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Notations

The following symbols are used to represent the text available in the research work.

The set of integers:
The set of natural numbers:
The set of complex numbers:

The set of positive complex numbers:

The set of real numbers:

The set of positive real numbers:
Any real numbers:

Any complex numbers:

Any integral numbers:
Pochhammer’s symbol:
Pochhammer k-symbol:
Gamma function:

Gamma k-function :
Extended gamma function:
Extended gamma k-function:
Beta function:

Beta k-function :

Extended beta function:
Extended beta k-function:
Hypergeometric function:

Generalized hypergeometric function:

Wright-hypergeometric function:
Hypergeometric k-function:

Confluent hypergeometric function:

T Qla=zmn

a,becdpguvwrs

a, B,v,8, p,w, i, v

i,j,m,n

(@)n

(o‘)n.k
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B(l‘, )
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By x(z.y)
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Confluent hypergeometric k-function:
Generalized hypergeometric function:

Generalized hypergeometric k-function:
Mittag-Leffler function:

Mittag-LefHler £-function:

Bessel functions:

Bessel k-function:

Expected value of a random variable X:

Variance of a random variable X:
Fractional integral operator:
k-Fractional integral operator:
Fractional Differential operator:
k-Fractional Differential operator:

(k, s)-Fractional integral operator:

(k, s)-Fractional Differential operator:
Erdélyi-Kober fractional operators;
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Preface

The theory of special functions constitutes an important part of mathematics. In
the last three centuries, the necessity of solving the problems arising in the fields of
hydrodynamics, control theory, classical mechanics stimulated the development of the
theory of special functions of one and several variables. Special functions have also
extensive applications in pure mathematics as well as in applied mathematics such
as electrical current, fluid dynamics, heat conduction, solutions of wave equations,

moments of inertia and quantum meclianics, ete.

Mathematical models of physical phenomena contain, as a rule, ordinary dif-
ferential equations, partial differential equations or systems of such equations. How-
ever, only very few of tlie equations which arise from physically interesting problems
can be solved in the class of elementary functions. Thus there exists a necessity of
extending the class of studied functions. New functions were usually defined as so-
lutions to differential equations or systems of such equations and were called special
functions. This was the way in which the gamma and hypergeometric functions came
into existence. The general name of these functions are called special functions. The
gamma function has an impressive number of different representations, including se-

ries, limit and integral forms, each offering their own particular advantage in different



applications. Apart from its central role in pure mathematics, the gamma function
lias an important role in the study of the analytic solutions of many problems in
area of applied sciences, astrophysics, diffraction and plasma wave theory, fluid flow,
nuclear and molecular physics, probability and engineering. The gamma function was
first established by the Swiss mathematician Leonhard Euler {1707-1783) in his goal to
generalize the factorial function to non-integer numbers (real and complex numbers).
Latter, this function was studied by other mathematicians likc Adrien Marie Legender
(1752-1833), Carl Friedrich Gauss (1777-1855), Christoph Gudermann (1798-1852),
Joseph Liouville (1809-1882}), Karl Weierstrass (1815-1897), Charles Hermite (1822-
1901).

The basic element in the theory of special functions is the Pochhammer’s
symbol because this element plays a vital role in the structures or relations of most
of the special functions. It was introduced by L. A. Pochhammer and is defined for

a#0andneNas
(@), =a{la+1){a+2)- - {a+n-1}.

It is also known as the rising factorial function because the term (&), is expressed in
the product of n factors, starting with a and with each factor large by unity than the

preceding factor,

Special functions is very wide and there is an unlimited number of special
functions which were investigated and studied hy many researchers. It is quite im-
possible to discuss the history of all the members of this field. That is why, we discuss

the brief introduction of few special functions of our interest. Qur major concern here



is with the gamma, beta and hypergeometric functions and their application in theory

of fractional calculus.

This thesis consist of six chapters. In first chapter, we deal with the study of
the hypergeometric k-functions i.e., Fi.(P, Q; R; z) having the matrix arguments P,
and R and these matrix arguments satisfy the matrix differential equation in terms of
the new parameter k > 0 which is the improved version of generalization of classical
hypergeometric matrix functions. Further, we obtain an integral representation of
F.(P,Q; R, z) for the cases where Q, R and R — (Q are positive stable matrices with
the property that QR = RQ by using the definitions of gamma and beta matrix

k-functions recently defined by the researchers.

In second chapter, we introduce extended gamma, heta k-functions and extended
beta k-distribution. These newly defined functions are the generalized forms of the
extended gamma, beta functions and extended beta distribution. Also, we further

generalize the said functions and prove some of their properties.

In chapter 3, the authors introduce 7-Gauss hypergeometric k-functions. Some
of the differential properties, integral representation, contiguous relations and dif-
ferential formulas of the generalized hypergeometric k-functions 5 R, x(a,b; ¢; T; 2} arc

established.

In chapter 4, we prove the various properties of generalized hypergeometric k-

functions which includes the generalized Riemann-Liouville k-fractional integrals,



differential operators and the Lebesgue measurable real valued or complex valued
functions. Also, we obtain the (k. s) fractional integral and differential formulas of

generalized hypergeometric k-functions ie., 7-Gauss hypergeometric k-function.

In chapter five, we deal with the Mittag-Leffler k-function and investigate the
(k, s)-fractional integrals and differentials of such function. Further, we considered a

number of certain consequences of the main results.

In chapter six, we study the two integral transforms which involving the Gauss
hypergeometric function as its kernels. We prove some compositions formulas for such
a generalized fractional integrals with Bessel &-functions. The results are established
in terms of generalized Wright type hypergeometric function and generalized hyper-
geometric series. Also, Also, we present soine corresponding assertions for Riemann-

Liouville and Erdélyi-Kober fractional integral transforms,

I am grateful to my Supervisors Prof. Dr. Muhammad Arshad, Dean, Faculty
of Basic and Applied Sciences, International Islamic University Islamabad, for provid-
ing research atmosphere and facilities in the Department. I would like to express my
sincere and hearticst gratitude to my Co-supervisor Dr. Shahid Mubecn, Associate
Professor, University of Sargodha, for his guidance, affection, deep consideration and
active co-operation that made possible this work to meet its end successfully well in
time.

Gauhar Rahman 2017



Chapter 1

On the Hypergeometric Matrix
k-Functions

In this chapter [96], we deal with gamma and beta matrix k-functions. We introduce
the Gauss hypergeometric matrix k-functions Fi(P,Q; f1;z) and its various prop-
erties. The necessary convergence conditions of hypergeometric matrix k-functions
Fi.(P,Q; R; z) on the boundary of unit disc are discussed. Also, we define some results

of an integral representations of hypergeometric matrix k-functions.

1.1 Introduction

Most of the special functions appeared in mathematical physics, engineering, analytic
functions and mathematical statistical are special cases of hypergeoinetric functions
( [59,60], [87], [100], [106], [110]). A function of matrix argument is a real or complex
valued function of the elements of a matrix. These matrix function arises in the
literature of Statistical distributions [13], Lie groups theory [41], and in connection
with Laguerre matrix polynomials and system of second order differential equations
for matrix arguments, orthogonal matrix polynomial and second order differential

equations, Hermite and Legendre second order differential equations and the resultant



polynomial families ( [43], [44], [45], [46]}. Also, many researchers ( [35], [37], [38], [42,
47]) have defined matrix computation, Bessel function of matrix arguments, ordinary
differential equation of matrix arguments, properties of gamma and beta matrices and
hypergeometric matrix arguments. The operational calculus of emerging theory of
orthogonal matrix polynomials ( [21], [22], [23]) propose the study of hypcrgcometric
matrix k-functions

In this chapter, we consider the well known gamma and beta matrix k-functions. For

this continuation of our purpose, we recall the following matrix analog formula

Te(P)Te(Q)

F(P+0) (111)

;Bk('P: Q) =

see [77). Recently the researchers have worked on special k-functions { [72], [74], [76]).
Mubeen et al. {75] defined the solution of hypergeometric k-differential equations,
We also prove that if matrices @ and B commutes and are positive stables where
positive stable means if every eigenvalue of the matrix has positive real part, then

Fi(P,Q; R; z} is a solution of the second order differential equation
kz(1 — k)" — kzPuw’ + (R~ (Q + kDkz)/' — PQw = 0.

For any arbitrary matrix P in C™*" and for invertible matrix & such that whose

eigenvalues are positive integers, then we can prove that the matrix polynomial
kz(l — kz}" — kzPw + (R+ (n — k)kIz)w' —nPw =0

has n degree of solutions where n € Z*. Throughout in this chapter, for a matrix
P € C™" and 6(P) denotes the spectrum of a matrix p. which contains the sct of all

the cigenvalues of P. The 2-norm of matrix P is denoted and defined by

Pz
| P = sup | 7

, 112
=0 || = |2 (1.1.2)



where for a z in C™", the Euclidean norm of z is defined by || z [2= (27'z)3. Let us

define the real numbers a{P) and §{P) by
a(P) = max{R(z) : z € §(P)}, J(P) =min{R(z) : z € §(P)}. (1.1.3)

Let the holomorphic functions of the complex plane f{z) and g(z} be defined in an
open set {2 for the complex variahle z and the matrix P is in C™*" with §(P) C Q,

then from the properties of matrix functional calculus ( [20]), we have

f(P)g(P) = g(P)(P). (1.1.4)

The reciprocal of gamma &-function denoted by I';! = [‘ik is an entire function of the

complex variable. Like wise the image of the inverse gamma matrix k-function acting
on the matrix P, denoted by I';*(P) is & well defined matrix for k > 0. Now, if the
matrix P + nkl is invertible for every integer n > 0 and k > 0,

then the gamma matrix k-function I'yx is invertible and its inverse coincides with

I'7Y(P), and recently Mubeen et al. [77] defined
P(P+EIYP+2kI) - (P+(n—DEDTH (P +nkl) =T (P),n> 1,k > {1.1.5)

In the same paper, they introduced by using the condition that P + nkl is invertihle

matrix, then equation (1.1.5) can be written as

P(P+ k)P +2kD)---(P+ (n—1DkI) = Tx(P+nkDTH{P)n > 1,k > 0,
{1.1.6)
and like the Pochhammer k-symbol for any matrix P in €™ by application of the

matrix functional calculus, they defined

(Plap = P(P+kD(P+2kD)---(P+(n—1kI), n>0, (Po=1 (117



T

The Schur deposition of a matrix P is given by ( [35])

= (nan)

€|l < P Z t>0. (1.1.8)

1.2 On Gamma, Beta Matrix k-Functions

In this section, we used the property of commutativity of matrices and extend the
matrix framework of gamma and beta k-functions. We recall the following results
recenitly defined by Mubeen et al. [77].

Definition 1.2.1. For a positive stable matrix P in C™*", we define the gamma
matrix k-function as

Tw(P) = lim nlk™(P);}(nk)%~/, (1.2.1)
where n > 1 is an integer and k > 0.

Definition 1.2.2. For a positive stable matrices P and @ in C™*", we define beta
matrix k-function as

1
Be(P,Q) = ?IE / tR=1(1— ¢)¥ . (1.2.2)
1]

Hence, we defined that if the positive stable matrices P and '@ are commuting ie.,
PQ = QP , then 8:.(P,Q) = 5e(@, P), and for symmetry of beta matrix &-functions
comutativity is one of the necessary condition see [77].

Lemma 1.2.1. Let P,Q € C™*" be two positive matrices such that PQ = QF and
the matriz P + Q@ + mkl is invertible for all integer m > 0 and k > 0.
Ifn >0, then the following relations hold true:

(%)
Be(P,Q+nkl} = (P+Q),i(@)mibB(P.Q),
(i)
Pe(P+nkl,Q+nkl) = (P+Q)me(@uiBi(P, Q).



Proof. (i) If we put n = 0, then the proof is obvious. Let us assume that 0 <m <n
and using the condition that PQ = QF, we have

Be(P,Q+mkl) = %/trp—!(l _ t)-ﬂ+(m—1)fdt
0
= Ly f £-1 24 (m-1)1
= E}I_I’%/tk (1—1)% dt

/ DI () _ ) Hm-D = (F+m-DD) gy

&

1
k

-

-4
u(t)v(t)dt, {1.2.3)

lim
=0

Eol B

m'\

where
uft) = (1 — ) F+E-DI—(@+m-DDgE - g (g) = 2+
Integrating equation (1.2.3) by parts, we get
BulP,Q+mkl) = Hm(k(P+Q+ (m — kI (1 - ) F+im-Dlpa)izi
+ lim k(P+Q+(m—1}kl)™
1-
x / % — DR — tyE+m-DE
6
+ I(Q + (m — DI)(1 — ) FHm-DF g
= k(P+Q+ (m—1kI)™YQ + (m — 1)kI)

1
x % / (1 — t)FHm-1y L gy

[+
= (P+Q+ (m~1kDQ + (m — 1)kI)
X Be(P,Q + {m — 1)kI).

Hence by using an induction, we obtain

ﬁk(P’ Q + nkf) = (P + Q);,%:(Q)n.kﬁk (Pa Q)



'_(1

10

(ii). Taking P = P+ nkl where n > 1. Then by (i) it becomes
Bul(P,Q +nkl) = (P + Q) L (@nibi(P, Q). (124)

As PQ = QP, therefore we have, PQ = QP and Bi(P, Q) = B(Q, P). By (1.24) it
becomes

B(P,Q +nkl) = (P + Q) 1 (@nsBr(Q, P). (1.2,5)
Also by (i), we have
Bi(@, P+ nkI) = (Q + P), 1 (P)asB(Q, P) = (@ + P) u(P)nsBe(P. Q). (1.2.6)
By equations (1.2.4) and (1.2.5), we get
Be(P +nkI,Q +nkl) = B(P,Q +nkl) = (P+Q+nkl) A (Qus(P)(1.2.7)
(Q+ P)1B(P, Q). (1.2.8)

Now by definition, we have (P + Q + nkl); (@ + Plox = (P + Q)ans. Hence by
substituting in equation (1.2.7), we get the required result as

ﬁk (P + ﬂkf, Q + nk‘r) = (P + Q)Z_r:,k(P)ﬂ.k(Q)n.kﬁk (P: Q)
U

Lemma 1.2.2. Let P and Q be commuting matrices in C*" such that P, Q and
P + @ are positive stable matrices, then

Be(P,Q) = T(P)T((Q)T (P + Q).

