝑝 + 𝜌𝑔 (1.3) 

Navier-Stokes Equation: The Navier Stokes equation describes the motion of viscous 

fluid. The general form of Navier Stokes equation is given as: 

       𝜌
𝐷𝑉

𝐷𝑡
= −𝛻𝑝 + 𝜌𝑔 + 𝜇𝛻2𝑉.         (1.4) 

 Energy Equation: The first law of thermodynamics generally known as the law 

of conservation of energy, mathematically form is 

   𝜌𝐶𝑝 (
𝜕𝑇∗

𝜕𝑡
+ 𝑉∗. ∇𝑇∗) = 𝑘∇2𝑇∗ + 𝜇𝜑 (1.5) 

1.1.6 Boundary Layer Theory 

The boundary layer is defined as the thin layer of the flow on the boundary within which 

the velocities changing from zero at the solid boundary to the free stream velocity in 

the direction normal to the boundary. In the boundary layer the velocity gradient is large 
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and the shear exerted by the fluid is given as 𝜏 = 𝜇
𝑑𝑢

𝑑𝑦
. Outside the boundary, velocity 

is constant and velocity gradient is zero and hence shear stress is zero.  Imagine a fluid 

flowing laminarly in two dimensions across a fixed semi-infinite flat plate with a high 

Reynolds number and low viscosity. In contrast to ideal fluid flow, which would cause 

the fluid to slide across the surface, a real fluid clings to the plate and exhibits the no-

slip condition. The fluid velocity at the surface is likewise 0 because the plate is 

motionless. In the direction corresponding to the surface, the fluid velocity 

progressively rises as one advances away from the plate. When the velocity is far 

enough away from the plate, it asymptotically gets closer to the free-stream velocity 𝑈. 

Known as the boundary layer, this narrow area close to the plate is where the velocity 

shifts from zero to 𝑈.  

1.1.7 Importance of Boundary Layer Theory in Fluid Dynamics 

The boundary layer flow is significant in fluid dynamics because it controls the 

interaction between a solid surface and the surrounding fluid, influencing drag, heat 

transfer, and mass transport significantly. It helps in the understanding of skin friction 

drag, which directly influences the efficiency of vehicles and aircraft. The phenomena 

is also crucial in heat transfer analysis, especially thermal boundary layers, which effect 

cooling and heating operations in engineering systems. Also, separation of 

the boundary layer, where flow separates from the surface, creates greater pressure 

drag and flow instability and negatively affects turbine, aircraft wing, 

and submarine performances. Some basic definition are: 

Boundary Layer Thickness: The distance between a solid boundary, like a surface, 

and the point in a fluid flow when the fluid velocity approaches ninety percent of the 

free stream velocity is referred to as the boundary layer thickness. It denotes the area of 
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the fluid in which the viscosity impacts are most prominent resulting in a gradient in 

velocity from the boundary (fluid sticks to the wall) to the boundary layer's outer edge. 

Grasp and evaluating fluid dynamics near surfaces—which affect heat transfer, drag, 

and overall flow characteristics—needs a grasp of the term of boundary layer thickness.  

Displacement Thickness: Displacement thickness, denoted as 𝛿 is a measure of the 

reduction in flow rate due to the presence of the boundary layer. It represents the 

distance by which the external inviscid flow is displaced outward due to the slowing 

down of the fluid near the boundary. 

 𝛿 =  ∫ (𝑈𝑒 − 𝑢)
∞

0
𝑑𝑦  (1.6) 

Momentum Thickness: The loss of momentum in the boundary layer compared to the 

free-stream flow.  

 𝜃 =  ∫
𝑈𝑒

𝑢
(𝑈𝑒 − 𝑢)

∞

0
𝑑𝑦  (1.7) 

1.1.8 Important Dimensionless Parameters 

Reynold number: The Reynold number (𝑅𝑒) is a dimensionless quantity that helps 

predict fluid flow patterns in different in different situation by measuring the ratio 

between inertial and viscous forces. At low Reynold numbers, flow tends to be 

dominated by laminar, while at high Reynolds number, flow tends to be turbulent.  

 𝑅𝑒 =
𝜌𝑉∗𝑑∗

𝜇
=

𝑉∗𝑑∗

𝜗
  (1.8) 

Prandtl Number: The Prandtl number (𝑃𝑟) is a dimensionless number that represents 

the ratio of momentum diffusivity to thermal diffusivity in fluid. Mathematically 

Prandtl number expressed as: 

 𝑃𝑟 =
𝜗∗

𝛼∗ =
𝜇

𝜌⁄

𝑘
𝜌𝑐𝑝⁄

=
𝜇𝑐𝑝

𝑘
  (1.9) 
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Nusselt Number: The ratio of convective to conductive heat transport in a fluid is 

represented by the dimensionless Nusselt number (Nu). The definition of the Nusselt 

number in mathematics is: 

 𝑁𝑢 =
ℎ∗𝐿∗

𝑘∗   (1.10) 

Grashof number: The Grashof number (𝐺𝑟) is a dimensionless number that which 

approximates the ratio of the buoyancy to viscous forces acting on a fluid. 

Mathematically expressed as; 

 𝐺𝑟 =
𝑔𝐿3𝛽∆𝑇

𝑣2   (1.11) 

Casson fluid model: The Casson fluid model is a non-Newtonian fluid 

model used to describe the properties of fluids that contain yield stress. Unlike 

Newtonian fluids, where there is a linear relationship between shear stress and shear 

rate, Casson fluids must have a certain minimum shear stress (yield stress, 𝜏𝑦) 

before it begins to flow. Once this threshold is reached, the fluid behaves in a shear-

thinning manner, i.e., its viscosity decreases with an increasing shear stress. Casson 

fluid are used in blood flow modeling, food processing, polymer solution etc. The 

Mathematical model of Casson fluid are described as: 

 𝜏
1

2 = 𝜏𝑦

1

2 + 𝜂𝛾̇
1

2   (1.12) 

 𝜏  the shear stress, 𝜏𝑦 is the yield stress (minimum stress required for fluid flow),𝜂 is 

the plastic viscosity and 𝛾̇ is the shear rate. 

1.2 Artificial Neural Network 

ANN form the basic building block of contemporary artificial intelligence and machine 

learning. Based on the architecture of biological neural networks in the human brain, 
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ANNs are made up of interlinked nodes (neurons) laid out in layers that handle data by 

mimicking the functioning of biological neurons passing signals. While abridged 

compared to the human brain, ANNs can learn from data, identify patterns, and predict 

outcomes. The theoretical basis for ANNs was originally presented in 1943, being an 

important step towards the creation of intelligent computational models. 

1.2.1 Architecture of ANN 

Neural activity in the human brain can be simulated to create artificially intelligent 

systems. The information processing architecture of this network is its primary 

characteristic. ANNs function through information processing, a method similar to that 

of the human brain. Several networked neurons, or processing units, make up this 

system, which works together to do specific tasks at the same time. Neural computing 

is a paradigm for mathematics that draws inspiration from biological principles. The 

neural architecture of the human brain is replicated by this computer model.  

 

 

Fig. 1. 1: Structure of ANN. 

 It is made up of layers of interconnected nodes, or neurons. Based on the data these 

nodes process, the network adjusts their weights (connection strengths) throughout 
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training. Consequently, the network can execute a range of machine learning and 

artificial intelligence tasks, including pattern identification and outcome prediction. 

Following the connection of the hidden layers, the "output layer," where the result is 

output, is displayed in Fig. 1.1.  

Neurons (Nodes): Simple processing units called neurons (also known as nodes) take 

in input data, apply weight, add bias, and then run the outcome via an activation 

function. 

Input Layer: Raw input data is sent to the next layers by the first layer. It does not do 

any calculations; it merely distributes the inputs. 

Hidden Layers: The intermediate levels that lie between the input and output layers 

are known as hidden layers. They perform intricate calculations to generate more 

abstract representations of the input data using the weights, biases, and activation 

functions. The complexity of the issue will determine how many hidden layers and 

neurons are used. 

Output Layer: The output layer is the final layer that produces the network's output.  

Weights: Weights are the parameters for adjusting the input signals, the weight given 

to each neuronal connection determines the importance of the input. 

Bias: This parameter is applied prior to the activation function being applied to the 

weighted sum of the inputs, allowing the activation function to be shifted to the left or 

right, increasing the model's adaptability. 

Activation Function: An activation function, also known as a transfer function, applies 

a transformation to the input of a neuron to determine its output. Usually, this 

transformation squashes the output to a range like 0 to 1 or −1 to 1. Common varieties 
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include Gaussian, piecewise linear, unit step, sigmoid (unipolar and bipolar), and 

hyperbolic tangent functions. 

1.2.2 Types of Artificial Neural Network: 

An ANN's architecture greatly influences its capacity to recognize intricate patterns, 

generalize to previously unobserved data, and achieve high predicted accuracy. There 

are several types of ANNs, such as feedforward neural networks, recurrent neural 

networks, convolutional neural networks, and more, each of which is appropriate for a 

particular set of data and tasks. 

Feed-Forward Neural Network: The feedforward neural network (FNN) is a basic 

kind of artificial neural network (ANN) in which the connections between the neurons 

do not cycle. Information flows from the input layer to the output layer, via any hidden 

layers, and then to the output layer. Network connections to the same or earlier tiers are 

prohibited in an FFN, where data flows strictly feed-forward from the input node to the 

output node. The feedforward neural network (FNN) block diagram is shown in Fig. 

1.2. 

 

 

 

 

 

Fig. 1. 2: Block diagram of the (FNN) 

Where   𝑋 = (𝑥1, 𝑥2, … . . , 𝑥𝑛)  denotes the input vector, 𝑂 = (𝑜1, 𝑜2 … . . , 𝑜𝑚) denotes 

the output vector, and 𝑓 is the activation function. The symbol 𝑊 = 𝑤𝑖𝑗  , represents 

𝑋 𝑓 = [𝑊𝑋] 𝑂 
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the weight matrix or connection matrix, and the scalar product of the input vectors and 

the weight vectors, 𝑤𝑖𝑗  . is the net input value, or 𝑊𝑋. 

Feedback Neural Networks:  Feedback neural networks, sometimes referred to as 

recurrent neural networks (RNNs), are artificial neural networks (ANNs) where 

feedback loops are made possible by the cycles created by connections between 

neurons. By using loops, signals in this network can move in both directions. Although 

this network is very strong, it can occasionally become very confusing. Neuronal 

connections of any kind are allowed. By maintaining internal state memory, recurrent 

neural networks (RNNs) are able to exhibit dynamic temporal behavior in contrast to 

feedforward neural networks, which only transport information from input to output. 

This neural network starts with the same front propagation as a feed-forward network 

and saves all of the data it has processed for subsequent use. Backpropagation lets the 

system self-learn and keep trying until it gets the right forecast if the network's initial 

prediction turns out to be incorrect. Feedback neural networks are used to find the 

optimal configuration of interdependent variables in optimization problems. Because 

they are dynamic, their states change continuously until they reach equilibrium  

Backpropagation Neural Network (BPNN): A Backpropagation Neural Network 

(BPNN) is an artificial neural network that uses the backpropagation technique for 

training. It is composed of an input layer, an output layer, and one or more hidden 

layers. The forward pass calculates the network's output, while the backward pass 

modifies the weights and propagates the error gradient back through the network to 

minimize the loss function. BPNNs are widely used for applications such as pattern 

recognition, regression, and classification because of their ability to identify complex 

patterns in data. 
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1.3 Physics Informed Neural Network 

Physics-Informed Neural Networks (PINN) are a type of scientific machine learning 

models that explicitly integrate physical laws, typically represented as partial 

differential equations (PDEs) or ordinary differential equations (ODEs) into artificial 

neural network training. This method has gained a lot of traction in many branches of 

computational science and engineering, particularly in fields where labeled data or high 

processing costs limit the use of classic numerical methods. While traditional neural 

networks mainly rely on supervised learning with large datasets, the governing 

equations of many physical systems, particularly fluid mechanics, heat transfer, and 

boundary layer theory, are often well understood, and PINN take advantage of this prior 

knowledge by embedding the physics into the neural network's loss function, which 

enables the network to learn solutions that naturally satisfy the underlying physical 

laws, even in the absence of extensive training data. 

