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Abstract

A wireless system features a centralized basestation communicating to a number of
users physically scattered around the basestation. The purpose of resource allocation at the
basestation is to intelligently allocate the limited resources, e.g. total transmit power and
available frequency bandwidth, among users to meet users' service requirements. Channel-aware
adaptive resource allocation has been shown to achieve higher system performance than static
resource allocation, and is becoming more critical in current and future wireless communication
systems as the user data rate requirements increase. Adaptive resource allocation in a
multichannel downlink system is more challenging because of the additional degree of freedom
for resources, but offers the potential to provide higher user data rates. Multiple channels can be
created in the frequency domain using multiple carrier frequencies, multicarrier modulation
(MCM), or in the spatial domain with multiple transmit and receive antennas. This dissertation
aims to study the system performance, in multiuser multicarrier systems with adaptive resource
allocation, and adaptive modulation.

This thesis proposes that the adaptive modulation is applied to SISO system as well as
MIMO system on a subcarrier by subcarrier basis, as a method for combating the effects of
frequency selective fading. Each subcarrier in the OFDM system transmits a different amount of
data based on the Signal to Noise Ratio (SNR) for that subcarrier. The channel performance is
tracked on a regular basis using the bi-directional nature of the link to ensure that both the
transmitter and receiver know what modulation scheme is currently being used on each
subcarrier. we will show that BER performance of SISO fixed system, SISO Adaptive and

MIMO adaptive system, and see that MIMO adaptive system will increase the system efficiency
in terms of BER.
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Chapter 1

Introduction

In 1970s the concept of cellular wireless communication was introduced, and from the
last decades it becomes the most successful Wireless application being used by
billions of subscribers today. Wireless system use the radio frequency for
communication and radio signals strength weakens with distance, so the limited
frequency bandwidth can be reused to cover wide area and increase the user capacity.

There are three generations of cellular systems till now; in 1980s the United
States adopts FM technology by using frequency division multiple access (FDMA). It
is known as advanced mobile phone systems (AMPS). And in Europe there was
similar analog cellular system, named as European Total Access Communication
System (ETACS). This was first generation of cellular systems. In 1990s the existing
analog technology of cellular system was converted to digital system, so this was the
beginning of second generation. This 2G technologies have provided much higher
communication capacity at an even lower cost. In United State IS-136, IS-95 and in
Europe Global System for Mobile (GSM) were major standards of 2G. The demand of
high data rate in 2G has improved the cellular system to 2.5G standards with some
enhancement in 2G standards e.g. General Packet Radio Service (GPRS) and
Enhanced Data rates for GSM Evolution (EDGE) for GSM, IS-136 high speed (IS-
136HS) for IS-136, and IS-95 high data rate (IS-95 HDR) for 1S-95 [4]. The third and
current generation of cellular systems includes wideband code division multiple
access (WCDMA) and CDMA2000 [2]. The WCDMA frequency division duplex
(FDD) and time division duplex (TDD) standards have been adopted in Europe and
China, respectively, while CDMA2000 has been deployed in Korean and America.
With different spreading factors and modulation methods, WCDMA and CDMA2000



can support transmission rate up to several mega-bits per second. The next generation
of wireless cellular systems is envisioned to be multicarrier-based for its efficient

bandwidth usage [6].

1.1 Spectrum Sharing Technologies

User User User User User

Frequency/Time

 /

Time/Frequency
Figure 1.1 TDMA and FDMA

Time division multiple access (TDMA), frequency division multiple access
(FDMA), code division multiple access (CDMA), and spatial division multiple access
(SDMA) are spectrum sharing technologies. The limited spectrum resources are
shared among multiple users for successful communication so it is called multi-user
communication system.

TDMA divides the transmit time into a serial number of time slots. One user is
allowed to transmit in a time slot over the entire bandwidth. Similarly, FDMA creates
multiple subbands in the frequency domain. A user may be able to occupy a subband
throughout the whole transmission period. Figure 1.1 shows the basic idea of TDMA
and FDMA. TDMA and FDMA were widely employed in earlier generations of

cellular systems.



Code/Space

v

Time
Figure 1.2 CDMA and SDMA

In CDMA users are separated in code domain Instead of time or frequency
domain ,and multiple users shares same bandwidth at the same time without
interfering the other users because each user is allocated a specific code. In SDMA we
use multiple antennas at transmitter and receiver end to separate users in the spatial
domain, in SDMA users also share the same bandwidth simultaneously. The basic
idea of CDMA and SDMA is shown in Figure 1.2.

Multiple access technologies can also be used in combination. For example,
WCDMA TDD employs CDMA with TDMA, where the transmission time is divided
into a number of time slots and within each time slot, multiple users employ CDMA

to access the whole bandwidth. Further, FDMA is used in almost all cellular systems.

1.2 Resource Allocation in Wireless Communication Systems

In wireless communication system a centralized basestation needs to
communicate to multiple users, with limited’resources, e.g. total transmit power
and available frequency bandwidth. The users can be separated in the time,
frequency, code, or spatial domain, the basestation allocates the resources
among users. Earlier generations of wireless systems adopted static resource
allocations such as time or frequency division multiple access, where the
basestation takes turns to serve one user in a designated time slot or frequency
band, irrespective of the user channels. The wireless channel is, however, time-

varying and frequency selective. The channels experienced by different users



are largely independent because of users' different locations. The basestation
should allocate the limited resources among users by taking the user channel
conditions into consideration and enhance the system performance. Further,
adaptive resource allocation in a Multichannel downlink system is more
challenging because of the additional degree of freedom for resources. Multiple
channels can be created in frequency domain using multiple carrier frequencies,
multicarrier modulation (MCM) or in spatial domain with multiple transmit and
receive antennas. MCM and MIMO are two promising technologies that have
been adopted in various standards. Adaptive resource allocation in multiuser

Multichannel wireless systems has drawn significant attention recently.

1.2.1 Multicarrier Modulation

Multicarrier modulation efficiently utilizes the bandwidth to enable high speed
transmission for wireless [1] [2] and wireline [3] communication systems. As the data
rate requirements get higher and higher, the transmission bandwidth increases
significantly. The wireless channel exhibits multipath property in the time domain, or
equivalently selectivity [4] in the frequency domain. Successful transmission over a
frequency selective channel is more challenging than a narrowband frequency flat
channel, as inter-symbol interference degrades the system performance. Advanced
signal processing techniques, such as equalization [5], have been proposed to combat
the channel dispersion. Multicarrier modulation divides the whole bandwidth into a
number of parallel subchannels. As long as the number of subchannels is sufficiently

large, the frequency response in each subchannel is close to be flat, as shown in

Figure 1.3. Hence equalization per subchannel is much easier to perform.
carrier

§~ Eﬁ@ 1

Figure 1.3 Multicarrier Modulation

Magnitude

subchannel

Frequency

1.2.2 Multiple Antenna Systems
Multiple-input-multiple-output (MIMO) antenna communication systems have been

an intensive research area in the last decade. MIMO systems fully utilize the spatial



dimension to improve the transmission reliability and/or the system throughput. A
point-to-point narrowband MIMO system is shown in Figure 1.5. In contrast to
conventional single antenna systems, the wireless MIMO channel between the

communication pair can be represented as a matrix.

Usar Dot

Space-Tine :IJ>
Racievar

Figure 1.4 A Point to Point MIMO System

Some physical and non-physical models can be found in [6], and MIMO
channel model is widely adopted in literature for system performance evaluations.
Since wireless channel is time-varying, the signal reception is very poor when the
channel is in deep fading. To overcome channel fading problem we use diversity in
the communication link. The idea of using multiple receiver antennas to exploit the
spatial diversity was proposed decades ago [7]. With optimal combining of the
received signals from multiple antennas, the transmission reliability can be
significantly improved. In the spatial domain, multi-antenna systems can even
suppress co-channel interference [8) [9]. Later, researchers found that if multiple
antennas are both equipped at the transmitter and receiver, then a number of parallel
channels can be established to increase the spectral efficiency [10] [11] [12]. It was
proven in [11] that for point-to-point Raleigh fading channels, the MIMO channel
capacity scales linearly with the minimum number of transmit and receive antennas in
high SNR regime. The results in [11] theoretically show the potential of MIMO
systems in spectral efficiency enhancement. The researchers in Bell Laboratories
showed that the V-BLAST (Vertical Bell Laboratories Layered Space-Time)
architecture [13] [14] can provide a spectral efficiency of tens of bits per second per
Hertz. In summary, MIMO technologies provide the diversity and multiplexing

opportunities to improve the communication reliability and spectral efficiency [15]. A



theoretical study on the tradeoff between diversity and multiplexing of MIMO
systems was presented in [16], and a practical algorithm on the switching between

diversity and multiplexing was proposed in [17].

