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ABSTRACT

Structural breaks are an important issue in time series econometrics. Failure to take them 

into account can produce huge forecast errors. Existing literature is mainly concerned 

with structural breaks where the regression coefficients change, but variances remain 

unchanged. Our main contribution in this thesis is to utilize a newly developed test 

Massoumi et al (2010) which tests simultaneously for change in variance as well as 

regression coefficients. The original test is developed for case the known break point. In 

this thesis, we adapt the test for use when the breakpoint in unknown, and label it the 

SupMZ test. There is no directly comparable test available in the literature. The Andrews 

SupF test is similar, but tests only for change in regression coefficients under the 

maintained hypothesis o f  Homoskedasticity. We compare and evaluate these two tests in 

our thesis. The powers o f Andrew’s SupF test are compared with SupMZ test through 

Monte-Carlo simulations and empirically. Simulations show that SupMZ test incurs only 

a low cost in power in the case o f  Homoskedasticity, while having hugely better 

performance in the case o f heteroskedasticity. Also the SupMZ test performed well m 

empirical analysis. In empirical analysis we conclude that with the presence o f  

Heteroskedastic variance (break in variance with regime shifting) SupF test is misleadmg 

and sometimes fails to detect break in parameters. All above discussion shows that 

SupMZ test is better than SupF test so according to this study we suggest for researchers 

that SupMZ test should be used for testing parameters instability.

Key words: Structural Break, Heteroskedasticity, SupMZ test, SupF test.
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CHAPTER 1

INTRODUCTION 

Parameter Instability, SupF AND SupMZ Test 

1.1 Introduction

A structural break is a shift in the parameters o f the data generating process for time 

series observations. Failure to detect such shifts can lead to huge forecasting errors and 

unreliable estimates o f model in general. Many natural phenomena such as Oil price 

shocks. Turning points o f the Business cycle and natural disaster are the causes o f breaks 

m economic series. The F test for structural change was developed early in the statistical 

literature. Chow (1960) generalized the test to the case where the structural change took 

place near the end o f the observations, leaving insufficient observations to allow 

estimation o f  the parameters before and after the change separately. This became very 

popular, and the test became known as the Chow test in the econometrics literature. 

Structural instability occurs when parameters o f  linear regression model are significantly 

different for different parts o f same data set. If the parameters o f linear regression model 

M"e statistically same for different parts o f the same data set, this means that there is no 

detectable structural break in parameters.

A simultaneous shift in the coefficients .and variance o f linear regression model will 

result in a structural change o f the economic series. Mostly when we analyze economic 

time series data with linear regression model we face the problem o f structural instability, 

th e  detection o f such problem has a great importance for econometric modeling.
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Various tests are available in literature for detection o f structural break. Some o f the 

famous tests are Chow test (1960) for known break point and CUSUM test (1975) and 

SupF test (1993) for unknown break point. Hansen (1997) provided a method to calculate 

P-values for SupF test. Hansen (2000) showed that Andrews’ critical values are not robust 

to structural change in the marginal distribution o f the regressors, which is undesirable in 

tests focusing on conditional relationships. He showed how to simulate robust critical 

values on a case-by-case basis.

The best known test in literature for detection o f single known break is the Chow’s 

(1960) test statistic which has F distribution under the null hypothesis o f  no break. Hence 

the tabulated critical values can be used. However the Chow has two assumptions, Break 

point must be known a priori and no shift in variance (Homoskedasticity).

1,2 Problem o f  Unknown Break

If the change point is unknown, this idea and solution for unknown break point go to 

Quandt (1960) who studied the problem o f unknown break point and suggested Quandt 

LR test. He showed that the LR test for the unknown break point is just the maximum 

value o f the interval o f  F is used as test statistics. But Quandt LR statistic had no practical 

application because the distribution o f Quandt test under null hypothesis was unknown. 

Later Andrews (1993) and Andrews & Polberger (1994) provided tables o f asymptotic 

critical values o f Quandt LRtest and thus this test became known as Andrew’s SupF test. 

Now it is widely used for testing break in parameters.

Andrews showed that the SupF test is an optima! test for the detection o f single unknown 

break point under the assumption o f homoskedasticity (no break in variances). However, 

as we will show, the performance o f  this test is poor when there is a shift in variances.



1.3 The Problem o f  Shift in Variance

In literature the Goldfeld-Quandt test (1965) is a popular test and widely used for testing 

heteroskedasticity. This test statistic has an F distribution under null hypothesis. 

According to Zaman (1996, section 8.6) the GQ test is an optimal test for equality o f  

variance in two subsets o f  data, when the regression coefficients are not assumed to be 

same and variance is constant within each o f  the two regimes. So the GQ test is optimal 

test to detect break in variance with the assumption o f break in variance must be known 

priori. In this study, the idea is further extended for the detection o f unknown break in 

variance.

1.4 Motivation

The Chow F test for known break assumes the equality o f variances in both regimes. The 

SupF test by Andrew is considered an optima! test and widely used for the problem of  

testing single unknown break point with the assumption o f homoskedastic variance. 

However, it is known that the performance o f this test is poor if the variances change. 

This test is widely used, but homoskedasticity is not tested since there is no test available 

to detect unknown break in variance. The use o f SupF test is misleading without testing 

the assumption o f equality o f variance. It is necessary to validate the SupF test by testing 

this background assumption.

1.4.1 Test Back Ground Assumption o f  SupF

The GQ test can be used to test the equality o f variance as discussed in Zaman (1996). 

This can be extended to test the unknown break in variance by calculating GQ F statistic 

for all potential breaks in variance and use maximum value o f the GQ test from the 

interval as a test statistics.



The problem o f finding critical values can easily be solved by simulation. On the basis of 

the analogy with the SupF test, we will call this the SupGQ test. If SupGQ test detects no 

change in variance, this validates the background assumption for the SupF test. Only in 

this case would it be valid to use the SupF test to detect change in regression parameters 

at an unknown time.

1.4.2 Joint Testing Approach

Limitation o f above mentioned criteria is that if SupGQ test rejects the hypothesis o f  

equality o f  variance then there is no way forward to use SupF test to detect stability o f  

mean. An alternate solution for this problem is joint testing approach discussed by 

Massoumi et a! (2010). This is unified approach, where the equality o f  coefficients and 

variances are simultaneously tested under the null hypothesis that structure is same (mean 

and variance both are stable). This test has been developed recently and is not well 

known or utilized in the literature.

Although MZ test is quite powerful test but it can detect only known break point in mean 

and variance. In current study, we extend this idea and calculate MZ test for all potential 

break points'in data. The supremum of the entire MZ statistic is taken as a test statistic. 

We will call this the SupMZ test for testing single unknown break in mean and variance 

simultaneously.

We have checked the performance o f existing tests like SupF test by Andrews (1993) and 

AvgF test and ExpF test by Andrews and Ploberger (1994) for detection o f  unknown 

change point, and found these to be inferior. We also check the size and power o f these 

tests to detect the break date point. We also checked the power o f SupF and SupMZ by 

Monte-Carlo as well as on an empirical basis.



1.5 Outline o f  the Research

The remaining part o f the thesis is arranged as follows:

Chapter 2 consists o f review o f literature related to this study, where we discussed all the 

literature o f parameter constancy testing in econometric modeling. We also rriention m 

this chapter that the gap o f  the existing studies is related to parameter stability testing, 

that indicate us to do this research.

Chapter 3 consists o f  the Monte-Carlo design according to this study where we mention 

all the procedure o f parameter constancy testing on the base o f the objective o f  the study. 

We analyzed by Monte Carlo simulation technique where we generate data on the basis 

o f null hypothesis for getting critical value at 5% level o f significance and check the 

performance o f tests at different level.

Chapter 4 Discusses results o f Monte Carlo simulation technique and empirical study 

where we show the table critical values that we conduct by Monte Carlo simulations 

technique and show the powers o f  SupF and SupMZ test by tables and graphical 

representations.

Chapter 5 Empirical design we take data from IFS data disk on household consumption 

and GDP and make consumption function and check break date points. When the break is 

detected at that point we apply GQ test to detect break in variance to check the 

performance o f SupMZ test.

Chapter 6 discusses the results o f  Empirical analysis also mention graphical 

representation o f the performance o f  test statistics.

In chapter 7 consists o f all conclusion o f this study also discusses the recommendations 

for future research.



OBJECTIVE OF THE STUDY  

The objectives o f the study are as follows:

1. Our first goal o f  this study is to evaluate the performance theoretically and 

empirically o f joint SupMZ test to detea the unknown break points.

2. Our Second goal o f this study is to compare the performance o f existing methods 

with MZ test for heteroskedastic data.

SIGNIFICANCE OF THE STUDY

This study provides a new direction to practitioner for detection o f  unknown break in 

mean and variance simultaneously. Test statistics available in literature can either detect 

the breaks only in mean with homoskedastic variance or both mean and variance for 

known breaks.

In addition, this study provides a comprehensive comparison o f available tests in term o f  

power and size.