PINN are especially helpful in tackling inverse problems (inferring unknown 

parameters or inputs from observed outputs), forward problems (predicting the state of 

a system given initial/boundary conditions and parameters), and data assimilation tasks 

within a single, cohesive framework. 

1.3.1 General work flow of PINN: 

The implementation of a PINN for solving a physical problem involves several key 

components. The general workflow is outlined below: 

Problem Formulation: 

i. Determine the governing equations: These may be ODEs or 

PDEs formulated from conservation laws, constitutive relations, or empirical 
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models. For example, in boundary layer theory, it is common to work with 

nonlinear ODEs that govern the momentum and energy transport. 

ii. Specify the solution domain: This is the spatial and/or time domain over which 

the solution should be approximated. 

iii. Identify boundary and initial conditions: These 

are essential for a properly posed problem and are imposed within the PINN 

framework. 

Neural Network Design: A fully connected feed-forward neural network (FNN) is 

constructed: 

i. Input layer: The input layer receives the data or coordinates in the form of 

spatial location 𝑥,𝜂 or time 𝑡. 

ii. Hidden layer: The hidden layers consist of neurons with nonlinear activation 

function such as tanh, sigmoid, ReLU, which enable the network to approximate 

complex, non-linear mappings. 

iii. Output layer: The output layer provides the predicted values of the solution 

variables, such as velocity 𝑓(𝜂𝑖), temperature 𝜃(𝜂𝑖), or concentration. 

Collocation and Boundary Points: To train the model, a set of collocation points 

within the domain is selected. These are the points where the governing equations are 

enforced. Additionally, boundary points are sampled to enforce the prescribed 

conditions. Unlike traditional numerical methods, PINNs do not require grid-based 

discretization and are thus mesh-free. 

Loss Function Formulation: The total loss function contains several components: 
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i. Physics loss: Quantifies the residual of the governing equations at the 

collocation points. This is computed using automatic differentiation, which 

allows for exact gradients of the network output with respect to inputs. 

ii. Boundary condition loss: Measures the discrepancy between the network 

prediction and the known boundary or initial values. 

iii. Data loss (if applicable): Incorporates any available empirical data to further 

guide the learning process. 

 The total loss function will be: 

          𝐿𝑇𝑜𝑡𝑎𝑙 = 𝐿𝑃ℎ𝑦𝑠𝑖𝑐𝑠 + 𝐿𝐵𝐶 + 𝐿𝐷𝑎𝑡𝑎  (1.13) 

Optimization and Training: The network weights and biases are adjusted by 

minimizing the entire loss function through gradient-based optimization methods like 

Adam for initial convergence and L-BFGS for precise, high-accuracy training. The 

training is iterative and goes on until the loss function converges to a low value, which 

means that the physical constraints and boundary conditions are being met. 

Prediction and Post-Processing: After training, the PINN can be employed to predict 

at any location within the domain. The solution is continuous and differentiable, which 

is beneficial for subsequent analysis, for instance, calculating derived quantities. PINNs 

also allow for parameter inference and model validation when inverse problems are 

formulated. 
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Chapter 2 

Artificial Neural Network Simulation of Convective Heat 

transfer of hybrid nanofluid flow around a Circular Cylinder 

2.1  Introduction 

The current chapter investigates the magnetohydrodynamic (MHD) boundary layer 

flow of Casson hybrid nanofluids (CHNFs) over a porous cylinder with thermal 

radiation and velocity slip using an Artificial Neural Network approach. 𝐴𝑙2𝑂3 and 

𝐶𝑢𝑂 hybrid nanoparticles floating in a Casson base fluid form the basis of the Tiwari-

Das nanofluid model, which is used to develop the flow equations. Reference [31] is 

consulted for the appropriate physical correlations for viscosity, electrical conductivity, 

thermal conductivity, and specific heat capacity. Suitable non-similar transformations 

are used to convert dimensional equations into a dimensionless form. A set of ordinary 

differential equations is obtained by applying the Local Non-Similarity (LNS) 

technique up to the third truncation level in order to simplify the system. To obtain the 

reference solution, the system of Eqns. are then solved by MATLAB's built-in solver, 

bvp4c. Supervised machine learning methods based on Artificial Neural Network 

(ANN) simulations are used to calculate an approximate solution. A comparison of the 

reference solution and the ANN's anticipated solution reveals that they are well suited. 

The effect of dimensionless parameter 𝑀(magnetic parameter), 𝐷𝑎(Darcy number), 

𝛽(Csson parameter) 𝑆𝑓(velocity slip parameter) and 𝑆𝑇(thermal jump parameter) on 

momentum boundary layer flow are examined.  
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2.2  Problem Formulation 

2.2.1 Geometry of the Problem  

The flow geometry of the problem under consideration is shown in Fig. 2.1. In the 

cylinder, the 𝑥 coordinate is displayed in its tangential direction, whereas the 𝑦 

coordinate is normal to the surface. A horizontal cylinder's radius is represented by the 

letter 𝑎, which is parallel to the y-axis. The angle of 𝑦 −axis with regard to the vertical 

(0 ≤ 𝜙 ≤ 𝜋) is given by 𝜙 =
𝑥

𝑎
.   

2.2.2 Flow Physics 

Consider the steady, two dimensional MHD flow of an incompressible, electrically 

conducting Casson hybrid nanofluid over a horizontal permeable circular cylinder with 

saturated porous medium and thermal radiation. The magnetic field is uniform having 

magnitude 𝐵0 and is applied in radial direction. The gravitational force 𝑔 is acting in 

downward direction. It is assume that Boussinesq approximation holds. Let 𝑇𝑤 is 

constant temperature and 𝑇∞ is ambient temperature of the fluid. The governing 

boundary layer equation are follow as [2] 
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Fig. 2.1: Physical model and coordinate system 

 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0, (2.1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑣ℎ𝑛𝑓 (1 +

1

𝛽
)

𝜕2𝑢

 𝜕𝑦2 −
𝜎ℎ𝑛𝑓𝐵0

2

𝜌ℎ𝑓
𝑢 −

𝑣ℎ𝑛𝑓

𝐾
𝑢 − 𝑐𝑢2 + 𝑔

(𝜌𝛽1)ℎ𝑛𝑓

𝜌ℎ𝑛𝑓
(𝑇 −

𝑇∞) sin (
𝑥

𝑎
),   

(2.2) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼ℎ𝑛𝑓

𝜕2𝑇

𝜕𝑦2 −
1

(𝜌𝑐𝑝)
ℎ𝑛𝑓

𝜕𝑞𝑥

𝜕𝑦
 . (2.3) 

Whereas thermal radiation is denoted by 

𝜕𝑞𝑥

𝜕𝑦
=  −

16𝜎∗𝑇∞
3

3𝑘∗  (
𝜕2𝑇

𝜕𝑦2). 

In Eqns. (2.2) and (2.3), 𝑢 and 𝑣 represent the velocity components in the 𝑥 and 𝑦 

directions, respectively, 𝛽 is the non-Newtonian Casson parameter and 𝜈 is the 

conducting fluid's kinematic viscosity. 𝛼 Stands for thermal diffusivity, 𝑇 for 

temperature, and 𝐾 and 𝑐 for the porous medium's permeability and inertia coefficient, 

respectively. 𝑇∞- the free stream temperature, and 𝛽𝑓 is the coefficient of thermal 

expansion. 
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The slip boundary condition are as follow [31].  

𝐴𝑡 𝑦 = 0 , 𝑢 = 𝑁0 (1 +
1

𝛽
)

𝜕𝑢

𝜕𝑦
, 𝑣 = 0, 𝑇 = 𝑇𝑤 + 𝑘0

𝜕𝑇

𝜕𝑦
,  

𝐴𝑠 𝑦 → ∞, 𝑢 → 0, 𝑇 →  𝑇∞. 

(2.4) 

Where 𝑁0 the velocity is slip factor and 𝐾0 is the thermal slip factor. For 𝑁0=0=𝐾0, one 

can recover the no slip case. 

2.2.3 Transformation 

Similarity transformation is a powerful mathematical techniques employed to reduce 

the complexity of partial differential equations (PDEs), typically arising in fluid 

mechanics problems. The reduction is achieved by introducing dimensionless variables. 

In current study the dimensionless variables is used from [2] as follow:  

𝜉 =
𝑥

𝑎
, 𝜂 =

𝑦

𝑎
 √𝐺𝑟

4
, 𝑓(𝜉, 𝜂) =

𝜓

𝑣𝑓𝜉 √𝐺𝑟
4 , 𝑢 =

𝜕𝜓

𝜕𝑦
, 𝑣 = −

𝜕𝜓

𝜕𝑥
.  𝜃(𝜉, 𝜂)

=
𝑇 − 𝑇∞

𝑇𝑤 − 𝑇∞
, 

   𝐺𝑟 =
𝑔𝛽𝑓(𝑇𝑤−𝑇∞)𝑎3

𝑣𝑓
2 

.  

 (2.5) 

In view of dimensionless variables Eqns. (2.5), Eqns. (2.2)-(2.4) reduce to the following 

coupled, nonlinear, dimensionless partial differential equations:  

(
𝑣ℎ𝑛𝑓

𝑣𝑓
) (1 +

1

𝛽
) 𝑓‴ + 𝑓𝑓″ − (1 + 𝜉𝞚)𝑓′2 − ((

𝜎ℎ𝑛𝑓

𝜎𝑓
) (

𝜌𝑓

𝜌ℎ𝑛𝑓
) 𝑀 +

(
𝑣ℎ𝑛𝑓

𝑣𝑓
)

1

𝐷𝑎
) 𝑓′ +

𝑠𝑖𝑛𝜉

𝜉
[(

(𝜌𝛽)ℎ𝑛𝑓

(𝜌𝑐𝑝)
ℎ𝑛𝑓

) 𝜃] = 𝜉 (𝑓′ 𝜕𝑓′

𝜕𝜉
− 𝑓″ 𝜕𝑓

𝜕𝜉
),   

 

(2.6) 

1

𝑝𝑟
[ (

𝛼ℎ𝑛𝑓

𝛼𝑓
) + (

(𝜌𝑐𝑝)
𝑓

(𝜌𝑐𝑝)
ℎ𝑛𝑓

)
4

3
𝑅𝑑] 𝜃″ + 𝑓𝜃′ = 𝜉 (𝑓′ 𝜕𝜃

𝜕𝜉
−

𝜃′𝜕𝑓

𝜕𝜉
).  

(2.7) 

Dimensionless boundary conditions are as follow 
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𝑎𝑡 𝜂 = 0, 𝑓′ = 𝑆𝑓 (1 +
1

𝛽
) 𝑓″(0), 𝑓 = 0, 𝜃 = 1 + 𝑆𝑇𝜃′(0),  

𝐴𝑠 𝜂 → ∞, 𝑓′ → 0, 𝜃 → 0.  

(2.8) 

The physical parameter that arises in Eqns. (2.6)-(2.8) are given below 

𝑀 =
𝜎𝑓𝛽0

2𝑎3

𝜌𝑓𝑣𝑓√𝐺𝑟
, 𝑃𝑟 =

𝑣𝑓

𝛼𝑓
, 𝐷𝑎 =

𝐾√𝐺𝑟

𝑎2  , 𝛬 = 𝐶𝑎, 𝑅𝑑 =
4𝜎∗𝑇∞

3

𝑘∗𝑘𝑓
,  

𝑆𝑇 =
𝐾0 √𝐺𝑟

4

𝑎
,  𝑆𝑓 =

𝑁0 √𝐺𝑟
4

𝑎
.   

In above equations, the prime denote the differentiation with respect to 𝜂,  𝜂 is the 

dimensionless radial coordinates, and 𝜉 is the dimensionless tangential coordinate, Λ is 

the local inertia coefficient (Forchheimer parameter), 𝐷𝑎 is the Darcy parameter, 𝑀 is 

the magnetic parameter and 𝐺𝑟 is the Grashof (free convection) parameter. 𝑃𝑟 is the 

Prandtl number, 𝑅𝑑 is the radiation parameter, 𝑆𝑓 and 𝑆𝑇 are the dimensional velocity 

and thermal slip parameter respectively.  