1.3 Assumptions in the Dissertation

e Perfect channel station information of all users available at the basestation

User channel state information is crucial for exploiting muitiuser
diversity in multiuser wireless communication systems. In this
dissertation, I assume users perfectly estimate and feedback their
channel information to the basestation. Limited feedback
technique [18] [19] or channel prediction [20] [21] can be used to
reduced the amount of feedback overhead. The throughput of
multiuser systems with imperfect channel state information is

still an intensive on-going research area [22].
e Continuous Shannon channel capacity formula as user throughput measure

The Shannon capacity, which is a continuous function, is used as
the user throughput in this dissertation. In practical systems, user
data rates assume discrete values due to different modulation and
coding schemes. The continuous Shannon capacity formula,
however, simplifies the analysis of adaptive resource allocation
and provides an upper bound on the achievable throughput. A
signal-to-noise ratio gap can be included in the Shannon capacity
formula to model the signal-to-noise ratio degradation [23] [24].
This gap is widely used in digital subscriber line standards, e.g.
[25] [26].

o Single cell environment

In this dissertation, only resource allocation in a single cell is
considered. Hence, other-cell interference is not modeled. For
users at the cell edges, Other cell interference is not negligible as

it greatly impacts the user channel-to-interference-plus-noise



ratio. To schedule users in cell edges or in soft handover, either
basestation coordination or static frequency planning is required.
Several researchers have already discussed resource allocation in
multi-cell environment or with inter-user interference, e.g. [27]
[28]. Generally, resource allocation in a multi-cell scenario is
much more complicated than single cell. The resource allocation
algorithms discussed in this dissertation can be applied to users
for whom other-cell interference does not dominate the amount

of additive white Gaussian noise.

o Infinitely backlogged user queues

The goal of resource allocation discussed in this dissertation is to
maximize the throughput given various constraints. The user
queues are assumed to be infinitely backlogged. In other words,
when one user is scheduled for transmission, he/she always has
some information data to transmit. Although the amount of user
data is limited in practice, there is always a subset of users who
require an opportunity to communicate. Hence, the resource
allocation algorithms presented in this dissertation can be applied

to those active users.

1.4 Contributions of the Thesis

All the previous research work in adaptive resource allocation involves the
adaptation of subchannels and power only, but the modulation scheme remains fixed.
This thesis proposes that the adaptive modulation is applied on a subcarrier by
subcarrier basis, aé a method for combating the effects of frequency selective fading.
Each subcarrier in the OFDM system transmits a different amount of data based on
the Signal to Noise Ratio (SNR) for that subcarrier. The channel performance is
tracked on a regular basis using the bi-directional nature of the link to ensure that both
the transmitter and receiver know what modulation scheme is currently being used on
each subcarrier. Finally the comparison of Adapﬁve modulation with fixed
modulation is presented to show the performance of both schemes in terms of BER
and SNR.



1.5 Organization of the Dissertation

This thesis presents a study of resource allocation for OFDM systems. The
ultimate aim of this work is to maximize the system spectrum/power efficiency,
satisfy each user’s QoS requirements, and ensure a fair resource allocation.

After presenting preliminary knowledge in Chapter 2, we present in Chapter 3
an adaptive resource allocation methodology for downlink transmission of cellular
OFDM systems. In Chapter 3 an optimization frame work for adaptive resource
allocation in multiuser OFDM systems. Since the optimal solution to the constrained
faimess problem is extremely computationally complex to obtain, so the optimal
problem is divided into suboptimal algorithm that separates subchannel allocation and
power allocation. So subchannel allocation is first performed by assuming an equal
power distribution. An optimal power allocation algorithm then maximizes the sum
capacity while maintaining proportional fairness. This suboptimal technique will
reduce the complexity from exponential to linear in the number of subchannels.
Adaptive modulation is a method for obtaining a high spectral efficiency in a fading
environment. The work presented in chapter 3 uses fixed modulation, I have extended

it to use adaptive modulation.

The chapter 4 outlines applying adaptive modulation to OFDM systems in a
single user environment. The analysis and simulation is considered in two stages. The
first stage involves the application of a variable-rate variable-power MQAM
technique for a Single-Input Single-Output (SISO) OFDM system. This is compared
with the performance of fixed OFDM transmission where a constant rate is applied to
each subcarrier. The second stage applies adaptive modulation to a general MIMO
system by making use of the Singular Value Decomposition to separate the MIMO
channel into parallel subchannels. The simulation results show that the adaptive
algorithm employed to SISO/OFDM and MIMO/OFDM system outperforms the
SISO system having fixed-rate variable-power. Further, we found that MIMO in
general leads to better BER performance.

In chapter 5, the future enhancements and new ideas for research are presented. It also

provides a conclusion of this work.



Chapter 2

Channel Characteristics

The wireless channel places fundamental limitations on the performance of
wireless communication systems. Unlike the wireline channel, the wireless channel
can vary from line-of-sight (LOS) to one that is severely obstructed by buildings,
mountains, etc. Due to multiple propagation paths, the received signals consist of
multiple delayed and attenuated copies of the transmitted signal. In addition, the
wireless channel is time variant due to the motion of the mobile users or the
surroundings.

Wireless channels can be categorized into two groups: “Large Scale Fading”
and “Small Scale Fading”. Traditional propagation models estimate the mean power
received at given distances from the transmitter. For large distances (in the order of
kilometers), large scale propagation models are used. Small-scale fading describes
rapid fluctuations in mpliﬁde, phase, or multipath delay of a radio signal over a short
period of time or a short travel distance. It is caused by interference between the

multipath waves.



2.1 Small-Scale Multipath fading
In this section, we will describe the characteristics of the wireless channels

subject to multipath fading. The three most important effects of the small-scale fading
are [34-36)
> Rapid changes in signal strength over a small travel distance or time interval;
» Random frequency modulation due to varying Doppler shifts on different
multipath signals; and .'
» Time dispersion caused by multipath propagation delays.

Assume that s, (¢) is the baseband signal to be transmitted and f, is

the carrier frequency. The corresponding RF signal transmitted over the wireless

channel can be written as

S(1)= Re[sb(t)ef?”fct ] @.1)

Let p,(t)and 7,(t)denote the amplitude and the propagation delay for the /th
path. Then, the received bandpass signal is given by

r(t)=§pl(t)s(t—rl(t))

-2 T .
=Re{[2p1(t)e ) ’(t)sb("fz(t))}e’ wlet } 22)

!

where the additive white Gaussian noise (AWGN) is ignored for simplicity. It is
apparent from Equation. (2.2) that the equivalent baseband signal is

n(t)= D p (t)e Mg, (¢-17,(1)) 23)

It can be concluded from (2.3) that the multipath channel can be regarded as a time-

variant FIR system. We have

r (£) =5, (1)®h(1,7) (2.4)

where

10



—j27z'fc(t)rl(
e

h(t)=Zp (1) t)é'(r—rl (1)) 2.5)

h(t,r) is the impulse response of the channel at time ¢ to an impulse input applied at
time t — 1. In most wireless communication systems, the total number of multipath is
usually very large. According to the central limit theorem [35)], the time-variant

impulse response h(t,r) may be modeled as a complex-valued Gaussian random

process in the ¢ variable.

The modulated symbol duration is much greater than the largest path delay
then all the paths cannot be resolved. In this case, all the frequencies in the
transmitted signal bandwidth will go through almost the same random attenuation and
phase shift. This is known as flat fading and the channel impulse response is

expressed as

jol ¢
i(i)=a(2)*Us(2) 29
When the propagation delay is larger than the symbol duration, the frequency
components in the transmitted signal will go through different attenuations and phase

shift along the different path delays. This is called frequency-selective fading. In such

a channel, some of the multipath can be resolved and the channel can be expressed as

h(t,7) = éa, ()05 (z -7,(1)) @7

where L is the number of resolvable paths. In (2.6) and (2.7), ¢, (t) is the channel gain
and 4,() is the channel phase shift. When there is no LOS, a,(t) will be Rayleigh

distributed with,

fi(@)=Z5e" 2.8)

o

2 . . .
where 20 is the time average power of the received signal.

When there is a direct path (case of LOS), a, (t) will be of Rician distribution with
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f,,(a)=%e () 2.9)

where 4, is the amplitude of the dominant path and / o( ) is the modified Bessel

function of the first kind and zero-order. When 4; = 0 | the Rician distribution

degenerates to a Rayleigh distribution. Delay spread and coherence bandwidth is the
parameters that describe the time dispersive nature of the channel in a local area. The

mean excess delay is the first moment of the power delay profile and is defined to be

2
Za, 7
|
2
Z a

[

(2.10)

T=

The rms (root mean squared) delay spread is the square root of the second central

moment of the power delay profile and is defined to be

o =47 -(?)2 @.11)

Z a7
- £

where T ==
Z a
1

The coherent bandwidth is a range of frequencies over which two frequency

(2.12)

components have strong potential for amplitude correlation. If the coherence
bandwidth is defined as the bandwidth over which the frequency correlation function

is above 0.9, then the coherence bandwidth is approximately [37]

B =~ 1
500,

(2.13)

Likewise, Doppler spread and coherence time are parameters which describe the

time varying nature of the channel in a small-scale region. If we assume that the
channel is wide sense stationary, the Doppler power spectrum D(f ) of a mobile
channel for an omni-directional mobile antenna and the received plane wave with

uniformly distributed arrival angle can be given by

12



D(f)= 2 2 (2.14)
a5

where a is a constant and £, is the maximum Doppler spread, which is given by

f,=2f (2.15)
c

where v is the velocity at which a mobile is moving and c is the velocity of light.

Coherence time T, is a statistical measurement of the time duration over which the

channel impulse response is essentially invariant, and quantifies the similarity of the
channel response at different times. The Doppler spread and coherence time are

inversely proportional to each other, i.e.

T ~— (2.16)

2.2 Categories of Small-Scale Fading

The relation between signal parameters (i.e., the bandwidth, symbol period, etc.)
and channel parameters (i.e., the rms delay spread, the Doppler spread, etc.), small-
scale fading can be categorized based on two aspects: multipath delay spread and
Doppler spread. Multipath delay spread leads to time dispersion and frequency-
selective fading; so based on this, small-scale fading can be categorized into flat
fading and frequency-selective fading. The multipath delay spread is a channel
parameter in time domain, while the phenomenon that the channel is flat or frequency
selective corresponds to the frequency domain. Thus, the time domain parameter,
multipath delay spread, influences the channel characteristic in frequency domain.