CHAPTER 2 

REVEW OF ITERATURE

In econometrics the testing o f  structural stability in linear regression model has a great 

importance in estimation and forecasting economic time series. Sometime structural 

breaks are known but mostly these breaks in economic time series are unknown. For this 

purpose the present study has been conducted and in this chapter we have been listed 

some literature on testing for known and unknown break in parameters o f linear 

regression model.

2.1 Tests with Known Break Point (for testing break in mean)

For known break point Chow.C.G (1960) proposed a test for testing the parameters 

stability in the linear regression model. He followed maximum likelihood estimator that 

has F distribution under null hypothesis to detect the break in parameters keeping

- variance constant. It is known as Chow-F test for parameter stability testing for known 

break point in the data in literature. For testing known break in variance 

(homoskedasticity) in regression analyses. Zaman (1996, section 8.6) shows that the GQ 

test is an optimal test for equality o f  variance in two subsets o f data, when the regression 

coefficients are not assumed to be same and variance is constant in each o f the two 

regimes. The GQ test is optimal test to detect break in variance with the assumption that 

break in variance must be known priori. The GQ test has F distribution under Null 

hypothesis o f homoskedasticity.



2.2 Tests with Known Break Point (mean and variance simultaneously) 

There are vast amounts o f literature which deal with testing structural break in 

parameters with the assumption o f homoskedasticity. But Maasoumi et al. (2010) 

provided joint testing approach for the parameters constancy, when structural change 

simultaneously affects regression coefficients and variances. They developed a likelihood 

ratio test for testing multiple known regimes shifting that is known as MZ test. They 

followed the strategy o f testing mean and variance shifting simultaneously.

2.3 Tests with Unknown Break Point

Timing o f structural change is usually unknown in macroeconomic time series. To solve 

this problem, Quandt (1960) proposed the testing strategy o f calculating the LR test for 

structural change with an unknown break point. Quandt could not provide the distribution 

o f the LR test under the null hypothesis, so this test was not used. But this problem was 

solved by Andrews (1993). He proposed the SupLR test for single unknown break point 

in parameters and also presented the asymptotic critical values table o f  SupLR test o f 

parameter constancy. His LR test asymptotically belongs to the F distribution under the 

null hypothesis o f no change in parameters o f linear regression mode!. Andrews test is 

known as SupF test for parameter stability with the assumption o f homoskedastic 

variance.

Brown, et al (1975) introduced recursive residuals which are uncorrelated with zero 

means and constant variance. They developed tests on the cusum and cusum o f  squares o f 

recursive residuals.



Further techniques based on moving regressions, in which the regression model is fitted 

from a segment o f data which is moved along the series, and on regression models whose 

coefficients are polynomials in time are studied.

Andrews (1989c) compared CUSUM test and the_Sup Wald test in nonlinear model using 

Monte Carlo simulation technique and came up with the conclusion that the Sup Wald 

test for known break point is superior to the CUSUM test o f Brown in terms o f  closeness 

o f true and nominal size and very much superior in term o f power. The study o f Bai 

(1994, 1997a) showed how to construct confidence intervals for break points by using 

asymptotic distribution o f break point estimator. He claimed that the procedure o f  

constructing confidence intervals is simple to calculate and useful in applications. 

Diebold and Chen (1995) provided the finite sample evaluation for structural change. 

They focused on a size comparison for testing o f unknown break point by Andrews’s 

SupF test for structural change in dynamic model with comparison o f  asymptotic critical 

values with bootstrap technique for finite sample size. They concluded that the results o f  

bootstrap critical values are more accurate than asymptotic critical values in finite sample 

size in testing break point o f  SupF test. In empirical analysis o f this study we also used 

bootstrap critical values rather than asymptotic critical values.

Banerjee, Lumsdaine and Stock  ̂(1992) and Perron, Vogelsang (1992) stated that it is 

unsuitable to specify the break point as known. They suggested that as suitable procedure 

is to select the break date in data that provided the maximum evidence against the 

random walk hypothesis. The critical values for the modified test are high and make it 

difficult to reject the null hypothesis o f a random walk. They also showed that bootstrap 

critical values give better results than asymptotic critical values.



2.4 Contribution o f  the Study for Parameters Constancy According To 

Existing Literature

The Chow F test for known break requires the' equality o f variances. The SupF test by 

Andrew is considered an optimal test and widely used for the problem o f testing single 

unknown break point with the assumption o f no shift in variance (honnoskedastic 

variance). This test is widely used in practice, but there is no test available to detect 

potential break in variance. The use o f SupF test is misleading without testing the 

assumption o f equality o f  variance. It is necessary to validate the SupF test by testing this 

background assumption.

The GQ test.can be used to test the equality o f variance as discussed in Zaman (1996). 

This can be extended to test the unknown break in variance by calculating GQ F statistic 

for all potential breaks in variance and use maximum value o f the GQ test from the 

interval as a test statistics and simulated critical values will be used to make decision for 

break in variance that will be known as SupGQ test. If SupGQ test does not reject the null 

o f equality o f variances o f two regimes then SupF test can be used to detect unknown 

break in parameters.

Limitation o f above mentioned criteria is that if SupGQ test rejects the hypothesis o f 

equality o f variance then there is no way forward to use SupF test to detect stability o f  

mean. An alternate solution for this problem is joint testing approach discussed by 

Massoumi et al (2010). This is unified approach, where the equality o f coefficients and 

variances are simultaneously tested under the null hypothesis that structure is same (mean 

and variance both are stable). Proposed test statistic is called the MZ test statistic .this has 

been recently introduced and not been applied.
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Although MZ test is quite powerful test but it can detect only known break point in mean 

and variance. In current study, we extend this idea and calculate MZ test for all potential 

break points in data and their supremum value is taken as a test statistic that will be called 

SupMZ test for testing single unknown break in mean and variance simultaneously.
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CHAPTERS 

Monte-Carlo Simulation Design

Andrews (1993) showed that the SupF test is an optimal test. After this, it became widely 

used for detection o f  break with the assumption o f no break in variance. This study has 

focused on testing the break in coefficient and variance simultaneously. According to our 

objectives o f the study we want to evaluate and compare the power and size o f  SupF test 

and SupMZ test statistics in the presence o f  heteroskedasticity by Monte Carlo 

simulations technique and empirical analysis. There are two steps o f Monte-Carlo study:

I. Overview o f test for structural break.

II. Monte Carlo simulation design.

3.1 Overview o f  tests for structural break

There are several tests in literature to detect the break point but Andrew’s (1993) SupF 

test established optimal test to detect break under the assumption that the variance is 

stable. The present study is focused the testing for change in coefficients and variance 

simultaneously for unknown timing o f break point. The SupMZ test is a unified approach 

to detect break in coefficient and variance simultaneously. There are no other tests 

designed for this purpose available in the literature. Since there are no directly 

comparable tests, we have compared SupF test statistics with SupMZ test statistics for 

detection o f potential break points.

Model: We used standard linear regression model

Yt =  Xt(3 +  £t fort= 1,2,3..-T where et“lN (0,a^)

12



■IN

TTie hypothesis is that the (k+1) parameters remain stable. If there is structural

break in the data, one way to approach the problem is, we split data into two subgroups. 

Each subgroup o f data has its own (k+1) parameters.

Yst =  XstPs +  Gt for t =  Ts_i +  1 , ...% where et“~N(0,

For s= l, 2 subgroup o f the data as:

=  X i p i  +  e i ,  where ei ‘1 N (0 ,£ T i ) .

Yz = X 2p 2 +  w / i e r e  e 2 ‘ ~ N ( 0,£ r | ) .

Here To= 0 and T2=T, T, is potential break point in the data. This study focuses on single 

break in parameters that is unknown. Now we set up some important notation and 

definition required for the calculation o f test statistics. Here we will assume that > k 

in each regime/subgroup.

Define the vector yi, =  (yi-yzX and similarly P' =  CPi,P2)' and the vector =  

((T?,cri)'. Let Ns =  Ts -  Ts_i, be the number o f observations in each regime ‘s’. Let 

No =  T, and define Xoto be the T x k matrix obtained by stacking the Xi, X2, and let 

Po and cTq be the common values o f the coefficients pj and respectively under null. 

Then the restricted model is:

Yo = X o P o +  G, where e -N(0 ,a^ lT)-

3 .LI The Test Statistics

There are the following test statistics as follow.

The Chow Test

As discussed earlier Chow test (1960) statistics has an F distribution under the null 

hypothesis o f  no break point. This F test statistic has been designed for single known
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break point with the assumption o f  constant variance.

The null and alternative hypothesis as:

Ho; pi =P2 =  ^ 2  structural break

Hi; pi ^p2 =  <̂ 2 Structural break in regression coefficients

Where p i,p 2 CTi, 02  are the parameters o f regressions before and after break point 

and the Chow test has F distribution.

Notations for Unknown Break Point

When break point is unknown we calculate the F and MZ statistics for all potential 

change points or for all potential change points in an interval [a b] and to reject if any o f  

those statistics get too large. Therefore the first step is to compute the F and M Z statistics 

Fj and MZj for all potential break point within the interval o f { k < a < j < b <  T-k}. The 

N^and N2 are the numbers o f observations in both subsets, for unknown break point 

these observations o f  both subsets are recursively change as Ni =  j, j +  1,... ,T -  j and 

N2 =  T -  i, T -  j +  1 ,..., j, where j is a range o f all potential break points.