Proof. Since the matrices P and @ are stable and also PQ = QP, we can write it as

a0

Tu(P)e(Q) = (/uP'Ie_!;du)(/uq'Ie_%du_). (1.2.9)
o

0
By changing of variables z = ﬁ and y = u* + v*, then equation (1.2.9) becomes

oo 1
e(PLW@) = / () P-Dem b2 zk=Tyk (y(1 - ))HO-DeHu0-2)
0 0

1
X Eyf"(l — z)kdady



€

11

. 1
= f (W De k) f i1~ ). (1210
0 1]

Now by replacing i = t* in the first integral of (1.2.10), we get

TPITWQ) = ([ 719 %an(s [F-7(1-2)#"dz)
[retag
= Tw(P+Q)Bc(PQ).

O

Definition 1.2.3. Let us consider P and @ be two commuting matrices in C™*" such
that for all integer n > 0 and satisfy the condition

P4nkl, Q+nkl, P+Q+nkl ¥ k>0, (1.2.11)

are invertible matrices.

Let a(P, Q) = min{a(P), a(Q), (P + Q)} and let ng = no(P, Q) = [|a(P, Q)] + 1,
where [Ja{P, Q)|| denotes the entire part function. Then beta k-function S(P, Q) is
defined by

Be(P, Q) = (P)ry il Q)id b (P + @)zng i Be(P + mok ], Q + k1), (1.2.12)

Theorem 1.2.3. Let P and Q be two commuting mairices in C™*7 satisfying the
condition (1.2.11} for all integer n > 0. then

B(P,Q) = Te(P)TR(Q)TH{P + Q).
Proof. Suppose that ng = ng(P, Q) be defined in definition 1.2.3, then we can write
Be(P,Q) = (P (@) il P + Qg 1 Be(P + nokl, Q + nokl),
where P + nkl and Q + nkl are positive stable matrices. By (1.2.4) we can write

Te(P) = TW(P+nokD)(P+ (no— V&)t (P+kI)1P!
= Te(P +nokl}(P), s,

Te(@) = T(Q +nokl)(Q)rp s

and

Te(P+Q) = Tu(P+Q+ 2nekI)(P+ Q)5 &



12

Since PQ = QFP, we can write
Li(PYH(@TTH (P + Q)
= [i(P + nokD)Tw(Q + nok )T, (P + Q + 200k I }(P) ) (@)mos (P + @ang i
{1.2.13)

Since we know that the matrices P+ ngkl, @+ ngkl and P+ @ + 2ngk] are positive
stable, so by Lemma 1.2.2, we get

Te(P + nokD)TW(Q + nokD)DHP + @ + 2nokl) = Bi(P + nokl,Q + nokl),
(12.14)

and by Lemma 1.2.1 (i), we have
Be(P + nokl, @ +1okl) = (Paoi(@uok(P + Q)5k Be(P,Q). (1.2.15)
Hence by (1.2.13)-(1.2.15), it follows that
Be(P,Q) = Te(P)T{(Q)T (P + Q).

1.3 On the Hypergeometric Matrix k-Functions

In this section, we define the hypergeometric matrix k-function which is denoted by
Fi(P,Q; R; z) where k > 0 and defined as

F(PQ;R;2) = i (P)n'k(Qgr'k(R);’iz“,

n=0

(1.3.1)

where the matrices P, () and R are in C"™" such that R 4 nkl is invertible matrix
for all n > 0. Now we prove that the hypergeometric matrix k-function converges for

|z =1 and &k > 0.

Theorem 1.3.1. Let P, () and R be positive stable matrices in T such that
B(R) > a(P) + a(Q). (1.3.2)
Then the series (1.3.1) is absolutely converyent for |z| = 1.
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Proof. Assume that there exist a positive number 4, then by hypothesis (1.3.2) we
have

B(R) — a(P) — a(Q) = 2. (1.3.3)

Now let us write

(k) [ (Pl @RIz

_ (k) (n - D)k (nk)E (nk) = (P)ns
n! (n — 1)1kn—1
(n = DI (nk) ? (nk) "2 (@)

x e (R k) E (k)

— (nk)HI (nk)~ T(P),, a1, (NK)” (Q)n
= (G e R R e (k)

k" (n — DIR); 1 (k) E (nk) %

x

or

(W) £ (Pas (@ (R)GA]

nk P}y, k Q)n,
T N

x (nk)E ((n = DE""YR)7L (nk) T )(nk) "%, (1.34)

= E*(nk)*(

By (1.1.8), we are taking into account that o(—R) = —B(R) thus we can write

r-1 1 i

f: - (ol Pl+a(Q)— : P||rz Innk)?
IGRE] Nk ek E) s (ke gy QP
3=0

r—1

x {Z ("Q";;llnﬂ)'?}{z lR"?‘2 Inn) }

}

By (1.3.3), we obtain

Ik 1) (k) < iy ¥ (S RIPLIQLIRDY 0

(1.3.5)
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Thus with the aid of (1.3.3)-(1.3.5) and for |z| =1, we get

i (uty e DB

n—oo n!

1 "‘E
o

[Fal

. in _5
Lim E™(nk)”%||

(n — 1)tkn-1
(nk)=#(Q)n,
m{ill (nk) |
X (n— DR R)AMEE] |(nk)E|
< ATE@ ITE@N (TR
fim 3ty (S [max{|| 2|, QIl, || RII}r*)

x|l

X
n—oo i1
= kj!
x (lnnk)’}?
= 0}
because
lim n"f(Innk) =0, V j>0, k>0
Thus
P, nkl(R ;l z"

therefore the series (1.3.1) is absolutely convergent for |z| = 1. Now we show that un-
der certain condition the hypergeometric matrix k-function Fi.(P, @; R; z) is a solution
of matrix differential equation of bilateral type. 0

Theorem 1.3.2. Let R is matriz in CT*" satisfying R+ nkl is invertible matriz and
QR = RQ. Then Fi(P,@Q; R;z) is the solution of

kz(1 — k2)W" ~kz2PW + W/ (R—kz(Q+kI))—PQW =0, 0<|z]<1 (1.3.6)
satisfying Fi(P,Q; R;0) = 1.
Proof. By the given hypothesis QR = R, so we can write

(P)n,k(Q)n.k(R);,}; — (P)n,k(R);,}c(Q)n.k.

Fox= ¥ i
n! n!




O
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Let us denote
w(z) = Fk(Ps Q; R; 2) = Z Fn,kz“; lzl < 1. (137)
n=0

Since W (z) is a power series convergent for |z] < 1, so it is termwise differentiable in
the given domain and

w'(z) = ZnF,,,kz"_l, W"(z) = Zn(n —L}F 2™, 2| < L.
n=1 n=2

Hence

k2(1 — k2)W" — kz2PW' + W/(R — k2(Q + kI)) — PQW

o [~ ] s +]
= Z nk(n — 1)F, 32" — Z nk?(n — 1)F, 42" — PZ nkF, ;2"

n=2

+ f: nFn‘kRz"_l — i nkFﬂ'k(Q + k2" — f: PF, Q2"
n=1

a=1 n=0

replacing » = n + 1 in the first and fourth summation, we obtain

kz(1 — k2)W" — k2 PW’' + W/(R — kz(Q + kI)) — PQW

= Z nk(n +1)Fh1x2” — anz(n — 1) Fpe2” — P Z nkFy, 2"
n=1

n=1 n=2

+ i nF,  R2" — f: nkF, (Q + kI)2" — i PF, Q2"
n=1

n=1 n=0

= S {nk(n+1)Fox — nk*(n — 1) Fog — nkPFos + (n+ 1) FriaR
n=}

— nkF(Q+kl) — PF;Q}2" + 2kFopz — kPF g2+ Fi R+ 2F Rz
— R Q+kDNkz—- PRy ,Q ~ PFQz=0.

By equating the coefficients of each power 2" and noting that Fyx = I, we get
2 MxR-PIQ=0,
2! 2kF2';¢ - kPF]_‘k + 2F2’kR - Fl,k(Q + kf)kz - PFl‘;,Q
= 2Fa (kI + R)— PR (kI+Q)— Fip(@+kDk=0
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(P + nkI)Foi(Q + nkI)(R + nkl)™!
n+1 '

= Fx=

Hence W(z) = Fi(P, Q; R; z) is the solution of {1.3.6) satisfying W(0) = I.
a

Corollary 1.3.3. Let R be ¢ matriz in C*7 satisfying that R + nkl is invertible
metric forn 2> 0 and let P be an arbitrary matriz in C™*7 and n be a positive inleger.
Then equation

kz(1 — k2)W" — kzPW' + W/(R + z(n — k)kI) + nPW =0 (1.3.8)
has matriz polynomial solutions of degree n.

Proof. Let Q = —nl, then by theorem 1.3.2 the function W(z} = F.(P,—nl; R;2)
satisfies (1.3.6) for @ = —ni. Hence

W(z) = Fi(P,Q;R;2) = Z (P)‘sk(_";f)i,k(R)t.k J

=0

is & matrix polynomial of degree n of (1.3.8). O

1.4 An Integral Representation of Hypergeomet-
ric matrix k-function

In this section, we define the integral representation of hypergeometric matrix k-

function. If y and b are complex numbers with |y| < 1, then the Taylor series

[

expansion of (1 — ky)~* about ¥ = 0 is given by [15]

= =]

aﬂ.
(1— ky)~% = > T)ll-"y“, [yl <1, a€C. (1.4.1)

n=0
Let fnx(a) be a function defined by

ala+k)(a+2k)---(a+ (n—1)k)

- y*, acC k>0,(142)

faxla) = (a)uk y" =

for a fixed complex numbher y with |y| < 1. Clearly the function f, ; is an holomarphic

function of variable a defined in the complex plane for k > 0. For a given closed disc
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Dy={a€C:|a| € a}, we have

n n
lfn,k(a)l S (lal)ﬂ;'klyl S (a)f;:slyl , n 2 0‘ Ial S 0‘.’, k > 0.
n! H

Since

oo |7
n!
n=0

so by the Weierstrass theorem for the convergence of holomorphic functions {15, 100]
it follows that

ooy =3 Dby o 1yt

n=>0
is holomorphic in R for & > 0. Thus by holomorphic functional calculus [20], for any

matrix P € C™", the image of g acting on P gives

(-ky =g =3 Dby picy, (143)

n=0

where
(P)pg = P(P+kI)---(P+ (n—1kI), k>0

Assume that the matrices @ and R in C™" with the conditions QR = RQ and @, R
and R — @ are positive stable matrices. Thus by (1.1.5), (1.1.7) and with the aid of

the condition that @, R and R — ) are positive stable matrices, we obtain

(Qnp(R)py = TLHQITL(Q + nkI)T(R)TF (R + nkl),

= TY QTR — QTR — Q)Tw(Q + nk)T; (R + nkD)Tu(R). (1.4.4)
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By positive stability condition of the matrices and by Lemma 1.2.2 this implies that

o=

1
fti‘*{“‘l”(l — 1) Tat
0

= B(Q + nkl, R — Q) = I'(R — Q)Tw(Q + nkI)T; (R + nkl), (1.4.5)

by (1.4.4) and (1.4.5), we get
@nslR)3 = TFHQITH(R- QU [ eI — "2 TanyR). (146)
0

Hence, for |z| < 1 we can write

R(PQR: = 3L )"'k(Q,ZT'k(R)'_"}‘ -

n=0

= i (P)n,hPEI(Q)P;I(R — Q)Fk(R)Zﬂ

n!

n={

1
B f (F+n-11(] _ )58 gy
0

x

nl

- Sy j'(P)n.aI‘El(Q)FEl(R—Q)t%’f("'m(l-t)ii'q"I‘k(R)Z“dt]. 4

n=0
Now let us consider

(P)ap TR QTR — Q) +-DI(1 — ) 52 ~IT(R)2"

Seal(t) = n!

0<t<1,

T

and for 0 <t < 1 and i > 0, we have

"Sn,k(t) "

< P ITE @I (R = QUITLCRY I "¢ — 6% 12
- n!

k> 0.(148)
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By using (1.1.8), the above equation becomes

A1 gyl 1[Z(IIQ k|lr? Int)y

g-1 _ s <
I - T < e o

-1 ¢
N [Z (|IR-—Q - kI[|r2]nt)]

and noting that for 0 <t < 1, we have Inf < ¢ <1 and In{(1 —t) < 1—1¢ < 1, hence

from above relation, we obtain
NET) Q- | < A - MR, 0<t<l, k>0 (149)

where

[Z("Q kfllﬂ)’][i:(llﬁf Q- Hllﬂlﬂt)] (1.4.10)

Now, consider the sum of the convergent series be

Z("P”)"*' i .zl <1 k>0, (1.4.11)

n=0

then by (1.4.7)-(1.4.10}, we obtain

Zus,,.,(t)u <¢(t)_—[LASt‘@ -1 0<t<1L,k>0, (14.12)

n=0

where
=) TR -l TR

Since a(Q) > 0, (R — Q) > 0 and k > 0, then the function
é(t) = %{LAtﬂ'?l"(l — )*5%-1] i5 integrable and

f $(t)dt = LASBy(a(Q), (R — Q).
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Thus by dominated convergence theorem ( [26]), the series and the integral can be

computed in (1.4.7) and using QR = RQ), we can write

Fk(P,Q,R,z)

n

- % ,/ {Z(M)ﬂ"(l — ) T )T Q)T (R — QITk(R). (1.4.13)

n={

Now by (1.4.3), we obtain

Z:(P)n;;:l(tz) =(1-ktz)"%, Jz|<1, O<t<]l, (1.4.14)

n=0

and (1.4.13) becomes

Fi(P,Q; R; z)

=T {Q)T (R~ Q)I‘k(R)% /t%"(l — 511 - ktz)~Fdt. (1.4.15)

0

By summarizing the above result, we established the following theorem:

Theorem 1.4.1. Let P, Q and R be the matrices in C™* with the conditions QR =
RQ and Q, R, R — Q are positive stable matrices. Then for |z| < 1, we have

1
B(PQis2) = I QTP (R - QTR [ 8710 - 0"~/ (1 - ko) e,
’ (1.4.16)

Corollary 1.4.2. Let P, ) and R be matrices in C™" and let
a&(Q, R) = min{a(Q), o(R), (R — Q)} and ny = n(Q, R) = [|&(@Q, R)|] + 1, where
[|a{Q, R)|| denotes the entire part functions. Suppose that QR = RQ, and

o(@ C R~{-nn>m,ne€Z}
o(R—Q) C R~{-nn>n,neZ}
o(R) ¢ R~{-2nmn>n,neZ}



Then for |z| < 1, we have

Fo(PQ +mkl; R+ 2mkl;z) =

X

21

LoHQ + mkDDW(R — Q + mkl)
(R + 2nyk1)

1
/t 24 (n- 1}.! t)R—;Q+{n—1)I
0

x| =

(L — ktz)™ Tdr.