2.2.4 Physical Quantities 

Physical quantities i.e. Skin friction and Nusselt number are presented below 

1

2
𝐶𝑓 √𝐺𝑟 

4
= (1 +

1

𝛽
) 𝜉𝑓″(𝜉, 0),  (2.9) 

𝑁𝑢 √𝐺𝑟
4

= −𝜃′(𝜉, 0). (2.10) 

2.2.5 Thermo physical properties of hybrid nanofluid 

Thermo physical properties of hybrid nanofluid are follow as [32]; 
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𝜇ℎ𝑛𝑓 =
𝜇𝑓

[(1−𝜑1)(1−𝜑2)]2.5,  

𝜌ℎ𝑛𝑓 = (1 − 𝜑2){(1 − 𝜑1)𝜌𝑓 + 𝜑1𝜌1} + 𝜑2𝜌2,  

(𝜌𝑐𝑝)
ℎ𝑛𝑓

= (1 − 𝜑2) {(1 − 𝜑1)(𝜌𝑐𝑝)
𝑓

} + 𝜑2(𝜌𝑐𝑝)
2
,  

(𝜌𝛽)ℎ𝑛𝑓 = (1 − 𝜑2){(1 − 𝜑1)(𝜌𝛽)𝑓 + 𝜑1(𝜌𝛽)1} + 𝜑2(𝜌𝛽)2,  

𝜎ℎ𝑛𝑓

𝜎𝑛𝑓
= [1 +

3(
𝜎2

𝜎𝑛𝑓
−1)𝜑2

(
𝜎2

𝜎𝑛𝑓
+2)−(

𝜎2
𝜎𝑛𝑓

−1)𝜑2

],     
𝜎𝑛𝑓

𝜎𝑓
= [1 +

3(
𝜎1
𝜎𝑓

−1)𝜑2

(
𝜎1
𝜎𝑓

+2)−(
𝜎1
𝜎𝑓

−1)𝜑2

],  

𝛼ℎ𝑛𝑓

𝛼𝑛𝑓
=

2𝛼𝑛𝑓−(𝛼𝑛𝑓−𝛼2)𝜑2+𝛼2

(𝛼𝑛𝑓−𝛼2)𝜑2+2𝛼𝑛𝑓+𝛼2
 ,              

𝛼𝑛𝑓

𝛼𝑓
=

2𝛼𝑓−(𝛼𝑛𝑓−𝛼1)𝜑1+𝛼1

(𝛼𝑓−𝛼1)𝜑1+2𝛼𝑓+𝛼1
.   

2.3  Solution of Problem  

The system of non-linear PDEs are solve using the Local Non-Similarity solution 

method. The local non-similarity solution was developed by Sparrow and coworker and 

has been since applied by many researches to solve various non-similar boundary layer 

problem. To employ the local non similarity techniques to the problem under 

consideration, we follow [33] and [34] as: 

2.3.1 First Truncation Level 

The term on right hand side of Eqns. (2.6)-(2.7) are neglected under the first level 

truncation i.e. 𝜉 << 1. Consequently the terms involving 𝜉
𝜕( )

𝜕𝜉
 are small. The system 

of Eqns. (2.6)-(2.7) subject to this truncation get the following forms:  

(
𝑣ℎ𝑛𝑓

𝑣𝑓
) (1 +

1

𝛽
) 𝑓‴ + 𝑓𝑓″ − (1 + 𝜉𝞚)𝑓′2 − ((

𝜎ℎ𝑛𝑓

𝜎𝑓
) (

𝜌𝑓

𝜌ℎ𝑛𝑓
) 𝑀 +

(
𝑣ℎ𝑓

𝑣𝑓
)

1

𝐷𝑎
) 𝑓′ +

𝑠𝑖𝑛𝜉

𝜉
[(

(𝜌𝛽)ℎ𝑛𝑓

(𝜌𝑐𝑝)
ℎ𝑛𝑓

) 𝜃] = 0,     

(2.11) 

1

𝑝𝑟
[ (

𝛼ℎ𝑛𝑓

𝛼𝑓
) + (

(𝜌𝑐𝑝)
𝑓

(𝜌𝑐𝑝)
ℎ𝑛𝑓

)
4

3
𝑅𝑑] 𝜃″ + 𝑓𝜃′ = 0 , 

(2.12) 



 

21 

 

𝑎𝑡 𝜂 = 0, 𝑓′ = 𝑆𝑓 (1 +
1

𝛽
) 𝑓″(0), 𝑓 = 0, 𝜃 = 1 + 𝑆𝑇𝜃′(0), 

𝐴𝑠 𝜂 → ∞, 𝑓′ → 0, 𝜃 → 0. 

 

(2.13) 

 

2.3.2 Second Level Truncation  

To derive equation of higher order truncation, the following functions are defined as:  

𝑔 =
𝜕𝑓

𝜕𝜉
,    ℎ =

𝜕𝑔

𝜕𝜉
, 𝜙 =

𝜕𝜃

𝜕𝜉
, 𝜒 =

𝜕𝜙

𝜕𝜉
  (2.14) 

Secondary equation for 𝑔 𝑎𝑛𝑑 𝜙 and their boundary condition are obtained by taking 

derivative of Eqns. (2.6)-(2.7) and boundary condition Eqn. (2.8) with respect to 𝜉. 

(
𝑣ℎ𝑛𝑓

𝑣𝑓
) (1 +

1

𝛽
) 𝑓‴ + 𝑓𝑓″ − (1 + 𝜉𝞚)𝑓′2 − ((

𝜎ℎ𝑛𝑓

𝜎𝑓
) (

𝜌𝑓

𝜌ℎ𝑛𝑓
) 𝑀 +

(
𝑣ℎ𝑛𝑓

𝑣𝑓
)

1

𝐷𝑎
) 𝑓′ +

𝑠𝑖𝑛𝜉

𝜉
[(

(𝜌𝛽)ℎ𝑛𝑓

(𝜌𝑐𝑝)
ℎ𝑛𝑓

) 𝜃] = 𝜉(𝑓′𝑔′ − 𝑓″𝑔),       

(2.15) 

1

𝑝𝑟
[ (

𝛼ℎ𝑛𝑓

𝛼𝑓
) + (

(𝜌𝑐𝑝)
𝑓

(𝜌𝑐𝑝)
ℎ𝑛𝑓

)
4

3
𝑅𝑑] 𝜃″ + 𝑓𝜃′ = 𝜉(𝑓′𝜃 − 𝜃′𝑔),  

(2.16) 

(
𝑣ℎ𝑛𝑓

𝑣𝑓
) (1 +

1

𝛽
) 𝑔‴ + 𝑓𝑔″ + 2𝑓″𝑔 − 𝑓′𝑔′ − (1 + 𝜉𝛬)𝑔′2 − 𝛬𝑓′ −

((
𝜎ℎ𝑛𝑓

𝜎𝑓
) (

𝜌𝑓

𝜌ℎ𝑛𝑓
) 𝑀 (

𝑣ℎ𝑓

𝑣𝑓
)

1

𝐷𝑎
) 𝑔′ + (

(𝜌𝛽)ℎ𝑛𝑓

(𝜌𝑐𝑝)
ℎ𝑛𝑓

) [(
𝑠𝑖𝑛𝜉

𝜉
𝜙) (

𝜉 cos(𝜉)−sin(𝜉)

𝜉2 ) 𝜃] =

𝜉(𝑔′𝑔′ − 𝑔″𝑔),       

(2.17) 

1

𝑝𝑟
[ (

𝛼ℎ𝑛𝑓

𝛼𝑓
) + (

(𝜌𝑐𝑝)
𝑓

(𝜌𝑐𝑝)
ℎ𝑛𝑓

)
4

3
𝑅𝑑] 𝜙″ + 𝑓𝜙′ − 𝑓′𝜙 + 2𝜃′𝑔 = 𝜉(𝑔′𝜙 − 𝜙′𝑔),  

(2.18) 

Boundary conditions for second level of truncation are describe as; 

𝑎𝑡 𝜂 = 0,    𝑓′ = 𝑆𝑓(1 +
1

𝛽
)𝑓″(0),    𝑓 = 0,   𝜃 = 1 + 𝑆𝑇𝜃′(0), 𝑔′ = 𝑆𝑓(1 +

1

𝛽
)𝑔″(0),  

(2.19) 
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𝑔 = 0, 𝜙 = 𝑆𝑇𝜙′(0),   

 𝐴𝑠 𝜂 → ∞, 𝑓′ → 0, 𝜃 → 0, 𝑔′ → 0 , 𝜙 → 0.  

2.3.3 Third Level Truncation 

The conservation equations for 𝑓 and 𝜃 function and their corresponding equations for 

𝑔 and 𝜙 are preserved without approximation at the third level of truncation. The 

process of determining the first derivative of the equations (2.15) - (2.16) generates 

additional subsidiary equations for ℎ and 𝜒 as well as boundary conditions. 𝜉 << 1 is 

approximated to arrive at the system of equations for the third degree of truncation. So 

the terms involving𝜉
𝜕ℎ

𝜕𝜉
,   𝜉

𝜕ℎ′

𝜕𝜉
  𝑎𝑛𝑑 𝜉

𝜕𝜒

𝜕𝜉
  are small. The system of Eqns. Subject to this 

truncation get the following form: 

(
𝑣ℎ𝑛𝑓

𝑣𝑓
) (1 +

1

𝛽
) 𝑓‴ + 𝑓𝑓″ − (1 + 𝜉𝞚)𝑓′2 − ((

𝜎ℎ𝑛𝑓

𝜎𝑓
) (

𝜌𝑓

𝜌ℎ𝑛𝑓
) 𝑀 +

(
𝑣ℎ𝑛𝑓

𝑣𝑓
)

1

𝐷𝑎
) 𝑓′ +

𝑠𝑖𝑛𝜉

𝜉
[(

(𝜌𝛽)ℎ𝑛𝑓

(𝜌𝑐𝑝)
ℎ𝑛𝑓

) 𝜃] = 𝜉(𝑓′𝑔′ − 𝑓″𝑔),       

(2.20) 

1

𝑝𝑟
[ (

𝛼ℎ𝑛𝑓

𝛼𝑓
) + (

(𝜌𝑐𝑝)
𝑓

(𝜌𝑐𝑝)
ℎ𝑛𝑓

)
4

3
𝑅𝑑] 𝜃″ + 𝑓𝜃′ = 𝜉(𝑓′𝜃 − 𝜃′𝑔),  

(2.21) 

(
𝑣ℎ𝑛𝑓

𝑣𝑓
) (1 +

1

𝛽
) 𝑔‴ + 𝑓𝑔″ + 2𝑓″𝑔 − 𝑓′𝑔′ − (1 + 𝜉𝛬)𝑔′2 − 𝛬𝑓′ −

((
𝜎ℎ𝑛𝑓

𝜎𝑓
) (

𝜌𝑓

𝜌ℎ𝑛𝑓
) 𝑀 + (

𝑣ℎ𝑛𝑓

𝑣𝑓
)

1

𝐷𝑎
) 𝑔′ +

(
(𝜌𝛽)ℎ𝑛𝑓

(𝜌𝑐𝑝)
ℎ𝑛𝑓

) [(
𝑠𝑖𝑛𝜉

𝜉
𝜙) (

𝜉 cos(𝜉)−sin(𝜉)

𝜉2 ) 𝜃] = 𝜉(𝑔′𝑔′ − 𝑔″𝑔 + 𝑓′ℎ′ − 𝑓″ℎ),       

(2.22) 

1

𝑝𝑟
[ (

𝛼ℎ𝑛𝑓

𝛼𝑓
) + (

(𝜌𝑐𝑝)
𝑓

(𝜌𝑐𝑝)
ℎ𝑛𝑓

)
4

3
𝑅𝑑] 𝜙″ + 𝑓𝜙′ − 𝑓′𝜙 + 2𝜃′𝑔 = 𝜉(𝑔′𝜙 − 𝜙′𝑔 +

𝑓′𝜒 − 𝜃′ℎ),  

(2.23) 
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(
𝑣ℎ𝑛𝑓

𝑣𝑓
) (1 +

1

𝛽
) ℎ‴ + 𝑓ℎ″ + 3𝑓″ℎ + 4𝑔″𝑔 − 2𝑓′ℎ′ − 2𝑔′𝑔′ − (1 +

𝜉𝛬)ℎ′2 − 2𝛬𝑔′2
− ((

𝜎ℎ𝑛𝑓

𝜎𝑓
) (

𝜌𝑓

𝜌ℎ𝑛𝑓
) 𝑀 + (

𝑣ℎ𝑛𝑓

𝑣𝑓
)

1

𝐷𝑎
) ℎ′ +

(
(𝜌𝛽)ℎ𝑛𝑓

(𝜌𝑐𝑝)
ℎ𝑛𝑓

) [2 (
𝜉 cos(𝜉)−sin(𝜉)

𝜉2 ) 𝜙 +
𝑠𝑖𝑛𝜉

𝜉
𝜒 − (

𝜉2𝑠𝑖𝑛𝜉+2𝜉 cos 𝜉−2𝑠𝑖𝑛𝜉

𝜉3 ) 𝜃 =

𝜉(3ℎ′𝑔′ − ℎ″𝑔 − 2𝑔″ℎ),  

(2.24) 

1

𝑝𝑟
[ (

𝛼ℎ𝑛𝑓

𝛼𝑓
) + (

(𝜌𝑐𝑝)
𝑓

(𝜌𝑐𝑝)
ℎ𝑛𝑓

)
4

3
𝑅𝑑] 𝜒″ − 2𝜙′𝑔 + 𝑓𝜒′ − 2𝑔′𝜙 − 2𝑓′𝜒 + 𝜃′ℎ =

𝜉(2𝑔′𝜒 − 𝜒′𝑔 + ℎ′𝜙 − 2𝜙′ℎ).  

