Aoce. WHe. (Fail) 7:/)"97

"I

Intelligent Database Agent

Tor24y

Developed By:

Muhammad Adeel Ather
33-CS/MS/01

Mubasher F erbze
49-CS/MS/01

Supervised By:

Dr. Malik Sikandar Hayat Khiyal

Department of Computer Science
Faculty of Applied Sciences
International Islamic University Islamabad
(2005)

Fyo B

Intelligent Database Agent

Final Approval

W ‘ doe. No. (ﬁ’w).,f nd e

Department Of Computer Science

International Islamic University Islamabad

Final Approval

August 10, 2005

It is certified that we have read the project report submitted by Mr. Muhammad Adeel
Ather (Reg. No: 33-CS/MS/01) and Mr. Mubasher Feroze (Reg. No: 49-CS/MS/01) and it is

our judgment that this report is of sufficient standard to warrant to acceptance by

International Islamic University Islamabad for MS Degree in Computer Sciences.

Committee

1.

External Examiner

Mr. Shaftab Ahmed

Senior Principal Engineer (R)

Engineer Co-ordinator

Computer Science & Engineering Department
Bahria University, Islamabad.

Internal Examiner

Dr. Syed Afaq Ahmad Hugeun

Head,

Department of Computer Engineering.
International Islamic University, Islamabad
Supervisor -

Dr. Malik Sikandar Hayat Khiyal

Head & Associate Professor,

Department of Computer Science.

International Islamic University. Islamabad

stoptatl—r

A dissertation submitted to

Department of Computer Science,

Faculty of Applied Sciences,

International Islamic University, Islamabad
as a partial fulfillment of the requirement

for the award of the degree of the MS in Computer Sciences.

ii

Intelligent Database Agent

Dedication

Dedication

To our parents,

Our teachers

and

Our friends

i

- Declaration

We here by solemnly declare that the developed software and this accompanied
report neither as a whole nor as a part thereof has been copied from any source .It is
further declared that we have developed this software as well as the accompanied
report entirely on the basis of our personal efforts made under the kind guidance of
our teachers .If any part of this report is proved to be copied out from any source or
found to be reproduction of some other, we shall stand by the consequences thereof.
We also declare that no part or whole of the work presented in this report has been

submitted in support of any degree for other university or institution of learning.

Muhammad Adeel Ather
Reg # 33-CS/MS/01

Mubasher Feroze
Reg # 49-CS/MS/01

iv

e Intelligent Database Agent ACKROWtedgement

‘ .

t

= Acknowledgement

| .

L

| First and above all, gratitude is due to ALLAH who gives us health, strength

L and patience to complete this thesis .We are thankful to our teacher who guided us in
this project in any way they could, also to our supervisor Dr. Malik Sikandar Hayat

L Khiyal for providing us help in this conducting the project .

|

L. We further wish to express our gratitude to people we met during project who

| have contributed to this thesis by offering guidance, sharing good advice, and

. providing tough critique when necessary.

3 Muhammad Adeel Ather
| Reg # 33-CS/MS/01

Mubasher Feroze
Reg # 49-CS/MS/01

Intelligent Database Agent

PRV IR W WP TR

Project Title:

Undertaken By:

Supervised By:

Date:

Start Date:

End Date:

Tools:

Operating System:

Project In Brief

Intelligent Database Agent

Muhammad Adeel Ather (Reg. No: 33-CS/MS/01)
Mubasher Feroze (Reg. No: 49-CS/MS/01)

Dr. Malik Sikandar Hayat Khiyal
8 March 2003

September, 2003

March, 2005

Visual Basic 6.0, ORACLE

Windows 2000/XP

vi

Intelligent Database Agent Abstract

Abstract

Intelligent Database Agent is a natural language based interface to databases. It is
developed to facilitate the naive user to use different types of databases without having any
deep knowledge of database tables, relation between different tables and constraints of the
database. With the existing systems, it is difficult for the user to easily understand the
architecture and details of the database. This system provides the user with user friendly

graphical interface and easy way to configure the different databases with the system.

vii

-

Intelligent Database Agent Prefuce

Preface

This thesis is regarding the project work title “Intelligent Database Agent™ submitted
as partial fulfillment of requirement for the award of the MS Degree in Computer Sciences

from International Islamic University, Islamabad.

Chapter one of the thesis presents an introduction of the project, giving the purpose,
need and objectives of the project.

Chapter two of this thesis presents general background of Natural Language
Processing techniques that are available and their practical applications in detail. Chapter
three is system analysis, which covers requirement and domain analysis with the help of
different software models. Chapter four of design analysis describes the design of the
“Intelligent Database Agent”. Chapter five give the implementation detail of the software

along with some sample code. Chapter six defines Testing and Evaluation part showing the

system stability.

At the end of Dissertation Appendices, Glossary and References are given. In the

appendix — A, a general description of software is given.

viii

Intelligent Database Agent Table of Contents
Table of Contents

Chapter No. Contents Page No.
1. Introduction 2
1.1 Natural Language Processing (NLP) 2
1.2 Applications of NLP 2
1.2.1 Machine Translation 3
1.2.2 Database Access 3
1.2.3 Text Interpretation 3
1.3 Existing Problem 3
1.4 Objective 4
2. Literature Review Y
2.1 Practical Applications 7
2.1.1 Machine Translation 8
2.1.2 Database Access 9

2.1.3 Text Interpretation 10

2.1.3.1 Information Retrieval (IR) 10

2.1.3.2 Text Categorization 1

2.1.3.3 Data Extraction 11

2.2 Advantages of NLIDBs 11
2.2.1 No artificial language 11

2.2.2 Better for some questions 12

2.2.3 Discourse 12

2.3 Disadvantages of NLIDBs 12

2.3.1 Linguistic coverage not obvious 13

2.3.2 Linguistic vs. conceptual failures R

2.3.3 Users assume intelligence 14

2.3.4 Inappropriate medium | 14

2.3.5 Tedious configuration 14

2.4 Background History 15

ix

Intelligent Database Agent Tuble of Contenis

Chapter No. Contents Page No.

i 3. Basic Concepts 25
- 3.1 Natural Language 25
3.2 Natural Language Processing 25

3.2.1 Computational Linguistics 26

3.2.2 User interfaces 20

3.2.3 Knowledge-Acquisition 26

3.2.4 Information Retrieval 20

3.2.5 Translation 26

3.3 Levels of Natural Language Processing 27

3.3.1 Phonetic or Phonological Level 27

:~ 3.3.2 Morphological Level 27
3.3.3 Syntactic Level 27
. 3.3.4 Semantic Level 28
- 3.3.5 Discourse Level 28
: .3.3.6 Pragmatic Level 29
‘~ 3.4 Practical Applications of NLP 29
} 3.4.1 Machine Translation 29
- 3.4.2 Database Access 30
3.4.3 Information Retrieval (IR) 30

3.4.4 Text Categorization 30

3.4.5 Data Extraction 31

3.5 Software Agent 31

3.5.1 Types of Software Agents 31

3.5.1.1 Autonomous 31

l 3.5.1.2 Communicative 32
| | 3.5.1.3 Perceptive 32
3.6 Efficient Parsing 32

- 3.6.1 Tokenization 32
3.6.2 Morphological Analysis 33

3.6.2.1 Inflectional Morphology KX}

Intelligent Database Agent

Table of Contentys

Chapter No. ‘Contents
3.6.2.2 Derivational Morphology
3.6.2.3 Compounding

3.6.3 Dictionary Lookup
3.6.4 Scaling Up the Lexicon
3.6.4.1 Morphological Analysis
3.6.4.2 Capitalization
3.6.4.3 Special Format
3.6.4.4 Spelling Correction Routines

4. System Analysis
4.1 Analysis
4.1.1 Requirement Analysis
4.1.2 Domain Analysis
4.2 Steps for Object Oriented Analysis
4.3 Use Cases
4.3.1 Use Case Analysis
4.3.2 Actors
4.3.3 Use Cases
4.3.4 Use Case Expanded Format
4.3.4.1 Use Case Login
4.3.4.2 Use Case Client Database Details
4.3.4.3 Use Case Fill Synonym Dictionary
4.3.4.4 Use Case Extract Table Constraints
4.3.4.5 Use Case Manipulate Table Synonyms
4.3.4.6 Use Case Add Table Synonyms
4.3.4.7 Use Case Edit Table Synonyms
4.3.4.8 Use Case Delete Table Synonyms
4.3.4.9 Use Case Manipulate Colunmin Synonyms
4.3.4.10 Use Case Add Column Synonyms
4.3.4.11 Use Case Edit Column Synonyms

X1

Page No.
33
33
33

34
34
34
34

wn h
—_ O

U
88

Intelligent Database Agent

Table of Contents

Chapter No. Contents

6.

4.3.4.12 Use Case Delete Column Synonyms

4.3.4.13 Use Case Manipulate Keyword Synonyms

4.3.4.14 Use Case Add Keyword Synonyms
4.3.4.15 Use Case Edit Keyword Synonyms
4.3.4.16 Use Case Delete Keyword Synonyms

4.3.4.17 Use Case Analyze Query
4.3.4.18 Use Case Log Off

4.4 Domain Analysis
4.4.1 Conceptual Diagram

. System Design

5.1 Activity Diagrams

5.2 Class

5.3 Class Diagrams

5.4 Attribute

5.5 Relationships

5.6 Sequence Diagram
5.6.1 Enter/Edit Table Synonyms
5.6.2 Enter/Edit Column Synonyms
5.6.3 Enter/Edit Keyword Synonyms

5.6.4 Database Information

Implementation
6.1 Structured Query Language
6.2 Modules of Intelligent Database Agent
| 6.2.1 Database Connection with NLP system
6.2.1.1 Universal Data Link
6.2.1.2 Client Database Details
6.2.2 English Language Dictionary Interface

6.2.3 Database Information Extraction

Xil

Intelligent Database Agent

Table of Contenty

Chapter No. Contents
6.2.3.1 Database Independent Information
6.2.3.2 Database Related Information
6.2.3.3 Database Semantics Information
6.2.3.4 IDA Configuration

\ 6.2.4 IDA Internal Database

‘ 6.2.5 Parsing and keywords extraction engine

6.2.5.1 Tokenization

6.2.6 SQL generation Engine

[6.2.7 User Interface

6.3 Sample Code

7. Testing
7.1 Objective of Testing
7.2‘Object Oriented Testing Strategies
7.3 Types of Testing Done

7.4 Evaluation

Appendix A: Intelligent Database Agent
i A. Intelligent Database Agent

"~ A.1 Description

A.2 Menu ’Items

L A.2.1 Configuration
; A.2.1.1 Client Database Details
A.2.1.2 Fill synonym Dictionaries
A.2.1.3 Extract Table Constraints
A.2.1.4 Enter/Edit Table Synonyms
A.2.1.5 Enter/Edit Column Synonyms
A.2.1.6 Enter/Edit Keyword Synonyms
A.2.1.7 Log Off
A.2.1.8 Exit

Xiii

Page No.
90
90
91
92
93
90
97
97
98
98

106
106
106
106
108

C

(o

Intelligent Database Agent

Table of Comtenty

Chapter No. Contents
A.2.2 Query
A.2.2.1 Analyzer
A.2.3 Help
A.2.3.1 About

Appendix B: Figures Use in Project Documentation
Appendix C: Glossary
References and Bibliography

Xiv

Page No.
117
117
118
118

119
122
125

-

Chapter # 1

Introduction

Chapter # | Introduction

1. Introduction

Natural Language is a language which humans use when communicating with one
another. A natural language exists as a result of evolution as opposed to invention. Consider
French, English or German; these languages have evolved over centuries to become what
they are today. On the other hand, languages such as COBOL. C++ and SQL were created in
a relatively short period of time. Natural languages tend to have very large lexicons and

highly complex grammars.

1.1 Natural Language Processing (NLP)

Natural Language is a natural mode of communication for human beings but it can
not be understood by the computers. Different standard computer languages arc used to
interact with computers but those are very specific and need to be specialized. Its very
difficult for every person to master these languages. Natural Language Processing is the way

to convert the Natural Language into the Computer understandable language.

Natural language Processing can be used to perform a variety of useful tasks,
ultimately it offers a more natural mode of communication between the system and user.
Another application of natural language processing in conjunction with speech synthesis and
speech recognition is to allow people with physical handicaps (such as paralysis) to use

computers more effectively.

1.2 Applications of NLP

Natural language processing is being applied in more and more ficlds each day. The
main applications of natural language processing are machine translation. database access.
and text interpretation. The more successful applications of natural language processing have
two common properties. First, they are focused on a particular domain instead of allowing
discussion of any topic. Second, they focus on a particular aspect of comprehension instead

of trying to understand the language completely.

Intelligent Database Agent 2

—

Chapter # 1 Introduction

1.2.1 Machine Translation

Machine translation uses natural language processing techniques to translate from one
natural language to another. A typical translation system has a lexicon of 20,000 to 100,000
words and a grammar of 100 to 10,000 rules. It is very difficult to perform 100% accurate

machine translation because it requires a detailed understanding of the text and of the

situation to which the text refers.

1.2.2 Database Access

Database access via natural language allows the user to interact with the database
without having to learn a formal language such as SQL, Access, C/C++, etc. There is a
disadvantage to access the database through natural language because it can be confusing and
frustrating for the user if their query fails, because it is outside of the system's competence.
But these problems can be handled in a better way by developing the appropriate graphical

interfaces or providing the guidelines about the limitations of the systems functionality.

1.2.3 Text Interpretation

Natural Language can also be used for the text interpretation. Information retrieval,
Text Categorization and Data extraction fall under this category. Information retricval is a
collection of methods which can be used to retrieve documents relevant to a query trom a
group of documents. Text categorization is the sorting of natural language texts into fixed
topic categories. Natural language processing has been successful in this area categorizing
over 90% of news stories into their correct categories. Data extraction is the process of

extracting useful data from a natural language text (which is often online), and placing this

data in a structured database record or template.
1.3 Existing Problem
There are lots of Natural language interfaces to databascs. But therc are some

problems with the existing interfaces. First of all, most of them are specific for specific

domains, although they are more accurate but they can only be used for that specific domain.

Intelligent Database Agent 3

—

Chapter # 1 Introduction

For example, if a Natural Language Interface is developed for tourism industry then that will
only cover the tourism domain. Another problem is that NLIDBs usually require tedious and
lengthy configuration phases before they can be used. Also the interfaces given by such
systems are not user friendly, Therefore, more and more intricate user interface mechanisms
are being developed, from command line interfaces (CLI) to graphical user interfaces (GUI)
and, more recently, even 3-dimensional representations. However, even though the on screen
representations and ways of interactions become more sophisticated, they are still largely
artificial, users have to learn the meaning of the various commands and icons. which
parameters they take, and the varied forms how to interact with them. In short, computer
systems have not yet been able to satisfactorily communicate with the user in the most

human way: natural language.
1.4 Objective

To overcome the problems stated above, our objective is to develop an Intelligent
Database Agent based on simple keyword extraction technique with front end based on
artificial intelligence and natural language processing. The basic idea behind the creation of
the Intelligent Database Agent is to communicate with the database without having in depth
knowledge of the database like the database tables, database language and table relations etc.
and without the help of specialized database query languages like SQL. instead using simple
English language. The database Agent should convert the English query into structured query
language understandable by the underlying database by applying knowledge of the database
and the English language. Theme behind Intelligent Database Agent is the cffective use of
natural language based input given by the user through identifying and using the keywords
present in the user’s entered query. This information in the form of keywords \\'iH.then be
combined with database information and knowledge present in the system to make a

language (Structured Query Language in this case) to talk to the underlying database.

Intelligent Database Agent 4

Chapter # 2

Literature Review

Chapter #2 Litcrature Review

2. Literature Review

A natural language is a language which humans use when communicating with one
another. A natural language exists as a result of evolution as opposed to invention. Consider
French, English or German; these languages have evolved over centuries to become what
they are today. On the other hand, languages such as COBOL, C++ and SQL were created in
a relatively short period of time. Natural languages tend to have very large lexicons and

highly complex grammars [3].

Natural language processing can be used to perform a variety of useful tasks,
ultimately it offers a more natural mode of communication between the system and user.
Another application of natural language processing in conjunction with speech synthesis and

speech recognition is to allow people with physical handicaps (such as paralysis) to use

computers more effectively [3].

Natural language interfaces to databases are not in common usc today for two main
reasons: they are difficult to use and they are expensive to build and maintain. The “‘ease-of-
use” problem is solved by wedding a menu-based interaction technique to a traditional
semantic grammar-driven natural language system. Using this approach. all user queries are
“understood” by the system. The “creation and maintenance problem™ is solved by designing
a core grammar with parameters supplied by the data dictionary and then automatically
generating semantic grammars covering some selected subpart of the user's data.
Automatically generated natural language interfaces offer the user an attractive way to group
semantically related tables together, to model a user’s access rights, and to model a user's

view of supported joins paths in a database [1].

Although some of the numerous Natural Language Interfaces to Databases (NLIDBs)
developed in the mid-eighties demonstrated impressive characteristics in certain application
areas, NLIDBs did not gain the expected rapid and wide commercial acceptance. For
example, in 1985 Ovum Ltd. [63] (p.14) was foreseeing that “By 1987 a natural language

interface should be a standard option for users of Database Management System (DBMS)

Intelligent Database Agent 6

[~
1

—

H

~

e

Chapter #2 Literature Review

and ‘Information Centre’ type software, and there will be a reasonable choice of
alternatives.” Since then, several commercially available NLIDBs have appeared, and some
of them are claimed to be commercially successful. However, NLIDBs are still treated as
research or exotic systems, rather than a standard option for interfacing to databases, and
their use is certainly not wide-spread. The development of successful alternatives o
NLIDBS, like graphical and form-based interfaces, and the intrinsic problems of NLIDBs are
probably the main reasons for the lack of acceptance of NLIDBs.

In recent years there has been a significant decrease in the number of papers on
NLIDBs published per year. Still, NLIDBs continue to evolve, adopting advances in the
general natural language processing field (For example. discourse theories), exploring
architectures that transform NLIDBs into reasoning agents, and integrating language and
graphics to exploit the advantages of both modalities, to name some of the lines of current
research. Generic linguistic front-ends have also appeared. These are general-purpose
systems that map natural language input to expressions of a logical language (For example,
the CLE system [8]). These generic front-ends can be turned into NLIDBs. by attachiﬁg

additional modules that evaluate the logic expressions against a database

2.1 Practical Applications

Natural language processing is being applicd in more and more ficlds cach day. The
main applications of natural language processing arc machine translation, database access,
and text interpretation. The more successful applications of natural language processing have
two common properties. First, they are focused on a particular domain instead of allowing
discussion of any topic. Second, they focus on a particular aspect of comprehension

instead of trying to understand the language completely [5].

e Successful applications focus on a particular domain and a particular aspect of

comprehension.

Intelligent Database Agent

-1

Chapter # 2 Literature Review

2.1.1 Machine Translation

Machine translation uses natural language processing techniques to translate from one
natural language to another. Taum-Meteo is one successful application of machine
translation. It translates weather reports from English to French. This system is successful
because the language used in weather reports is quite regular and consistent (a restricted
domain). SPANAM is another natural language translation syStem which translates between
Spanish and English. Although SPANAM is less accurate, it operates in a broader domain
(the text can be on any subject). Spanish-English machine translation (SPANAM) has been
operational at the Pan American Health Organization (PAHO) since 1980. As of May 1984,
the system's services had been requested by 87 users under 572 job orders, and the project's
total output corresponded to 7,040 pages (1.76 million words) that had actually been used in
the service of PAHQ's activities. The translation program runs on an IBM mainframe
computer (4341 DOS/VSE), which is used for many other purposes as well. Texts are
submitted and retrieved using the ordinary word-processing workstation (Wang OI15/140) as
a remote job-entry terminal. Production is in batch mode only. The input texts come from the
regular flow of documentation in the Organization, and there are no restrictions as to field of
discourse or fype of syntax. A trained full-time post-editor, working at the screen, produces
polished output of standard professional quality at a rate between two and three times as fast
as traditional translation (4,000-10,000 words a day versus 1,500-3,000 for human
translation). The post-edited output is ready for delivery to the user with no further

preparation required.