Proof. Consider the matrices 2, Q = Q +nki, B = R+ nkl and R, Q i — Q
R —Q + nkI arc positive stable matrices. It is now a conscquence of Theorem 1.4.1.

m
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Chapter 2

Extension of Gamma, Beta
k-Functions and Beta
k-Distribution

In this chapter [97], we derive the extended form of gamma and beta k-functions
some of their properties. Also, we derive extended k-beta distribution which is the
extended form of k-beta distribution. We establish further generalization of extended

gamma, beta k-functions and beta k-distribution and their properties.

2.1 Introduction

In this section, we present some fundamental relations of gamma, beta, extended
gamma, extended beta functions and extended beta distribution introduced in ( [6],
(7], {82], [871). The gamma function is defined by

I(o1) = f #1etdt, R(or) > 0.
1]

In another way, it is defined as

nlpot-1

[{oy) = lim

n—+oo (O'l )n

22
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where (1), denotes the Pochhammer symbol which is defined by

(o) = oo+ 1)1 +2)---(e1+n—-1); for n>101£0
Tl i n=0

and
].-'(0'1 + 1) = 0'11-‘(0'1).

The relation between Pochhammer symbol and gamma function is given below

The well-known beta function is given by

['{oy)(o2)
].-'(0'1 + 0'2)

- / £1(1 — t)7dt, R(o1) > 0, R(0z) > 0.
0

B(O']_,O'z) =

Chaudhry and Zubair [6] defined the following extended form of gamma function

Ty(o1) = / 11 g Ria) > 0, > 0. (2.1.1)
0
When b = 0, then I'; tends to the classical gamma function I Also, Chaudhry et

al. [7] defined the following extended form of Eulers beta function
B(oy,09:b) = f 1-1(1 — )l mi g, (2.1.2)
0

where R(b) > 0, R(01) > 0, R(0,) > 0. When b = 0, then By(oy, 02} = B(o1,02).
They also defined the following extended beta distribution

1 o1 —1 — oz—1 ¥ 1°_g - '
f(z) _ { Blor0ab)~ (l Z) e T, 0525 Lo,onb>0 (2.1.3)

0, elsewhere.
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Recently, the researchers ( [4], [9]- [12], [70]) have been considered various extension
of the well-known special functions. Diaz et al. ( [15], {14], {16]) have investigated
gamma and beta k-functions and proved their various properties. They also defined
zeta k-functions and hypergeometric k-functions by using the Pochhammer k-symbols.
For k£ > 0 and z € C, the gamma k-function is defined by
nlk™(nk)F 1

T'e(ey} = lim 2,14
k( l) oyl (al)n,k ( )

Its integral representation is also given by,

ik
[i(o1) = /t‘"‘le-f"dt (2.1.5)
o
and

Pk(O']_ + k) = O']_Pk(O'l). (216)
Ti(or) = k¥ '1(T) (21.7)

The relation between Pochhammer k-symbol and gamma &-function is given as

_ Fk(O'l + nk)
(Ul)n,k = —Pk(UL) .

The well-known beta k-function is defined as

Bi{oy,07) = %/ﬁ‘-‘(l — )% ~1dt. {2.1.8)
0
The relation between gamma k-function and beta k-function is

Ti(01)Tx(a2)

Talo1 T 0p)  T001) > 0, R(22) > 0. (2.1.9)

Bk(Ul,Uz) =

‘These studies were then followed by the works of Mansour [64], Kokologiannaki [56],

Krasniqi [57,58] and Merovci [66] elaborating and strengthening the scope of gamma
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and beta k-functions. Very recently, Mubeen and Habibullah [78] defined k-fractional
integration and gave its application. Mubeen and Habibullah [72] established the
integral representations of hypergeometric k-functions by using the properties of
Pochhammer k-symbols, gamma and beta k-functions. In 2011, Ozergin ct al. (82]
have further generalized the extended gamma and beta function, which are respec-

tively defined as

0o = [ ROp—t - D (21.10)
o

where p > 0, |arg(l — z)| < 7 < p and R{p) > R(A) > 0 and

1

) — o= oa— P p
3;9(01501)—_[3 H1—gt 1F1(/\'P‘—m)dt (2.1.11)
0

where R{A} > 0, R(p) > 0, R(p) > 0,R(c1) > 0,R(02) > 0. These functions are also

called the extended gamma and beta functions

2.2 Extended Gamma and Beta k-Functions

In this section, we introduce the following extended form of gamma, beta k-functions

and some other properties related to these functions

k kp—k
Poilor) = ftol—le‘%**’ —dt, R(oy)>0,b>0,k> 0. (2.2.1)
o

When b = 0, then I'yx tends to the gamma k-function 'y defined in section 2.1, if

k =1, then I'yx tends to Iy defined in [6] and if both b = 0 and k = 1, then Iy tends

to classical gamma function I". The extended Eulers beta k-function is defined as

Bi(oy,01;b) =

T |

1
/ﬁ%-l(l . t)?_le_ﬁk—ﬂdt, (222)
7]
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where k > 0, R(d) > 0,R(c1} > 0,R(0z) > 0. When b = 0, then By(oy,09) =
B(oy, ).

It is obvious that, if kK = 1, then B, tends to By{o1,01) defined in section 2.1, if
b = 0, then Bj;,(01,01) tends to beta k-function By(oy, ;) defined in section 2.1
and if both b = 0 and k = 1, then Byi(ay,0;) tends to the Eular’s beta function
B(oy,01).

These extensions will be seen to extremely useful, in that most properties of the

gamma and beta k-functions.

2.3 Properties of Extended Gamma k-function

This section is devoted to various properties of extended gamma k-function.
Theorem 2.3.1. Prove that the following difference formula holds for k > 0

Corlor + k) = o1l (o) + b*Pb,k(al —k),b62>0. (2.3.1)
Proof. For k > 0, consider 2 be the operator of Mellin integral transform defined by

o0

M{F(t); 1} =< 1971, f(£) >= / 11 £(1)dt. (2.3.2)

* ko—k . .
Then, I'yp is & Mellin transform of the function f(t) = e~ " in o, e,
ek _pkk

Tox(or) =DM{e” ¥~ ¢ ;01}.

By using the relationship
M{f(t); 01} = —(o0 — )M{f(t); 00 — 1},

between the Mellin transform of a function and its derivative, we obtain

ik _ ki

‘—(0'1 - l)I‘b.k(al - ].) = M{(—tk_l + bkt_k_l)e_ & k ;al},

which implies to give
—(0'1 — l)I‘b,;,(crl - 1) = —Pb,k(o'l -1+ k) + bkrb.k(al -1- k)
Replacing oy by o1 + 1, we get the proof of (2.3.1) 0O
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Remark 2.3.1. If letting b = 0, then we get the result of gamma k-function as
Ti{o1 + k) = a1lk(on).

Similarly if k¥ = 1, then we get the result of extended gamma function see [8] and if
both & = 0 and & = 1, then we have a result of classical gamma function.

Theorem 2.3.2. Assume that 1 < p < oo and %’ +% =1, then
oy O 1 1
T‘a..n:(—pl + ?2) < (Tox(01))?(Toklo2))e. (23.3)

Proof. For k > 0, we have

5 o1 & ok
Pb,k ﬁ-i— 2 = /t_}-k—q'z_le_r-:_lfdt
p q
0
7 & gk b ik bk %
= /( 101 le™ T ek ) ( T T P v 3 ) dt.
0
Now, using Hélder inequality [94], we get
o, o 1 1
I‘b,k(?l + ?2) < (Tox(o1))? (Tox(oz))
which is exactly (2.3.3). |

Corollary 2.3.3. Prove that the follownng inequality holds for o1 > 0,00 > 0,620

Tou( 2 ; %) < \/ (Tox(01))(Tox(oa))- (2.3.4)

Proof. For k > 0, setting p= 2 = ¢ in (2.3.3), we obtain the required result (2.3.4).

Fb.k(gl —; 02) < \/(Phk(gl))(rb,k(ﬁz)) < % ( Tyx(o1) + Toxlo1), ) (2.3.5)

where o3 > 0,07 > 0,0 = 0. O

Theorem 2.3.4. Prove that the following reflection formula holds true

b7 Ty k(—01) = Tox(o1}, R(b) > 0. (2.3.6)
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Proof. For k > 0, substituting ¢ = br~! in (2.2.1), we have

[s ]
_r_ 3k
Do () =b"‘/‘r""'le ® kR dr
0

which is exactly (2.3.6). O
Corollary 2.3.5. Prove that the following result holds true for k > 0,

Toi(k —01) = b7 [ Toplor + &) — o1Top{a) | . (2.3.7)
Proof. For k > 0, replacing o7 by —o; in (2.3.1) and (2.3.6}, we have

Torik — 01) = U Tyi(—(o1 + k) — 01l a{—01) (2.3.8)
and

b= Ty k(01) = Do p(—o1), R(b) > 0. {(2.3.9)

Now, using (2.3.9) in (2.3.8), we get the required result of (2.3.7). O

2.4 Integral Representation of Extended Beta k-
Function

In this section, we prove some various properties of extended beta k-functions such as
integral representations, Mellin transforms, relations with extended k-gamma func-

tions.

Theorem 2.4.1. Prove that the following integral representation holds true
/ba_lBk(O'l, 09, b)db = Pk(S)Bk(O'l'i'S, 0'1+3), g%(S) > 0, 82(0'14-3) > 0, €R(O’2+3) > 0.
0

(2.4.1)

Proof. For k > 0, multiplying (2.2.2) by 5! and integrating both sides with respect
to b from b = 0 to b = oo, we have

[ 4] fa s 1 ) N
/ b1 By (01, 03; bdb = / b"l( ! Ufﬁ-lu—t)f—le—rr—sﬁ—r dt )db. (2.4.2)
0]
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Interchanging the order of integration in (2.4.2), we have

a0 1
- - o0 .
fb"lBk(al,Jz;b)db= lfz%-l(l—t)%—l ( [ be-te mtm gh )dt. (2.4.3)

0]

a-u

However, the above integral can be written in term of gamma k-function by taking

— b
u—m,wehave

=] N . . [+ =] “k
fb’*le_“(bl-'fdb = tF(l—t)ifu’_le'Td'u
0 D

= t8(1 - )E0(s), R(s) > 0,0 <t < 1.

Now, using this result in (2.4.3), we obtain our desired result.
By settining s = k in (2.4.1), we obtain the following relation

fbk-_lBk(dl,O'g; b)db = Bk(al + k, oz + k)
0

O

Remark 2.4.1. The usual integral representation of extended beta function can be
recover from them by taking £ = 1. Similarly, we can recover the integral representa-
tion of beta k-function by taking b = 0 and that of integral representation of Euler’s
bets function can be recover by taking 8 =0 and k = 1.

Theorem 2.4.2. Prove that the following integral representations for extended beta
k-function hold true

%
2o o —k 2
Bu(o1,026) = % f (cos 8) 7~ (sin §) 21" sec* e g (2.4.4)
0
' 7 2-1 ik B
Bilon,o2ib) = %e_%f # e i, (2.45)

1
—apk
Bi(oy, 09;b) = %21-41—1 f (1+8) %11 = )2 eri-m gy, (2.4.6)
~1
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and

Bi(oy,00;b) = %(c - c:)l'ﬂ'::a /(u —a)* Y- *u‘.)f'?"_lue_i"_:i G du. (2.4.7)

Proof. The proofs of (2.4.4)-(2.4.7) are straight forward. The relation (2.4.4) follows
by using the transformation ¢ = cos?# in (2.2.2) and similarly (2.4.5},(2.4.6) and

(2.4.7) follow from (2.2.2) by using the transformations t = 135, = 1t and ¢ = 2=2

respectively. O
Theorem 2.4.3. Prove the following functional relation of extended gamma k-function

Bj;(O'l,O'g + k; b) + Bk(dl + k,y; b) = Bk(Jl, 09, b) (24.8)
Proof. Consider the left hand side of (2.4.8), we have

1
1 o L4 (-] L — k
Bi(o1,02 + k; b) + By(or + k,y;6) = E,/{ R 1 -)F +tT(L-)F ! Je w0 g,
0

after a simple algebraic manipulation, we get

1
1 o ¢ __b*
Bi(o1,00+ k;b) + Belon + k, 3 8) = % / te I (1— )T e *‘fbl-*Tdt,
0
which completes the degired proof. O
Theorem 2.4.4. The following integral representations for gamma k-function hold
true:
2 [ yerey =2 b
Pblk(ol)l"blk(oz) = -E T € k Bk(dl,dg; 1_—2)dr, Re(b) > 0, RG(I) > O,Re(ﬁg) > 0.
0
(2.4.9)
Proof. Substituting ¢ = 7* in (2.2.1), we get
7 =2k _ ok
Dpilo) =2 / nileT TR gy, (2.4.10)
0

Therefore,

* 7 _na2k 2k k k
Lyk(01) o e(02) = 4 / / gl T~ TR AT dpde, (24.11)
0 0
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The substitution 5 = (r cos )% and ¢ = (rsinf)% in (2.4.11) yields:

bk

L AN
ey

Z o

Foa({o1)su{o2) = %f./rzg F2-16-% (cos 0) ) (sin 6) P~ exp|—
0 D

(2.4.12)

Interchanging the order of integration on the left hand side in {2.4.12), we get

win? feos? §

2 7 o) +a3 P % o b
Ty (o) Tpa(os) = E./.fz ¥ le ( %f(cosﬁ)z_k"“(sinﬂ)?ﬁz'l exp|— ey | 40 ) dr.
0
0
(2.4.13)

From {2.4.4) and (2.4.13), the proof of the theorem is complete. O

Remark 2.4.2. If letting & = 1, then we have a result of the product of two extended
gamma functions and if letting & = 0, then we have the product of two gamma k-
functions and if both 8 = 0 and & = 1, then we get the result of classical gamma
functions.

Theorem 2.4.5. Prove the following Mellin transform representation for extended
betn k-function

[ T -]
_ _1_ Ti(s)Te{oy + 8)Tk(o2 + 3)
2me Tx(oy + 07 + 23)

C—L00

Bk(O'l, 09, b) b"’ds, Re(b) > 0. (2414)

Proof. Applying the Mellin transform on both sides of (2.4.1), we have
M{B(o1,02;6 2 3)} = Tk(8)Bi{oy + 5,02 + 5). (2.4.15)

Now, taking the inverse Mellin transform of both sides of (2.4.15), we obtain

CH+L00
Bk(al,ag;b)zih f Ty(8)Beloy + 3,02 + s)b—"ds, R(b) > 0. (2.4.16)

=L

The substitution for Be(oy + 5,00 + 5) = Telataleloats) 5, (9 4.16) completes the

Ci(o1+02+26)
proof of (2.4.14).
O
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2.5 Application of Extended Beta k-Function

In this section, we introduced extended beta k-distribution by using the definition of
extended beta £-function. Also, we introduced mean, variance and moment generat-

ing functions of extended beta k-distribution.