Doppler spread leads to frequency dispersion and time-selective fading, so in
terms of this, small-scale fading can be categorized into fast fading and slow fading.
The Doppler spread is a channel parameter in frequency domain, while the
phenomenon that the channel changes fast or slow belongs to time domain. Similarly,
the frequency domain parameter, the Doppler spread Ds, influences the channel
characteristic in time domain. Knowing these relationships will help us in designing

the system.
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Table 2.1 gives the categories of small-scale fading. If the coherence bandwidth Bc of
the channel is much larger than the bandwidth of the transmitted signal, the received
signal undergoes flat fading. In contrast, if the coherence bandwidth of the channel is
smaller than the bandwidth of the transmitted signal Bs, the received signal suffers
from frequency-selective fading. When this happens, the received signal is distorted
and Inter Symbol Interference (ISI) is induced. What is more, it is much more
complex to model frequency-selective fading channels than flat fading channels since
each multipath has to be modeled and the channel needs to be modeled as a linear
filter. Therefore, it is preferable to deal with a flat fading channel for signal
transmission. However, since we can not change the multipath delay spread and
coherence bandwidth of the channel, we can only try to design the symbol period and
signal bandwidth such that flat fading of the channel results for the transmitted signal.
Hence, given the delay spread, to improve the performance of the transmission, we
choose such a value for the symbol period in the adaptive modulation algorithm that

we get a flat fading channel instead of a frequency-selective one.

Table 2.1 Categories of Small Scale Fading

Categorization basis Fading types condition
Flat fading B (B,
Multipath delay spread | Frequency-selective
. B s >B [
fading
Fast fading )T,
Doppler spread
Slow fading T, (T,

Based on the Doppler spread, the channel can be classified as fast fading or
slow fading. If the channel impulse response (in time domain) changes quickly within
the symbol period 75, i.e., if the coherence time Tc of the channel is smaller than the
symbol period of the transmitted signal, the channel creates fast fading on the
received signal. This will result in signal distortion. If the channel impulse response
changes at a much slower rate than the transmitted baseband signal, the channel
creates slow fading on the received signal. The channel behaves static all over certain
symbol periods. It is easy to see that a slow fading channel is preferable as it results in
a more stable transmission quality. But the Doppler spread is not determined by the

system’s design. However, we can try to design the symbol period and signal
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bandwidth to give slow fading on the transmitted signal. Therefore, given the Doppler
spread, we choose such a value for the signal bandwidth/subcarrier bandwidth in the
adaptive modulation algorithm that we get a slow fading channel instead of a fast

fading one, as it results in better performance.

2.3 Orthogonal Frequency Division Multiplexing

OFDM has long been considered as a very promising solution for supporting high-
data-rate transmission in future broadband wireless communication systems. The
basic idea of OFDM is to divide the available spectrum into several subcarriers so
that the information symbols are transmitted in parallel on the subcarriers over the
wireless channel. This allows us to design a system supporting high data rates while
maintaining symbol durations much longer than the channel’s delay spread. By doing
so, each subcarrier experiences almost a flat fading, and the detrimental effects of the
multipath channels are reduced to a multiplication of each subcarrier by a complex
transfer factor. A schematic diagfam of an OFDM system is shown in Figure 2.1.

High-data-rate communications are limited not only by noise but often more
significantly by the intersymbol interference (ISI) due to the time dispersive nature of
the wireless channels. Generally, the effects of ISI are negligible as long as the delay
spread is significantly shorter than the duration of one transmitted symbol. This
implies that the symbol rate of communication systems is practically limited by the
channel’s memory. For high rate transmission where symbol rates exceeding this limit
are to be transmitted over the channel, mechanisms must be implemented in order to
combat the effects of ISI [38].

Data to be transmitted are first arranged in parallel for each subcarrier and

modulated independently. The complex numbers X, which represent the signal

constellation of each subcarrier are transformed into the time domain by performing a
Inverse Fast Fourier Transform (IFFT). Assuming that we have N subcarriers, the

output of the IFFT which consists of N samples x, is

1 N-1 12»'ﬂ
x =—=) X,e ¥
[ k
" INGS

In order to ensure that the received time-domain OFDM symbol is

(2.17)

demodulated from the channel’s steady-state response, each time-domain OFDM
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symbol is extended by the so-called cyclic extension or guard interval of N, samples

duration, as shown in Figure 2.2. If the cyclic prefix is longer than the impulse

response of the channel, the inter-OFDM symbol interference due to the channel

memory is completely eliminated.

Serial 8 Parallel Add D/A &
—p to g IFFT to cyclic Transmit
Parallel e Serial prefix Shaping
b (cPp) Filter
L
L
Wireless Fading Channel
v
< g i ”u
g 5 Serial Remove AD &
P/S _'g = FFT to cyclic Reciever
S g, Parallel prefix Shaping
<+ Q"’ M (CP) Filter

Figure 2.1 OFDM system model

N+N

Figure 2.2 The cyclic prefix of an OFDM symbol
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After removing the cyclic prefix at the receiver, we retrieve the complex
number by Fast Fourier Transform (FFT). As we have inserted a cyclic prefix, the

received signal is the result of a circular convolution between x,and the channel

response h. The result of the FFT on the received signal is then merely a product of

X, and H,, the frequency response of the channel on each subcarrier. By including

the channel noise, we have

Xe=H.X, +7, 2.18)

where 7, is the additive white noise in the frequency domain. In addition, the

frequency response of the channel at ¢ can be calculated as

H(f,0= [ h(t,r)e ™ dr =Y a (t)e”™ " (2.19)

th
and H, is obtained by substituting f with the frequency of the & subcarrier.

2.4 Multiple Input Multiple Qutput Antenna System

2.4.1 MIMO Structure

MIMO systems are one of the most popular areas that have drawn enormous
attention in recent years [39, 40, 41-44]. In such systems, multiple antennas are
deployed at both the transmitter and receiver to exploit the spatial dimension freedom
and combat the harmful effects in mobile radio communication and therefore improve
the system performance. Besides the performance enhancement, deploying multiple
antennas can bring a huge increase in the system capacity, which is one of the most
critical issues for current wireless communication services.

The block diagram of a MIMO system is shown in Figure 2.3. At the
transmitter side, the input data stream isbdemultiplexed into J parallel substreams.
Each substream is transmitted over all transmit antennas in the same frequency band
with different transmit antenna weights. At the receiver, the multiple antennas can

separate the substreams and give an estimation of the original data stream.
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Figure 2.3 Block diagram of MIMO systems
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2.4.2 MIMO Multiplexing using Singular Value Decomposition
It was proved in [40] that SVD based space-time vector coding (STVC) allows

the collection of the signal power in space and is a theoretical means to achieve high
capacity for MIMO systems. By SVD, the M, and M, channel matrix can be

decomposed into

rank(H)
H=USV = ) u

j=1

v, (2.26)

where

U=[u,,u2,...,u,,‘]

denotes the left singular vectors and
\% =[Vl, Vyseess er]

represents the right singular vectors. ) S35...5 5 4p(s) are singular values, and are
arranged in a descending order, without loss of generality, It was pointed out in [40] that by
configuring the transmit antenna weights using right singular vectors v and receive antenna

weights using right singular vectors u, up to rank(H) parallel channels are constructed.

2.5 Adaptive Modulation

The basic idea of adaptive modulation is to take advantage of the variation of
the fading channel. Instead of maintaining a fixed transmit rate at a given time,
adaptive deulatibn adjust the transmit rate and power according to the channel
situation. In other words, a higher transmission rate should be used when the channel
is under a good condition and vice versa. Lots of algorithms have been proposed to

use adaptive modulation in the time domain to exploit the time-variant channel
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capacity [45-51]. They gave impressive result in increasing the transmission rate or
improving the system performance.

The notion of adaptive modulation in the context of OFDM was proposed as
early as 1989 by Kalet [52], which was further developed by Chow et al [53] and was
refined for duplex wireless links, for example in [54]. The basic idea of such
algorithms is to apply high modulation levels on the subcarriers with favorable
channel conditions to improve the spectral efficiency, while transmitting few bits on
the subcarriers in deep fades to avoid bit errors. |

In order to allocate appropriate modulation modes to the subcarriers, three
allocation criterions were investigated in the literature. They are the fixed-threshold
controlled algorithm, upper bound BER algorithm, and fixed-throughput adaptation
algorithm [38]. In these criterions, transmission modes are adapted in order to
maximize the data rate given a fixed long-term or instantaneous BER, or to minimize

the bit errors given a fixed data rate.
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Chapter 3

Resource Allocation in OFDM Systems

3.1 Introduction

Orthogonal frequency division multiplexing (OFDM) is a promising technique
for the next generation of wireless communication systems [55] [56]. OFDM divides
the available bandwidth into N orthogonal subchannels. By adding a cyclic prefix (CP)
to each OFDM symbol, the channel appears to be circular if the CP length is longer
than the channel length. Multiuser OFDM adds multiple access to OFDM by allowing
a number of users to share an OFDM symbol. Two classes of resource allocation
schemes exist: fixed resource allocation [57] and dynamic resource allocation [58] [59]
[60 [61]. Fixed resource allocation schemes, such as time division multiple access
(TDMA) and frequency division multiple access (FDMA), assign an independent
dimension, e.g. time slot or subchannel, to each user. Due to the time-varying nature
of the wireless channel, dynamic resource allocation makes full use of multiuser
diversity to achieve higher performance.

