

S
pos-/
HAA

ﬂa{ﬁe mefho dolo ?Ij

Department of Computer Science and Software Engineering
International Islamic University, Islamabad

Dated: 16-11-2017

Final Approval

It is certified that we have read the thesis, title “Adaptation and Integration of Architecture in
Feature-Driven Development” submitted by Mr. Syed Zeeshan Hasan Reg. No. 343-
FBAS/MSSE/F12. It is our judgment that the thesis is of sufficient standard to warrant is
acceptance by the International Islamic University, Islamabad, for the degree of Master of
Science.

Examination Committee

External Examiner

Dr. Muhammad Umer Khan

Assistant Professor

Dept. of Megatronics, Faculty of Engineering
Alir University, Islamabad

Internal Examiner

Dr. Qaisar Javaid

Assistant Professor,

DCS & SE, FBAS,

International Islamic University Islamabad

Supervisor

Dr. Shahbaz Ahmed Khan Ghayyur) c
Assistant Professor, ¢
DCS & SE, FBAS,

Intemmational Islamic University Islamabad

Intraduction

Table of Contents
CHAPTER 1 INTRODUCTION 9
INTRODUCTION 10
1.1 FeaTURE DRIVEN DEVELOPMENT 10
1.2 ARCHITECTURE — CENTRIC METHODS 12
1.2.1 FEATURE-ORIENTEQ REUSE METHOD: (FORM) 12
1.2.2 SCENARIO BASED SOFTWARE ARCHITECTURE DESIGN: (SBAD) 15
1.2.3 QUALITY ATTRIBUTE WORKSHOP {QAW): 17
1.3. ANALYTIC PRINCIPLES AND TOOLS FOR THE IMPROVEMENT OF ARCHITECTURE {(APTIA): 19
1.2.4 GENERAL MODEL FOR SOFTWARE ARCHITECTURE DESIGN (GMSADY): 20
1.2.5 ARCHITECTURE RATIONALE AND ELEMENTS LINKAGE [AREL}: 22
1.2.6 ARCHITECTURE-BASED COMPONENT COMPOSITION/DECISION-GRIENTED DESIGN {ABC/DD): 24
CHAPTER 2 LITERATURE REVIEW 28
LITERATURE REVIEW a0
2.1 SEARCH STRATEGY 30
2.2 KEYWORDS 30
2.3 SEARCH STRINGS 30
2.4 SEARCH ENGINE 30
2.5 INCLUSION AND EXCLUSION CRITERIA 30
2.6 SEARCH PROCESS 31
2.7 DATA COLLECTION 33
2.8 DATA ANALYSIS 33
2.9 PRIMARY STUDY TABLE 33
2.10 RELEVANT STUDY TABLE 34
2.11 QUALITY ASSESSMENT 35
2.12 QUALITY EVALUATION 35
2.13 SEARCH RESULTS 36
2.14 AGILE AND ARCHITECTURE 37
2.15 MAPPING OF AGILE DRAWBACKS AND ARCHITECTURE BENEFITS 38
CHAP™ ™ 3 PROBLEM STATEMENT _ 40
PROBLEM STATEMENT 41
3.1 RESEARCH QUESTIONS 41
3.2 DISCUSSHON WITH LITERATURE 42
S _ - i 3

Adaptation and ntegration of Architecture in Feature-Driven Development

introduction

CHAPTER 4 PRQPCSED SCLUTION 44
PROPOSED SOLUTION 45
4,1 REFERENCE ARCHITECTURE DEVELOPMENT 46
4,11 DEVELOP SUB-SYSTEM MODEL 46
4.1.2 |DENTIFY COMPONENT REUSABILITY 46
4,2 REFINEMENT OF FEATURE LIST 46
4,2.1 IDENTIFY ASFS 46
4,2.2 REQUIREMENT PRIORITIZATION 47
4.2.3 PRIORITIZED FEATURE LIST 47
4.3 ARCHITECTURE REFINEMENT 47
4.3.1 REFINE SUB-SYSTEM MODEL 47
4.3.2 RATIONALE CAPTURING 47
4.4 DOCUMENT TEMPLATES: 48
CHAPTER 5 RESEARCH METHODCLOGY 52
RESEARCH METHODOLOGY 53
1.3 CAseESTuDy 53
1.4 CaseSTuDY DESIGN 53
1.4.1 RATIONALE 53
1.4.2 OBIECTIVE OF THE STUDY 53
1.4.3 THEORETICAL FRAMEWORK 53
1.4.4 EXPLORATORY QUESTIONS 54
1.4.5 PROPOSITIONS AND HYPOTHESES 54
1.4.6 VARIABLES SELECTION 55
1.4.7 SELECTION OF SUBJECTS 56
1.4.8 METHODS OF DATA COLLECTION 56
1.4.9 INSTRUMENTATION 57
1.4.10 VallDITY EVALUATION 57
CHAPTER 6 ANALYSIS AND DISCUSSION 59
ANALYSIS AND DISCUSSION 60
6.1 PROCESS vS REUSABILITY 60
6.2 PROCESS vS TRACEABILITY 61
6.3 PROCESS v5 COST AND EFFORT 62
6.4 EFFECT OF PROPOSED PROCESS VS TRADITIONAL PROCESS ON AGILE VALUES 63
6.4.1 INDIVIDUALS AND INTERACTIONS 63
6.4.2 WORKING SOFTWARE 64
6.4.3 CUSTOMER COLLABORATION 65

- 4

Adaptation and Integration of Architecture in Feature-Driven Development

Introduction

6.4.4 RESPONDING TO CHANGE 66
6.5 EFFECT OF PROPOSED PROCESS V'S TRADITIONAL PROCESS ON AGILE PRINCIPLES: 67
6.5.1 PEOPLE ORIENTATION 67
6.5.2 EMBRACE CHANGE 68
6.5.3 FREQUENT DELIVERY 69
6.5.4 COLLABORATION OF BUSINESS PEQPLE AND DEVELOPERS 70
6.5.5 MOTIVATION OF INDIVIDUALS 71
6.5.6 COMMUNICATION 72
6.5.7 WORKING SOFTWARE AS MEASURE OF SUCCESS 73
6.5.8 PROMOTE SUSTAINABLE DEVELOPMENT 74
£.5.9 KEEP ATTENTION TO TECHNICAL EXCELLENCE 75
6.5.10 SiMPLICITY 76
6.5.11 SELF-ORGANIZING TEAMS 77
6.9.12 IMPROVING EFFECTIVENESS 78
CHAP 7 CONM 510N AND FUTU™ ™ "VORK 79
CONCLUSIONS 80
FUTURE WORK 80

i - 5

Adaptation and Integration of Architecture in Feature-Driven Development

Introduction

List of Figures

Figure 1-1: Feature Driven Development [4] .ottt e inrsssas s s 11
Figure 2-1: Selected STUBIES ..ucerenriirirc ittt st s s st g m b an s e 32
Figure 2-2: Year Wise Paper DISTDULION ...ovveiiniinie it et sisssesssasenss e 32
Figure 2-3: Hybrid FDD with architecture evaluation methods [16].....c.cocociiiiiinnnnnn SETRPRRON 38
Figure 4-1: Proposed SOIULION ...t et aa s sb et s e b 45
Figure 6-1: Process v ReUSabilityt e et e 60
Figure 6-2: Process vs Traceability. ...t it s e e s 61
Figure 6-3: Process vs Cost and effort......ccooeivnrinnne, et eetereterrsaeetereareeeEaebeebEeEe s b e e e s EeeEeebEa s e r et e erenanerre s 62
Figure 6-4: Individuals and INEractions veieirrirrmeiinesrmmerinsrmrininrssissaesanssnesmssmssnssssssatsnes sesasssmsemtsssass snas 63
Figure 6-5: WOTKiNg SOWATEcrvev it se e resraimst s s crere s s vaers st s se s s s s e smsas bbb rrere s s e 64
Figure 6-6: Customer Collaborationvcvenimsisimriini i e e Veererrer i nnisas 65
Figure 6-7: Responding t6 Changecciici et s s it semsss s s 66
Figure 6-8: People OmentaliOn. - ...cccoiiiirvinrrrsreriesisisiisaresssmsseesb ettt st srasrasasss sresssatostass stonmssncssissssistsasvasss 67
Figure 6-9: EMDBrace Chaneccoviveiiiiiim it et sr s e esossass st sannesessassassimsonsnss sissessnesviss 68
Figure 6-10: Frequent DeliVEry ..o rierisiin i st s e s ssnee s bt b ns sasnases sesasiasian s 69
FIBUEe 6-1 11 Collaboration.. o iiviiiieeiiiieree e cere it iec e e e s e ee e s rasbaste s bt st e se st stessassteate st et barsanse seasrenssantestens 70
Figure 6-12: Motivation of IndividUals.......cueeevrriioiiiniininir e et i et st bransann e s e 71
Figure 6-13: COMMUIICATION .cv.uvviiiciiiiniieeere i sresrasreseis s essesreratestess et et esseessesbentasssabtsstessesstemtsnraratantastenee 72
Figure 6-14: Working SOMWATEcocvr e it it b e sas b 73
Figure 6-15: Promote Sustainable Development ... s s enns 74
Figure 6-16: Keep attention to technical excellence...........ccovriervcirniminncnisis e e eeseres 75
Figure 6-17: SIMPIiCILY it ot b s o e s b bbb e 76
Figure 6-18; Self-organizing TeamMScouvviriirieeceeeesertiiiesse e sesesssestsass s s g smesssesesassaseasssans secacnsensses 77
Figure 6-19: Improving EffECHIVENESSiivvvieicrei et st s re st s mma s s sass e v i 78

Adaptation and Integraticn of Architecture in Feature-Driven Development

List of Tables

Table 2-1: Selected Studies.........ocoorurns

Table 2-2: Primary Studiescccocvcvecvaniinares e

Table 2-3: Relevant STUdIesc.ocvervvirescerimnrmscrerseseeser
Table 2-4: Quality Evaluation Criteria.......c.cocsierererne
Table 2-5: Search Resultsco.ceevuneee.