1 -1 ) -t :
Jlz) = { e (1T ETI0S S Lo o k>0 o)

0, elsewhere.

Its distribution function Fi(z) is given by

0, z< 0
z T -4 - p*
Fk(z) = -l.,,c\Jll,arz b}z_kl'_l(l - 3)_&"16 "‘h“!dz;o é Zz g 1;0¢,00 > 0, (2.5.2)

0, z>1.
This can also be written as

By x(01,09; b)

s 2.5.3
Bi{oy,03;b) ( )

Fk(z) =

where

I

1 a k
B x(oy,09;b) = E/z_kl"_l(l — z);?_le_"'lbl—‘jdz; 0£251;01,00 > 0(2.5.4)
)

is the extended incomplete beta k-function.

The mean of the extended beta k-distribution is given by

_ Bi(oy + k,09;b)

= E(Z 2.5.5
Hi ( ) Bh(o'l:a‘.!) ( )
and the variance of extended beta k-distribution is defined by
: B} — B2 .
UE _ E(Zz) _ (E(Z))2 _ Bi(o1, 02;b) Beloy + 2k, og; b) Bk(O']_ + k’az‘b).(z.ﬁ.ﬁ)

Bi(oy,02;b)
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The moment generating function of the heta k-distribution is

o0 an 1 @0 m
= E — =——- E k,o9;b)—. 5.
Mk(t) 2y n'E(Z") Bk(al, = b) 2 Bk(O']_ +n ,(IJ'Q, )'ﬂ! (2 5 7)

Remark 2.5.1, If we letting ¥ = 1, then we obtain all the results of extended
beta distribution see [7], similarly if we take & = 0, then we get all the results of
k-beta distribution [88] and if both b = 0 and k = 1, then we get the results of beta
distribution.

2.6 Further Application of Extended Gamma and
Beta k-Functions

Here, we investigate some further application of extended gamma and beta k-functions,

which we introduced in section 2.2.

O

T3E(on) = ./tal_l-lFl,k ( D R ) dt, (2.6.1)
0

where R(A) > 0, R(p) > 0, R(b) > 0,R(e1) > 0,k > 0,

and

ol W

1
B;:f(al, oz) = ./tz:}-l(l - t)gkz‘l,lFllk ( A; p; —% ) dt, {2.6.2)
0

where R(A} > 0,R(p) > 0,R(b) > 0, R{c1) > 0, R{o2) > 0,k > 0. It is obvious that, if
we letting k — 1 and, then we get the generalize extended gamma and beta functions
see [82]. Similarly, if A = p then we get the results which we have introduced in
section 2.2 and if both b =0, ¥k = 1 and A = p, then we bave the results of classical

gamma and beta functions.
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2.7 Properties of Generalized Extended Gamma
and Beta £-Functions

Here, we discuss different integral representation and some properties of new gener-

alized gamma and beta k-functions.

Theorem 2.7.1. The following inlegral representation for generalized gamma k-
Junction holds:

|
A,p k _ -1

Proof. Using the integral representation of confluent hypergeometric k-function, we
have

oo 1
k k
D26 = prriane—y | [# el- b - -0
00

kTe(M)Tk(o — kuk

Now, using one to one transformation i.e. except possibly at the boundaries and maps
. . 1 * N :
the region onto itself. v = ut*, 4 =t in the above equation, we get

e 1
P ) bk 2 A—a —X
Ap wp LA AP-1rq _ )51
Tyi(s) = T Ts(o = A)/fv ! exp[—= o T (L)
00

From the uniform convergence of the integrals, interchanging the order of integration,
we have

Tpi(s) = krk()\];;:z’ X J [f " [_4_ kuk]d”]“__l(l_“) ©

Ti(p) seey el
kI‘,,(A)Pk(p_A)O/an’,kP (1 ;U') di.,

Hence the result follows. O
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Remark 2.7.1. The case when & = 1 in above theorem, we get [82]
) | -
Aoy ~\P) A—a—lg1 _  \p=A—1,

Fb (3) r(/\)[\(p_ ,\) J rbﬂzp’ (1 ﬂ) d:u’

Similarly, if b = 0 then
1
I (p) / A=w_ =3 _
Ap = k E 1 —_ LL_ 1
Fk (S) krk(f\)rk(p _ ,\) J Fk(s):u’ (1 :u’) dﬂ.

Tx(A)Tk(p — 3)
Theorem 2.7.2. For the generalized extended beta k-function, we have the following
integral representation

/ b Byt (01,02)db = Bi(oy + 3,0 + 8)3¥(s) (2.7.3)
1]
where R(s) > 0,R(a; + 8} > 0, R(o2 + 3) > 0, R(b) > 0, R()) > 0, R(p) > 0.

Proof. Multiplying (2.6.2) by 4*~! and integrating with respect to b from & = 0 to
b = oo, we get

] 1

/bs_l t?_l(l - t)g"a_l.lFl'k ( r\; f 1 —#k_t) ) didb.

0 0

e

/ b1 By (01, 02)db =
0
(2.7.4)

From the uniform convergence of the integral, the order of integration in (2.7.4) can
be interchanged. Therefore, we have

[+ 1 <]
_ 1 f o a1 f e
/b"‘ LB} (o1, 02)db = .E/n* 1-y% I/b l.lFl,,.( ,\;p;—#"_” )dbdt.
0 [ 0

(2.7.5)

Now, using the one to one transformation (except possibly at the boundaries and
th . . — b — . 7.
maps the region onto itself) v Faol’ u=1tin (2.7.5), we get

1

i 1 oy +a aada 7
/ b By (o, oa)db = o / P - ) / vl Pl ( Xp % )dv.
0 0

0
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Therefore, using (2.6.1), we have

[» =]

/b*"lB{:f(al, o2)db = Be(on + 5,02 + 8)[3*(s).
0
O

Theorem 2.7.3. The following integral represeniations holds for genernlized beta
k-function:

2 o {2
B;:;f(a:l,az) =z /.(cosﬁ')ail"(sin15‘)3"2_l 1Fie ( A p; —": sec?  csc @ )d&(?,.'?.ﬁ)
0

and

1

9_‘1
Uk
“ (01,00) = k/(l u),,+,a 1F1,k( A —2%— %(u+%) )du. (2.7.7)

Proof. Consider

A|
Bb,k

?r'ln—-

1
/ tE (1) 1F1,k(/\§.0;—#k_t] )dt-
0

Letting ¢ = cos® 8, we get

2 o
B;:‘,f(al,ag) = E/’(COSB)%L_I(SEB)L*LI 1F1,k( A;p;—% sec? fl csc? ¢ )dﬂ.
0

On the other hand to prove (2.7.7), letting ¢ = {7 in (2.6.2), we get the required
result of (2.7.7). 0

Theorem 2.7.4. The following functional relation holds true:
“ Plo1, 03+ k) + B;‘ (o1 + k,y) = ;:f(arl, a2) (2.7.8)
Proof.

B:,f(ah o2 + k) + B:’,f(al +k,y)
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1 1
= E‘/.tl"l_l(l —t)z"z 1F1‘k( /\,p, kt(l ®O-0) )dt
0
1 1
+ Efﬁ(l-t)?-‘ P (3o —glg )t
(]
1 1
- E_/[t%‘l(l——t)ff -0 R Nieigy ) dt
0
1
1 Eg___l i?_]
= £ /tr -1 1F1.k()‘$91 "D )dt
(]
= B,if(a;,org).
0

Theorem 2.7.5. The following relation between generalized eztended gamma and
beta k-functions holds:

P:I':(Jl)r (0‘2 /./. 251-}“1 1(0089)11 ‘(smﬂ) k -1

X1 Fl,k( X p;—4ricos?f — Fn%_m‘—ﬂ ).1F1,k( X p; —3risin®f — h_z_:n'ra ) (2.7.9)

Proof. Substituting ¢t = 7 in (2.6.1), we get

P’\‘p(ﬂ'l)—2./ Por-l lFl,k(/\;P: - —t';r)dn. (2.7.10)
0
Therefore
DO = j f T Y
0

X 1F1.k( iP;—;Cgk - k—gtt )dﬂd(:.

Letting n = (r cos 6)% and { = (rsin 9)§ in the above equality, we get the required
result in (2.7.9). u
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Remark 2.7.2. By putting & = 0 and A = p in {2.7.9), we obtain the well-known
rclation

Fk(m)Fk(Gz)

Blowod =3 0 o



Chapter 3

Some Results on a Generalized
Hypergeometric k-Functions

In this chapter [95], we introduce the generalized hypergeometric k-functions ie., -
Gauss hypergeometric k-functions. Some recurrence relations, integral representation
and differential properties of the generalized hypergeometric k-functions have been

investigated.

3.1 Introduction

The Gauss hypergeometric function o F} (a;, a9} a3; z) plays an important role in math-
ematical analysis and its applications. Most of the special functions appeared in
physics, engineering and probability theory are particular cases of gammma, beta and
hypergeometric functions ( [54], [55], [59], [60], [87], [85], [99]). Wright [119] intro-

duced the Wright type hypergeometric function in the following form

= (a1 + An)---T(a, + 4,m)
¥ = 1.
) ; I'{p1r + Bin}---T(p, + Byn}’ (3.11)

39
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where A, and B, are positive real numbers such that

g P
1+) B, - Y A >0
=1 r=1
The Wright type hypergeometric function (3.1.1) is slight different from the gener-
alized hypergeometric function ,F,(z). This generalized function has been further
considered by Malovichko [63]. Dotsenke [19] introduced the following hypergeomet-

ric function as:

I{on +n)l{az + 4n) »
2Rz} =2 Ralon, 00 i i 2) = F(al)l"(aa — ag) & Z T{as + n) nl
(3.1.2)
and its integral representation is expressed in the form
2}?;‘#(2) P;F 03) /tﬂaz 1(1 aa—ag——l(l _ ztu)—aldt (313)
I'(os)as — a2)

where (a3} > R(a,) > 0. In 2001, Virchenko et al. [112] have investigated that the
function o R}"*(z} is not symmetric with respect to a; and a,. In the same paper,
they defined 7-Gauss hypergeometric function 2 R](z) as

R (aq)nl'(ag + 1) 27
= . [ ol 1
2 l(z) 2 Rl(ﬂ‘.‘l, ag,aa,T,Z) F(aa __az) E F(ad +Tﬂ) ﬂ,! T > 0 |Z| <

(3.1.4)

and its integral representation is defined as

1

F(Ct;;) / -1 —aa—l _
= R . ML = o9 1—¢ g —cxy 1— tT aldt
Ri(7) =2 (e, 095 057 7) I‘(a::;)l"(clra—ﬂlrz)0]t (1) (1—zt7)
(3.1.5)
or
2R1(2) =2 Rafay, 0z 073 2) = P(aa) f O N O O
A Tl{a2){as — ag)

0
(3.1.6)
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Ci(z + mjk)
(Z)mjk = T.(2) ’
and
Yoo =e (3.1.14)
=

For more details about the theory of special A-functions like gamma &-function,
beta k-function, hypergeometric k-function, solutions of hypergeometric k-differential
equations, contiguous k-function relations, inequalities with applications and integral
representations involving gamma and beta k-functions, recurrence relations and inte-
gral representation for Appell k-series and so forth ( 78], [73], [74], [75], [76], [93]).
In 2012, Mubeen and Habibullah [72] have defined an iutegral representation of some

hypergeometric k-functions as

1

F o -_— -

Fi(ay, k), (as, k); (as, k); 2] = kl“;,(az);‘iﬁa—az)/tf 1= t)™F 21 - ktz) 5 dt
(]

3.2 The Generalized Hypergeometric k-Function.

The Wright type hypergeometric k-function is defined in the following form

w(ar + nk)le{as + nk) P

k> 0.
Telas +20k)  al' 0

I'k(a3)
’F — ] . - 3
2R‘1u,k (z) -2 Rl.k(aha2:a31w) Hs z) Fk(al I‘k(ag) E

(3.2.1)

Theorem 3.2.1. If R(as) > R(as) > 0, then the function s B¢ (2) can be ezpressed
in the following form

1
Wil oy #l (o) P SR RN L NS |
26 (2) FTr(an)Ts (s — o) T (1—t*) "k Ml gy wodt, k>0
0

(3.2.2)
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Proof. Let us consider

o1 + nk)l(a Lnk
i) = Z:)?:%az) Z a 1;;(&3) +k( :;:; ) :;1
_ Ty (a3) i Tk(an + nk)Te(ag + 4nk)Ti(as — ag) P
"~ Tila)Tilaz)Te{as — az) - Ti(as + Ynk) nl
T'i(as) = w "

= Ti(oq + nk)Bi(b+ —nk, a3 — ag) =
1";:(C‘fl)1";5(0:2)1"1;,(0:3—ofz)'__Z=o el )Bil Pl 2)n!

1
- Li(09) 3 B R
"~ Ti(en)Te{a2)Telas — az) "Z=; Pelon + nk)[k J ¢ (1-12) dt] o

W, 1
Fk(as) ;" / o3 _1 G- -1
Ti{a; + nk ¢RI (1 - )T gt
Fexa0 (o) — )[Z k=] e
(3.2.3)
Now since
(1—kat)% = =) (3.2.4)
=0
and taking into account
(1—kztd)™F = Z Ti(ay + nk) (3.2.5)
Hence by substituting {3.2.5) in (3.2.3), we obtain
Tle) |
" — k03 L B Y = B PR Ztg _gildt 9
2 (2) kTi{caz)Tr(as — a3) /t FL= TR kat) - (326)
Thus after a siinplification, we get the required result as:
r 1
RUE(2) = #le(as) PR 1 — )P = k)Rt

kL x(a2)Ti 0z — az) .
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3.3 The 7-Gauss Hypergeometric k-Function R ;(2)

In this section, we defined the r-Gauss hypergeometric k-function and some of its
properties. As ;R '{(z) is not symmetric with respect to a; and o;. So by substituting

©=7>0in (3.2.1), then we have

2R 1 (2) =2 Ryalon, o) 03575 2)

l"k(oz3) Fk a1 + nk)l"k(ozg + Tﬂk) Z"

= k 0,7>0. (3.3.1)
Fk(al)l"k(az) Z Ce(ay + mnk) (

Its integral representation is expressed in the following form:

1

r (N — T'i(as) / S1gy _ gy %a5e2o1 .Y
Ru) = e | - (1— kzt™)*ds(3.3.2)

=

and by change of variable, we obtain

1

oy Te(as) /Eal O N
2R1(2) = ThCi{ag)k (0 — ) / t+( t) (1—kzt)"vdt. (3.3.3)

Definition 3.3.1. We define the contiguous function to ;R] . (z) as a function which
is obtained by increasing or decreasing one of the parameters by =k where k& > 0.
For simplicity, we use the following notations o By (1, o2y a; 7 2) = Ry, 2Ry {0y +
k,ag; a3, T Z) Rk(o:, + k), ot k(al,ag + ki ag; T Z) R;,(o:z + k), etc.

