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Preface

In this thesis, the center of discussion is some limitations of soft set
matrices and its uses. The soft sets concept was expressed by Molodtsov in 1999
[17]. This concept is used to solve some complications in the fields of economics,
engineering and environment because all these areas have some distinctive
uncertainties regarding these problems. The concept of soft set is applied in
fuzzy sets, intuitionistic fuzzy sets, vague set, interval mathematics and rough
sets. In this thesis, some discussion is also done on matrices, which have a_
significant role in the vast field of engineering, economics and science. But, the
old theory related to matrices is failed in solving the uncertainties, which are
caused due to inaccurate circumstances. Matrices have different properties
which include: commutative law, associative law and distributive law.

In the study, the idea of soft sets is described by linking an advantageous
method with soft matrices. This study also involves the Naim Cagmanis and S.
Enginoslu [5] research which hlghllghts the usage of soft set theory in more
precise manner. He describes the different dimensions of its applications.
Initially, with the help of rough sets, he gave the theory of soft sets in decision
making problems. Xiao et. all [27] had done a research hlghllghtmg business
competitive capacity based on soft sets. Maji et al, [13] defined the fuzzy set, as
the time passes a lot of work has done’ in fuzzy Soft set. The definition of soft
group was given by Aktas and Cagman [1]. They also made a comparison
between soft sets to the rough soft sets and fuzzy soft sets. Subsequently, many
other researchers have done a lot of work on this concept and gave many other
theories related to the soft sets. Roy and maji [25] have also done some work on
the applications and decision making problem. Majumdar [16] introduced the
reduction of fuzzy soft set and then examine a decision making problem by fuzzy
soft sets. The theory of the Rough sets is explained by Pawlak [23] for the
analysis of the data possibly with inconsistent information. This theory has been
used in many fields such as beauty contest, pattern recognition confliict analysis
and switching circuits.

In the light of above mentioned facts, we indicates some limitations of the
products of soft matrices given by Naim Cagman [5]. We pointed out that the
products of soft matrices are not binary. It does not satisfy many laws which
include Closure law, associative law and distributive law. Keeping in view this
drawback in this thesis we have introduced new products of soft matrices, which
are binary. We have also shown that accociative laws and distributive laws also
holds.

3

Structure of the Thesis

The thesis is organized chapter wise as follows:




TR N TS et ——— e — e " = m ——————TT— 7 rr—Tm——— —— T T T >
L * - a2 ™ ¥

Chapter 1:

This chapter is introductory and sets up the background for the problems taken
in the thesis. Semirings, Soft Sets, Soft-Union-Intersection Sum, Soft-Union-
Intersection Product and related results are discussed.

Chapter 2:
In this chapter the article “Soft matrix theory and its decision making” is
reviewed.

Chapter 3:

In this chapter, keeping in view the drawbacks and limitation such as the
products of soft matrices defined in the paper reviewed are not binary and that
associative and distributive laws are not satisfied, we improved the products of
soft matrices and named them B-products of soft.matrices. It is also shown that
the defined products are binary. Further it is also shown that these products now
satisfy the associative laws and distributive laws as well.

i
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Chapter 1 '
Preliminaries

This chapter provides the essential definitions and preliminary results, which are uséful
for our subsequent chapters. For undefined terms and notions we refer to ([1], [2], [3],
[4], [5], (8], [10), [14], [16], [15], [17], [23], [25]; [27]).

1.1 Semigroups

Let S be a non-empty set and “s” be a binary operation on S. Then (5, %) is called

a semigroup if this operation is associative, that is
ax(bxc)=(axb)xc  foralla,bcesb.
A semigroup (S, *) is called commutative if

axb=bxa for all a,b € S.

1.1.1 Definition

Let (S, *) be a semigroup. If there exists an element e € S such that
axe=exa=a for all a € S,

then e is called the identity element in S and (S, *) is called a monoid.

An element £ € S is called idempotent fzxz =gz If every element of S is
idempotent then we say that S is idempotent.

Usually instead of writing (S, *) we write S & instead of writing x * y we write zyY,
for all z,y € S.
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1.1.2 Examples
1. (N, +) is a semigroup.

2. Let S = {aj, ag, as,.....} such that * be defined on S by a; *a;'= a;. Then

(S,*) is a semigroup.
3. (Np, +) is a Monoid, where Ny = NU {0}

4. (Z, ) is a Monoid.

©»

5. {0, 1} is a monoid under

6. For any set X; (P(X), U) and (P(X), N) are monoids.

1.2 Semirings

A semiring is an algebraic system consisting of a non-empty set R together with two
binary operations called “addition” and “multiplication” -(denoted by “+” and “.”,
respectively) such that (R,+) and (R,-) are semigroups and multiplication distributes

over addition from both sides, that is
a-(b+c)=a-b+a-c, and (b+c)-a=b-a+c-a

for all a, b, c € R. 4 :

1.3 Soft Sets !

i

Soft set theory was introduced by D. Molodtsov [17]. It is a new approach for the real
world problems in the field of economics, engineering, management-etc. Molodtsov’s
soft set theory was proposed for dealing with ambiguity. He also defined some opera-

tions for soft set theory.

1.3.1 Definition [17]

Let U be an initial universes E be the set of all possible parameters under consider-
ation with respect to U and A be a subset-of E. Then a pair (F, A) is called a soft
set over U, where F' is a mapping given by. F : A — P(U).

For e € A, F(e) may be considered as the set of e—~approximate elements of the
soft set (F, A).

‘Parameters are often attributes, characteristics, or properties of objects in soft

sets. For example big, airy, tall, cool, hot, wooden, expensive, cheap etc.
i
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In other words, a'soft set over U-is a parameterized family of subsets of the universe
U. For e € A, F(e) may be considered as the set of e—approximate elements of the
soft set (F', A).

1.3.2 Definition [15]

For two soft sets (F, A) and (G, B) over a common universe U, we say that (F, A) is
a soft subset of (G, B) if

1. AC B and

2. F(e) CG(e) for all e € A.

We write (F, 4)C(G, B).
In this case (G, B) is said to be a soft super set of<(F, A).

1.3.3 Definition [15]

Two soft sets (F, A) and (G, B) over a common universe U are said to be soft equal
if (F, A) is a soft subset of (G, B) and (G, B) is a soft subset of (F, A).

1.3.4 Definition [2]

Let U be an initial universe set, E be the set of parameters, and A C E.

1. (F, A) is called a relative null soft set (with respect to the parameter set A),
denoted by @4, if F(a) =0 for all a € A.

2. (G, A) is called a relative whole soft set (with respect to the parameter set A),
denoted by Uy, if G(a) = U for all a € A..

The relative whole soft set with respect to the set of parameters E is called the
absolute soft set over U and denotéd by Ug. In"a similar way, the relative null soft set
with respect to E is called the null soft set over U and is denoted by 0.

We shall denote by @y the unique soft set over U with an empty parameter set,
which is called the empty soft set over U. Note that Oy and @4 are different soft sets
over U and PgCPC(F, A)CU,CUE for all soft set (F, A) over U.

1.3.5 Definition [2]

Extended union of two soft sets (F, A) and (G, B) over th‘e common universe U is
the soft set (H, C), where C = AU B and for all e € C,

> o e =
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C F(e) ifec A—B

H(e)={ Gle) ifecB—A
F(e)UG(e) ifeec ANB

We write (F, A) Ug (G, B) = (H, O).

1.3.6 Definition [2]

Let (F, A) and (G, B) be two soft sets over the same universe U, such that AN B # 0.

The restricted union of (F, A) and (G, B) is denoted by (F, A)Ux (G, B) and is defined

as (F, A)Ur (G, B) = (H, C), where C = ANB and for all e € C, H(e) = F(e)UG(e).
If ANB =@, then (F, A) Ur (G, B) = 0. ’

1.3.7 Definition [2]

The extended intersection of two soft sets (F, A) and (G, B) over a common universe
U, is the soft set (H, C) where C = AU B and for all e € C,
F(e) ifec A-B
H(e)=< Gl(e) ifee B—A .
Fe)NG(e) ifeec ANB
We write (F, A)Ng (G, B) = (H, C)

1.3.8 Definition [2]

Let (F, A) and (G, B) be two soft sets over the same universe U such that AN B # 0.