The SupF Test

However if the break point is unknown then we can calculate F statistics for each 

potential break point and then fmd the maximum value o f F in given statistics called 

SupF test statistics that has been suggested by Andrews (1993) here we also used AvgF 

and expF test statistics by Andrews and Ploberger (1994) get from the interval o f  F 

statistics. Andrews (1993) provided the table o f asymptotic critical values o f  SupF test 

statistics to detect the unknown break points.
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For unknown break point we calculate Chow F test for all potential break points and take 

supremum (maximum) value as a test statistic get from the interval that is known as SupF 

test statistics. The null hypothesis o f SupF test statistics is

Ho; Pi =  p2 “  ^ 2  No structural break

Hi; Pi =5̂  P2 Structural break in regression coefficients
1

SupF = aggFj 

Where { k < a < j < b < T - k }

Fj is usual F statistic calculated at the change point ‘j ’ and ‘j ’ notation is discussed above. 

Take maximum value as a test statistic from the interval o f F statistics (a b) calculated for 

all potential break points that is known as SupF test. If the calculated value o f  SupF 

statistic is greater than some critical value we can reject the null hypothesis o f  no change 

point.

Andrews and Ploberger (1994) proposed avgF and expF test statistics for unknown break 

point which can be calculated as:

b

)
i=a

expF = log

/  b \

b  — a  T  J. < I
\  j=a /

Where { k < a < j < b <  T-k}

The null hypothesis is rejected when the supremum value o f  F or the mean F statistics 

and expF statistics get too large. Here we are only focusing on SupF test and not 

considering avgF and expF test because their performance are not good as compared
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SupF test. Stock and Watson (1996) discussed avgF and expF showed that they are not 

informative about location o f break date.

The MZ Test

The F test is designed to detect the single break point in the parameters with the 

assumption o f  variance remain same throughout the process. However the MZ test 

detects break in regression coefficients and variances simultaneously.

Ho; Pi =  p2 ^ 1  — ^ 2  there is no structural break

Hj; Pi ^  p2 ^  ^2 there is structural break

These |3s (s=l,2) are the parameters o f regression before and after break. MZ test is 

known as joint testing o f the structural break in linear regression model.

MZ =  (No -  k) • log(SD  -  ((N i -  k) » logCc^ +  (Nj -  k) * lo g (o i))

Where ojand estimated variance o f regression before and after break respectively. 

All the notations are explained above.

RRSS =  Restricted residuals sum of square regression under the null hypothesis

RSSi =  residuals sum of square from the regression before regime shifting

RSS2 =  residuals sum of square from the regression aft:er regime shifing

RRSS
Oq =  variance f r o m  the regression under the null hypothesis — ^

RSS^
=  variance f r o m  the regression before regime shifting — ^

RSS2
=  variance f r o m  the regression after regime shifing =  ^  ^
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The SupMZ Test

A newly develop MZ test by Massoumi et a! (2010) which tests simultaneously for 

change in variance as well as regression coefficients. Existing literature is mainly 

concerned with structural breaks where the regression coefficients change, but variances 

remain unchanged. Our main contribution in this thesis is to utilize MZ test which 

developed for case the known break point. In this thesis, we adapt the test for use when 

the breakpoint in unknown, and label it the SupMZ test. When break is unknown we 

calculate MZ test for all potential break points with the interval o f (a b) and maximum 

value within the interval used as test statistic that is known SupMZ test.

MZy = (yVo -  /c) * log ia i )  -  ((Wi -  k) * lo g {a l^  + (N2 -  k) * /05(^2j h )

SupMZ =

Where { k < a < j < b < T - k }

MZj is usual MZ test calculated at the change point ‘j ’. Take maximum value as a test 

statistic from the interval o f  MZ statistics (a b) calculated for all potential break points 

that is known as SupMZ test statistic. If the calculated value o f  SupMZ statistic is greater 

than some critical value we can reject the null hypothesis o f no break in variance dand 

regression coefficients.

3.2 Monte-Carlo Design

In this section we completely discussed our model and the procedure o f  Monte-Carlo 

simulation analysis.

3.2.1 Model under Null and Alternative Hypothesis

We used standard linear Regression model throughout the study

y i = X i ( 3 i +  6i, where €x - N ( 0 ,a i ) .
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Y2 = ^ 2p2 +  where e 2 '-N (0 ,a^).

The conditional distribution o f Ytgiven Xt in the form of a linear regression and structural 

change in regression arises through the coefficients ((3). The structural change appear in 

parameters as

Ho; Pi =  P2 ^1 =  ^2 there is no structural break

Hi; Pi p2 ^1 ^  ^2 structural break

If there is no break the model will be same as above discussed

Y o = x , p o + e

And if there is structural break in the model then regression will be as

Yj =  Xi Pi + 6 1  Before break point where 6  ~  N(0, <Ti1t J

Y2 =  X2P2 + ^ 2  bfeak point where e  ~  N(0, ctIItj)

Where Yiand Y2 are explained variable before and after regime shifting respectively, 

similarly Xjand X2 are explanatory variable and 6 i and € 2  are errors o f  regression 

before and after regime shifting. In econometric modeling we first test the model for 

possible break.

3.2.2 Data generating Process

We generate random data series and this kind o f data set is used to check the power o f  

these tests statistics by using the random data and throughout the process we take sample 

size ‘100 and perform simulation procedure. Tests depends only on the distribution o f  

error' G The distribution o f regressors does not affect so we use a univariate regression 

model.

First we check the size and power o f  these above mentioned test statistics by generating 

the series Xt and with following method.
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These steps are followed in order to generate data under null Hypothesis.

i- We generate evenly space series as a regressor (XJ. Values o f regressors vary 

from 1 to 50 with increment o f 0.5 for each new value by arithmetic 

progression. Choice o f range and increment is arbitrary as theoretically it will 

not affect the resuhs.

ii- We assumed the initial values o f parameters o f regression ‘a and b’ as 

a=rb=l.We generate a standard normal series o f residuals lid N(0,1).

iii- We generate explained variable series (Yt) under the null hypothesis 

according to values o f  parameters specified in step ‘ii’ using the following 

equation.

Yo =  XoPo +  \̂  iid N(0,a^lT) t =  1,2,3, ...,100  

These steps are followed in order to generate data under alternative Hypothesis.

i- We generate evenly space series as a regressor (X )̂. Values o f regressors vary 

from 1 to 50 with increment o f 0.5 for each new value by arithmetic 

progression.

ii- We have used different combination o f the values o f parameters o f  regression 

and the values o f  standard error o f two regressions before and after regime 

shifting according to alternative hypothesis.

iii- We generate explained variable series (Y )̂ according to values o f parameters 

specified in step ‘ii’ using the following equation.

Equation before regime shifting

Y i = X i P i - f  Hi Hi~iidN(0,CT?lTj 

Equation after regime shifting
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Yz = X 2(32+ H2 ^2~ijdN(0,{yilT2)

To measure o f distance o f parameters o f two regimes following steps are followed

3.3 Heteroskedasticity (Break in variance with regime shifting)

To compute powers, we vary the standard errors to make them different for each regime 

with specific weights discussed below to measure the degree o f heteroskedasticity with a 

systematic pattern as mentioned in Maasoumi et al (2010).

a la n d  the variance o f  first and second reg im e r e sp e c t iv e ly  

H =  / 0 5  E -  Z W^loga}

Where the is the weight and is the variance

In present study we design test statistic for single unknown structural break where T j ’ 

shows that number o f observations in regression before regune shifting and ‘T2’ shows 

the number o f observations in regression after regime shifting. ‘W'l =  ]^’is weight of

variance before regime shifting and ‘W2 =  weight o f variance after regime shifting

so we put single break date in the data that’s why H can be calculated as:

H =  logiWiffi +  M̂ 2«̂ 2) -  (Wilogffi +  Wilogcri')

The value o f  heteroskedasticity in the model is computed by varying the value o f the 

standard error to make different for each regime. The weight will be changed as the 

location o f regime change.
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3.4 Distance o f  Parameters for Different Regimes

The distance between coefficients o f two regimes computed according to Massoumi et ai

(2010) discussed in their paper as:

s

D =  -  /?o)
5  =  1

This study is for single unknown break point so the D is:

D =  c^i -  -  Ho) +  (^2 -  P o y { . x 2 x ^ y \ h  -  m

pQ is the  common values of the p a ra m e te r s  o f  the re s t ir ic te d  reg ress io n  

Pi p a ra m e te r s  o f  the regression  b e fo r  reg im e  change  

p 2p a ra m e te rs  o f  the regression  a f t e r  reg im e  changes

Xi m a tr ix  o f  r eg res so rs  w ith  constan t o f  regress ion  b e fo re  reg im e  changes  

X2 m a tr ix  o f  r e g re s so rs  with  constant o f  regression  a f t e r  reg im e  changes  

We will 'calculate the value o f  “D ” by varying the values o f  parameters o f second 

regression and keeping the values o f  the parameter o f first regression constant and 

assume fix values o f  parameters o f combine regression and for power comparison we 

. calculate powers o f test statistics by vary distance o f parameters and heteroskedasticity.