The SPANAM program is written in PL/L. It is executed on the mainframe at speeds
as high as 700 words per minute in clock time (172,800 words an hour in CPU time). and it
runs with a size parameter of 215 K. Its source and target dictionaries (60.150 and 57.315

entries, respectively, as of May 1984) are on permanently mounted disks and occupy about 9
MB each.

¢ A typical translation system has a lexicon of 20,000 to 100,000 words and a grammar of
100 to 10,000 rules.

Intelligent Database Agent 8

(.

-

Chapter # 2 Literatinre Review

e It is very difficult to perform 100% accurate machine translation because it requires a

detailed understanding of the text and of the situation to which the text refers.

2.1.2 Database Access

Database access via natural language allows the user to interact with the database
without having to learn a formal language such as SQL, Access, C/C++. etc. There is a
disadvantage to this. It can be confusing and frustrating for the user if their query fails.
because it is outside of the system's competence. For example a natural language interface for
a database may understand "south of the equator”, but possibly not "in the southern
hemisphere” even though both phrases have the same meaning. [Russell & Norvig, 1995, p.
693]

As a natural language (NL) interface, question answering on relational databases
allows users to access information stored in databases by requests in natural language, and
generates as output natural language sentences, tables, and graphical representation. The NL

interface can be combined with other interfaces to databascs: a formal query language
interface directly using SQL, a form-based interface with fields to input query patterns, and a
graphical interface using a keyboard and a mouse to access tables. The NL interfuce docs not
require the learning of formal query languages, and it easily represents negation and
quantification, and provides discourse processing. The use of natural language has both
advantages and disadvantages. Including general NLP problems such as quantifier scoping,
PP attachment, and elliptical questions, current NLIDB has many shortcomings: First, as a
frequent complaint, it is difficult for users to understand which kinds of questions are
actually allowed or not. Second, the user assumes that the system is intelligent: he or she
thinks NLIDB has common sense, and can deduce facts. Finally, users do not know whether
a failure is caused by linguistic coverage or by conceptual mismatch. Nevertheless. natural
language does not need training in any communication media or predefined access patterns.
NLIDB systems, one of the first applications of natural language processing. including
“LUNAR” were developed from the 1970s. In the 1980s, research focuses on intermediate

representation and portability, and attempts to interface with various systems. CHAT-80

Intelligent Database Agent 9

—

Chapter # 2 Literature Review

transforms an English query into PROLOG representation, and ASK teaches users new
words and concepts. From 1990s, commercial systems based on linguistic theories such as
GPSG, HPSG, and PATR-II appear, and some systems attempt to semi-automatically
construct domain knowledge. LOQUI , a commercial system, adopts GPSG grammar.
Meanwhile, Demers introduces a lexicalist approach for natural language to SQL translation ,
and as the CoBase project of UCLA, Meng and Chu combine information retrieval and a
natural language interface. The major problems of the previous systems are as follows. First,
they do not effectively reflect the vocabulary used in the description of database attributes
into linguistic processing. Second, they require users to pose natural language queries at one
time using a single sentence rather than give the flexibility by dialog-based query processing.
The discordance between attribute vocabulary and linguistic processing vocabulary causes
the portability problem of domain knowledge from knowledge acquisition bottlencck; the
systems need extensive efforts by some experts who are highly experienced in linguistics as

well as in the domain and the task.

Androutsopoulos, which are mainly referenced for this section, classifies NLIDB
Systems into the following four major categories: pattern matching systems, syntax based

systems, semantic grammar systems, and intermediate representation language systems.
2.1.3 Text Interpretation

Text interpretation can be categorized in following three types:
2.1.3.1 Information Retrieval (IR)

~ Information retrieval is a collection of methods which can be used to retrieve
documents relevant to a query from a group of documents. A simple query is a list of words
which describes the content of the documents which we are searching for. Every document
has some sort of abstract associated with it. It may be the document title, a set of key words
or even an n-dimensional vector. N-dimensional vectors are used in more modern

information retrieval systems.

Iutelligent Database Agent 1

—
i

Chapter #2 Literature Review

2.1.3.2 Text Categorization

Text categorization is the sorting of natural language texts into fixed topic categories.
Natural language processing has been successful in this area categorizing over 90% of news
stories into their correct categories. Natural language processing systems tend to be faster and

more consistent than their human counterparts.

2.1.3.3 Data Extraction

Data extraction is the process of extracting useful data from a natural language text
(which is often online), and placing this data in a structured database record or template. The

SCISOR system developed by Jacobs and Rau in 1990 is an example of a data extraction

system.
2.2 Advantages of NLIDBs

Following are some advantages of Natural Language Interfaces to databases:

2.2.1 No artificial language

One advantage of NLIDBS is supposed to be that the user is not required to leamn an
artificial communication language. Formal query languages are difficult to learn and master,
at lcast by non-computer-specialists. Graphical interfaccs and form-based interfaces arc
easier to use by occasional users still, invoking forms, linking framcs, sclecting restrictions
from menus, etc. constitute artificial communication languages that have to be learned and
mastered by the end-user. In contrast, an ideal NLIDB would allow queries to be formulated
in the user’s native language. This means that an ideal NLIDB would be more suitable for
occasional users, since there would be no need for the user to spend time leaming the

system’s communication language.

Intelligent Database Agent 11

-

e

Chapter #2 Literature Review

In practice, current NLIDBS can only understand limited subsets of natural language.
Therefore, some training is still needed to teach the end-user what kinds of questions the
NLIDB can or cannot understand. In some cases, it may be more difficult to understand what
sort of questions an NLIDB can or cannot understand, than to learn how to use a formal
query language, a form-based interface, or a graphical interface (see disadvantages below).

One may also argue that a subset of natural language is no longer a natural language.

2.2.2 Better for some questions

It has been argued that there are kinds of questions (For example questions involving
negation, or quantification) that can be easily expressed in natural language, but that seem
difficult (or at least tedious) to express using graphical or form-based interfaces. For
example, “Which department has no programmers?” (negation), or “Which company
supplies every department?” (universal quantification), can be easily expressed in natural
language, but they would be difficult to express in most graphical or form-based interfaces.
Questions like the above can, of course, be expressed in database query languages like SQL.

but complex database query language expressions may have to be written.

2.2.3 Discourse

Another advantage of NLIDBS, concerns natural language interfaces that support
anaphoric and elliptical expressions. NLIDBS of this kind allow the use of very brief,
underspecified questions, where the meaning of each question is complemented by the
discourse context. In formal query]anguage‘s, graphical Interfaces, and form-based interfaces

this notion of discourse context is usually not supported.
2.3 Disadvantages of NLIDBs

Following are some disadvantages of Natural Language Interfaces to databases:

Intelligent Database Agent 12

—

| A

Chapter # 2 Literature Review

2.3.1 Linguistic coverage not obvious

A frequent complaint against NLIDBS is that the system’s linguistic capabilities are
not obvious to the user. As already rhentioned, current NLIDBs can only cope with limited
subsets of natural language. Users find it difficult to understand (and remember) what kinds
of questions the NLIDB can or cannot cope with. For example, MASQUE [11] [12] is able to
understand “What are the capitals of the countries bordering the Baltic and bordering
Sweden?”, which leads the user to assume that the system can handle all kinds of
conjunctions (false positive expectation). However, the question “What are the capitals of the
countries bordering the Baltic and Sweden?” cannot be handled. Similarly, a failure to
answer a particular query can lead the user to assume that “equally difficult™ queries cannot

be answered, while in fact they can be answered (false negative expectation).

Formal query languages, form-based interfaces, and graphical interfaces typically do
not suffer from these problems. In the case of formal query languages, the syntax of the
query language is usually well-documented, and any syntactically correct query is guaranteed
to be given an answer. In the case of form-based and graphical interfaces, the user can
usually understand what sorts of questions can be input, by browsing the options offered on

the screen and any query that can be input is guaranteed to be given an answer.
2.3.2 Linguistic vs. conceptual failures

When the NLIDB cannot understand a question, it is often not clcar to the uscr
whether the rejected question is outside the system’s linguistic coverage, or whether it is
outside the system’s conceptual coverage. Thus, users often try to rephrasc questions
referring to concepts the system does not know (For example rephrasing questions about
salﬁries towards a system that knows nothing about salaries), because they think that the
problem is caused by the system’s limited linguistic coverage. In other cases, users do not try
to rephrase questions the system could conceptually handle, because they do not realize that
the particular phrasing of the question is outside the linguistic coverage. and that an

alternative phrasing of the same question could be answered. Some NLIDBs attempt to solve

Intelligent Database Agent 13

-

e

Chapter # 2

Literature Review

this problem by providing diagnostic messages, showing the reason a question cannot be

handled (For example unknown word, syntax too complex, unknown concept. etc.)

2.3.3 Users assume intelligence

NLIDB users are often misled by the system’s ability to process natural language, and
they assume that the system is intelligent, that it has common sense, or that it can deduce
facts, while in fact most NLIDBs have no reasoning abilities. This problem does not arise in
formal query languages, form-based interfaces, and graphical interfaces, where the

capabilities of the system are more obvious to the user.

2.3.4 Inappropriate medium

It has been argued that natural language is not an appropriatc medium for
communicating with a computer system. Natural language is claimed to be too verbose or too
ambiguous for human-computer interaction. NLIDB users have to type long questions, while
in form-based interfaces only fields have to be filled in, and in graphical interfaces most of
the work can be done by mouse-clicking. Natural language questions are also often

ambiguous, while formal, form-based, or graphical queries never have multiple meanings.

2.3.5 Tedious configuration

NLIDBs usually require tedious and lengthy configuration phases before they can be
used. In contrast, most commercial database systems have built-in formal query language
interpreters, and the implementation of form-based interfaces is largely automated. Several
experiments have been carried out, comparing how users cope with formal query languages.

form-based interfaces, graphical interfaces, and NLIDBs.

Intelligent Database Agent 14

-

[

Chapter # 2 Literature Review

2.4 Background History

One such experiment, during which fifty five subjects, ranging from computer
novices to programmers, were asked to perform database queries using a formal query
language (SQL). a graphical interface (SunSimplify), and a NLIDB (DATATALKER [38],
later known as NATURAL LANGUAGE [43]). The subjects first received some training on
how to use the three interfaces, and were then asked to perform database queries, most of
which were similar to the queries the subjects had encountered during the training period.
The experiment measured the number of queries the subjects managed to perform
successfully, and the average time the subjects used to perform each successful query. None
of the three interfaces could be said to be a winner. Each interface was better in somne kinds
of queries, and in most queries the subjects, performance was roughly the same, whether the
subjects were asked to use SQL, the graphical interface, or the NLIDB. Roughly speaking,
the NLIDB seemed to be better in queries where data from many tables had to be combined.

and in queries that were not similar to the ones the users had encountered during the training

period.

Various approaches that have been used in the evaluation of natural language
systems, and describes an experiment where first a Wizard of Oz was used to collect sample
user questions, and then the sample questions were used as input to an actual NLIDB. In a
Wizard of Oz experiment, the user interacts with a person who pretends to be an NLIDB

through a computer network. The user is not aware that he/she is not interacting with a real
NLIDB.

Information about several experiments on the usability of NLIDBs. and description in
detail, one such experiment that assessed the usability of Intellect. The authors conclude that
“natural language is an effective method of interaction for casual users with a good

knowledge of the database, who perform question-answering tasks. in a restricted domain™.

The existence of commercial natural language interfaces (NLI's). such as

INTELLECT [34] from Artificial Intelligence Corporation and Q&A [43] fl"0|n Symantec,

Intelligent Database Agent 15

Chapter # 2 Literature Review

shows that NLI technology provides utility as an interface to computer systems. The success
of all NLI technology is predicated upon the availability of substantial knowledge bases
containing information about the syntax and semantics of words, phrases, and idioms, as well
as knowledge of the domain and of discourse context. A number of systems demonstrate a
high degree of transportability, in the sense that software modules do not have to be changed
when moving the technology to a new domain area; only the declarative, domain specific
knowledge need be changed. However, creating the knowledge bases requires substantial
effort, and therefore substantial cost. It is this assessment of the state of the art that causes us
to conclude that knowledge acquisition is one of the most fundumental problems to

widespread applicability of NLI technology.

Edite [53] is a multi-lingual (Portuguese, French, English, Spanish) natural language
front-end for relational databases. It answers written questions about tourism resources by
transforming them into SQL queries. The answer depends on the type of question. It can be a
nominal list of resources, text, images or graphics. At present, the database contains 53000
tourism resources, arranged on 253 distinct types, corresponding to 209 tables. The main goal
of a NLIDB is to provide users with the capability of, in an efficient alternative way,
obtaining information stored in the database [5]. The user is not required to learn an artificial
communication language being possible to formulate the question in his own native
language. The system building up was driven by two main objectives: (a) the exploration of a
new technology in an existing context, i.e. by exploring how this technology can be used to
increase the efficiency of current processes. The technology should also work as a new
motive of attraction. We could integrate this into multimedia kiosks, but we can foresee the
adequacy to other information supports, like For example Internet; (b) the advantages
NLIDBs have, compared to others interfaces like formal query languages, form-based
interfaces and graphical interfaces: (1) the user is not required to leamm an artificial
communication language to use the system's potentiality. This does not mean that there is no
need for some information (training) about the system's functionality (linguistic coverage,
language's domain); (2) there are kinds of questions (For example qucstions involving
negation or quantification) that can be easily expressed in natural language, but that scem

difficult (or at least tedious) to express using graphical or form-based interfaces. For

Intelligent Database Agent 16

Chapter # 2 Literature Review

example, “What Lisbon's hotels are rated over 3 stars?” (numerical quantification), or
“Which are the Algarve's golf courses without a driving range?” (negation), can be easy
expressed in natural language, but they would be difficult to express in most graphical or
form-based interfaces; (3) the system will support anaphoric and elliptical expressions.
NLIDBs of this kind allow the use of very brief, under-specified questions, where the
meaning of each question is complemented by the discourse context. In other interfaces this

notion of discourse context is usually not supported.

At the present moment the project is in the final stage of conception and prototyping.
In fact the Portuguese prototype is ready to be integrated in the experimental version of the
entire system. On the other hand, the dictionaries necessary for the multi language processing
are being embedded in the application. Therefore, in the beginning of 1997 the product will
be available for testing in the WEB and in the Portuguese Tourism Information Network. In
the future, we intend to extend Edite in order to achieve the following goals: Resolution of
several language phenomenon; such as anaphora and ellipse with the purpose of increasing
the communication speed. For example “Which are the country clubs in Albufeira urea? And

which are the hotels?”.

e Treatment of negation. For example “Which campings do not require a camping
license?”

¢ Handling temporal questions. In this type of questions, the numbers, dates and times
have to be carefully treated. For example “Is the Jeronimos monastery open on
Saturdays?” , “In Lisbon, what are the churches open between 7 am. and 10 am.?”

¢ Semi-automatization of the fulfillment data. The goal is construct a software tool.
Domains Editor, that partially automates the information augmenting process; by
information we mean dictionaries, conceptual model and mapping tables. This
acquisition component is crucial to the success of a portable system. This tool allows
a better management with fewer demands on (i) the knowledge of the system’s
internal workings; (ii) the intricacies of the grammar; (iii) computational linguistics in

general.

Imielligent Database Agent 17

Chapter #2 Literatuice Review

o The development of techniques for generating co-operative responses. Nowadays, if
the user asks “What are the hotels in Marinhais?”, the system will return an empty
list. In the future, we expect that the system answers with: “There are no hotels in
Marinhais.”; next it can present information related to other types of lodging. The
idea is to progress from the actual answers to co-operative ones.

» Natural language generation.

o Due to the evolution of signal processing technology, namely digital speech
recognition, it will be possible to integrate, in the future, a voice analyzer in this
system. This will allow the establishment of a direct oral dialogue between the final

user and the system.

As mentioned earlier practical natural language processing systems have lexicons
with 10,000 to 100,000 root word forms. To create a lexicon of this size is a major
investment of time and money. Individual dictionary publishers and natural language
processing system developers have not been willing to share with one another. If they

collaborated they could produce significantly better dictionaries.

Several questions arise with respect to a menu-based approach to building natural
language interfaces. First, can users successfully use an NLMENU interface in which they
have only one way to state their query? We have run a series of pilot studies using Tennant’s
methodology for evaluating natural language understanding systems. All subjects were
successfully able to solve all of their problems. Comments from subjects indicated that
although the phrasing of a query is at times stilted, subjects were not bothered by this and

could find the alternative phrasing without any difficulty.

A second question arises: Since the size of the lexicon determines the number of
items that need to be displayed on an NLMENU screen, is menu size a problem? Menus must
not become too big or the user will be swamped with choices and will be unable to find the
right one. For most of the interfaces we have generated, this has not been a problem, since
choices earlier in a sentence tend to restrict later choices to a manageable few. Only for

interfaces with a large number of relations (over 10, say) or with relations with a large

Intelligent Database Agent 18

Chapter #2 Literature Review

number of attributes (over 20, say) do ‘recognition problems, start to occur. All our menus
are scrollable. Other interaction techniques can be used to put off the problem. But

eventually, menu size does limit the sort of interfaces cne can use the NLMENU approach

for.

Prototype NLIDBs had already appeared in the late sixties and early seventies. The
best known NLIDB of that period is Lunar {51], a natural language interface to a database
containing chemical analyses of moon rocks. Lunar and other early natural language
interfaces were each built having a particular database in mind, and thus could not be casily
modified to be used with different databases. (Although the internal representation methods
used in Lunar were argued to facilitate independence between the database and other

modules [50], the way that these were used was somewhat specific to that project’s needs.)

By the late seventies several more NLIDBs had appeared. Rendezvous [22] engaged
the user in dialogues to help him/her formulate his/her queries. LADDER [35] could be used
with large databases, and it could be configured to interface to different underlying database

management systems (DBMSs). Ladder used semantic grammars.

A technique that interleaves syntactic and semantic processing, although semantic
grammars helped to implement systems with impressive characteristics, the resulting systems
proved difficult to port to different application domains. Indeed, a different grammar had to
be developed whenever LADDER was configured for a new application. As researchers
started to focus on portable NLIDBS, semantic grammars were gradually abandoned. Planes

[47] and PHILIQA1 [42] were some of the other NLIDBS that appeared in the late seventies.

CHAT-80 [48] is one of the best-known NLIDBS of the early eighties. CHAT-80 was
implemented entirely in Prolog. It transformed English questions into Prolog expressions,
which were evaluated against the Prolog database. The code of CHAT-80 was circulated
widely, and formed the basis of several other experimental NLIDBs (For example MASQUE
(11] [12] [10]).

Intelligent Database Agent 19

-

e

—

Chapter # 2 Literature Review

Masque is a powerful natural language query interface for databases, developed at the
University of Edinburgh. The system accepts written English questions and transforms them

into Prolog queries, that are evaluated against the Prolog database.