Two classes of optimization techniques have been proposed in the dynamic
multiuser OFDM literature: margin adaptive (MA) [61] and rate adaptive (RA) [58]
[60]. The margin adaptive objective is to achieve the minimum overall transmit power
given the constraints on the users' data rate or bit error rate (BER); The rate adaptive
objective is to maximize each user's error-free capacity with a total transmit power
constraint. These optimization problems are nonlinear and hence computationally
intensive to solve. In [59], the nonlinear optimization problems were transformed into

a linear optimization problem with integer variables. The optimal solution can be
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achieved by integer programming. However, even with integer programming, the
complexity increases exponentially with the number of constraints and variables.

Two rate adaptive optimization problems have been proposed by researchers.
Recently, Jang and Lee proposed the rate maximization problem [58]. In 58], they
proved that the sum capacity is maximized when each subchannel is assigned to the
user with the best subchannel gain and power is then distributed by the water-filling
algorithm. However, fairness is not considered in [58]. When the path loss differences
among users are large, it is possible that the users with higher average channel gains
will be allocated most of the resources, i.e. subchannels and power, for a significant
portion of time. The users with lower average channel gains may be unable to receive
any data, since most of the time the subchannels will be assigned to users with higher
channel gains. In [60], Rhee and Cioffi studied the max-min problem, where by
maximizing the worst user's capacity; it is assured that all users achieve a similar data
rate. However, the max-min optimization problem can only provide maximum
fairness among the users. In most wireless systems of interest, different users require
different data rates, which may be accommodated by allowing users to subscribe to
different levels of service.

In this chapter, we formulate another optimization problem that balances the
tradeoff between capacity and faimess. The objective function is still the sum capacity,
but proportional user data rates are assured by imposing a set of nonlinear constraints
into the optimization problem. Hence the proportionality in this chapter compares the
user data rates to the set of system parameters instead of another feasible set of user
data rates as in the networking area. Further, while large channel fluctuations are
intentionally created with “dumb" antennas for long-term proportional fairness
resource allocation in [62], the algorithm presented in this chapter maintains
proportional rates among users for each channel realization, which ensures the rates of

different users to be proportional in any time scale of interest.

3.2 System Model

A multiuser OFDM system is shown in Figure 3.1. In the basestation, all channel
information is sent to the subchannel and power allocation algorithm through
feedback channels from all mobile users. The resource allocation scheme made by the

algorithm is forwarded to the OFDM transmitter. The transmitter then selects
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different numbers of subchannel for different users. The resource allocation scheme is

updated as fast as the channel information is collected.

user | ——p
user2 —p OFDMA OFDMA
Transceiver . data Transceiver
user K..—p/
f ) 'Y
Subcarrier and ' Subcarrier and power
power allocation Subcarrier and information
power information .
Subcarrier for mobile k Subcarrier
andPower [~°TTTTTTTTTToToC » Selector
Allocation € -~ cemmemeeeo ] Channel
Algorithm Channel State Estimator
Base Station Information (CSI) —

Figure 3.1 Multiuser OFDM System Block Diagram

In this chapter, perfect instantaneous channel information is assumed to be available
at the basestation and only the broadcast scenario is studied. It is also assumed that the
subchannel and power allocation information is sent to each user by a separate
channel. Throughout this dissertation, it is assumed a total of K users in the system

sharing N subchannels; with total transmit power constraint p,,,. The objective is to

optimize the subchannel and power allocation in order to achieve the highest sum
error-free capacity under the total power constraint. The equally weighted sum
capacity is adopted as the objective function, but the idea of proportional fairness is
introduced into the system by adding a set of nonlinear constraints. The benefit of the
proportional faimess is that the capacity ratios among users can be explicitly
controlled to meet each user's target data rate, given sufficient total available transmit
power. Mathematically, the optimization problem considered in this chapter is

formulated as

£ plrn pknhkn2

Max ). ) S log, | 14+-422 G.1)
Prabin kol nml N N =
°N

Subject to:
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Z Z pk,n Sptoml

k=1 n=]

Dy, 20 forallk n
Pr,={0,1} forallk n

K
Zp“ =1 forallk n
k=l
R:Ry:...iRy =y,1¥, 1o ¥x
where K is the total number of users; N is the total number of subchannels; N, is the

power spectral density of additive white Gaussian noise; B and P, are the total

available bandwidth and power, respectively; p, , is the power allocated for user k in

the subchannel n; h,, is the channel gain for user k in subchannel n; p, , can only
be the value of either 1 or 0, indicating whether subchannel » is used by user & or not.
The fourth constraint shows that each subchannel can only be used by one user. The

capacity for user k, denoted as R, , is defined as

N 2
pkn pknhkn

R, =Y Lhnjog | 14 Zhatn (3.2)
k "Zﬂ N 2 . ND%

Finally { )/,.}KH is a set of predetermined values which are used to ensure proportional

fairness among users. The fairness index is defined as

X 2
5]
F =kl (3.3)

=~ 2
KZ)’A»Z
k=1

with the maximum value of 1 to be the greatest fairness case in which all users would

achieve the same data rate. When all y, terms are equal, the objective function in (3.1)

is similar to the objective function of the max-min problem [60], since maximizing the

sum capacity while making all R, terms equal is equivalent to maximizing the worst

user’s capacity. Hence, [60] is a special case of the constrained-fairness problem.
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3.3 Optimal Subchannel Allocation and Power Distribution

The optimization problem in (3.1) is generally very hard to solve. It involves both
continuous variables p, , and binary variables p, ,. Such an optimization problem is

called a mixed binary integer programming problem. Furthermore, the nonlinear
constraints in (3.1) increase the difficulty in finding the optimal solution because the
feasible set is not convex.

In a system with K users and N subchannels, there are K" possible sub-
channel allocations, since it is assumed that no subchannel can be used by more than
one user. For a certain subchannel allocation, an optimal power distribution can be
used to maximize the sum capacity, while maintaining proportional faimess. The
optimal power distribution method is derived in the next section. The maximum
capacity over all K" subchannel allocation schemes is the global maximum and the
corresponding subchannel allocation and power distribution is the optimal resource
allocation scheme. However, it is prohibitive to find the global optimizer in terms of
computational complexity. A suboptimal algorithm is derived in this chapter to reduce
the complexity significantly while still delivering performance close to the global
optimum. Furthermore, it is computationally complex to find the optimal solution. For

these reasons, we use a suboptimal technique in the next section.

3.4 Suboptimal Subchannel Allocation and Power Distribution

Ideally, subchannels and power should be allocated jointly to achieve the optimal
solution in (3.1). However, this poses a prohibitive computational burden at the
basestation in order to reach the optimal allocation. Furthermore, the basestation has
to rapidly compute the optimal subchannel and power allocation as the wireless
channel changes. Hence low-complexity suboptimal algorithms are preferred for cost-
effective and delay-sensitive implementations. Separating the subchannel and power
allocation is a way to reduce the complexity because the number of variables in the
objective function is almost reduced by half. Section 3.4.1 discusses a subchannel
allocation scheme. Section 3.4.2 presents the optimal power distribution given a

certain subchannel allocation.
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3.4.1 Suboptimal Subchannel Allocation

In this section, a suboptimal subchannel algorithm based on [60] is proposed. In the
suboptimal subchannel allocation algorithm, equal power distribution is assumed

across all subchannels. The channel-to-noise ratio for user k in subchannel » is
defined as H, , =h,m2 /No% and Q, is the set of subchannels assigned to user k.

The algorithm can be described as

1) Initialization
SetR, =0, Q, =¢ for k=1,2,...K and 4={1,2,..,N}
2) For k=1toK

(a) Find n satisfying IH kn

ZIHk-il forall jeAd
(b) LetQ, =Q, U{n}, 4= A-{n} and update R, according to (3.2)
3) While 4#0
(a) Find k satisfying R, /y, <R, /y, forall i 1<i<K
(b) For the found k, find n satisfying |H k_n| 2 IH k. il forall jeA
(c) For the found k and n, LetQ, =Q, U{n}, 4= A—{n} and update
R, According to (3.2)

The principle of the suboptimal subchannel algorithm is for each user to use
the subchannels with high channel-to-noise ratio as much as possible. At each
iteration, the user with the lowest proportional capacity has the option to pick which
subchannel to use. The subchannel allocation algorithm is suboptimal because equal
power distribution in all subchannels is assumed. After subchannel allocation, only
coarse proportional fairness is achieved. The goal of maximizing the sum capacity
while maintaining proportional faimess is achieved by the power allocation in the

next section.

3.4.2 Optimal Power Distribution for a Fixed Subchannel Allocation

To a certain determined subchannel allocation, the optimization problem is

formulated as
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k=l ne),

Din 20 forallk, n

Q, are disjoint for all k

Q,uQ,u..uQ, c{2,.N}

R:R,:..Re =y, i ¥y ¥k
where Q, is the set of subchannels for user k, and Q, and 2, are mutually exclusive
when k #1. The optimization probleni in (3.4) is equivalent to finding the maximum
of the following cost function. where {/1, }Ki=l are the Lagrangian multipliers. After
differentiating (3.5) with respect to p, , and setting each derivative to 0, it can be

obtained that

K 1 K
L=Z Tv-logz (1+p‘-'n"Hk:")+A1(Z pk,n _pmlal)

K
+Z A, ( Z %logz (1+ b, )J‘A Z %1032 (1 + plt,nHk.n) (3.5)

k=2 nef, & neCl,
H L3 H
O L _Fu i 4aYi——— 0 (6
apl.n Nin2 1-'-]{l.npl.n k=2 Nln2 l-*-]{I,npl,n
H H
aL 1 k,n +A1 _/1 71 l k. =0 (3 7)

apk,n B N]Il2 1+Hk,npk,n k;’:Nln2 1+Hk,upk.u

For k=123..,KandneQ,.