3.5 Computation o f  tests statistics

The data are generated under the null/altemative hypothesis then following steps are 

followed to compute the tests statistics.

Regress on Xj.

I- Regression with no break point

Yo =  ^ ...............(3.5.1) t =  1,2,3,... T (Under null hypothesis)
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=  .............. (3.5.2)

RRSS =  * fij. Restricted residuals sum of square ... (3.5.3)

II- Regression before break point

Yi =  X j i +  .............. (3.5.4) t =  1,2,3, ...Ti

= Y t - ? t ...............(3.5.5)

RSSi =  * fiti residuals sum of square before break p o in t ...... (3.5.6)

III- Regression after break point

Yz = X j z +  m 2 ..............(3.5.7) t  =  Tx + 1,2,3, ...T2

f l t 2 = Y t - ? , ..............(3.5.8)

RSS2 =  * Pt2 residuals sum of square before break p o in t...... (3.5.9)

The test statistics F and MZ can be calculated for all potential break date points within 

the interval (a b) as Fj and MZj where {k < a <  j <  b < T-k}. The maximum value o f the 

interval F and MZ statistics is known as SupF and SupMZ respectively, 

r v  The F Test

(RRSS -  (RSSi.1 +  R S S 2,t-|))/’<) 
“  (RSSij +  RSS2,T-j)/(Ni +  N2 -  2k)

where [ k < a < j < b < T  — k]

RRSS =  Restricted residuals sum of square i. e.

Residua! sum o f square from regression (3.5.3) under the null hypothesis 

k= number o f parameters i.e. ‘2 ’

2K= parameters in the unconstrained regression.

URSS =  Unrestricted residuals sum of square =  RSSij +  RSS2 j_j

RSSij =  residuals sum of square from regression (3.5.6) before break point
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RSS2 T-j =  residuals sum of square from regression (3.5.9)after breakpoint 

Ni number of observation in regression before break point 

N2 number of observation in regression after break point 

We calculate F statistics for all potential break point and their maximum values will be 

SupF test as

SupF =

Where {k < a <  j <  b < T-k}

IV- The MZ Test 

MZj  =  (No - k ) *  log{dS)  -  ((Wi - k ) *  lo g {a l^  +  (W2 -  k) *

RRSS
=  variance f r o m  (3.5.1) equation  =  —-------Nq — K

=  variance f r o m  (3.5.5) equation  =  ^

RSS2J—\
=  variance f r o m  (3.5.9) equation  =  ^

SupMZ = ^ ^ M Z j  

Where { k < a < j < b <  T-k}

The test statistics ‘SupF and SupMZ’ are designed for detection o f single unknown break 

date point in the model The SupF statistics have the assumption o f  constancy o f  variance 

but SupMZ statistics is designed for testing the break point in mean as well as the 

variance o f the model.

3.6 Computation o f  Simulated Critical Value

The critical values o f SupF and SupMZ under the null hypothesis o f  no break in mean

and variance are computed by performing 30,000 simulations at 5% level o f significance.
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The level o f significance may be 1% and 10% but we use 5% level o f  significance in 

present study.

3.7 Computation o f  size and Power

We have calculated the values o f  SupF and SupMZ according to alternate hypothesis we 

use different combination parameters for different regimes and calculated the power o f 

test statistics at different values o f distance o f parameters. The power o f test statistics 

means the probability o f  rejecting the null hypothesis (no break point) when the null 

hypothesis is false, the test statistics detect the break point when there is a break in the 

data. We put break at the level "tt/ '  break exist in the data (where j= 10%, 20%, 30%, 

40%, 50%) in data.

We have also calculated the values o f the tests statistics under null hypothesis and 

compute the size under critical values. The size o f test statistics means the probability o f  

rejecting the null hypothesis (no break point) when the null hypothesis is true. The test 

statistics detect the break point when there is no break.
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CHAPTER 4

fc-

Monte-Carlo Simulations Analysis

Critical values for SupF and SupMZ tests have been calculated using Monte-Carlo 

simulation with 30,000 sample size. Further, power o f both tests have been computed at 

different parameters and compared. Results o f this comparison are given below:

4.1 Critical Values

The critical values for all the test statistics are found by using Monte Carlo simulation 

technique. We generate the data under the null hypothesis o f (no break date point) 

keeping the values o f parameters fix ( intercept=.5 and slope =.5) and run 30,000 Monte 

Carlo simulations and get critical values at 5% level o f significance are given in table 

below.

4.1.1 Critical Value by Monte-Carlo Analysis

These are critical values o f F & MZ tests

supF avgF exp F

8.06 1.21 1.00

sup MZ avg MZ exp MZ

14.73 1.46 3.14

Critical values of tests statistics from Monte Carlo 30,000 simulations at 5% level o f significance

To get critical values we have used 30,000 Monte Carlo sample size and for the rest of 

calculation we use 10,000 Monte Carlo sample size. There is a size distortion with 

asymptotic critical values o f Andrews in a small sample size so we preferred simulated 

Critical values.
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4.2 The Power Comparison

The power o f test statistics means the probability o f rejecting the null hypothesis (no 

break point) when the null hypothesis is false, the test statistics detect the break point 

when there is a break in the data. We check the performance o f SupF and SupMZ with 

different level o f heteroskedasticity (break in variance at regime shifting) and distance o f  

parameters on different regimes as mentioned in Maasoumi et al (2010).

The tests statistics avgF, expF, avgMZ and expMZ are not giving us good results as we 

checked in Monte Carlo simulation technique. These tests have no good power to detect 

the correct break points so these tests may be misleading.

The Most Favorable case for SupF test is Homoskedasticity 

The powers o f SupF and SupMZ tests have computed in homoskedastic variance and 

heteroskedastic variance. The results have reported in table and their graphical 

representation also mentioned corresponding to distance o f parameters o f two regimes 

“D” and heteroskedasticity (break in variance at regime shifting)“H”.

4.2.1 P o w e r  oftests with Heteroskedasticity (Break in variance)

We have also computed powers o f tests with the homoskedatic variance by varying 

coefficients (distance between parameters) o f two regression. We have computed the 

powers o f SupF and SupMZ, where supF performance is better than supMZ test because 

this most favourable case for SupF test.
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4.2.1.1 Maximum Gap between SupF and SupMZ with Homoskedasticity

10%

Break

20%

Break

30%

Break

40%

Break
50% Break

Power 12.32 12.93 11.38 10.27 12.52

The power o f SupF test by Monte-Carlo simulation at different !evel

Figure # 4.2.1.Power and gap between SupF and SupMZ with 
Homoskedasticity

In case o f  Homoskedastic variance we have computed powers o f SupF and SupMZ tests 

by varying the distance o f parameters o f two regimes. The maximum gap between both 

tests has been reported in table (4.2.1.1). This gap between SupF and SupMZ goes to zero 

when the distance o f  parameters between two regimes increases. In figure (4.2.1.1) 

showed that the power and gap between SupF and SupMZ, this gap go to zero when 

distance o f  two regimes increases. Further results on power o f tests are discussed in 

appendix A.
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4.2.2 Power o f  tests with Heteroskedasticity (Break in variance)

We have also computed powers o f tests with the presence o f  heteroskedasticity (shift in 

variance at regirne shifting) with same coefficients (no distance between parameters) of 

two regression only break in variance. We have computed the powers o f SupF and 

SupMZ where supMZ performance is better than supF test.

4.2.2.1 Maximum Gap between SupF and SupMZ with Heteroskedastic Data

The Most Favorable case for SupMZ test is Heteroskedasticity

10%

Break

20%

Break

30%

Break

40%

Break

50%

BreaK

Power 94.10 92.68 89.41 84.35 84.48

The power o f SupF test by Monte-Carlo simulation at different level 

Figure# 4.2.2.1 power and Gap between SupF and SupMZ with Heteroskedastic Data

SudMZ
■B a--- B— s-

i i ' AGap

-5upF

Here we have computed powers o f SupF and SupMZ tests by putting break in variance o f  

both regimes keeping distance constant. We conclude that the SupMZ test perform better
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than SupF test as shown in figure (4.2.2.1). The maximum gap between both tests has 

been reported in table (4.2.2.1). The SupMZ detects even a smaller break as shown by 

gap at 10% with 94.1% power. This gap decrease from 95% to 84% as we put break 

from 10% to 50% in data. The SupMZ test has advantages against SupF test when there 

apears break in variance at regime shifting. Further results o f power o f both tests are 

reported in appendix A.

