FLOW OF VISCOELASTIC FLUIDIN A
CHANNEL INDUCED BY PERISTALTIC
WAVES

Hakeem Ullah
by -to zz-Fﬁﬁ%ﬂ»M feog

Department of Mathematics
Faculty of Basic and Applied Sciences
International Islamic University, Islamabad
Pakistan

2010.

T AHIAB



Aceession Me..

MS
$39- 0533
HAF

\- Viscoelas 'HC,H'j
- ?»Q.WJ otjr\c\wd ¢



Flow of viscoelastic‘ﬂuid in a channel
induced by peristaltic waves

By
- Hakeem Ullah

Supervised by
Dr. Nasir Ali

Department of Mathematics
Faculty of Basic and Applied Sciences
International Islamic University, Islamabad
Pakistan
2010.



Flow of viscoelastic fluid in a channel
induced by peristaltic waves

By

Hakeem Ullah

. A Dissertation
Submitted in the Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
IN
MATHEMATICS

Supervised by

Dr. Nasir Ali

Department of Mathematics

Faculty of Basic and Applied Sciences
International Islamic University, Islamabad

Pakistan
2010.



dedicated To

my mother, father, family
members and friends
specially (Basharat Ullah)



Certificate

Flow of viscoelastic fluid in a channel
induced by peristaltic waves

By

Hakeem Ullah

A DISSERTATION SUBMITTED IN THE PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF THE MASTRER OF SCIENCE IN MATHEMATICS

We accept this dissertation as conforming to the required standard.

Dr. Rahmat Ellahi Dr. Nasir Ali
(Chairman) (Supervisor)
3. _coeotbib 4. W
Prof. Dr. Mdhammad Ayub Dr. Zaheer Abbas
(External’Examiner) (Internal Examiner)

Department of Mathematics
Faculty of Basic and Applied Sciences
International Islamic University, Islamabad
Pakistan
2010.



Acknowledgements

To begin with the name of Almighty ALLAH, Who inculcated the consecration upon
me to fulfill the requirement for this dissertation 1 offer my humblest Darood to the
Holy Prophet Muhammad (Peace be upon Him) who is forever a torch of guidance for
humanity.

I express my gratitude to all my teachers whose teachings have brought me to this
stage of academic zenith, in particular, I wish to express my profound gratitude to my
kind natured, eminent, affectionate, candid and devoted supervisor, Dr. Nasir Ali, who
aided me with many inspirational discussions. His many valuable comments and
suggestions were most welcome and instructive and greatly improved the clarity of
this document. I would never have been able to do it up to the standard without his
help. I am placing my earnest thanks to Dr. Nasir Ali.

I would also like to thank all my friends and others who directly or indirectly helped
me during my research period.

Finally, it would have been impossible for me to complete this work without a great

support and understanding of my family. I am placing regards to them.

Date: August 19, 2010 Hakeem Ullah



Preface

Flow of fluid induced by propagation of waves along the flexible walls of the channel, al:so
known as peristaltic flow is of vital importance and subject of recent interest due to its
" occurrence in physiology and industry. Specifically, in physiology peristaltic flows occur in
transport of urine from kidney to the bladder, movement of chyme in gastro-intestinal tract,
vasomotion of small blood vessels and the flows in many glandular ducts. In industry
peristaltic mechanism is exploited for transport of corrosive fluids and in manufacturing of
peristaltic pumps. Bio-medical instruments such as heart-lung machine also operate
according to peristaltic mechanism.

Pioneering works on peristaltic flows were made by Latham [1], Shapiro et al. [2], Fung and
Yih [3] and many others [4-6]. In all these studies the considered fluid obeys the Newton’s
law of viscosity. However, it is well known that many physiological and industrial fluids are
non-Newtonian in nature and cannot be understood using Newton’s law of viscosity. Raju
and Devanathan [8] first time analyzed the peristaltic flow by considering fluid to be non-
Newtonian. Later on several researchers investigated interaction of peristalsis with
rheologically complex fluids [7-17].

Amongst many non-Newtonian fluids Oldroyd-B fluid is quite popular. This model is
capable of predicting viscoelastic effects such as stress relaxation and retardation. Flows of
Oldroyd-B fluids were studied extensively in the literature [18-20]. However, this fluid
model does not exhibit viscoelastic effects when peristaltic flow under long wavelength
approximation is considered. The simplest non-Newtonian model which can predict
rheological effects under long wavelength assumption is Oldroyd 4-constant model. Ali et
al. [21] discussed the peristaltic motion of Oldroyd 4-consatant fluid in a planner channel.
However, there analysis is only valid for hydrodynamic fluid. The study of peristaltic flow
with magnetohydrodynamic (MHD) effects fall in the area of biomagnetic fluid dynamics
(BFD). Flows of MHD biological fluids -are quite important in bioengineering and medical
sciences. These fluids are extensively found in living creatures and there flows are greatly
influenced by magnetic field, Blood, urine, chyme etc. are examples of biofluids. Further,
MHD peristaltic flows of biofluids are useful in problems of conductive physiological fluids
for example the blood and blood pump machines and peristaltic MHD compressor.
Motivated by these facts the purpose of this dissertation is to extended the analysis of Ali et
al. [21] for a magnetohydrodynamic fluid.

The layout of the dissertation is as follow:

Basic definitions and concepts in fluid mechanics are given in chapter one. Chapter two
present a detail review of work done by Ali et al. [21]. In chapter three the work of ref. [21]
is extended for MHD fluid. Finite difference method with an iterative scheme is used for the
solution of the problem. Various interesting features of the flow problem under
consideration are analyzed and discussed through graphs.
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Chapter 1

Preliminaries

The purpose of this chapter is to provide the reader a brief overview of the fundamentals of

fluid mechanics and peristaltic flow phenomenon.

1.1 Basic Definitions and concepts in fluid mechanics

1.1.1 Fluid

Fluid is a material that flows under the action of applied shear stress.

1.1.2 Flow
A flow is the phenomena of continuous deformation which increases without limit when different

forces act upon it.

1.1.3 Deflnition of fluid mechanics

It is that branch of science in which we study the fluid at rest and motion,

1.1.4 System

A system is defined as a fixed, identifiable quantity of mass. The system boundaries separate
the system from surroundings. The boundaries of the system may be fixed or movable.