(2.25) 

Boundary condition for third level of truncation are given below; 

𝑎𝑡 𝜂 = 0,    𝑓′ = 𝑆𝑓(1 +
1

𝛽
)𝑓″(0),    𝑓 = 0,   𝜃 = 1 + 𝑆𝑇𝜃′(0), 𝑔′ = 𝑆𝑓(1 +

1

𝛽
)𝑔″(0),  

𝑔 = 0, 𝜙 = 𝑆𝑇𝜙′(0)   ℎ = 0, ℎ′ = 𝑆𝑓(1 +
1

𝛽
)ℎ″(0), 𝜒 = 𝑆𝑇𝜒′(0), 

𝐴𝑠 𝜂 → ∞, 𝑓′ → 0, 𝜃 → 0, 𝑔′ → 0 , 𝜙 → 0, ℎ′ → 0, 𝜒 → 0.   

(2.26) 

Table 2. 1: Comparison of 1st, 2nd and 3rd level truncation 

   1st Level Truncation 2nd Level Truncation 3rd  Level Truncation 

𝑀 𝜂 𝑓′(𝜂) 𝜃(𝜂) 𝑓′(𝜂) 𝜃(𝜂) 𝑓′(𝜂) 𝜃(𝜂) 

0.6 0 0.039457 1.222876 0.037808 0.708338 0.032126 0.705263 

0.6 1 0.28513 0.940597 0.201848 0.384346 0.161920 0.382956 

0.6 2 0.329241 0.689143 0.164008 0.185686 0.124797 0.176915 

 0.6 3 0.28705  0.46254 0.093917 0.070168 0.071069 0.073208 

 0.6 4 0.218836 0.296122 0.046245 0.022563 0.034546 0.027471 

0.6 5 0.146061 0.170395 0.01907 0.005172 0.015471 0.009913 

0.6 6 0.08415 0.086437 0.006894 0.000570 0.006354 0.003328 
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0.6 7 0.037761 0.034777 0.002149 0.000165 0.002118 0.000877 

0.6 8 0 0 0 0 0   0 

 

2.4  Artificial Neural Network 

An estimated solution to the current problem is investigated using an ANN approach, a 

machine learning algorithm. The Multilayer Perceptual (MLP) method is a well-known 

illustration of an ANN algorithm. It is essential to use the MLP-ANN structure in order 

to get a more precise response. Fig. 2 displays the general flowchart utilized in the 

design for (MLP-ANN) schemes. Three tiers made up the MLP-ANN system. The input 

data is sent to level 1, also known as the input layer. The hidden layer, the second level, 

examines the neurons that comprise the calculation. There could be one or more hidden 

layers in an MLP system. The output layer, sometimes referred to as the third or output 

layer, shows the outcomes of the forecasts. To reduce the difference between the target's 

estimation and the actual estimation, the data that is sent upstream from the input layer 

is sent back into the input layer via back propagation. For as long as the error rate is 

kept to a minimum, this process continues. This process ends when the MLP-ANN 

training is finished and the minimum prediction productivity is attained. The dataset is 

separated into testing, training, and validation phases in order to use the MLP-ANN 

method. Seventy percent of the data is used for training, with the remaining twenty 

percent being used for results validation and testing. In this study, we employed ANN 

to predict the output in the output layer using tan Sig and Purelin [35] as the activation 

function in a hidden layer. To improve the model's accuracy, we employed 36 neurons 

and 10 hidden layers in the current investigation. The transport function can be 

represented mathematically as follows: 
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𝑓(𝑥) =
1

1+𝑒−𝑥,      Purelin (𝑥) = 𝑥,    (2.27) 

The next phase of the MLP-ANN system's development will evaluate the forecasting 

model's accuracy. Mean square error (MSE), average relative error (ARE), and 

correlation coefficient (R) are the variables to be studied. These variables are expressed 

mathematically by the following equations: 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑋𝑡𝑎𝑟𝑔(𝑖) − 𝑋𝐴𝑁𝑁(𝑖))

2𝑁
𝑖=1 ,  (2.28) 

𝑅 = √1 −
∑ (𝑋𝑡𝑎𝑟𝑔(𝑖)−𝑋𝐴𝑁𝑁(𝑖))

2𝑁
𝑖=1

∑ (𝑋𝑡𝑎𝑟𝑔(𝑖))
2𝑁

𝑖=1

,      

(2.29) 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 (%) = [
𝑋𝑡𝑎𝑟𝑔−𝑋𝐴𝑁𝑁

𝑋𝑡𝑎𝑟𝑔
] × 100.                                                                                                                                                                                                                                   

(2.30) 

 

Fig. 2.2: Workflow of ANN 

Further the graphical representation of ANN and numerical values such as 𝑀𝑆𝐸, 

training, validation and gradient are discussed in detail in result and discussion section 

of this chapter. 
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2.5  Results and Discussion 

The work focuses on the flow behavior of a non-Newtonian hybrid nanofluid over a 

cylinder with thermal radiation embedded in a porous media. The Tiwari-Das model is 

used to design a flow problem over a cylinder for hybrid nanoparticles [32]. Using the 

Local Non-Similarity solution approach up to the third level of truncation in Eqns. 

(2.20)-(2.25) and the boundary condition Eqn. (2.26), the numerical solution of the 

boundary layer flow of the hybrid nanofluid over a cylinder is assessed. The projected 

solution is obtained using an ANN-based method known as MLP-ANN. An ANN-

based technique called MLP-ANN is used to obtain the projected solution. The 

pertained parameters of interest i.e.𝑀,𝐷𝑎, 𝑆𝑓 𝑆𝑇 and thermal radiations are displayed in 

Table 2.2. 

Table 2.3 presents the numerical values of gradient,𝑀𝑢 and MSE for scenario 1 for 

different case 1-3. Performance of the MLP-ANN is obtained 1.27× 10−10, 1.25× 10−10, 

and 1.46× 10−10 against epoch 332, 500, and 416 for scenario 1 of case 1-3. The 

numerical values of 𝑀𝑢 and gradient for an estimated result of the current problem are 

[1.0× 10−8, 1.0× 10−8, 1.0× 10−8], and [9.95× 10−8, 9.95× 10−8 and 9.94× 10−8] 

for scenario 1 of case 1-3 respectively. In an ANN, an error or cost functions is defined 

that quantifies the difference between the actual outputs and predicted outcomes using 

an MLP-ANN. The MSE simple measure of error. The training results of the designed 

ANN schemes are illustrated in Fig. 2.3(a) for Scenario 1 in case 1-3. It can be observed 

that the MSE values, which are high in the initial stages of the training sections, 

decreases with higher values of epochs. Based on the function of the MLP model, MSE 

values are decrease when the number of iterations is increases, and as a result, the 

training session of the ANN scheme vanishes as the maximum accuracy is reached. The 
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training set-up of the ANN schemes is depicted in Fig. 2.3(b). Gradient descent allows 

the optimization of the network parameters by moving in the opposite direction to the 

gradient of the loss function. In Fig. 2.3(b), it is observed that the gradient decreases 

with increasing values of epochs. The training phase was finished error-free for each 

scheme, and there is no error repetition. Zero is the valuation of the verification test. A 

histogram of the error between the desired and expected values during feed forward 

neural network training is called an error histogram. These flaws show how the intended 

outputs and the predicted outputs diverge. The error histogram of the numerical data of 

the suggested problem shows the difference between the expected and actual values 

(Fig. 2.3(c)). However, it is obtained that numerical evaluations of error presented on 

x-axis of plots are minor. The existing situation of data utilized in testing, training, and 

validation of ANN schemes are presented in Fig. 2.3(d). The y-axis shows the results 

of the ANN scheme, while the x-axis shows the goal numerical values. The proximity 

of data points representing target and predicted values is found to have very little 

inaccuracy. An dramatic reduction in average error is indicated by the fitted line near 

the zero line. A high correlation exists between an ANN's accuracy and R values that 

are almost equal to 1. It should be highlighted that the computed R values for each stage 

are almost equal to 1. Fig. 2.3(d) illustrates how the ANN is built to produce predicted 

values with extremely low error rates. Fig. 2.3(e) shows a visual evaluation of the 

performance of ANN model. When the graphs are researched, it is observed that the 

model-predicted output and the actual output are well matched, and the ANN model 

vanishes at almost zero error-line. It is also demonstrated that the optimal curve fitness 

function asymptotically satisfies the boundary condition. In the presence of a magnetic 

force in the system, a resistive force is generated, known as the Lorentz force. The 

resistive Lorentz force in a hybrid nanofluid causes the magnetic parameter M to start 
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dampening the velocity. According to Fig. 2.3 (f), the non-Newtonian hybrid 

nanofluid's boundary layer flow velocity significantly decreased as M increased. Fig. 

2.3 (g) illustrates how the magnetic parameter M affects the temperature profile. A 

stronger magnetic field, which resists fluid motion and produces more heat, is the 

outcome of a higher 𝑀 value. Consequently, as 𝑀 grows, the fluid's temperature rises. 

Table 2. 2: Relevant parameters for the suggested model's flow analysis. 

Scenario Case Pertained parameter 

  𝑀 Da 𝑆𝑓 𝑆𝑇 𝑅𝑑 

 1 0.3      

1 2 0.6 0.5 0.1 0.5 3.4 

 3 0.9     

 1  0.5    

2 2 0.6 0.7    

 3  0.9    

 1   0.1   

3 2   0.2   

 3   0.3   

 1    0.5  

4 2    0.7  

 3    0.9  

 1     3.4 

5 2     4.4 

 3          5.4 

 

Table 2. 3: Relative assessment over backpropagation networks for scenario 1 

Sce

nari

o 

Case Error analysis for different level Performance Gradient 𝑴𝒖 Epoch 

  Training Validation Testing     

1 

1 5.6834× 10−9 1.08339× 10−7 2.8634× 10−9 5.68× 10−9 9.87× 10−8 1× 10−8  151 

2 5.2823× 10−9 5.50863× 10−9 1.0798× 10−7 5.28× 10−9 9.82× 10−9 1× 10−8 146 

3  3.2678× 10−9 1.78245× 10−8 1.15376× 10−9 3.27× 10−9 9.87× 10−9 1× 10−8 108 
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(a)Performance of ANN in terms of MSE               (b)Gradient of function using ANN 

   
(c) Error analysis in term of Histogram           (d) Linear regression analysis with ANN 
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        (e) Curve fitness function with ANN                        (f) Effect of  𝑀 on velocity profile 
   

 

 (g) Effect of  𝑀 on velocity profile  

Fig. 2.3: A visual representation of the data analysis for case 1 in scenarios 1. 
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The gradient, Mu, MLP ANN performance, and MSE tabulated data for cases 1-3 of 

scenario 2 are shown in Table 2.4. An illustration of the MSE for scenario 2 may be 

found in Fig. 2.4(a). The accuracy of the suggested MLP-ANN model was determined 

to be at 10−10, as shown in Fig. 2.4(a), which shows its convergence. For Scenario 2, 

the gradient is represented graphically in Fig. 2.4(b). By moving in the opposite 

direction as the loss function's gradient, the gradient enables network parameter 

optimization with a convergence rate of 10−5 as illustrated in Fig. 2.4(b). Fig. 2.4(c) 

shows the error histogram, which shows the discrepancy between the fluid model's 

actual and anticipated values over a cylinder. It is calculated how accurate and valid the 

predicted solution is. Fig. 2.4(d) displays the correlation index and linear regression for 

Scenario 2. The best fit of the model was achieved when the correlation index value 

was near 1. Fig. 2.4(e) displays the curve fitness function that works well in scenario 2. 