4.3 Effect o f  Position o f Break on Power Curves

We have computed powers o f SupF and SupMZ with homoskedastic and heteroskedatic 

variance. When we used homokedastic variance then we computed powers by varying 

distance o f coefficients o f two regimes to check the performance o f SupMZ test against 

SupF test. When we used heteroskedastic variance we kept distance constant to check the 

perforamce o f  SupF test against SupMZ test. But in this section we also checked the 

effects o f posistions o f  break on powers o f bith tests statistics so we put break in data at 

10%, 20%,. ..,50% and their power curves are as:

4.3.1 Power o f SupF Test Break at Different Positions With Homoskedasicity

V
oQ.

graphs of power of supF te^

^  S ' 'P'"O- O- O- O* O- O- O- O- O- O-
D

-^ -S U P F te s t  
Power break 
at 10% 

-S -S U P F te s t 
Power break 
at 20% 

- ^ S U P F te s t  
Power break 
at30% 

^^SUPFtest 
Power break 
a t 40%
SUPF test 
Power break 
at 50%
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Figure# 4.3.2 Power of SupMZ Test, Break at Different Positions With

Homoskedasicity

graphs of power of supmz test

I 50.00 o a.

SUPMZtest 
Power break
at 10%

SUPMZtest 
Power break 
at 20%

* - SUPMZtest 
Power break 
at30%

W -SUPMZtest 
Power break 
at 40% 

^ S U P M Z te s t 
Power break 
a t 50%

Figure (4.3.1) shows the power o f SupF test at different level o f break with 

homoskedasticity data. We put break from 10% to 20% SupF perfromnce increase 

rapidly but the performance o f SupF test almost equale at 20%, 30% and 40% break 

level. When we put break at 50% in the data more perfromnce improve. Similarly in 

Figure (4.3.2) SupMZ performance increase by putting break from 10 % to 50% level. 

But power almost equal at break 20%, 30% and 40%.
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Figure #4.3.3 Power of SupMZ Test at Different positions With Heteroskedasicity

— SUPMZtest  break a t 10% 

-B -SU PM Z test break a t 20% 

SUPMZ test break a t 30% 

SUPMZ test break a t 40% 

SUPMZ test break a t 50%
0.000 0.020 0.040 0.060 0.080 0.100 0.120 

Heterosedasticity

Figure # 4.3.4 Power o f SupF Test at Different positions With Heteroskedasicity

45.00
40.00 
3 5 .x
30.00 

I  25.00 
£ 20.00

15.00
10.00 

5.00 
0.00

0

I V
<^H-SUPFtest break at 10% 

SUPF test break at 20% 

' A SUPFtest break at 30% 

—̂  SUPF test break at 40% 

SUPF test break at 50%

000 0.020 0.040 0.060 0.080 0.100 0.120 

Heterosedasticity

In Figure (4.3.3) shows the power o f  SupMZ test at different level o f break with 

heteroskedasticity data. As we put break from 10% to 50% performance and almost 

become 100%.. Similarly in Figure (4.3.4) SupF performance increase by putting break 

from 10 % to 50% level but as we increase heteroskydasicity power o f SupF test go down 

at 50% break point shown by arow sign in start Power increase as random fluctuation.
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4.4 Relative Powers o f  SupMZ against SupF Test

In this section we Fiave computed powers by taking difference o f  the powers o f SupF 

from SupMZ test statistics by varying distance between parameters o f two regressions 

and different values o f heteroskedasticity (shift in variance with regime shifting). We 

showed relative power by bar chat.

Table# 4.4.1 Difference, SupMZ minus SupF Test 
Data

Break Located at 30% in the

0.390 :9’:99“ ' r83d* 5.73 31.27 51.47 57.47 67.93 76.17
0.386 ...t5.80J 14.53 28.80 40.97 58.30 66.37 71.90 79.57

0.382 r,-18.34’ '5^0-1^ 19.83 37.57 49.53 65.93 69.50 75.13 80.47

0.378 -212V...j, . ' -9.1<  ̂
i

7.80 28.03 45.13 55.97 71.43 74.77 80.67 83.83

0.374 '-27.57;•jft. - .
9.13 31.83 50.70 62.67 75.60 78.00 80.57 85.60

0.370 ^29;55 
■•Si ». ? Z.-1 .W 13.77 34.70 53.97 68.23 79.27 81.30 83.30 88.fl3

0.366 ■ 2̂4.37^ a 15.93 36.90 55.10 71.50 82.87 84.10 85.40 87.03

0.363 -19-93:r- .  ̂ * « r ‘-0:63 19.20 37.27 56.33 74.07 84.43 86.33 87.63 88.40

0.359 r^S9.98l 0.33 14.67 34.43 56.77 74.87 86.37 88.40 88.50 89.47

0.355 0.33 13.87 34.53 57.10 73.87 88.30 88.90 90.53 89.30

0.351 -"‘-5;iU 0.93 14.13 32.50 54.03 74.87 90.00 89.97 89.77 89.40

0.347 -2.85s 2.77 14.33 31.17 54.63 75.27 90.80 91.03 91.87 91.93

0.343 V'1.71^' 2.57 12.43 28.13 53.00 72.77 91.73 92.13 91.90 92.27

0.000 i:i^o:38^ 2.27 11.53 26.67 49.57 73.27 91.83 92.80 91.93 91.30

/ 0.0000 0.0007 0.0023 0.0044 0.0070 0.0097 0.0154 0.0183 0.0241 0.0333

In this table (4.4.1) shows the percentage point difference between the power o f the 

SupMZ test and the SupF test. An entry o f ‘7.8’ means that SupMZ has 7.8% greater 

power than the SupF test, while an entry o f -9.99 indicated 9.99% greater power for the 

SupF test over SupMZ. . At higher values o f ‘D ’, power o f SupF test is high and power o f
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SupMZ is high at high value o f ‘H’. The bold face figures Shows that the best 

performances o f SupMZ test against SupF test. Similar results computed at different 

locations in the data are reported in Appendix A and graphical representations are also 

reported in Appendix B.
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CHAPTERS 

Empirical Design

The main purpose o f this chapter is to check the performance o f  SupF and SupMZ test in 

real life data and compared empirical results with Monte-Carlo analysis. In this chapter 

we explained all the steps to conduct empirical analysis.

5.1 Empirical Data Series

For empirical analysis we take the annual data form IPS data base on household 

consumption and GDP for several countries. Regress household consumption on GDP 

and apply these statistics to detect the unknown break point. We use bootstrap critical 

value for finite sample to get more accurate results than simulated critical values o f  these 

tests statistics.

5.2 Consumption Function and Test Statistics

Ct =  a +  by't+ ................ (5-2.1)

Take the residuals from consumption function and calculate the values o f F and MZ 

statistics for all possible break point in an interval (a b). Therefore the first step is to 

compute the F and MZ statistics Fj and MZj for {k < a <  j <  b < T-k}. The maximum 

values from these intervals o f  test statistics known as SupF and SupMZ respectively and 

these values are calculated values o f tests statistics for detection o f  break date points.

F =  HRRSS -  URSS^/k)/iiURSS)/{N^  +  Â2 “  2fe))

MZ =  ( T  - k )  * iog{(To) -  ((tj -  k)  * log{a^)  + (t2 ~  k) * lOgi ai )
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For unknown break F and MZ test statistics are calculated for all potential break point as:

(RRSS -  (RSSij +  RSS2,T_j))/k)
(RSSij +  RSS2,T-j)/(Ni +  N2 -  2 k)

SupF =

MZj =  (N„ -  fc) « lo g iS i )  -  ((Wi -  fc) » lo g { 3 lJ  +  (W2 -  k) *

SupMZ = 

where {k <  a <  )  <  i  <  T -  k}

5.3 Bootstrapping procedure for Critical Values

We use estimated values o f the parameters d  and b and also calculate the value o f the 

variance o f  residuals 65 from the regression equation ‘D ’ . For bootstrapping

methodology we generate the residuals from normal distribution 5 ^ N (o, w ) and then 

generate consumption series by using the estimated values o f  parameters and residuals

series as:

Ct =  a +  6Y t+ fit .............. (5-3.1)

Again regress Q on Yt for getting the bootstrap critical values o f the test statistics.

Q =  Y +  ..............(5.3.2)

Take the residuals from (F) and calculate the values o f the test statistics.

SupF = ^ ^ F j  

SupMZ = 

where {k <  a <  7 <  fa <  T — k}
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If we simuiate the values o f  SupF and SupMZ get from ‘F’ equation 30,000 times and 

sort them and calculate the values o f these statistics at 5% level o f  significance these 

values are known as bootstrap critical values under the null hypothesis and we can take 

decision about switching the parameters in the main consumption functions.

5.4 Verification o f  B r e ^  in Variance

The SupMZ test detect break in coefficients and variance simultaneously at unknown 

point. After detection o f  break by SupMZ we also applied GQ test (test for detection o f  

known break in variance) to verify the break in variance.

5.5 Computation o f  GQ test

In statistics, the Goldfeld-Quandt test (1965) checks for heteroskedasticity. In GQ test we 

split data into two parts, where we want to check the break in variance and run two 

separate regressions on two subset o f original dataset. The GQ test also known as a two 

group test and it has an F distribution under the null hypothesis. According to Zaman 

(1996, 8.6) the GQ test is an optimal test for testing the equality o f variance in two 

subsets o f data, when the regression coefficients are not assumed to be same and variance 

is constant in each o f  the two regimes.