1.1.5 Density

The density of the fluid is the mass of unit volume of the fluid at given temperature and pressure.
If the density of the fluid varies throughout the system, then the density at a point is defined

to be the limiting value
om

= I : 1.1
paﬁW%V) (1.1)

where §V'is the infinitesimal volume over which the substance can be considered continum.

1.1.6 Pressure

Pressure at a point P in the fluid is defined as

P= 61}130(%)' (1-2)
where §F is the normal force acting on small element of area §A enclosing the point P.
1.1.7 Velocity field
The flow velocity of a fluid is a vector field
V =V(X,1), (1.3)

which gives the velocity of an element of fluid at a position X and time ¢. In components form

we can write .
V= u(X, )i + v(X,t)j + w(X,t)k, (1.4)
1.1.8 Stress

The stress is defined as the force per unit area of the surface on which it acts. The stress at

any point in the fluid is defined as

Stress at any point p = Jlimo(i—g), (1.5)

where 4F is the force acting on element of surface area 45 enclosing the point P.



1.1.9 Viscosity

The viscosity of the fluid is one of the important properties in the analysis of the fluid behavior
and a measure of fluid resistance to flow. Therefore, it plays vital role in every constitutive
equation of the fluid behavior. Although a fluid offers no resistance to change of shape, it does
inhibit resistance to the rate of change of shape. The property producing this resistance is
called the viscosity.

Mathematically, we have
shear stress

= Tate of shear strain’ (1.6)

i

Here p is called dynamic viscosity. The dimension of p is [M/LT].

1.1.10 Kinematic viscosity

The kinematic viscosity is the ratio of dynamic viscosity to density. It is denoted by v and is

defined as
(L.7)

<
il
1w

1.1.11 Newton’s law of viscosity

The Newton’s law of viscosity state that the shear stress is directly and linearly proportional

to the rate of deformation. For the one dimensional flow it can be written as

du
Tyz = I“Ey" (2.8)

where 7y is the shear stress and du/dy is the deformation rate.

1.1.12 Scaler field

If to each point (z,y, 2) of some region D in space there corresponds a scaler ¢(z, y, z). Then we
say that scaler field ¢ has been defined in D and ¢ is called a scaler point function of position.
Examples: The Temperature T' = T'(z,y, 2) and the density p = p(z,y, 2) at any point within
the fluid.



1.1.13 Vector fleld

If to each point (z,y, z) of some region D in space there corresponds a vector v(z,y, z). Then
we say that vector field v has been defined in D and v is called a vector function of position.

Example: The velocity V at any point (z,y, z) within the maving fluid.

1.1.14 Gradient of scaler fleld

Let ¢(=,y,2) be a differentiable scaler field. Then the gradient of ¢ denoted by V¢, is defined

as
0¢. 64, 0
Vo= azl+ 3yj+5£k (1.9)
It is evident from above expression that gradient of a scaler field is a vector field.
1.1.15 Gradient of vector field
Let V =V(z,y,z) be a differentiable vector field. Then
(1.10)

Il
§F e s
IR ST
oe v @@

defines the gradient of V. The gradient of vector field is a tensor field.

1.2 Types of flow

Steady flow

A flow is said to be steady when every fluid property is invariant with respect to time at each
point of the space. Mathematically,

(1.11)

where ¢ represents any fluid property.



Unsteady flow

A flow whose flow properties (such as velocity, pressure, density etc. ) at any position change

with time is called unsteady fiow. In unsteady flow
d¢
s #0. (1.12)

Two-dimensional flow

A flow in which the velocity field depends upon two space variables is called a two-dimensional

flow.

Uniform flow

A flow in which the velocities of fluid particles are equal at all sections of the flow.

Non-uniform flow

The flow in which the velocities of the fluid particles are not the same at all sections of the flow.

Compressible flow

A flow for which the density is not constant is called compressible flow. Flow of gases is treated
as compressible.

Incompressible flow

The flow of an incompressible fluid (i.e. for which density remains constant throughout the

fluid) is said to be an incompressible flow.

1.3 Types of forces

Inertial forces

The product of the mass and acceleration of the body particle in inertial frame of reference is

called inertial force.



Body force

A body force is the force whose magnitude is proportional to the volume of the fluid element.
Gravitational and magnetic forces are the examples of body forces.

Surface force

The surface force is the force that act on the boundaries of a medium through direct contact.

Pressure force is an example of surface force.

1.4 Basic equations

1.4.1 Equation of continuity

The law of conservation of mass asserts that matter cannot be created or destroyed. In particular
this principle may be applied to a moving fluid and its mathematical formulation is known as
the equation of continuity of the fluid. Let S be a closed surface drawn entirely within a moving
fluid, and let V' be the volume it encloses. If n is the unit normal vector to a surface element
dS, its sense being outwards from V, then the local ﬁlmetric rate of flow through dS due to
Vis

n.vVdSs,

where V is the local velocity through dS. The local mass flow rate is given by
p(n.V)dS.

The net rate of outward mass flow is then calculated by integrating the above expression over

the entire surface S that bounds V, as follow

/S n.(pV)dS.

As the total mass of the fluid within S at time ¢ is f,, pdV, the total rate of increase of fluid

d
E/;/;:dV

8

mass within S is



Now suppose that within S there is a continuous distribution of sources of fluid creation of
density T per unit mass. Then the distribution per unit volume is pr and so, the total rate of

mass creation of the fluid is

4 / prdV.
|4

In virtue of the law of conservation of mass, this rate of mass creation of fluid within S through
the distributed sources must balance rate of increases of fluid mass within volume V' together

with the rate of mass transportation to the boundary S. Hence we have

41r/vp1'dV= %/‘;pdV+/Sn.(pV)dS.