Additionally, the asymptotic satisfaction of the boundary condition by the optimal 

curve fitness function is shown. Darcy number 𝐷𝑎 effects on velocity of the MHD 

boundary layer flow of a hybrid nanofluid over a cylinder is shown in Fig. 2.4(f). The 

fluid velocity and heat transfer study of the MHD boundary layer flow of a non-

Newtonian hybrid nanofluid is significantly influenced by the Darcy number. When the 

Darcy number is high, the fluid velocity is less resistive due to the high permeability 

factor of the porous media. The velocity of the Casson hybrid nanofluid increases as 

the Da number grows. As the Darcy number Da increases, the fluid's temperature drops. 

The impact of Da on the temperature profile is depicted in Fig. 2.4(g). 
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Table 2. 4: Relative assessment over backpropagation networks for scenario 2 case 3. 

Sc

en

ari

o 

Cas

e 

Error analysis for different level Performance Gradient 𝑴𝒖 Epoch 

  Training  Validation Testing     

2 

1 1.3936× 10−9 3.1286× 10−9 1.3226× 10−9 1.39× 10−9 9.73× 10−8 1× 10−9 189 

2 5.0949× 10−9 5.5887× 10−9 5.23985× 10−9 5.09× 10−9 9.72× 10−8 1× 10−8 190 

3 4.9633× 10−9 5.03200× 10−9 1.60619× 10−8 4.96× 10−9 9.71× 10−8 1× 10−8 108 

  

     
     (a) Performance of ANN in terms of MSE           (b) Gradient of function using ANN 

     
(c) Error analysis in term of Histogram        (d) Linear regression analysis with ANN. 
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         (c) Curve fitness function with ANN                    (f) Effect of Da on velocity profile 
   

 
 (g) Effect of Da on temperature profile 

Fig. 2.4: A visual representation of the data analysis for case 1 in scenario 2. 
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Table 2.5 presents the tabulated values of the gradient,𝑀𝑢, performance of MLP ANN 

and MSE for case 1-3 of Scenario 3. Fig. 2.5(a) depict the graphical representation of 

the MSE for scenario 3. The suggested ANN model's convergence is depicted in Fig. 

2.5(a), where accuracy is found to be at 10−8 and 10−10 respectively. Fig. 2.5(b) shows 

the convergence of the gradient curve for the predicted solution of the non-Newtonian 

hybrid nanofluid over a cylinder for scenario 3 respectively. The error histogram is 

displayed in Fig. 2.5(c) for scenario 3 respectively. The correlation indexand linear 

regression for scenario 3 are shown in Fig. 2.5(d). The optimal curve fitness functions 

for scenario 3 are shown in Fig. 2.5(e). The effect of 𝑆𝑓 on velocity profile is depicted 

in Fig. 2.5 (f). As slip parameter 𝑆𝑓 increases the velocity of the fluid near the surface 

increases, showing an enhancement in flow due to stronger stretching of the cylinder 

surface. However, beyond a certain distance from the surface, the velocity gradually 

decrease due to higher viscous and inertial resistance. The impact of slip parameter 𝑆𝑓 

on the fluid temperature is shown in Fig. 2.5 (g). The temperature of the flow field 

reduces and thereby decrease the thermal boundary layer thickness as there is a growth 

in the value of slip parameter 𝑆𝑓 as displayed in Fig. 2.5 (g). 

Table 2. 5: Relative assessment over backpropagation networks for scenario 3 

Sce

nar

io 

Case Error analysis for different level Performance Gradient 𝑴𝒖 Epoch 

  Training Validation Testing     

3 

1 8.7602× 10−9 4.66882× 10−9 6.7907 × 10−9 8.76× 10−9 9.69× 10−8 1× 10−8 95 

2 6.4703× 10−9 8.24242× 10−9 5.8979× 10−9 6.47× 10−9 9.53× 10−8 1× 10−8 108 

3 3.933× 10−9 6.64022× 10−9 6.3471× 10−9 3.93× 10−9 9.80× 10−8 1× 10−8 76 

 

 



 

45 

 

 

   
         (a) Performance of ANN in terms of MSE             (b) Gradient of function using ANN 

   
 (c) Error analysis in terms of Histogram            (d) Linear regression analysis with ANN 
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                      (e) Curve fitness function using ANN             (f) Effect of 𝑆𝑓 on velocity profile 

    

  (g) Effect of 𝑆𝑓 on temperature profile 

Fig. 2.5: A visual representation of the data analysis for case 1 in scenarios 3. 
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Table 2.6-2.7 presents the tabulated values of the gradient,𝑀𝑢, performance of MLP 

ANN and MSE for case 1-3 of Scenario 4-5. Fig. 2.6(a)-2.7(a) depict the graphical 

representation of the MSE for scenario 4-5 The suggested ANN model's convergence 

is displayed in Figs. 2.6(a)–2.7(a), where accuracy is found to be at 10−8 and 10−10 

correspondingly. Fig. 2.6(b)-2.7(b) show, the convergence of the gradient curve for the 

predicted solution of the non-Newtonian hybrid nanofluid over a cylinder for scenario 

4-5 respectively. The error histogram is displayed in Fig. 2.6(c)-2.7(c) for scenario 4-5 

respectively. The correlation index and linear regression for scenario 4-5 are shown in 

Fig. 2.6(d)-2.7(d). The optimal curve fitness functions for scenario 4-5 are shown in 

Fig. 2.6(e)-2.7(e). The effects of the thermal jump parameter 𝑆𝑇 are shown in Fig. 2.6 

(f). When the effects  𝑆𝑇 get improve, the interaction between the wall and fluid become 

relatively weak, and as a result, the velocity near the surface decrease. Fig.2.6 (g) shows 

the effects of thermal jump parameter 𝑆𝑇 on the thermal boundary layer of a Casson 

hybrid nanofluid. It should be noted that as the thermal jump 𝑆𝑇 increases, then thermal 

boundary layer decrease. Additionally, it is examine that the thermal slip parameter has 

its greatest impact close to the surface wall surface. Figures 2.7(f) and 2.7(g) show how 

the radiation parameter Rd affects the velocity and temperature profile. The thermal 

boundary layer's thickness rises in tandem with the radiation parameter. This means 

that a greater proportion of the fluid is undergoing the heating effect, which raises the 

temperature and causes the velocity to rise in tandem. 
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Table 2. 6: Relative assessment over backpropagation networks for scenario 4 

Scen

ario 

Case Error analysis for different level  Performance Gradient 𝑴𝒖 Epoch 

  Training Validation Testing     

 1 1.5996× 10−10 1.75631× 10−10 2.5186× 10−10 1.60× 10−10 9.94× 10−8 1× 10−8 244 

4 2 1.0187× 10−10 5.68581× 10−11 1.7961× 10−10 1.02× 10−10 9.50× 10−8 1× 10−9 193 

 3 2.7781× 10−10 2.11341× 10−10 3.0402× 10−10 2.78× 10−10 9.99× 10−8 1× 10−8 260 

 

Table 2. 7: Relative assessment over backpropagation networks for scenario 5  

Scen

ario 

Case Error analysis for different level Performance Gradient 𝑴𝒖 Epoch 

  Training Validation Testing     

 1 7.1889× 10−10 6.35115× 10−10 7.6243× 10−10 7.19× 10−10 9.67× 10−8 1× 10−8 189 

5 2 4.584 × 10−10 6.73473× 10−10 3.1610× 10−10 4.58× 10−10 9.72× 10−8 1× 10−8 242 

 3 1.6488× 10−10 1.03590× 10−10 1.607 × 10−10 1.65× 10−10 9.92× 10−8 1× 10−8 146 
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 (a) Performance of ANN in terms of MSE           (b) Gradient of function using ANN

   
   (c) Error analysis in terms of Histogram          (d) Linear regression analysis with ANN 
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         (e) Curve fitness function using ANN                 (f) Effect of 𝑆𝑇 on velocity profile 

   
 (g) Effect of 𝑆𝑇 on velocity profile 

Fig. 2.6: A visual representation of the data analysis for case 1 in scenarios 4. 
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      (a) Performance of ANN in terms of MSE         (b) Gradient of function using ANN 

   
         (c) Error analysis in terms of Histogram      (d) Linear regression analysis with ANN 
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           (e) Curve fitness function using ANN            (f) Effect of Rd on velocity profile 

 
  (g) Effect of Rd on temperature.  

  Fig. 2.7: A visual representation of the data analysis for case 1 in scenarios 5. 
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The impact of magnetic parameter 𝑀 on the coefficient of skin friction is depicted in 

Fig. 2.8 (a). As the magnetic field intensity increases, the Lorentz force generation 

becomes stronger, which causes a decrease in velocity. The fluid motion near the 

surface of the circular cylinder decreases as a result of the Lorentz force acting against 

the direction of fluid flow. Taking into account that fluid speed and magnetic field 

intensity are inversely correlated, which lowers the skin friction coefficient. The impact 

of the Forchheimer parameter Λ on the skin friction coefficient is seen in Fig. 2.8 (b). 

The inertia effect intensifies as the flow slows down on the cylinder surface as the 

Forchheimer parameter rises. Figure 2.8 (c) illustrates how the Darcy number 𝐷𝑎 

affects the skin friction coefficient and shows that the skin friction coefficient 𝐶𝑓 tends 

to increase in tandem with the Darcy number's growth. Fig. 2.8 (d) shows how the 

Radiation parameter 𝑅𝑑 affects the Nusselt number. The findings show that the local 

Nusselt number decreases as the radiation parameter 𝑅𝑑 increases. This process is 

caused by the boundary layer's radiative heat transport being stronger, which lowers the 

temperature gradient at the solid-fluid interface. The impact of Prandtl number 𝑃𝑟 on 

the Nusselt number coefficient is shown in Fig. 2.8 (e). The results demonstrates that a 

higher Prandtl number 𝑃𝑟 decreases the thermal diffusivity of the fluid and hence makes 

the thermal boundary layer thinner near the cylinder surface. This increases the 

temperature gradient at the wall, which increases the local Nusselt number. 
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(a): Effect of Λ on Skin friction Coefficient        (b): Effect of 𝑀 on Skin friction Coefficient 

 
(c): Effect of 𝐷𝑎 on Skin friction Coefficient 

 

 
(d):Effect of 𝑅𝑑 on Coefficient of Nusselt          (e):Effect of 𝑃𝑟 on Coefficient of Nusselt 

                                 number                                                 number 
 

Fig. 2.8: Effects of various parameters on the Nusselt number and skin friction 

coefficient. 
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2.6  Conclusion 

An Artificial Neural Network (ANN) is used in this work to examine boundary layer 

flow and heat transfer enhancement in a Casson hybrid nanofluid over a cylinder, taking 

into account partial slip, non-Darcy porous medium, and thermal radiation effects. The 

following are the main findings from the analysis: 

Velocity profile against the dimensionless parameter decrease with increasing𝑀,𝛽, 

𝑆𝑓and 𝑆𝑇 parameters, whereas velocity profile increases with increasing 𝐷𝑎 parameters. 