Table 2-6: Mapping of Architecture benefits and Agile Issuesocnvvnins

Adaptation and Integration of Architecture in Feature-Drivan Development

Introduction

e 31
DR T
.)

we 36
e 36
w39

Introduction

INTRODUCTION

Agile practices have gained popularity among various organizations due to its feature of reducing

cost and encouraging change during the development cycle.

In modern software development environment, changes to any software product are inevitable.
Agile methodology provides answer for this issue. Feature driven development lies under the
umbrella of Agile. FDD is a process for assisting teams in producing features incrementally that

are useful for the end user. It is extremely iterative and collaborative in nature[).

The FDD process has extensive guidelines for identifying issues in the system. It also supports in
providing builds to the end user on daily or weekly to add more features to the existing software.
FDD process requires configuration management for its proper execution because features are
being developed in parallel. [n this way, integration of the features is made easy while executing
the process. FDD process also provides support for tracking the activities like coding, design and
testing so that end user is aware of the progress about implemented and upcoming features. Feature
tracking is implemented by assigning the value ranging from 0 to 1 to the feature. 0 shows that this

feature has not yet been developed and | depicts the completed feature. [2].

1.1 FEATURE DRIVEN DEVELOPMENT

FDD process is useful for assisting teams in building features incrementally that are useful for the
end user. It is based on small set of functionalities named as features. FDD proposes to organize
those business related little features in small groups named as feature sets. FDD is best suited for
organizations where developer’s experience varies from one another. FDD also offers progress
tracking that makes it more suitable for big organizations where managers are interested in

checking the progress of team members. The details of FDD are as follows:

10
Adaptation and Integration of Architecture in Feature-Driven Development

Introduction

Develap and Develop feature . Design by Bulld by
I N Pia { > -
overall model list n by feature feature > teature

Figure 1-1: Feature Driven Development [4]
Process # 1: Develop an overall model:

The first step in Feature driven development is to perform development of overall model activity
which is done by capturing stakeholder’s requirements and needs. The basic purpose of this

activity is to perform better understanding of the problem in hand.
Process # 2: Build a feature list:

In this phase, a team is formed that has the responsibility to decompose the requirements. Domain
experts of phase 1 has already partitioned the domain. Team that is formed in this phase breaks the
requirements in to number of different areas which are named as feature sets. In each feature set,
there are number of activities known as feature of the system. Feature also represents any valuable
itemn for end user that has specific input and output. Results of this activity is the categorized feature

list[3].
Process # 3: Plan by feature:

Higher management and architects of the organizations plan the features that needs to be
implemented in which order depending on the feature dependencies and current available

resources.[3]
Process # 4: Design by feature:

Features that are filtered out for the current iteration is further divided into small groups by chief
programmer and is named as work package. This work package is assigned to developers who are

expected to develop it. Developers then write the stubs for the assigned work packages[3].

o o 11
Adaptation and Integration of Architecture in Feature-Driven Development

Introduction

Process # 5: Build by feature:

In this phase, developers build the necessary items to support the work package. Then this code is
unit tested and inspected by the chief programmer. When there are no concerns on developed code

and it supports the overall structure then it is allowed to build thoroughly [3].

1.2 ARCHITECTURE — CENTRIC METHODS

Literaturc defines the software architecture as “‘The architecture of a software-intensive system is
the structure or structures of the system, which comprises sofiware elements, the externally visible
properties of those elements, and the relationships among them.” [3],Software architecture defined
by IEEE 1471 standard is “The fundamental organization of a system embodied in its components,
their relationships 1o each other and to the environment, and the principles guiding its design and
evolution”. [6]

Software architecture acts as a outline or skeleton of a software system to be built [7]. Software
architecture benefits include, a tool for stakeholders communication (8], design decisions
documentations, risks identification of design decisions, basis for reuse [8], promotes scalability
[9], enables scheduling which saves time, cost of correction or rework is saved and most

importantly it helps avoiding software disasters [10].

Architecture centric approaches emphasize early anticipation, planning and documentation of
software architecture. It invotves explicit focus on quality attributes and design decisions, activities

are based on extensive stakeholder communication and collaboration.

1.2.1 FEATURE-ORIENTED REUSE METHOD: (FORM)

It is an extension of Feature-Oriented DDomain Analysis method which is named as Feature-
Oriented Reuse Method (FORM). [11] Feature Oriented Domain Analysis (FODA) uses [eaturc
model for requirement engineering. However, FORM addresses the feature model for soltware
design phase for development of domain architecture with reusable components. To design domain
architecture with reusable components commonalities and differences across related software
systems are discovered systcmatically. In FORM reusable architectures and components are

12
Adaptation and Integration of Architecture in Feature-Driven Development

Introduction

developed using process called domain engineering. In domain engineering the method analyzes
the commonalities from the point of view of services, operating environment, operation and
domain technologies. Commonalities that are identified are captured as featurcs of product are
arranged in the form of AND/OR graph the feature model is constructed in this way form this
graph analysis. The domain architecture thus constructed from three viewpoints. Subsystcm
viewpoint is used to capture service features, Process viewpoint is used to eapture operating
environment features, and module viewpoint is used to capture feature associated with domain
technology and implementation techniques. The FORM was applied on electronic two real life
domains te investigate development of common domain language for developers and [eature
model for identifying reusable components. The feature model is build that helps in identifying
commonalities and differences that is used to create domain artifacts for development of
application. The fcature model in this way can be used to produce feasible configurations ol
reusable architecturcs. These [eatures of product are considered as first class objects for
development., The FORM engineering processes involves domain and application cngineering

Processes,

1-FORM Domain Engineering:

Domain artifacts are developed for applications these artifacts increasc the effectiveness of the
reuse. In FORM domain engineering three main process are carried cut which includes Domain
Analysis, Reference Architecture Development and Reusable Component Development. The

inputs and outputs of these processes are explained in detail in following secticn.

Domain Analysis:

Domain analysis involves idcntification of commonalties and differences in systems. Scope and
intendcd use of the domain application is captured. The main proeesses involved in domain
analysis are planning, feature analysis and validation activates. Planning process is concerned with
the identification of family of products in a given domain. The commonalities and variabilities are
identified bascd on the availability of standards and experts for that domain. Product [catures are
identified in feature analysis process and validated with the help of validation activities. The

product features are identified with the help of domain experts, design documents, or user manuals.

13
Adaptation and Integration of Architecture in Feature-Criven Development

Introduction

These features are then classified from the perspective of capabilities, domain and implementation
techniques. To construct a feature model from these features a graphical feature diagram in
AND/OR hierarchy is constructed and also compasition rules are constructed that act as supporting
document for feature diagram and finally the issues, decisions, rational, and justifications for
selection of features are used. Feature dicticnary is also the part of feature model. The featurc
model is then validated form application features of instantiated model. A validated feature inode!

is the output artifact of domain analysis phase.

Reference Architecture Development:

The development of Reference architecture in FORM consists of set of models which includes
subsystem, process and module model. To develop these models engineering principles are used
as an input to these models. The engineering principles include design principles and general
guidelines for subsystem design, process design and module design. Categorizing similar functions
to form a subsystem is done for defining overall system structure. These functions arc then
allocated to different hardware the model created for them is called subsystem model. The
dynamic behavior of these subsystems is represented using process model. Finally, module model
is created using different engineering principles such as modularity, data abstraction and

information hiding,

Reusable Component Development:
Reusability of the components and their fitness for large architecture is determined from subsystem

process model. These reusable components are developed at module model level.

2-FORM Application Engineering:

In this process application software is developed using domain knowledge which includes
reference architecture and reusable components. The major process involved in application
engineering are user requirement analysis, application architeclure selection and application

software devclopment,

14
Adaptation and Integration of Architecture in Feature-Driven Development

Introduction

User Requirements Analysis:
User requirements analysis involves the feature selection of a product. The user requirements are

matehed with the feature model to trace the required featurc for development.

Application Architecture Selection:
Reference architecture model is constructed through feature selection process. After that,
subsequent step is to identify reusable modules with the help of specifications of modules. The

application architecture is created form these reusable components and reference architecture.

Application Seftware Development:
Rcusable components and application architecture is used to develop application software. The

output of this process is the Application Software for the particular domain.