Using Leibnitz’s formula and the Gauss-Ostrogradskii divergence theorem we get

tn / prdV = / %fdv+ / p(Vaustoce 1)dS + / V.(oV)dV,
Jv V() /S(2) v

where V g, 4. is the velocity of the suif&ce element d§ (if the surface is moving). If the volume
is fixed in space, the second term goes to zero because V., soce is zero. Hence we obtained the

above equation of the form

4n / prdV = / %y + / V.(pV)dV.
v vy Ot v

The equation is valid for any considered volume V of the moving fluid. It follows that at each

point of the fluid we must have
?9—,:' + V.(pV) =drpr,

which is the general form of the equation of continuity. Whenever there are no distributed point

sources within § then 7 = 0 and we obtain the above equation as

a .
S +V(V) =0, (1.13)



this equation is known as the continuity equation, and it expresses the physical law that mass

is conserved. For incompressible flow Eq. (1.13) reduces to
vV.V=0 (1.14)

1.4.2 Momentum equation

The law of conservation of momentum asserts that the total momentum of a system remains
constant, if no external force act on the system. The application of this principle to a moving
fluid results the equation of motion /momentum equation. The general form of the equation -of

fluid motion is

pPEY— = V.T + pb, (1.15)

where T is called the Cauchy stress tensor or total stress tensor and is different for different
fluids and b the body force vector.

1.5 Classification of fluids |

1.5.1 Newtonian fluids

A fluid that obeys the Newton’s law of viscosity (1.8) is called Newtonian fluid. There are two
major contribution to the total stress tensor T: the thermodynamic pressure p and a second

portion that originates due to the deformation of fluid. We can write
T=-pI+8, (1.16)

where I is the identity tensor and S is the extra stress tensor which contains the contribution
to the stress that results from fluid deformafion. When the fluid is at rest T becomes —pl.
An equation that specifies S for a fluid is called a stress constitutive relation for that fluid.
The constitutive relation expresses the molecular stresses generated in the flow in terms of
kinetic variables such as velocities, strains and derivatives of velocities and strains. Once a
constitutive relation is decided it may be inserted into the equation for T and subsequently

into the equation of motion. The equation may be solved, along with the continuity equation,

10



for the unknown flow variables.

Newtonian constitutive equation for compressible fluids

The Newtonian constitutive equation for a compressible fluid is
2
8 = ~u(VV +(VV)T) + (gp - K)(V.V)I, (1.17)

where x is the dilational viscosity. The shear viscosity describes the resistance of a fluid to
sliding motion and the dilational viscosity describes an isotropic contribution to the stress that

is generated when the density of a fluid changes upon deformation.

Newtonian constitutive equation for incompressible fluids

Using continuity equation (1.14) into Eq. (1.17). We get the following constitutive equation

for incompressible fluid,
S=-u(VV+(VV)). (1.18)

1.5.2 Non-Newtonain fluids

A fluid whose behavior cannot be predicted by Newtonian constitutive equation is known as
non-Newtonain fluid. For such fluid shear stress is directly and nonlinearly proportional to the

rate of deformation. Mathematically,

n
Tyz =k (%) , n#l (1.19)
or
du
eal(®)
where

is the apparent viscosity. Examples of non-Newtonain fluids are tooth paste, ketchup, gel,

shampoo, blood and soaps, etc.

11



1.5.3 Viscoelastic fluids

A fluid that behaves as solid as well as liquid is called viscoelastic fluid. It has elastic nature.

It will regain back its shape partially when applied stress is removed.

1.5.4 Retardation time

Retardation time refers to a time scale for the build up of stress in a fluid.

1.5.5 Relaxation time

Relaxation time refers to a time scale for the relaxation of stress in a fluid. It varies widely
among materials.
1.6 Constitutive equation for the Oldroyd 4-constant fluids

The constitutive equation for the Oldroyd 4-constant fluid is given by

DS D
S+ Alﬁ' + A3tr(S)A1 = p.(l + Azﬁ)Al, (1.20)

where A1 and )3 are the relaxation times, Mg is the retardation time, A; is the first Rivlin-

Ericksen tensor, defined by

A =L+17, (1.21)
L is the velocity gradient and
DS ds T
B?=E{-LS—SL , (1.22)

is the upper-convected time derivative. It should be noted that the model (1.20) includes the
Oldroyd 3-consatnt model (for A3 = 0), the Maxwell model (for Ay = A3 = 0), the viscous fluid
model (for )3 = Mg = A3 = 0) and the second grade fluid (if \; = A3 = 0) as the limiting cases.

1.7 Peristalsis

The word peristaltic comes from & Greek word “Peristaltikos” which means clasping and com-

pressing. Peristalsis is a normal function of the body to move fluid from one place to another.

12



1t is an automatic and vital process that moves food through the digestive tract, urine from
the kidneys through the ureters into the bladder, blood in the arteries and veins, and bile from
the gallbladder into the duodenum. Technical roller and finger pumps also operate according
to this principle.

1.8 Dimensionless parameters

1.8.1 Reynold number

The Reynold number is the representative of the ratio of force of inertia to the viscous force.
It is denoted by Re. Mathematically,
Re=—, (1.23)

where [ is the characteristic length scale and u is a typical velocity.

1.8.2 Hartman number

The Hartman number is the ratio of electromagnetic force to the viscous force. It is defined by

M = Bl\/o/pv, (1.24)
where B is the magnitude of magnetic field and ¢ is the electrical conductivity.

1.8.3 Wave number

The wave number refers to the ratio of radius (width) of tube (channel) to the wave length of

the wave.

1.8.4 Amplitude ratio

It is the ratio of the amplitude of the peristaltic wave to the radius (width) of the tube (channel).

13



1.9 Magnetohydrodynamic (MHD)

Magnetohydrodynamic (MHD) Is the study of the electrically conducting fluid in motion. This
field was first initiated by Hannes Alfven and for this he received the Nobel Prize in Physics in
1970. Examples of such fluids are liquid metals and salt water.

1.10 Governing equation for MHD fluid

MHD is the study of motion of fluid in the presence of a magnetic field. The situation is
essentially one of mutual interaction between the final velocity field and the electromagnetic
field: electric current induced in the fluid as a result of its motion modify the field; at the same
time their flow in the magnetic field produces mechanical forces which modify the motion. For
MHD flow there is an extra term due to Lorentz force J x B in the momentum equation. Here
J is the electric current density and B the magnetic flux. The expression of J or the generalized

Ohm's law is
J=0(E+V xB), (1.25)

where o is the electrical conductivity and the Maxwell’s equations are

v-E=f, (1.26)
€0
V-B =0, (1.27)
B
VxE= —E’ (128)
and _
VxB=p,J+ poeo—aa%. (1.29)

These equations are known as Ohm’s law, Gauss’s law, Gauss’s law of magnetism, Faraday’s law
of induction and Ampere’s law with Maxwell's correction respectively. In the above equations
€o is the permittivity of the free space also called electric constant, Ko is the permeability of
free space which is also called magnetic constant, p, is the total charge density and J is the

total current density.