Temperature profile is increases with increasing dimensionless parameter 𝑅𝑑 and 

decreases with increasing 𝑝𝑟, 𝑆𝑓 and𝑆𝑇. 

Skin friction coefficient decrease with increasing magnetic parameter 𝑀 and 

Forchhiemeter parameter 𝛬, while decreasing with increasing darcy parameter 𝐷𝑎. 

Coefficient of Nusselt number decrease with increasing radiation parameter 𝑅𝑑 while 

increasing with higher value of prandlt parameter 𝑃𝑟. 

A very small error margin was found when comparing the calculated results with the 

output anticipated by the ANN and the supervised machine learning method. 

The proposed ANN model is considered reliable for of its high accuracy, which is 

consistent across training, testing, and validation when compared to the computational 

techniques. 
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Chapter 3 

Physics Informed Neural Network Simulation of Non-

Newtonian Flow around Cylinder  

3.1   Introduction 

In the domain of artificial intelligence and machine learning, physics informed neural 

networks become hot topic due to its wide range of application in flow problem. Physics 

Informed Neural Network (PINN) are a successful approach for identifying the hidden 

physics underlying transport phenomena through training on big set of data. This work 

addresses non-Newtonian Casson fluid flow over cylinder with magnetic effect through 

porous medium. The models are constructed and trained using TensorFlow, and the 

predicted solution that are generated are compared to those derived through bvp4c 

techniques. 

3.2  Problem Formulation 

The geometry and flow physics of the problem are discussed in section 2.2. The 

governing boundary layer equation are follow as [31] 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0, (3.1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜈 (1 +

1

𝛽
)

𝜕2𝑢

 𝜕𝑦2 −
𝛼𝐵0

2

𝜌
𝑢 −

𝜈

𝐾
𝑢 − 𝑐𝑢2 + 𝑔𝛽1(𝑇 − 𝑇∞) sin (

𝑥

𝑎
),   (3.2) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2 −
𝜕𝑞𝑥

𝜕𝑦
. (3.3) 

Whereas thermal radiation is denoted by 

𝜕𝑞𝑥

𝜕𝑦
=  −

16𝜎∗𝑇∞
3

3𝑘∗  (
𝜕2𝑇

𝜕𝑦2). 

The no slip boundary condition are as follow [2] 
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𝐴𝑡 𝑦 = 0 , 𝑢 = 0, 𝑣 = 0, 𝑇 = 𝑇𝑤  

𝐴𝑠 𝑦 → ∞, 𝑢 → 0, 𝑇 → 𝑇∞ . 

     

(3.4) 

Stream function 𝜓  is defined by 𝑢 =
𝜕𝜓

𝜕𝑦
  and𝑣 = −

𝜕𝜓

𝜕𝑥
. The dimensionless variable are 

expressed as follow [31] 

𝜉 =
𝑥

𝑎
, 𝜂 =

𝑦

𝑎
 √𝐺𝑟

4
, 𝑓(𝜉, 𝜂) =

𝜓

𝜈𝜉 √𝐺𝑟
4 , 𝜃(𝜉, 𝜂) =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
, 𝐺𝑟 =

𝑔𝛽1(𝑇𝑤−𝑇∞)𝑎3

𝜈2 
   (3.5) 

Applying non-similarity transformation, Eqn. (3.1) i.e. continuity equation satisfied 

identically, however of Eqns. (3.2)-(3.3) are obtained as follow; 

(1 +
1

𝛽
) 𝑓‴ + 𝑓𝑓″ − (1 + 𝜉𝛬)𝑓′2 − (𝑀 +

1

𝐷𝑎
) 𝑓′ +

𝑠𝑖𝑛𝜉

𝜉
[𝜃] = 𝜉 (𝑓′ 𝜕𝑓′

𝜕𝜉
−

𝑓″ 𝜕𝑓

𝜕𝜉
),   

 

(3.6) 

1

𝑝𝑟
[ 1 +

4

3
𝑅𝑑] 𝜃″ + 𝑓𝜃′ = 𝜉 (𝑓′ 𝜕𝜃

𝜕𝜉
−

𝜃′𝜕𝑓

𝜕𝜉
)   (3.7) 

Dimensionless boundary conditions are obtained as follow 

𝑎𝑡 𝜂 = 0, 𝑓′ = 0, 𝑓 = 0, 𝜃 = 1  

𝐴𝑠 𝜂 → ∞, 𝑓′ → 0, 𝜃 → 0  

(3.8) 

The physical parameter that arises in Eqns. (3.6)-(3.8) are discussed in section 2.2. 

3.3  Solution of the Problem  

To numerically solve the considered problem, we use the local non similarity solution 

method as discussed in section 2 as: 

3.3.1 First Level Truncation: 

By using first level truncation, the terms on the right side of Eqns. (3.6)-(3.7) are 

disregarded, presuming that the terms involved 𝜉
𝜕( )

𝜕𝜉
   are minimal. The system of 

Equations (3.6)–(3.7) is true when 𝜉 << 1. 
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(1 +
1

𝛽
) 𝑓‴ + 𝑓𝑓″ − (1 + 𝜉𝞚)𝑓′2 − (𝑀 +

1

𝐷𝑎
) 𝑓′ +

𝑠𝑖𝑛𝜉

𝜉
[𝜃] = 0      (3.9) 

1

𝑝𝑟
[ 1 +

4

3
𝑅𝑑] 𝜃″ + 𝑓𝜃′ = 0 , (3.10) 

Boundary condition for first level   

𝑎𝑡 𝜂 = 0, 𝑓′ = 0, 𝑓 = 0, 𝜃 = 1, 

𝐴𝑠 𝜂 → ∞, 𝑓′ → 0, 𝜃 → 0. 

(3.11) 

3.3.2 Second Level Truncation  

The following terms are defined in order to construct the equation of higher order 

truncation: 

𝑔 =
𝜕𝑓

𝜕𝜉
,    ℎ =

𝜕𝑔

𝜕𝜉
, 𝜙 =

𝜕𝜃

𝜕𝜉
, 𝜒 =

𝜕𝜙

𝜕𝜉
   (3.12) 

The derivative of equations (6-7) and the boundary condition Eqn. (8) with respect to 

𝜉yields the subsidiary equations for 𝑔 and 𝜙 and their boundary condition. 

(1 +
1

𝛽
) 𝑓‴ + 𝑓𝑓″ − (1 + 𝜉𝞚)𝑓′2 − (𝑀 +

1

𝐷𝑎
) 𝑓′ +

𝑠𝑖𝑛𝜉

𝜉
(𝜃) = 𝜉(𝑓′𝑔′ −

𝑓″𝑔),       

(3.13) 

1

𝑝𝑟
[ 1 +

4

3
𝑅𝑑] 𝜃″ + 𝑓𝜃′ = 𝜉(𝑓′𝜃 − 𝜃′𝑔),  (3.14) 

(1 +
1

𝛽
) 𝑔‴ + 𝑓𝑔″ + 2𝑓″𝑔 − 𝑓′𝑔′ − (1 + 𝜉𝛬)𝑔′2 − 𝛬𝑓′ − (𝑀 +

1

𝐷𝑎
) 𝑔′ +

[(
𝑠𝑖𝑛𝜉

𝜉
𝜙) (

𝜉 cos(𝜉)−sin(𝜉)

𝜉2 ) 𝜃] = 𝜉(𝑔′𝑔′ − 𝑔″𝑔),       

(3.15) 

1

𝑝𝑟
[ 1 +

4

3
𝑅𝑑] 𝜙″ + 𝑓𝜙′ − 𝑓′𝜙 + 2𝜃′𝑔 = 𝜉(𝑔′𝜙 − 𝜙′𝑔),  (3.16) 

The boundary conditions are describe as; 

𝑎𝑡 𝜂 = 0,    𝑓′ = 0,    𝑓 = 0,   𝜃 = 1, 𝑔′ = 0,  

𝑔 = 0, 𝜙 = 0,   

 𝐴𝑠 𝜂 → ∞, 𝑓′ → 0, 𝜃 → 0, 𝑔′ → 0 , 𝜙 → 0.  

(3.17) 
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3.3.3 Third Level Truncation: 

At the third truncation level, the conservation equations for the 𝑓 and 𝜃 functions, as 

well as their corresponding equation for 𝑔 and 𝜙, are maintained without 

approximation. The first derivative of Eqns. (3.13)–(3.14) is used to define boundary 

conditions and other subsidiary equations for ℎ and  𝜒. The equation system for the 

third level of truncation is obtained by eliminating terms that 

involve 
𝜕ℎ

𝜕𝜉
,   𝜉

𝜕ℎ′

𝜕𝜉
  𝑎𝑛𝑑 𝜉

𝜕𝜒

𝜕𝜉
 . 

(1 +
1

𝛽
) 𝑓‴ + 𝑓𝑓″ − (1 + 𝜉𝞚)𝑓′2 − (𝑀 +

1

𝐷𝑎
) 𝑓′ +

𝑠𝑖𝑛𝜉

𝜉
𝜃 = 𝜉(𝑓′𝑔′ −

𝑓″𝑔),       

(3.18) 

1

𝑝𝑟
[ 1 +

4

3
𝑅𝑑] 𝜃″ + 𝑓𝜃′ = 𝜉(𝑓′𝜃 − 𝜃′𝑔),  (3.19) 

(1 +
1

𝛽
) 𝑔‴ + 𝑓𝑔″ + 2𝑓″𝑔 − 𝑓′𝑔′ − (1 + 𝜉𝛬)𝑔′2 − 𝛬𝑓′ − (𝑀 +

1

𝐷𝑎
) 𝑔′ +

[(
𝑠𝑖𝑛𝜉

𝜉
𝜙) (

𝜉 cos(𝜉)−sin(𝜉)

𝜉2 ) 𝜃] = 𝜉(𝑔′𝑔′ − 𝑔″𝑔 + 𝑓′ℎ′ − 𝑓″ℎ),       

(3.20) 

1

𝑝𝑟
[ 1 +

4

3
𝑅𝑑] 𝜙″ + 𝑓𝜙′ − 𝑓′𝜙 + 2𝜃′𝑔 = 𝜉(𝑔′𝜙 − 𝜙′𝑔 + 𝑓′𝜒 − 𝜃′ℎ),  (3.21) 

(1 +
1

𝛽
) ℎ‴ + 𝑓ℎ″ + 3𝑓″ℎ + 4𝑔″𝑔 − 2𝑓′ℎ′ − 2𝑔′𝑔′ − (1 + 𝜉𝛬)ℎ′2 −

2𝛬𝑔′2
− (𝑀 +

1

𝐷𝑎
) ℎ′ + 2 (

𝜉 cos(𝜉)−sin(𝜉)

𝜉2 ) 𝜙 +
𝑠𝑖𝑛𝜉

𝜉
𝜒 −

(
𝜉2𝑠𝑖𝑛𝜉+2𝜉 cos 𝜉−2𝑠𝑖𝑛𝜉

𝜉3 ) 𝜃 = 𝜉(3ℎ′𝑔′ − ℎ″𝑔 − 2𝑔″ℎ),  

 

 

 

(3.22) 

1

𝑝𝑟
[ 1 +

4

3
𝑅𝑑] 𝜒″ − 2𝜙′𝑔 + 𝑓𝜒′ − 2𝑔′𝜙 − 2𝑓′𝜒 + 𝜃′ℎ = 𝜉(2𝑔′𝜒 − 𝜒′𝑔 +

ℎ′𝜙 − 2𝜙′ℎ).  

(3.23) 

Boundary condition for third level of truncation are given below; 

𝑎𝑡 𝜂 = 0,    𝑓′ = 0,    𝑓 = 0,   𝜃 = 1, 𝑔′ = 0,  

𝑔 = 0, 𝜙 = 0   ℎ = 0, ℎ′ = 0, 𝜒 = 0, 

(3.24) 
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𝐴𝑠 𝜂 → ∞, 𝑓′ → 0, 𝜃 → 0, 𝑔′ → 0 , 𝜙 → 0, ℎ′ → 0, 𝜒 → 0.   