The restricted intersection of (F, A) and (G, B) is denoted by (F, A)N (G, B) and is

defined as (F, A)Ng (G, B) = (H, ANB), where H(e) = F(e)NG(e) for alle € ANB.
If AnB =0 then (F, A) Ng (G, B) = 0.

1.3.9 Definition [2]

Let (F, A) and (G, B) be two soft sets over the same universe U such that ANB # {.
The restricted difference of (F, A) and (G, B) is denoted by (F, A) —z (G, B) and
is defined as™(F, A) g (G, B) = (H, AN B), where H(e) = F(e) — G(e) for all
e€c ANB.

If ANB =0 then (F, A) —% (G, B) = 0y.

1.3.10 Definition [2]

The complement of-a soft set-(F, A) is denoted by (F, A)° and is defined by (F,
A)¢ = (F¢, A) where F¢: A — P(U) is mapping given by F¢(e) = U — F (e) for all

e€cA
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clearly (F, A)® = 44 g (F, A) and ((F, A)%)° = (F, A).

1.3.11 Definition [15]

Let (F,. A) and (G, B) be any two soft sets over a common universe U. Then the basic
intersection of two soft sets (F, A) and (G, B)-is defined as the soft set (H, C) =
(F, A)A(G, B), where C = Ax B, and H (a, b) = F (a)NG (b) for all (a, b).€ Ax B.

1.3.12 Definition [15]

Let (F, A) and (G, B) be any two soft sets over a common universe U. Then the
basic union of two soft sets (F, A) and (G, B) is defined as the soft set ()'-I , C) =
(F, A)V(G, B), where C = Ax B, and H (a, b) = F (a)UG (b) for all (a, b) € Ax B.

1.3.13 Theorem

Let (F, A) and (G, B) be two soft sets over the same universe U such that ANB # 0.
Then

(1) ((F, Aur (G, B)) = (F, A)nr (G, B)®

2) ((F, Anr (G, B))® = (F, A)°Ur (G, B)°

1.3.14 Distributive Laws for Soft Sets

s

In this section, we discuss distributive laws on the collection of soft sets. It is interesting
to see that the equality does not hold in each and every case. We see the improperness
in some assertions and counter example is given to show it.-Let U be an initial universe
and E be the set of parameters then we denote the collections of soft set as follows.
SS(U)F : The collection of all soft sets defined over U.
SS(U) a: The collection of all those soft sets defined over U with a fixed parameters
set A.

1.3.15 Proposition [3]

Let (F, A) be a soft set over the universe set U.
(1) (F, A)a(F, A) = (F, A)for all « € {Ng,Ur}
(2) (F, A)Nr B4 = B4
@) (F, A)Ur 0a.= (F, A)
(4) (F, 4) N 844 = (F, 4)
(5) (F’ AM) URL[X=5JA
Proof. Straightforward m
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1.3.16 Remark [3]

Let a, B € {U, N, Ug, Ne}. Then
(F, A)a((G, B)B(H, C))=((F, A)a(G, B))B((F, A)a(H, C))

. holds when we have 1 otherwise 0 in Table 2.
Table 2 shows that, if a, 8 € {Ug, Nr, Ug, Ne}, then there are sixteen combinations

in all, there are four combinations in which a = 8 and for eight combination equal-
ity (F, A)a((G, B)B(H, C)) = ((F, A)a(G, B))B((F, A)a(H, €)) will holds.

Proofs in the case where equality holds can"be. followed by definitions of respective

operations. For four remaining a and S this equality does not hold. To show this we

have following example

Ur | Nr | Us | Ne

Ur |1 |1 1 |1

N1 |1 |1 |1

Ue |01 |1 o0

Nne |1 |0 [0 |1
Table 2

1.3.17 Example [3]

Let U be the set of sample designs andE be the set of available colors for dressés in a
boutique,

U= {85, S, 83, S4, Ss, S, S7, Ss}

E = {Red, Green, Blue, Yellow, Black, White, Pink}.

Suppose that

A = {Red, Green, Blue, White}, B = {Green, Blue, Yellow, Black}

and C = {Blue, Yellow, White, Pink}.

Let (F, A), (G, B) and (H, C) be the soft sets over U, which are defined as follows:

L

F(Red) = {S1, Sz, S3, Ss}; F(Green) = {S3, S4, Ss, Ss};
F(Blue) = {51, Sa, Sy, S7}; F(White) = {Ss, S3, Sa}.
G(Green) = {54, Ss, Ss, Sg}; G(BIUE) = {Sl, Sz, 53, S%};

G(Yellow) = {54, Ss, Sﬁ, 57, Sg}; G(Black) = {Sl, Sz, S4, S’{}

and

H(Blue) = {53, S4, Sz, Sg}'; ‘H(YeHOW) = {54, Ss, 57};
H(White) = {Sz, Sy, Sg, Sg}; H(Pink) = {Sz, S3, S5,.S7}.
Let

1
3
1
1
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(F, A) U ((G, BYyUr (H, C)) = (I, AU(BNC));

((F, A)U: (G, B)) Ur ((F, A) Uc (H, C)) = (J, (AUB)N (AU Q));
(F, A) U ((G, B)Ug (H, C)) = (K, AU (BN C));

((F, A)Uc (G, B)) Ur ((F, A)Ue (H, C)) = (L, (AUB)N (AU Q));
(F, A)Uc ((G, B)U (H, C)) = (M, AU(BUC));

((F, A)U¢ (G, B)) Ue ((F, A)Uc (H, C)) = (N, (AUB)U (BUC));
(F, A) U ((G, B) Ue (H, C)) = (0, AU(BUC));

((F, A) U (G, B)) Ue ((F, A) U¢ (H, C)).= (P, (AUB) U (BUC)).
Then

I(Red) = {81, Sz, S3, Su}; " I(Green) = {Ss, S, S5, Ss};
I(Blue) = {851, S2, S3, Sa, S7, Ss}; I(Yellow) = {S4, S5, Ss, S7, Ss};
I(White) = {Sg, S3, S4}.

J(Red) = {51, S2, S3, S4}; J(Green) = {S3, S4, S5, Ss, Ss};
J(Blue) = {81, S2, S3, S4, S7, Ss}; J(Yellow) = {84, Ss, S, S7, Ss};
J(White) = {52., S3, S4, Sg, Sg}.

Thus

(Fa A) Ue ((G’ B)‘UT\’. (Hv C)) 7é ((Fa A) Ue (Ga B))'UT\’. ((F7 A) Ue (Ha C))
Now,

K(Red) = {51, S2, S3,°Sa}; K(Green) = {S3, S4, Ss, Sg};
K (Blue) = {Sa}; |

K(Yellow) = {S4, S5, S7}; K (White) = {S2, S3, S4}.
L(Red) = {Sl, Sa, S3, 54}; L(G'reen) = {54, Ss, SG};
L(Blue) = {S4}; L(Yellow) = {S4, S5, S7};
L(White) = {S2, S4}.

Thus

(F, &) N (G, B) Nw (H, C)) # ((F, A)Ne (G, B)) Nz ((F, A)Ne (H, C)).
Again, we see that

M (Red) = {51, S2, S3, S4}; M (Green) = {S3, S4, S5, Ss, Ss};
M (Blue) = {51, S2, S3; S4, S7}; M (Yellow) = {84, S5, S7};

M (Black) = {S1, S2, S4, S7}; M (White) = {S2, S3, S4, Se, Ss};
M (Pink) = {Sq, S3, S5, S7} -

and

N(Red) = {81, S2, Ss, Sa}; N(Green) = {Ss3, S4, S5, Ss};
N(Blue) = {81, Sa, S3, S4, S7}; N(Yellow) = {5y, Ss, S7};
N(Black) = {81, S, S, S7}; N(White) = {Sg, S3, S4};
N(Pink) = {S3, S3, S5, S7}. '

Thus ¢

(F, A) Ue (G, B)Ne (H, C)) # ((F, A) Ue (G, B)) Ne ((F, A) Us (H, C)).