14



For a linear medium, Maxwell’s Egs. (1.26)-(1.29) with no charge density and electric
displacement D = ¢gE reduces to the following

V.E =0, (1.30)
V-B=0, . (1.31)
0B
VXE——-E’ (1.32)
V x B = poJ. (1.33)

From Ohm’s law (1.25) and Maxwell’s Eqs. (1.30)-(1.33), an evaluation equation for the mag-
netic flux B can be easily derived, which is known as the magnetic induction equation and
suggests that the motion of an electrically conducting fluid in an applied magnetic field induces
a magnetic field in the medium, The total field is the sum of the applied and induced magnetic
fields B = By + b*, where b* is the induced magnetic field.

15



Chapter 2

Peristaltic flow of an Oldroyd

4-constant fluid in a planar channel

2.1 Introduction

In this chapter an attempt is made to investigate the peristaltic flow of an Oldroyd 4-constant
fluid in a planar channel. The flow problem is modeled under long wavelength and low Reynolds
number assumptions. The governing equations are transformed by introducing stream function
into a single nonlinear ordinary differential equation. The finite difference scheme and an
iterative method are used to solve this nonlinear equation together with appropriate boundary
conditions. The effects of non-Newtonian parameters on longitudinal velocity, stream function,
longitudinal pressure gradient and pressure rise per wavelength are illustrated graphically. The
content of this chapter have been published by N.Ali et al [21]. Here we have presented the

details of mathematical modeling and solution procedure.

2.2 Governing Equations

Consider a two dimensional channel of uniform thickness 2z. Let it be filled with a homogenous
incompressible Oldroyd 4-constant fluid. The walls of the channel are assumed flexible. Assume
two symmetric infinite wave trains traveling with velocity ¢ along the walls. If X and Y are the

longitudinal and transverse coordinates, respectively, then the wall surface is mathematically

16



defined as
B(X,%) = a + beos [3;5 X- cf)] . @.1)

Here b is the wave amplitude, ) is the wavelength and ¥ is the time. A further assumption is
that there is no motion of the wall in the longitudinsl direction. This assumption implies that
for the no-slip condition i.e., longitudinal velocity is zero at the wall.

For the flow under consideration the velocity field is given by
V=[UX,Y,1),V(X,7,1),0], (2.2)

where U and V are the longitudinal and transverse velocity components, respectively.

Substituting Eq. (2.2) in Egs. (1.14) and (1.15) yield the following scalar equations

8T oV
xtaw " 23)
8 =90 7] --___675 6§m 8—)??
M tUsx Vel ="x* ax T o 24
8 70 8. 8 OB 65y
MG+t Ust VeV =5t ox T o7 (29)

_ (@
I-( % 7 ), @9
86X oy

. (T ®
Uo| ). @)
oY

o0 o7 , oy
K1=E+ET=( 25% 5?+X), (2.8)

Then

17



for two-dimensional flow we can define

- ( Sxx Sxv ) . (29)
Ter Spp

With the help of Eq. (2.9) we have
‘% + U—& + V%)gn
S -285% % - 255%v
Dt (-% + U-gx + VE?)SXY
5 5 o7
-Sxxfx - Srv

Similarly
2% +ﬁ-"7 +V$)%
—4( )2 23%(%? + g;‘;)

8U8

"5'('%’ 2aya¥

' 2(3'3(3( + :gw)-gg

tr(S)A; = .
' ( (-’?YX +§W)(%% + gyf) 2(377 + gw)a

ot
v 1%
~Sxx5% ~ Svviy (2.10)
(—- + U—— + V——)SW
('5; +U——+V 2 )(OU g)‘;)
8U ;1% ZBU BV
DX_:\, 6Y 67 , (2'11)
Z(R + U <t V_V)
v
—4v) - &W(%g +5%)

Gxx +3r)(E + %

) : (2.12)

Inserting Eqs. (2.8)-(2.12) into relation (1.20) and equating the corresponding components on

the both sides yield the following equations

gﬂ + Xl [(1 + U—— + V——) :gzy - Zgggﬁ - Zgggw] (2.13)
+2)\3(Sn + Sw) oy
L+T %+ V-.],) - 2(8%)? ]
) b

oo <[ (%
”6X+ #2[

‘57(57

18



Sxy+ M [(8 +U—a=+17-a=) Sxy — 2=5%x% — 2==93yv (2.14)

g’ "ex oy X Yy
~ = oU v
+23(Sxx + Spp)( a'17+ a')?)]
au v 8 -8 —0\,00 oV
= HGptap) tH A”[(aﬁ ﬁ“’ﬁ)(ﬁ*a_f)
U 8V 8U v
‘45?5?‘*575?)]
Spy + N [(§;+UT+V—-)§W 25% 75‘—,? 2% 3—7] 215)
+2A3(Sm + gyy)g?
’ 8 OV __ne8Vy2
=2/—‘%¥+2#X2 (£;+l753;a+173—%)3; %) }
-%&+

In the laboratory frame (X,Y), the flow in a channel is unsteady. However, it can be
treated as steady in a coordinates system (%,%) moving at the wave speed (wave frame). The

transformations relating coordinates and velocities in two frames are given by

F=X~c, 7=Y, #=U-¢ 7=V, (2.16)

where % and T are respectively the dimensional velocity components parallel to Z and 7 in the

wave frame. With the help of Eq. (2.16), Egs. (2.3)-(2.5) and (2.13)-(2.15) become

6z 07
5 + 6—@' =0, (2.17)
_0 _0._ _ op 6?55 agﬁ
p(ua_ vgg_—)u =~ + rr + % (2.18)
(T 5:) ="% 5t o7 (2.19)
- 1) O Ot ou
g‘ﬁ + M [(‘UF + e ) g 2-5-_-355 2B?Sm] + 2)\3(§n + SW)F (2.20)

- o (o2 +ol) B -a - T, ),

19



T+ T [( 1+ a—) Sy — 228 - 2%35—,, (2.21)

+23(5zz +§W)(% gf)]

on o AV
= "(F 57 +"’\2[( a—*"b:) AL
ouoT  Ou oY
2(653'+3‘3_)]
S+ [(n% +9d %) S~ 20 - 22_;3”] + 2% Bz + yw)g_; (2.22)
_ 8 _a\ow ,_ o o
= 2pay+2;‘,\2[( 5t ay)ay ) a—a— a-)]

In order to non-dimensionlize the governing Eqs. (2.17)-(2.22), we introduce the following

variables and parameters.