1.2.2 SCENARIO BASED SOFTWARE ARCHITECTURE DESIGN: (SBAD)

Scenarios Based Software Architecture Design (SBAD) [12] method is an itcrative process [or
creating software architccture by applying design transformation. The methed uscs differcnt
techniques for evaluation of quality attributes of architecture such as scenarios, mathematical
modeling, simulation, and reasoning. The method uscs architectural transformations for iteratively
assessing the achicvement of quality altributes, Five different architectural transformations are
applicd in this method which includes architectural styles application, and application of
architectural patterns and design patterns. The other architectural transformations that are applicd
are translating a quality requirement into functionality and dispensing quality requircment across
different components or subsystems. The method is a rational design process that has the
capabilities of matching quality requirements. The input of this method is requirement
specifications document and output this method is architectural design. This architectural design
is produced through application of various transformations which are applied iteratively. However,
in first iteration only functional requirements are considered which rcsults into an application
architecture design. This architecturc is evaluated and analyzed with respect to required quality
attributes. This assessment may be quantitative or qualitative in nature. If the quality attribute

requirements are up to the expectation the process is terminated architecture design is released. In

15
Adaptation and Integration of Architecture in Feature-Driven Development

Introduction

case quality requirements are not up to the expectation the architecture design process enters the
second stage where archifecture transformations are applied. The application of architectural
transformation results into new version of architecture. This new version is then evaluated for
required quality atiribute requirements. If NFR not fulfill the loop is repeated otherwise the final

architecture design version is released.

1- Functionality Based Architecture Design:

In this phase system architecture is designed by identifying the core abstractions ol the system
structure in top-down approach. These abstractions are modeled as objects using a creative design
process which involves analysis of domain entities. These domain entities are then modeled as

architecture entities and interactions between abstractions are idcntified.

2- Assessment of NFRs:

System NI'Rs are explicitly agsessed using scenarios or experience based reasoning. The scenario
based assessment of architecture is performed in three phases. The second approach recommcended
for assessment for quality attribute is Simulation. The third recommended approach is
Mathematical modeling for quality atiribute evaluation. The forth approach recommended for

assessing quality attribute is experienced based reasoning or logical reasoning.

3- Apply Architecture Transformation:
Architecture transformations are applied after the assessment ol architecture properties. In this

method five transformations are used which are:

Architectural styles and patterns

Design patlerns

Translation of quality requirements to working companent
Distribute requirements to subsystems.

Application of architectural styles rcsults in software architecturc reorganization. This
reorganization result in certain qualily attribute improvement but may lead to deprivation of
another quality attribute, Second transformation that is applied is application of architectural
patterns. This transformation affects the large part of the architecture by imposing certain rules.

The third transformation is applied by utilizing diffcrent design patterns. However, this

16
Adaptation and Integration of Architecture in Feature-Driven Development

Introduction

transformation only affects small numbers of architectural components. In fifth transformation
software quality requirements are concreted into functionality of the system. Finally, the distribute
requirement transformation is applied by distributing quality reguirements in number of

components or subsystems.

4- FEvaluate Design:
Once the architecture transformations are applied on architecture it goes through assess quality
attribute phase of the architecture design method. If all requirements meet the final version of the

architecture is released for implementation.

1.2.3 QUALITY ATTRIBUTE WORKSHOP (QAW):

Quality Attribute Workshop [13] is an eight steps method for elicitation, identification and
refinement of quality attribute of software intensive system. It is system-centric and its main focus
is the system stakeholder for eliciting requirements regarding driving quality attributes of soltware
architecture. The QAW engages systems stakeholders for better communication before the
creation of the software architecture. The QAW has the ability to complement ATAM for
analyzing architecture for tradeoffs points and sensitivity points. The method is not designed to
provide absolutc measure of quality. However, it provides a systematic way of elicitation,
documentation, and prioritization of qualily attributes. The system engineer uses these prioritized
scenarios for analyzing architecture. It is their responsibility to prepare risk mitigation strategy and
identify quality attribute concerns. QAW is a scenario based method and describes each scenario
in term of stimulus, response and environment form. Stimufus is a factor thal causes system 1o
initiates, and reaction of this system is response. QAW is designed to address the challenges such
as: preeise meaning of quality attributes; elicit, identify, prioritize quality attributes; engaging
system stakeholders in disciplined and repeatable process; processing and utilizing this
information. The basic concern of QAW is system-level for identifying, prioritizing quality
attributes. The QAW stakeholders group may range from five to thirty, during which they receive

“participant handbook”. The workshop requires focused and active participation of stakeholders.

Step-1: QAW Presentation

17
Adaptation and Integration of Architecture in Feature-Driven Development

Introduction

In this step facilitators and stakeholders have brief introduction about their role and responsibilities
in the organization, Facilitalor then presents standard slide presentation of QAW for the purpose

of motivation, and to explain the steps involved in the method.

Step-2: Present Business and/or Mission
Facilitator in this step note the key quality attributes drivers during management presentation. In
this siep the management representative presents business concerns and/ or mission concerns of

the system along with functional requirements, constraints and quality attribute in about an hour.

Step-3: Present Architectural Plan

In this step a technical slakeholder presents initial high-level system description and system
context diagram. The technical representative presents architectural plan and strategies for meeting
business and or mission requirements. While technical requirements and constraints of the systcm

are presented facilitator captures information about architectural drivers,

Step-4: Identify Architectural Drivers

To identify architectural driver facilitator captures information regarding functional rcquirements,
business concerns, mission concerns, goals, objectives, and systcm quality attributes. This
information is transformed into list of key architectural drivers. The stakeholders then distilled the
list of architectural drivers by some addition or deletion. This final list of distilled and key

architectural drivers is used during subsequent brainstorming section.

Step-5: Scenario Brainstorming Process

Scenario brainstorming proccss is initiated by the facilitator, Facilitator reviews the gencrated
scenarios by the stakeholders. During two round-robin passes of QAW at least two scenarios are
contributed by the stakeholders. The facilitator ensures that collected scenarios are well formed

and represented in the form of stimulus, response and environment.

Step-6: Consolidate Scenario

B ' 18
Adaptation and lntegration of Architecture in Feature-Driven Development

Introduction

Similar scenarios are merged if facilitator finds that similar scenarios will not contribute anything.

Theretfore, consolidation prevents dilution of stakeholder’s votes.

Step-7: Prioritize Scenario
Consolidated scenarios are prioritized by the system stakeholders. This prioritization of scenarios
is based on voting activity which is done in round robin two passes. The number of votes

determines the priority of the scenarios.

Step-8: Scenario Reflinement

In scenario refinement process top five scenarios are refined and documented in the form of
stimulus, its response, stimulus’ origin and its surroundings, item which is stimulated and
measurement of its response for that particular scenario. Additional information for these scenarios

includes: business/mission goals,

1.3. ANALYTIC PRINCIPLES AND TOOLS FOR THE IMPROVEMENT
OF ARCHITECTURE (APTIA):

APTIA is a used [14] for improvement and design of software architecture which is based on
reusable pre-existing components of ten techniques. The method has been applied on a commercial
information system with real time requirements. This method is constructed on three principles of
software architecture. The first principle is associated with abstraction of software architecture.
The second principle is concerned with business and mission goals i.e. quality atiributc
requirements should be determined form business and mission goals. 'The third principle is
concerned with design and analysis of architecture: The quality attribute needs directs the analysis
and design of architecture. These principles and component techniques together are used in

APTIA. These techniques are explained one by cone in following section:

1- Unambiguous gathering of business goals.

2- Active participation of stakeholders.

3- Unambiguous gathering of architecture rationale

4- The realization of mission and business goals in 6-part quality attributes scenarios.

19
Adaptation and Integration of Architecture in Feature-Driven Deveiopment

Introduction

6- Use of architectural tactics,

7- Using templatcs to capture information.

8- Explicit elicitation of schedule, cost and benefit linked with architectural decisions.

9- The use of quality attributes models for architecture analysis and design decisions.

10- The use of design principles based on quality attribute models to identify alternatives for
improvements.

The APTIA method provides more detailed analysis and design alternatives for improvement of
architecture. The APTIA is created in such a way that it is split up into little steps with each step
contgining proven techniques. These techniques are considered as “component” which can be
combined to create a new method. APTIA is one of such method that is created from these
component techniques tailored for specific need. APTIA is has six phases. In its [irst phase ATAM
is performed. In its second phase based on risk themes focus of analysis is determined. The third
phase is concerned with use of quality attribute models for risk themes. In forth phase, model based
analysis is used to suggest design alternatives. In fifth phase, design altematives are being ranked
based on cost and benefits. In final phase design decisions are made. These decisions are made
based on costs/benefits associated with the architecture design using existing component
techniques in an agile way. The APTIA therefore, provides a deeper analysis of architecture design
and suggests design alternatives with new design principles. The consistency in design is achieved
using two templates one template for documenting outputs of APTIA for analysis and second

template for documenting outputs of APTIA for architectural altematives.

124 GENERAL MODEL FOR SOFTWARE ARCHITECTURE DESIGN
(GMSAD):
GMSAD [15] is based on the commonalities that can be found in five software architecture

analysis and design methods. These methods are:

* Atribute driven design
¢ Rational software RUP 4+1

20
Adaptation and Integration of Architecture in Feature-Driven Development

Introduction

* Business architecture process and organization
o Siemens’ 4 Views (84V)
e Nokia Research’s Architcctural Separation of Concerns

The method provides a framework for comparison of strengths and weaknesses of these methods.
The lramework developed can be used for developing new methods. GMSAD is one such method
that is developed using the framework which is based on the commonalities of the five industrial
methods. The method presents three main and common activities in architectural design model

which are:

Architectural Analysis: This is the first main activity whose inputs are Context and Concerns.
The output of this activity is the architecturally significant requirements (ASRs). The activity is
performed to articulate the ASRs. The architectural analysis activity is performed to filter thc
requirements that are not relevant to the architecture. Based on architectural concerns and system
context a set of architecturally significant requirement are identified. The architectural problems

are also analyzed in this activity.