Power Distribution for a Single User

In this section, the optimal power distribution strategy for a single user k& is derived.
From either (3.6) or (3.7), it can obtained that
H k,m H k.n

= (3.8)
1+H, .pyn 1+H,,.p,,
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for mneQ, and k=12,..K Without loss of generality, we assume that
H, <H,..<H,, for k=1,2,..K and N,is number of subchannels in Q,. Thus,

(3.8) can be rewritten as
H kn A, k,l

B~y (3.9)
Hk,nHk,l

Pip =Dt

for n=1,2,...,N, and k=1,2,...K . Equation (2.10) shows that the power distribution

for a single user k on subchannel n. More power will be put into the subchannels with
higher channel-to-noise ratio. This is the water-filling algorithm [63] in frequency

domain. By defining F, ,, as the total power allocated for user & and using (3.9), F, ,,

tot

can be expressed as

h/ M H ,—H
Py g =2pk,n =Nkpk,l +2# (3.10)
n=l n=2 kot Tk

for k=1,2,...K .

Power Distribution among Users

Once the set {P }KH is known, power allocation can be determined by (3.9) and

k tot

(3.11). The total power constraint and capacity ratio constraints in (3.4) are used to

obtain {P }K =1 with (3.8) and (3.10), the capacity ratio constraints can be expressed

k tot

as

-V
-l—ﬂ(log2 (1 +H, -’3'-""7‘\,-—')+ log, W,)

n N 1
1 N, Pr i -V
=7|.7v"—(log2 (1+H,“l "'Tk"-)ﬂogz ij (3.11)

for k=2,3,..,K where V, and W, are defined as
MNVH, -H
V=) 22—t (3.12)
* ; Hk,nHk,l

and
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W, =[H%—J (3.13)

for k=1,2,...,K
Adding the total power constraints

K

2B =P (3.14)

k=1

There are K variables {P }Kk=l in the set of K equations in (3.11) and (3.14).

k.tot
Solving the set of functions provides the optimal power allocation scheme. The
equations are, in general, nonlinear. Iterative methods, such as the Newton-Raphson
or Quasi-Newton methods, can be used to obtain the solution, with a certain amount
of computational effort. In the Newton-Raphson method, the computational
complexity primarily comes from finding the update direction.

In High Channel-to-Noise Ratio Case, the linear condition rarely happens and
the set of equations remains nonlinear, which requires considerably more computation
to solve. However, if the channel-to-noise ratio is high, approximations can be made

to simplify the problem. First consider (3.12), in which ¥, could be relatively small

compared to Pk if the channel-to-noise ratios are high. Furthermore, if adaptive

tot
subchannel allocation is used, the best subchannels will be chosen and they have
relatively small channel gain differences among them. Thus, the first approximation is

V, =0. Second, assuming that the basestation could provide a large amount of power
and the channel-to-noise ratio is high, the term H, ,F, ,, / N, is much larger than 1.

With the above two approximations, (3.11) can be rearranged and simplified to be

y
N

L/
H W N [H W \n M
() e ) .

where k=1,2,... K , Substituting (3.15) into (3.14), a single equation with the variable

can P can be derived as

1,t0t

dy

K
Y e(Pro) o =0 (3.16)

k=1

where
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1 if k=1
M
J (Hl,l 1 ]Nkn
c =
LM ) if k=2.3,..K (3.17)
Hk,lulk
Nk
and
! if k=1
d, ={ Ny,
R if k=2,3,...K (3.18)
1741

Numerical algorithms, such as Newton's root-finding method [64] or the false position
method [64], can be applied to find the zero of (3.16).

3.4.3 Existence of Power Allocation Scheme

Solution to Single User Power Allocation

For a certain user k, there is no power allocation if ¥, >F, , .This situation could

k 1ot
happen when a subchannel is allocated to a user who does not have a high channel
gain in that subchannel. The greedy water-filling algorithm would rather stop using

this subchannel. In case this situation happens, the set of O, , as well as the

corresponding values of N, ¥,and W, , need to be updated and the power allocation

algorithm presented in 3.4.2 should be executed again, as shown in Figure.3.2.

Solution to Multiuser Power Allocation

In case that the channel-to-noise ratio is high, there is one and only one solution to

(3.16) since every item in the summation monotonically increases and (3.16) achieves

=0 and P,

kot

=Ptotal. A numerical algorithm can be used to

tot

different signs at P,

find the solution to (3.16). The complexity of finding the solution will primarily rely

on the choice of the numerical algorithm and the precision required in the results.
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is found {P }Kk=2 can be calculated using (3.15). Then the overall power

k.ot

After P

Lot
allocation scheme can be detenhined by (3.9) and (3.10). In general, it can be proved
that there must be an optimal subchannel and power allocation scheme that satisfies
the proportional fairness constraints and the total power constraint. Furthermore, the
optimal scheme must utilize all available power. Several facts lead to the above
conclusion. First, to a certain user, the capacity of the user is maximized if water-

filling algorithm is adopted.

Subchannel
allocation
Section 3.4.1

'

Optimal power
distribution Eq.
3.11 &3.14

l For the user P, , <V,
Pk,tot > Vk Update Qk:NInd’Wk

for all users Eq.3.12and 3.13
Eq.3.12

A

JSol

Yes

Jv No

Water-filling algo
for each user Eq.
39&3.10

Figure 3.2 Resource Allocation Algorithm
Furthermore, the capacity function is continuous with respect to the total available
power to that user. In other words, R, (5 ,,)is continuous with B, Second, if the

optimal allocation scheme does not use all available transmit power, there is always a
way to redistribute the unused power among users while maintaining the capacity

ratio constraints, since R, (F,,, )is continuous with F, , for all k. Thus, the sum

capacity is further increased. If the Newton-Raphson method returns a non-feasible
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P,

k. tot ?

the set Q, and the associated N, , ¥, and W, would need to be updated. The

Newton-Raphson method should be performed until all £, ,,, >V

3.5 Numerical Results

In this section, simulation results are presented to show the performance of the
adaptive resource allocation algorithm. The tradeoff between sum capacity and the
faimess constraints is also illustrated.

In all simulations presented in this section, the wireless channel is modeled as a

frequency-selective channel. It is assumed that the power delay profile is

exponentially decaying with ll,%,}é, J The total available bandwidth and transmit

power are 1 MHz and 1| W, respectively.

3.5.1 Comparison with Maximum Fairness

The objective in [60] is to maximize the minimum user's capacity. By setting, the
objective of the optimization problem in (3.1) is identical to the one in [60], since the
worst user's capacity is maximized when all users have the same capacity and the sum
capacity is maximized. Hence, the problem in [60] is a special case of the framework
presented in this chapter. In this section of simulations, the worst user's capacity is
compared. In [60}], a suboptimal algorithm is proposed to achieve near-optimal
capacity using adaptive subchannel allocation, but an equal power distribution is
assumed. When the number of users increases, the equal power distribution does not
equalize every user's capacity. By transferring power from the users with high
capacity to the users with low capacity, the worst user's capacity could be even
increased. For the purpose of comparison, I use the suboptimal algorithm in [60],
which is a special case of the subchannel allocation algorithm in 3.4.1, to allocate the
subchannels first and then apply the optimal power allocation scheme proposed in
3.4.2. Both of these adaptive schemes are compared with the fixed time division
multiple access (TDMA) resource allocation scheme.

The wireless channel is modeled as before, and the total transmit power
available at the basestation is 1 W. The power spectral density of additive white
Gaussian noise is -80 dBW/Hz, and the total bandwidth is 1 MHz, which is divided
into 64 subchannels. The maximum path loss difference is 40 dB, and the user

locations are assumed to be uniformly distributed.
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Figure 3.3 shows the capacity vs. number of users in the OFDM system. Adaptive
resource allocation can achieve significant capacity gain over non-adaptive TDMA.
Also the adaptive scheme with optimal power allocation achieves even higher
capacity than the scheme with equal power distribution. Notice that this capacity gain
is purely from the optimal power allocation algorithm, since both adaptive resource
allocation algorithms adopt the same subchannel allocation. Further, Figure 3.3 and
Figure 3.4 shows that the capacity gain over TDMA increases when the number of
users increases. In a system of 16 users, the adaptive scheme with the proposed
optimal power allocation achieves 17% more capacity gain than the scheme with

equal power distribution, when compared to fixed TDMA.
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Figure 3.3 Minimum user's capacity vs. number of users.
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Chapter 4

Adaptive Modulation

4.1 Introduction

In previous chapters we have discuss that to make full use of available
bandwidth we can create sub channels, the basic idea is to split high data rate stream
into several low data rate sequences and to modulate them separately. This technique
is called as Multi-Carrier Modulation (MCM). To avoid Inter-Symbol Interference
(IST) we need only a simple equalizer at receiver end. The most famous type of MCM
is Orthogonal Frequency Division Multiplexing (OFDM), OFDM is extension of
Frequency Division Multiplexing (FDM). In FDM parallel sub channels have
overlapped spectrum, but in OFDM, the parallel sub channels are orthogonal so they
can be recovered at the receiver end without any problem.