Az pca
T = —— = = U= = — 2.
T ot J=ay, TW=cu, T=cv, Re " (2.23)
= _ Bc _ Apc _ _ 2ma
5 = a S, = Znazl =ah, 0= P

— phihe =
A1 = Alc1 AZ = A2c1 A3 = __3_‘3

a a a

=5 U= %% (2.24)
the continuity equation (2.17) is identically satisfied and the Eqs. (2.18)-(2.22) take the follow-
ing form

0008 9 08\0w] __Op .05  O5x
ORe [(ay bz azay) ay] - 8$+‘S_52:—+Ty—’ (2.25)
-3 2‘-1-/)--0;-—8_1!’._?..) _‘?f 8? zas.w BSW
o Re [(61/ 8z 0zby) 8z| oz +9 Bz + 06—+ By (2.26)



aRe[(.ai 6 _& ‘9) (‘% 52‘92’”)] 5M+(32 i ) e (227)

Oy 9z 0z by 9z2 Ozb8y oy? o2
o 0yo Py 62¢ ]

o _ K Y k4 2.98

Saz+ A [6(5 - e )s,, 25 Sen = 251 Sy (2.28)
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“a (6y2 Jzazz)]

2 82
Sey+ M [5 (%-&% - glz”-%) Sry 622 ’fsz, ay’fsw] (2.29)
+ A (Ssa + Syy) (8 L 5235)

- (-8 [ (- a5) (5 -75)
T\ 82 dy oz 0z dy) \ o2 922

%y 62¢ 82¢ Py )]

2
+2 (‘5 520y 02 | By? 6aby

8O oo 0% 8%
Syy + At [5(55;-5;5;)3” + 2823 5oy + 2555

2
= 2625 (Sua + Sp) 5 i

(2.30)

0z 8y
_ . O Oy 0 8pd\ 0% _ 2(2112_)2
= ~Xgmpy TM ["52 (By oz 8—0:81;) gz0y 20 \ 3wy
,a%p Ph 0%
+5 (ay2 561_2)].

In above equations Re is the Reynolds number, 4 is the Wave number and A;_3 are the Wessen-
berg numbers.

It is formidable task to solve the Eqs. (2.25)-(2.30) in their current form. Fortunately,
many physiological processes, where peristalsis is involved, the wavelength of the wave is large

as compared to the radius of the vessel or organ. This assumption amount to assume that §
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~ 0 and known in the literature as long wavelength approximation. Therefore, under the long

wavelength and low Reynolds number assumptions, Eqgs. (2.25)-(2.30) reduces to

08z _ Op
'51? =25, (2.31)
o _ 2.32
3y =" (2.32)

2
aa‘:;’” =0, (2.33)
2 2
Sez — 2,\1%:/—?-5',” = -2\ (%—yg) , (2.34)
o 0%
Szy + A3Szz 3‘;5 = 'a?‘;e, (235)
Sy = 0. (2.36)
Solving Eq. (2.34) and Eq. (2.35) for Sz we get
. n2
1420 (4

Sy = e (5) | o2 (2.37)

1420, (28)" | &

where aj = Ag)3, az = A1A3. It follows from (2.32) that p # p(y), This implies that p = p(z).
By substituting the value of Sy, from Eq. (2.37) into Eq. (2.31) and Eq. (2.33), we have

T a2
8 1+ 2m %—yf}) _52 _dp
5| =—

% 1] 14209 (%2) &2 | d (2.38)
22_ 1420 (%)2 %4 o 2.39)

2 T N2 | 02
ay 14 2(!2 (%—:’#) ay
We observe that when oy = a3, Egs. ’(2;38) and (2.39) reduce to corresponding equations of
the viscous fluid [2]. The dimensionless pressure rise per one wavelength can be calculated via
following expression
Ap = ——dz. (2.40)



Due to the symmetric nature of the solution of the flow problem is obtained only in the half

flow domain y € [0, h}.

2.3 Rate of volume flow and boundary conditions
The instantaneous volume flow rate in the fixed frame is given by
-’;_.. — ey e
Q= [ TRY.DY, (2.41)
1]

where 7 is a function of X and %.

The rate of volume flow in the wave frame is given by

: '
q=Aummm, (2.42)

where T is a function of % alone. If we substitute Eq. (2.16) into Eq. (2.41) and make use of
Eq. (2.23), we find that the two rates of volume flow are related by

Q=gq+ch. (2.43)
The time mean flow over a period T at a fixed position X is defined as
1 T
Q== f Qdt. (2.44)
T Jo
Substituting Eq. (2.43) into Eq. (2.44) and integrating we get
Q=gq+ac (2.45)

On defining the dimensionless time mean flows © and F respectively in the fixed and wave
frame as ,

F
P (2.46)

6=§—, and F =
ac a
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one finds that Eq. (2.45) can be written as
©=F+1,

where

= [y -
F= [ Gody =40 = 40)

and h represents the dimensionless form of the surface of the peristaltic wall, i.e.
h(z) =1+ ¢cosz.

Here ¢ = b/a is the amplitude ratio or the occlusion.

If we select the zero value of the streamline at the centerline (y = 0). we have
$(0) =0,
then the wall (y = k) is a streamline of value

¥(h) = F.