Architectural Synthesis: Input to this method are ASRs and candidate architectural solutions is
the result of this method. It is the core activity of architecture design. Based on architecturally

significant requirements dilferent solutions are proposed in this activity.

Architectural Evaluation: Candidate architectural solutions and ASRs are inputs to architectural

evaluation. The Validated Architecture is the output of this activity.

In this phase the based on architecturally significant requirements, candidale architectural
solutions are evaluated to validate that design decisions are correct. The evaluation is carried out
repeatedly to ensurc the validation of architecture. The artifacts and sub-activities involved in this

model] are:

Architectural Concerns: Architectural concerns reflect the interests ol stakeholders. This can
contain system consideration, mandated design decisions or regulatory requircments. All

architectural concerns become the input to the architectural analysis activity.

21
Adaptation and Integration of Architecture in Feature-Driven Development

Intraduction

System Context: IEEE 1471 standard’s definition of context of system is used to determine
situations of political or developmental/operational influences. The contexts and concerns

together are the inputs to the architectural analysis activity.

Architecturally Significant Requirements: ASRs are extracted form system conlext or
architectural concerns. The ASRs are those requirements that influence the software system

architecture. Therefore, it is not necessary that all of the system requirements will be ASRs,

Candidate Architectural Solutions: Candidate architecture solutions are basically design
decisions for software structure. Qutput of the architecture synthesis activity is the candidate
architectural solutions which may be partial solution or altemative solution. These candidate

architecture solutions includc design rationalc and its traceability.

Validated Architecture: Candidate solutions that are consistent with each other and are in line
with ASRs together form a validated architecture. This validated architecture also includes design

rationale,

Design information which is in the form of architectural styles or reference architecture or use of
ADLs comes from the architect is an important input to design process. Analysis Knowledge in
the form ol analysis patterns and analysis models is another input to the design process. The other
inputs that go 1o design process are the Knowledge of Evaluation Process and Realization

Knowledge.

As the architecture design process progresses a backlog of issues or problems is built up. This
backlog drives the architecture design process or workflow which is often non-linear. This backlog
of need and issues is prioritized to resolve these problems. The architectural issues that are

resolved by the architect are removed from backlog.

1.2.5 ARCHITECTURE RATIONALE AND ELEMENTS LINKAGE (AREL}):

AREL [16] is developed to model architecture design rationale. This model is used to build linkage
of Architccture rationale (AR) with Architecture elements (AE). AREL uses entity-relation
diagram to model AR and AL cntities. ‘The modeling support is provided using UML. The AREIL.

22
Adaptation and Integration of Architecture in Feature-Driven Development

Introduction

provides an automated support for design reascning traceability using Cnterprise Architect. The
traceability techniques in the AREL model are used for impact analysis and root-cause analysis.
A traceable design rationale is used to trace relationships between the design objects. The
rationale-based architecture model was designed to address issues such as conflicts,
inconsistencies, and omissions in architecture design because of the absence of design rationale.
The reasons behind architecture design decisions are captured using design rationale. The design
rationale if capture and trace appropriately can help in understanding architecture design during
verification and maintenance of large systems. Therefore, AREL was introduced to support
architccture design rationale capture. The architecture design rationale is captured using quantities
design rationale and qualitative design rationale. Any arguments regarding design alternative
whether in favor or against is captured using qualitative design rationale. However, for capturing
the quantitative design rational cost, benefit and risks associated with the design alternative are

quantified.

The ARE]. model considers two forms of design reasoning one is motivational reasons and other
is design rationale. Requirements, goals, constraints or design objects arc considered as
motivational reasons as they motivate in design. Main entities of conceptual modcl are
Architecture Rationale; Motivational Reason; and Design Qutcome. Architecture Rationalc
modeled as stereotype <<AR>>; Motivational Reason is modeled as <<AE>>; and Design
Quicome is modeled as <<AE>>. <<AR>> encapsulatcs arguments, issues, questions or tradeofTfs.
Design Outcome <<AE>> js result of Decision madc for Motivational Reason. The architecturc
clement which is represented by AE, when participates in a decision in the form of input, it is

called motivational rcason, and AE when considered as cutcome is called design outcome.
Architecture Elements: (AE)

The architecture element AE is an artifact concerning business requirements, technical constraints
or assumptions about architecture design. The archilecture design elements are produced through
architecture design process. These architecture elements are classified in a set of rclated concerns.
These concerns are modeled using business viewpoints, data viewpoints, application viewpoints,
and technology viewpoints in IEEE Standard 1471 format. Functional requirements, non-

functional requircments, business and technology environment are considered in business

23
Adaptation and Integration of Architecture in Feature-Driven Development

Introduction

viewpoint. They act as Architecture Drivers of the architecture design. Data Models are contained
in Data Viewpoint, Application Models contained in Application Viewpoints and Technology
Models contained in Technology Viewpoint. Data viewpoint are used to represcnt data being used
by an application. Application viewpoint are used for processing logic and structure. Technology
viewpoint represents technology used to implement system. Requircments, Assumptions,

Constraints, and Design Objects are motivational reasons and act as architecture elements.

Architecture Rationale; (AR)

Three cxplanations are considered in Architecture Rationale which are namcd as Qualitative
Rationale (QLR), Quantitative Rationale {(JNR), and Alternative Architecture Rationale (AAR).
The architecture rationale AR captured in AREL model simplified process and it only capture the
explanations of the decisions. Architecture rationale captures the design rationale. The direct
dependencies between decisions in a chain and architecture elements arc used to understand design
reasoning. Qualitative Rationale (QLR) contained information regarding decision issues, design
assumptions, risks involved in design option, assessment and decisions, and finally supporting
information. This information provides qualitative rationale for decision. However, quantitative
rationales are not considercd in AREL. Finally, the altemative architecture rationale AAR contains
Alternative Behavior and Alternative Design. The AREL model is extended to adapt the evolution.
The extended model that can capture the evolution history is eAREL. The model provides three
types of traceabilities Forward Traceability, Backward Traceability and Evolution Traceability.
The impact analysis of the design is provided through forward trace, The root cause analysis is
performed using backward trace. Finally, the analysis ol the evolution of a decision is provided by
evolution trace. These traccabilities are automated with Entcrprise Architect which is UML design

tool.

1.2.6 ARCHITECTURE-BASED COMPONENT COMPOSITION/DECISION-
ORIENTED DESIGN (ABC/DD):

ABC/DD is an iterative process [17] for designing soltware architecture. In the first step architect

elicit architecture design issues this phase is called Issue Elicitation Phase. The next stage is called

Solution Exploiting Phasc in which architect find solution to each issue based on design’s rcusable

knowledge. The candidate architecture solution is produced automatically from this activity of

24
Adaptation and Integration of Architecture in Feature-Driven Development

Introduction

doing various issue solutions in Solution Synthesizing Phase. Architecture is evaluated in the
Architecture Deciding Phase. The final phase is Ration Capturing Phase in which architect
captures architecture rationale and issue rationale. The ABC/DD approach for software
archilccture design is based on software architecture principles of decision abstraction and issue
breakdown. These values are used in solving complexity associated with the software architecture
design. Decision abstraction principle is used to remove the inconsistences between requirements
and design, this principle consider architecture from the point of view of system level design
decisions. Decision-abstraction provides necessary high level abstraction on problem space as well
as on solution space for modeling of software architecture. The second principle “issue-
decomposition™ is used to consider the architecture design task as solving system wide problems.
The design goals are decomposed into number of related design issues. These issues are uscd for
making decisions. In ABC/DD an issue is rcferred to as Architecturally Design [ssue (ADI}. The
solutions used for solving issues related to the architecture. This design decision is used for
acceptance or rejection of any candidate architecture solution. Finally, a rational is used to rcason
about an issue decision or architecture decisions. This method provides a way for making
architecture decisions based on architecture level problems. These architectural significam
problems are elicited in the architecture design phase and solution is provided for these problems.
In this activity stakeholders and architects participates for considering solutions for each issue.
The decisions made in this activity are recorded in a tool that automates this process. The main
modules of the tools that are the part of subsystem Architecture Solution Synthesizer are Relation
Analyzer; Solution Combiner; SA Model Synthesized; Deduction Engine. The modules which arc
the part of Visual Design Environment are Issue Edition; Issue Solution Edition; Architecture
Decision and Rationale Edition; Knowledge Manager; and Component Diagram Editor. The data

flows from Knowledge Manager to the Repository.