. L e b i
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Now,

O(Red) = {851, S2, S3,-S4}; O(Greén) = {S4,'Ss, Ss};
O(Blue) = {Sl, Sg, S4, 57}; O(YellOW) = {54, S5, Sﬁ, S7, Sg};
O(Black) = {51, S2, Sa, S7}; O(White) = {82, S4};

O(Pink) = {Sz, 53, Ss, S7}

and

P(Red) = {51, Sz, S3, S1}; P(Green) = {Ss, S4, S5, Ss};
P(Blue) = {S1, .52, S4, St}; P(Yellow) = {S4, Ss, Ss, S7, Ss};
P(Black) = {S1, Sz, S4, S7}; P(White) = {Sz, S3, Sa};
P(Pink) = {S, S3, S5, S7}.

Thus )

(F, A) N ((G, B) Ue (H, C)) # ((F, A)Ne (G, B)) Ue ((F; A) Ne (H, C)).

1.3.18 Definition[15] 1

Let U be an initial universal, P(U) be the power set of U, E be the set of all parameter
and A,B C E,

Let (F, A) and (G, B) be the two soft sets over a common universe U.

Then the basic intersection of the two soft sets (F, A) and (G, B) is define as the
soft set

(H, C) =(F, A) A (G, B)

where C' = A x B such that

H(ei, e2) = F(e1) N G(e2) ¥ (e1, e2) € A x B.

1.3.19 Definition [15]

Let U be an initial universal , P(U) be the power set of U, E be the set of all parameters
and A, BCFE

Let (F, A) and (G, B) be the two soft sets over a common universe U.

Then the basic Union of the two soft sets (F, A) and (G, B) is defined as the soft
sets

(H,C)=(F, A) V (G, B)

where C = A x B such that

H(ej, e2)-= F(e1) U G(e2) V (e1, e2) € A X B.

1.3.20 Theorem [2]

If (F, A), (G, B) and (H, C) are three soft sets over U, then

L ((F,A)A(G,B)) A(H,C) = (F,A) A ((G,B) A (H,C))
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2. ((FaA)V (G7B)) N (H7C) = (F)A) V((G’B) \ (ch))
3. (F,AN((G,B)V (H,C))=((F,AN(G,B)V((F,A) A (H,C))

4. (F, AV ((G,B) A (H,C)) = ((F,A) v.(G, B)) A((F,A) v (H,C))

The following remark shows that the parameter sets on both sidés of the above

assertions 3 and 4 are inconsistent in general.

1.3.21 Remark [2]

Let (F, A), (G, B) and (H, C) be soft sets over a common universe U. The soft

set (F,A) A ((G,B)V (H,C)) on left side of 3 has the parameter set A x (B x C)

and the soft set .((F, A) A (G, B))V ((F, A)A (H, C)) on right side of 3 has a set
of parameters as .(4 x B) x (A x C). But in [15] we can not find any notion which

ensure
Ax(BxC)y=(AxB)x(AxC). Hence in Proposition 2.6 [15], two statements

L (F, A)A((G,B)V (H,C)) = (F,A) A (G, B)) v ((F,A) A (H,C))
2. (F, AV (G,B)A(H,C)) = (F,A) V(G,B)A((FA)V(H,C))

are not true.
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Chapter 2

Soft Matrix Theory and its

Decision Making

]

In this chapter we review the paper of Naim Cagmian and Serdar Enginoglu [5].

2.1 Soft Matrices

2.1.1 Definition [5]

Let U be an initial universal, P(U) be the power set of U, E be the set of all parameter

and ACE.
A soft set (fa, E) over U is defined by the set of order pairs.

(fa, E) ={(fa(e), €): fa(e) € P(U), e € E}

where f4 : E — P(U) such that fa(e) = ¢ if e¢ A.
Here f4 is called approximation function of the soft set (fa, E). The set (fa, E)
is called e-approximate soft set. The element f(e) is called the e-approximate value,

which consists of related object of the perameter e € E

2.1.2 Definition [5]

Let (fa, E) be an approximate soft set over U. Then a unique subset of U x E is

defined by
Ry ={(u, e): v € fale), ec E}

is called approximate relation.

10
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[0 0 0 1]
0101
[aijl=]10 0 0 1
0-1 0 1
[0 0 0 1 ]

2.1.5 Definition [5]
Let [aij] € SMmxn - Then [a;5] is called
1. A zero matrix is denoted by [0}, if a;; =0 for all 4 and j

2. An-A-universal soft matrix [a;;], if as;j =1forj€ [y ={j:ej € A} andi =1,
2,3,..,m

3. A universal soft set matrix denoted by (1], if a;; = 1 for all ¢ and j

2.1.6 Example [5]

Assume that U = {uq, ug, ug, us, us} is a universal set and E = {ey, ez, €3, e4} is a
set of parameters and [as;], [c;;] , [dij] € SMsx4.

If A= {e1, e3} and fa(e1) = ¢, fa(e3) = ¢ then [a;;] = [0] is a zero soft matrix
written by

r q -

[ai;] = [0] =

o O O O O
S O O O O
o O O O O

0
0
0
0
0

If C = {e, e;} and fc(e1) = U, fc(ea) = U. Then [¢;;] = [&;] is a C-Universal

soft matrix written by

-

1100
1100
[cij] =|11100
1100
110 0]
If D=F and fp(e;) =U, for all e; € D. then [d;;] = [1] is a Universal soft matrix
written by ‘

[dij] = [1] =

— e ek pd
— e ek pd
— = = e

1
1
1 ;
1
1

| L. |

i i il i ] M B M

e &

i Bl
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2.1.7 Definition [5]
Let [ai;] € SMmxn. Then
1. [aij] is the soft submatrix of [b;;], denoted by [a;;] C [bij], if a;; < by; for all 4
and j.

2. [as;] is the proper soft submatrix of [b;;], denoted by [ai;] C [bij], if as; < by; for

at least one item a;; < b;; all 4 and j.
3. [as;] is the soft equal matrix of [b;;], denoted by [ai;] = [b;;], if as; = by; for all @
and 7.
2.1.8 Definition [5]
Let [as;], [bij] € SMmxn. Then thie soft matrix [c;;] is called
1. Union of [a;;] and [b;;], denoted by [a;;] U [bi;] = [ei;], if [e;5] = max{asj, bij) for
all 7 and ;.

2. Intersection of [a;;] and [bs;], denoted by [a;]N[bi;] = [ci5], if [ci;] = min{ayj, bij)

for all < and j.

3. Complement-of [a;;], denoted by [ai;]° = [cij], if ¢;; = 1 — aj; for all ¢ and j.

2.1.9 Definition [5]
Let [aij], [bij] € SMmxn- Then [ai;] and [bj;] are disjoint, if [a;;] N [bi;] = [0] for all ¢

and j.

2.1.10 Example [5]

0100 0011 !
1000 0101 ‘
Assume that [ai] = | 0 1 0 0 |, bsl=|00 11 |
1000 0001 1
10000 (000 1]
Then ) 3 i 1
011 1 [1 0 11
) 1101 ] 01 1.1
[ailUfbis] =0 1 1 1], [ai;]M[bi;] = [0], [a]°=]1 0 1 1
1001 0111
(000 1] (111 1]
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2.1.15 Proposition [5]
Let [aij], [bij], [C,J] € SMy,xn.-Then
L. [ay] N [ai;] = [as]

fa51 N 0] = [0]

N

[9V]

- fag) N {1} = o)

- [aij] n la;;]° = [0]

=

- [aij) n [bi5] = [bij] N {aij)

ot

6. ([as5] N [bi3]) N [eis] = lass) N (BBis] N ess])-
2.1.16 Proposition [5]

Let [ai5], [bi;] and [ci5] € SMpxn. Then De Morgan’s laws are valid
L. ([agg] N [bi])° = lai;]° U [by;]°
2. (o] U [bi5])° = [as]® N [b]°-

Proof. For all ¢ and j
i ]
(lai] N [bi5])° = [max{as;, bi;}]°
= [1 — max{a;;, bi;}]
= [min{l - a}ij,l - bij}]
= [ai5]° N [b3]°
ii.