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

The appropriate boundary conditions for the dimensionless stream function in the wave frame

are

i
=

¥ = F, %:—1, aty =1+ ¢cosux.

aty=0,

2.4 Numerical method

(2.52)

In this section we proceed to find direct numerical solution of the differential Eq. (2.39) subject
to boundary conditions (2.52) by means of a suitable numerical technique. The differential Eq.
(2.39) is nonlinear in % and cannot be solved by the direct finite difference method. In solving

such a nonlinear equations, iterative methods are commonly used. We can now construct an
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iterative procedure in the following form

14 2a3 (%"—))2 a4¢(n+1) +2 8 [1+2a (%;"—))2 a3w(n+1)

- 2.53)
)\ 2 4 )\ 2 3 (
1+ 202 (_'[;1_8;“( )) oy By 1420z (—-‘Arazey( )) by
A 2
92 1420 (%‘b-y(z—)) 621/1("+1)
t5.2 N2 =Y
W \Tram (20))
‘ 32 (n+1)
v=0 =0 ay=o, (2.54)
(n+1)
Y=F, a¢3y =-1, aty=h,

where the index (n) indicates the iterative step. It is easy to confirm that if the indices (n) and
(n+ 1) are withdrawn, the Eq. (2.53) is consistent with the original differential Eq. (2.39).
Equation (2.53) and the boundary conditions (2.54) define a linear differential boundary value
problem for %("*1). By means of the finite difference method a linear algebraic equation system
can be deduced and solved for each iterative step (n + 1). Therefore, a sequence of functions
¥O(z,y), ¥ (z,y), v (z,y), ... is determined in the following manner: if an initial estimated
¥©(z,y) is given, then ¥V (z,y), ¥ (z, y), ... are calculated successively as the solutions of the
boundary value problem (2.53) and (2.54). Unfortunately, such an iteration is often divergent,
especially when the initial estimated (% (z,y) is not given carefully and suitably. Usually, in
order to achieve a better convergenoe,'the so celled method of successive under-relaxtion is
used. We solve the boundary value problem (2.53) and (2.54) for the iterative step (n + 1) to

obtain an estimated value of %™+ and $™, then ¥™*+D is defined by the formula

~(n+l1)

S ) 4 e (,,, -~ ¢(ﬂ)) , €0, (2.55)

where 7* is under-relaxation parameter. We should choose 7* 50 small that convergent iteration
is reached. In our simulation we choose an initial guess of 19 (z,y) = Fy/h which fulfils the
first and third boundary conditions in (2.54). Of course, some other choices are also possible.

The iteration should be carried out until the relative differences of the computed %™+ and
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(™ between two iterative steps are smaller than a given error chosen to be 1078,

2.5 Results and discussion

The governing equations involves two non-Newtonian parameters a; and az. In this section we
analyze the influence of these parameters on different flow features of the investigated peristaltic
motion. A closer examination of Eq. (2.38) shows that the coefficient of % /3y? in the braces
equals unity when a; = a3. The case of a; > ag (A2 > A;) is physically unacceptable since the
retardation time cannot be larger than the relaxation time. When a; < ag the coefficient in the
braces of Eq. (2.38) lies between zero and one. So we expect that longitudinal pressure gradient
for an QOldroyd 4-consatnt fluid should be less in magnitude as compared to a Newtonian fluid.
In the forthcoming discussion we will see that the numerical results will confirm our observation.

Fig. 2.1(a) is made to see the effects of «; and a; on longitudinal velocity u plotted against
y at a fixed position z = —~.

We observe that for the small values of a strong non-Newtonian effects near the boundary,
i.e. a thin boundary layer is formed. However, as we move away from the boundary the
velocity profile becomes linear. When a3 — a3 the boundary layer becomes thick and the
velocity profile tends to become Newtonian. The magnitude of velocity near the centerline
increases as a; decreases from 0.5 (the value of azg) to 0. It means that the magnitude of the
velocity for an Oldroyd 4-constant fluid is greater in comparison to that of & Newtonian fluid
near the centre of the channel. This is due to the smaller (low-dependent) viscosity of the
Oldroyd 4-constant fluid. A

Fig. 2.1(b) presents the variation of longitudinal velocity u with y for various values of as.
This figure reveals that with the increase of as, or more strictly speaking, with the deviation
of ag from a, the profile near the centerline becomes flatter, similar to flug-like flow i.e. there
is no rapid change in velocity near the centerline for an Oldroyd 4-constant fluid as compared
to a Newtonian fluid. The influence of a; on the stream function v against y is shown in Fig.
2.1(c). It can be seen from Fig. 2.1(c) that the profile of 4 for a; = 0 and 0.01 are nearly linear
over the whole width of the channel. However, the gradient changes slightly near the boundary.

As o increases from 0.05 to 0.5 the profile become nonlinear and their gradient increases from
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negative near the wall to positive near the centerline. Further, these profiles do nearly coincide
near the boundary of the channel. Similarly, from Fig. 2.1(d) it is seen that an increase in ap
changes the profiles of 1 near the centre of the channel and the effects are not so obvious near
the boundary wall.

The variation of longitudinal pressure gradient dp/dz over one wavelength for different
values of a; and a3 and for two values of ©, © = 0.8 (F = —0.2) and 6 = 0.2 (F = —0.8), can
be seen in Fig. 2.2.

It is observed that dp/dz decreases as «,/ay deviates from unity i.e. the longitudinal
pressure gradient for a Newtonian fluid is greater in magnitude as compared to that of an
Oldroyd 4-constant fluid. This observation confirms our expectation, as mentioned in the
beginning of this section. Further, we note that dp/dz is negative over the whole wavelength
for © = 0.8 both for Newtonian and Oldroyd 4-constant fluid. It means that for larger values
of © the longitudinal pressure gradient assists the flow over the whole wavelength (both in
narrow and wider parts of the channel). When © equals 0.2 the longitudinal pressure gradient
is positive near the cross section z = *, whilst it is negative near z = 0. It means that in the
narrow part of the channel the pressure gradient resists the flow while it assists the flow in the
wider part of the channel. It is also noted that the magnitude of resistance or assistance from
the pressure gradient is less for an Oldroyd 4-constant fluid as compared to a Newtonian fluid.

One of the features of peristalsis is pumping against the pressure rise. To demonstrate the
effects of o) and ay on pumping against pressure rise Ap, we have plotted Fig.2.3.

The maximum pressure rise against which the peristalsis works as a pump i.e. Apfor © =0
is denoted by Py. When Ap > Py then there is a negative flux. The value of © corresponding
to Ap = 0 (which is known as free pumping) is denoted by ©y. When Ap < Py, the pressure
assists the flow and this is known as co-pumping. Figure 2.3(a) and (b) illustrates the relation
between pressure rise per wavelength Ap and flow rate © for various values of a; and ay,
respectively. It is observed that Fp increases by increasing oy (Fig. 2.3(a)). However, it
decreases with increasing az (Fig. 2.3 (b)). This means that peristalsis has to work against
greater pressure rise for a Newtonian-fluid in comparison with an Oldroyd 4-constant fluid.
Further, the peristaltic pumping rate and free pumping rate decrease when the fluid deviates
from Newtonian fluid to an Oldroyd 4-constant fluid. In the case of co-pumping, for small values

27



of Ap, the pumping rate decreases from Newtonian to the Oldroyd 4-constant fluid. However,
for large values of Ap the pumping rate for the Qldroyd 4-constant fluid is greater than for the

Newtonian fluid.