Ho; Homoskedastic variance

Hi; Heteroskedastic variance

RSSw
/n j  — k

GQ = — ------------- =  F( ni -  k , n2 -  k) where k is number of parameters i. e. 2
RSS2 /

/n 2 — k
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RSS^and RSSz are residuals sum o f  square from first and second regression

ni and t\2 are the number o f observations in first and second regression respectively

The GQ test is used to detect the break in variance and we apply this test in consumption 

function at where SupMZ test detect the break point as Maasoumi et al (2010) discussed.
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CHAPTER 6 

Empirical Analysis

In this chapter, we applied these tests to detect break in real life data. For that purpose, 

standard Keynesian consumption function is calculated for several countries. Choice o f 

standard Keynesian function is just for ease and simplicity as this function is co­

integrated in most o f the cases. Results o f  this study can be generalized to all other 

models. Bootstrap critical values for small sample were taken to decide about break. 

Results o f  Monte-Carlo exercise were further verified by the empirical analysis. Results 

are also reported graphically.

6.1 Detection o f  Single Unknown Break Point

As discussed above we take the households consumption expenditure and GDP from IPS 

data base and make consumption fimction for several countries. To check for possible 

unknown break point in the data we apply SupF and SupMZ test and use bootstrap 

critical values to make decision about break points. Where SupMZ detects the break in 

the data at that point we apply GQ test to detect break in variance, because GQ test is an 

optimal test to detect break in variance as discussed Zaman (1996).

The SupF test is an optimal test for homoskedastic data to detect the parameter

instability. But the SupMZ test can detect break in parameter with the presence o f

heteroskedasticity. The main contribution o f the present study is that SupMZ is optimal to

the SupF test in the presence o f heteroskedasticity.
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We take data from IFS data base (May 2008) with ‘30’ sample size and drop some 

countries from our analysis which have less than ‘30’ observations. On remaining 

countries we apply test statistics to detect unknown break point and some important 

results are mentioned in table and some important results are also discussed graphically.

Figure#6.1.1 Countries and Heteroskedasticity
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In this graph heteroskedasticity is presented on vertical axis and countries are on 

horizontal axis. The graph explicitly expressed that not all the countries have 

homoskedastic variance, but. only a few countries have homoskedastic variance lies on 

horizontal axis so the use o f  SupF test on the basis o f homoskedastic assumption lead to
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wrong conclusion. It is vital to detect stability in variance in line with the detection o f  

mean, so use o f SupMZ is most power lull test and superior according to above scenario.

6.2 Countries and Detected Break Points

We have computed different results o f tests for detection break for different countries we 

have discussed these results one by one. We apply GQ test where SupMZ test detect 

break. We also computed distance between parameters o f two regimes and break in 

variance are shown in table as Distance ‘D ’ and heteroskedasticity ‘H’ respectively. The 

results are reported as:

Table# 6.2.1 Tests Detected Break at Same Location

Country
SupF Test SupMZ Test

D
<jQ Test

H
Year Results Year Results Results

Belgium 1980 Yes 1980 Yes 58120.2 Yes 0.14

Cameroon 1992 Yes 1992 Yes 38040.47 Yes 0.07

Canada 1992 Yes 1992 Yes 5212.4208 Yes 0.08

Fiji 1988 Yes 1988 Yes 217537.45 Yes 0.12

Germany 1991 Yes 1991 Yes -3508.335 Yes 0.06

Jordan 1994 Yes 1994 Yes 5I606I6.7 Yes 0.05

Kuwait 1998 Yes 1998 Yes 22049345 Yes 0.06

Saudi Arabia 1992 Yes 1992 Yes 6320.7856 Yes 0.23

Sweden 1991 Yes 1991 Yes 9466.2024 Yes 0.06

In table (6.2.1) we have computed results o f tests countries (Belgium, Cambroon, 

Canada, Fiji, Germany, Jordan, Saudi Arabia, Kuwait and Sweden) where both tests 

detected break at same location because there is a large change in Distance o f parameters
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of two regimes but low level o f heteroskedasticity (break in variance) the significant 

value o f Heteroskedasticity. We conclude that when there is a significantly large change 

distance in coefficient o f two regimes but very small change in variance at regime 

shifting, SupF test and SupMZ test detected break at same location. It is not appropriate 

to use SupF test to detect structural break in the presence o f  variance break, so the 

SupMZ test optimal test for testing break in the presence o f variance break

We discussed some results in graphical representation.

Table #6.2.1.1 Results of test statistics to detect break point for Saudi Arabia

sup F sup MZ Distance

Calculated 51.8759 68.9253
6320.7856

Critical value 7.5834 27.5584

Results o f  GQ test statistics to detect the variance break

GQ calculated p-value Table value Heteroskedasticity

9.225653246 0 .00011 2.534243253 0.23

Figure #6.2.1.1 CDF of F and MZ Test Statistic for Saudi Arabia

CDF of F and MZ test statistics for monitoring unknown break point for Saudi Arabia
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In the consumption function o f Saudi Arabia Both tests statistics SupF and SupMZ 

showed that the break date point at 1992 figure (6.2.1.1) and at this point the value o f GQ 

test statistic shows in table (6 .2 .1.1) that there is also break in variance that violate the 

assumption o f  SupF test. Saudi Arabian consumption function is heteroskedastic data so 

SupF test is not vaiid for this kind o f data. The SupMZ test is most powerful test for 

Saudi Arabia consumption function to test the parameter break.

Table#6.2.1.2 Results o f  all Test Statistics to Detect Break Point for Canada

SupF SupMZ Distance

Calculated 35.773 45.314
5212.4208

Critical value 7.6022 21.382

Resuhs o f GQ test statistics to cetect the variance jreak

GQ calculated p-value Table value Heteroskedasticity

3.429816 0.01938 2.637124 0.08

Figure#6.2.1.2 CDF o f F and MZ Test Statistic for Canada

CDF of F and MZ test statistics for monitoring unknown break point for Canada
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In the consumption function o f Canada both tests statistics SupF and SupMZ shows the 

break date point at 1992 figure (6.2.2) and at this point the value o f GQ test statistic 

shows there is heteroskedasticity in consumption function o f Canada as shown in table 

(6.2.2). In the presence o f heteroskedasticity in the data SupF test is not appropriate but 

SupMZ test is optimal test to detect the break for Canadian consumption function.

Table# 6.2.2 The SupMZ Detected Break

Country
SupF Test SupMZ Test

D
GQ Test

H
Year Results Year Results Results

Egypt - No 1996 Yes 79737374 Yes 0 .2 0

Italy - No 1990 Yes 5139.3949 Yes 0.25

Newzealand - No 1985 Yes 97548.275 Yes 0.30

Sri Lanka - No 1995 Yes 606062339 Yes 0.78

Switzerland No 1986 Yes 39679.165 Yes 0.65

Pakistan - No 1986 Yes 402.28023 Yes 0.50

In table (6.2.2) we computed some results o f these countries (Egypt, Sri Lanka, Italy, 

Newzeland, Pakistan and Switzerland) where SupF test fails to detect break in 

parameters because there is a large change in Heteroskedasticity (break in variance) as 

shown by the values o f  ‘H’ in table (6.2.2). In this case SupMZ detected break in data but 

SupF test fail to detect break because o f  large change in variance at regime shifting. So 

we conclude that SupMZ most powerful test against SupF test. Some graphical 

representations are shown the performance o f SupMZ test as:
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Table#6.2.2.1 Results o f Test Statistics to Detect Break for Sri Lanka

SupF SupMZ Distance

Calculated 18.2585 89.8724
606062339

Critical value 7.6818 52.467

Results o f GQ test statistics for testing variance break

GQ calculated p-value critical value Heteroskedasticity

100.5121145 0 .0 0 0 0 0 2.54371855 0.78

Figure #6.2,2.1 CDF o f  F and MZ Test Statistic for Sri Lanka
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CDF o f F and MZ test statistics for monitoring unknown break point for Sri Lanka

We have computed consumption function for Sri Lanka and applied both tests to detect 

break. The SupF and SupMZ tests statistic cross their critical boundary that is the 

evidence o f possible break in parameters, but Supremum value o f F test is at end point 

and fails to detect break. The SupMZ test showed that the break at 1995 in figure

(6 .2.2.1) at that point we also checked break in variance by GQ test statistic which 

showed that there is also break in variance at that point. The GQ test showed that Sri 

Lankan data is heteroskedastic so SupMZ is appropriate test to detect break in parameters
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for Sri Lankan consumption function. The use o f SupF test leads us to wrong conclusion 

because o f  heteroskedastic data. So the SupMZ test is optimal test for testing structural 

break in Sri Lankan Consumption ftinction.