It can be proved similarly m

2.1.17 Example [5]

Let [a;;], [bij] € SMsx4 as in Example 2.1.10. Then
(1.0 0 0]

({as3] U (bi3])° = [ag;1° N [by3]0.=

_ O = O
= = O O
—_ O = =
o O o O

e 4

and _ )
([ai5] N [b55])° = [a35]° U [b35]° = [1]
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2.1.18 Proposition [5]

Let [as;], [bi;] and [cij] € SMmxn. Then

1. fas] U ([bis]) N fess]) = ([aig] U [bis]) 1 ([ass] U i)

2. [asj] O ((bs5]) U lei]) = ([aig) O [bis]) 1 (laig) N [ess)-

2.2 Product of Soft Matrices

In this section we define four special products of soft matrices to construct soft decision

making methods.

2.2.1 Definition [5]

Let {ai;], [bij] € SMmxn. Then And product of [as;] and [b;x] is defined by
A SMuxn X SMpxn — Smenz, [aij] A [b‘,’k] = [Ctp]
Where c¢;, = min(aij, b;x) such that p=n(j — 1) + k.

2.2.2 Definition {5]

Let {ai;], [bij] € SMmxn. Then Or- product of [a;;] and [bi] is defined by
Vi SMmxn X SMmxn — SMan2: [aij] \ [bik] = [CLP]
Where c¢;p = max(a;j, bix) such that p =n(j — 1) + k.

2.2.3 Definition [5]

Let [a;], [bij] € SMypxn.Thén And-Not-product of [a;;] and [bi] is defined by
A Smeﬂ X Smen b SManz, [aij] A [bik] = [Ctp]
Where ¢, = min(aij,1 — bix) such that p =n(j — 1) + k.

2.2.4 Definition [5]

Let [aij], [bij] € SMumxn. Then Or-Not- product of [a;;] and [bx] is defined by
Vi SMimxn X SMimxn — SM,xn2, [asj] V. [bik] = [cip]
Where c¢;p = max(aij,1 — b;x) such that p =n(j — 1) + k.

2.2.5 Example, [5]

Assume that [ai;], [bij] € SMsx4

(i i B i e’ E— e e B TR = e e —— N
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[0 01 1] [1. 00 1]
™ 0111 1 001
. gﬁﬁ'
’ laij]=]0 1 1 0, bijl=]10 0 1 1
0100 0011
LO 1 0 1] 10 0 1 1|
Then A
[0 00000001001 1001
0000100110011001
laijJ]Afbx]=[0 0 0 0 0 001100110000
00000011 0O0O0OO0O0O0OO0OO
| 000 000110000001 1]
similarly we can find the other product [a;;] V [bik], [aij] A [bik] , [ai;] ¥ [bik]
note that the commutativity is not valid for the soft matrices.
2.2.6 Proposition [5]
Let [a;;], [bij] € SM(myn). Then the following De Morgan’s types of result are true
1. ([ag]) A [bi])° = [ais]° V [bis]°
: 2. (laig] V [bis])° = [ay]® A [bi5]°-
= n ]
~ 3. ([aig] ¥ [bi3])° = lass]° & [bi5]°.
4. (lais] A [635])° = [ai]° ¥ [bis]°.
2.3 Soft min-max Decision Making
In this section we construct a soft max-min decision making(SMmDM) ‘method by
using soft max-min decision function which is also defined here. The method selects
optimum alternative from the set of all alternatives
2.3.1 Definition [5]
Let [cij] € SMppyn2, Ik = {p:314, cip #0, (k—1)n <p < ka} forall k € I = {1,
2,3, ..., n}. Then the soft max-min decision function, denoted by.Mm, is defined as
follows .
a Mm : SMp,yn2 = SMpyxi, Mm[cyp| = [Iilg;({tk}}
< where
' in{c; if I
- min{cip}, ifIg # ¢
0, iflg =9

the one column soft matrix Mm [c;p] is called Max-min decision soft matrix.
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*

2.3.2 Definition [5]

Let U = {uy, ug, ..., un} be initial universe and Mm [cip] = [di1]. Then a subset of U
can b€ obtained by using [d;;] as in he following way

optig,,) U)=A{ui:ui €U, dn =1}

which is called the optimum solution.

Now, by using the definitions we can construct a SMmDM method by the following

" algorithm.

Step 1: Choose feasible subsets of the set of parameters,

Step 2: construct the soft matrix for each set of parameters,

Step 3: find a convenient product of the soft matrices,

Step 4: find a max min decision soft matrix,

Step 5: find an optimum set of U.

Note that, by the similar way, we can define soft min max, soft min min and soft
max max decision making methods

which may be denoted by SmMDM, SmmDM, SMMDM respectively. One of them

may be more useful than others according to the type of the problems.

2.4 Applications

Assume that a real estate agent has a set of different types of houses U = {u1, ug,
u3, ug, us} which may be characterized by a set of parameters E = {ey, ez, €3, e4}.
For j =1, 2, 3, 4 the parameters e; stand for “in good location”, “cheap”, ,“modern”,

“large”, respectively. Then we can give the following examples.

2.4.1 Example [5] .
F]
Suppose that a married couplé, Mr. X and Mrs. X, come to the real estate agent

to buy a house. If each partner has to consider their own set of parameters, then we
select a house on the basis of the sets of partners’ parameters by using the SMmDM
as follows.

Assume that U = {u1, ug, us, u4, us} is a universal set and E = {ey, ez, €3, e4} is
a set of all parameters.

Step 1: Fifst, Mr. X and Mrs. X have to choose the sets of their parameters,
A = {eg, €3, e4} and B = {ey, e3, e4}, respectively.

Step 2: Then we can write the following soft matrices which are constructed ac-

cording to their parameters.
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Chapter 3

Soft Matrix Theory and its
Decision Making: A New
Approach

In this chapter we are going to define new type of products which are binary and

satisfies associative laws and distributive laws.

3.1 Binary-Product Of The Soft Matrices
3.1.1 Definition [5]
Let [ay;], [bij] € SMmxn. Then,
i. And-product of [a;;] and [b;;] is defined by
A2 SMimxn X SMmxn — SMipxnz, [ais] A [bix] = [cip]
Where c¢;;, = min(a;j, bik) such that p=n(j — 1) + k.
ii. Or-product of [a;j] and [b;;] is defined by
VS Min X SMoen = SMost, 5]V [b] = [e]
Where c¢;;, = max(aj, bix) such that p =n(j — 1)+ k.
iii. And Not-product of [a;;] and [b;;] is defined by
At SMpxn X SMymxn = SM 002, [aii] A [bix] = [cip)
Where ¢;, = min(aij, 1 — bix) such that p =n(j —1) + k.

20
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3.1.5 Definition
Let [a;;], [bij] € SMmxn. Then Or-Not-B-product of [a;;] and [big] is defined by

. an
: Smen X Smen — Smen, [a;j] v [bik] = [diq] = /\ (clp)
p=(g—1)n+1

1<

foralli = 1, 2, .., mandg=1, 2, ..., n.

Where c¢;; = max(aij, 1 — b)) such that p=n(j — 1) + k. .

3.1.6 Theorem-

The And -B-Product is a binary product.

Proof. ‘Let [a;;] and [bi;] € SMmxn. Then And-B-Product of [a;;] and [b;] is
defined by }

A SMapxn X SMpxn — SMopxn

laij] A [bik] = [dig]
qn

Where d;, = | & foralli=1,2,.. mandg=1, 2,
q P

p=(g-1)n+1
ey

where e;, = min(aij, bix) such that p = n(j — 1) + k, then [a;;] A [bix] = Tdiq] ]

3.1.7 Theorem

The Or-B-Product is a binary product.