Lemma 3.3.1. ForyR] (2) and its conliguous functions, the following relations sat-

isfy
(g —auT)Ry = opRe(as+ k) — aimRe{oy + k), (3.3.4)
(a3 — o7 —k)Ry = (03— k)Rp(as — k) — ay7 Ry + k), (3.3.5)

(0.’3 — Qg — k)Rk = CE3RJ;(O:3 — k) - ang(al + k)._. (336)

Ct3Rk = ((13 - ag)Rk(aa =+ k) - CIQR*(O.’g + k; a3 1+ k), (337)
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and

Ci{ag)Te(as + Tk) Ry = I‘k(ag)I‘k(aa + 7k) Ry + k)
~ k2Te(aa)Tr{og + 7h)Re{on + ko + ks + k). (3.3.8)

Proof. To prave the first relation (3.3.4), we have

crgl";,(aa) Z I‘k(al + nk)l"k(az +k+ Tﬂk) 2"

arfiloo +k) = Ti(on)Te(an + k) & Tx(as + Tnk) nl

=, Ti(ag + nk)Te(og + Tnk) 2°
~ D K (33
) 2 To(o + k) ( + k)  (3.3.9)

and

k) k
oy TRe (o + k) a1l (as) Z Ti(ay + k + nk)Ti(ag + Tnk) 2

r (0’2 Pk Cll + k) Pk(ag + Tnk) n!

_ Ti(as) Z Ci(ay + nk)Ci(aq + Tok) 2"

Fi(an)Te(on) £ Tk(o + nk) (01 +nk). (3.3.10)

Subtracting (3.3.10) from (3.3.9), we get the required relation (3.3.4). Now to prove
relation (3.3.5), we have

( k)].-'k oy — k) Z I‘k(al + nk)l";,(ag +k+ Tﬂk) Al

((13 - k) Rk(aa - k) Pk (al)l";,(ag) Fk(a;, —k+ Tnk) n‘

| ((13) Z Pk(al + nk)l"k(ag +k4+ Tﬂk) 2_

I‘k(al)I‘k(ag) Tilas + 7nk) ol 8~ k+rnk} (3.3.11)

and

— {1 + nk).

: k)l k
on7Ry(0q + k) = Ce(0s) Z Pi(o + nk)li{og + Tnk) 727

Iy (afl)l"k(al) [i{os + Tnk) n!
(3.3.12)

Thus subtracting (3.3.12) from (3.3.11), we get the desired relation. In the same
manner, we can prove (3.3.6)-(3.3.8). m|
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Lemma 3.3.2. If 7 € N (7 = n), then the following relation holds

2Rie{0n, cnyaain; z) = A

Xn+1 Fn’k[(al’ k)! (%; k): MR (Ct‘z—'l'(ﬂ__L, k)a (E‘i, k)! (aa 3 k): can (54*_—'—; k); z]!
n ” o - "
(3.3.13)

where

_£Pk(aa)rk(91)rk(gz+_*)...I‘k(gzi(‘:;l)_k))

Ammt a : +(n—1)ky * § =03 — o,
Te(a)Tx()Tx(25E) - - Ty (2HEEE)
Proof. Let us consider
+ -1k : oy + k o + (n— 1k

n-l—an,k[(C!’l: k): (%: k): "ty (9}_%‘ k); (f, k), ( 3 ’ k), . (—%L’ k); z]

I‘k(gﬂa) . Fk(a3+ :—1 k)

= I‘k(al)I‘k(‘—:‘a) - r‘k(g_&(‘n_—l}ﬁ)

i Ti(a1 + nk)T(2 + nk)Tp (B 4 nk)- - - [‘k(‘—"ﬁ(-::;IE + nk) 2"
e —_—
Ti( —I—nk)I‘k(Eﬂ:—" +nk)---I‘,,(9ﬂ(:—'IE +nk) n!

n=0

n¥ (D) .. I, (exln-lty i Ty(an + nk)Ty(en + n?k) 2"

=3 . (3.3.14
PRI CY R == P e B R
By substituting (3.3.14) in right hand side of (3.3.13), we get
1";;(0;3) s Fk (Cll + nk)l",,(ag + ﬂ-zk) zn
— = R 02} 033 15 Z).
Ti{0)Ti{e) ,,Z_o (a3 + n2k) 1 =2 fus(on, o 2)
]

3.4 Differentiation Formulas

In this section, we derive some basic differentiation formulas by the help of following

lemmas.
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Lemma 3.4.1. If k > 0, then

d I‘k(ag)l"k(ag + Tk)

a[le,k(al‘ ag; a7 2)] = o T(ca)Celes + 7H) o Ry k(o +k, ag+7k; as+7k; T; 2).

(3.4.1)
Proof. Consider
d o _ Fk(a;;) d I‘k(al + nk)l"k(ag + Tﬂk) 2"
dz l2Ruk(o, 00505 73.2)] = Ti(ag)Ti (o) dz Z Cyi(as + 7nk) nl’
Thus, we can write
d Tw(as) Ti{oy + nk)k(ap + ™k) 2"t
—l2R 02 3y T3 2)| = :
dz [2Rrp(s, 02 075 2)] Fe(a2)Ti(cn) & Z Tx{as + Tnk) (n—1)!
(3.4.2)
Now replace n — 1 by n in (3.4.2), we obtain
d Te{as) >~ Te(ar + k + nk)Tu{ag + 7k + Tnk) 2°
LR . _ ol
gz eflanaaiasni2)] = s s ; Te(as + 7k + 1K) nl
- a I‘k(ag)l";. (O.’;] + ‘rk)l"k(ag + Tk)
! I (org)l",,(ag + Tk)l"k(al + k)].-‘k (O.’3 + Tk)
« i Ti(a + k + nk)li(as + 7k + Tnk) 2°
| Ci(as + 7k + ™nk) n!
I r k
= @ k(a)Ti(ag + 7) oty k(o + k, g + 7k 03 + TR T3 2).

I‘k(ag)l"k (03 + Tk)
O
Lemma 3.4.2. If k > 0, then

=
-1

a 1
a[zz'll 2Ry, 03, 03,75 2) = E[alz oy k(an + k, az; ag; 73 2)](3.4.3)

Proof. Let us consider

d =
2% 2R, an057;2)]
_ Ti(as) d i Te(ay + nk)Te(az + Tnk) 2"+ %
Te{a Til{as) dz T'y(ag + mnk) n!

_ Ty 0:3) Z Pj; Cll + nk I‘,,(ag + ‘rnk) e o

Fe{on)Te(ag) & Cx{ag + Tnk) nl (T +n)

1
&y

= E[alz 2Ry k{on + k, ag; a3, 75 7))
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3.5 Integral Formulas of 3R] ,(2)

In this section, we derive some integral formulas in term of k, where k > 0.
Theorem 3.5.1. If Rz — o) > 1 — &, Rlag — a) > 0, then 4R (2) can be
expressed in the following integral forms:

Ry p{a, ag; 1 2) 2T (as) i (sinh )27 " (cosh § + 1)1+ -5 )
a, Gy ey —1 2) = 5
2ELEAEL O 8 Tk x{o2) Ui (g — sz) [1+kz+ (1 - kz)coshg]*

x [{cosh¢ + 1) ,. —{cosh¢ — 1)~ ]_:IL_a ldg, (3.5.1)

and

aq+u _x 1
3 ™

2k Qux
1 AT {cx (cosh ¢)3~ 70+ cosh ¢ — 1) >
231,1:(01.&2;&3; ;} z) = 2 ;. a )/ :
2

ThLk(02) Tz — (14 kz+ (1 — kz)coshg] ¥
x [(cosh ¢ + 1)7 — (cosh ¢ — 1)7] ™5~ 1dp. (3.5.2)

Proof. 'To prove (3.5.1), using the substitution ¢ = tanh®£ in (3.3.2) then

1 or tanh? 2)r(F-1)(1 — taph? )2 (2F2-1
2Ry g{ay, ag;as; —; 2) k() /( )t X 2 2")
T Tkl-‘g(ag)rk g — ag (]_ —_ kz(ta.nh g))";]‘
2 $\1y ¢
X (tanh ) tanh 2—-—~—Osh2 thﬁ-

2

Now taking into account that

sinh? ¢

cosh ¢ —1= coshgp+1’

and after simplification, we get
2T, (ces) T (sinh ¢)23 -1 (cosh ¢ + 1)3+ % -2
Tk k{c)Ti(as — c) d 1+ kz+ (1 - kz)cosh ¢]

1
oR k(o ag; as; = z)

x [(coshe+ 1)7 — {cosh ¢ — 1)7] T2 14g.
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where the denominator parameters are neither zero nor negative integer.
The generalized hypergeometric function has been defined [24] as

ay, - ,in, (al)n" z‘n
F —g+1, 1), 4.1.
v q[ ﬁl,---,ﬁq } Z(ﬁl (61; (p q+ |"‘2:|< ) ( 12)

where the denominator parameters are neither zero nor negative integer.
Many researchers ( [50], [112], [113], [114], [89], [90], [84], [91], [27], [28], [29], [30})).
have been made several generalization of hypergeometric function. Virchenko et ul.
[112] defined T-generalization of Gauss hypergeometric function ;& {a;, ay; aa; T, 2)
and its integral representation which are defined in (3.1.4) and (3.1.6) (see Chapter 3).
Rao et al. [92] obtained many properties for the generalized hypergeometric function
2Ri{oy, aq; 3. 71 z). Recently many researchers Prajapapati et al. [84], Prajapapati
and Shukla [107] and Srivastava et al. [109] used fractional calculus approach in the
study of integral operator and generalized Mittag-LefHler function. In 2007, Diaz
and Pariguan [15] have introduced an improved generalized version of the classical
gamma and beta functions called them gamma and beta k-functions and proved some
relations of gamma k-function and Pochhammer k-symbol as defined in Chapter 2.
They [15] used Pochhammer k-symbols and defined hypergeometric k-function as:
2oFy (0, og; oy 2) = Z(ﬂ%*(ﬂ“—‘iz (lz! <1,k > 0), (4.1.3)
= (@)
where ay, a3, 03 € C and a3 # 0, -1, 2,
Mubeen and Habibullah [72, 78] defined the following k-fractional integral and its

related result by

z

U@ = e [ @ - 0F o (4.1.4)

[+
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4.2 The Generalized k-Fractional Integrals and Dif-
ferentials of Generalized Hypergeometric k-Functions

In this section, we define the generalized k-fractional and differential formulas of

generalized hypergeometric k-functions. For this purpose, we first define the following

generalized operator as:

Definition 4.2.1. If £ > 0 and oy, a3, 03,w € C, R(a1) > 0, R(a2) > 0, R(a3) > 0,

then

(ReFra 2] = -,1; f (2" = (Y F R an, 095055 T w(2H — Y f(r)dr,
’ (4.2.1)

where z > a.

When setting s = 0 in(4.2.1), then we get the following result
(R rasf)(2) = _/(I =% R, agiag; iw(z — ) f(r)dr,  (4.2.2)

Similarly, if s = 0 and & = 1, then (4.2.1) becomes

F

RefraN)z) = f (2 —¢)=" 2Ri(ar, a0 05 mw(z — ()) f(r)dr,  (4.2.3)

see [99].
To define the following generalized k-fractional integral and differential operators,
first we define the well-known Lebesgue measurable real or complex valued function

Lla, b] such that

Lo, ag) = { £ llftl = FIFE)IdE < oo } . (4.2.4)
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Definition 4.2.2. Assume that f(z) € L{a,b); p € C; R(z} > 0 and k > 0, then
the left and right generalized sided k-fractional integral operators of order p are
respectively defined as:

:,:;D;,pf(z) =i,k It f(z) =4 #+f( )

G f)(2) = (s;; 1()p) — jg3+l)1_%dt,(x>a) (4.25)

and

o Dot f(2) = Wl (2} =t I_ f(2) = G- 1)(2)

RS il S0
kl"k(,u.) (za+1_ns+1)1 13

di, (z < ag) (4.2.6)

Definition 4.2.3. Suppose k& > 0, s € R\{~1}, p € C, R(x) > 0 and n = [R(p)] +
1, then the left and right sided generalized k-fractional differential operators are
respectively defined as:

(D) = () (W 4121) (2), (2.7
oo i) = (- 2) (& 1)), (12.8)

Setting s = 0, then we get the result defined in [?]. Also, when k=1 and ¢ = 0, then
the generalized left and right sided k-fractional integrals and derivatives will lead to
the well known fractional integrals and derivatives (see [99]).

Theorem 4.2.1. Let k, 7, p € Rt, s € R\ {-1}, end m € N. Also, let z,a € R
with x > a and  # 0. Further, let oy, o, 7, w, ¢ € C be such that the involved
sumnations can be defined. Then

l1d .
(zs dz) {(z-’+1 — a,8+1)i‘1 2R1‘k (Ctl, Qg; ag; T, w(zs+1 . a3+1)p,)}

_ I (C) (3+1)m s+1 s+1y E—m-1 L.
- I‘k(ck— mk) k™ (2 ~ o) (429)

. . . 1
X 3R2,k (01,0‘2, C 03, C— mk! T, 05 w(z8+ - a8+1)p)_
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Proof. Let L be the left-hand side of (4.2.9}. Using (4.1.9) and interchanging the
order of summation and differentiation, we have

_ Tilas) Z (a)nile(az + nTk) W™
Pk(ag) Fk((xs + ﬂTk) nl

1d s+l _ _s1yPntE-l
x {(z dz) (2 — ) ,
We find

1d s+l _ st prt -1
(~.~. dZ) (Z )

=G D" (ot p 1) (ot om) @) @2

(4.2.10)

k
P(pn+ 5) +E&-m—1
=(s+ l)m k z.~z+l _as+1 mry .
( I‘(pn+,%—m) ( )

Using (2.1.7), we get

[ {m+3) I's (c + npk)

= . 4.2.12
T{m+£—m) kmTk(c—mk+npk) ( )

Combining (4.2.11) with (4.2.12) into (4.2.10), we obtain

= (s -;:-ml)'" (zs+1 Gs+1)—-m—1
I’k(a;; Z (a1 aTk{g + n7k) Ti(c + npk) {w (21 — a*t1)*}" (4.2.13)
Fg(ag) Fk(a_'-_r, + ﬂ‘rk) rk(C —-mk + npk) 7! ’
which, upon expressing in terms of (4.1.10), leads to the right-hand side of (4.2.9).