Fig. 2.1(a): Plot of the longitudinal velocity u for various values of aj(az = 0.5).
The other parameters chosen are F = —(.2 and ¢ = 0.3.
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Fig. 2.1(b): Plot of the longitudinal velocity u of ag(a; = 0.5). The other parame-
ters chosen are F = —0.2 and ¢ =0.3.
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Fig. 2.1(c): Plot of the stream function 1 for various values of a;(ag = 0.5). The

other parameters chosen are F = -0.2 and ¢ = 0.3.
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Fig. 2.1(d): Plot of the stream function 9 for various values of ag(a; = 0.5). The

other parameters chosen are F = -0.2 and ¢ = 0.3.

_2 L
3
[=%
© / a;=0.0,0.08,0.1,0.2,0.5
-3 / \
/ \
/ \
-4t ]
/7 N\
-3 -2 -1 0 1 2 3
X

Fig. 2.2(a). Plot of the longituM pressure gradient dp/dz for various values of
aj (ag = 0.5) . The other parameters chosen are @ = 0.8 and ¢ = 0.3.
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Fig. 2.2(b). Plot of the longitudinal pressure gradient dp/dx for various values of
az (ay = 0.5). The other parameters chosen are © = 0.8 and ¢ = 0.3.
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Fig. 2.2(c). Plot of the longitudinal pressure gradient dp/dz for various values of
o) (ag = 0.5) . The other parameters chosen are © = 0.2 and ¢ = 0.3.
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Fig. 2.2(d). Plot of the longitudinal pressure gradient dp/dz for various values of
a3 (a1 = 0.5). The other parameters chosen are © = 0.2 and ¢ = 0.3.
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Fig. 2.3(a). Profile of pressure rise per wavelength Ap versus flow rate O for various
values of oy (a3 = 0.5) and ¢ = 0.3.
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Fig. 2.3(b). Profile of pressure rise per wavelength Ap versus flow rate © for various

values of az(a; = 0.5) and ¢ = 0.3.
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Chapter 3

Peristaltic flow of a
magnetohydrodynamic Oldroyd.

4-constant fluid in a planar channel

3.1 Introduction

The purpose of this chapter is to generalize the flow problem considered in chapter two for mag-
netohydrodynamic fluid. The problem is first formulated in the form of a differential equation by
taking into account the effects of magnetic field and then solved numerically for various values
of material parameters. Here, in addition to the non-Newtonian parameters, non-dimensional
Hartman number also comes into play. The effects of Hartman number on longitudinal velocity,
stream function, longitudinal pressure gradient and pressure rise per wavelength are discussed
with the help of graphs.

3.2 Formulation of the problem

The geometry of the problem is same as considered in chapter 2. However, the fluid considered
here is electrically conducting. A uniform magnetic field By is applied perpendicular to the
flow. The total magnetic field is

B=0B;+b, (3.1)



where b is induced magnetic field. However, under the assumption of small magnetic Reynold
number the induced magnetic field can be neglected.

The governing equations, taking into account the effect of magnetic field in the laboratory

frame are _
oU ov

-_ —=0, 3.2
Xt (32)

0 g0 . yOog._ 9 _ 9xx 0%y
PtV VeV ="sx T ox T or O XBm (3.3)

=08 =0 .= ap BS’W 33737
c— 1 = ——= B 4
p(6t+UaX+VaY)V 6Y+ X + —=" Fya + (J x B)y (3.4)

To calculate the additional term appearing in Egs. (3.3) and (3.4), we make use of Maxwell
equations with generalized Ohm's law given in chapter 1. Using Eqgs. (1.25) and (1.30)-(1.33)
we find that

J x B = [-0B2U,-aB3V). (3:5)

Thus, the governing Egs. (3.2)-(3.4) become

"U % =0, (36)
0 -0 —8. & OS¢y 03
M +Tag+VaplU=-7p + S5+ —(—9§1 - 0BT, (3.7)
0 40 0., 0Op  O8ypp 6%
Mg +Uag+ VeV =5+ —6-¥ + —5@3 - oBiV. (3.8)

Upon making use of the transformation (2.16), Egs. (3.6)-(3.8) can be casted in the wave frame

as

oz 4 57 =0, (3.9
o 0. Op 35z 6?2 2,
p(uai -i-'va:l7 u= 6f+—_85 + % oBj(u + c), (3.10)
— —i i) _Q-E 3_"17 agw 2=
p(ua_ + vay)v. =& + e + o Bgv. (3.11)

With the help of dimensionless parameters defined by Eq. (2.23) and stream function given
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by Eq. (2.24), we obtain the following dimensionless equations

8 o4O\ _ O 0w 08 8¢
oo | (525 ~ 5e55) |-z Gaoae (Eer), o
—6°Re K-‘Z—'ﬁi g’i;’y) 'p} g;-’ +6225—;! +69g52 - M%ﬁg%, (3.13)
SRe [(%%aa;—%%b%) (%*523%‘})] = 655z tud 4 (80:72’ "‘52&2’2 Sey (3.14)
- M? [%"* (%!:--4-1)] + M35 %Y.

Where the compatibility equation (3.14) is obtained by cross differentiating Eqs. (3.12) and
(3.13) and then adding them. Here M = /0 B3a%/y is the non-dimensionsl Hartman number.

Considering the long wavelength and low Reynolds number approximations, Egs. (3.12)-
(3.14) can be written in the following form

0Szy _ Op 2 (0¥ '
By ~ 02 +M (ay + 1) , (3.15)
Op _
5 =0 (3.16)
0? Sy _ oy (Y
=25 (3 ) (317
Substituting Sz, from Eq. (2.37) we get
2
1+ 201 ﬁ#
9 (5) | o . IV (gzp +1> (3.18)

oy 1+ 2a9 (%#) -B—Vj dz

__oi 1+2a1(%¥)2 @ _M282¢
oy 1+2a2(?—,:#)2 oy Tgﬂ

It is to be noted that when M = 0, Eqs. (3.18) and (3.19) reduce to corresponding equations

=0. (3.19)

of hydrodynamic fluid.
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The Eq. (3.19) is subjected to the same boundary conditions as given in chapter 2 i.e.