Adaptive modulation technique is used with OFDM to enhance the
performance of MCM system. For the implementation of adaptive modulation we
require the perfect channel state information at transmitter end, so transmitter can set
the adaptive parameters like modulation and coding scheme according to channel
condition but knowledge of channel condition at transmitter end is a difficult task.

The work presented in this chapfer is related to the study and development of
methods to produce optimal transmitter adaptations in a multi-user OFDM system. In
single-user OFDM systems, where all the available sub channels are used by a single

transmitter-receiver pair, as well as for MIMO system.
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4.2 Adaptive Modulation Techniques

4.2.1 How to Improve the Link Performance

In adaptive modulation, the modulation parameters are set according to
Channel State Information (CSI), so we save our recourses of transmit power and
coding scheme. In adaptive modulation strategy we can increase the data rate of
decrease the transmit power according to channel condition, If channel is bad we save
our recourses and if channel is good condition we use higher modulation scheme and
average transmit power. And as soon as channel condition changed, the modulation
scheme will also change accordingly.

Channel estimation is a big is issue, and we will not discuss it in detail here.
For the time being, we need the transmitter have a perfect knowledge of the CSI in
order to settle its constellation size and transmitted power. Moreover this transmitter
configuration must be available at the receiver with perfect synchronization such that
the demodulation of the transmitted symbols can be carried out without problems. For
a single carrier system we will refer to the system model depicted in figure 4.1 that
has been presented in [65] jointly with an in-depth analysis on the tradeoffs in
adapting all combinations of different modulation parameters. A more advanced and
realistic model is presented in [66] with a proposal of adaptive modulation for fading
channels. We will consider a group of parallel blocks like the ones in Figure 4.1
provided that the subchannels are independent and they are processed in parallel. To

clarify the used notation, it must be noticed that r[i]represents the data sequence to
be transmitted, x[i] is the waveform sent to the channel, and g[i] and n[i] are the

squared value of the instantaneous channel gain and the noise sequence respectively.

s[i] denotes the transmit power. At the receiver a channel estimator produces an

estimate of the channel state that is used both at the transmitter and the receiver for
both the adaptation and demodulation processes. It is assumed that the return path for
the CSI is perfect (instantaneous and error free).

The proposed model in Figure 4.1 implicitly proposes a time adaptation of the
system, i.e. the time- varying channel makes the transmitter change its parameters
accordingly. However, this is not the only kind of adaptation that can be done in a
digital communications system. A frequency adaptation and a time-frequency

adaptation are also possible in a MCM system.
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Figure 4.1 System Model for a Single-Carrier Adaptive-Modulation Scheme

As soon as the broadband channel presents a multipath structure and the
transmitter or the receiver are not static at their location, a situation that is typical in

many wireless fading channels, each g[;j] with j={1,2,..., N} has a different value.

This fact makes that each subchannel be adapted individually to obtain the desired
performance enhancement. Of course, the price to pay is a larger overall system
complexity placing high demands on the channel estimators, the feedback-channel
requirements and the resource allocation algorithms to optimally decide the

transmitter parameters.

4.2.2 Objective of Adaptive Modulation

The task in wireless communications consists mainly of two aspects: the
transmission Quality of Service (QoS) and the throughput. Adaptive modulation is
created for the same purpose. The main goal of adaptive modulation is to find a
software solution for a flexible, compatible and multiple application system with
small volume, for example, via software radio. The advantage of adaptive modulation
is that it can realize higher transmission QoS and higher throughput by efficient usage
of the channel situation. Therefore, in our work on adaptive modulation we will
~ concentrate on the following:

% To get higher transmission QoS;
% To get higher throughput (bit rate and frequency spectrum efficiency).

In our work, we use BER to represent QoS.
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4.2.3 Adaptive Modulation Categories

There are two categories of adaptive modulation: slow adaptive modulation
and fast adaptive modulation, which are defined by how often the transmission
settings are updated. In slow adaptive modulation, transmission parameters are
assigned when the user connects to the system and they remain constant throughout
the transmission. In this case the parameter settings are based on the channel situation
at the moment the user starts communications every time. If the channel does not \)ary
fast, this can improve the transmission quality and throughput. In fast adaptive
modulation, the parameters are controlled slot by slot based on the instantaneous
channel conditions, and thus the transmitter can adjust to fading channel conditions
for each slot or for a few slots [67]. Although fast adaptive modulation is effective in
improving transmission quality, the average bit rate is subject to the channel
conditions. Therefore, the scheme is more suitable to support data transmission rather
than for constant bit rate services, such as voice transmission [68]. We study the fast

adaptive modulation algorithm in our work.

4.2.4 Advantages of Adaptive Modulation

Intelligent radio communications that include not only adaptive reception
techniques, such as the adaptive equalizer, but also adaptive transmission control
techniques, is a new and attractive concept for future wireless personal multimedia
communication systems. This is because it has high potential to achieve high quality
and a high transmission Bit rate with high flexibility under traffic and propagation
path conditions that vary in time and Spacc. The adaptive modulation technique is one
of the effective intelligent radio communication techniques, [68]. Mobile radio links
are subject to severe multipath fading, which may severely degrade the link Carrier to
Noise Ratio (CNR) and consequently increase the BER. Fading compensation such as
an increased link budget margin or interleaving with channel coding is typically
required to improve link performance. However, these techniques are designed
relative to worst-case channel conditions, resulting in poor utilization of the full
channel capacity for a good percentage of the time (i.e.,, under shallow fading
conditions). Adapting certain parameters of the transmitted signal with the fading
channel leads to better utilization of the channel spectrum, [70].

Adaptive modulation provides a higher average link spectral efficiency by

taking advantage of the time varying nature of wireless channels: they transmit at high
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speeds under favorable channel conditions and respond to channel degradation
through a smooth reduction of their data throughput. Adaptive modulation realizes
higher throughput and higher quality transmission in land mobile communications
than fixed modulation level systems by making some modulation parameters variable

according to the instantaneous situation of the channel.

4.2.5 Disadvantages and Limits of Adaptive Modulation Systems

Adaptive modulation looks like an ideal technique that can solve a lot of problems in
transmission systems and make these systems more efficient. But is it easy to realize?
From the analysis given before, it can be seen that the answer is no. Adaptive
modulation is a non-trivial task in practice, because to realize it, one needs to solve
the following problems:

< Accurate SNR measurements at the receiver are required,

% The interference may change more quickly than the feedback round trip;

< The fading channel may vary between channel estimation and data

transmission;

Therefore, the support of other techniques is needed to make adaptive modulation

systems function satisfactorily.
4.2.6 Resource Allocation for the Single-User Scenario

System Description

The single-user scheme is the one where all the available subcarriers in an
OFDM system are dedicated to only one transmitter-receiver pair which is assigned to
one user or service. Following the description of the basic OFDM system shown in
the previous section, we assume that the cyclic prefix is longer than the channel
impulse response. Then, each OFDM subcarrier faces an independent, flat-fading,
narrowband channel, the overall OFDM system drawn in Figures 2.1 and 2.2 can be

modeled with a simpler block diagram as in figure 4.2
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Figure 4.2 Single-User OFDM system
X, represents the complex symbol that has been allocated to the sub-carrier n
(mapped according to the bit and power allocation algorithm). H, are the channel

coefficients (i.i.d. Rayleigh distributed), n, is the noise sequence effecting the sub-

carrier n (with variance s,’ = E hnn [k]2 Jand Y, is the received symbol from the sub-

channel n.

4.3 Chow’s algorithm
This algorithm originally developed for DMT in ADSL systems is described

in the famous paper from [71]. In some literature, it is presented as the first sub-
optimal solution to the bit loading problem in multicarrier systems with benefits
concerning implementation issues. Strategy of minimizing the transmit power for a

given bit rate is used to generate the transmitter configuration.

4.4 Campello’s algorithm

Campello proposed in his paper [72] an optimal and efficient algorithm to
implement in practice, the way of doing the adaptation is quite different from Chow’s

algorithm with lower number of operations (faster implementation). As before, the
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optimization criterion is to distribute the minimum transmit power among the

subcarriers for a given bit rate.

4.5 Adaptive Modulation Algorithm

This section demonstrates OFDM with adaptive modulation applied to
Multiple-Input Multiple-Output (MIMO) systems. We apply an optimization
algorithm to obtain a bit and power allocation for each subcarrier assuming
instantaneous channel knowledge. The analysis and simulation is considered in two
stages. The first stage involves the application of a variable-rate variable-power
MQAM technique for a Single-Input Single-Output (SISO) OFDM system. This is
compared with the performance of fixed OFDM transmission where a constant rate is
applied to each subcarrier. The second stage applies adaptive modulation to a general
MIMO system by making use of the Singular Value Decomposition to separate the
MIMO channel into parallel subchannels. For a two-input antenna, two-output
antenna system, the performance is compared with the performance of a system using

selection diversity at the transmitter and maximal ratio combining at the receiver.