Table#6.2.2.2 Results o f  all Test Statistics to Detect Break Point for Egypt

sup F sup MZ Distance

calculated 136.94 97.539
79737374

Critical value 7.6089 47.454

Results o f GQ test statistics to detect the variance break

GQ calculated p-value Table value Heteroskedastic ity

7.273852369 0.00028 2.493513221 0 .2 0

Figure# 6 .2 .2 2  CDF o f  F and MZ Test Statistic for Egypt

CDF o f F and MZ test statistics for monitoring uniaiown break point for Egypt

In the consumption function o f Egypt we applied both test to check the structural break in 

parameters. Where SupMZ detected break in parameters at 1996 shows in figure (6.22.2) 

and at this point the value o f GQ test statistic also showed that variance also shifted.

45



There is heteroskedasticity in Egypt consumption ftinction so the SupMZ test is optimal 

to test the structural break for this consumption fiinction. The use o f  SupF test gives 

wrong results in the presence o f  heteroskedasticity. The SupMZ test is most powerilil test 

for Heteroskedastic data.

Table# 6.2.3 Detected Break with Homoskedastic data

Country
SupF Test SupMZ Test

D
GQTest

H
Year Results Year Results Results

Denmark 2000 Yes 2000 Yes 12465.298 No* -

India 2001 Yes 2001 Yes 35658178 No* -

Libia 1991 Yes 1991 Yes 1397274 No* -

Oman 1998 Yes 1998 Yes 7744195.8 No* -

Qatar 2000 Yes 2003 Yes 128488581 No* -

In table (6.2.3) there is no break in variance shown by results o f GQ test as (NO*) in this 

case both tests detect break at same point in data o f (Denmark, India, Libya, Oman, 

Qatar) countries. We conclude that SupMZ performance is same as SupF test when 

variances are Homoskedastic (no break in variance). This means SupMZ can cover SupF 

test so there is no need to apply SupF test to detect structural break.
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6.2.3.1 Results o f all Test Statistics to Detect Break Point for Denmark

sup F sup MZ Distance

calculated 57.073 51.698
12465.298

Critical value 7.6808 22.246

Results of GQ test statistics to detect the variance break

GQ calculated p-value Table value Heteroskedasticity

1.228177687 0.261422897 1.737057465 -

Figure# 6.2.3.1 CDF o f F and MZ Test Statistic for Denmark
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In the consumption function o f Denmark we applied both tests to check the structural 

break.>Where both tests detected break at (2000) showed in figure (6.2.3.1) and at this 

point the value o f GQ test showed no break in variance. In homoskedastic data the both 

tests detect break at same location. We concluded that SupMZ can detect break with 

homoskedastic variances.
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Table# 6.2.4 Tests Detected N o Break

Country
SupF Test SupMZ Test

D
GQ Test

H
Year Results Year Results Results

Australia - No - No - No -

China - No - No - No -

France - No - No - No -

Singapore - No - No - No -

US - No - No - No -

In table (6.2.4) we computed that both the test detect there is no break in these countries 

(Australia, China, France, Singapore, and US). There is no structural break in these 

countries.

Table# 6.2.5 Both Tests detected Break at Different Locations

Country
SupF Test SupMZ Test

D
GQ Test

H
Year Results Year Results Results

Cyprus 1995 Yes 1991 Yes 1631.558 Yes 0.07

Finland 1991 Yes 1988 Yes 3655.4651 Yes 0.66

Greece 1995 Yes 1987 Yes 296162.82 Yes 1.21

Hungary 1996 Yes 1988 Yes 711.86192 Yes 0.98

Indonesia 1998 Yes 1993 Yes 49609835 Yes 0.96

Japan 1997 Yes 1999 Yes 2.422E+12 Yes 0.10

Korea 2 0 0 0 Yes 1998 Yes 778972741 Yes 0.46

Malaysia 1998 Yes 1996 Yes 187020346 Yes 0.24

Mexico 2001 Yes 1989 Yes 0.6786377 Yes 1.03

Norway 1997 Yes 1985 Yes 4132.1216 Yes 0.46

Philippine 2 0 0 0 Yes 1992 Yes 5497.5617 Yes 0 .22

Spain 1983 Yes 1982 Yes 211687.11 Yes 0.35
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In table (6.2.5) we computed that both tests detected break in data but they locate break 

at different level this is because large value o f Heteroskedasticity in the data in spite o f it 

there is a large change in distance o f parameters o f two regimes. We conclude that when 

there is a large break in variance at regime shifting SupF tests will be misleading and 

detect break at wrong location. In all above discussion performance o f SupMZ test is 

better than SupF test. Finally we conclude that SupMZ test is most powerful and optimal 

test to detect break in parameters. Now some graphical representation is discussed below.

Table# 6.2.5.1 Results o f  all Test Statistics to Detect Break Point for Cyprus

sup F sup MZ Distance

calculated 25.627 45.022
1631.558

Critical value 7.7128 29.735

Results o f GQ test statistics to cetect the variance break

GQ calculated p-value Table value Heteroskedasticity

3.123025438 0.02755 2.637124 0.07

Figure#6.2.5.1 CDF o f  F and MZ Test Statistic for Cyprus
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CDF of F and MZ test statistics for monitoring unknown break point for Cyprus
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In this consumption function o f Cyprus the calculated values o f SupF and SupMZ exceed 

the critical limits shows in table (6.2.5.1) there is break in the data. But both tests showed 

break at different locations as SupMZ detected break at 1991 and SupF shows in figure

(6.2.5.1) at 1995. The GQ test showed that there is also break in variance in 1995 where 

SupMZ test detect the break in parameter. This is heteroskedastic consumption function 

o f Cyprus, the use o f SupF test will be misleading.

Table #6.2.5.2 Results o f  all Test Statistics to Detect Break Point for Mexico

sup F sup MZ Distance

calculated 9.3762 71.718
0.6786377

Critical value 7.6518 27.748

Results o f GQ test statistics to detect the variance break

GQ calculated p-value Table value Heteroskedasticity

2271.868501 0 .0 0 0 0 0 2.973695996 1.03

Figure#6.2.5.2 CDF o f  F and MZ Test Statistic for Mexico
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In the consumption function o f Mexico the calculated values o f both tests statistics SupF 

and SupMZ exceeded the critical limits, so there is break in the data as shown in table

(6 .2.5.2). Both tests showed break at different locations as SupMZ and SupF test showed 

break at 1989 and 2001 figure (6.2.5.2) respectively. The GQ test showed that there is 

break in variance in 1989. The use o f  SupF test in the presence o f  heteroskedastic data 

leads us to wrong conclusion. The SupMZ test is better to detect the break in parameters 

when there is heteroskedasticity in data.

Table#6.2.5.3 Results o f  Test Statistics to Detect Break Point for Malaysia

sup F sup MZ Distance

Calculated 17.995 63.646
187020346

Critical value 7.6725 46.156

Results o f  GQ test statistics to detect the variance break

GQ calculated p-value Table value Heteroskedasticity

8.902819895 0.00008 2.493513221 0.24

Figure#6.2.5.3 CDF o f  F and MZ Test Statistic for Malaysia

CDF of F and MZ test statistics for monitoring unknown break point for Malaysia
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We have computed consumption function o f Malaysia and applied both tests to detect for 

possible structural break. Where both tests showed the break at different location as 

SupMZ and SupF test showed break at 1996 and at 1998 in figure (6.2.5.3). When we 

checked break in variance by GQ test, which showed that variance also shifted in 1996 

that violate the assumption o f SupF tests. This is heteroskedastic data set so SupMZ test 

is optima! to detect the break in the parameters for Malaysian consumption function.
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CHAPTER 7

CONCLUSION, RECOMENIiSoN AND DIRECTION FOR

FUTURE RESEARCH

This study has been conducted for testing parameters constancy (break in coeificients and 

variance o f  two regimes simultaneously). We have compared SupF test and SupMZ test 

via simulation study and empirically. We have checked power by Monte Carlo simulation 

technique where we conclude that SupMZ test performs better against SupF test.

In chapter (4) we have analyzed both test statistics via Monte-Carlo simulation technique, 

where we apply both test statistics on homoskedastic and heteroskedastic data. In case o f  

homoskedastic data with varying distance o f the parameter in different regime, we have 

been applied both test statistics and concluded that SupF test has better power than 

SupMZ test. Maximum gain o f SupF was 12.50% against SupMZ test that become zero 

when we have increase distance o f parameters o f different regimes. In case o f  

heteroskedastic data where we conclude that the maximum gain o f SupMZ test was 95% 

against SupF test by varying the value o f heteroskedasticity. This gap decreases from 

95% to 84% as we put break from 10% to 50% in the data. When the value o f 

heteroskedasticity increases, performance o f SupMZ also increases and powers o f SupF 

test go on decreasing. We finally, concluded that in Monte Carlo simulation analysis 

SupMZ test has advantage over SupF test by Andrews.
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In chapter (6) empirically we have computed the consumption function o f several 

countries by getting annual data from IFS database and applied these test statistics on 

consumption function. We have been concluded that the performance o f SupMZ test is 

better than the SupF test statistic to detect the unknown break point. We also concluded 

that GQ test performance good to detect break in variance, where the SupMZ test to 

detect the break in empirical analysis. As Zaman discussed (1996) the GQ test is an 

optimal test to detect break in variance when the coefficients are not same but the 

variances are same in both regimes.