Masque is currently implemented in SICStus Prolog. It can be easily configured for a
variety of knowledge domains, and in most cases it manages to generated answers to
complex written English questions in a couple of seconds. However, until this project was
carried out the system could only be used as a front-end to Prolog databases: Masque
answers each question by transforming it into a Prolog query which is evaluated against the
Prolog database. This method does not allow Masque to be used as a front-end to real-world

(usually relational) commercial databases.

Masque is a descendant of CHAT-80, a system created by Warren and Pereira in the
early eighties [Warren & Pereira 82]. CHAT-80 was designed as a general and portable
natural language interface to an arbitrary database. Although its ability to cope with non-
trivial English questions and its efficiency were impressive, it proved to be in many ways
idiosyncratic and hard to port betwecn databascs and knowledge domains. Since then, several
efforts have made at the University of Edinburgh, to redesign the system, so that it is

genuinely portable and efficient. Masque is the outcome of these efforts.

In the mid-eighties NLIDBs were a very popular area of research, and numerous
prototype systems were being implemented. A large part of the research of that time was
devoted to portability issues. For example, TEAM [27] [28] [39] was designed to be easily
configurable by database administrators with no knowledge of NLIDBS. Systems that can be
adapted to provide access to databases for which they were not specifically hand tailored. 1t
describes an initial version of a transportable system, called TEAM (for Transportable
English Access Data manager). The hypothesis underlying the research described in this
paper is that the information required for the adaptation can be obtained through an
Interactive dialogue with database management personnel who are not familiar with natural

language processing techniques.

Intelligent Database Agent 20

- C

Chapter # 2 Literature Review

Information about words, lexical information, includes the syntactic properties ol the
words that will be used in querying the database and semantic information about the kind of
concept to which a particular word refers. TEAM records the lexical information specific to a
given domain in a lexicon. Conceptual information includes information about taxonomic
relationships, about the kinds of objects that can serve as arguments to a predicate , and about
the kinds of properties an object can have. In TEAM, the internal representation of
information about the entities in the domain of discourse and the relationships that can hold
among them is provided by a conceptual schema. This schema includes a sort hierarchy
encoding the taxonomic relationships among objects in the domain, information about
constraints on arguments to predicates, and information about relationships among certain
types of predicates. A database schema encodes information about how concepts in the
conceptual schema map onto the structures of a particular database. In particular, it links
conceptual-schema represéntations of entities and relationships in the domain to their
realization in a particular database. TEAM currently assumes a relational database with a
number of files. (No language processing related problems are entailed in moving TEAM to
other database models.) Each file is about some kind of object (For example, employees.
students, ships, processor chips); the fields of the file record properties of the object (For

example, department, age, length).

JANUS [36] [41] [49] [20] had similar abilities to interface to multiple underlying
systems (databases, expert systems, graphics devices, etc). All the underlying systems could
participate in the evaluation of a natural language rcqucest, without the user ever becoming
aware of the heterogeneity of the overall system. JANUS is also one of the few systems to

support temporal questions.

~ Systems that also appeared in the mid-eighties were DATALOG [29] [30], EUFID
[44], LDC [14] [15], TQA [24] [25], TELI [13], and many others. The following are some of
the commercially available NLIDBs:

= INTELLECT [34] from Trinzic (formed by the merger of AlCorp and Aion). This
system is based on experience from ROBOT [31] [32] [33].

Intelligent Database Agent : 2

r

T

Chapter # 2 Literature Review

= BBN’s PARLANCE [17] built on experience from the development of the RUS [19]
and IRUS [16] systems.

» [IBM’s LANGUAGEACCESS [40]. This system stopped being commercially
available in October 1992.

* Q&A from Symantec.

* NATURAL LANGUAGE from Natural Language Inc. According to [23]. this system
was previously known as DATATALKER, it is described in [38]. and it is derived
from the system described in [26].

= LOQUI[18] from BIM.

= ENGLISH WIZARD from Linguistic Technology Corporation. The company was
founded by the author of AICorp’s original INTELLECT.

Some aspects of the linguistic capabilities of INTELLECT, Q&A. and NATURAL
LANGUAGE are reviewed in [43].

It should be noted that when some researchers use the term “database™, they often just
mean “a lot of data”. In this paper, we mean quite a lot more than that. Most importantly, the
data is assumed to represent some coherent attempt to model a part of the world.
Furthermore, the database is structured according to some model of data, and the NLIDB is
designed to work with that data model. Database systems have also evolved a lot during the
last decades. The term “database system™ now denotes (at least in computer scicnce) much
more complex and principled systems than it used to denote in the past. Many of the
underlying “database systems” of early NLIDBs would not deserve to be called databasc
systems with today’s standards. In the early days of databasc systems, there was ne concept
of naive end-users accessing the data directly this was done by an expert programmer writing
a special computer program. The reason for this was the ‘navigational’ nature of the data
model used by these early database systems. Not only did the user need to know about the
structure of the data in the application. He/she also needed to know many programming
tricks to get at the data. The development of the relational model of data in the 1970"s (Codd
[21]) had a major impact on database systems. In the relational model, the only storage

structure is the table, and this was something that even naive users could understand.

Intelligent Database Agent 22

Chapter # 2 Literature Review

Relatively simple declarative query languages, such as SQL, were developed for this class of

UsCr.

Currently, there are two major developments in database technology that will have an
impact on NLIDBS. The first is the growing importance of object-oriented database systems,
and the second is the trend in relational database technology towards more complex storage
structures to facilitate advanced data modeling. We note that both of these trends could make
it harder to produce an NLIDB. They both reflect a tendency to concentrate on new complex
database application areas, such as network management and computer-aided design. where
the user is anything but naive and the immediate access to the database will often be carried

out by a layer of application software.

Intelligent Database Agent

e
v

—

Chapter # 3

Basic Concepts

—

—

\

29q

Chapter # 3 Basic Concepts

3. Basic Concepts

In the early days of database systems, there was no concept of naive end-users
accessing the data directly. This was done by an expert programmer writing a special
computer program. The reason for this was the ‘navigational’ nature of the data model used
by these early database systems. Not only the user need to know about the structure of the
data in the application. He/she also needed to know many programming tricks to get at the
data. The development of the relational model of data in the 1970’s had a major impact on
database systems. In the relational model, the only storage structure is the table, and this was

something that was even simpler declarative model.

3.1 Natural Language

The term: "natural” languages refer to the languages that people speak. like English,
French and Chinese, as opposed to artificial languages like programming languages or logic.
As natural languages are the result of evolution as apposed to invention. like computer

languages, therefore these languages have a very large lexicons and very vast grammars.

3.2 Natural Language Processing

Natural Language Processing is known as programs that deal with natural language in
some way or another. There are different type of programs which are used for the processing

of different natural languages depending upon the requirement and the limitations of different

languages.

Children learn language by discovering patterns and templates. We learn how to
express plural or singular and how to match those forms in verbs and nouns. We learn how to
put together a sentence, a question, or a command. Natural Language Processing assumes

that if we can define those patterns and describe them to a computer then we can teach a

Intelligent Database Agent 23

[

Chapter #3 Basic Concepts

machine something of how we speak and understand each other. Much of this work is based

on research in linguistics and cognitive science.
3.2.1 Computational Linguistics

Computational Linguistics is doing linguistics with computers. Related to NLP. but
sometimes explicitly linguistic, for example building models of linguistic theories to test

their properties, without any real desire to use them for interfaces or any other application.

3.2.2 User interfaces

User Interfaces are btter than obscure command languages. It would be nice if you

could just tell the computer what you want it to do. Of course we are talking about a textual

interface — not speech.
3.2.3 Knowledge-Acquisition

Knowledge-Acquisition is program that could read books and manuals or the
newspaper. So you do not have to explicitly encode all of the knowledge they need to solve
problems or do whatever they do.

3.2.4 Information Retrieval

Information Retrieval finds articles about a given topic. Program has to be able

somehow to determine whether the articles match a given query.
3.2.5 Translation

It sure would be nice if machines could automatically translate from one language to
another. This was one of the first tasks the researches and computer programmers tried

applying computers to but it is not easy to do this.

Intelligent Database Agent 26

-

—

.

Chapter # 3 Busic Concepis

3.3 Levels of Natural Language Processing

NLP research pursues the elusive question of how we understand the meaning of a
sentence or a document. What are the clues we use to understand who did what to whom, or
when something happened, or what is fact and what is supposition or prediction? While
words--nouns, verbs, adjectives and adverbs--are the building blocks of meaning, it is their
relationship to each other within the structure of a sentence, within a document, and within
the context of what we already know about the world, that conveys the true meaning of a
text. People extract meaning from text or spoken language on at least seven levels. In order to
understand Natural Language Processing, it is important to be able to distinguish among

these, since not all "NLP" systems use every level.

3.3.1 Phonetic or Phonological Level

Phonetics refers to the way the words are pronounced. This level is not important for

written text in information retrieval systems. It is crucial to understanding in spoken language

and in voice recognition systems.
3.3.2 Morphological Level

The morpheme is a linguistics term for the smallest picce of a word to carry meaning.
Examples are word stems like child (the stem for childlike, childish, children) or prefixes and
suffixes like un-, or -ation, or -s. Many new search engines are able to determine word stems
on a rudimentary level. This usually means that they can automatically offer both the singular

and plural form of a word, which is a nice feature.
3.3.3 Syntactic Level

When we parsed a sentence in grade school, we were identifying the role that cach
word played in it, and that word's relationships to the other words in the sentence. Position

can determine whether a word is the subject or the object of an action.

Intelligent Database Agent

15
~1

Chapter # 3 Basic Concepts

NLP systems, in their fullest implementation, make elegant use of this kind of
structural information. They may store a representation of either of these sentences or they
may also store not only the fact that a word is a verb, but the kind of verb that it is. They
characterize dozens of different kinds of relationships, such as AGENT, POSSESSOR OF, or
IS A.

The structure of a sentence conveys meanings and relationships between words even

if we don't know what they mean.
3.3.4 Semantic Level

The semantic level examines words for their dictionary meaning. but also for the
meaning they derive from the context of the sentence. Semantics recognizes that most words

have more than one meaning but that we can identify the appropriate one by looking at the

rest of the sentence.

In English, precise meaning is often carried by noun phrases--two nouns together that
mean something quite different from their constituent words. By using both syntactic and
semantic levels, NLP can identify automatically phrases such as box office, carbon copy,

dress circle, walking stick, blind date, or reference book.
3.3.5 Discourse Level

This level examines the structure of different kinds of text and uses document
structure to extract additional meaning. For instance, a newspaper article typically reports the
most important facts--who, what, when, where, how--at the beginning, usually in the first
paragraph. It makes predictions about the impact of the events towards the end. In contrast, a
mystery novel never tells you who did it and how it was done until the end. A technical
document starts with an abstract, describing the entire contents of the document in a single

paragraph and then enlarging on all these points in the body of the work. NLP uses this

intelligent Database Agent I

C

—

Chapter #3 Basic Coucepts

predictable structure "to understand what the specific role of a piece of information is in a

document, for example-- is this a conclusion, is this an opinion, is this a prediction or is this a

fact "
3.3.6 Pragmatic Level

The practical or pragmatic level depends on a body of knowledge about the world that
comes from outside the contents of the document. Some information retrieval researchers
feel that the only way to add this level of outside knowledge is to gather everything we know
about the world and use it as a reference guide or knowledge base for information systems.
The problem with building such a vast knowledge base is that it takes too long, and it looks

backward to what we knew while it is not very good at adding new information quickly.

3.4 Practical Applications of NLP

Natural Language Processing is being applied in different fields to facilitate the
naive-user. It is not very easy for every person to learn and apply the computer languages just
like a professional programmer can do. 1t has also made it easy 1o search and retrieve the
required documents and information from the bulk of data sources by just giving the input in

simple natural language.

3.4.1 Machine Translation

Machine translation uses natural language processing techniques to translate from one
natural language to another. A typical translation system has a lexicon of 20,000 to 100,000
words and a grammar of 100 to 10,000 rules. It is very difficult to perform 100% accurate

machine translation because it requires a detailed understanding of the text and of the

situation to which the text refers.

Intelligent Database Agent 29

e
i

Chapter # 3 Basic Concepts

3.4.2 Database Access

Database access via natural language allows the user to interact with the database
without having to learn a formal language such as SQL, Access, C/C++, etc. There is a
disadvantage to this. It can be confusing and frustrating for the user if their query fails,

because it is outside of the system's competence.
3.4.3 Information Retrieval (IR)

Information retrieval is a collection of methods which can be used to retrieve
documents relevant to a query from a group of documents. A simple query is a list of words
which describes the content of the documents which we are searching for. Every document
has some sort of abstract associated with it. It may be the document title or a set of key
words. Early information retrieval systems performed simple comparisons between the user's
queries and document abstracts. Modern information retrieval systems translate the user's
query into a vector which can then be compared to the vectors of each document in the group
of documents we are searching. This allows us to determine how good of a match a given

document is.

The natural language processing techniques used in information retrieval are usually
quite simple, in that they only examine individual words and not the relationships between
them. More advanced information retrieval systems may perform limited syntactic and
semantic analysis. Understand the meanings of information retrieval, query and abstract.
Natural language processing techniques used in information retrieval are usually quite

simple.
3.4.4 Text Categorization

Text categorization is the sorting of natural language texts into fixed topic categories.

Natural language processing has been successful in this area categorizing over 90% of news

Intelligent Database Agent 30

[

Chapter # 3 Busic Coucepts

stories into their correct categories. Natural language processing systems tend to be faster and

more consistent than their human counterparts.

3.4.5 Data Extraction

Data extraction is the process of extracting useful data from a natural language text

and placing this data in a structured database record or template.
3.5 Software Agent

An agent is simply another kind of software abstraction, an abstraction in the same
way that methods, functions, and objects are software abstractions. An object is a high-level
abstraction that describes methods and attributes of a software component. An agent,
however, is an extremely high-level software abstraction which provides a convenient and
powerful way to describe a complex software entity. Rather than being defined in terms of
methods and attributes, an agent is defined in terms of its behavior. This is important because
programming an agent-based system is primarily a matter of specifying agent behavior
instead of identifying classes, methods and attributes. It is much easier and more natural to

specify behavior than to write code.
3.5.1 Types of Software Agents
There is a minimum set of common features that typify a software agent.

3.5.1.1 Autonomous :

A software agent is called autonomous when the agent is capable of operating as a

standalone process and performing actions without user intervention.

Intelligent Database Agent 3

r.,__.
|

Chapter # 3 Basic Concepts

3.5.1.2 Communicative

A software agent is communicative when it communicates with the user, other

software agents, or other software processes.
3.5.1.3 Perceptive

A software agent is perceptive if it is able to perceive and respond to changes in its

environment.

3.6 Efficient Parsing

When a string of natural language text is presented to the agent it parses the string so
that it can correctly identify the meaning of different parts of the input. We do not want the

time taken by the agent to be prohibitively long so our parsing algorithm must be efficient.

Most natural language processing systems perform four tasks to process the input
string. These four tasks are tokenization, morphological analysis, dictionary lookup and error

recovery.

3.6.1 Tokenization

Tokenization is the process of breaking the input up into distinct tokens. In languages
like English, tokens are simply the words and punctuation which comprise the input string.
For some languages such as Japanese or Chinese, tokenization is very difficult because there

are no spaces between words (and placing them there would make the input meaningless).

Tokenization routines are optimized for speed rather than accuracy with the idea that
if they are consistent in breaking up the input, ambiguity can be dealt with at a later stage of

input processing.

Intelligent Database Agent 32

Chapter # 3 Basic Concepts

3.6.2 Morphological Analysis

Morphological analysis identifies the prefixes, suffixes, and root words that compose
a token of the input string. We perform morphological analysis in order to identify words
which we cannot immediately find in the dictionary. Although the words themselves may not
be in the dictionary, their root words (and prefixes and suffixes) may be. Using these we can
understand and identify the words themselves. There are three major types of morphological

analysis:
3.6.2.1 Inflectional Morphology

Inflectional morphology refers to the changes required of a word in a particular
grammatical context. Consider the suffix "s" which is added to most nouns in order to make
them plural.
3.6.2.2 Derivational Morphology

Derivational morphology refers to the changes required to change a word of one
category to a similar word of another category. For example, the suftix "ness" is added in the
adjective "sick" to form a noun "sickness".
3.6.2.3 Compounding

Compounding takes two words and combines them to form a new word. For example,
the word "rainbow" is a compound of the words "rain" and "bow".

3.6.3 Dictionary Lookup

Dictionary lookup is the process of looking up every token (except for punctuation) to

find its definition and meaning in context.

Intelligent Database Agent 33

<

—

—

—

Chapter # 3 Basic Concepts

3.6.4 Scaling Up the Lexicon

What do we do when an agent does not understand a word? Scaling up the lexicon
means to increase the size of the lexicon. In essence that is what we want to do. we want to

teach the agent the word which it does not understand, or at least give the agent some way to

deal with it.

There are many different methods of error recovery. These methods are the
procedures by which the lexicon is "scaled up", they must be applied whenever a word
cannot be found in the dictionary. The course text presents four methods of crror recovery:

3.6.4.1 Morphological Analysis

Morphological analysis is done by looking up the word’s category based on its

prefixes, suftixes, and root word forms.

3.6.4.2 Capitalization

Capitalization often indicates a proper noun such as a person's name. a place. a noun
p

or a pronoun.
3.6.4.3 Special Format

Special format clues often indicate dates, times etc. There are many special formats

which can be easily recognized. For example, 12/21/1990 is recognized as a date.
3.6.4.4 Spelling Correction Routines
Sometimes the user may make a spelling mistake while entering his/her input (either

because they do not know how to spell a word, or they simply mistype it). There are two

models of spelling correction closeness and sound-based.

Intelligent Database Agent 34

——

|

Chapter # 3 Basic Concepts

e The closeness model assumes that a small error has been made in entry such as an
extra or missing character, transposition of two characters, etc.

e The sound-based model looks up the word in a phonetic dictionary to see if it can find

a word which has similar pronunciation.

Intelligent Database Agent

(>
'y

(—

Chapter # 4

System Analysis

Chapter # 4 Svstem Analysis

4, Sys;em Analysis

Analysis is the foremost part of project development. Most of the time spent in
project development is dedicated to analysis. System analysis was done using prototyping

and object oriented methodology.

4.1 Analysis

Analysis plays a significant role in making of a software. There are two main parts of

the analysis.

> Requirement Analysis

-

» Domain Analysis
4.1.1 Requirement Analysis

The rationale of analysis is to provide a model of the system’s behavior. In
conducting the project, Object Oriented approach is adopted. Object oriented analysis is a
method of analysis that examines the requirements from the perspective of the classes and
objects found in the vocabulary of the problem domain. In requirement analysis we definc
use cases diagram containing use cases, actors. A first step in analysis is to extract scenarios.

or use cases that describe the behavior of a system from an external uscr's perspective.

4.1.2 Domain Analysis

Conceptual domain analysis yields common ground for each specific analysis. Object
Oriented (OO) analysis notions lend themselves for capturing generic concepts at multiple
levels of granularity. Ensembles, sub ensembles, classes, and generic relationships are all
candidates for describing an application domain. A requirements domain analysis may lead

to an OO domain engineering effort. This entails the construction of design fragments of the

Intelligent Database Agent 37

—

—

Chapter # 4 Svstem Analysis

generic elements identified by a requirements domain analysis. These designs can bc

implemented and added to a domain-specific code library.

4.2 Steps for Object Oriented Analysis:
The following are the steps for object oriented analysis:

Obtain “complete” requirements.