 Table 3.1: Comparison of Numerical results of 1st, 2nd and 3rd level truncation 

   1st Level Truncation 2nd Level Truncation 3rd  Level Truncation 

𝑀 𝜂 𝑓′(𝜂) 𝜃(𝜂) 𝑓′(𝜂) 𝜃(𝜂) 𝑓′(𝜂) 𝜃(𝜂) 

1.5 0 0 1 0 1 0 1 

1.5 1 0.747233 0.504009 0.684976 0.572098 0.648984 0.590136 

1.5 2 0.509204 0.191026 0.344373 0.257344 0.362810 0.260877 

1.5 3 0.229760 0.054301 0.119951 0.089297 0.140155 0.093915 

1.5 4 0.090951 0.014795 0.040461 0.029879 0.046481 0.030022 

1.5 5 0.030818 0.003560 0.012079 0.009042 0.014496 0.009359 

1.5 6 0.009585 0.000813 0.003234 0.002582 0.004074 0.002753 

1.5 7 0.002689 0.00017 0.000690 0.000065 0.000839 0.000645 

1.5 8 0 0 0 0 0 0 

 

3.4  Physics Informed Neural Network 

A neural network's input layer, hidden layer, and output layer are a sequence of parallel 

layers that make up its fundamental architecture. Fully Connected Networks (FCN) are 

designed to collect data, process it, and then provide output. By dividing the one-

dimensional space in direction η into discrete nodes, we begin the fundamental 

procedures of implementing PINN to solve the following equations. The use of PINN 

requires consideration of a finite range for 𝜂. Two distinct node types are shown in Fig. 

3.2: the green nodes, also known as collocated nodes, and the blue nodes, also known 

as boundary nodes. When the boundary condition is applied at zero and infinity, the 

first and last nodes are assessed as boundary nodes. The intermediate nodes, which are 

considered to be collocated nodes scattered along the 𝜂-axis, are in charge of obeying 

odes or physical laws at the positions between 𝜂0 and 𝜂∞. 



 

61 

 

Fig. 3.1 : PINN Architecture 

The first layer in Fig. 3.2 is referred as input layer that keep the input data(𝜂𝑖). The next 

is to setup a function that maps the input data 𝑥𝑖 = 𝜂𝑖  to the output 𝑦𝑖̂ = [𝑓(𝜂𝑖), 𝜃(𝜂𝑖)]. 

The function 𝑦𝑖̂ = 𝐹(𝑥𝑖, 𝑤, 𝑏) involve some learning parameter that is known as weight 

and bias. These learning parameters need to be trained to get suitable approximation 

function, such that 𝑦𝑖̂ appropriately expect preferred value 𝑦𝑖 (sample output data). The 

difference between (𝑦𝑖) and (𝑦𝑖̂) are calculated by a function termed as Loss function. 

The loss function can be calculated in a mean square error format, defined as,  

  Loss =
[ ∑ (𝑦𝑖−𝑦𝑖̂)2𝑖=𝑚

𝑖=0  ]

𝑚
  (3.25) 

Network structure illustrated in Fig. 3.2 indicates the input data 𝜂𝑖 supplied to the 

network. The first layer of inputs has single neuron storing given data. Thereafter there 

are three number of hidden layers containing arbitrary number of neuron and then the 

output layer illustrated in Fig. 3.2 consists of two neurons. The number of output layer 

neurons varies based on the unknown functions of the provided problem. There is a link 

connecting each neuron in the provided architecture in which the data flows between 

neurons. There is a weight for every link, which reduces or amplifies the data from the 
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origin node to the destination nodes. The weight analyzes the extent to which each node 

contributes to the results of the output. Weighted inputs are added together and a bias 

term is included for the calculation of participation of all nodes on predicted nodes. 

 𝑧𝑖 = 𝑏𝑖 + ( ∑ 𝑎𝑗 . 𝑤𝑖,𝑗
𝑘𝑗=𝑛

𝑗=1  )  (3.26) 

The bias term (𝑏𝑖) is added to only input and hidden layers and it has a value of one. 𝑧𝑖 

is a conventional regression analysis that is manifested as 𝑓(𝑥) = 𝛼𝑥 + 𝛽, where 𝛼 and 

𝛽 are corresponding to weight and biases in the neural network simulations. After that 

an activation function is used which restricted the output in particular range. In current 

study the tangent hyperbolic function is utilized and the resulted 𝑧𝑖 is passes through 

the given activation function. 

 Output(𝑖) = 𝑡𝑎𝑛ℎ (𝑧𝑖)  (3.27) 

To compute the output(𝑧𝑖), the information passes through forward direction between 

each neuron. The process is preceded layer by layer until the estimated value 𝑦𝑖̂ is 

computed. Since the process is started by the guessed value of weight and biases so it 

is presumed to see meaningful deviation in between the 𝑦𝑖̂  and 𝑦𝑖. The value of weight 

and biases should be adjusted to reduce the computed loss function.  

Iteratively adjusting the weights and biases to lower the loss function is the optimization 

process. This is accomplished by employing the backpropagation method and the chain 

rule to compute gradients of the loss with respect to the network parameters. These 

updates are performed in this study using the Adaptive Moment Estimation (Adam) 

optimizer. The optimization process keeps going until the network has sufficiently 

learned the patterns present in the data and the loss function satisfies the given 

convergence criteria. A paradigm for creating loss functions with ordinary differential 

equations (ODEs) was presented by Raissi et al. [28–29]. The loss quantifies the degree 
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to which the expected outputs 𝑦𝑖̂ satisfy the underlying physical principles. In this work, 

we apply this approach to examine the boundary layer flow and heat transfer of a 

Casson fluid over a horizontal cylinder, taking into account the effects of a magnetic 

field and a porous medium. The governing equations are then non-dimensionalized 

and truncated to a system of ODEs (Equations (3.18)–(3.24)) through the Local Non-

Similarity technique. This system is solved through a composite loss 

function, which includes momentum loss, energy loss, and boundary condition loss, 

each being the residual of the respective governing equation or condition. The solution 

is approximated by a PINN, and the performance of the PINN is assessed by comparing 

the solutions with a reference solution that has been achieved through a standard 

numerical procedure. The convergence and accuracy of the PINN model in simulating 

the flow and thermal behavior within the given physical constraints are verified by 

exploring the total loss. We define separate loss functions for each of the problem's 

boundary conditions.  Each of the three major components of the overall loss function 

is data loss, physics-informed loss, and boundary condition loss is constructed to ensure 

that the solution of the neural network complies with the respective boundary 

constraints and differential equations. The following definitions hold for these 

components: 

For physics loss we first define the residual functions as  

 𝑅𝑓 = (1 +
1

𝛽
) 𝑓‴ + 𝑓𝑓″ − (1 + 𝜉𝞚)𝑓′2 − (𝑀 +

1

𝐷𝑎
) 𝑓′ +

𝑠𝑖𝑛𝜉

𝜉
(𝜃)  (3.28) 

 𝑅𝜃 =
1

𝑝𝑟
[ 1 +

4

3
𝑅𝑑] 𝜃″ + 𝑓𝜃′  (3.29) 

 𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑠 =
1

𝑁
∑ (𝑅𝑓

2 + 𝑅𝜃
2𝑁

𝑖=1 + 𝐿𝐵𝐶)  (3.30) 

   

Boundary condition loss can be defined as:  
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 𝐿𝐵𝐶 =
1

𝑁
∑ [ 𝑓′(0)2𝑁

𝑖=1 + 𝑓(0)2 + (𝜃(0) − 1)2 + 𝑓′(∞)2 + 𝜃(∞)2 ]     (3.31) 

Data Loss is define as  

𝐿𝑑𝑎𝑡𝑎 =
1

𝑁
∑ (𝑦𝑖̂ − 𝑦𝑖)

2𝑁
𝑖=1     (3.32) 

Then the total loss can be calculated as: 

 𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠 = 𝐿𝑑𝑎𝑡𝑎 + 𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑠 + 𝐿𝐵𝐶   (3.33) 

 

3.5   Results and Discussion 

To start the discussion, we first investigate the PDEs Eqn. (3.6)-(3.8) which is computed 

by a well-known Local Non-Similarity method. Applying first level of truncation of 

Local Non-Similarity methods to Eqn. (3.6)-(3.8), the given PDEs is truncated to 

system of ODEs given in Eqn. (3.18)-(3.24). The system of ODEs then solved using 

PINN. Solution process is started by developing a neural network with thirty-two 

number of neuron and four number of hidden layers. For Adam optimizer the learning 

rate is set as  10−4. The concern equation is also computes using a bvp4c method. The 

𝐿2 error is measure to examine the consistency of the predicted results. It is evaluated 

that the PINN result depicts excellent agreement with numerical solution, illustrating 

the consistency and reliability of our PINN methodology. However, it is noted that as 

the number of iteration and learning rate increases the 𝐿2error decreases and PINN 

predicted solution and numerically computed solution match very well. The computed 

PINN solution and Numerical solution of 𝑓, 𝑓′, 𝑓" and 𝜃, 𝜃′ are depicted in Fig. 3.3 

using one thousand number of iterations. It is observed that the PINN predicted solution 

and the Numerical solution are far from each other. To achieve best results so that PINN 

and Numerical solution matched well we increased the number of iteration up to 
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twenty-five thousands as well as increase the number of hidden layer and neuron and 

achieve well matched solution (PINN and Numerical) that is shown in Fig. 3.4.Fig. 3.5 

shows the total loss function and physics loss of the computed solution. 𝐿2 Error 

describes about the difference between NN predicted results and numerical results. 𝐿2 

Error of our consider problem for various number of iteration and learning rate are 

illustrated in Table 3.1 
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Fig. 3.2: PINN vs. numerical solution using 1000 epochs. 

 

Fig. 3.3: PINN vs. numerical solution using 25000 epochs and deeper network. 

 

Fig. 3.4: Total and physics-informed loss convergence during training. 
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Table 3. 2: 𝐿2 error between the predicted and numerical solution for different 

number of iterations and training steps. 

Index Iteration 

Training 

Step 𝐿2 Error Index Iteration 

Training 

Step 𝐿2 Error 

0 100 10000 0.560829 119 12000 1200000 0.004366 

9 1000 100000 0.174006 129 13000 1300000 0.004468 

19 2000 200000 0.073053 139 14000 1400000 0.004526 

29 3000 300000 0.029032 149 15000 1500000 0.004196 

39 4000 400000 0.016682 159 16000 1600000 0.003862 

49 5000 500000 0.014043 169 17000 1700000 0.003606 

59 6000 600000 0.012162 179 18000 1800000 0.003418 

69 7000 700000 0.010637 189 19000 1900000 0.003284 

79 8000 800000 0.009175 199 20000 2000000 0.003184 

89 9000 900000 0.007606 219 22000 2200000 0.003018 

99 10000 1000000 0.006101 239 24000 2400000 0.002909 

109 11000 1100000 0.004943     

The tables 3.3-3.6 show the effect of hidden layers, neurons, and mesh size (𝛿) on the 

𝐿2 error of velocity 𝑓, temperature 𝜃, and their derivatives. Tables 3.3 and 3.4 analyze 

a fixed domain size 𝜂=5 and then Tables 3.5 and 3.6 take the computational domain out 

to 𝜂  =10. In each situation, adding more hidden layers and neurons results in a 

considerable decrease in 𝐿2 error, which is an evidence to the relevance of network 

depth and width for enhancing model accuracy. Comparing mesh sizes, a smaller mesh 

size (𝛿=0.02 ) always gives smaller errors than a larger mesh size (𝛿 = 0.05), as evident 

from comparing Table 3.3 vs. Table 3.4 and Table 3.5 vs. Table 3.6. For instance, the 

𝐿2 error for 𝑓 goes from 0.1489 to 0.0689 in Table 3.3 and from 0.1472 to 0.0406 in 

Table 3.4 as the mesh size is made smaller. 