O
Theorem 4.2.2. Suppose k > 0, 3 # —1, then the following result holds true:

I — ) S Rik(og, 00y as; Tw(ntt — 2t
_ (.’B - al)"—?a‘ll‘k(aa)

T )4 2orlovenos el —a™), (4210

in.,.[(n"H - ﬂ”])f_l o i (0, g ag; T;W(Wsﬂ - GSH)T)]
r (C) (za+1 — aa+1)°—:-£—l
=1%

R VO Qg € — [ T; s _ gy (4.2.15
GTiNe—g ° 2. (01, 025 @33 ¢ — p; T w(2 a )Y )




58

Proof.

i-{:+[(7?8+1 - GHI)E‘LI 2R1,k(01: g, (3, T;W(T?sH - as+1)7)]

1 ] {t— al)'?_l 2Ry ko, a9 a3; 75 W(Z’H - a‘”l)r)]
KTw(p) (z— )ik

1 Tifos) & (onnalklag + mmk)ur [ (ot —at)®1
kT (1) Ti{as) ; Ty{as + mnk) n’ (z2+) — 1) (n ')

1 Tilas) E (o1 )nkT(on + Tk} W™ / "+ — s+1)5,;'1+rn—1dt
KTy (u) 1":;(0:2) Tx(ag + Tnk} (2541 — ns+1)1—%

Da(as) < (on)nuTk(az + TK) " bt ey
" X e o (Ml ety R

The use of (4.1.7) gives

IR (" - a*t) ¥ -1 aR1x(0, ap; ag; Ty w{n®* — a"1)7)]

n» T k e
Z (o) ale{0a + Tﬂk)w_l k(g + Tnk) (2 = g1y EE o
(s + 1 % I‘A (as) Ti(as +1nk)  nlTi(ag+ g+ mnk)

I G a'i"'l)j‘ga 11",,(:13) Z (o )}n Ll + T0k) (w(z — a)")"
(8 + 1)5T(ay) ¢ Tr{og + p +70k) n!
+ag oo
(z** = e ) 1Ty (0s) [ pyqoutu) $2 @UnaTklentmt) futs—ar)y"
(s + 1)kTx{as + p) Teloz) = Thloatptonk) n!
(2541 — a”l)ﬂlﬁ'll";,(ag)
(s +1)¥T(as + p)

2R ke, o9; o + Ty w(2t — a* 7).

This completes the proof of {4.2.14).
Now, we have to prove

iDL — )T Ry, ag 0 s w(n™ — at)7)]

1d

z* dz) { BB [ — a1 Ry oy, 0000 T w(pt — a**1)7)] }
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and using (4.2.14} this takes the following form

iDt+[(7?s+1 - GHI)E*LI 2 (0, ag; a; T;w(ﬂs“ - ﬂs“)r)]

1 d a a a—"re_ n—1
T \zdz )y { it +::-:1)?r (a :nk :(ﬂﬂ 2P, 0z gk — g mw(z = 6] } '
kL3 -

Applying (4.2.9), we have

sDb [(n*t — o YF LRy (e, ag; o mw(n*t! — atY)7))]

Ti(as) { ety R R (o, @G ag, ¢ — i T w(zH — at)T)] } -

Ty{az—p)
This completes the desired proof. O

Corollary 4.2.3. If s = 0 and k = 1, then (4.2.14) and (4.2.15) reduce to the
following results of [99] as:

I% [z —a)™ 1 3Ri(en, ag a3 73 w(z — a)7)]
_ (I — a)p+cxa—lr(a3)

y Qg o3 + p5 TS —a)"), (4.2.16
T(os T 1) pRi(0n, 00y a3 + s miw(z —a)), | )

Di [z —a)®™ ' R (a1, a2 03 mw(z —a)7))
(z — a)oe—s-1

= F(Ct;;) P(a3 — ,U-)

afi (a1, az 03 — i Ty w(z — a)7)]. (4.2.17)

. ia.h
4.3 Some Properties of the Operator (}R,%", .f)(2)
Theorem 4.3.1. Let k> 0, s # 1 and 7 > 0, then the following result holds:

(Rt — o) E)(z)

Pk(a3)

= (51 _ gotl s _lk\a3)
( SO

2Ry p(en, g a3 + g Ty w2 — a7,

(4.3.1)
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Proof. From (4.2.1)
; 1 / e a+1yTy .9
GREENE = ¢ [EP-r P aRian oz a7 SOt

[

Therefore, we have

( ER‘““ (2 a+1 _ as+1)f—1)(z)

a+i7,a3

1 b & 4 —
= E /(za+1 . ns+l)—,€1—l 2R1,k(a1,ag;a3;'r;w(z +1 ns+1)r)(ns+1 —a +1)E 1nsdt

Fk(o:3) 3 (a1 "krk(a? + TRk} w" ( L f +1 1y E-17, 5+1 s+1y A +mn—15 )
- U L G dt
(a2) ; Ti(os +7nk)  nl \ * J(T} )= ) n
(ad) = (al)n kPk(ag + Tﬂk "’(Z‘H'l 3+1)23¥+'rn.-—1
_ ) k‘
[i(o) Z [0y + ™0k} n! Bx(as + Tk, u)

I
=]

13

CosHl a1y EEEE_) Li(ea) Tifagtn) o (@ )neli(ogtrnk) (Wzstl-as+)r)n
(Z —a ) k Fk(y.JI‘;,(O.’s%—,&) Tr{ma) r?;é) Cef{aa+p+rnk) n!

e L F (03)
— zs+1 _ as+1 Jk_ 1]:* k
( )HED )t s
this completes the desired proof. ]
Theorem 4.3.2. Let k > 0, 7 > 0 and b > a, then the following result holds true:

8 pit rsgpusaLan o0y FE(GS) jo,0n 2) = ie,ea (8 ri z
(.'cfa+[k§ﬁ"n+;f,aa ]( )_ (S-l- l)El"k(ag-i—,u) (kW+ Rl R )( )'_ (kERu+raa[ a+f])( )
(4.3.2)

oRix (o, g 03 + g Ty w (2 — a7,

holds for any function f € L{a;, a3).
Proof. From (4.1.7) and (4.2.5), we have
(tlos R e (2)

o+ T,y

ety J RSN,
,{Fk(#) (~s+l na+1)1 k

_ (S+1 s+1 s+1
= TR / (2 )+

x

[ St — w1 R e, ag; e T w(n* — w ) flu)du } dt.
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By interchanging the order of integration, we get

(aa kR aa /1 (2)

- %./ [ a;‘-l.l:(ll:)g J@H — Y E ! — ) g Ry k{0, a0 e T w(n T — wtt)T)dt
x  u’f(u)du.

Substituting (7°*! — u**1) = A**1, we obtain

(e + BRTraa F1)(2)

1 2 2o+ _g o+l -

- = 1 29+l wtH — Ao+l E-1 s+l —3—1.23“ al,ag;aa;f;w()r'“)f))k’d)k
k kT {u) p '

X u'flupdu

F

-1

i}

,+1_us +1 1
(x> +1)-,;1 2Ry klan oziasTw (A7) J)«.’d)« u’f(u)d‘u.

§s+1!1' * f
kg (u) i fzotl_porlo As+1) i’

(4.3.3)

By using (4.2.5) and applying (4.2.14), we get
(76, + ko ¥irag /1) (2)

Dy (as)
(8 4+ DEET (a3 + 1)
v [ f(z+ - u3+1)ﬁkgl'1.2R1,k(a1,ag;a3 + i T w2 — utt)T) ] u’ f(u)du
1";,(0:3)
(s + D)ETe(es + p)
X [ s Jr - ‘USH)%LI-:RM(%, ag; a3 + g T w(z™ — w ) flu)du ]
thus, we get

Li(as) (4.3.4)

RocrafD(z) = z
( +[k +1-0:3f])( ) (3+1)Erk(0!3+#)k a+ra3+uf( )
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this is the required proof of (4.3.2).
To prove the second part, we begin from the right hand side of (4.3.2) and using

(4.2.1), we have
R e as f1)(2)
- _/ (2 — YT G Ris(a, o as Tw(2 — YR, fl(E)dt

a
F

/(za+l _ na+1)9,‘ﬂ—1 2R1,k(a1, Gy Oy T w(zs+l _ ns+1)f)ns
13
(41 E Fiu)
X ( KDy {3} { (ns+1_us+1}l—f£du dt.
By interchanging the order of integration, we get
(iR rasltles S)(2)

Ey

ol

1 f (s+ 1)k
k ;./ k(1)

x [ ‘f(zs+1 . na+!)9§:—l(na+1 _ u"+l)f_1.2R1‘k(C!1,O.2;a3;T;w(zs+1 _ ns+l)r)nadt ] f(u)du.

Substituting (z°+! — *+1) = AsH!
(i aiT;ﬁ:-;[ifcﬁf])(z)
_ 1 j (s + 1)1~
kJ k()

5 [ HjJ_. +1(A,+1)9§—1(zs+1 — A+ gt 1R (003 as; T w(AH)TIAR (—dA) ]
x ' f(u)du
1/ 1
-/ mw
X l of (As+1)-‘?-—1(zs+1 — )3+l _ u’“)%_l.gRllk(al,ag;aa;r;u()t"’“"l)"))u’d). J

x o' f(u)du.
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Again by making the use of (4.2.5) and applying (4.2.14), we get

. Fk(ag) e
IRISLSE ) (2) = aRyee [ 435
(k +iTy 3[k + ])( ) (S-{— 1).:_1—1!:(053 +;‘L) kS Va4 T+ ( ) ( )

Thus (4.3.4) and (4.3.5) completes the desired proof of (4.3.3). 0



Chapter 5

The Generalized k-Fractional
Calculus of Mittag-Leffler
k-Function

In this chapter [81], we consider the generalized k-fractional calculus defined in Chap-
ter 4 and define generalized Riemann-Liouville &-fractional integral and differential

formulas of Mittag-Lefller k-function.

5.1 Introduction

Fractional calculus and its applications have recently paid more attentions. In Math-
ematics, it is & extremely more helpful to find out differentials and integrals with
the real or complex numbers order of fractional calculus. The researchers Miller and
Ross [67] and Kiryakova [53] introduced a brief description of fractienal calculus op-
erators, some of their properties and applications. Atangana and Baleanu [1] have
further extent this study by considering the derivative based upon Mittag-Leffler
function. For further study of fractional calculus the reader may study the work of
researchers ( [50], [86], [109]). The Integral inequalities are more important as these

are helpful in the study of various courses differential and integral equations [68].

64
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Recently many researchers have introduced integral inequalities by using fractional
integral operators. In recent few years, the theory of k-fractional integral has paid
more attention. Diaz and Pariguan [15] have investigated the Pochhammer k-symbol

which is defined as:

(@) = { bin=00¢cC) (5.1.1)
glo+k) - (c+(n=1k),(neN,oceC,k>0)

Mubeen and Habibullah [78] introduced &-fractional integral and its various properties
defined in Chapter 4 (see 4.1.4). The k-fractional integral defined as:

Recently Sarikaya et al [104] have introduced the generalized Riemann-Liouville
k-fractional integral of order u > 0 is defined in 4.1.7 (see Chapter 4).
Reccntly the researchers { [2], [79] [111]) used the idea of generalized k-fractional
integrals and estalished fractional integral inequalities. The Mittag-Leffler function

is defined in [69] by

Ey(z)=) -1;(—19%-1—), z€ C;RM) > 0. (5.1.2)

n=0

The generalized form of {5.1.2) is delined in {115} by

[= o] zﬂ'
Eﬂ‘A(Z) = Zﬂ F(ﬁn—-i_/\), Z, A € C, ER('(?) > 0. (513)

The readers may follow the work of ( [33], [50], [48], [34] and [62]) and the work of
Saigo and Kilbas [103] for generalizations and applications Mittag-Leffler functions.
In recent years, the Mittag-Leffler function (5.1.2) and some of its different gener-

alizations and applications have been considered numerically in the complex plane

C [39,105]. Prabhakar [83] have have a generalized Mittag-Leffler function Ej ,(z).
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Srivastava and Tomovski [109] have established further the generalization of Mittag-
Leffler function in the form Eg§(z).
Dorrego [17] defined the Mittag-Leffler k-function E7,,(z) (where k& > 0) in the

following form:

od _ - (a)ﬂ,k zﬂ
Efga(z) = ZO Foldn )l (5.1.4)

where 9, A,0 € C, R(9) > 0, R(A) > 0, R(a) > 0, k > 0 and (¢ ), « is the Pochhammer
k-symbol defined in (5.1.1).