4.5.1 Adaptive Loading and MIMO

Adaptive modulation is an important technique that yields increased data rates
over non-adaptive uncoded schemes. An inherent assumption in channel adaptation is
some form of channel knowledge at both the transmitter and the receiver. Given this
knowledge, both the transmitter and receiver can have an agreed upon modulation
scheme for increased performance. In this section, we consider adaptive bit and power
allocation schemes [73], [74]. Namely, we presuppose a desired number of bits to be
transmitted by a single OFDM symbol (consisting of N subchannels), and we load
these bits onto the subchannels in such a way that minimum power is allocated to the
entire transmission. In addition to adaptive modulation, MIMO is a useful technology
with significant data rate improvements of SISO systems. Further to adaptive
modulation applied to SISO/OFDM systems, this paper seeks to explore adaptive
modulation combined with MIMO/OFDM. A key concept employed here is that every
matrix channel can be decomposed into a set of parallel subchannels over which data
can be transmitted independently, given appropriate precoding and shaping

transformations at the transmitter and receiver, respectively.
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4.5.2 Channel Model
Throughout this work, the channel is assumed to be a Rayleigh fading channel,

corresponding to a rich scattering environment with time variation characterized by

the fade time. In the MIMO case, the channel is a matrix channel with equation
yn =ZHixn-l +nn (41)

where, in general, the valuesy,,x,, n, can be vectors, and H, can be a matrix. Thus,

the delay spread of the channel is L symbol periods. An exponentially-decaying
profile of channel taps is modeled by fixing the powers of all the elements in each

random matrix H, to a constantE,. These coefficients E; form a decaying geometric
progression in the variable i. During a coherence time interval, all matrices H, are

constant, and when the channel decorrelates, they are all drawn newly according to
their respective pdf's. Further, for simplicity it is assumed that the channel

decorrelates at the end of an OFDM symbol transmission.

4,5.3 Modulation and Demodulation

A modulator transforms a set of bits into a complex number corresponding to
an element of a signal constellation. In this paper, given the adaptive algorithm, the
modulator has as input a set of bits and power value, so that the output of the
modulator is a constellation symbol corresponding to the number of bits on the input,
appropriately scaled to have a desired power. The modulator is taken to have only a
finite number of rates available, which means that only a finite number of
constellations are available for the modulation. Specifically these constellations are
drawn from the sei of constellations having number of symbols equal to an even
power of 2. Further, in order to provide robustness against bit errors, Gray-coded
constellations are employed for each modulation order available. This Gray coding
ensures that if a symbol error occurs, where the decoder selects an adjacent symbol to
that which the transmitter intended to be decoded, there is only a single bit error
resulting.

Many demodulation techniques can be employed, including maximum-
likelihood, MMSE, and zero-forcing. For our work, in order to simplify the
demodulator, demodulation is performed using a zero-forcing approach, given

knowledge of the individual at-fading channel gain for each subchannel.
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4.6 Adaptive Loading

The advantage of OFDM is that each subchannel is relatively narrowband and
is assumed to have flat-fading. However, it is entirely possible that va given
subchannel has a low gain, resulting in a large BER. Thus, it is desireable to take
advantage of subchannels having relatively good performance; this is the motivation
for adaptive modulation. In the context of time-varying channels, there is a
decorrelation time associated with each frequency-selective channel instance. Thus, a
new adaptation must be implemented each time the channel decorrelates. The optimal
adaptive transmission scheme, which achieves the Shannon capacity for a fixed
transmits power, is the waterfilling distribution of power over the frequency selective
channel. However, while the waterfilling distribution will indeed yield the optimal
solution, it is difficult to compute, and it tacitly assumes infinite granularity in the
constellation size, which is not practically realizable.

The adaptive loading technique employed in this paper is an efficient
technique to achieve power and rate optimization based on knowledge of the
subchannel gains [73], [71]. Only six different square MQAM signal constellations
are used; this scheme is expected to perform with efficiency very close to those using
unrestricted constellations. In the discrete bit loading algorithm of [73], we are given

a set of N increasing convex functions p,(b) that represent the amount of power
necessary to transmit b bits on subchannel n at the desired probability of error using a
given coding scheme. We will assumep,(b) =0. The allocation problem which will
be using can be formulated as:

Power Minimization Problem

min 2”: p,(b,) 4.2)

n=l

N
Subjectto ) b, =B

n=|
b,eZb 20,n=12,.,N.
To initialize the bit allocation, the scheme of [71] is employed. The procedure is
summarized as follows:
Algorithm Initialization
1) Compute the subchannel signal to noise ratios

2) Compute the number of bits for the ith subchannel based on the formula
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A

b(i) = log, (1+ SNR(i)/ GAP) (4.3)
3) Round the value of l;(z) down to b(i).

4) Restrict b(i ) to take values 0,1,2,4,6 or 8 (correspond to available modulation

orders).
5) Compute the power for the ith subchannel based on the number of bits initially

assigned to it using the formula
p,(6(:)) = (2% —1)/ GNR(i), whereGNR(i) = SNR({)/ GAP  (4.3)
6) Form a table of power increments for each subchannel. For the ith subchannel

2b—l

" GMR “4

ap,(b)=p,(6)-p.(b-1)

Consider the k” channel. Given the channel gain and noise PSD, the power increment
table will provide the incremental energies required for the subchannel to transition
from supporting O bits to 1 bit, from 1 bit to 2 bits, from 2 bits to 3 bits and so on.
Since we require our system to have a maximum of 8 bits, the power increment
required to go from 8 bits to 9 bits is set to a very high value. Also, we require the
subchannel to have only 0, 1, 2, 4, 6 or 8 bits. Thus, odd numbers of bits are not
supported. In order to take care of this, the power increment table has to be changed
using a clever averaging technique. It is best described by an example

Suppose the power increment required for supporting an additional bit from 2
bits in the nth subchannel is 30 units and that required for supporting an additional bit
from 3 bits is 40 units. Then, reassigh the power increment values to the same value,
namely, the average of the two. In this case, that value is 35 units. This assures us that
if a subchannel is allocated a single bit for going from 2 bits to 3 bits, then in the next
iteration the same minimum amount of additional power required to support another
bit will imply that the same subchannel will be allocated the next bit as well. The
same averaging procedure is repeated for all other possible bit transitions. The only
exception that might arise is when the algorithm terminates, not having assigned the
final bit to even out the total number of bits on that subchannel. In order to resolve
this issue, we used an algorithm proposed in [73], (the function ResolveTheLastBit),

which will be discussed in the detail later in the section.
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Note that we have introduced a new term, GAP. This parameter is in effect a tuning

parameter. Different values for GAP yield different —E—"—ratios for a given desired

number of bits B to transmit. This is because the GAP directly impacts the power
table value calculations. Thus, tuning the GAP allows us to characterize the BER
performance of the system. Given the initial bit allocation, the following algorithm
optimizes the bit allocation [73]:
Algorithm
Input:
b, initial bit allocation
B, the total number of bits to be allocated
Output:
b, the optimized bit allocation
Algorithm:
B «0
forn=1toN
B « B +b(n)
while(B' # B)
if (8> B)
n =argmax,g;.y Ap,(bj)
B« B-1
b(n) < b(n)-1
else '
m=argmax, . Apj(bj +1)
B« B+1
b(n) < b(n)+1
Finally, in order to deal with a single violated bit constraint, we employ the following
algorithm [73]:
Algorithm ResolveTheLastBit
1) Check that the input bit allocation contains at most one violation of the bit

constraint
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2) If there is a single violation, (say it is in subchannel v), find the bit from the
current bit allocation having the largest incremental power that can be used to
fill up subchannel v. Let |

R, = 8p,(b(v))- 2p,(6(1)) (4.5)

3) Find the bit that will cost the least to increment in the other subchannels which
have been allocated either 0 or 1 bit only. The reason we have this constraint is
that all the other subchannels will have 2, 4, 6 or 8 bits and allocating a single

bit to them will violate the bit constraint. Let
B, = 4p,(6(/) - 4., (6(v)) (4.6)
4) Perform the change corresponding to the smallest of P1 and P2.

Given these three algorithms, we have a complete characterization of the bit loading

procedure for a given frequency selective channel.

4.7 MIMO/OFDM Systems

4.7.1 MIMO

MIMO systems are defined as point-to-point communication links with
multiple antennas at both the transmitter and receiver. The use of multiple antennas at
both transmitter and receiver provides enhanced performance over diversity systems
where either the transmitter or receiver, but not both, have multiple antennas. This
technique can significantly increase the data rates of wireless systems without
increasing transmits power or bandwidth. The cost of this increased rate is the added
cost of deploying multiple antennas, the space requirement of these extra antennas
and the added complexity required for multi-dimensional signal processing.

A great deal of research work has been devoted to the area of combining this
spatial scheme with OFDM systems. This system combines the advantages of both
techniques in providing simultaneously increased data rate and elimination of the
effects of delay spread. Power control for subchannels on MIMO/OFDM system can
be crucial in enhancing the spectral and power efficiency. Without any interference,
the best power control to optimize the transmission is the waterfilling solution. But as
discussed before, it is not practically feasible and we have employed the above
adaptive loading algorithm to characterize the practical performance of

MIMO/OFDM system with a single antenna OFDM system.
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4.7.2 Analysis of MIMO/OFDM Systems
Consider a MIMO system employing t transmits antennas and r receives antennas. For
each tone, the MIMO channel response can be represented by a matrix of size mxn
where the matrix element 4, represents the channel gain from transmit antenna k to
receive antenna j. If we consider the case of perfect channel state information at the
transmitter and receiver, we can decompose the MIMO channel on each tone into
parallel non-interfering SISO channels using the singular value decomposition (SVD).
Let the instantaneous channel matrix on the ith tone have singular value
decomposition (SVD)

H=USV/’ 4.7)

where u, and v, are unitary matrices, and s, is the diagonal matrix of singular values

of H,. Note that the operator (.)‘is the conjugate transpose operator. Now, if we use a
transmit precoding filter of v, and a receiver shaping filter of u, , the equivalent

MIMO channel between the IFFT and FFT blocks decomposes into parallel

subchannels. Note that the number of such subchannels is exactly equal to the number

of nonzero singular values of H, . Denote this number by ¢ (i).