Describe system-context interaction.

Y V V¥

Delineate subsystems.

Y

Develop vocabulary by identifying instances with their classcs, ensembles, and
relationships.

~ Elaborate classes and relationships by defining their generic static structure and
describing their generic dynamic dimension.

» Construct a model in which the dynamics of objects are wired together.

These steps are connected by transformation -- elaboration relationships. The output

of the last step, the model, feeds naturally into the design phase.

4.3 Use Cases

A use case is a specific way of using the system by using somc part of the
functionality. Each use case constitutes a complete course of events initiatcd by an actor and
it specifies the interaction that takes place between an actor and the system. A use case is
thus a special sequence of related transactions performed by an actor and the system in a

dialogue. The collected use cases specify all the existing ways of using the system.
4.3.1 Use Case Analysis

Use case analysis is performed to identify portion of system performing specific task.
In use case analysis use cases, actors interacting with those use cases, and boundaries are

identified. A use case comprises a course of events begun by an actor. and it specifies the

Intelligent Database Agent 38

Chapter # 4 Svstem Analysis

interaction between actor and the system. All the use cases specify existing ways to use the
whole system. It is interaction of actors with external or other system with system being
designed in order to achieve a goal. Use case describes the functionality of the product to be

constructed.

4.3.2 Actors

There is one actor in this use case diagram

» User

4.3.3 Use Cases

There are eighteen use cases in this domain each of which shows its functionality.

These are as follows.

v

Login
Client Database Details
Fill Synonym Dictionary

Extract Table Constraints

Y ¥V ¥V Y

Manipulate Table Synonyms
Add Table Synonyms
Edit Table Synonyms

A\

v

» Delete Table Synonyms
~ Manipulate Column Synonyms
~ Add Column Synonyms
» Edit Column Synonyms

v

Delete Column Synonyms
~ Manipulate Keyword Synonyms

Y

Add Keyword Synonyms
» Edit Keyword Synonyms

Intelligent Database Agent 39

Chapter #4 Svstem Analysis

» Dclete Keyword Synonyms

» Analyze Query
» Log Off

Use case diagram of IDA is given in Figure 4.1. the detailed information is given in section
434.

intelligent Database Agent 41

"

-

e

Chapter # 4

Svstem Analvsis

auses»

IDA

\

Add Table Synonyms J

«extendS»

Manipulate Table
Synonyms

Client Database

\Detﬂ_uj/

Deiete Tabie
Synonyms /

Fill Synonym

suses»
Manipulate Column 3\
v Synonyms Edit Column Synonym /
//
auses» -
—_
® \\\ Delete Column X
Constraints Synonym

/ \

_ ~_

«extends»

Manipulate Keyword
Synonyms

.._\\
Analyze Query Ez;:::;vn‘:rd \/
Vi

Delete Keyword
Synonym

Figure 4.1 Use Case diagram of IDA

Intelligent Database Agent

41

Chapter # 4 Svstem Analysis

4.3.4 Use Case Expanded Format

4.3.4.1 Use Case Login

Actors: User
Purpose: To Login to the system.
Overview: User input the login name and password and then enter to the system.

Type: Real and Primary

Preconditions

Login name and password is entered.

Post Conditions

User is allowed to sign in to the system.

Initiation

This use case is initiated when user double-click the software’s executable filc.

Navigation

Action System Response

1. User double clicks the left mouse button | 2. Login screen appears to input the Login

on the executable file. name and password.

3. User enters the Login name and password.
4. Click on the login button. 5. Validity of Login name and password will
be checked.

Alternative Courses

4.a User presses the close button on the login screen and system will be terminated.

Imtelligent Databuse Agent 42

Chapter # 4

Svstem Analvsis

4.3.4.2 Use Case Client Database Details

Actors: User
Purpose: To get the details of the Client Database.
Overview: User give the details of the Client database.

Type: Real and Primary

Preconditions

User is signed in to the system.

Post Conditions

Client Database Details are given to the system.

Initiation

This use case is initiated when user click the menu button.

Navigation

Action

System Response

1. User clicks on the menu item “Client | 2. Details of the connccting databasc will be

Database Details”. shown.

Intelligent Database Agent

43

C

—

(

Chapter #t 4 Svstent Analvsis

4.3.4.3 Use Case Fill Synonym Dictionary

Actors: User

Purpose: To Fill the Synonyms of the table and column names by consulting the dictionary.
Overview: User Automates the Process of Synonym Filling.

Type: Real and Primary

Preconditions

Database is connected to the system.

Post Conditions

Table and column synonyms are filled in the internal database.

\

Initiation

This use case is initiated when user presses the generate button.

Navigation

Action System Response

1. User clicks on the menu item “Fill { 2. A dialogue appears with generate and

Synonym Dictionaries”. close buttons.

3. Click on Generate button. 4. Synonym Dictionaries will be generated.

Alternative Courses

3.a User presses the close button and dialogue will be disappeared.

Intelligent Database Agent 44

Chapter # 4 Svstem Analysis

4.3.4.4 Use Case Extract Table Constraints

Actors: User
Purpose: To Extract all the table constraints of the connected database.

Overview: User Automates the Process of extracting the constraints.

Type: Real and Primary

Preconditions

Database is connected to the system.

Post Conditions

Constraints of the connected database are extracted.

Initiation

This use case is initiated when user presses the extract button.

Navigation

Action System Response

1. User clicks on the menu item “Extract | 2. A dialogue appears with extract and close

Table Constraints™. buttons.

3. Click on Extract button. 4. Database constraints will be extracted.

Intelligent Database Agent 43

- -

——
{

Chapter # 4 Svstem Analvsis

4.3.4.5 Use Case Manipulate Table Synonyms

Actors: User

Purpose: Manipulation of table synonyms.
Overview: User manipulates the table synonyms.

Type: Real and Primary

Preconditions

Synonym dictionary is filled with all the possible synonyms.

Post Conditions

Table synonyms are manipulated and stored in the database.

Initiation

This use case is initiated when user presses the Enter/Edit Table Synonyms menu item.

Navigation

Action System Response

1. User clicks on the menu item “Enter/Edit | 2. A Form appears with all the available table

Table Synonyms”. synonyms.

3. Select the table name.

4, Select the operation to perform. 5. Click the Close button.

Intelligent Database Agent 40

Chapter # 4

Svstem Analvsis

4.3.4.6 Use Case Add Table Synonyms

Actors: User
Purpose: Adding the table synonyms.
Overview: User adds the table synonyms.

Type: Real and Secondary

Preconditions

User clicked on the Enter/Edit Table Synonyms.

Post Conditions

Table synonyms are added and stored.

Initiation

This use case is initiated when user presses the Add button on the Enter/Edit Table

Synonyms Form.

Navigation

Action

System Response

1. User selects the table name.

2. All the synonyms of the selected table will
be displayed.

3. Enter the synonym of the table.
4. Click Add button.
5. Click Savc button.

6. Tablc synonym will be saved.

Alternative courses

2.a Table synonym already exists, click cancel button.

Intelligent Database Agent

—

Chapter #4 Svstem Analysis

4.3.4.7 Use Case Edit Table Synonyms

Actors: User

| Purpose: Edit the existing table synonyms.

Overview: User edits the table synonyms.
Type: Real and Secondary

Preconditions

Synonym is already exist in the systems internal database.

Post Conditions

Table synonyms are edited and saved.

Initiation

This use case is initiated when user presses the edit button on the Enter/Edit Table Synonyms

Form.
Navigation
Action System Response
1. User selects the table name. 2. All the synonyms of the sclected table will
be displayed.

3. Select the synonym.
4. Edit the synonym of the table.
5. Click Edit button.

6. Click Save button. 7. Table synonym will be saved.

Intelligent Database Agent 48

Chapter #4 System Analysis

4.3.4.8 Use Case Delete Table Synonyms

Actors: User

Purpose: Delete the existing table synonyms.
Overview: User deletes the table synonyms.
Type: Real and Secondary

Preconditions

Synonym already exists in the systems internal database.

Post Conditions

Table synonyms are deleted.

Initiation

This use case is initiated when user presses the delete button on the Enter/Edit Table

Synonyms Form.
Navigation
Action System Response
1. User selects the table name. 2. All the synonyms of the selected table will
be displayed.

3. Select the synonym.
4. Click delete button.
5. Click Save button. 6. Table synonym will be deleted.

7. Database is updated.

Alternative courses

2.a Synonym does not exist in the database.

Intelligent Database Agent Y

P

Chapter # 4 Svszem Analvsis

4.3.4.9 Use Case Manipulate Column Synonyms

Actors: User
Purpose: Manipulation of column synonyms.
Overview: User manipulates the column synonyms.

Type: Real and Primary

Preconditions

Synonym dictionary is filled with all the possible synonyms.

Post Conditions

Column synonyms are manipulated and stored in the database.

Initiation

This use case is initiated when user presses the Enter/Edit Column Synonyms menu item.

Navigation

Action System Response

1. User clicks on the menu item “Enter/Edit { 2. A Form appears with all the available

Column Synonyms”. column synonyms.

3. Select the table name.
4. Select the column name.

5. Select the operation to perform. 6. Click the Close button.

Intelligent Database Agent 30

Chapter # 4 Svstem Analysis

4.3.4.10 Use Case Add Column Synonyms

Actors: User
Purpose: Adding the column synonyms.
Overview: User adds the column synonyms.

Type: Real and Secondary

Preconditions

Synonym does not already exist in the systems internal database.

Post Conditions
Column synonyms are added and stored.

Initiation
This use case is initiated when user presses the Add button on the Enter/Edit Column

Synonyms Form.

Navigation
Action System Response
1. User selects the table name. 2. System displays all the columns of the
selected table.

3. Select the relevant column name.
4. Enter the synonym of the column.
5. Click Add button.

6. Click Save button. 7. Table synonym will be saved.

Alternative courses

4.a Column synonym already exists, click cancel button.

Intelligent Database Agent - 3!

e

Chapter #4 Svstem Analvsis

4.3.4.11 Use Case Edit Column Synonyms

Actors: User
Purpose: Edit the existing column synonyms.
Overview: User edits the column synonyms.

Type: Real and Secondary

Preconditions

Column synonym already exists in the systems internal database.

Post Conditions

Column synonyms are edited and saved.

Initiation
This use case is initiated when user presses the edit button on the Enter/Edit Column

Synonyms Form.

Navigation
Action ' System Response
1. User selects the table name. 2. All the columns of the selected table will
be displaycd.
3. Sclect the column name. 4. All synonyms of the sclected column will
be displayed.

5. Select the synonym.

6. Edit the synonym of the column.
7. Click Edit button.

8. Click Save button. 9. Synonym will be saved.

Intelligent Database Agent

w
L)

Chapter # 4 Svstenm Analvsis

4.3.4.12 Use Case Delete Column Synonyms

Actors: User
Purpose: Delete the existing column synonyms.
Overview: User deletes the column synonyms.

Type: Real and Secondary

Preconditions

Synonym already exists in the systems internal database.

Post Conditions

Column synonyms are deleted.

Initiation

This use case is initiated when user presses the delete button on the Enter/Edit Column

Synonyms Form.
Navigation
Action System Response
1. User selects the table name. 2. All the columns of the selected table will
be displayed.
3. Select the column name. 4. All synonyms of the selected column will
be displayed.

5. Select the synonym.
6. Delete the synonym of the column.
7. Click Delete button.
8. Click Save button. 9. Synonym will be deleted and database is

updated.

Alternative courses

2.a Synonym does not exist in the database.

Intelligent Database Agent 33

Chapter #4 Svatem Analysis

4.3.4.13 Use Case Manipulate Keyword Synonyms

Actors: User
Purpose: Manipulation of Keyword synonyms.
Overview: User manipulates the Keyword synonyms.

Type: Real and Primary

Preconditions

Synonym dictionary is filled with all the possible synonyms.

Post Conditions

Keyword synonyms are manipulated and stored in the database.

Initiation

This use case is initiated when user presses the Enter/Edit Keyword Synonyms menu item.

Navigation

Action System Response

1. User clicks on the menu item “Enter/Edit | 2. A Form appears with all the available

Keyword Synonyms”. Keyword synonyms.

3. Select the keyword.
4. Select the operation to perform.

5. Click Save button. 6. Keyword manipulated and database is
updated.

Intelligent Database Agent 34

Chapter # 4

Svstent Analvsis

4.3.4.14 Use Case Add Keyword Synonyms

Actors: User

Purpose: Adding the keyword synonyms.

Overview: User adds the keyword synonyms.

Type: Real and Secondary

Preconditions

Synonym does not already exist in the systems internal database.

Post Conditions

Keyword synonyms are added and stored.

Initiation

This use case is initiated when user presses

Synonyms Form.

Navigation

the Add button on the Enter/Edit Keyword

Action

System Response

1. User selects the keyword.

2. System displays all the synonyms of the

selected keyword.

4. Enter the synonym of the keyword.
5. Click Add button.
6. Click Save button.

7. Keyword synonym will be saved.

Alternative courses

4.a Keyword synonym already exists, click cancel button.

Intelligent Database Agent

33

Chapter #4 Svsrem Analvsis

4.3.4.15 Use Case Edit Keyword Synonyms

Actors: User
Purpose: Edit the existing keyword synonyms.
Overview: User edits the keyword synonyms.

Type: Real and Secondary

Preconditions

Keyword synonym already exists in the systems internal database.

Post Conditions

Keyword synonyms are edited and saved.

Initiation

This use case is initiated when user presses the edit button on the Enter/Edit keyword

Synonyms Form.
Navigation
Action . System Response
1. User selects the keyword. 2. All synonyms of the selected keyword will
be displayed.

3. Select the synonym.

6. Edit the synonym of the keyword.
7. Click Edit button.

8. Click Save button. 9. Synonym will be saved.

Intelligent Database Agent 36

Chapter # 4 Systent Analysis

4.3.4.16 Use Case Delete Keyword Synonyms

Actors: User
Purpose: Delete the existing keyword synonyms.
Overview: User deletes the keyword synonyms.

Type: Real and Secondary

Preconditions

Synonym already exists in the systems internal database.

Post Conditions

Column synonyms are deleted.

Initiation

This use case is initiated when user presses the delete button on the Enter/Edit keyword

Synonyms Form.
Navigation
Action System Response
1. User selects the keyword. 2. All synonyms of the selected keyword will
be displayed.

3. Select the synonym.

6. Delete the synonym of the keyword.
7. Click Delete button.

8. Click Save button. 9. Synonym will be deleted and database is
updated.

Alternative courses

2.a Synonym does not exist in the database.

Intelligent Database Agent 37

—

Chapter #4 Svstem Analvsis

4.3.4.17 Use Case Analyze Query

Actors: User
Purpose: To analyze the natural language input and to convert it into SQL Query.
Overview: User input in natural language and system analyze it to convert it in SQL.

Type: Real and Primary

Preconditions

User is logged in and input is given in natural language.

Post Conditions

Natural language input is analyzed and converted into SQL query.
Initiation
This use case is initiated when user click on the Analyze button on the Natural Language

Analyzer form.

Navigation

Action System Response

1. User enters the input in natural language.
2. Click on Analyze Button. 3. System checks the input string and break it

into tokens to form the SQL query.

Alternative courses

2.a no input is given for the conversion.

Intelligent Database Agent 58

Chapter # 4 Svstem Analvsis

4.3.4.18 Use Case Log Off

Actors: User
Purpose: To sign off from the system when working is complete.
Overview: User completes his/her work and then exit from the system.

Type: Real and Primary

Preconditions

User is logged in to the system.

Post Conditions

User is logged off and program is closed.

Initiation

This use case is initiated when user click on the Log off menu item.

Navigation
Action System Response
1. User click on the “Log Off” menu item. 2. System displays the Log Off confirmation
dialogue.
3. User Click on the OK button. 4. System execution is terminated.

Alternative courses

3.a User does not confirm the Log off.

Intelligent Database Agent 39

—

Chapter # 4 Svstem Analvsis

4.4 Domain Analysis

In domain analysis we represent concepts of our project. Discuses the functionality of

the project by representing conceptual diagram, which contains main concepts. their relations

and their attributes.

4.4.1 Conceptual Diagram

Conceptual Model is a quintessential step in analysis or investigation. it is a
decomposition of the problem into individual Objects (called coricepts), and things we are
aware of. In addition to that creating a Conceptual Model also aids in clarifying the
terminology or vocabulary of the domain. A Conceptual Model is a description of things in a
real world problem domain, that is, it is not a Model of software design. Conceptual diagram

is presented in figure 4.2.

Intelligent Database Agent 6l)

Svstem Analysis

Chapter #4
| |
{ .
] ; Information i
External i . | -
Database Reads ! Extragtuon 5* -—-- -LoOks up > D|ct|onary
- : Engine
T ol ’
Quéries Look-up
. [: Parsing and
SQL Generation Internal I ; ,
! ~————Look-up———— Keyword Extraction <«
Engine Database | j Engine
I B)
Reads I
l e = o - Contamns - -
Display \
Moduie B TbT—_j T e o
able | : . Keyword
Synonym ‘ ‘, Synonyms o Synonym
— [S— e

Column
Synonym

Figure 4.2: Conceptual Diagram of IDA

Intelligent Database Agent

6l

Chapter # 5

System Design

Chapter # 5 Svstem Design

5. System Design

The purpose of design is to create architecture for the evolving implcmentations.
Object oriented design is a method of design encompassing the process of objects oriented
decomposition and a notation for depicting logical and physical as well as static and dynamic

models of system under design.

The design phase focuses on defining the software to implement the application. The
design object is to produce a model of the system, which can be used later to build the
system. The design goal is to find the best possible design within the limitations imposed by

the requirement and the physical and social environment in which the system will operate .

3.1 Activity Diagrams

It gives the pictorial representation for algorithm for function. Activity diagram is
used to represent activities present in use cases. Basic need is that we want to make
procedural design in UML. Operations in use cases in sequence are represented in activity
diagram. Activity diagram are useful when we want to describe a behavior which is parallel,

or when we want to show how behaviors in several use cases interact.

Following processes are shown in the ﬁgures:
1. Configuring Database in figure 5.1
2 Adding Synonym in figure 5.2
3 Editing Synonym in figure 5.3
4. Deleting Synonym in figure 5.4
5 Generating Query in figure 5.5

Intelligent Database Agent 03

Chapter #35

Svstem Design

‘ Select Database l

‘ Select Mode |

“

' Get Metadata |

Store Information

®

Figure 5.1: Activity Diagram of Configuring Database

Intelligent Database Agent

04

L Chapter # 5

Svstem Design

Figure 5.2: Activity Diagram of Adding a Synonym

(Select Synonym Typa

l Check Existence ,

‘ Enter Synonym '

‘ Save Synonym '

3 Intelligent Database Agent

63

—

Svstem Design

Chapter # 5

(Selec(Synonym Typa

‘ Check Existence l
‘ Edit Synonym ’

.

Figure 5.3: Activity Diagram of Editing a Synonym

Intelligent Database Agent

60

. C

—

Chapter # 5

Syxtem Design

Figure 5.4: Activity Diagram of Deleting Synonyms

(Select Synonym Type l

‘ Check Existence l

‘ Delete Synonym l

Intelligent Database Agent

67

Chapter # 5

System Design

Figure 5.5: Activity Diagram of Generating Query

‘ input Sentence '

H
a

‘ Extract Ke:

Get Tokens

X

' Check Synonyms

4

‘ Get Tables

&

Get Columns

‘ Generate Query '

Intelligent Database Agent

68

Chapter # 5 Svstem Design

5.2 Class

A class implements one or more interfaces. Graphically, a class is rendered as a
rectangle, usually including its name, attributes, and operations. class stands for a family of
objects that have something in common. A class is not to be equated with a set of objects,
although at any moment we can consider the set of instances that belong to the class. A class
may be seen as what all these sets have in common. In technical terminology. a class stands
for the intension of a particular characterization of entities, while the set of objects that

conform to such a characterization in a certain period is known as the extension.