5.2 The Generalized k-Fractional Integrals and Dif-
ferentials of Mittag-Lefler k-Functions

In continuation of the study of generalized k-fractional calculus, we define integral

the following integral operators in term of (k, s) as follow:

Definition 5.2.1. If ¥ > 0 and 4,0,w € C, R(¥J) > 0, R(A) > 0, R(o) > 0, then
(kearonf)(2) = _/(Z’+1 TR A w(Z T — )R f(r)dr, (5.2.1)
where £ > 9. When s = 0, then (5.2.1) reduces to the operator
(k€aronf)(z) = _/(w — )RS \{w(z — T)*)(r)dr, (5.2.2)

see [18]. It is clear that, if w = 0 and ¥ = 1 then (5.2.2) reduces to the well-known
fractional integral operator defined as:

m (T)
(I8 f I‘(,u _/(w mTE Sd7, (R(u} > 0). {5.2.3)

Here, we recall the generalized k-fractional order integrations and differentiations
which are defined hy the operators ;15 , (f5_, Dy, , and Dj_, in Chapter 4 (see
(4.2.5)-(4.2.8)).
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Definition 5.2.2. The generalized form of { D%, defined in (4.2.7) is denoted by the
operator ;D% where y is the order such that 0 < p < 1 and v is the type of this
generalized k-fractional derivative operator such that 0 < v < 1, which is defined as:

(£D51) () = RIEM( )(k 5T (). (5.24)

It is clear that, setting v = 0 then (5.2.4) reduces to the generalized {4.2.5).
Lemma 5.2.1. For k > 0, s # 1, the following result for k-fractional derivative
operator § DY defined in(5.2.4) holds true:
Te{A
(D81 — @iy (g = e
(s+ 1) ET(—a)
withe>9,0<pu<]l,0<v<]landR(A) >0

(zs+1 _ lf“:s+1)="—;ﬂ-1, (525)

Proof. We obtain from equation (77} that

(Zﬁf"“k—“} (74! = as+1),:._1]) ()
Ie(A) s+l as+1)Ll‘~—t?—1‘” Eopith g

T s+ )T (- k) + A)(z

and
1 d /¢ 0-0)k- s srlv A
;a (k‘{&- Wk .ﬂl[(t +1 —a +1)k 1]) (z)
[ 1 — ¥V (k ﬂ-) + A - k]Fk()\) s+1 g1y Bovltk—uid 4
{1- ui{k H) < —a ) * 1
k(s +1) (1 - )k —p) +A)

which by applying the relation given in {2.1.6), yields

s Vs +] q+1 _ Fk()\)
(kDfH-[(T ])( T T -vk—p)+A—k)
B T A O e NI®))

T'e(A)
(s + 1) D (k- )+ A— k)
Fe((1 —v){k —p) + A — k) (zs+1_as+1)"—;£—1
Lok —p) + (1 -v)(k - p)+ A - k)
I'(A)
(s+1)"%[e() — p)

which is the desired proof. |

(24 — as+1)"—;-‘i—1,
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Theorem 5.2.2. For k > 0, s # —1, the following result clways holds true:
14d

8 3 A_ .2 2 2
Z ol - e (w( - 0]
B (s+1)m(zs+l as+1)——m 1
= pes
Proof. Let £ be the left-hand side of (5.2.6). Using (5.1.4) and interchanging the
order of summation and differentiation, we have

Ef g aeme(w(z™ = GSH)%)- (5.2.6)

=]

L= 0 k('ﬂn+A n'

25 _ go+l Pntg-1
A (Ga) @ -emiy
We find

A U A STy S
= (s+1)" (% TET 1) (z"— TET ”‘) (e —ar )T (508

I (%ﬂ. + %) (zs+l o aa+l)%“+%_m_l .

F(%n+%—m.)

Using (2.1.7), we get

(5.2.7)

={s+1)™

T($n+3) T (A + nY)

P(Zn+2-m) kTu(A—mk+nd) (52.9)
Combining {5.2.8) with (5.2.9) into (5.2.7), we obtain
L= (s ‘L'ml) Cacs a”l)%-m—l
o0 () {w (21 — aa+1)% }" (5.2.10)
X Z mk \
e Cx(9n + A) n!

which completes the desired proof. [
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Theorem 5.2.3. S...pose k > 0, 3 # 1, then the following results hold true:

(o — @R TIED g\ (w(rt — ) ) (2)
(zs+1 _ aa+1)ifﬂ—1

GrDt B g aruw(z* — a¥), (5.2.11)

1D [(r*H — @) RLED (w7 — ety E))(2)

(2541 — as+1)i;£—1

(s+1)5

By - uw(z* = athE)], (5.2.12)

and

$DEIr — @R B\ (w(rt — @) E))(2)

&+l _ &+l LEE_I
=& (sfl)-)g Ef o pp(W(z™! — a™)F)]. (5.2.13)

Proof.
([t Y o8 A(w(r'“ L)

_ (s f (rt! = @) B (w(rt ! — )R

kT4 (2) (zs+1 _ T.s+1)1 dr
(s+ )% f: ()"
T TR « T(9n + M)n!

z
X -/.(7.8+] - aa+])’%ﬂ-—](zs+l _ Ts+l)-E—lTadT
a

itl_gatl

Substituting 7°*! = a**! + (2! — a*!), this implies 7°d7 = (=3

)dy, we have

] ) E ] A- & a8 g
P8 [ — ot B s (w(rttt — @) E))]



1
_ Zr(anku zsﬂ_a_g“)k_tezﬂa_](s—i-l)‘i& /(l_y)ﬁ-f’_n_1y§-1dy
k

(Jn+ A) n' k(1)
_ Z (U I (2t — as+1)*—1——+ | Te(dn + A)Fy(p)
Fk(ﬂn + )\ n' ' (S + l)ka(u)Fk(ﬁn + A+ #)

(z3+1 _ as+1) - i (a)n'kwn(zs+1 . as+1)"—;—1

(s+ 1) s TCp(dn + A+ un!

(z“"’l _ as+1)ifﬂ—1

— E° w(zst! — g 1Y
(S+1)E k,ﬂ,.\-ﬂ.&( ( ) )

This completes the proof of (5.2.11}.
Now, we have

A_1 o 3 s+ 2
2D [(TSH a*t1)k lEk,ﬂ,.\(w(T gt tyE)]

1 d s pnk— & E] A_ o 8 I3 g
= (;a) {kn kfa-t p[("' H-a +1)" lEk,ﬂ,A(w(T g +1)")}

and using (5.2.11) this takes the following form:

iDi‘-I—[(Ts—H o s+1)%—1Ez"3 .\(W( s+1 _ s+1) )]

1d e ) e
= k" ( ) {(34—1)'}:‘ ( s+1 _ s+1)—k‘5+n 1Ek,19,A—;s+nk(w(z +1 —-a+1)k)}_

25 dz
Applying (5.2.6), we have

DA (77 — @) RTUEL (w(2 — @t R (2)

— {(3 + l)f(zs-l—l o as+1)%ﬁ—1E:’a,A-”(w(zs+l o as+1)-‘E)} )

This completes the desired proof.
Now to prove (5.2.13), we have

( D# Vk[( a+l s+1)%—1E:,ﬂ‘A(W(T8+1 _ as+1)%)]) (Z)
e () Sntr_
_ | s ppw . W™ sl s+l 1
- (k‘DtH- [; Fk(ﬂn'i' )\) n! (T a ) k ] (Z)
This can be written as:

- ¥ ey (102 ey )
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By applying (5.2.5), we get

(1Dt 1(re — @ B s (w(r! - e )] (2)

— i (V)nk f: Fe(In +2) (zs+l _ aa+1)"""’$’i—1
— Ce(@n+A) nl (s 4 1) kT (9n + X — u)
B (za+1 _ aa+1))‘—:"i—1 i (0)n [w(zs+l _ aa+1){-]n
(s+1)°% L= Tp(In+ A — p) n!
_ (2 — et ol _ atly}
(s + 1),§ E:.o,x—p(w(z a*t)E)
which completes the desired proof. O

Remark 5.2.1. Setting s = 0 in (5.2.11), (5.2.12) and (5.2.13), then we have the well
known results (see [18]). Similarly setting s = 0 and k = 1, then we get the results
derived in [109].

Lo

5.3 Some Properties of the Operator (j¢;} ;,/)(2)
Theorem 5.3.1. For k > 0, the following result holds true:
(esmoal(r — o 1)E1) (2)

(zs+l _ as+1)"—t—"—lrk(p)
{s+1)

B ppuw(z! — a?) ) f(t)de. (5:3.1)
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Proof. From {5.2.1), we have
(sl —a ) 0
- %f(zs+1 _ Ts+l)%—1(1_s+1 _ as+1)%_lEf“3‘A(W(Zs+l _ Ts+l)%).rsd.r

z

- ‘7}?1 w1l s 8 s s+lyAE2R 1 s
27 (E?’n :,\))h (13. f(r e T dT)

Il

n=0 a
o ni L..J"(zs+1 . as+l)“’Lk"ﬂ—1
= Be(A+ 9
Z S n Wt ) n! k(A + I, 1)
( RS SH)%E—IFIL-(#) Z ()i n(zs+1 _ as+1)"T" T (2)Tx(9n + A)
(s +1) Cr(Pn+ A)) : Tu(n+ A+ p)
25+l go+l *—j;ﬂ—1r 0 . i 2
= ( (S _: 1) k(; )Ei:,t?,a\+p(w(z +_ a +1)k))
which completes the desired proof. |

Theorem 5.3.2. The following result is holds true for x € [a, b];

Proof. Assume that % = [a,b] X [a,b] and P : T — R such that P{z,7) = [(z**! -
7% for all z € [a,l]. It is obvious that P = P, + P_ where

_ (zs+1 s+1)——1 Toa S T S z S b
P+(Z’T)_{0; a<z<t <,
and

P (z = (T3+1_z5+1)-f-—lzs; asfszsb
- 0; a<z<T<h

As P is measurable on X, therefore we can write

z

jP(z,*r)dT = fP(Z,T)dT

a
-4
A_
= f(zs+1 _ Ts+1)]; 1TsdT
a

_ E(Z‘H'l _ T‘H—l)%.

A



Hence, we obtain

P(z,7)E g p(w(z**! — r*))E)dr

fo—

= /P(z, T)E,f,,,',\(w(z’“ —‘r"“)g)d'r

(a-)“kw f s+1 s+l APy
th(0n+,\)n' (22T =Y T lrdr

[+ <]

=Z(a)n.k(u(z’+l—a’+l)%)" Bt _ gyt

e Ce(dn + A)n! A+dn

By using repeated integral, we have

b b
/ (/ P(z,’r)Ef,,,',\(w(z—-r)%)|f(z)|d,r) dz
a ba .
/ e (/ Pl ) B g (wlz - r)!)d‘f) &z

_ Z ﬂk w) k
“Te(dn+ A)nl A+ dn

I}

% /(Z""’l _ a"+1)ﬁiﬂ"|f(z)|dz

(O')n k(u(b""'l a+1)§)n k2
< Z Cx(d9n + A)n! (A+9n)(A+9n+k)

n=0

% (bs+1 _as+1)%+1‘/|f(z |dz

(O'),,k(u(b"'” - as-l—l) )n

< (ba+1 s+1)~;+1 Z 1",: p— ,\)nl

n=0

k?
<
* Dr I ron Ry h s

73
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Therefor the function @ : ¥ — R such that Q(z t) = P(z,7)f(z) is integrable on I by
Tonelli's theorem. Thus, by Fubini’s theorem f P(2,7)Ef 5 \(w(2*tt —7**1) # ) f(2)dz

is an integrable function on [e,b], as a function of ¢ € [a,8]. Thus, 357, , f(2) exists.
a

Theorem 5.3.3. Suppose k > 0, 3 # 1, then following result holds true:

(L keaonf1(2) = g(i ool )(2) = Getianlilfe fHz)  (53.2)

holds for any f € L{a, X).
Proof. From equations (5.2.1) and (4.2.5), we observe

(tlos [keation /1)

(s + )

(s4+ 1)V [ Ressn )]
KTu(p) J (25t — o)t

(3 + 1)1 £ 41 a+1
BT f (z

°dr

x [ [(rotl —yotl) k—lEg.a‘*(w(Ta+1 — u"“l)":‘)f(u)u’du ] dr.
By interchanging the order of integration, we obtain

e [‘?;EZT aaf1)(2)

kT (pz)

u

1 -4
— E [(S + 1) k (zs+1 . Ts+1)i~'—1(,rs+l - u’“)é'lEg',,l*(w(Ts“ s+1) )Tsd‘."]

x u® f(u)du.
By applying (5.2.11), we have
(il ke :-:-9 WD)

) ["(s i 1)E f (2~ w Y T B (e - “'H)%)u'f(u)d“}

thus, we get

e DE) = (et )@ (533)



79

To prove the second part, consider the rhs of (5.3.2) then by applying (5.2.1}, we get

(ifrfo Ale et f1)(2)

= ¢ [ - e - R )

x
1 4 s+l u)
— E-/(za+1 1,_s+1) lEv (w(zs+1 s+1),‘) ( (;‘k)m) f {THI_: e wdu ) dr.

a

By interchanging the order of integration, we have

(;E:-:gx o f1)(2)

s+1 - ¢ & ] - & & - 7 5 ] L3
- k_/ ( . ()#) [ fzr =7 +1)£— L(potl _ getyg lEk,ﬂ.,\("-"’(z +l_ pe YR )podr

x u® f (u)du.

u

Again by making the use of (4.2.5) and applying {5.2.11), we obtain

CEaBIENE) = g ieionnn ) S0 634)

Thus (5.3.3) and (5.3.4) complete the desired proof of (5.3.2). d



Chapter 6

(Generalized Fractional Integration

of Bessel k-Function

In this Chapter [98], we deal with two integral transforms which involving the Gauss
hypergeometric function as its kernels. We prove some compositions formulas for
such a generalized fractional integrals with Bessel k-function. The results are estab-
lished in terms of generalized Wright type hypergeometric function and generalized
hypergeometric series. Also, some corresponding assertions for RiemannLiouville and

ErdélyiKober fractional integral transforms are established.

6.1 Introduction and Preliminaries

The Gauss hypergeometric function is defined as:

- (a)a(b)n ﬂ

zFl(a.,b;c;z)=Z ©n nl’ (6.1.1)

n=0
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where a,b,c € C, ¢ # 0,—1,—2,--- and (A}, is the Pochhammer symbol defined for

A€Cand n € N as:
(Ao =1, M =2A+1)(A+2)-- - (A+n—1);neN. (6.1.2)

The series defined in {6.1.1) is absolutely convergent for |z| < 1 and |z| = 1 [24]. Saigo
[102] introduced the following left and right sided generalized integral transforms

defined for = > 0 respectively as:

(2770) @) = s

T

x / (-7 oA (v +an—magl-t ) f(Bdz,  (613)
and
(120 f) () =
- INGTY
x [@-gmiree oA (wtamay1-) /0 (614)

where oy, a2, € C and R(a;) > 0 and 2 Fy (e, b; ¢; z) is Gauss hypergeometric function
defined in (6.1.1). When az = —a, then (6.1.2) and (6.1.4) will lead to the classical
Riemann-Liouville left and right-sided fractional integrals of order a; € C, R(a) > 0,
(see [101]):

T

(= )@= I_,?;;z U/ (z — 1)1~ f(t)dz(z > 0), (6.1.5)

and

(s )@= ﬁ / (z -yt f(t)ds(s > 0).  (6.16)
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If ag = 0, then equations (6.1.3) and (6.1.4) will reduce to the well known Erdélyi-
Kober fractional defined as:

_01 oy

("&’u'nf )(“’) ( K. f )(w)= e / (@— = Witz (6.1.7)
and
(s )@ = (Km! ) @ %;) ]O (z — ) LN f(1)d,  (6.1.8)

where ay,1 € C, R{a,)} > 0 see [101).
The generalized Bessel k-function defined in [71] as:

Woelz) = g I‘k(nk(+il)+ kjn! (g)m%’ (6.1.9)
where £ > 0, v > -1, and ¢ € R and T',(2) is the gamma k-function defined in
Chapter 2.