Proof. Let [a;;] and [bi;] € SMmxn. Then Or-B-Product of [a;;] and [bi;] is defined
by

V1 SMpxn X SMmxn — SMmxn

[ais] V [bik] = [gig]

qn
Where g;q = /\ (fip) for all i =1, 2, vy M and ¢ =1, 2,
p=(§-1)n+1

and fip = max(aij, big) such that p=n(j~1)+% = *
3.1.8 Theorem

The And-Not-B-Product is a binary product.
Proof. Let [a;;] and [b;j] € SMpxs. Then And-Not-B-Product of [a;;] and [b;;] is
defined by
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x . SMan X SMm)(n — Smen

[ai;] A [bix] = [dig]
qn
Where d;g = V (eip) foralli=1,2,..,mand ¢ =1, 2,
3

vy T

and e;; = min(a;;, 1 —by) such that p=n(j —1)+k m

3.1.9 Theorem

The Or-Not-B-Product is a binary product. .

Proof. Let [a;;] and [b;;] € SMmxn. Then Or-Not-B-Product of {a;;] and [b;] is
defined by

Vi SMpyxn X SMuyxn = SMmxn

(ai;] ¥ [bix] = [giq]

gqn
where g;q = /\ ~ (fip) foralli=1,2,...,mandg¢=1,2, ..,
p=(g—1)n+1 y q

and fip = max(aij, 1 — by) such that p=n(j —1)+ % m

3.1.10 Example
(And-B-Product)

Let U = {u1, ug, ug} be the universal set, E = {e1, ez, e3, e4} be the set of parameters
and A = {e1, ez}, B = {e3, ei} be the subsets of E.

Let fa : E — P(U) be such that

fa(er) = {u1, ug}

fa(ea) = {ug, us}

fales) = fa(esd) = ¢

R4 = {(u1, e1), (u2, e2); (u2, e2), (u3, €2)}

Rglel|ex|e3|es
U] 1 /0 |0 |0 1
ug |1 |1 |0 |0
uz 10 |1 |0 |0
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7

A =la] =

and fg: E — P(U) be such that
fles) =U

fB(ed) = {w1, us}

fele1) = fplez) = ¢

Rp = {(u1, e3), (up, e3), (us, e3), (u1, €a), (us, ea))

O ==

== O

o O O

o O O

Rple le |e3|es
U1 0 0 1 1
ug |0 10 [1 |0
us 0~(0 1 1
0011
B=[bj=[0 0 10
9 011
1000 0
[a,-j]/\‘[b,-k]‘——- 110 0]|AJO0
0 100 0
0011000000
dip) = |00 10001000
0.0 00001100
and d;p = min(aij, bi) suchthat p=n(j —1)+k
Where yiqg = [ v (dip)
p=(g—1)4+1
Then
(Y] = [Yigl3xa = [ai5] A [bik]
1000
laj] A bkl = 1 1 0-0
‘0100

1
OE
1
0000
0000
0 0.0 0

foralli=1, 2, 3andg=1, 2, 3, 4

B T B R T P
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3.1.11 Example
(Or-B-Product)

Let U = {u1, ug, uz} be the universal set, E = {ey, eq, e3, e4} be the set of parameters

and A = {ey, ea}, B = {e3, eq4} be the subsets of E.
Let f4: E — P(U), be such. that
fa(er) = {u, ua}
fale2) = {ua, us}
fales) = fa(es) = ¢
Ra = {(u1, e1), (ug, €2), (uz, €2), (us, e2)}

»

Ryjler|es|es]|eq

vy |1 |0 (0 |0

ug |1 0
usz 0 1 0 0
i 1 000
A=layl=11 10 0
0100

and fp : E — P(U) be such that
feles) =U

fB(es) = {u1, us}

faler) = fole2) = ¢

RB = {(ula 63), (U2, 63), (U3, 63)’ (ul’ 64)’ (U3, 64)}

.RB 61: ()] €3 | €4
Ul 0 0 1
ug |0 [0O}1 |0
ug [0 10 |1
[oo11
B=[bj=]0 010
0 0 1
1 000
[aij]V[bik]z 110 O:IV 0
0100

o O O

— =

[

e
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111100110011 0011
2 [fép]=111"1111100109010
- 001111110011 0011
and f;; = max(aij, bix) such that p=mn(j— 1) +k
4
if @y = N () forall i = 1,2,3and ¢ = 1,2,3,4 !
p=(g—1)4+1 ]
0
[(X] = [zidl,,, = [aij] V [bik] »|
1000
[a,-j]V[b;k] =110 0
0100
3.1.12 Example 7
(And-Not-B-Product)
P E|
= Let U = {u1, uz, uz} be the universal set, E = {ey, ey, €3, e4} be the set of parameters
_ and A = {ey, ez}, B = {e3, ea} be the subsets of E.
i Let f4 : E — P(U) be such that
faler) = {uy, ug} .
. fa(e2) = {ug, us}
: fales) = fales) = ¢
Ry = {(u1, e1), (uz, ez), (ug, €2), (u3, €2)}
Ryq|ler|e|es|es i
(75} 1 0 0 0
ug (1 (1 [0 |O
ug (-0 [1 [0 |0 ;
1
0 00 1
A=agl=[110 0 '
D 0100 I
A
and fg: E — P(U) be such that ]I
fBles) =U I
fe(es) = {w1, us} 3
1
1
i
{
1
b ———n Tl 4
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fele1) = fple2) = ¢ ;

Rp = {(ul’ 63)7 (u2, 33)7 (U3, 63)’ (ul’ 64): (U3, 64)}

Rp|ei|ex|es|es
wp |0 |0 |1
ug [0 {0 [1 ]0
ug |0 |0 [1 |1

0011
B=by]={0 010

[ 0 0 1 4 !
1000 001 :

lai;]Afbx]=11 1 0 O[(A[0 0 1 0

0100 001
110000000000O0O0O0O
[dy] = [1 1011101000000 0
00001100000000O00

T

and dj; = min(a;;, 1 —bj)such that p=n(j - 1)+ %

foralli=1, 2, 3and ¢ =1, 2, 3, 4
g—-1)4+1

q4
where y;q = ( v (d; ))
=(

Then
Y] = [yiQ]3x4 = [aij]'x [bix] .

[ai] A [bik] =

O =
[ N
o O O
oS O O

BN ek

3.1.13 Example
(Or-Not-B-Product)

Let U = {u1, ug, u3} be the universal set, E = {ej, e, e3, €4} be the set of parameters
and A = {e1, ez}, B = {e3, e4} be the subsets of E.
Let fa: E — P(U) be such that

ER R
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Y

fa(er) = {u1, u2}
fa(ea) = {ue, us}
fales) = fa(es) = ¢

Ra = {(u1, e1), (ue, e2), (u2, e2), (us, e2)}

o=

Rpojei|ex|es|es
up [1 [0 [0 |0

ug [1 [1
ug [0 [1 10 |0
1 000
A=la]l=11-1 0 0
0100
and fg: E — P(U) be such that 3

fBle3) =U
fB(es) = {u1, ug}
fele1) = fple2) = ¢

Rp = {(u1, e3), (u2, e3), (us, €3), (u1, e4), (us, €s)}

Rp e |ex|e3|eq
" U10011
ug |0 |0 |1 [0
ug | 0 1 {1
0011
B=bj]=10 010
' 0011
1000 0011
"fay)Ykl=(1 10 0|¥|0 010
0100 0011
111111001 0 0 100
fpl = [1 11 1111111011101
1100111111001100

]

and f;p = max(aij, 1—by)suchthatp=n(j—-1)+k
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Now
[ass] A ((bik] A [e35]) = [hi)

Where hy = ( {7 (t,'p))

p=(g—1)n+1
and t;p = min(aij, gik) such that p=n(j— 1)+ k
than -
(lais] A [bik]) A leis] = [aig] A ([ba] Afeig])- m

3.1.15 Theorem

The associative law holds with respect to Or-B-Product.
Proof. Let [aj;], [bij], [cij] € SMmxn.
Then Or-Product of [a;;] and [b;;] is define by
Vi SMpxn X SMpxn — SMmxn