5.3 Class Diagrams

The development phase produces candidate classes and relationships. After selecting
concise and evocative names we must describe each class with attributes. Although each
class must have a unique name, classes should be distinguishable on the basis of their
attribute characterizations. A rule of thumb is if two classes have identical attributes, then

they are most likely the same. Class diagram of Intelligent Database Agent is shown in figure
5.6.

5.4 Attribute

An attribute expresses an essential definitional feature that is shared by all instances
of a class. A minimal characterization of an attribute consists of the value domain of the
attribute and a name that explains the role or relationship that an attribute value has with
respect to the instance to which it belongs. Multi valued attributes may be annotated with
multiplicity characterizations. Defaults for an attribute value and/or multiplicity description
can be formulated in this phase as well. Constraints can restrict attribute value combirations

and/or refer to multiplicity descriptions.

Real-life entities are often described with words that indicate stable features. Most
physical objects have features such as shape, weight, color, and type of material. Sometimes

it is useful to indicate a default initial value for an attribute.

Intelligent Database Agent 69

Chapter #5 System Dexign

5.5 Relationships

Relationships help capture target system-specific knowledge by describing
connections among different objects. Relationships may also be used to modity descriptions
in the previous step. For example, when an attribute has a multiplicity range that includes

zero, one may eliminate the attribute and represent this information as a relationship instead.

Intelligent Database Agent 71

Chapter # 5

Svstem Design

<<Class Moduie>>
inputAnalyzer

-objinputAnglyzer

<<Form>>
frmEnterEditColumnSynonyms

<<Form>>
frmEnterE ditKeywordSynonyms

! e
1
—objutil // o o
-objiDAUIl) <<Form>>
| / frmEnterEditTableSynonyms
- -objutit - i
Noov i
<<Form>> <<Class Module>> 7
ILanguageAnaly IDAUtilities f(
-obleiI ;ngm D T e C s -
; T el <<Form>>
> » kR
A 1 RN frmStoreDatabaselnformation
/ | " .
e ! -objIDAUtilities -objIDAUM
-objSQLGeneratqr -objIDAULtI T = e
: <<Form>> -objiDAUtHities
frmDBConnect
\s Tt <<Form>>
: frmFliISynonymDiclionanies
<<Class Module>> s)
SQLSelectGenerator
i
1
-objDBMetadata
- Y I
<<Module>> <<Class Module>> l <<N|I,!,)7:;::,“>'
IDAModGlobalServices | DbMelaDala - :
Pl
-objLogin
— Crass Moo <<Form>
<<Form>> <f:mLogin :] <<Class Module>> _ kmAbout
| S———

.. fmSARSSplash |

_Login

Figure 5.6: Class Diagram of IDA

Intelligent Database Agent

]

Chapter # 5

Svstem Design

Now we will show the detailed view of each class. Class IDAModGlobalServices is shown in

Figure 5.7.

autility»
IDA::IDAModGlobalServices

r=

‘;

EEEE%

+ i+

+
1]

;

+
=1
=
=]
=1

EE

+IDAConn :

+StartBusySignal()

+StopBusySignal()

-OpenConnection(in strtUDLName : String)
+GetClientConnection()
+GetIDAConnection()
-cmdSpellCheck_Click()

Figure 5.7: Class IDAModGlobalServices

Class frmDBConnect is shown in Figure 5.8.

IDA::frmDBConnect

-objDBMetadata : DBMetaData
-objlDAUtilities : IDAULilities

-cmdClose_Click()
-cmdTableDetails_Click()
-Form_Load()
+getDBTablesinfo()
+initForm()

+getDBColumnsinfo(in strTableName : String)

_Label1_Click()

Figure 5.8: Class frmDBConnect

Intelligent Database Agent

—

Chapter #5

Svstem Design

Class frmEnterEditColumnSynonyms is shown in Figure 5.9.

Figure 5.9: Class frmEnterEditColumnSynonyms

IDA::frmEnterEditColumnSynonyms

-bDirty : Boolean
-strEditMeaning : String
-objUtit : IDAULilities

-cboColumnName_GotFocus()
-cboColumnName_KeyPress(in KeyAscii : Integer)
-cboColumnName_LostFocus()
-choColumnName_Validate(in Cancel : Boolean)
-cboTableName_GotFocus()
-cboTableName_KeyPress(in KeyAscii : Integer)
-choTableName_LostFocus()
-cboTableName_Validate(in Cancel : Boolean)
-cmdAdd_Click()

-cmdCancel_Click()

-cmdClose_Click()

-cmdDel_Click()

-cmdEdit_Click()

-cmdSave_Click()

-Form_Load()

-initForm()

-enableControls(in bValue : Boolean)
-enableAttributes(in bVatue ; Boolean)
-fillCombos()

-fillColumnNamesCombo()
-lvwValues_DbIClick()

-txtMeaning_GotFocus()
-ixtMeaning_KeyPress(in KeyAscii : Integer)
-txtMeaning_LostFocus()
-getColumnSynonyms()

-setlivwValues()

-checkRecord() : Boolean

+SaveColumnSynonymy() : Integer

Class frmAbout is shown in Figure 5.10.

IDA::frmAbout

-cmdOK_Click()

Figure 5.10: Class frmAbout

Intelligent Database Agent

L

Chapter #5

System Design

Class frmMain is shown in Figure 5.11.

1DA::frmMain

: -mnuChangeProgram_Click()

1 -MDIForm_QueryUniload(in Cancel : Integer, in UnloadMode : Integer)
L -mnuConfigClientDatabaseDetails_Click()
-mnuConfiguationEnterEditColumnSynonyms_Click()
-mnuConfiguationEnterEditKeywordSynonyms_Click()
-mnuConfiguationEnterEditTableSynonyms_Click()
-mnuConfiguationExtractTableConstraints_Click()
-mnuConfiguationFillSynonymDictionaries_Click()
-mnuExit_Click()

-mnuHelpAbout_Click()

-mnuLogOff_Click()

-mnuQueryAnalyzer_Click()

Figure 5.11: Class frmMain

Class frmNaturalLanguageAnalyzer is shown in Figure 5.12.

IDA::frmNaturalLanguageAnalyzer
-objUtil : IDAULtilities
-objinputAnalyzer : InputAnalyzer
-0bjSQLGenerator : SQLSelectGenerator
-cmdCancel_Click()
-cmdClose_Click()
-cmdAnalyze_Click()
-Command1_Click()
-crmdPPAnalyze_Click()
-Form_Load()
-initFormy()
-txtQuery_KeyPress(in KeyAscii : integer)
-ProcessQuery(in strQuery)

Figure 5.12: Class frmNaturalLanguageAnalyzer

Class DBMetaData is shown in Figure 5.13.

IDA;:DBMetaData

+getColumnsinfo(in objConn, in strTableName : String)
+getTablesinfo(in objConn)

Figure 5.13: Class DBMetaData

Intelligent Database Agent

-

Chapter #3 ' Svstem Design

—-

Class frmEnterEditTableSynonyms is shown in Figure 5.14.

L IDA:frmEnterEditTableSynonyms

- -bDirty : Boolean

-strEditValue : String

-objUtil : IDAUtilities
-cboTableName_GotFocus()
-cboTableName_KeyPress(in KeyAscii : Integer)
-cboTableName_LostFocus()
-cboTableName_Validate(in Cancel : Boolean)
-crndAdd_Click()

-cmdCancel_Click()

-cmdClose_Click()

-cmdDel_Click()

-cmdEdit_Click()

-cmdSave_Click()

-Form_Load()

-initForm()

-enableControls(in bValue : Boolean)
-enableAtiributes(in bValue : Boolean)
filiCombos()

-lvwValues_DblClick()
-txtMeaning_GotFocus()
-txtMeaning_KeyPress(in KeyAscii : Integer)
-txtMeaning_LostFocus()
-getTableSynonyms()

-setivwValues()

-checkRecord() : Boolean
+SaveTableSynonym() : integer

Figure 5.14: Class frmEnterEditTableSynonyms

Class SQLSelectGenerator is shown in Figure 5.15.

|DA::SQLSelectGenerator

-objIDAULIl : IDAUtilities

+generateSelect(in colTokens : Coliection) : String

-|HindPotential TableColumns(in colTokens : Collection, in strArrTables() : String, in strArrColumns() : String),
-makeQuery(in strArrTables() : String, in strArrColumns() : String) : String

-checkWhereClause(in strArrTables() : String, in strArrColumns() : String) : String

-checkDuplicates(inout strArrColumns() : String, in strTableName : String) : Boolean

Figure 5.15: Class SQLSelectGenerator

Intelligent Database Agent 75

(_'f

Chapter #5 System Design

Class frmFillSynonymDictionaries is shown in Figure 5.16.

IDA::frmFiliSynonymDictionaries

-tables() : String

-Columns() : String

-objWordApp : Application

-rsColCheck :

-rsTableCheck :

-objlDAUtilities : IDAUtilities

-saveSynonym(inout rs)

-getDBObject()

-cmdClose_Click()

-cmdGenerate_Click()

-Form_Load()

-getSynonym(in strWord : String) : String

-saveTableSynonyms(in strTableName : String, in strArray() : String)
-saveColumnSynonyms(in strColumnName : String, in strTableName : String, in strArray() : String),

Figure 5.16: Class frmFillSynonymDictionaries

Class frmStoreDatabaseInformation is shown in Figure 5.17.

IDA::frmStoreDatabaselnformation
-objIDAULIL : IDAUtilities
-cmdClose_Click()
-cmdGenerate_Click()
-getDBObject()
-extractConstraints(inout objRS)

Figure 5.17: Class frmStoreDatabaselnformation

Class Login is shown in Figure 5.18.

IDA::Login

-strLoginiD : String
-strPassword : String
+loginUser(in strLogin : String, in strPW : String) : Integer

Figure 5.18: Class Login

Intelligent Database Agent 76

Chapter # 5

Svstem Design

Class InputAnalyzer is shown in Figure 5.19.

1DA::InputAnalyzer

-mvarCollection : Collection
-objiDAULI : IDAUtilities

+get_colTokens() : Collection

+set_colTokens(in colTokens)

+tokenizeData(in strTemp : String)

-breakString(in tokenCol : Collection, in index : Integer, inout strTemp : String, in strChar : String)
+determineSQLStmtType(in coiTokens : Collection) : String

Figure 5.19: Class InputAnalyzer

Class IDAUftilities is shown in Figure 5.20.

IDA::IDAUtliities
-idaUtil : IDAUtilities
-Class_|nitialize()
+getSynonym(in strWord : String) : String
+checkSQLStatement(in strQuery : String) : Integer
+doPrePrcessing(in strAvailableQuery : String) : String

Figure 5.20: Class IDAUtilities

Class frmLogin is shown in Figure 5.21.

IDA::frmLogin
-objLogin : Login
-cmdClose_Click()
-cmdLogin_Click()
-tixtLogintD_KeyPress(in KeyAscii : integer)
-bxtPassword_KeyPress(in KeyAscii : Integer)

Figure 5.21: Class frmLogin

Intelligent Database Agent

: Chapter #5

Svstem Design

Class frmEnterEditKeywordSynonyms is shown in Figure 5.22.

DA frmEnterEditKeywordSynonyms

-bDirty : Boolean
-objutit : IDAUtilities

-cboKeyword_GotFocus()
-choKeyword_KeyPress(in KeyAscii : integer)
-choKeyword_LostFocus()
-cboKeyword_Validate(in Cancel : Boolean)
-emdAdd_Click()

-cmdCancel_Click()

-cmdClose_Click()

-cmdDel_Click()

-cmdEdit_Click()

-cmdSave_Click()

-Form_Load()

-initFarm()

-enableControls(in bValue : Boolean)
-enableAttributes(in bvalue : Boolean)
-fillCombos()

-ivwValues_DbIClick()
-txtMeaning_GotFocus()
-txtMeaning_KeyPress(in KeyAscii : Integer)
-txtMeaning_LostFocus()
-getKeywordSynonyms()

-setlivwValues()

-checkRecord() : Boolean
+SaveKeywordSynonym() : Integer

Figure 5.22: Class frmEnterEditKeywordSynonyms

Class frmSARSSplash is shown in Figure 5.23.

IDA::frmSARSSplash

-Form_KeyPress(in KeyAscii : Integer)
-Form_Load()

-Form_Unload(in Cancet : Integer)
-Frame1_Click()

-Timer1_Timer()

Figure 5.23: Class frmSARSSplash

3 Intelligent Database Agent

Chapter #5 Svstem Design

5.6 Sequence Diagram

Sequence diagrams are used to show the flow of functionality through a use case .For
one use case diagram there can be multiple sequence diagrams. For alternate course ol
actions there are separate sequence diagrams. Sequence diagrams are time dependent and tell
which operation will be executed first .Sequence diagrams define a pattern of interaction
among objects arranged in chronological order. These show the objccts participating in
interaction by the order of their life times and the messages being sent from one object to the

other. The following are the sequence diagrams:

Intelligent Database Agent 79

O

Chapter # 5

Svstem Desien

5.6.1 Enter/Edit Table Synonyms

PN

= User ~frmEnterEditTableSynonyms

Start

EnterSynonym

< initForm()
|

|l< """ filcombos()
|

i GetClientConnection()

< 1 getTableSynonyms()
GetIDAConnection()

SaveTableSynonym()
=

Figure 5.24: Sequence diagram of Enter/Edit Table Synonyms

. checkRecord()

GetiDAConnection()

——— / Save ()

<

Intelligent Database Agent

S0

Chapter #5

Svstem Design

5.6.2 Enter/Edit Column Synonyms

Enter/Edit Column Synonyms

~ User Ao rEdil mnSynonyms -
IRDAModGlobalServices
Start
>
< Show()
< initForm()
< fillCombos()

GetClientConnection(}

f EnterTable
: > fillColumnNamesCombo()
GetClientConnection()
>
EnterColumn
. EnterColumnSynonyms
—— >
- SaveColumnSynonym()
. - - >,
checkRecord|
< eckRecord()
GetlDAConnection()
< /Il Save()

Figure 5.25: Sequence diagram of Enter/Edit Column Synonyms

Intelligent Database Agent

8/

-

Chapter #5

Svstem Design

5.6.3 Enter/Edit Keyword Synonyms

start

&~ show()
< - initForm()

<1 fillCombos()
GetIDAConnection()

EnterKeyword

getKeywordSynonyms()

—

GetIDAConnection()

N

->

EnterKeywordSynonym

i

SaveKeywordSynonym()
—>

checkRecord()

< -
GetIDAConnection()

.>.‘

—— // Save()

Figure 5.26: Sequence diagram of Enter/Edit Keyword Synonyims

Intelligent Database Agent

(=

Chapter # 5

Svatem Design

5.6.4 Database Information

i
_~ User . frm onn !
Start()
- >%
| l<——— show()
;
} ‘<‘ - initForm()
i Iéj: —— geiDBTablesinfo()
GetClientConnection()
_ . ,>_A
DiplayTableDetail
> getDBColumnsinfo(String)
7
<
GetClientConnection()
| D>
| B
]

Figure 5.26: Scquence diagram of Database Information

; lQAMonISbaIServices

Intelligent Database Agent

83

Chapter # 6

Implementation

—

-
|

Chapter # 6 Implementation

6. Implementation

The Intelligent Database Agent is a simple Database front end based on artificial
intelligence and natural language processing. The basic idea behind the creation of the
Intelligent Database Agent is to communicate with the database without having in depth
knowledge of the database like the database tables and relations etc. and without the help of

specialized database query languages like SQL instead using simplc English.

The database Agent converts the English query into structured query language

understandable by the underlying database by applying knowledge of the database and the
English language.

The theme behind Intelligent Database Agent is the effective use of natural language
based input given by the user through identifying and using the keywords present in the
user’s entered query. This information in the form of keywords could then be combined with
database information and knowledge present in the system to make a language. Structured

Query Language in this case to talk to the underlying database.

6.1 Structured Query Language

Structured Query Language is just like any other programming language and is
specialized in Database Querying. Currently SQL is the generally accepted, most commonly

used database query language. However SQL has some disadvantages:

. The language is difficult to use and apply by any person who is not well conversant to

this computer language.

. There is no real standard (each database has its own SQL dialect).
. There are too many syntax rules. v
. Some functionality seem outdated (e.g. length restriction for text: this was probably

inherited from COBOL - modern languages like Java do not know such restrictions).

. “Null” is not equivalent to “null” - this is not obvious for many developer.

Intelligent Database Agent 85

Chapter # 6 lmplementation

it is difficult to integrate SQL in some languages like Java.
. The SQL language is very old and the language was never revised. but extends in

each case.

The Intelligent Database Agent diagram is shown in figure 6.1:

Language
Meta Data ?ictionary
Extraction <
.
T External
Database
{DA !
piermal Parsing and
Patabase SQL Keywords
Generation < > Extraction
Engine

Display Module

Figure 6.1: Intelligent Database Agent

Intelligent Datahase Agent N6

Chapter #6 [mplementation

6.2 Modules of Intelligent Database Agent

The Intelligent Database Agent is composed of the following modules:

e Database Connection with NLP system

e English Language dictionary interface.

e Database Information Extraction

¢ [DA internal Database

e Parsing and keywords extraction engine.

e SQL generation Engine

e User Interface (input and help regarding result generation and the output of the

result)

6.2.1 Database Connection with NLP system

Most of the systems which aim at providing a natural language interface to the
database are restricted to a particular domain or database. This is due to the fact that as the
domain of the system gets bigger it will give rise to ambiguities and it would be even harder
to deal with the natural language queries which would be of a great variety. So the resulting
system would be more complex requiring greater lexicon, flexibility, automatic configuration

capability and also more computation.

Intelligent Database Agent is aimed at providing database interfacing not only to a
particular domain or database but it is tried to make it open so that any database could be
connected to it irrespective of it’s domain and the system would be able to talk to it with little

configuration.

At one time the Intelligent Database Agent would be connected to two databases, at

the most. These are

Intelligent Database Agent 87

Chapter # 0 Implementation

e External Database

e IDA’s Internal database

External databasc is the database which is connccted to the Intelligent Database
Agent whose interface it has to provide to the user to retrieve the required information and
IDA’s internal database is the database which is used to store the lexicon and other

configuration information of the external database.

Both the databases are developed in Oracle. IDA basically focuses on the Structured
Query Language for Oracle which has a little difference but most of it would also run on

SQL Server and other databases using the same dialect of SQL.
6.2.1.1 Universal Data Link

Universal Data Link (UDL) uses file to connect to the databases. The UDL file
connection is just like the DSN based connection but it is a relatively newer technique and
can be ported along with the application. With the change in the Oracle client version or
change in Oracle Database we have to reconfigure the UDL file easily with the Windows

based wizard like interface.

We are using two UDLs here :
e [DA
¢ IDAClient

Incase of changing the client database the IDA Client UDL will have to be changed
accordingly based on the Oracle Database and version. Oncc the IDA Client UDL is changed

there would be little configuration that would be needed and the system is ready to go.