The ABC/DD method is successfully applied to Spaceflight Center Commanding System. This
system is used to collect data of space automobiles with the help of telemetry and control network.
Space vehicles current status, its orbit calculation and control commands are monitored using this
network, The second application of this method is on Commanding Display Systems (CDSs)
which is the Air Traffic Control system. The ABC/DD method is applied on this system during its

re-architecting. Architcct elicited functional and non-functional requircments. Architect then

25
Adaptation and Integration of Architecture in Feature-Driven Development

Introduction

elicited architecturally significant issues and solution for these issues. The instance modcl was
then aerated for each issue solution. All these information was automated using tool and automated
synthesis of architecture solution was produced. The architect and stakeholder use this solution for
making architecture choices, tradeoff among quality aftributes, and architecture evaluation lor
global considerations. These case studies provided the evidence that decision-oriented method
which is stakeholder centric provides better architectural design approach then traditional artifact-
oriented approach. The proposed approach provided them a systematic and rational design process.
It also helped in reducing difficulties of sofiware architecture design. Thc automation of the
pracess provided them a solution synthesis of candidate architecture automatically and provides
automatically elimination of unfeasible combinations of issue solutions. Multiple candidate
architecture solutions are possible for a single issue with some advantages, disadvantages and
tradeotfs. Therefore, global impact on the whole architecture need to be consider by the
architecture. The proposed solution has to be evaluated and compare for the candidate architecture.
The ABC/DD decision oriented approach clarified the usage of decision and rationale while doing
design activity in a process as well as in architecture design models. Thereby, making process of

capturing architecture decisions and rational more efficient and effective,

Apart from these above mentioned Architeeture-centric methods, we have also review some other
methods but these does not fit with agile manifesto. We have excluded these methods from our

study, the details of these are given below:
L. Rational Design Process: (RDP):

Rational Design Process: (RDP) is not good as its focus is on to derive program systematically
from precise requirements that is against the agile values as agile encourages change and

changing requircments, so precise requirements approach is not applicable here,
1. RMARTS:

RMARTS is concerned with real time system engineering which is not in our scope of study

so this design method will be excluded

3. Scenario Based Software Architecture Reengineering (SBAR):

26
Adaptation and Integration of Architecture in Feature-Driven Development

Introduction

SBAR is used to refine existing software architecture, since we do not have any architecture

in place so this method does not apply in our case.
4, The Attribute-Based Architectural Styles: ABAS:

Since it provides reasoning framework for each of the quality attribute. The standard
characterization of quality attribute is the prerequisite for execution of ABAS that will make

the whole process too heavy (w.r.t documentation), so this method cannot be applied here
5. The Architecture Based Design Method: ABD:

ABD is designed for product line engineering, so its essence is different from the problem in
hand. Moreover, Decomposition of function is the main foundation of Architecture Based
Design Method. Considering these input parameters of method, our process already has this in
the form of developing feature list, so this is unnecessary. Also, output of this method is
concrete requirements but we as agile followers embrace change, so this method does not fit

well with agile
6. Quality-driven Architecture Design and Analysis: (QADA):

QADA is designed to build quality oricnted software architecture for product line field. So its
main emphasis and context is very defined and limited. we are pursuing for providing overall

architecture support that generically fulfills the purpose.
7. Methodical Architectural Design: MAD:

Methodical Architectural Design: MAD is an extension of ADD and both of these methods
[ocuses on attribute driven model, Since our focus is FDD and FDD model is based on [eatures,

so this method does not in compliance with the ecssence of FDD.
8. The Attribute-Driven Design: ADD:

ADD focuses on attribute driven model. Since our focus is FDD and FDD model is based on

features, so this method does not in compliance with the essence of FDD.

Since agile approaches have important influence on software development practices from industry

perspective. However, there are many issuc that arises due to lack of architecture in agile proccsses

27
Adaptation and Integration of Architecture in Feature-Driven Development

Intreduction

which is considered one of the most important design artifacts in traditional software development
practices. Many industry professionals who are involved in using agile approaches consider
software architecture from the perspective of the plan oriented development strategy. According
to their point of view, software architecture requires too much effort which have very little impact
to customer’s needs from the system. On contrary, practitioners of software architecture believe
that solid architectural principles cannot be practiced with agile methods. Thercfore, increased
appreciation related to the importance of incorporating architectural practices in agile methods is
under consideration recently. Hence, there is a growing interest and research in this perspective of

integrating these two different cultures [18].

Main purpose of study is to calculate architecture support provided in feature driven development
that resides under the umbrella of agile, and how we can achieve benefits of architecture using
agtle methodologies without compromising the agile values

We concentrate on articles describing the issues that arises by using agile methodology due to lack
of architecture support, and articles that depict the benefits of using architecture, which is part of

the traditional development.

28
Adaptation and Integration of Architecture in Feature-Driven Development

CHAPTER 2 LITERATURE REVIEW

Adaptation and Integration of Architecture in Feature-Driven Development

Literature Review

29

Literature Review

LITERATURE REVIEW

Our focus is on gathering the issues that arises due to lack of architecture in agile methodology
with reference to feature driven development (FDD). So we identified the agilc issue and map with
the benefits of architecture, This mapping will help us to evaluate the benefits that can be achieved

if architecture support is provided in agile development,

2.1 SEARCH STRATEGY

Computing databases become the basis for searching primary studies. Following search strings

and keywords are used in these databases.

2.2 KEYWORDS

{architecture}, {architecture centric methad}, {agile}, {Feature Driven development}, {FDD]},

{integration}, {incorporation}, {combination}, {effect}, {influence}, {Values}, {principles}

2.3 SEARCH STRINGS

o {architecture centric method} AND {agile} OR {Feature Driven development}

+ {integration} OR {incorporation} OR {combination} of {architecture} AND {agile} OR
{Feature Driven development}

e {effect} OR {influence} of {architecture} on {agile} OR {Feature driven development} OR
{Feature driven practice}

e {Values} OR {principles} of {agile} OR {Feature driven development} AND {architecture}

o [Agile issues} OR {software architecture benefits} OR {agile drawbacks} OR {agile

problems}

2.4 SEARCH ENGINE

Search strings are put in advanced search of following software engineering databases: [ELE,

ACM, Science dircct, Springer and Google Scholar
2.5 INCLUSION AND EXCLUSION CRITERIA

Research papers are selected based on their titles and abstracts. Following criteria wil} be used to
select the papers.

» Research papers that discusses the integration of agile and architecture at any level.

20
Adaptation and Integration of Architecture in Feature-Driven Development

e Research papers that highlights project failure using agile methodology.

e Research papers relevant to agile values will be included.

Literature Review

» Research papers that discusses the architecture impact on reusability, cost, effort and

requirement traceability.

e Textbooks and web pages will be excluded as these are weak links.

2.6 SEARCH PROCESS

Search results from different digital libraries against all search strings are mentioned in Table t.

These digital libraries were considered due to the reason of their being heavily used for empirical

studies and literature surveys. Digital libraries search was made to include all the papers that

identify agile issues, architecture benefits, or any other paper that discusses integration of both of

them. After this initial search, papers were sclected from the digital libraries bascd on the inclusion

and exclusion criteria mentioned in section 3.5. With further investigation of sclected papers, we

have filtered studies that are most appropriate to the problem in hand. These filtcred papers are

shown in [Table 2]. Relevant studies are shown below [Table 3]

Database Publications count
IEEE 80

ACM 105

Springer 65

Science Direct 110

Scopus 149

Google Scholar 290

Table 2-1: Selected Studies

Adaptation and Integration of Architecture in Feature-Driven Development

31

Literature Review

2.7 DATA COLLECTION

Data obtained from selected studies was:

s Source of the study and its {ull reference.

s Grouping study type (Agile architecture integration, Agile issues, Architecturc benefits,
Architecture agile conflict)

» Summary of each study that includes main research questions.

* Quality assessment according to quality assessment criteria mentioned in section 3.4,

2.8 DATA ANALYSIS

The data was collected to show:

» Whether the study presents high level architecture support with evidence in feature driven
development

» Whether the study presents explained low level design support with evidence in feature driven
development

* Siudies that describes the impact of architecture on reusability, requirement traceability, effort,
cost in featurc driven development/ agile methodology

o Whether the study highlights any risks due to lack of architecture

» Factors that are inherited by architecture but are against the agile values and vice versa

2.9 PRIMARY STUDY TABLE

No | Reference | Primary study

1 n FDRD: Feature Driven Reuse Development Process Model
2 [19] A Practical Example uv1 applying Attribute-Driven Design (ADD)
3 [11] FORM: A Feature-Oriented Reuse Method with Domain-Specific Reference

Architectures

4 [3] Major Seminar On Featurc Driven Development Agile Techniques for

Project Management Software Engineering

5 [20] Software Architecture as a Set of Architectural Design Decisions

33
Adaptation and Integration of Architecture in Feature-Driven Development

Literature Review

10 1]9] Get ready for agile methods, with care

Table 2-3: Relevani Studies

2.11 QUALITY ASSESSMENT

Primary studies that are selected were assessed by using below mentioned quality assessment (QA)

criteria.

Q1.Was the validity of current study properly accessed before sclecting it?

Q2. Was the study described the problem and its solution properly and thoroughly?
The questions were scored as follows:

» QAIl: Y, the authors have defined quality criteria i.e. empirical evidence in case of architecturc
and agile integration, impact of architecture on quality attributes with rcsults, evidence of risks
due to lack of high level architecture; P, the research discusses the issues in hand but not
explicitly provided any evidence against the mentioned problem; N: no defined quality

assessment described.

QAZ2: Y Required data is described clearly in study, P: only partial information about primary

study is presented, N: results are not stated properly.