[ai;] V [bik] = [dig)

qn
Where dig = /\ (eip)) foralli=1, 2, .., mand¢=1, 2, .., n

p=(¢—1)n+1
and e;p = max(asj, bix) such that p=n(j—1)+k
({ai] V [bik]) V [ci5] = [dig] V [es5])

(laij] Vb)) V leij] = [hig]

qn

Where hig = /\ (sip) foralli=1, 2, ...

p=(g-1)n+1

]

B

foralli=1, 2, ..., mandg=1,2, ..., n

,mandqg=1, 2, ..., n

and s;; = max(dij, qk) such that p = ’n(] — 1) + k([aij] \% [bik]) \% [CL?] = [hiq]

now R.H.S
(6i5] V [cik] = [gig]

qn
Where giq = /\ . (fip)
p=(g—1)n+1
and f;p = max(bij, cik) such that p=n(j — 1)+ k&

Now
[as;] V ([bik] V [ci5]) = [aij] V ([94q))

[ais] V ([(Bik] V [c5]) = [hag]

foralli=1, 2, ..., mandg=1, 2, ..., n

5. i mn
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qn

Where h;q = ( /\ (tip) T foralli= 1,2, .., mandg=1, 2, .., n

p=(g—1)n+1
and t;, = max(aij, gix) such that p=n(j —1) + &
(laif] V [Bik]) Veis] = lagg] v ((bik] V [e5]). W

3.1.16 Theorem

The associative law holds with respect to And-Not-B-Product.
(las] A [bix]) A [ei5] = [ass] A([bik] A [ci5])
Proof. Strightforword. m

3.1.17 Theorem

The associative law holds with respect to Or-Not-B-Product.
([ai] ¥ [bik]) ¥ [cis] = [ais] ¥ ([bar] ¥ [ci5])
Proof. Strightforword. m

3.1.18 Example
(Associative law with respect to And-B-Product)

Let U = {u1, ug, uz} be the universal set, E = {e1, ez, €3, e4} be the set of parameters
and A = {e1, ez}, B = {es, eJ , C = {e2, ea} be the subsets of E.
Let f4 : E — P(U) be such that
fa(e1) = {w1, ug} .
fale2) = {ug, us}
fa(es) = fa(es) = ¢

Ra = {(u1, e1), (uz, e2), (u2, e2), (us, €2)}

&

Rylel |ex|es|eq
w |1 10 ]°0
ug |1 [1 [0 [O
ug |0 {1 [0 }O

1000
i A=lazl={1 10 0
0100

and fp : E — P(U) be such that
fB(63) =U 1
faleq) = {u1, us}

i G
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fB(e1) = f(e2) = ¢

Rp = {(u1, e3), (uz, e3), (u3, e3), (u1, es), (u3, e4)}

<

Rp|ei1fex|e3|es
up {0 |0 7171
ug |0 |0 |1 [0
ug [0 |0 |1 [1
0011
B = [bij] =(00 10
0011
and f¢ : E — P(U) be such that
folez2) = {uz}
fo(es) = {uz, us}
Je(er) = folea) = ¢
Rg = {(ug, e2), (up, e3), (us, e3)}
Ro el |ex|e3|eq
up |00 |0 |0
up {0 |1 [1 |0
ug3 [0 |0 |1 [0
0 00O
C=l=101 10
0 010

Now to prove ([as;] A [bix]) A [ei5] = [aiz] A ([bik] A [ei5])
Firstly we Find that ([ai;] A [big]) A [cij]

1 000 0 0

[aij] A [bik] ={11-0 0|A]O0O

0100 0 0

0 011000O0O0O0CGCO0TO

dijl] = 0010001 000TO0T0O
0 000O0O0CGI1ITI1O0O0O00

and dijp = min(aij, bi) such that p=mn(j-1)+k

11
10
11

Y
000O0TO
0 0 0,00
0 00O0O

_— i — -
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2 v
he Where yiq = \V o (dp) foralli=1, 2 3andg=1, 2, 3, 4
| p=(g—1)4+1
SO
(Y] = [Wiglaxa = laij] A [bix]
1 000
[iglsxa = laif] Aba] = [ 1 1 0 0
0100
Now
(laii] A [ir]) A [ei5] = [yis] A [cix]
1000 0 00O
. [yis]Alel=|1 1 0 0[{A}O 1 1 0
: 0100 0 01
[ 0 00 0O0O0O0COOOOODOOODQO
ep) = /01 1001100000O0O0O0O0
= 0000001000000000
\ and e;; = min(yij, cix) such that p=n(j—1)+k l
- @ _
Where wiq = |. v (eip) foralli=1, 2, 3andg=1, 2, 3, 4
p=(g—1)4+1
SO
‘ 0 00O
i W)= [wg], ,=|1 100
| 0100
[wig) = [yi5] A lex)
[wigl = ([ai;] A [bik]) A [cij]
oy
P 0 00O
(lag] Afbie]) Aleisl=| 1 1 0 0
0100

Now we find [ai;] A ([bik] A [ci5])

e S —
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[siq] = [ai;] A [vig]

[siq) = [asj] A (Ibie] A le]) .
S0 " ] N3 o}

~ [0 0*0 0

lais] A (i) Aless) = [ 1 1 0 0

o 0100

there fore
([ais] A [bik]) A [eis] = [aig] A ((Bak] A [e35])
now it can satisfy the associative property
. I T i 4
3.1.19 Example . o -
BT R
(Associative law over Or-B-Product) vk

Let U = {u1, ug, uz} be the universal set} E.= {e), ez, ‘jeg, e4} be the set of parameters
and A = {e1, e2}, B={es3, e4} ,.C = {eg,‘e;;} be the subsets of E.
Let fa : E — P(U) be such that ¢ .

fa(er) = {u1, ug} . " oo

i

fa(e2) = {ug, us} ) ' )

fales) = fales) =¢ . .

> f;‘
Ra={(u,e1), (uz, e), (ua, €2), (u3, e2)}
t T é : (!-!“:.

Ry|e1|ex|es|es| ’
o= u1 1 0 . Q 0 . “
’u§’2 M 1 Ll 0 .Ot. }
uz |0 [1 {0 |0
o e 1000
: A=lag]l=-{1 10 0 ,
T, v LI Q 1 0 0 [
and fg : E — P(U) be such that
feles)=U - o A .
IB(e4) = {u1, us}
fele1) = fple2) = ¢
Rp = {(u1, €s), (s, es), (us, e3), (wa, ea), (us, ea)} 5
o Rp e |ex|e3|es
up |0 |0 |1
ug {0 |0 |1 70
us 0 0 1
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1000
[Y] = [yigd =lai] Vo] = | 1 1 0 0
0100
Now
(lai] V [bik)) V [ci5] = [yig] V [ci5]
1 000 0 00
[yis] Viewl =1 1 0 0|V 110
0100 0 010
1111000O0O0O0O0O0O0O0O0OTO0
p] = |1 1111111011001710
)
00101111 0010O0O0T10O0
and e;; = max(yij, cix) such that p=n(j - 1)+ k&
q4d
Where wiq = | /\ (eip) foralli=1,2, 3andg=1, 2, 3, 4
p=(g—1)4+1
so
100 0]
W] =[wiglzxy=]1 1 0 0
0100
[wig] = [yi5] V [cix]
[wig] = (lais] V [bik]) V [eij]
1 000
(la]VIbk]) VIegl=11 1 0 0 :
0100
Now we find [aij] \% ([bij] \% [C,J])
0010 00 0O
Bij]View]=]10 0 1 0[Vv|0 1 10
0011 0 010
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Let
000000O0OO0OI11110000
fi] = |01 10011011110110
001000101111 1111
and fip = max(bij, cix) such that p=n(j — 1)+ k
q4 \
Where v;, = N (F) foralli=1, 2 3andgq=1, 2, 3, 4
p=(g—-1)4+1
SO
0010
[Vigl=]10 0 1 0
0 01
[V] = [viglzuq = [bis] V [cit]
0010
byl Viexl =10 0 1 0
0 011
now !
[ai5] V ([bi5] V [ei5]) = lais] V [vig]
1000 00 10 ¢
[a,-j]V['uik]: 11 00[|V]|]0O0OT10
0100 0011
1111001100110011
gp] = |1 11 1111100100010
0 0111111001100 11
and g;p = max(b;;, cix) such thatp=n(j—1) +k

q4
Where s;q = l: /\ (gip):l

=(g—1)4+1

So

foralli=1, 2, 3andg=1, 2, 3, 4

el g

2
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1 000
[S) = [sighsa= |1 1 0 0
0100
as [sig] = [ai;] V [vi]
[siq] = [ai] V ([bij] V [cs5])
% 1 000
[ai] V ([bis] Ve = | 1 1 0 0
0100
there fore