There is a need that the connection with the database would be reliable and smooth

ensuring the usage of the system without hassles. This technique of data access is used

Intellivent Database Agent 88

Chapter # 6 lmplementation

widely today in enterprises to connect to remote database servers and is also easy to run and

maintain incase changes occur.
6.2.1.2 Client Database Details

The system is provided with the interface where the syStem shows some details of the
connection. This includes some database driver related information, user information, version
information and so on that might be of interest to the user. It also provide the list of the
various database objects and table’s column’s details, types, lengths and null constraint to the

user with the confirmation and basic details of the connected database.

6.2.2 English Language Dictionary Interface

As the Intelligent Database Agent is a database interface agent who has to provide
database interface to the user and is not much conversant with Structured Query Language
and natural language, English in this case would be the source of communication between the
IDA and the user. Such type of natural language interfaces could be very useful as they are
relatively open thing when it comes to better understanding of the user input and it is also
updated so it is a good idea to use any éuch dictionary. To take advantage of such facilities
Intelligent Database Agent is connected to the Microsoft Word’s internal English language
dictionary which shipped with Microsoft Word by default. This dictionary comes with MS
Word so it does not have to be explicitly installed on to the system. It is connected to IDA

using automation of Microsoft Word.

The thesaurus and synonyms serves in a very useful way of better understanding and
interpreting the user input. This dictionary is also used during the configuration phase of the
system as well as during the understanding the user input for the transformation of Structured

Query Language from the user’s input.

Intelligent Database Agent ‘ 89

Chapter # 6 Implementation

6.2.3 Database Information Extraction

Most small-scale NLP systems use a semantic grammar. These are different to normal
English grammar parsers in the way they classify words and phrases. For example. in normal
English the word ‘movie’ is just a noun, but in a semantic grammar it can be classified

differently depending on its meaning, or semantics.

6.2.3.1 Database Independent Information

The first, lowest-level type of information is a combination of the two languages
involved, English and SQL. These languages are common to any similar NLP system. At this
level we have represented the basics of queries, no matter which database we will eventually
use. For example the “greater than or equal to” in English is the representation of >= in SQL.

This type of information is called the database independent information.

This information is very important because it helps in the generation of keywords in
the SQL from user input. Apart from key words it also helps the system understand particular
type of user phrases. The greater the information the wider will be the domain. More
information of this sort can be added into IDA with the help of provided interface time to

time as the need arise and thus making the system more dynamic.

6.2.3.2 Database Related Information

This level of information includes the information related to the database for which
the IDA acts as an interface. This includes the information related to the databasc structure
for example how database tables are joined together, what type of information is stored in the

different attributes, as well as table and attribute names and the database information content.

This information is needed when the database is connected to the IDA system. Some

information require manual configuration. IDA shows the user. the databasc related

Intelligent Database Agent 91

Chapter # 6 Implementation

information including the connection related information, the tables along with their
attributes and the data types for allowing the user to get first hand information about the
database in a user friendly manner. IDA has the capability to extract database related

information of the tables their relationships and keys (primary key and foreign keys).

6.2.3.3 Database Semantics Information

The third level of information can extend, or alter the other layers, depending on how
the database is referred to in English. Sometimes simple assumptions may have to be made in
order to represent the database in English; for example the FNAME attributc is not referred
to as ‘fname’, but rather ‘first name’. This sort of information is not always obvious from the
database itself, so some other source of information must be found. For the NLP systems the
human author serves as this source of information. This is the main weakness of general NLP

systems — there is no extra source of third level information.

IDA provides mechanism for obtaining this information from the uscr which will be
used for the generation of SQL. As there is no other source of this information the user has to

provide this information with the help of appropriate forms provided.

Most systems that provide some kind of Natural interface to the databases or any
other source of information must have in depth knowledge of the domain in which they are
providing any kind of service. Introducing this kind of knowledge is very beneficial and
effective in the case of any computer based system, not necessarily a Natural Language based
system. As on one hand this type of intelligence is very helpful, but on the other hand it has
its own price in the form of storage and computation needs. The computer being a dumb
machine requires a lot of information to show a little intelligence. Generally Natural
Language based systems have huge lexicons, rules and grammars but still they do not
perfectly answer user’s queries. Even if the domain of the system is restricted the ambiguities

that arise from natural language are far greater. This is the basic cause of the low market

Intelligent Database Agent k 9/

Chapter # 6 Implementation

share of the natural language based database interfaces even though the research started

decades before.

In the case of this system it is not necessary that the user will be fully aware of the
database related issues. It is tried that the system should behave in such a way that it does not
require user knowledge of the database as much as possible. In the ideal condition it would
be such that the system will be intelligent enough to know about all the details of the
database and it should not require human need in any way and instead it will guide the user in
any kind of database interaction, but such type of systems are quite difficult to make as the

domain of the system would become very large and hence very hard to manage.

6.2.3.4 IDA Configuration

Most of the system that deals with natural language requires user configuration to
enable it to work in its required manner. Actually Natural Language based database
interfaces normally require tedious and lengthy configuration phases beforc they can be used.
Where as most of the commercially available database systems have built-in formal query

language interpreters, and the implementation of form-based interfaces is largely automated.

In practice natural language database interfaces are often configured by the
administrators of existing databases. As most of the natural language systems focus on a
particular type of area or database to be specific, most of them would not work on any other
domain or database. These systems also require much information from the end user who is
familiar with the database, for their working. There are systems that work on a variety of
domains but as the same system is used for a variety of domains, with the change in the
underlying database, a lot of configuration has to be madc in the system to adjust according

to the new database in order to work properly.

IDA also requires some configuration that has to be done by the user of the system
who is bit familiar with the database tables etc. This configuration is necessary for the

working of the system. In a database where the column and the table names are descriptive

Intelligent Database Agent Y2

Chapier #.6 lmplementation

and properly named, fewer configurations would be needed. The use of meaningful names

and correct spelling increases readability and maintainability of the database.

The configuration of the system is key to the better results obtained from the system.
The systems which are related to artificial intelligence even to some extent maintain their
knowledge base and set of rules with the help of which they fetch related information and
make some sort of decision out of it. The modern NLP systems have huge lexicons to support
them because if the system has less data then it would have less information with the help of

which it can do something meaningful and failure rate increases and so is the desperation on

the part of user.
6.2.4 IDA Internal Database

Intelligent Database Agent requires some information of the database to be used later
on in processing the user input in natural language. The system requires this simple
configuration only once a new client database is connected to the IDA system for running the
system. Thisvactivity may also be required when there is a change in the database tables
structure, like a new column is added to the database or entirely new table(s) are added to the

database so that all the changes could be incorporated in the IDA and the system could

handle these newly made changes.

The information is stored in the table of the IDA system. The information stored is

given as follows

Table Name: IDATableConstraints
Column Names:
1. TableName
2. ColumnName
3. KeyType
4. ReferencedTable

Intelligent Database Agent 93

Chapter #6 Implementation

The field TableName is used to store the name of the table of the client database
connected which is under consideration. This will help the system to understand and relate
the rest of the information in the table to the table so that a cbmplete picture of the structure

could be made.

The ColumnName field tells about the field which is under consideration. This will

clear that which column of the table the information stored is about.

The field KeyType stores the information about the key of the table. The key could be
primary key or foreign key. Primary key would tell that the corresponding column is the
primary key of the table whose name is in the TableName field, which would guarantee that
it would be ﬁnjque and rest of the columns would be fully functionally dependent on this
field (if the table is normalized to 3™ Normal Form). The KeyType field can also contain
foreign key which would tell about the parent child relationship between the two tables. This
information would be useful incase a join condition is to be established between two tables

which have parent, child relationship between them.

The field ColumnName is related to the previously described field which the
KeyType. If the KeyType contains a foreign key then this column would tell about the name
of the column on which the parent child relationship is made between the two tables.
Without this field, information about the foreign key would be virtually useless as it could

not be used for any constructive purpose.

Table Name: IDAColumnSynonyms
Column Names:
1. ColumnName

2. ColumnSynonym
3. TableName

Intelligent Database Agent 949

e

-

Chapter # 6 Implementation

The field ColumnName in this table stores the name of all the columns existing in the
client database. This information is used when system matches extracts the synonyms for the

existing columns by checking the dictionary and analyzing the user input.

The field ColumnSynonym is used to store all the synonyms of the colunin stored in
ColumnName field. These synonyms will be used to compare the input of the user for the

generation of SQL query.

TableName field stores the name of the referenced tables of the columns stored in the
ColumnName field. This will be helpful to identify the tables required to reference in the
SQL statement.

Table Name: IDALexicon
Column Names:

1. Symbol

2. Meaning

In SQL statements, there are different symbols which are uscd to compare, cqualize
or negate some conditions, but a naive user does not know about these standards. So there is
a need to store the synonyms for all these symbols which arc often used in the querics. This

field stores all those symbols required to use in the database retrieval statement.

The field Meaning stores all the possible meanings of the symbol stored in the symbol
field. This is done in the configuration mode so that our agent will be capable to understand
the natural language input. These meanings are basically different words of the natural

language.

Table Name: IDATableSynonyms
Column Names:

1. TableName

2. TableSynonym

Intelligent Database Agent 95

Lo

Chapter # 6 Implementation

This table of IDA internal database stores all the table names and their possible
synonyms of the client database. This is done by the information extraction engine which
extracts all the table names of the external database. The field TableName stores the names

of the tables

TableSynonym stores all the possible synonyms of the external database tables. These
synonyms are generated automatically by the system as well as manually given during the

configuration mode.

Table Name: IDALogin
Column Names:
1. UserlD

2. Password

UserID keep the unique username of all the users allowed to use the system, and

Password field stores the password of all the users.
5.2.5 Parsing and keywords extraction engine

User gives the input in natural language which is not understandable by the
underlying system. To make it understandable by the computer, it is converted in the
computer understandable language. It is not easy to effectively and accurately convert the

natural language input into the machine understandable language.

When it comes the conversion process then there is a way to do all this job in a formal
way. First of all, the input given by the user is broken into small parts known uas tokens.
These tokens are nothing but the words composed that user input. For example. if user will

inpult the sentence: “Who is the head of finance department?” then tokens for this input are

(11 ” “; "

who”, “is”, “the”, “head”, “of”, “finance”, and “department”. This process is called

tokenization.

Intelligent Database Agent 96

—-

Chapter # 6 Imiplementation

The query input by the user needs to be analyzed and parsed accordingly keeping in
view the database related information and the information of the English language available.
(using the database independent, database dependent and the database semantics
informafion). The structure of the SQL queries will be analyzed and keywords will be

extracted from the user input keeping in view this information.

IDA analyses the user entered data and tokenizes the input string. Later it searches
this user input for SQL query type. Then it extracts possible column names and tables that

are involved in the query after consulting the internal database and MS Word dictionary.

6.2.5.1 Tokenization

Tokenization is the process of breaking the input up into distinct tokens. In languages
like English, tokens are simply the words and punctuation which comprisc the input string,.
For some languages such as Japanese or Chinese, tokenization is very difficult because there
are no spaces between words (and placing them there would make the input meaningless).
Tokenization routines are optimized for speed rather than accuracy with the idea that if they
are consistent in breaking up the input, ambiguity can be dealt with at a later stage of input

processing.
6.2.6 SQL generation Engine

Input given by the user in natural language is converted to SQL by this engine with
the help of the keywords, the query information along with necessary changes that might be
necessary using the tables info, database info and language thesaurus etc the query is

generated for the underlying database for the user query (Natural Language query).

Intelligent Database Agent 97

—

(

Chapter # 6 Implementation

IDA uses the columns and tables information that is extracted from the user input
along with SQL keywords to generate the required query based on the limitations and

standards of Structured Query Language as understandable by ORACLE database.

6.2.7 User Interface

IDA provides a user friendly and simple interface with the help of which it extracts
some database information and metadata, which would be used by it in the process of query

generation.

6.3 Sample Code

Here the sample code is given for parsing the data and converting it into tokens.

Making the tokens of the input

Dim strChar As Stiing
Dim index As Integer
index = Len(stTemp)

While index <> 0

index = Len(strTemp)

If InStr(1, stTemp, " ") <= index And InStr(1, stTemp, " ") <> 0 Then
index = InStr(1, strTemp, " ")
striChar = ""

End If

| If InStr(1, stiTermp, vbCilf) < = index And InSti{1, strTemp, vbCilf} <> 0 Then

index = InStr(1, strTemp, vbCilf)
strChar = vbCilf

End If

If INStr(1, stifemp, *.") <= index And InStr{1, strTemp, *,") <> 0 Then
index = InStr(1, stTemp, ".")

Intelligent Database Agent 98

Chapter # 6 Implementation

strChar = ""

End If

If InStr(1, shTemp, "(") <= index And InStr(1, strfemp, “(") <> 0 Then
index = InStr(1, sttTemp, (")
strChar = ("

End If

If InStr(1, shTemp, ")) <= index And InSt(1, stifemp, ")") <> 0 Then
index = InStr(1, stTemp, “)")
strChar = ")

End If

If InStr(1, shTemp, "<") <= index And InSti(1, strTemp, "<") <> 0 Then
index = InStr(1, strfemp, "<")
sttChar = "<"

End If

If InStr(1, stTemp, ">") <= index And InStr(1, shTemp, ">") <> 0 Then
index = InStr(1, strTemp, ">")
strChar = ">"

End If

If INStr(1, stiTemp, "=") <= index And InStr(1, stTemp, “=") <> 0 Then
index = InStr(1, stifemp, "=")
strChar = "="

End if

if index = 0 Or Len(stiTemp) = 1 Then
breakSting tokenCoal, index, stTemp, ™

Eise
breakString tokenCal, index, strfemp. strChar
sttChar =™

End If

Wend

Set mvarCollection = tokenCol

Intelligent Database Agent 99

Chapter # 6 Implementation

Exit Sub
Eror_Handler:

MsgBox Err.Number & * " & Err.Description & "IDA"
End Sub

Private Sub breakString(fokenCol As Collection, index As Integer, ByRef striTemp As Stiing, sttChar As
String)
It sttChar =" " Then
index = InStr(1, stTemp. " ")
If Tim(Left(strTemp, index)) <> "™ And index > 1 Then
tokenCol.Add Tim(Lefi(strTemp, index))
End If
stiTemp = TiimM(Right(strTemp, Len(strTemp) - index))

Elself strChar = vbCrlf Then
index = InSti(1, strTemp, vbCilf)
If Tim(Lefi(strTemp, index)) <> ™ And index > 1 Then
tokenCol.Add Trim(Left(stiTemp, index - 1))
End If
stiTemp = Tiim(Right(strTemp, Len(strTemp) - index - 1))

Elself shiChar = *," Then
index = InStr(1, stiTemp, ")

If Tim(Left(strTemp, index)) <> " Then

If the first alphabet is *.* then else is executed

ifindex > 1 Then
tokenCol.Add Trim(Left(stiTemp, index - 1))
tokenCol.Add Trim(Mid(strTemp, index, 1))
Else
tokenCol.Add Trim(Mid(strTemp, index, 1))
End If
End If
stiTemp = Tim(Right(strTemp, Len(sttTemp) - index))

Intelligent Database Agent 100

-

Chapter # 6

Implementation

Elself sttChar = "(" Then
index = InStr(1, stiTemp, "(")
if Tim(Left(strTemp, index)) <> " Then
if iIndex > 1 Then
tokenCol.Add Trim({Left(stiTemp, index - 1))
tokenCol.Add Tim{Mid(strTemp, index, 1))
Else
tokenCol.Add Tiim(Mid(strTemp, index, 1))
End if
End if
stifemp = Tim(Right(stTemp, Len(strTemp) - index))

Elself shChar = ") Then
index = InStr(1, stTemp, *)")
If Trim(Left(shTemp, index)) <> " Then
If index > 1 Then
tokenCol.Add Trim(Left(stTemp, index - 1))
tokenCol.Add Tim(Mid(stTemp, index, 1))
Else
tokenCol.Add Tim{Mid(strfemp, index, 1))
End If
End If

stifemp = Tim(Right(stTemp, Len(stiTemp) - index))

Elself shiChar = "<" Then
index = InStr(1, shTemp, "<")
If Tim(Left(stiTemp, index)) <> " Then
Ifindex > 1 Then
tokenCol.Add Trim(Left(strTemp, index - 1))
tokenCol.Add Trim(Mid(strTermp, index, 1))
Eise
tokenCol.Add Trim(Mid(strTemp, index, 1))
End If
Endif
strfemp = Trim(Right(shTemp, Len(striTemp) - index))

Intelligent Database Agent

o

. Chapter #6

Iuplementation

Elself strChar = ">" Then
_ index = InStr(1, stifemp, ">")
If Tim(Left(strTemp, index)) <> ™ Then
Ifindex > 1 Then
tokenCol.Add Trim(Left(strTemp, index - 1))
tokenCol.Add Trim(Mid(stTemp. index, 1))
Else
tokenCol.Add Tim(Mid{shTemp, index, 1))
- End If
End If

stTemp = Trim(Right(strTemp, Len(shTemp) - index)}

1 Eiself strtChar = "="Then
index = InStr(1, shTemp, "=")
If Tim(Left{strTemp, index)) <> " Then
- If index > 1 Then
tokenCol.Add Trim(Left(shTemp. index - 1))
tokenCol.Add Trim(Mid(strTernp, index, 1))
Else
tokenCol.Add Trim({Mid(strTemp, index, 1))
End if
End If
shTemp = Tim(Right(shTermp, Len(strTemp) - index))

Else
index = InStr(1, skTemp, " ")
If Len(strTemp) > 0 Then
tokenCol.Add Tim(Right(stiTemp, Len(strTemp) - index))
End If
End If
End Sub

Checking if any of the natural language or it's meaning entered by the user resembles any SQL

statement

Intelligent Database Agent

102

Chapter # 0

lmplementation

Public Function determineSQLStmiType(8wWal colTokens As Collection) As String
On Eror GoTo Error_Handler

Set objlDAULI = New IDAUtilities
Dim objRS As ADODB.Recordset
Set objRS = New ADODB.Recordset

Checking for the select statement

ObjRS.Open "Select meaning from idalexicon where upper(symbol) = 'SELECT",

GetlDAConnection, adOpenstatic, adLockReadOnly
Dim i As Integer
i=1
Dim anSynonyms() As String
While i <= colTokens.Count
arsSynonyms = objIDAUtIL.getSynonym{colTokens.ltemi(i))

Checking it against the select synonyms

If ObjRS.EOF Then ObjRS.MoveFirst
While Not objRS.EOF
Dim j As Integer
For j = LBound(arnrSynonyms) To UBound(arSynonyms)

Compare select meaning with token meanlng and select meaning with token itself and select

= token and select = token synonym

it UCase(objRS.Fields("'meaning")) = UCase(arrSynonyms(j)) Or

UCase(objRS. Fields("Meaning")) = UCase(colTokens.ltem(i)) Or "SELECT" = UCase(colTokens.ltem(i)) Or

“SELECT" = UCase(arrSynonyms{j)) Then
determineSQLStmMiType = "SELECT
Exit Function
End If
Next j
ObjRS.MoveNext

Intelligent Database Agent

103

-

Implemeniation

Chapter # 06

Wend
i=1+1

Wend

determineSQLSIMiType = "Not Found"

Exit Function

Error_Handler:
MsgBox Err.Number & " " & Err.Description & "IDA"

End Function

104

Intelligent Database Agent

Chapter # 7

Testing

—

Chapter #7 Testing

7. Testing

Testing is an important phase during sofiwarc development lifc cycle. and shows the
stability of the product. It also helps in comparing the final product with the objectives.
Software testing is a critical element of software quality assurance and represents the

ultimate review of specification, design and coding.