2.12 QUALITY EVALUATION

Quality assessment criteria has been mentioned above, Based on that criteria, following table

shows the results of research questions mentioned in section § with respect to quality.

(RQ1) Architecture (RQ2) Architecture (RQ3)

[ntegration Impact on Agile

Level in agile Quality Attr. Architecture
Conflicts

) 35
Adaptation and Integration of Architecture in Feature-Driven Development

Literature Review

P, high

described

level

but

empirically validated

design

not

been discussed in agile

N, no quality attribute has

P, discussed various agile architecture
conflicts but not empirically validated

with architecture support

2.13 SEARCH RESULTS

Table 2-4: Quality Evaluation Criteria

Ref. Topic Area | (RQ1) (RQ2) (RQ3)
Architecture | Architectur | Agile
Integration e Architecture
Level in agile | Impacton | Conflicts
Quality
Attr.
[22][1] | Reusability | N/A N/A Incapability to reuse components due to
architecture discontinuities
[11118]} | Architecture | N/A No Incorrect prioritizauon of User Stories due
related attention to lack of architecture
challenges paid to
quality
attributes
[1]1[18] | Architecture | N/A N/A Lack of maotivation and time for
related consideration of design choices
challenges
[18] Requiremen | N/A N/A Design erosion
t
Traceability
[331[3 | Architecture | High level | N/A N/A
4] integration | design
available
Table 2-5: Search Results
36

Adaptation and Integration of Architecture in Feature-Driven Development

Literature Review

2.14 AGILE AND ARCHITECTURE
In agile methodologies customers or people are center of focus[35]. Contiguous delivery of
working software is priority over heavy documentation and reports. Testing goes along with the
delivery of every small working software units and frequent client feedback on these software units
helps keeping the sofiware project on right track and aligned with goals of the customer. XP,

Scrum, Feature Driven development are few examples of agile methodologies.
Agile methodologies are based on following four values that are described in agile manifesto.

1. “Individuals and interactions over processcs and tools”

2. “Working software over comprehensive documentation”
3. “Customer collaboration over contract negotiation™
3

“Responding to change over following a plan”

Above mentioned [our values is the basis for any agile methodology [36].

[23]Asserts that there is misunderstanding between agile methodologies and early focus on
architectural design. Agile approaches lack empirical evidence for their claims. According to [23]

agile literature is silent on how to go to about software architecture but also do not oppose it.

[18] Aims to address challenges and limitations of architecture practices in agile methods.
According to [18], agile architecture have limitations such as Jack of architecture analysis, lack of
focus on quality attributes, architectural knowledge vaporization, lack of requirement traceability

etc.

[18] Also states that there is little empirical evidence architectural practices [ollowed by agile
teams as a result little is known about the challenges an agile team faces during architectural
activity. Currently large part of agile architecture related literature includes data solely [rom cxpert
opinion. Lack of empirical studies also means that results of these studies cannot be generalized

[37].

Literature has also reported Architecture Evaluation Method for Feature driven

development[33]. Author suggested a hybrid of QAW, ATAM and ARID and FDD process

37
Adaptation and Integration of Architecture in Feature-Driven Development

Literature Review

availability of documentation and design

rationale[19] [11]

Design erosion, knowledge and
rationalc vaporization as a result
of

documentationsf3][21]

ad-hoc design decisions

Documentations of design decisions addresses

design erosion, knowledge and rationale

vaporization. [19][20]

Risk of failure (or delayed feature
distribution) in case of unknown

domain and untried solutions{ 18]

(11] and [19] provides for explicit exploration of
architectural choices and clear definition of user
stories as quality scenarios and these should

minimize such risks.

Highly

developers

experienced domain

required for

successful projects[18]

[11] and {19] provides step by step approach that
deal with architecture also called plan-driven
approaches that are known for exploration of new

domain by a person.

Lack of
traceability[18]

requirements

[19] to architecture

categorizes requirements according to their

step wise approach

significance and document them throughout the

software development

Table 2-6. Mapping of Architecture benefits and Agile Issues

39

Adaptation and Integration of Architecture in Feature-Driven Development

CHAPTER 3 PROBLEM STATEMENT

Adaptation and Integration of Architecture in Feature-Driven Development

Problem Statement

0

Problem Statement

PROBLEM STATEMENT

Current literaturc lacks any empirical study that validates or nullifies benefits achieved by
employing architecture centric methodology with Feature-driven development that addresses

limitations of agile and FDD architecture practices alike.

The difference betwecn traditional architectural approaches and agile approach is that agile
opposes the idea of extensive planning at the very beginning while archilectural approaches
promote the idea of early planning as somc aspects of the project would not be casier to adapt later

in the development cycles.

Agile architecture practices have limitations like incorrect prioritization of user stories, tack of
architecture analysis, lack of quality attributes foeus, highly experienced domain specific
developers are required that steer a software project towards success, knowledge vaporization, lack
of requirement traceability and some others [18]. FDD being an agile development methodology

inherits the same limitations.

Architecture centric methodologics [11][38] provides for architectural as well as detailed design,
explicit focus on quality, architectural analysis, clear documentation practices. So a hybrid or
middle ground approach could be advocated to overcome agile-architecture ehallenges without

defying practices and valucs of FDD.

So we need to integrate agile and architecture centric methodologies in such a way that we can

achieve benefits of architecturc without losing agility of eature driven development.

3.1 RESEARCH QUESTIONS
Research questions that are focused by this study are:
RQ1. At what level, architecture support has been provided in agile methodology in context
of Feature Driven development,
R@Q2. What would be the impact of architecturc on quality attributes in agile methodology
with context of Feature driven development.

RQ3. What would be the ¢ffect of Architecture on FDD values.

41
Adaptation and Integration of Architecture in Feature-Driven Development

Problem Statement

With respect to RQ1, we evaluated that whether the paper provides high level architecture support
or low level design support has been provided.

With respect to RQ2, reusability, effort, cost and requirement traceability are the quality attributes
that will be our focus for evaluation of architecture impact.

With respect to RQ3, we identify the factors that are not aligned with agile values but are inherited
by thc architecture, so that we can evaluate the effect of including architecture in Feature driven

development methodology.

3.2 DISCUSSION WITH LITERATURE
Discussion of Research questions with respect to literature is cxplained below:

RQO1. At what level, architecture support has been provided in agile methodology in context of
Feature Driven development.

We have seen that high levcl architecture support has been discussed in papers but there is no

empirical evidence about the outcomes of integrating architecture in agile. As mentioned in

[33], only integration of architecture in FDD has been discussed, so we need to further

investigate the effect of integration of architecture with FDD with clear cut steps and

validations

RO2. Whar would be the impact of architecture on quality atiribules in agile methodology with
context of Feature driven development.

In agile, clients provide Uscrs Stories to the project teams with thc detailed design decisions.

Most of the design decisions are evaluated on the features that is going to be delivered within

the budget. So we need to cater that problem while architecture integration in agile

RQ3. What would be the effect of Architecture on FDD values?
One of the main problem that is against the architectural approach is that agile teams forced to
timited number of solutions to achieve features within time and budget. Risk in this approach
was architects might have missed better design choice by not doing full design upfront. In
agile, developers have to justify everything, so they may be forced to skip alternative designs

and implement known solution.

- i
Adaptation and Integration of Architecture in Feature-Criven Development

Problem Statement

Another problem with following the agile values that we are unable to reuse components due

to lack of architecture support.

Due to lack of time for proper documentation, design decisions remain with the individuals
who took that. And requirement traceability would not be possible during maintenance phase

of the project.

43
Adaptation and Integration of Architectura in Feature-Driven Developmant

CHAPTER 4 PROPOSED SOLUTION

Adaptation and Integration of Architecture in Feature-Driven Development

Proposed Solution

44

Proposed Solution

Following new documents have been produced in proposed model

1. Sub-system model

2. Reusable component list

3. Architecturally significant Features (ASFs)
4

. Rationale Document

Each sub process in the newly added artifacts is explained below

4.1 REFERENCE ARCHITECTURE DEVELOPMENT
4.1.1 DEVELOP SUB-SYSTEM MODEL

To develop sub-system model, engineering principles are used as an input to these models. The
engineering principles include design principles and general guidelines for subsystem design.
System structure is defined by grouping closely related functions into subsystems which are then

allocated to different hardware the model created for them is called subsystem model.

4.1.2 IDENTIFY COMPONENT REUSABILITY
Reusability of the components and their fitness for large architecture is determined from subsystem

model.

42 REFINEMENT OF FEATURE LIST
4.2.1 IDENTIFY ASFS

A feature will be considered as architecturally significant that has broad effect, objectives trade-

off points, supposition breaking, or difficult to achieve.

Architecturally significant features (ASFs) are extracted form system context or architectural
concerns. The ASFs are those features that influence the software system architecture. Therefore,

it is not necessary that all of the system requirements will be ASFs.
Indicators for architectural significance include:
« Feature is linked with high business value or technical risk.

« Feature is particularly important for any stakeholder.

46
Adaptation and Integration of Architecture in Feature-Driven Developrment

Propased Solution

+ Feature is unique in its nature. Neither of the existing component addresses it in the system
before.
» Feature has similar context in previous project and caused a major issue in terms of over

budgeting or client dissatisfaction.