([ai] V [bik]) V [eis] = [ai] V ([bik] V [e5])
Similarly we can prove

(lais] A [bik]) A [ei5] = laij] A ([bax] A [eis]):
(las] ¥ [bik]) ¥ [ei5] = [ass] ¥ ([0ik] ¥ [ci5])

3.1.20 Theorem

Or-B-Product is distributive over And-B-Product.
Proof. Let [aij], [bij], [C,]] € Smen..f
Then

[bi5] A [cik] = [dig)

foralli=1,2, ..., mandg¢=1,2, .., n

qn
Where d;g = ( v (€ip)
In+1

p=(q—1

and e;, = min(a;j, bx) such that p=n(j — 1) + k
now

[aij] V ([bis] A [eig]) = [ais] V [dix]

[ai;] V [dik] = [gsq]

g
if giq = ( /\ (fip)> foralli=1, 2, .., mandg=1, 2, ..., n
p=(g—1)n+1
Where f;p, = max(a;j, bix) such that p =n(j — 1) + &
[ai] V ([8i5] A [e35]) = [aiz] V [dik] = [94]
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Now R.H.S
(@] A [bik). = [Pig]
. an
Where h;q = /\ (tp) | foralli=1, 2, .., mandg=1, 2, .., n
p=(g-1)n+1 ) '

and t;; = max(ai;, bix) such that p=n(j — 1)+ k

Now
(a4;] V [cik] = [siq]
qn
Where s;; = /\ (vip) foralli=1, 2, ..., mandg=1,2, ..., n
p=(q—1)n+1

And v;, = max(aj, cix) such that p=n(j — 1) + &

[hi] A [sip] = [2ig]

qn
Where z;; = v (vip) foralli=1, 2, .., mandg=1, 2, ..., n
p=(¢—1)n+1

And yip = min(hyj, six) such that p=n(j —1) +k

[ai] V ([bi5] A [eig]) = (lai] A b)) A ([ag] V [eig]) m

3.1.21 Example
(Or-B-product is distributive over And-B-Product)

Let U = {u1; ug, uz} be the universal set, E = {e1, eq, €3, ¢4} be the set of parameters
and A = {ej, ez}, B = {e3, es} , C = {eg, e3} be.the subsets of E.
= Let f4: E — P(U) be such that

fa(er) = {u, uz} \

fale2) = {ug, us}

fales) = faled) = ¢

Ra = {(u1, e1), (uz, e2), (uz, €2), (us, e2)}
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Ry|el|ex|es|ey|
u; |1 10 )0 10

o
o

ug |1 |1
ug |0 |1 (O
1 000
A=la;l=111 00
0100

and fg: E — P(U) be such that
feles) =U

fB(ed) = {u1, us}

fe(e1) = fp(e2) = ¢

Rp = {(ula 63), (u2’ 63), (U3, 63), (ul, 64)’ (U3, 64)}

Rple |ex|e3|es
U1 0 0 . 1
ug |0 [0 |1 |O
ug [0 |0 |1
0011
B=[b;]=[0 01 0
001 1.

and fc : E — P(U) be such that
Jo(e2) = {uz}
foles) = {ug, us}
foler) = folea) = ¢

Re = {(UQ’ 62)) (U‘27 6;), (ﬁ3’ 63)}

Ro e |ex|es| ey
u; |0 (0 |0 |O

ug 110
ug |0 [0 |1 O
00O00O0
C= [C‘LJ] =({0 110
0 01O

To prove [ai;] V ([bi] A leis]) = ([ais] v {bi5]) A ((aiz] V [cij])

e

. i . .

G e - e fr— —— — - ————
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L.H.S
% firstly we find
0011 0000
[bij]Alei;]=10 0 1 0}A|l0 110
001 1 0010
1
000000O0O0DO0O0OOOOOT 0O
9) = {0 00 0000001100000
0000000O0O0O01000T10
and g;; = min(b;j, c;x) such that p=n(j—1)+k
94 :
Wheresiq=¢< v (gip))“ foralli=1,72, 3andg¢=1, 2, 3, 4
i p=(g—-1)n+1
then
=5 0000
i bgl=|0 010/ .
0011 :
SO
0000
[sig) = [bi] Alcisl=[ 0 0 1 0
i 0011
Now
[ai] V (1bij] A [ci5]) = [as;] V [sig)
1000 0000
@] VIise)=11 1 0 0(V|[0O O 10
0100 00 1
1111000000000O00O00O00
5 fw]l = |1 1111111001000 1°0
o 00111111001 100T1 1

and fip = max(a;;, si) such that p=n(j ~1)+k

ke
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q4
Where e;q = ( /\ ( fip)>
P e

‘Now R.H.S

Now

[dip]

and d;p

where z;q = (
P

[Yip]

and yip

foralli=1, 2, 3andg=1, 2, 3, 4

=(g—-1)4+1
1000
lai]V[sig] = e =11 1 0 0“
010 0. g
1 000 0011
(laj]vVb)=]l1 1 00([(V]|[0 010
0100 0011
11110011001 10011
= |11111111001000T10
0011111100110011

= max(aij, -bi) such that p=n(j — 1) + k&

foralli=1, 2, 3andg¢=1, 2, 3, 4

q4
A @ ))

=(q—1)4;|-1
1000
(lai] V [bis]) =[] = | 1 1 0 0
o100
1 000 0000
(lai]VIeis) =1 1 0 0jVvV]0O 110
‘0100 0010/
/1111000000000000
= 1111111101100110
00101111001000T10

= max(a;j, cig) such that p=n(j — 1) + &

e DR

ikt e
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=N g4
-t Where 2y = A i) foralli=1, 2, 3andg=1, 2, 3, 4
p=(g-1)4+1 .
1000
[2zig] = ([a;j] Vey])=[1 1 0 0
. 0100
now
1000 1000
(m]lAlza)=11 1 0 0|A{1 10 0
0100 0100
100000000O0OO0OGOO0O
gp] = [1 10011 00000O0CO0O0O0O0
0000010000O0O0O0OO0OQO
and g;; = min(z;;, 2;) such that p=n(j — 1)+ &
!
Where h;; = V o (up) foralli=1, 2, 3andg=1, 2, 3, 4
p=(g—1)n+1
then
1000
[higl=]1 1 00
0100
([zif] A [2ix]) = [Rag]
1000
so ([ai] V [bij]) A(laij] Ve = | 11 0 0
01,00

[aij] V ([bi5] A [ei5]) = ([ass] V [big]) A ([asg] V [es5)).

:‘1 3.1.22 Theorem

And-B-Product is distributive over Or-B-Product.
[aii] A ([bi5] V [eis]) = ([ass] A [i5]) V ([aij] A [c35])
Proof. Strightforword m
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3.1.23- Remark

And-Not-B-Product is not distributive over Or-Not-B-Product.
[aii] A ((bi5] ¥ [ci5]) # ([as] A [b35]) ¥ ([aiz] A [ci5])

3.1.24 Example

Let U = {u, ug, uz} be the universal set, E = {e1, ez, e3, e4} be the set of parameters
and A = {ej1, e}, B = {es, ea} , C = {e, e3} be the subsets of E.