4.7.3 Adaptive Modulation for MIMO/OFDM

Given the decomposition outlined above, the adaptively modulated
MIMO/OFDM system requires that each subchannel have the corresponding precoder

and shaping matrix applied to it. Thus, we obtain M effective subchannels, where
N
M=>cli) (4.8)
i=l

In other words, the MIMO/OFDM adaptive modulation problem decomposes into a
bit loading over all the nonzero singular values of all the subchannels. Thus, the
problem will be larger than in the SISO case, but the decomposition has allowed us to

proceed without any changes to the optimization algorithm.
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4.8 Simulation Results

4.8.1 Assumptions and Simulation Details

Throughout the simulation, the entire system is only considered as a discrete-
time system. This simplifies the model somewhat, in that pulse-shaping and matched-
filtering are eliminated from consideration. However, these system attributes are
relatively simple to incorporate, and do not lead to significant insights beyond those
observed with the discrete-time system.

Both a SISO and MIMO simulator were built, and the MIMO simulator was updated
to have the SISO system occurs as a special case. The following parameters were held

constant throughout the simulation:

Table 4.1 Simulation Parameters

Number of subcarriers 64

OFDM symbol time | 64 symbol periods

Guard time 16 symbol periods
MQAM available 0,1,2,4,6,8

Power delay profile ll,l /el/e? J

Noise variance 1x107?

BER 10°

4.8.2 Results

Given the above parameters, simulations were conducted with 100 Monte

Carlo iterations for each case.

4.8.2.1 Bit Allocation

To demonstrate the bit allocation, an instance of the channel was generated
and the optimal bit allocation found. Figure 4.3 shows the channel frequency response,
the allocation of bits to each subchannel, and the corresponding power on each
subchannel. As expected, the subchannels experiencing very poor channel instances
had few or zero bits allocated to them. Also, it is interesting to note that the finite
number of MQAM constellations available means that the rate remains fixed over

some intervals where the gain does not vary too widely.
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Figure 4.3 Power and Bit Allocation for a Channel Instance

4.8.2.2 BER performance

For comparison purposes, the fixed-rate SISO simulator was implemented,
where the total number of bits per tone was fixed for all tones, and variable power
optimization was applied. The BER performance of the adaptive SISO, adaptive
MIMO, and fixed-rate SISO are in Figure 4.4. In all simulations the MIMO system
was held as a 2x2link. Note that increased averaging (more Monte Carlo iterations)
would surely smooth out the BER curves. Clearly, at any given BER the fixed-rate
SISO system will be outperformed by the adaptive SISO system, which in turn will be
outperformed by the adaptive MIMO system. For all three systems, the total number

of bits per OFDM symbol were always held constant, to ensure fair comparison.
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Figure 4.4 BER curves for various schemes

The performance of proposed adaptive resource-allocation scheme is
investigated with the assumption that mobile station MS is equipped with two
antennas and Base station BS is equipped with four antennas. For comparing
performance of proposed algorithm with the conventional MIMO/OFDM system with
SDMA and FDMA with adaptive and without adaptive modulation we assume 64 sub
channels and 2 users in the system, from Figure 4.5 it can be seen that when we
compare with conventional nonadaptive SDMA system with MF or MMSE receivers,
the proposed algorithm achieves the significant diversity gain and power gain. There
is about 12dB performance improvement over the MMSE system for BER of1072.
The proposed system also shows great improvement in power efficiency with

comparison of nonadaptive FDMA and adaptive FDMA system.
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Figure 4.5 Performance comparisons between the proposed algorithm and the
conventional SDMA and FDMA System

The performance of proposed algorithm when there are two, four six users is
shown in Figure 4.6. To ensure a fair comparison, the total number of bits transmitted
during an OFDM symbols is fixed at 256 bits per symbol. It can be seen that power
efficiency is improves when there are more users in the system. This is because more
users provide a large number of independent channels, which can be interpreted as
multiuser diversity. Figure 4.6 also indicates that proposed algorithms can operate at
very low SNM when there are sufficient users in the system.

The effect of the spatial correlation is investigated in Figure 4.7 where
transmit power is plotted as a function of correlation when there are two users and
target BER is 1072, For comparison, the performance of the static allocation is also
plotted. It can be seen that proposed algorithm achieves higher power efficiency when
the correlation is low since frequency is reused and each user is allocated small

number of sub channels. In this case more transmit power is needed to ensure QoS.
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Figure 4.7 Performance of Proposed Adaptive scheme versus correlation when BER =
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Now we have divided all the users into groups according to their mutual
correlation. Specifically, we set a threshold r. The users with a correlation higher than
r are considered as highly correlated and are classified into one group, the intergroup
interference can be assumed as cancelled perfectly, the users within one group are
very likely to cause intragroup interference since their correlation is high. We
investigate in Figure 4.8 that how the threshold value r effects the system performance.
2 users and four users system is simulated and it can be seen that when r is too large,
the required transmit power is increased, this is because with a large threshold value,
highly correlated users are likely to share the same sub channels, and detector fails to
cancel the interference between them. When the r is too low, most of users should
transmit on separate sub channel, so a large number of transmit power is needed to
achieve given data rate for every users. It also shows that the system performance is

similar within range of r=0.3 tor=10.7.
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Figure 4.8 Average received SNR to achieve a BER = 1072 for different values of r.
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In Figure 4.9 we investigate the multiuser diversity improvement with an increasing
number of users. Assﬁme that the ratio of the number of receive antennas to number
of users is fixed to be two. The total data rate is same as 256 bits per OFDM symbol
duration and the correlation threshold is 0.6. It can be seen from figure that the overall
power efficiency is improves as number of users increases. This is because an
increasing number of users provide a large number of independent channels, which
can be interpreted as multiuser diversity. Hence the algorithm has more freedom to

improve the overall power efficiency.
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Figure 4.9 Power consumption verses the number of users in the system r = 0.6.
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The system throughput which is define as the total number of successfully transmitted
packets in a time unit is investigated in Figure 4.10 with and without adaptive
recourse allocation. It can be seen that in the low SNR region, the throughput is
mainly determined by the transmission power. In the high SNR region where the
system is able to transmit more packets than those arrived, the system throughput is
decided by amount of input traffic. The figure also shows that the diversity order is
significantly improved by using the proposed adaptive algorithm and there is around 5
dB gain when throughput becomes stable.
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Figure 4.10 System throughput with and without adaptive resource allocation when
each frame contains 3 OFDM symbols for data transmission
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In Figure 4.11, it is investigated that system throughput is increases when the number
of OFDM symbols per frame increases. In addition having more OFDM symbols in a

frame leads to lower computational complexity and less overheads.
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Figure 4.11 System throughput with various number of OFDM symbols per frame
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Chapter S

Conclusions & Future work

5.1 Conclusion

As the data rate requirements increase for media-rich communications, channelaware
adaptive resource allocation is becoming more critical to system performance.
Enabled by multicarrier modulation and multi-antenna technologies, multiple parallel
channels can be created in either the frequency or spatial domain. Compared to single
channel systems, resource allocation in multiuser multichannel systems is more
challenging because of the additional degree of freedom for resources. In this
dissertation, I study the performance of adaptive resource allocation in multiuser
multichannel wireless communication systems. We also thoroughly analyzed adaptive
optimization algorithms for MIMO/OFDM. We find that the adaptive algorithm
employed gives a SISO/OFDM system which outperforms the SISO system having
fixed-rate variable-power adaptive modulation. Further, we found that MIMO in
general leads to better BER performance.

We conclude that MIMO/OFDM is a very promising technology, and practical

adaptive rate and power optimization algorithms serve well to improve performance.
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5.2 Future Work

In this section, I propose few future research topics for multicarrier and/or multi
antenna wireless systems, potentially for other researchers interested in this area. A
very useful extension of this work would be in multiuser MIMO/OFDM systems, and

characterizing good rate and power sharing algorithms to achieve good mutual BER

performance of all users, such as in [75] and [76].

Adaptive Resource Allocation in Multiuser MIMO-OFDM Systems

The next generation of cellular systems is likely to be OFDM
based with multiple antennas. With OFDM, the wideband is
divided into a number of parallel subchannels in the frequency
domain. With multiple antennas, multiple users can be supported
for simultaneous transmissions in each frequency subchannel.
Resource allocation in multiuser MIMO-OFDM systems is likely
to be even more challenging because the limited resource shall

be optimized in multiple dimensions.

Impact of Imperfect Channel State Information for Adaptive Resource

Allocation

Users' channel state information (CSI) is required at the
basestafion for adaptive resource allocation in both multiuser
OFDM and multiuser MIMO systems. In this dissertation, it is
assumed that channel station information is perfectly known at
the basestation through a separate feedback channel. The CSI is

usually estimated at the receivers and, hence, prone to estimation
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errors. Moreover, feedback delays may cause outdated CSI used
by the adaptive resource allocation algorithm. The impact of
imperfect CSI to the system performance with adaptive resource

allocation needs further study
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