If Kk = 1 and ¢ = 1, then the generalized Bessel k-function defined in (6.1.9} reduces
to the well known classical Bessel function J, defined in [25]. For further detail about
Bessel k-function and its properties ( [31], [32]).
The generalized hypergeometric function ,F,(2) is defined in [24] as
(). (1) - - (a)
nFo(z) =t
(B1), (B2), -~ ()

tr

= al n a?)u (O:p)n;'_n
,,_Z: 181 n ﬁ?)u : (ﬁq)” n!’ (6110)

where o, 3; € C, i = 1,2, ,p, 5 = 1,2,.--,qand §; # 0,—1,-2,--- and (2),

is the Pochhammer symbols. Also, the following identity of Gauss hypergeometric
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function holds:

F(C!3)F(C!3 — & — &2) .

& ) 6.1.11
IMaz — a1 )T{az — as)’ Rlog —ay —a3) >0 ( )

o Fi(on, ag; 035 1) =

(see [24], [101]).
The Wright type hypergeometric function is defined (see [116]- {118]) by the following
series as:

(&n Ai)l,p
PP (2) = 0, 4

(85, Birq

oo

_ [(ay + Ain) - Tlap + Apn) 2°
= go Tt Bin)- T(a. % Bon) 1 (6.1.12)

where a, and u, are real positive numbers such that

1+zq:ﬁ,—zp:a,.>0. \_ (6.1.13)
a=1 r=1

The equation (6.1.12) differs from the generalized hypergeometric function ,F,(2)
defined (6.1.10) only by a constant multiplier. The generalized hypergeometric func-
tion pFy(z) is & special case of ,W,(2) for A; = B; = 1, where ¢ = 1,2,.-. ,p and

i=12..- ¢

] (), (@) ! (@ Lhp
vy A . » ¥y 12

31;11 el (61, () iI;Il Ma) (852 g

(6.1.14)

For various properties of this functions see [51].



80

Lemma 6.1.1. ( [52]) Let a1, 0,1 € C, R(e1) > 0 and A > max|[0, @, — n|, then the

Jollowing relation holds:

F(’\)P(’\ +n- ‘12) A—org—1
’a 1 A_l _— m L]
( gyt ) @) = T eI O o+ 1)°

Lemma 6.1.2. { [52]) Let ay, a0, € C, R(e1) > 0 and A > max[0, @, — n|, then the

(6.1.15)

Jollowring relation holds:

oL xR A—1 = o2 . 6.1.1
( e ) (=) I'l1-—MT(or+o+n—A+ 1)3 (6.1.16)

In the same paper, they define the following left and right sided Erdélyi-Kober

fractional integral as:

( K, ) (z) = F(/l\ﬂ(—:c:?—ﬂ)x*—l, (6.1.17)

where R(a;) > 0, R(A) > —R(n), and

Pln-2+1)
- a1 _ 1.
( Komt ) (=) Plai+7— A+ I)S ’ (61.18)

where R(A) < 1+ R(n).

6.2 Representation of Generalized Fractional Inte-
grals in Term of Wright Functions

In this section, we introduce the generalized left-sided fractional integration (6.1.3)

of the Bessel k-functions (6.1.9). It is given by the following result.

Theorem 6.2.1. Assume that a;, oz, n, A, v € C be such that

R(7) > —1,R(an) > 0, ER(% +2) > max(0, Res - ), (6.21)
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then the following resull holds:

@ A—lyyrk x"+_'° ot
(rresmt e () (2) = L
(%+E'2)1(z+§+’?'0‘2‘2k)
- _e | (622

(24+1-02),F+E+m+n2)( +11)
Proof. Note that the condition {6.1.13) is satisfied so therefore »W3{z) is defined.

Now, from (6.1.3) and (6.1.9}, we have

x],0 ( )k+2“ o), x
( 1041_, “"‘t%-lec(t) ) (I) Z I‘ v-|- %+ rkjnl 1041_ kz 1rrt_-l'_+2n 1 (I)

By (6.2.1) and for any n = 0,1,2, -, R(2 + L+ 2n) > R($ + ¥) > max[0, R{az — 7).

Applying equation (6.1.16}, we obtain
il’l--{'.'l-z—‘.l.
o], £ k I
(foi W) (@) = T
XZ L+ 1 +2n}I‘( +24+n—az+2n)
42 —az+2n)I‘(k T2+ + 20 (L + 1+ ks

n—ﬂ

(e )
s (6.2.3)

By (6.1.12), we obtain

(Irmmd=twi ) (o)

1 (3+2.2,G+3+1-022)
ghti-oa-
= amE 2 T

(’E"‘%—02»2),&+%+al+7?=2);(%+1»1)

This is the required proof of (6.2.2}. 0
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Corollary 6.2.2. Assume that a1, A, v € C be such that R(}) > —1, R(e) > 0,
R(2 +2) > 0, then the following result holds:

pitita-1

(Ig';tf‘lw,fc(t) ) (z) = U

(v + A, 2k)
x 10, _e | (6.2.4)

1k

(F+2+0.2), (L + 1K)
Proof. By substituting a; = —a; in (6.2.2), we obtain the required result. 0
Corollary 6.2.3. Assume that ay, 17, A, v € C be such that R(}) > -1, R(ey) > 0,
R(2 + £) > 0, then the following formula holds:

|I+%_1
-1k = rE
( K:h'?tr Wu.c(t) ) (SB) (2k)‘:

(F+3:+n2)

1k
(B+2+a 4702 (2+1,1)

Proof. By setting az = 0 in (6.2.2), we get the desired result. 0

Theorem 6.2.4. Assume that oy, ag, n, A, v € C and k > 0 be such that
v A v .
.SR(E) > —1,R(a) > O,SR(E - E) < 1+ min[R{az), R(n)], (6.2.6)

then the following result holds:

z?"’?—l

(Igg-“'“t%-lw.i‘,c(%))(x) NETSY
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Q+o-3+42.01-2+%+92)

Q1-2+%2),Q+m+m+n—3+ 52, G+ LK)
(6.2.7)
Proof. Note that the condition (6.1.13) is satisfied so therefore 2 W;(2) is defined.
Now, from (6.1.4) and (6.1.9}, we have

(o) ) 0= 3 ot (

By (6.2.6) and forany k > 0and n =0,1,2,--- , R(3—¥—2n-1) < 1+R(3 -1 -1) <

Igl_haz.nt%+-‘|’;—2n—l ) (.TC)

1 + min[e,, R(n)}]. Applying equation (6.1.16), we obtain
Ay
1 xr'l‘;—ﬂz—l
Jovezm—lyrk (- _ u
(w0 - oy
i P(Q’g—%+%+1+2R)F(T}—%+%+l+2ﬂ)
Ml-2+3i+2mTag+e+n—3+i+1+20)I({ +1+n)

n=0

x (4(#% (6.2.8)

By (6.1.12}, we obtain

aream -1y (L mi:%__%_l
(e ) @) = e
(a;—%+%+1,2},(r}—%+§+1,2)
Xo Wy | — ==
(1-2+82)(m+am+n—2+1+1,2,(3+1,1)
This is the required proof of (6.2.7). O

Corollary 6.2.5. Assume that on, n A, v € C and k > 0 be such that R(}) > -1,
0 <R(on) <1 —-R(3 — 1), then the following result holds:

:I,"':-_'E'I'al_l

( I WE (L) ) @ = “anr



x 1P, | - £ . (629)

Corollary 6.2.6. Assume that a1, n, A, v € C and k > 0 be such that R(}) > -1,
R(cn) >0, R(2 + 2} < 1+ max{0, R(n)], then the following formula holds:

(Kantowiay Y@ = o

(L+-2 +5+n2)

(1 - %+%+&1+ﬂ,2),(%+1,1)
6.3 Representation in Terms of Generalized Hy-

pergeometric Functions

In this section, we introduce the generalized fractional integrals of Bessel &-function
in term of generalized hypergeometric function. First we consider the following well

known results:

2u-1
I(2u) = 2;; L) (e + %); peC (6.3.1)
and
(Wan = (ST p e Cinen (63.2)

We represent the following theorems containing the generalized hypergeometric func-

tion.
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Theorem 6.3.1. Assume that a1, oz, n, A, v € C be such that
v A
§R(—E) > —1,R{a;) > 0, §R(k k) > max[0, R(az — 1)), (6.3.3)
and let % + %, % +i+n—ay#0,-1, -, then the following result holds:
(I(?lm,nti‘;—lwk (t)) (@) = z:+%-t:a—1 F(% + %)F(% +§+n—ag)
+ v, (2}5)3 F(% + 3 — O‘ig)r(é _|_ ¥4 o) + n)l"(% + 1)
k+2k=2k+2k+2'2k+2k+u1£+2k+w+_
('..1'!2
X4 F5 -9
v ¥ o v o v a v a 1
ptlgtn-Foatn - i tit S gt et 2
(6.3.4)

Proof. Note that ,Fy defined in (6.3.4) exit as the series is absolutely convergent. Now,
using (??) with z =  + 1 and (6.2.3) and applying (6.3.2) with z being replaced by

+%, 3+E+n—azand 2+ L+ 0;+7, we have

‘\ x'\_-'i‘-_" —ag—1
(et W) (@) = S

xi DL+ 2T+ 247~ a)
FE+2 -2 +2+am+pl(E+1)
%)211(: + 2 + 7 — az)on (—CI )

k
ainlzg + 5% + 2)“(% + 3 + T uls + g + 5%
2 + +

2k _Ezz)ﬂ(zk"'% 2 )n(zi'*' 2k+

Thus, in accordance with equation (6.1.10), we get the required result (6.3.4). O
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Corollary 6.3.2. Assume that oy, A, v € C be such that R(}) > —1, R(ai) > 0,

R(2+3) >00nd2+2L=0,—1,--, then the following result holds:

Thtitea-l r(2+%)
(26} T(3+3%-)l(}+1)

(st -iwi (b)) () =

A
mtmantutsn
Xa Fa I— ez? . (635)

v A4 v oy A, v ozl
k+1‘2k+k 2’2k+2k 2

[

Proof. By substituting as = —a; in (6.3.4), we obtain the required result. D

Corollary 6.3.3. Assume that aj, n, A, v € C be such that R(}) > -1, R(m) > 0,
ER(% + %) > 0 and let % +3tn—ax#0,-1,---, then the following result holds:

N F+HE-1 FE+%+n)
K* 1wk T kK
(Kaatt W) @) = s TE+e+m+nTE+D)

Ay v n Ay v opdl
wmtwtountnty
X of3 — % . (6.3.6)
v A ¥ ai+n A BN a1 +7+1
k+1‘k+k+ 2 o Tt 2

Proof. By setting oy = 0 in (6.3.4), we get the desired result. ]

Theorem 6.3.4. Assume that ay, @z, 5, A, v € C and k > O be such that

R(Y) > 1, Rla) > 0, m(% ~2) < 14 minfR(as), R(r), 63.7)
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and let 9’;—" +:+1, 97— -:— +5+1#0,-1,---, then the following result holds:

(e ) @) = i

- met g (2K)*

y Moz — 3+ 5+ UT(n—3+3+1)
Fl-2+9M e +aa+n—3 + 2+ 0L +1)

o+l A v a2 A 4 ov o ondl A Lu_i v
2 % T2 g % T2 5% T 2% 2 % T %
X4 F |_4:=’

(6.3.8)

Proof. Using (??) with z = £ + 1 and (6.2.8) and epplying (6.3.2) with z being
replaced by ap ~ 2+ ¥ +1,1- 2+ eand az — 2 + E+a1 +7n+1, we have

X
R

1
Ialln'lvqté—l k - —_
(w0 @ =T
Tl —$+3+1M(n—2+%+1)
r(1—§+§)r(a1+ag+n 2+3 +1)1"(§+ 1)

i (842 - +£L) (PGt i+ -+ g i+l
T o(k + 1)n( 5_% ar)ni(l _% + e (™ +Q2T H __+2k)n(nM 2;;‘*‘%"’1)“
(=o)"
* (akz?)inl’
By (6.1.10}, we obtain the required given in (6.3.8). O

Corollary 6.3.5. Assume that 1, n A, v € C and k > 0 be such that R(}) > —1,
0<R(m) <1-R(E—%), and let 2 — L+ a; #1,2,-+- then the following result
holds:

a1 A1 _ g el oo - 343 41)
(I 1wk (L ))( ) oL P(l—;+;)P(§+1)
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zoptl A 4 v
2 2k 2kt 2 2k

x o Fy |- | (6.3.9)

-3

v 1 A v A v
etla—mtapl-gtax

b3

Corollary 6.3.6. Assume that a1, 7, A, v € C and k > 0 be such that R(3) > —1,
R(e) > 0, R(2+4) < 1+ max[0,R(y)] and let  —¥—n # 1,2, -, then the following

formula holds:
A st T334
K'?_mtk—lw:c(%) (I) = = A w v
wtt W @0F T~ + Pri+1)
1 U 2 1
Togtan T o atu
friepl depe Topagp

Corollary 6.3.5 and 6.3.6 follow from theorem 6.3.4 in respective cases @y = —a

and oz = 0.



Conclusion

In this research work, We have derived several propertics of some special k-functions.
We have worked on gamma, beta and hypergeometric k-functions and derived gamma,
beta and hypergeometric k-functions with matrix arguments. We have proved their
various properties such as integral representation, relation between gamma and beta
matrix k-function and differential equations of hypergeometric matrix k-function.
Also, we have worked on extended gamma and beta function and derived extended
gamma, beta k-functions and their various properties. We have used the idea of
gamma and beta k-function and established (7, k)-hypergeometric function. Working
in the theory of fractional calculus, we have proved a number fractional integral and
differential formulas of (7, k)-hypergeometric function. Also, we have studied the gen-
eralized fractional integrals containing hypergeometric function in their kernels and
established generalized fractional integration formulas of k-Bessel function. Further,
we have established {k, s)-fractional calculus of (7, k}-hypergeometric function and k-
Mittag-Lefler function. Some various generalized fractional integral and differential
formulas of (7, k)-hypergeometric function and k-Mittag-Leffler function have been
obtained. Note that If ¥ = 1, we get the classical results throughout the research

work.
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Future research: The theory of special k-functions is presented formally in the
beginning of this century. It is a very fruitful field having vast applications in different
fields of mathematics, physics, statistics and other natural sciences. There is a scope
of this theory to find the k-analogue of several special functions with properties and
applications. We can established certain inequalities involving the extended gamma
and heta k-functions. We can apply this theory in special k-function and introduced
extension of some special k-functions. This theory can also be used in fractional

calculus in order to introduce extended k-fractional derivatives and integral operators.
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