Let f4 : E — P(U) be such that
faler) = {u1, u2}

falez) = {ue, us}

fa(es) = fales) = ¢

Ry = {(ul’ el)v (u27 62)) (U2, 62)7 (u37 62)}

Rpaler|ex|esleq
up |1 [0 [0 |0
uy |1 010
Uus 0 1 0 0
: 100 07
) A=laj]=11 100
01080

and fg : E — P(U) be such that
fBles) =U

fB(e4) = {u1, us}

f(e1) = fple2) = ¢

Rp = {(ul, 63), (u27 633)1 (u;;, 63)7 (ul, 64)’ (U3, 64)}

Rp el |ex|es|ea
fuvr |00 1 |1
up {0 |0 (1 [0
Uus 1 1
[0 0 11
B=b;=[0010
0011

and fo : E — P(U) be such that
fo(e2) = {us}

i i ki 1
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00000O0O0OO0COOOOOO0OOO
gp) = 11101 11000000O0O0O0
0000111000000000‘
and g;, = min(aij, 1 — e;) such that p=n(j—1)+k
94 -
Where s;; = V (9ip) foralli=1,2 3andg=1, 2, 3, 4
p=(¢g—1)n+1
then
0 000
[S-;q]= 1100
0100
O
0 00 O
[aij]K[e,-k]z[s,-q]= 0 010
0 011
» 0 00O
[ai] A ([bij] ¥ [ei5]) = [sig) = | 0 0 1 0
‘ 0011
Now R.H.S
([as5] A [big]) ¥ ([asg] A [ei5])
1 000 0 011
[aij] Afb] =1 1 0 0JA|0 0 10
100 0 011
1100000O0O0OO0OO0COGOOGO0CO
f)) = |11 0111010000000O0°0
0000110000O0OO0OO0CO0OGCOCO
and f;; = min(aij, 1 — bix) such that p=n(j-1) +k

94°
Where Tig = ( V (f,p))

p=(q—1)n+1

foralli=1, 2, 3andg¢=1, 2, 3, 4
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1111011101110111
zp) = |1 11 1111100110011
101111.1110.111011
where z;, = max(zij, 1 —y;) such that p=n(j—1)+k
q4
if hyg = A o) foralli=1, 2, 3andg=1, 2, 3, 4
p=(g—1)4+1
1 000
[Rig) = ([xi] ¥ [y]) =} 1 1 0 0
0100
1 0 00
(lass) A [biz])¥ (laij] A [eis)) = ([zss] Y [yaw]) = [hig) = | 1 1 0 O
0100

solag;] A ([biz] ¥ [cis]) # ([ai] A [bi]) ¥ ([ais] A [ei5))

3.1.25 Remark

Or-Not-B-Product is not distributive over And-Not-B-Product.
[aij] ¥ ([bij] A leij]) # ([ais] ¥ [bis]) A (laig] ¥ [ci50)

3.1.26 Remark

Let [ai], [bij], € SMmxn and % € (A, V, A, ¥) be the binary operation. Then [a;;] %
[bis] # [bis] % [as].

3.1.27 Example

Let U = {ui, ug, us} be the universal set, E = {e1, e, €3, e4} be the set of parameters
and A = {e;, e2}, B = {e3, €4} be the subsets of E.

Let f4 : E — P(U) be such that

fa(er) = {u1, uo}

fale2) = {ug, us}

fales) = fa(ed) = ¢

Ry = {(ul’ 61), ('u,z, 62)7 ('u,z, 62)’ (U3, 62)}
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£ Rpojel|ex|es e
k> w |10 |0 [0
uy 1 [1 10 |0
ug |0 [1 10 |0
1 000
A=lal=111 00
0100
and fp: E — P(U) be such that
fBle3)=U
fa(es) = {w1, us}
feler) = fplea) =¢
Rp = {(u’lv 63)7 (u2’ 63), (U,3, 63), (dl’ 64), (u?n 64)}
Rpler| e |e3|es
ux 0 0 1 1
Uug 0110
ug |0 |0 |1 |1
=N i
0 01
B=[bjl=10 010
0011
.11 000 0 011
[Ezij]A[bik]z 11 00{A|0O010
0100 0011
0 01 0 0000O0O0ODODODODOOQ
dp)] = OO0 100010000O0O0O0CO0O
% 0 000DO0ODO0O11O0O0O0OO0OO0OO0O0DPW
where d;, = min(aij, bix) such that p=mn(j - 1) + &
:ﬁ
E‘ 94
" if yig = V () foralli=1,2 3andg=1, 2, 3, 4
p=(g—1)4+1
Then
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“T:’/y J

[Y] = [yigl3xcq = laij] A [bix]

100 0
[ai]-]/\[bik]= 1 an 0
0100
Now
0011 1000
bijJ]Alag)=]10 0 1 0OJA}1 1 0 O
0011 0100
0000000O010001000QO
fp)) = |000000001100000O
0000000DO0O01000T100

where fi, = min(a;j, bi) such that p=mn(j —1)+k

qd
if eq = V () foralli=1, 2, 3andqg=1, 2, 3, 4
p=(g—1)4+1
Then
[E] = leiglzxq = [bij] A [aik]

0 011
[b,’j] A [a,-k] = 0 010
0 011

hence

[aik] A [bis] 7 [bis] A [aix] -

Therefore commutative law does not hold with respect to And-B-Product
similarly

[aik] V [bij] # [bis] V [aik]

[aik] A [bis] # [bij] A [ase]

[aak] ¥ [bij] # [bis] ¥ [a]

3.1.28 Theorem

Let SMy,x», be the collection of all the soft matrices and % € {A, V, A, ¥} be the

binary operations, then (SMpyxn, %) is a semigroup.

Proof. Straightforward. m
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3.1.29 Theorem

Let SMy,xr be the collection of all the soft matrices and %, o € {A, V} be the binary
operations, Then (SMp,xn, %, 0) is a semiring.
Proof. Straightforward. m

3.2 Soft Matrix Decision Making

In this section we construct a soft matrix decision making with the-help of soft matrix
decision function and then select an optimum solution from the decision soft matrix.

e

3.2.1 Definition

let [ai;], [bij] € SMyxn, and let [¢;;] be the product of [a;;] and [b;;]. Then the soft

matrix decision function, denoted SMDF"is define as follows

SMDF : SMpxn — SMmx1

n

> {eis}
SMDF [cij] = | 1=

wherei =1, 2, ..., m

the one column soft matrix SM DF [c;5] is called decision soft matrix.

3.2.2 Definition

let U = {u1,u2,...un} be initial universe and SMDF [c;j] = [d;i]. Then a subset of
U can be obtained by using [d;1] as in he following way
Opt‘m[dﬂ] (U) = {u; : u; € Uymax (di )}

3.2.3 Applications

Assume that a person wants to seek admission in Ph.D. program and the universal set
contain different universities U = {u;, u2, u3, us, us}, which may be characterized by
a set of parameters E = {ei, e, e3, eq}. For j = 1, 2, 3, 4 the parameters e; stand
for “Part time studies”, “less Fee ", “Full time studies”and “Located near Islamabad”

respectively. Then we can give the following examples.
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[as;] A [bik] =

o o o o O
e e T = =)
= O O =

O O VR o=

We can find a decision soft matrix as
0.5

0.75
MDF ([as;) A [bi})-= | 0.5
0.25 |
| 0.5 |
we can find an optimum set of U according to MDF ([a;;} A [bix])

OPYMAL D ([as;]Albic]) (U) = {ug}, where ug is an optimum University for-Mr. A and
Mr. B.
Note that the optimal set of U may contain more than one element.

Similarly, we can also use the other products ([a;;] V [bik]) , ([ai;] A [bix])and ([aiz] Y [bik))

for the other convenient prdblems.

i it e —— e -
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Conclusion

The soft set theory has been used in different fields. The results of this thesis
show that the B-products are binary. Further it is shown that associative laws as well
as distributive laws holds. At the end of this thesis we highlighted that soft matrix
decision making on the basis of soft set theory is useful. The example of a student
who is looking for some university for Ph.D. is also given in this thesis. These type of
products can also be defined in fuzzy soft matrices. and we can also take the products
of the soft sets and then convert it into soft matrices and can compair the result in
both the cases. This Converse can be applied in both soft matrices and fuzzy soft

matrices.
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