P = 0, ?':yf 0, aty=0, (3.20)

¥ = F, ?;5:-—1 aty=1+ ¢cosz.

3.3 Solution methodology

The solution here is obtained by the same method as described briefly in chapter 2. The form

of iterative procedure here is

2

142 (%"—)gz 841,b("+1) +2 F.) 142 (%(;2) a3¢(n+1)

2 4 a. N\ 2 3 (3.21)
1+20; (% o oy 1+ 203 (%) %
P2y
g [1+ 20 (—6%1—) a2¢(u+1) s 02¢(n+1) _ 0
n) \ 2 2 2 N
14200 (B0) ) by
2,7, (n+1)
Y=0, & gyz =0, aty=0, (3.22)
(n-+1)
y=F a¢ay =-1, aty=h

Where the index (n) indicates the iterative step.

3.4 Results and discussion

To see the effect of Hartman number on various features of the peristaltic motion we have
plotted Figs. 3.1-3.4.

In Fig. 3.1(a) the longitudinal velocity u is plotted against y for different values of ;) at a
fixed position £ = —-7 with non-zero values of M.

Fig. 3.1(b) is made to see the effects of @z on u for MHD fluid. The profiles of stream
function for MHD fluid for different values of o; and a3 are shown in Figs. 3.1(c) and 3.1(d). We

observe from these figures the similar behavior as observed for hydrodynamics fluid. However,
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Figs. 3.2(a)-(d) reveal some interesting results. These are summarized below.

¢ An increase in M increases the velocity near the boundary. However, near the centerline
the situation is reversed.

o The values of stream function decreases in going from hydrodynamic to magnetohydro-
dynamic fluid.

The variation of longitudinal pressure gradient dp/dz over one wavelength for different
values of M is shown in Figs. 3.3(a)-(d). In Figs. 3.3(a) and 3.3(b) © = 0.8, while in Figs.
3.3(c) and 3.3(d) © = 0.2. The following results are worth mentioning.

¢ The magnitude of longitudinal pressure gradient increases with an increase in M.

e The longitudinal pressure gradient resists/assist the flow in the narrow/wider of the chan-
nel for the small values of ©. For the large values of © longitudinal pressure gradient become
favorable over the whole width of the channel.

02| -l
-04
=
-0.6
@1=0.0,0.01,0.05,0.1,0.2,0.5
-0.8
v
-1 N . q‘ 1
0 0.1 0.2 03 0.4 0.5 0.6 0.7

Fig. 3.1(a): Plot of the longitudinal velocity u for various values of a;(ag = 0.5).
The other parameters chosen are M =5, F = —0.2 and ¢ = 0.3.
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Fig. 3.1(b): Plot of the longitudinal velocity u for various values of az(a; = 0.5).

The other parameters chosen are M = 5, F = -0.2 and ¢ = 0.3.
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Fig. 3.1(c): Plot of the stream function ¥ for various values of ay(ag = 0.5). The
other parameters chosen are M = 5, F = —0.2 and ¢ = 0.3.
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Fig. 3.1(d): Plot of the stream function ¢ for various values of ag(a; = 0.5). The
other parameters chosen are M =5, F = —0.2 and ¢ = 0.3.
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Fig. 3.2(a): Plot of the longitudinal velocity u for various values of M. The other

parameters chosen are a3 = 0,a2 = 0.5,'F = —0.2 and ¢ = 0.3.
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Fig. 3.2(b): Plot of the longitudinal velocity u for various values of M. The other

parameters chosen are a; = 0.5,a3 = 3,F = —0.2 and ¢ = 0.3.
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Fig. 3.2(c): Plot of the stream function v for various values of M. The other

parameters chosen are a; = 0.5,q2 =0.5,F = ~0.2 and ¢ = 0.3.
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Fig. 3.2(d): Plot of the stream function 3 for various values of M. The other

parameters chosen are a; = 0.5,a2 =1, F = —0.2 and ¢ = 0.3.

Fig. 3.3(a). Plot of the longitudinal pressure gradient dp/dz for various values of
M. The other parameters chosen are oy = 0.1,a3 = 0.5,0 = 0.8 and ¢ = 0.3.
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Fig. 3.3(b). Plot of the longitudinal pressure gradient dp/da for various values of
M. The other parameters chosen are oy = 0.5,a3 = 0.8,0 = 0.8 and ¢ = 0.3.
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Fig. 3.3(c). Plot of the longitudinal pressure gradient dp/dx for various values of
M. The other parameters chosen are o; = 0.1, = 0.5,0 = 0.2 and ¢ = 0.3.
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Fig. 3.3(d). Plot of the longitudinal pressure gradient dp/dz for various values of
M. The other parameters chosen are aj = 0.5,a2 = 0.8,0 = 0.2 and ¢ = 0.3.
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Fig. 3.4. Profile of pressure rise per wavelength Ap versus flow rate © for various
values of M. The other parameters chosen are a; =0, 0.1,0.2,0.4, 0.5, ap = 0.5 and
¢ =0.3.



M 6=0 ©6=004 6=008 6=012 6=016 6=02 ©6=024
0 088432 0.55901 0.212003 -0.15563 -0.56624 -1.06249 -1.66624
1 1.80726 1.04089 0.246788 -0.58384 -1.46769 -2.42249 -3.43287
1.2 1.94645 1.05173 0.130933 -0.82452 -1.83173 -2.91073 -4.04737
14 211167 1.06628 -0.00318 -1.10535 -2.25792 -3.48343 -4.76919
1.6 230321 1.08524 -0.15463 -1.42541 -2.74548 -4.13974 -5.59735

Table 3.1: Values of Ap for different values of M and ©.

Figure 3.4 and Table 3.1 illustrates the relation between pressure rise per wavelength AP
and flow rate © for the various values of M. It is observed that P, increases by increasing
M. This means that the peristalsis has to do work against greater pressure rise for MHD fluid
as compared to hydrodynamic fluid. Moreover, in co-pumping the pumping rate decreases for
large values of M.
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