In literature the SupF test is considered an optimal test to detect break in parameters with 

the assumption variances are stable. But no one tests the back ground assumption of SupF 

test and no available test in literature, which can test unknown break in variance. This 

study proved that most o f cases the coefficients and variances are shifted simultaneously 

in real life so the SupF test is not an optimal test for testing break in parameters. The 

overall performance o f  SupF test is not good because in some cases it failed to detect the 

break and in some cases it detected break at wrong location with the presence o f  

heteroskedasticity. All discussion in present study shows that the SupMZ test is an 

optimal test than the SupF test for the practitioners in testing o f  structural break. We have 

concluded the following points via simulation study as well as empirically.

>  The SupF test statistics performs better than SupMZ test with homoskedastic data 

but this difference becomes zero (SupMZ cover its power) when the distance 

between parameters increases.
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> The SupF test will be misleading to detect break point in the presence o f  

heteroskedasticity (break in variance at regime shifting) as we see in empirical 

analysis.

>  The SupF test some time detect break with heteroskedastic data when there is a 

huge distance between the coefficients o f  two regimes as we concluded that 

empirically as well as Monte Carlo simulation technique.

>  The SupMZ test perform better in the presence o f heteroskedasticity (break in 

variance at regime shifting) but SupF test worst off with heteroskedastic data.

All above discussion showed that SupMZ test is optima! test than SupF test so according 

to this study we suggest for researchers that SupMZ test should used for testing 

structural instability. This study can be extended for multiple unknown breaks in future 

research.
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Tables of Power of Tests Statistics 

Section I: Table %Difference Power o f  SupMZ from SupF test

APPENDIX A

Gap 10%
0.0000 0.0004 0.0013 0.0024 0.0053 0.0068 0.0099 0.0114 0.0144 0.0177

0.0000 -0.85 3.17 6.03 8.63 22.93 29.50 50.97 59.80 76.90 89.60

0.5731 -1.50 1.43 4.63 9.93 22.17 33.73 50.77 61.80 78.03 89.70

0.5746 -2.25 1.07 4.77 10.77 24.43 32.57 51.17 61.67 77.43 88.70

0.5761 -3.89 0.67 8.07 10.00 24.13 32.40 52.70 63.93 78.57 89.33

0.5776 -7.27 0.33 5.70 10.07 24.67 35.33 53.60 62.10 78.67 89.33

0.5790 -10.65 0.63 6.87 11.93 26.80 35.50 54.60 64.70 79.33 88.87

0.5805 -16.84 -0.70 8.20 11.53 28.53 38.07 55.67 6630 80.63 89.07

0.5820 -20.77 -0.93 11.60 16.83 29.77 38.83 57.80 65.50 79.93 89.30

0.5835 -26.19 -3.97 12.20 20.63 30.90 40.03 57.70 68.00 81.03 89.57

0.5850 -31.32 -5.83 5.80 17.73 32.07 43.23 59.50 68.50 81.30 89.83
0.5865 -41.90 -15.27 5.27 19.27 34.23 45.17 59.50 69.03 82.27 89.60

0.5880 -46.71 -23.17 1.23 16.10 37.47 47.07 62.63 71.53 82.50 89.37

0.5895 -54.75 -30.97 -1.43 16.57 39.20 46.77 63.43 70.60 81.33 89.63

0.5910 -44.63 -28.80 -6.77 -1.37 39.93 50.53 66.13 72.63 82.70 89.70
Gap 20%

0.0000 0.0007 0.0023 0.0044 0.0070 0.0097 0.0154 0.0183 0.0241 0.0333

0.0000 -0.38 2.27 11.53 26.67 49.57 73.27 91.83 92.80 91.93 91.30

0.3430 -1.71 2.57 12.43 28.13 53.00 72.77 91.73 92.13 91.90 92.27

0.3469 -2.85 2.77 14.33 31.17 54.63 75.27 90.80 91.03 91.87 91.93

0.3508 -5.11 0.93 14.13 32.50 54.03 74.87 90.00 89.97 89.77 89.40

0.3547 -7.53 0.33 13.87 34.53 57.10 73.87 88.30 88.90 90.53 89.30

0.3586 -9.98 0.33 14.67 34.43 56.77 74.87 86.37 88.40 88.50 89.47

0.3625 -19.93 -0.63 19.20 37.27 56.33 74.07 84.43 86.33 87.63 88.40

0.3665 -24.37 -2.73 15.93 36.90 55.10 71.50 82.87 84.10 85.40 87.03

0.3704 -29.55 -7.17 13.77 34.70 53.97 68.23 79.27 81.30 83.30 88.03

.0.3743 -27.57 -10.57 9.13 31.83 50.70 62.67 75.60 78.00 80.57 85.60

0.3782 -22.27 -9.10 7.80 28.03 45.13 55.97 71.43 74.77 80.67 83.83

0.3821 -18.34 -9.10 -0.17 19.83 37.57 49.53 65.93 69.50 75.13 80.47

0.3861 -14.33 -5.80 -0.97 14.53 28.80 40.97 58.30 66.37 71.90 79.57

0.3900 -9.99 -8.50 -5.00 -0.80 5.73 31.27 51.47 57.47 67.93 76.17
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Gap 40%
D H 0.0000 0.0003 0.0010 0.0035 0.0070 0.0155 0.0203 0.0301 0.0449 0.0561
0.0000 -0.59 1.60 7.00 31.57 71.07 84.50 83.63 80.37 77.53 75.20
0.0793 -1.52 -0.47 6.00 . 32.97 71.80 84.07 83.00 80.07 77.10 75.40
0.0861 -2.97 0.70 5.87 34.40 73.13 83.70 81.17 78.20 75.67 74.67
0.0929 -5.31 -1.30 6.03 35.60 72.23 81.07 79.27 77.13 73.43 74.17
0.0996 -5.07 -2.40 6.73 38.30 68.90 80.77 78.67 74.87 72.77 72.13
0.1064 -8.80 -4.73 6.30 37.07 67.23 75.27 74.50 74.53 73.00 70.80
0.1132 -9.48 -4.67 4.67 36.77 62.77 72.23 71.00 71.30 70.17 69.83
0.1199 -10.27 -4.47 6.33 34.97 61.23 67.97 68.47 69.30 69.37 68.63
0.1267 -9.09 -6.07 3.73 29.30 48.83 61.40 62.07 65.57 67.17 67.43
0.1335 -7.16 -6.13 0.20 23.77 39.03 53.37 56.80 59.77 61.83 64.70
0.1402 -4.28 -1.83 -0.07 16.00 29.93 46.83 50.73 66.90 61.57 62.43
0.1470 -1.03 -1.73 -0.97 9.00 20.33 37.67 42.20 50.87 57.30 60.53
0.1538 -0.48 -0.57 -0.60 5.13 11.53 28.07 36.20 45.37 52.90 57.60
0.1606 -0.40 -0.08 -0.13 1.67 7.27 20.20 27.77 39.87 49.67 54.67

Gap 50%
D H 0.0000 0.0003 0.0011 0.0018 0.0037 0.0220 0.0274 0.0385 0.0552 0.0625
0.0000 -0.74 1.60 5.47 15.10 40.23 75.07 72.90 69.73 63.10 63.10

0.6466 -2.49 -0.37 8.17 17.30 40.30 75.37 74.07 68.63 62.27 61.80

0.6788 -4.29 -0.83 7.70 16.40 44.23 74.10 73.10 67.23 62.33 62.30
0.7110 -7.06 -2.37 7.00 17.43 46.10 73.33 71.17 67.33 62.47 59.90

0.7432 -11.00 -4.37 7.80 19.73 47.90 72.13 68.80 66.00 59.83 59.57
0.7754 -12.52 -6.00 8.20 19.83 44.80 67.17 65.43 63.10 60.13 58.43
0.8076 -10.01 -6.23 6.07 12.30 37.03 60.83 61.10 60.50 57.27 58.93
0.8398 -7.39 -4.83 3.70 9.53 25.77 56.60 55.50 58.17 55.27 56.10
0.8720 -2.85 -2.97 1.33 6.20 13.90 46.67 50.70 52.67 53.50 52.07

0.9042 -0.92 -1.07 0.77 2.80 6.17 38.50 43.70 48.33 51.43 50.37
0.9364 -0.15 -0.30 0.27 0.53 1.60 27.50 34.67 42.13 47.27 47.30

0.9686 0.00 -0.37 0.07 0.07 0.43 18.23 24.03 37.17 41.97 45.70

1.0008 0.00 -0.26 0.00 0.00 0.07 11.10 18.17 28.73 39.93 40.10

1.0330 0.00 0.00 0.00 0.00 0.00 5.70 10.47 22.07 33.57 36.60
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Contains All Graphs of Power of Tests Statistics

Section I: Power of SupF and SupMZ test with Homoskedasticity Break at 10% & 
20%

APPENDIX B
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Section II:

Power o f SupF and SupMZ test with Heteroskedasticity Break atlO% & 20%
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Section III: %Difference of SupMZ minus SupF test at different locations
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%Difference o f SupF from SupMZ at 30% Break
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