On close of this activity, we have a list of ASFs in hand to perform further processing based on

this list

4.2.2 REQUIREMENT PRIOCRITIZATION
Prioritization is done by ranking. We gave each one a different numerical value based on its
importance. For example; the number 1 can mean that the requirement is the most important and
the number n can be assigned to the least important requirement, n being the total number of
requirements based on the combined importance relevant to architecture and stakeholders. We
choose this method as it can be difficult to align different stakeholders’ perspectives on what the
priority of a requirement should be; taking an average can however, address the problem in this

prioritization method

4.2.3 PRIORITIZED FEATURE LIST
Prioritization done in the previous activity will listed down to form a Prioritized Feature list along

the rationale of prioritization and get it approved from the concerned stakeholders.

4.3 ARCHITECTURE REFINEMENT
4,3.1 REFINE SUB-SYSTEM MODEL

Sub system model is refined in each iteration as the knowledge of stakeholders increases and issues

they faced with the delivered iteration.

4.3.2 RATIONALE CAPTURING
In refinement of sub-system model, every decision and change is documented in the specified

template, so that back tracking is possible whenever needed.

47
Adaptation and Integration of Architecture in Feature-DOriven Development

Research Methodology

CHAPTER 5 RESEARCH METHODOLOGY

52
Adaptation and Integration of Architecture in Feature-Driven Development

Research Methodology

RESEARCH METHODOLOGY
5.1 CASE STUDY

Basic purpose of our case study is to assess architecture effect in Feature driven development
which is a type of agile methodology. The focus of evaluation is on reusability, cost, effort and

project failure risks that are due to lack of architecture,

We will use an action research strategy of case study and study will be of exploratory type because
our focus is on FDD methodology enhancement and its effect and finding out what happens after

integration of architecture in FDD

5.2 CASE STUDY DESIGN
5.2.1 RATIONALE

We undertook the study to improve/evaluate the tailored feature driven devclopment methodology
by integrating software architecture support that was originally part of traditional software
development so that organizations using FDD can also achieve benefits that are provided by
Software architecture. Since software architecture is a very heavy activity which is against the
agile core principles so a light weight version of software architecture has been proposed and
evaluation will be made on this tailored FDD process as against with traditional FDD process.
There is limited published research that validates and measures the impact of integrating
architecture in FDD without compromising agile values, and this case study sought to contribute

to the body of research in this area.

5.2.2 OBJECTIVE OF THE STUDY
Studying the impact of integrating architecture in feature driven development methodology with
respect to reusability, cost, effort, requirement traceability and project failure risks due to unknown

domain and untried solutions is the main objective of our study.

5.2.3 THEORETICAL FRAMEWORK
Theoretical frame of reference is the literature that discusses agile and software architecture which

is mentioned in section 3.3.

53
Adaptation and Integration of Architecture in Feature-Driven Development

Research Methodology

5.2.4 EXPLORATORY QUESTIONS
+« How much components are reusable after having support of tailored software architecture
in FDD
e What would be the impact of integrating architecture on cost and cffort
s At what level, requirements are traceable with the involvement of architecture’s
documentation
» What would be the probability of mitigating project failure risks due to unknown domain

and untried solutions

5.2.5 PROPOSITIONS AND HYPOTHESES

Three hypotheses have been formulated in this case study. Informally, they are:

1. FDD without having high level architecture support tend to have lack of reusability benefits
that are achieved by having a software architecture in place. So it is expected that the newly defined
FDD process with light weight architecture support is more helpful in achieving reusability as

compared to traditional FDD process.

2. Since the introduction of new artifacts in the process requires more effort and cost than
before to complete the project of either size (small or medium). So it is expected that cost and

eftort of the project increases proportionally with the size of the project.

3. We have an architecture rationale in place during the change process so it is easy to back
track the design decision up to requirement and stakeholder needs, that is helpful in taking other
decisions and conflicts of interest in requirements. So traceability will be increased by having the

architecture support as compared to traditional FDD process.

On the basis of above mentioned informal statements, we can formally state them below along

with measures that are required for assessing the hypotheses.

l. Null hypothesis, HO: There is no difference in reusability of Proposed FDD process(I’F)

and traditional process(TP).
HO: Reusabijlity(PP) = Reusability (TP)
Alternative hypothesis, H1: Reusability(PI’) > Reusability {(TP)

54
Adaptation and Integration of Architecture in Feature-Driven Development

Research Methodology

Measures needed: projects done with both processes and reusability level achieved. Reusability

level is measured by taking mean of following factors:

. Amount of reuse

. Adaptability

. Maintainability (adjustability to higher versions)
. Quality (in terms of no of bugs)

. Documentation (in terms of completeness)

2. Null hypothesis, H}: There is no difference in cost and effort(CF) of Proposed FDD
process(PP) and traditional process(TP).

HO: CF(PP) = CF (TF)
Altemative hypothesis, H1: CF (PP) > CF (TP)

Measures needed: cost is measured in terms of time used to develop software. Time is measured

in man hours

3 Null hypothesis, HO: There is no difference in traceability of Proposed FDD process(PP)
and traditional process(TP).

HO: traceability (PP) = traceability (TP)
Altemative hypothesis, H1: traceability (PP) > traceability (TP)

Measures needed:. number of features that are traceable back to actual requirement and

stakeholders.

5.2.6 VARIABLES SELECTION
The independent variables are Proposed process model and Traditional process model of FDD.

The dependent variables are reusability, cost, effort and traceability.

55
Adaptation and Integration of Architecturs in Feature-Driven Development

Research Methodology

5.2.7 SELECTION OF SUBJECTS
Subjects are selected on the basis of project size and real life projects. For this, two smal! sized
and two medium sized projects are taken to check the validity of the results. Project size is

measured using function point analysis and are categorized based on the following metrics:

If the project’s adjusted use case points count is less than 100, then it will be considered as small
project. If the project’s adjusted use case points count is greater than 150, then it will be considered

as medium sized project.

5.2.8 METHODS OF DATA COLLECTION

Two sample projects PS (Small sized project) and PM (Medium sized project) were taken from
the industry from a ABC company (hypothetical name) that is well known for out-sourced projects.
At first both projects were completed by Team A by using traditional FDD proccss. Then the same

projects were given to Team B and make them use the tailored FDD process,

The problem has been stated, and the independent and dependent variables have been chosen.
Furthermore, the measurement scales have been decided for the variables. Thus, it is now possible

to design the experiment. The first step is to address the general design principles:
Randomization:

Developers are selected randomly from among the available developers having expericnce of more

than three years in professional environment.
Blocking;

There is no systematic blocking approach used in our study. All four projects are assessed rather
than locking at each individual project. Therefore, impact of differences between individual

projects can be blocked in this way.
Balancing:

It is better that we get a balanced data set for analysis, but our study uses industry projects for
which domain knowledge of that particular field is important, and the current available developers

in that company from which projects are taken and have required domain knowledge came from

56
Adaptation and Integration of Architecture in Feature-Driven Development

Research Methodology

different Universities and different professional experience with respect to companies in which
they worked, and hence it is not feasible to nullify the effect of background of developers that

makes us hard for us to get a balanced data set.
Standard Design Types:
The available data was checked against standard design types mentioned in [39].

Design type is of “one factor with two treatments”. Factor was the Process model and treatments
were proposed and traditional process models. Dependent variable was checked on a ratio scale,

50, t-test was used,

5.2.9 INSTRUMENTATION
Guidelines are needed to guide the participants in the experiment. Guidelines for our current study

when performing treatment with the proposed methodology includes:

» Preparation of sub system mode! as per defined template
» Preparation of reusable component list as per defined template
» Preparation of ASFs as per deflined template

e Documenting design rationale list as per defined template
The results of the experiment are measures using following checklists

» Reusability checklist as per defined template that is developed using [40]
» Traceability checklist as per defined template

» Cost and effort calculation on the basis of time consumed using both approaches

5.2.10 VALIDITY EVALUATION
There are four levels of validity threats to consider[39]. Internal, external, conclusion and construct

validity.

57
Adaptation and Integration of Architecture in Feature-Driven Development

Research Methodology

Internal validity:

Internal validity is probable as the factors of domain, project size may affect the outcome of the
treatment, so in order to remove that threat, we decided to choose two samples projects of same

size with slightly different nature so that size and domain threats does not affect the outcome

External validity:

As far as external threats are concerned, since a wide range regarding project nature exists, so we

can generalize the results with respect to size.
Conclusion validity;

Quality of data is the main threat for conclusion validity because of developer’s knowledge issue
related to Process Model. Data inconsistencies are not related to any specific project or developer,
so problem seems to be the same independent of any developer’s background. Therefore,

conclusion validity is not very critical in our study.

Construct validity:

Construct validity seems not be a problem, as resulis are evaluated from pre-defined forms,
problem statement is unseen and there is no room for biasness of the developer regarding the
variables that we are evaluating during the course of developing the software and filling the

template.

58
Adaptation and Integration of Architecture in Feature-Criven Development

Analysis and Discussion

CHAPTER 6 ANALYSIS AND DISCUSSION

29
Adaptation and Integration of Architecture in Feature-DOriven Development

Conclusion and Future Work

CHAPTER 7 CONCLUSION AND FUTURE WORK

79
Adaptation and Integration of Architecture in Feature-Driven Development

Conclusion and Future Work

CONCLUSIONS

Adapted architecture has been proposed in this research that is light weight and can be integrated
with Feature driven development without harming the agility of this process. We evaluated the
proposed method and it proved to be useful in increasing reusability, traceability and also cost
effective for middle sized projects. Moreover, this proposed process also puts positive effect on

agile values and principles.