However, a significant observation is made when considering the impact of expanding 

the number of neurons (network width) with a constant number of hidden layers. Table 

3.4 illustrates that merely expanding the number of neurons from 8 to 64 at 𝜂 = 5  fails 

to notably improve solution accuracy; although the loss function does reduce, 

improvement in 𝐿2 error is negligible. This implies that the issue is not one of the 
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network topology but of the small domain size. To avoid this, the third approach 

enlarges the domain size to 𝜂 = 10 with a fine mesh size  𝛿 = 0.02, as observed in 

Table 3.6. This method, coupled with the added number of neurons, enhances the 

accuracy of the solution. As compared to Table 3.4, Table 3.6 has significantly reduced 

𝐿2 errors with the same number of neurons, verifying that the combination of a large 

enough computational domain and broader network architecture provides better 

performance. For example, the 𝐿2 error for 𝑓 is reduced to 0.0112 in Table 3.6 from 

0.0406 in Table 3.4 despite having the same number of layers and neurons. These 

results verify that the robustness and accuracy of PINN solutions are extremely 

sensitive to both the selection of domain size and network architecture, and are best 

acquired through the accurate adjustment of these hyper-parameters. 
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Table 3. 3: 𝐿2 errors of  𝑓, 𝑓′, 𝑓′′, 𝜃 𝑎𝑛𝑑 𝜃′using PINN for 𝜂 = 5 and finer mesh size 

𝛿 = 0.05 with varying hidden layers and neurons 

Index Hidden 

layers 

Neurons 𝐿2error 

of 𝑓(𝜂) 

𝐿2error 

of 𝑓′(𝜂) 

𝐿2error 

of 𝑓″(𝜂) 

𝐿2error 

of 𝜃(𝜂) 

𝐿2error 

of 𝜃(𝜂) 

0 4 8 0.148939 0.142604 0.043511 0.075944 0.033358 

1 4 16 0.068957 0.064673 0.044154 0.042902 0.048436 

2 4 32 0.040901 0.030414 0.031113 0.023889 0.003824 

3 4 64 0.017434 0.015053 0.022886 0.039255 0.016300 

 

Table 3. 4:  𝐿2 errors of  𝑓, 𝑓′, 𝑓′′, 𝜃 𝑎𝑛𝑑 𝜃′using PINN for 𝜂 = 5 and finer mesh size 

𝛿 = 0.02 with varying hidden layers and neurons 

Index Hidden 

layers 

Neurons 𝐿2error 

of 𝑓(𝜂) 

𝐿2error 

of 𝑓′(𝜂) 

𝐿2error 

of 𝑓″(𝜂) 

𝐿2error 

of 𝜃(𝜂) 

𝐿2error 

of 𝜃(𝜂) 

0 4 8 0.147182 0.136272 0.070664 0.103261 0.033256 

1 4 16 0.040688 0.059677 0.022326 0.029227 0.053189 

2 4 32 0.019299 0.014726 0.013675 0.011647 0.004402 

3 4 64 0.014152 0.012186 0.012448 0.006135 0.003267 

 

Table 3. 5:  𝐿2 errors of  𝑓, 𝑓′, 𝑓′′, 𝜃 𝑎𝑛𝑑 𝜃′using PINN for 𝜂 = 10 and finer mesh size 

𝛿 = 0.05 with varying hidden layers and neurons 

Index Hidden 

layers 

Neurons 𝐿2error 

of 𝑓(𝜂) 

𝐿2error 

of 𝑓′(𝜂) 

𝐿2error 

of 𝑓″(𝜂) 

𝐿2error 

of 𝜃(𝜂) 

𝐿2error 

of 𝜃(𝜂) 

0 4 8 0.268813 0.163087 0.057719 0.113374 0.050122 

1 4 16 0.047539 0.058031 0.057354 0.050636 0.041342 

2 4 32 0.032227 0.026190 0.028598 0.020872 0.004863 

3 4 64 0.017699 0.018704 0.022899 0.021682 0.006868 

 

Table 3. 6: 𝐿2 errors of  𝑓, 𝑓′, 𝑓′′, 𝜃 𝑎𝑛𝑑 𝜃′using PINN for 𝜂 = 10 and finer mesh size 

𝛿 = 0.02 with varying hidden layers and neurons 

Index Hidden 

layers 

Neurons 𝐿2error 

of 𝑓(𝜂) 

𝐿2error 

of 𝑓′(𝜂) 

𝐿2error 

of 𝑓′(𝜂) 

𝐿2error 

of 𝜃(𝜂) 

𝐿2error 

of 𝜃(𝜂) 

0 4 8 0.253188 0.159095 0.075647 0.145722 0.044483 

1 4 16 0.038113 0.056815 0.059722 0.044117 0.034429 

2 4 32 0.019958 0.015051 0.015451 0.013998 0.004193 

3 4 64 0.011155 0.008880 0.007168 0.006232 0.002676 
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The next step is to evaluate the comparison between numerical results and PINNs 

predicted results for varying parameter values. For this purpose, we take one parameter 

values varying while the rest of parameter values are keeping constant. Then we train 

our neural network for different values of parameter and finally by taking one hundred 

and fifty-six number of neurons, eight number of hidden layer and learning rate 𝜆 =

0.0001, over numerical results and PINNs prediction are match and ensuing very small 

𝐿2 error.  

The effect of Prandtl number 𝑃𝑟 on velocity and temperature profile is examined. 

Higher Prandtl number implies that momentum transfer is more capable than heat 

transfer. This result to a thinner velocity boundary layer near the cylinder, leading to 

reduction of velocity profile. So, as the 𝑃𝑟 increase the velocity of fluid become 

decrease. Conversely, higher Prandtl number leads to thicker thermal boundary layer, 

implying that temperature gradient near the cylinder surface is smaller resulting in a 

high temperature closer to the cylinder. Fig. 3.6 demonstrates the velocity and 

temperature profile for different values of 𝑃𝑟 .The 𝐿2 error for varying number of 𝑃𝑟 

are given in Table 3.7. The PINNs predicted results are represented by dotted lines and 

numerical results are shown by solid lines. It is observed that both results are matched.  
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 Table 3. 7: 𝐿2-error of 𝑓′(𝜂) and 𝜃(𝜂) for varying values of 𝑃𝑟. 

index 𝑃𝑟 𝐿2error of 𝑓′(𝜂) 𝐿2error of 𝜃(𝜂) 

0 1.7 0.005598 0.001599 

1 5.7 0.020155 0.003462 

   2 7.7 0.005921 0.001649 

3 9.7 0.005051 0.003471 

 

 

Fig. 3.5: Velocity and temperature profiles for different values 𝑃𝑟 with PINN and 

numerical solutions. 

Effect of magnetic effect on fluid velocity and temperature is examined in the current 

study. For different values of magnetic parameter 𝑀 both the numerical results and 

PINNs result are plotted in Fig. 3.7. It is depicted that both PINNs and Numerical results 

are overlapping which shows better accuracy of the predicted PINNs solution. The 

𝐿2error for varying values of magnetic parameter 𝑀 is represented in Table 3.8. 

Furthermore, it is detected that as the values of 𝑀 enhances the Lorentz force become 

stronger leading to increase the resistance to the flow thus lowering the velocity of the 

fluid. As magnetic effect 𝑀 increase the temperature rises because of additional energy 

lead by Lorentz forces. 
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Table 3. 8: 𝐿2-error of 𝑓′(𝜂) and 𝜃(𝜂) for varying values of 𝑀. 

index 𝑀 𝐿2error of 𝑓′(𝜂) 𝐿2error of 𝜃(𝜂)  

0 1.5 0.007729 0.001469 

1 3.5 0.003324 0.000793 

2 6.5 0.011567 0.000924 

3 7.5 0.004145 0.000515 

 

 

Fig. 3.6: Velocity and temperature profiles for different values 𝑀 with PINN and 

numerical solutions. 

The Darcy parameter 𝐷𝑎 has linear relationship with permeability of the porous 

medium. As 𝐷𝑎 increases it shows that the medium is more permeable which lead to 

low resistance to the fluid flow and hence velocity of the fluid rises. A higher Darcy 

number cause lower temperature because the fluid flow through more permeable porous 

medium  face less resistance which reduces the heat generation . So the temperature of 

the fluid decrease as Darcy umber 𝐷𝑎 increases. Fig. 3.8 illustrate the effect of 𝐷𝑎 on 

velocity and temperature, both numerical and PINNs results are depicted for various 

values of 𝐷𝑎. Table 3.9 symbolizes the 𝐿2error between the PINNs and Numerical 

results for numerous values of 𝐷𝑎. 
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Table 3. 9: 𝐿2-error of 𝑓′(𝜂) and 𝜃(𝜂) for varying values of 𝐷𝑎. 

Index 𝐷𝑎 𝐿2error of 𝑓′(𝜂) 𝐿2error of 𝜃(𝜂) 

0 0.2 0.007851 0.001058 

1 0.4 0.002301 0.000371 

2 0.5 0.000909 0.00026 

3 0.6 0.003406 0.001206 

 

 

Fig. 3.7: Velocity and temperature profiles for different values 𝐷𝑎 with PINN and 

numerical solutions. 

Effect of Radiation parameter on velocity and temperature is discussed in the current 

study. In Fig. 3.9 both the numerical and PINNs results are illustrated for various 

number of Radiation parameter 𝑅𝑑. Table 3.10 present the 𝐿2 error between PINNs 

predicted results and Numerical results which show better consistency. Furthermore it 

is examine that when the radiation parameter is raised the fluid receive more thermal 

radiation which leads to raise the temperature of the fluid. As by increasing the 

Radiation parameter 𝑅𝑑, temperature enhances lead to reduce the viscosity of non-

Newtonian fluid. This reduction in viscosity of the fluid facilitate fluid to move easily 

and hence the velocity of the fluid slightly increases.  
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Table 3. 10: 𝐿2-error of 𝑓′(𝜂) and 𝜃(𝜂) for varying values of 𝑅𝑑. 

Index 𝑅𝑑 𝐿2error of 𝑓′(𝜂) 𝐿2error of 𝜃(𝜂) 

0 0.1 0.020539 0.000976 

1 0.3 0.003182 0.000556 

2 0.6 0.003282 0.003078 

3 0.8 0.003133 0.000412 

  

 

Fig. 3.8: Velocity and temperature profiles for different values 𝑅𝑑 with PINN and 

numerical solutions. 
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3.4   Conclusion 

The current research uses a Physics-Informed Neural Network (PINN) scheme to study 

the boundary layer flow and heat transfer behavior of non-Newtonian fluid flow around 

an embedded horizontal cylinder placed in a non-Darcy porous medium under a 

transverse magnetic field. The Local Non-Similarity technique is utilized to transform 

the nonlinear partial differential governing equations into a system of ordinary 

differential equations, and the resulting equations are solved with PINNs in PyTorch 

(Python). The study highlights the importance of selecting optimal neural network 

hyper parameters such as learning rate, number of hidden layers, neurons per layer, and 

training iterations for achieving reliable and precise results. A learning rate of less than 

10−4 was shown to produce very accurate predictions. As illustrated in Fig. 3.1 and 

Fig. 3.2, the comparison of PINN outcomes with traditional numerical solutions shows 

a high degree of agreement, confirming the efficacy of the suggested method. A detailed 

parametric analysis is conducted to examine the impact of various physical parameters 

on the velocity and temperature profiles. The results indicate the following: 

When the Prandtl number 𝑃𝑟 rises, the temperature and velocity profiles simultaneously 

decrease, suggesting less thermal diffusion. 

An increase in the magnetic parameter 𝑀 suppresses velocity due to the Lorentz force, 

while slightly elevating the temperature due to resistive heating. 

Higher Darcy number 𝐷𝑎 enhances velocity by increasing permeability, while slightly 

decreasing the temperature field due to enhanced fluid infiltration. 

An increase in the radiation parameter 𝑅𝑑 results in elevated velocity and temperature 

profiles due to enhanced radiative heat transfer effects within the boundary layer. 



 

76 

 

From an industrial standpoint, the study's findings are useful for processes involving 

flow control and thermal management in porous media environments, such as heat 

exchangers, thermal insulation systems, energy storage devices, and magnetic field-

assisted flow systems in the polymer processing and biomedical industries. 

On the computational front, this research demonstrates the capability of PINNs as a 

robust and flexible alternative to traditional numerical solvers. 
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