Testing should focus upon the system’s internal and external behavior, a secondary
purpose of testing is pushing the limits of the system in order to understand how it fails under

certain conditions. A design must be testable. An implementation must be tested.

7.1 Objective of Testing

The overall objective of the testing is to find the maximum number of errors in

minimum amount of effort.
7.2 Object Oriented Testing Strategies

Testing begins with unit testing, then progress towards integration testing. and
culminates with validation and system testing. In unit testing single modules are tested first.
Once each module is tested individually, it is integrated into a program structures while a
series of regression tests are run to uncover errors due to interfacing of modules and side

effects caused by addition of new units. Finally the system as a whole is tested.

7.3 Types of Testing Done

We conducted various types of testing to make the software stable and error {ree.

» Code Inspection

Reviews and walk through of the program codc.

Intelligent Database Agent 106

Chapter # 7 Testing

\)

\/r

Unit Testing
All the modules of the project were first tested individually by inserting

invalid values. Exceptions thrown were properly handled.

Integration Testing
After the modules were tested individually, they were combined to form the
final product. All the links and paths were tested. Invalid values were also checked

and measure taken to handle them successfully.

Tests of inter object and inter process coordination should be built at several
granularity levels. For example, tests of two or three interacting objects, dozens of

objects, and thousands of them are all needed.

Black Box Testing
The software was tested for graphical user interface and measures taken that

expected output is generated on input.

White Box Testing

Prior testing is part of white box testing in which we look inside the code.
Here we can often find errors, Tests that force most or all computation paths to be
visited, and especially those that place components near the edges of their operating

conditions form classic test strategies.

Beta testing
Use by outsiders rather than developers often makes up for lack of

imagination about possible error paths by testers.

System Testing

The software was checked under different operating system like Windows NT
and 2000.

Intelligent Database Agent 107

Chapter #7

Testing

~ Portability testing

Tests should be applied across the range of systems on which the software
may execute. Tests may employ suspected non-portable constructions at the compiler.

language, tool, operating system, or machine level.

Regression testing
Tests should never be thrown out (unless the tests are wrong). Any changes in

classes, etc., should be accompanied by a rerun of tests. Most regression tests begin

their lives as bug reports.

7.4 Evaluation

Evaluation of the software is carried out to check the stability and usability of the

product being developed .We took measures to ensure that the developed softwarc becomces

effective and easy to use. Some of the features of the software are given below.

> Efficiency and Effectiveness

Y

Y

The product developed is effective and efficient.

Accuracy

The software provided reliable results. Format which is not supported can not

be opened.

Data security and integrity

Data is secured, as everyone does not know watermark.

Easy to use graphical user interface

The graphical user interface used is simple and steps taken that no problems

arise during option finding.

Intelligent Database Agent 108

L Chapter #7 Testing

» Data and Design Consistency

Throughout uniform notations are used .Only images of given formats can be

——
i

processed.

—

E—

j Intelligent Database Agent 109

Appendix - A

[

Appendix A Intelligent Datrabase Agent

A. Intelligent Database Agent

Intelligent Database Agent is a simple natural language interfacc to database, based
on the simple and efficient keyword extraction technique. A naive user can easily use it
without having the in depth knowledge of database architecture and Standard Query
Language. It converts the user input in English language to Standard Query Language
understandable by the underlying ORACLE database.

A.1 Description

With Intelligent Database Agent you can perform these functions on an image:

Configure Database Details
Fill synonym Dictionaries
Extract Table Constraints
Add Table Synonyms

Edit Table Synonyms
Delete Table Synonyms

YV V. ¥V V ¥ VYV V¥

Add Column Synonyms |

\

Edit Column Synonyms
Delete Column Synonyms
Add Keyword Synonyms
Edit Keyword Synonyms
Delete Keyword Synonyms

YV ¥V ¥V ¥ Y

Input in Natural Language

A\ 7

Analyze Natural Language

Y

Generate SQL query

Intelligent Database Agent 11

Appendix A Intelligent Database Agent

A.2 Menu Items

Three menu items are there in Intelligent Database Agent: Configuration. Query and

Help. These are shown in Figure A.1.

EJ intelligent Database Agent

Coniguralion uery. Hel

International Islamic University, Islamabad

Intelligent Database Agent

o {7 e T T9M8/05 7 T 113PM Intelligent Database Agent
Figure A.1: Main Window of Intelligent Database Agent

A.2.1 Configuration

Under the configuration menu, we have the following options needed to initially
~ configure the database to make it intelligent:

» Client Database Details
» Fill synonym Dictionaries

Intelligent Database Agent 112

o

Appendix A

Intelligent Database Agemt

Y V ¥V V ¥ V

Extract Table Constraints
Enter/Edit Table Synonyms
Enter/Edit Column Synonyms
Enter/Edit Keyword Synonyms
Log Off

Exit

A.2.1.1 Client Database Details

This option is given for the user to view the detailed information of the connected

database, for example tables, columns, data types etc. It also show the user name of the

database and driver used to connect the database. The Client Database Details is shown in

Figure A.2.

ﬂ Client Database Details

Client Database Details
_C 1ant ry
Database: ORACLE ver: Personal Echition Server Name: Local PC
Data Source: User: SCOTT Driver: MICROSOFT OLE DB PROVICER FOR DRACLE
~Database Details

No. | Tabie Name -~ Ho. | Column Name } Type I Length 1 Nyt
i3] BONUS ; 1 EMPNO NUMBER 22]
1 CUSTOMER 2 ENAME VARCHAR.! 10 W
2 DEPARTMENT 3 JoB VARCHARY 4 w
12 DEPT 4 MGR NUMBER o2 N
13 EMP : 1 HIREDATE DATE 7 N
3 EMPLOYEE . 8 sAL NUMBER 22 i
14 IDACOLUMNS YNONYMS ki 7 COMM NUMBER 2 N
15 IDALEXICON 8 DEFPTNO NUMBER 2 by
16 IDALOGIN
17 IDATABLECONSTRAINTS
18 IDATABLESYNONYMS -
4 ITCR4
4 | ;f'l

Class

Figure A.2: Client Database Details
Intelligent Database Agent 113

Appendix A {mtellisent Database Agent

A.2.1.2 Fill synonym Dictionaries

It generated all the available synonyms of the tables and columns of the connected
database, by looking up the dictionary and the consulting to the internal database of the

system. It is shown in Figure A.3.

EFHI Synonym Dictionarnies E3
- - [] ’ -
Fill Synonym Dictionaries

Figure A.3: Generating Synonym Dictionaries

A.2.1.3 Extract Table Constraints

In configuration mode, initially user has to get the constraints of the connected
database and store them in the systems internal databasc. These are uscd later in SQL

generation process. For example Store Database Information is shown in Figure A 4.

Database Information I

“Store Database Information

Figure A.4: Extract and save Database Information

Intelligent Database Agent 114

Appendix A Intelligent Database Agent

[

A.2.1.4 Enter/Edit Table Synonyms

User has the option to add, edit or delete the synonyms of the tables of the client
database. These synonyms are stored in the internal database of the system. This is shown in
Figure A.S.

- Table Synonyms

e [T Close

Figure A.5: Enter/Edit Table Synonyms
A.2.1.5 Enter/Edit Column Synonyms

~ User has the option to add, edit or delete the synonyms of the columns of the related
- tables of the client database. These synonyms are stored in the internal database of the
system. First user selects the table name and then relevant column name. All the synonyms of
the selected column will be displayed. The Enter/Edit Column Synonyms is shown in Figure
- A.6.

Intelligent Database Agent 13

Appendix A

Intelligent Database Agent

EEnten’Edil Column Synonyms Ed

Column Synonyms

|

Table® [EMF =l
Column® l kg __I
Synonym ’l 1
. Add Edit De}
Table T Cohumn [spnonym |
EMP T . ENAME Name
EMP ENAME Employee Names
EMP ENAME Names
Lancel Close

Figure A.6: Enter/Edit Column Synonyms

A.2.1.6 Enter/Edit Keyword Synonyms

In SQL different symbols are used to build a query, but in natural language user can

not understand this requirement, so these symbols are configured for their synonyms. These

keywords are necessary to be used for different database retrieval opcrations.

A.2.1.7 Log Off

When user finishes his/her work, he surely has to log out of the system, and

terminated the application.
A.2.1.8 Exit

Close the system and exit.

Intelligent Database Agent

1o

L’ Appendix A

Intellivent Database Agent

A.2.2 Query

Under this menu item we have only one sub-menu item which is analyzer.

A.2.2.1 Analyzer

This is the main part of the system. By clicking on this sub-menu itcm, uscr is shown

a form. In this form user inputs the natural language sentences, and then click on the Analyze

button to analyze the given input. Then system checks the input. break it into tokens,

compare with all the synonym information available and then generate the SQL query as

shown in Figure A.7.

|
‘ o Natural Language Analyzer

Uses Input

GIVE EMPLOYEE NAME AND THEIR DEPARTMENT NAME

if Pre-Process Analyze |

~ nput Analysis

Statement Type SELECT Statement

Tokens - [GIVE - Tables Found [EMP
EMPLOYEE] DEPT
NAME

AND
THEIR
DEPARTMENT h

Columns Found

EMP.ENAME
DEPT DNAME

. (~Genesated SQL.

SELECT - e
EMP.ENAME; DEPT.DNAME . :
FROM e .
EMP , DEPT

where s : T
EMP.DEPTNO = DEPT.DEPTNO

Carcel

Close I

Figure A.7: Natural Language Analyzer

Intelligent Database Agent

117

Appendix A Imtelligent Database Agent
!
L
- A.2.3 Help
- In this main menu we have only one sub-menu item which is about.
- A.2.3.1 About
- This is about the contributions and work of the developed system shown in
! Figure A.8.
|
1 H
|
'; e] : :
g Intelligent Database Agent
j . T oot 1101 200405
- i 33-CS/M5/2001 - Muhammad Adeel Athet
D] 49.CS/MS/01 - Mubasher Feroze
i A International Islamic University, islamabad
1 ; » Al rights Reserved.
; Ok l
— Figure A.8: About Window
.
|
—
L
i
L

Intelligent Database Agent 118

Appendix - B

Appendix B Figures Use in Project Dociimentation
B. Figures Use in Project Documentation
Figure No. Page No.
Figure 4.1: Use Case diagram of IDA 41
Figure 4.2: Conceptual Diagram of IDA o1
Figure 5.1: Activity Diagram of Configuring Database 04
Figure 5.2: Activity Diagram of Adding a Synonym 65
Figure 5.3: Activity Diagram of Editing a Synonym 66
Figure 5.4: Activity Diagram of Deleting Synonyms 67
Figure 5.5: Activity Diagram of Generating Query 08
Figure 5.6: Class Diagram of IDA 71
Figure 5.7: Class IDAModGlobalServices 72
Figure 5.8: Class frmDBConnect 72
Figure 5.9: Class frmEnterEditColumnSynonyms 73
Figure 5.10: Class frmAbout 73
Figure 5.11: Class frmMain 74
Figure 5.12: Class frmNaturalLanguageAnalyzer 74
" Figure 5.13: Class DBMetaData 74
Figure 5.14: Class frmEnterEditTableSynonyms 75
Figure 5.15: Class SQLSelectGenerator 75
Figure 5.16: Class [rmFillSynonymDictionarics 70
Figure 5.17: Class frmStoreDatabaseInformation 76
Figure 5.18: Class Login 76
Figure 5.19: Class InputAnalyzer 77
Figure 5.20: Class IDAUtilities 77
Figure 5.21: Class frmLogin 77
Figure 5.22: Class frmEnterEditKeywordSynonyms 78
Figure 5.23: Class frmSARSSplash 78

Intelligent Database Agent 120

I

-

Appendix B Figures Use in Project Documentation

Figure 5.24: Sequence diagram of Enter/Edit Table Synonyms
Figure 5.25: Sequence diagram of Enter/Edit Column Synonyms
Figure 5.26: Sequence diagram of Enter/Edit Keyword Synonyms
Figure 5.26: Sequence diagram of Database Information .
Figure 6.1: Intelligent Database Agent

Figure A.1: Main Window of Intelligent Database Agent

Figure A.2: Client Database Details

Figure A.3: Generating Synonym Dictionaries

Figure A.4: Extract and save Database Information

Figure A.5: Enter/Edit Table Synonyms

Figure A.6: Enter/Edit Column Synonyms

Figure A.7: Natural Language Analyzer

Figure A.8: About Window

80
81
82
83
86
112
113
114
114
115
116
117
118

Intelligent Database Agent

121

Appendix - C

—

Appendix C Glossary

C. Glossary

Compounding takes two words and combines them to form a new word.
Computational Linguistics is doing linguistics with computers.

Data extraction is the process of extracting useful data from a natural language text and

placing this data in a structured database record or template.

Discourse level examines the structure of different kinds of text and uses document structure

to extract additional meaning.

Information retrieval is a collection of methods which can be used to retrieve documents

relevant to a query from a group of documents.
Knowledge-Acquisition is the program that could read books and manuals or the newspaper.

Machine translation uses natural language processing techniques to translate from one

natural language to another.
Morpheme is a linguistics term for the smallest piece of a word to carry meaning.

Morphological analysis identifies the prefixes, suffixes, and root words that compose a

token of the input string.
Natural Language is a language which humans use when communicating with one another.

Natural Language Processing is the way to convert the Natural Language into the

Computer understandable language.

Intelligent Database Agent 123

Appendix C Glossarv

Parsing means breaking a string into parts so that correctly identifying the meaning of

different parts of the input.
Phonetics refers to the way the words are pronounced.

Pragmatic level depends on a body of knowledge about the world that comes from outside

the contents of the document.
Semantic level examines words for their dictionary meaning,
Software Agent is simply a kind of software abstraction.

Structured Query Language is just like any other programming language and is specialized

in Database Querying.

Text categorization is the sorting of natural language texts into fixed topic catcgorics.
Token is the small part of the input sentence.

Tokenization is the process of breaking the input up into distinct tokens.

UDL (Universal Data Link) file connection is used to connect to the database.

Use case is a specific way of using the system by using some part of the functionality.

Intelligent Database Agent 124

Bibliography and References

Bibliograply and Refercnces

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

[10]

Bibliography and References

Craig. W. Thompson, Kenneth M. Ross, Harry R. Tennant and Richard M. Saenz.
Building Usable Menu-Based Natural Language Interfaces To Databases, Central

Research Laboratories, Texas Instruments Incorporated, Dallas, Texas.

Roger Curry and Vanessa Le. Artificial Intelligence A Modern Approach (pages 691
- 705), 1999.

Russell S.J. and Norvig, P. (1995; 1998, January) Artificial Intelligence: A Modern
Approach. (1999, March 27).

Systran Translation Software. (1999, January).

Communications Research Centre - The CHAT Natural Language System. (1999,
March 23).

Becker, K. (1998, November) Signatures. (1999, March 27).
Obtaining Wordnet - (1999, March 27).

H. Alshawi. The Core Language Engine. MIT Press, Cambridge, Massachusetts.
1983.

H. Alshawi, D. Carter, R. Crouch, S. Pulman, M. Rayner, and A. Smith. CLARE - A
Contextual Reasoning and Cooperative Response Framework for the Core Language

Engine. Final report, SRI International, December 1992.

I. Androutsopoulos, G. Ritchie, and P. Thanisch. An Efficient and Portable Natural
Language Query Interface for Relational Databases. In P.W. Chung. G. Lovegrove,

Intelligent Database Agent 126

Bibliograplhy and References

[11]

(12]

(13]

[14]

[15]

(16]

(17]

and M. Alj, editors, Proceedings of the 6th International Conference on Industrial &
Engineering Applications of Artificial Intelligence and Expert Systems, Edinburgh,
U.K., pages 327-330. Gordon and Breach Publishers Inc., Langhome, PA, U.S.A.,
June 1993.

ISBN 2-88124-604-4.

P. Auxerre. MASQUE Modular Answering System for Queries in English —
Programmer’s Manual. Technical Report AIAI/SR/11, Artificial Intelligence
Applications Institute, University of Edinburgh. March 1986.

P. Auxerre and R. Inder. MASQUE Modular Answering System for Queries in
English — User’s Manual. Technical Report AIAI/SR/10, Artificial Intelligence
Applications Institute, University of Edinburgh, June 1986.

B. Ballard and D. Stumberger. Semantic Acquisition in TELL In Proccedings of the

24th Annual Meeting of ACL, New York, pages 20-29, 1986.

B.W. Ballard, The Syntax and Semantics of User-Defined Modifiers in a
Transportable Natural Language Processor. In Proceedings of the 22nd Annual

Meeting of ACL, Stanford, California, pages 52-56, 1984.

B.W. Ballard, J.C. Lusth, and N.L. Tinkham. LDC-1: A Transportable, Knowledge-
based Natural Language Processor for Office Environments. ACM Transactions on

Office Information Systems, 2(1):1-25, January 1984.

M. Bates, M.G. Moser, and D. Stallard. The IRUS transportable natural language
database interface. In L. Kerschberg, editor, Expert Database Systems. pages 617-630
Benjamin/Cummings, Menlo Park, CA., 1986.

BBN Systems and Technologies. BBN Parlance Interface Software _ System
Overview, 1989.

Intelligent Database Agent 127

——

Bibliography and References

[18]

[19]

[20]

[21]

[22]

[23]

[24)

(25]

(26]

J.-L. Binot, L. Debille, D. Sedlock, and B. Vandecapelle. Natural Language
Interfaces: A New Philosophy. SunExpert Magazine, pages 67-73 January 1991.

R.J. Bobrow. The RUS System. In Research in Natural Language Understanding,

~ BBN Report 3878. Bolt Beranek and Newman Inc., Cambridge, Massachusetts, 1978.

R.J. Bobrow, P. Resnik, and R.M. Weischedel. Multiple Underlying Systems:
Translating User Requests into Programs to Produce Answers. In Proceedings of the

28"™ Annual Meeting of ACL, Pittsburgh, Pennsylvania, pages 227-234. 1990.

E.F. Codd. A Relational Model for Large Shared Data Banks. Communications of the
ACM, 13(6):377-387, 1970.

E.F. Codd. Seven Steps to RENDEZVOUS with the Casual User. In J. Kimbie and K.
Koffeman, editors, Data Base Management. North-Holland Publishers, 1974.

A. Copestake and K. Sparck Jones. Natural Language Interfaces to Databases. The
Knowledge Engineering Review, 5(4):225-249,1990.

F. Damerau. Operating statistics for the transformational question answering system.

American Journal of Computational Linguistics, 7:30-42,1981.

F. Damerau. Problems and Some Solutions in Customization of Natural Language
Front Ends. ACM Transactions on Office Information Systems. 3(2):165-184, April
1985.

J.M. Ginsparg. A Robust Portable Natural Language Database Interface. In
Proceedings of the 1st Conference on Applied Natural Language Processing, Santa
Monica, California, pages 25-30, 1983.

Intelligent Database Agent 128

A

——

Bibliograpln and References

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

B.J. Grosz. TEAM: A Transportable Natural-Language Interface System. In
Proceedings of the 1st Conference on Applied Natural Language Processing, Santa

Monica, California, pages 39-45, 1983.

B.J. Grosz. D.E. Appelt, P.A. Martin, and F.C.N. Pereira. TEAM: An Experiment in
the Design of Transportable Natural-Language Interfaces. Artificial Intelligence,
32:173-243,1987.

C.D. Hafner. Interaction of Knowledge Sources in a Portable Natural Language
Interface. In Proceedings of the 22nd Annual Meeting of ACL, Stanford, California,
pages 57-60, 1984.