This research also focuses on process adaptation that how architecture can be adapted in FDD

process, Moreover, architecture evaluation is made with respect to its alignment with FDD process

FUTURE WORK
In this research, architecture design methodologies were evaluated and adapted with FDD.
Architecture evaluation techniques were not considered so more research needed to integrate and

evaluate these methodologies too.

Moreover, adapted architecture is evaluated on small and medium sized projects with specific
domain i.e. telecom project so the results cannot be generalized. Further research needed to in

variable environments and variable sized projects so that results can be generalized.

Results also need to be verified on projects with different geo locations to verify their validity as

currently these results confined in Pakistani context.

D o - 80
Adaptation and Integration of Architecture in Feature-Driven Development

Conclusion and Future Work

References

(1]

[3]

(4]
(5]

{71

(8]

(9]

Li0]

[11)

[12]

S. Thakur and H. Singh, “FDRD: Feature driven reuse development process model,” Proc.
2014 IEEE Int. Conf. Adv. Commun. Control Comput. Technol. JCACCCT 2014, no. 978,
pp. 1593-1598, 2015.

P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, *“Agile software development

methods review and analysis,” VTT Publ., no. 478, pp. 3—107, 2002.

D. Ph, “Major Seminar On Feature Driven Development Agile Technigues for Project
Management Software Engineering By Sadhna Goyal Guide : Jennifer Schiller Chair of
Applied Software Engineering,” p. 4, 2007,

S. R. Palmer and J. M. Felsing, 4 Practical Guide to Feature-Driven Development. 2002.
A. . Fallis, *No Title No Title,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 16891699, 2013.

I. A. W. Group, “IEEE Std 1471-2000, Recommended practice for architectural

description of software-intensive systems,” p. i--23, 2000.

J. Bosch, “Software Architecture : The Next Step,” Lect. Notes Comput. Sci., vol, 3047,
pp. 194-199, 2004.

“Len Bass, Paul Clements, Rick Kazman-Software Architecture in Practice-Addison-

Wesley Professional (2003).” .

B. Boehm, “Gel ready for agile methods, with care,” Computer (Long. Beach. Calif)., vol.
35, no. 1, pp. 64-69, 2002.

D. Garlan and M, Shaw, “An Introduction to Software Architecture,” Xnow!l. Creat.

Diffus. Util., vol. 1, no. January, pp. 140, 1994,

J. Melorose, R. Perroy, and S, Careas, “FORM: A Feature-Oriented Reuse Method with
Domain-Specific Reference Architectures,” Starew. Agric. L. Use Baseline 2013, vol. 1,
pp. 1-28, 2015.

P. O. Bengtsson and J. Bosch, “Scenario-Based Architecture Reengineering,” Proc. Fifth

81

Adaptation and Integration of Architecture in Feature-Driven Development

[13]

[14]

(18]

[19]

[20]

[21]

[22]

{23]

Conclusion and Future Work

Int'l Conf. Softw. Reuse (ICSR 5), pp. 1-10, 1998,

M. R. Barbacci, R. Ellison, A. J. Lattanze, 1. a. Stafford, C. B. Weinstock, and W. G.
Wood, “Quality Attribute Workshops, Third Edition,” Quality, no. August, p. 38, 2003.

R. Kazman, L. Bass, and M. Klein, “The essential components of software architecture

design and analysis,” J. Syst. Softw., vol. 79, no. 8, pp. 1207-1216, 2006,

C. Hofmeister, P. Kruchten, R. L. Nord, H. Obbink, A. Ran, and P. America, “A general
model of software architecture design derived from five industrial approaches,” J. Syst.

Softw., vol. 80, no. 1, pp. 106-126, 2007.

A.Tang, Y. Jin, and J. Han, “A rationale-based architecture model for design traceability

and reasoning,” J. Syst. Sofiw., vol. 80, no. 6, pp. 918-934, 2007,

X. Cui, Y. Sun, S. Xiao, and H. Mei, “Architecture design for the large-scale software-
intensive systems: A decision-oriented approach and the experience,” Proc. IEEE Int.

Conf. Eng. Complex Comput. Syst. ICECCS, pp. 30-39, 2009,

M. a Babar, “An exploratory study of architectural practices and challenges in using agile
software development approaches,” 2009 Jt. Work. IEEEIFIP Conf. Softw. Archit. Eur.
Conf. Softw. Archit., pp. 81-90, 2009.

W. G. Wood, “A Practical Example of Applying Attribute-Driven Design (ADD),
Version 2 . 0,” Technology, vol. Version 2, no. February, p. 59, 2007.

A, Jansen and J. Bosch, “Software Architecture as a Set of Architectural Design

Decisions,” 5th Work. IEEE/IFIP Conf. Softw. Archit., pp. 109-120, 2005,

L. Kompella, “Agile methods, organizational culture and agility: some insights,” Proc, 7th
Int. Work. Coop. Hum, Asp. Softw. Eng. - CHASE 2014, pp. 4047, 2014,

A, Martini, L. Pareto, and J. Bosch, “Communication factors for speed and reuse in large-
scale agile software development,” Proc. I7th Int. Softw. Prod. Line Conf. - SPLC '13, p.
42,2013.

P. Kruchten, “Software architecture and agile software development: a clash of two

Adaptation and Integration of Architecture in Feature-Driven Development

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[313

[32]

(33]

Conclusion and Future Work

cultures?,” 2010 ACM/IEEE 32nd Int. Conf. Softw. Eng., vol. 2, pp. 497-498, 2010.

and P. P. A. Jennifer Pérez, Jessica Diaz, Juan Garbajosa, “Flexible Working

Architectures: Agile Architecting Using PPCs,” October, vol. 2, pp. 1-20, 2003,

C. Yang, P. Liang, and P. Avgeriou, “A systematic mapping study on the combinaticn of
software architecture and agile development,” J. Syst. Softw., vol. 111, pp. 157-184, 2016.

W. Radinger and K. M. Goeschka, “Agile software development for component based
software engineering,” Companion 18th Annu. ACM SIGPLAN Conf. Object-oriented
Program. Syst. Lang. App!., pp. 300-301, 2003.

M. Usman, E. Mendes, and J, Borstler, “Effort estimation in Agile software development:
A survey on the state of the practice,” ACM Int. Conf. Proceeding Ser., vol. 27-29—-Apri,
2015.

A. Tang, T. Gerrits, P. Nacken, and H. van Vliet, “On the Responsibilitics of Software
Architects and Software Engineers in an Agile Environment: Who Should Do What?,”
SSE '11 Proc. 4th Int. Work. Soc. Softw. Eng., pp. 11-18, 2011,

J. E. Hannay and H. C. Benestad, “Perceived Productivity Threats in Large Agile
Development Projects,” Proc. 2010 ACM-IEEE Int. Symp. Empir. Softw. Eng. Meas., no.
1325, pp. 1-10, 2010.

M.-S. Lu and L.-K. Tseng, “The integrated OPN and UML approach for developing an
agile manufacturing control system,” 2009 int. Conf Autom. Robot. Control Syst. ARCS
2009, pp. 24~31, 2009.

S. B. A. Guetat and S. B, D. Dakhli, “Building Software Solutions in an Urbanized
Information System: The 5+1 Software Architecture Model,” Procediu Technol., vol. 5,

no. 33, pp. 481-490, 2012.

K. D. Palmer, “The essential nature of product traceability and its relation to Agile

approaches,” Procedia Comput. Sci., vol. 28, no. Cser, pp. 44-53, 2014.

F. Kanwal, K. Junaid, and M, A. Fahiem, “A hybrid software architecture evaluation

83

Adaptation and Integration of Architecture in Feature-Driven Development

[34]

{35]

(36]

(371

[38]

[39]

[40]

Conclusion and Future Work

method for fdd-an agile process model,” Comput. Intell. Sofiw. Eng. (CiSE), 2010 Int,
Conf., pp. 1-5, 2010.

R. L. Nord and J. E. Tomayko, “Software architecture-centric methods and agile
development,” IEEE Sofiw., vol. 23, no. 2, pp. 47-53, 2006.

F. Breu, S. Guggenbichler, and J. Wollmann, The Agile Samurai. 2008.

M. Fowler and J. Highsmith, “The agile manifesto,” Softw. Dev., vol. 9, no. August, pp.
28-35, 2001.

H. P. Breivold, D. Sundmark, P. Wellin, and S. Larsson, “What does research say about
agile and architecture?,” Proc. - 5th Int. Conf. Softw. Eng. Adv. ICSEA 2010, pp. 32-37,
2010.

R. Wojcik and P. Clements, “Attribute-Driven Design (ADD), Version 2 , 0,” Design,
no. November, p. 55, 2006.

A. en Claes Wohlin, Per Runeson, Martin Host, Magnus C.Ohlsson, Bjorn Regnell,

Experimentation is Software Engineering. .

D. Hristov, O. Hummel, M. Huq, and W. Janjic, “Structuring Software Reusability
Metrics for Component-Based Software Development,” no. ¢, pp. 421429, 2012.

84

Adaptation and Integralion of Architacturs in Feature-Driven Development