C.D Hafner and K. Godden. Portability of Syntax and Semantics in Datalog. ACM
Transactions on Office Information Systems, 3(2):141-164, April 1985,

L.R. Harris. User-oriented Data Base Query with the ROBOT Natural Language
Query System. International Journal of Man-Machine Studies, 9:697-713, 1977.

L.R. Hamris. The ROBOT System: Natural Language Processing Applied to Data
Base Query. In Proceedings of the ACM’78 Annual Conference. 1978.

L.R. Harris. Experience with ROBOT in 12 Commercial Natural Language Data Base
Query Applications. In Proceedings of the 6th International Joint Conference on

Artificial Intelligence, Tokyo, Japan, pages 365-368, 1979.

L.R. Harris. Experience with INTELLECT: Artificial Intelligence Technolog
Transfer. The AI Magazine, 5(2):43-50, 1984.

G. Hendrix, E. Sacerdoti, D. Sagalowicz, and J. Slocum. Developing a Natural
Language Interface to Complex Data. ACM Transactions on Database Systems,
3(2):105-147, 1978.

Intelligent Database Agent 129

e

—

Bibliography and References

[36]

(37]

(38]

[39]

(40]

[41]

[42]

[43]

E.W. Hinrichs. Tense, Quantifiers, and Contexts. Computational Linguistics, 14(2):3-
14, June 1988.

T. Johnson. Natural Language Computing: The Commercial Applications. Ovum
Ltd., London, 1985.

J.L. Manferdelli. Natural Languages. Sun Technology, pages 122-129, Summer 1989.

P. Martin, D. Appelt, and F. Pereira. Transportability and Generality in a Natural
Language Interface System. In B.J. Grosz, K. Sparck Jones, and B.L. Webber,
editors, Readings in Natural Language Processing, pages 585-593. Morgan Kaufmann
Publishers, California, 1986.

N. Ott. Aspects of the Automatic Generation of SQL Statements in a Natural
Language Query Interface. Information Systems, 17(2):147-159, 1992.

P. Resnik. Access to Multiple Underlying Systems in JANUS. BBN report 7142, Bolt

Beranek and Newman Inc., Cambridge, Massachusetts, September 1989.

R.J.H. Scha. Philips Question Answering System PHILIQAL. In SIGART Newsletter,
no.61. ACM, New York, February 1977.

W. Sijtsma and O. Zweekhorst. Comparison and Review of Commercial Natural
Language Interfaces. In F.M.G. de Jong and A. Nijholt, editors, Natural Language
Interfaces, From Laboratory to Commercial and User Environments - Proccedings of
the 5" Twente Workshop on Language Technology, Enschede, Twente University,
NL, June 1993. Also MMC Preprint no. 13, Institute for Language Technology and
Artificial Intelligence (ITK), Tilburg University, NL.

Intelligent Database Agent 130

{

I

i

R

-~}

A

—

-

— — (-

Bibliography and References

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

M. Templeton and J. Burger. Problems in Natural Language Interface to DBMS with
Examples from EUFID. In Proceedings of the 1st Conference on Applied Natural
Language Processing, Santa Monica, California, pages 3-16, 1983.

B.H. Thompson and F.B. Thompson. Introducing ASK, A Simple Knowledgeable
System. In Proceedings of the 1st Conference on Applied Natural Language

Processing, Santa Monica, California, pages 17-24, 1983.

B.H. Thompson and F.B. Thompson. ASK is Transportable in Half a Dozen Ways.
ACM Transactions on Office Information Systems, 3(2):185-203, April 1985.

D.L. Waltz. An English Language Question Answering System for a Large Relational
Database. Communications of the ACM, 21(7):526-539, July 1978.

D. Warren and F. Pereira. An Efficient Easily Adaptable System for Intcrpreting
Natural Language Queries. Computational Linguistics, 8(3-4):110-122, July-
Dccember 1982,

R. Weischedel. A Hybrid Approach to Rcpresentation in the JANUS Natural
Language Processor. In Proceedings of the 27th Annual Meeting of ACL. Vancouver,

British Columbia, pages 193-202, 1989.

W.A. Woods. Procedural Semantics for a Question-Answering Machine. In
Proceedings of the Fall Joint Computer Conference, pages 457-471, New York, NY,
1968. AFIPS.

W.A. Woods, R.M. Kaplan, and B.N. Webber. The Lunar Sciences Natural Language
Information System: Final Report. BBN Report 2378, Bolt Beranek and Newman
Inc., Cambridge, Massachusetts, 1972.

Intelligent Database Agent 131

e

r

-

Bibliography and References

[52] Leo Obrst and Krishna Nanda Jha. NLP and Industry: ‘Transfer and Reuse of
Technologies’, Philadelphia.

[53] Paulo Reis Jodo Matias Nuno Mamede. Edite - A Natural Language Interface to
Databases. A new dimension for an old approach. Portugal.

Intelligent Database Agent 132

,,,,,,

- .

© European Journal of Scientific Research, Vol 6, No 5, 2005

IDA: INTELLIGENT DATABASE AGENT
A KEYWORD BASED NATURAL LANGUAGE DATABASE INTERFACE
Muhammad Adeel Ather, Mubasher Feroze, Malik Sikandar Hayat Khiyal
Department of Computer Science, Faculty of Applied Sciences,
International Islamic University, Sector H-10,

Islamabad, Pakistan.

ABSTRACT

This research paper includes the study about Natural Language Processing based database
interfacing. Normally, different databases are accessed by using their standard formal query languages
like Structured Query Language (SQL) which is used only by specialized people, hence restricting the
direct accessibility of the database by a lay man. Intelligent Database Agent provides a way to access
the database using Natural Language i-e English by using the technique of keyword extraction, thus
reducing the need of using complex natural language processing algorithms and linguistic specifics.

Keywords: Natural Language Processing, Database Agent, SQL, linguistics, Artificial Intelligence.

1. INTRODUCTION

By Natural Language we mean any language that is used for communication between human beings.
It can be any language like Arabic, English, Urdu etc. These languages are formed through evolution
process rather than invention [1]. On the other hand, languages such as COBOL, C++ and SQL
were created in a relatively short period of time. Natural languages tend to have very large lexicons
and highly complex grammars [2]. Computers do not understand natural languages. This produces a
gap between man and machine. To overcome this gap we use Natural Language Processing (NLP).

In Natural Language Processing, user input in natural language is converted to the computer
understandable language so that the required results can be obtained from the computer. NLP has
many advantages. It can be used to perform a variety of useful tasks; ultimately it offers a more
natural mode of communication between the system and user. In conjunction with speech synthesis
and speech recognition NLP allows people with physical handicaps (such as paralysis) to use
computers more effectively [2].

Natural language processing is being applied in more and more fields cach day. The main
applications of natural language processing are machine translation, database access, and text
interpretation. The more successful applications of natural language processing have two common
properties. First, they are focused on a particular domain instead of allowing discussion of any topic.
Second, they focus on a particular aspcct of comprehension instead of trying to understand the

language completely [3].
11 Language Translation Engines

Natural Language Processing can be used to translate materials in one language to another or helping
in filling communication gap between people knowing different languages.

Taum-Meteo is one successful application of machine translation. It translates weather reports from
English to French. This system is successful because the language used in weather reports is quite
regular and consistent (a restricted domain) {4].

29

r——-———.

A T

e

© European Journal of Scientific Research, Vol 6, No 5, 2005

SPANAM is another natural language translation system which translates between Spanish and
English [5]. Although SPANAM is less accurate, it operates in a broader domain. The translation
program runs on an IBM mainframe computer (4341 DOS/VSE), which is used for many other
purposes as well. Texts are submitted and retrieved using the ordinary word-processing workstation
(Wang OIS/140) as a remote job-entry terminal. The post-edited output is ready for delivery to the
user with no further preparation required. The SPANAM program is written in PL/I. It is executed
on the mainframe at speeds as high as 700 words per minute in clock time (172,800 words an hour in
CPU time), and it runs with a size parameter of 215 K. Its source and target dictionaries (60,150 and

57,315 entries, respectively, as of May 1984) are on permanently mounted disks and occupy about 9
MB each.

1.2 Database Access

Database access via natural language allows the user to interact with the database without having to
learn a formal language such as SQL, Access, C/C++, etc. There is a disadvantage to this. It can be
confusing and frustrating for the user if their query fails, because it is outside of the system's
competence. For example a natural language interface for a database may understand "south of the
equator”, but possibly not "in the southern hemisphere” even though both phrases have the same
meaning [2].

As a natural language interface, question answering on relational databases allows users to access
information stored in databases by requests in natural language, and generates as output natural
language sentences, tables, and graphical representation [6]. The NL interface can be combined with
other interfaces to databases: a formal query language interface directly using SQL, a form-based
interface with fields to input query pattetns, and a graphical interface using a keyboard and a mouse
to access tables. The NL interface does not require the learning of formal query languages, and it
easily represents negation and quantification, and provides discourse processing.

The use of natural language has both advantages and disadvantages. Including general NLP problems
such as quantifier scoping, PP attachment, and elliptical questions, current Natural Language
Interfaces to Databases (NLIDB) has many shortcomings: First, as a frequent complaint, it is
difficult for users to understand which kinds of questions are actually allowed or not. Second, the
user assumes that the system is intelligent; he or she thinks NLIDB has common sense, and can
deduce facts [7]. Finally, users do not know whether a failure is caused by linguistic coverage or by
conceptual mismatch. Nevertheless, natural language does not need training in any communication
media or predefined access patterns.

NLIDB systems, one of the first applications of natural language processing, including “LUNAR”
were developed from the 1970s [8]. In the 1980s, research focuses on intermediate representation
and portability, and attempts to interface with various systems. CHAT-80 transforms English query
into PROLOG representation [9], and ASK teaches users new words and concepts. LOQUI , a
commercial system, adopts GPSG grammar. Meanwhile, Demers introduces a lexicalist approach for
natural language to SQL translation, and as the CoBase project of UCLA, Meng and Chu combine
information rettieval and a natural language interface. The major problems of the previous systems
ate as follows. First, they do not effectively reflect the vocabulary used in the description of database
attributes into linguistic processing. Second, they require users to pose natural language queries at

“one time using a single sentence rather than give the flexibility by dialog-based query processing. The

discordance between attribute vocabulary and linguistic processing vocabulary causes the portability
problem of domain knowledge from knowledge acquisition bottleneck; the systems need extensive
efforts by some experts who are highly experienced in linguistics as well as in the domain and the
task.

30

————
v

© European Journal of Scientific Research, Vol 6, No 5, 2005

1.3 Text Interpretation

If the computer could understand what the user actually waats, it could easily find articles or other
information relating to the user’s demand, thus producing more relevant information neglecting all
unwanted material.

Information retrieval is a collection of methods which can be used to retrieve documents relevant to
a query from a group of documents [10]. Every document has some sort of abstract associated with
it. It may be the document title, a set of key words or even an n-dimensional vector. N-dimensional
vectors are used in more modern information retrieval systems [11].

Text categorization is the sorting of natural language texts into fixed topic categories. Natural
language processing has been successful in this area categorizing over 90% of news stories into their
correct categories. Natural language processing systems tend to be faster and more consistent than
their human counterparts.

Data extraction is the process of extracting useful data from a natural language text (which is often
online), and placing this data in a structured database record or template. The SCISOR system
developed by Jacobs and Rau in 1990 is an example of a data extraction system. A computer that can
understand Natural Language could read large amounts of information available in the form of
books, journals, newspapers thus increasing their knowledge bases to greater extent without any
explicit effort.

The above mentioned areas are only broad categories but in fact the applications of Natural
Language are as wide spread as the use of computer itself. A matured Natural Language technology
could be used in one form or the other in virtually every computer application.

2. PROBLEMS

Research has been going on Natural Language Processing, but still we do not see fully accurate and
matured products. A Natural Language Interface does not mean that the system would understand
each and every word uttered, this is because of the vastness of the domain and the ambiguities of
natural language itself. There are many Natural Language based interfaces to databases. But there are
some problems with the existing interfaces. First of all, most of them are made for specific domains,
i-e those can not be used for general purpose. For example, if a Natural Language Interface is
developed for tourism industry then that will only cover the tourism domain and cannot be used for
any other database.

Another problem is that Natural Language Database Interfaces usually require tedious and lengthy
configuration phases before they can be used. Also the interfaces given by such systems are not
simple and user friendly. CHAT-80 [9] is one of the best-known NLIDBS of the early eightics.
CHAT-80 was implemented entirely in Prolog. It transformed English questions into Prolog
expressions, which were evaluated against the Prolog database. The code of CHAT-80 was circulated
widely, and formed the basis of several other experimental NLIDBs, for example MASQUE [12].

The user interface mechanisms being developed including command line interfaces (CLI) to
graphical user interfaces (GUI). More recently, even 3-dimensional representations become quite
sophisticated, and as all these are artificial. Users have to learn the meaning of the various commands
and icons, which parameters they take, and the varied forms how to interact with them. In short,
computer systems haven't yet been able to satisfactorily communicate with the user in the most
human way: natural language.

Masque is a descendant of CHAT-80, a system created by Warren and Percira in the early cighties
[Watren & Percira 82] [13]. CHAT-80 was designed as a general and portable natural language

31

[

S

-

e

,___.

© European Journal of Scientific Research, Vol 6, No 5, 2005

interface to an arbitrary database. Its ability to cope with non-trivial English questions and its
efficiency were impressive, but it proved to be in many ways idiosyncratic and hard to port between
databases and knowledge domains. Since then, several efforts have made at the University of
Edinburgh, to redesign the system, so that it is genuinely portable and efficient.

Moreover the Natural Language techniques used are quite complex converting the input into some
meaning representation language (MRL) then afterwards converted according to the specific database
attached after applying sophisticated algorithms and natural language processing techniques.

3. OBJECTIVE

The objective of the Intelligent Database Agent is to provide a simple technique for utilizing the
users input in Natural Language to generate Structured Query Language for the underlying database.
The system should serve as a generic interface to different databases and does not have lengthy and
cumbersome configuration requirements. System would be simple for the users to understand and
would also reduce the effects of over and undershooting problems.

This paper primarily focuses on Natural Language interfaces to Databases. A database interface does
not require any formal language like SQL to get information from it. This type of system will use end
user input in English to talk to the database thus making the database more accessible and useful for
the users especially those who are not conversant with SQL. Non-technical persons, management
staff as well as technical people will benefit from this as it will enable them to get information from
the database without any detailed knowledge of the database tables and constraints. A very simple
and efficient technique is used to convert the user input from natural language to formal query

language i-e SQL.

4. OUR APPROACH

A relatively very simple approach is used in the construction of Intelligent Database Agent, which
basically focuses on the effective utilization of user’s entered information by the use of keyword
extraction. With the use of the extracted keywords combined with the information gathered from the
undcrlymg database, the lexicon information and the language dictionary interface, Structured Query
Language is generated which is used to talk to the connected database. Intelhgent Database Agent is
not targeted to any particular database and therefore it is kept in mind that it would be domain
independent and any database could be connected and used with this interface agent without hassle.

At one time the Intelligent Database Agent would be connected to two databases. One of the
databases, which are connected to the Intelligent Database Agent is the one whose interface it has to
provide and the other one is IDA’s internal database that uses to store the lexicon and other
configuration information of the attached database.

As the mode of communication between the user and IDA would be English therefore an English
dictionary interface is provided to better understand the keywords that are extracted from input. This
also makes the system more open to new meanings of words that are being entered by the user. This
dictionary interface is also used in the configuration phase of IDA.

The Intelligent Database Agent provides a simple menu based user interface. It has different forms
for performing various operations like enter/edit information, configuration processes and input to
SQL conversion screen.

32

—-

© European Journal of Scientific Research, Vol 6, No 5, 2005

4.1 One Time Configuration

The Intelligent Database Agent requires some configuration which is made easy with the help of
processes run through simple form interfaces. The processes stores attached database’s constraints
information as well as database tables and columns synonym information in the IDA internal
database. The user will have to enter any database semantics information in the form of synonyms to
tell IDA system about what type of information is stored in the table. The more natural the table

names, easier it would be to configure it.

4.2 Algorithm

Our simple and efficient algorithm uses some steps to identify and convert the user input in natural
language to Standard Query Language (SQL). These are six simple steps to be followed. Following is

the algorithm:

Start

End,

Step 1;

Step 2;

Step 3;

Step 4,

Step 5;

Step 6,

Get userinput
Break into tokens

If no tokens found then
Prompt user for empty input
Go to step |

Else

Go to step 2

Match tokens with available synonyms to identify the stetement type
If no synonyms found then

Prompt user for illogical input

Exit
Else

Go to step 3

Compare tokens with column and table synonyms
Gotostep 4

Check the column occutrence
Go to step 5

Identify table relationship by using intemally stored datebase constraints information.

Go to step 6

Check for the where clause by synonym matching

Our simplified approach requires following steps to successfully translate the natural language input

into SQL. By using the following input in natural language we express working of our technique:

“Give employee name and their department name”

33

© European Journal of Scientific Research, Vol 6, No 5, 2005

1s Step: Tokenization

The basic functionality of the system is like that first the user enters the input in the provided
interface form. After that the tokenization process is performed on the English language input where
it is broken to individual words by considering certain delimiters like space, commas etc. so we get

”» < L2 I 11 Lt {4 % <

the tokens “give”, “employee”, “name”, “and”, ‘their”, “department” and “name”.

204 Step: Token Synonyms

From these tokens the statement type is judged by simple synonym lookup. So the first token “give”
tells that it is the select statement. The next step is a need to identify the information desired by user
and whether the information is present in the database or not. To do that the client database tables
and columns synonym information present in the IDA database is used with the English language
dictionary interface. Synonyms of all the tokens are acquired by dictionary lookup and stored in the
IDA'’s internal database.

3 Step: Comparison with table and column names

The individual tokens and their synonyms are matched with the tables and columns information
stored in the IDA database. With the help of these keywords, potential database columns and tables
are identified that possibly contain the user’s desired information. All the table synonyms are stored
in the table IDATableSynonym and column synonyms are stored in the IDAColumnSynonyms.
These identified potential column and table names provide the basis for the generation of SQL. The
columns serve as column names in the query to be built. Full qualified names of the columns are
taken here in order to remove any ambiguity regarding their tables. Tables that were found earlier by
the keyword extraction engine and those of the columns are considered as table names for the query.
Now comparison is made between all the keywords and their synonyms with the stored table and
column synonyms, so we found the columns and tables of the external database:

Columns: ename, dname

Tables: emp, dept

4t Step: Column Occurrence

The statement is generated by considering whether the columns are present in single table or from
multiple tables. If all the columns are present in single table then any other tables identified would be
rejected. It is found that ename and dname are present in more than one tables so we have to see the
relationship between the tables.

5t Step: Identifying tables relationship

In case where the tables are more than one, the IDA database is consulted for checking the relation
between the tables. If there is parent child relation between the identified tables they are joined by
equi-join on the column forming the relation between the tables. This is done by consulting the
IDATableConstraints table of the internal database. Parent-child relationship is found on deptno.

6% step: Checking Where clause

The system then checks for a where clause in the user’s entered query tokens through synonym
matching. If there is a where clause present then “where clause” is generated using the column names
and synonyms information. The where clause entered by the user are matched with the keywords

34

e

—

i

-

—

© European Journal of Scientific Research, Vol 6, No 5, 2005

present in IDA database. If found then phrases are replaced by the keywords to make the where
clause for the resulting SQL query.

4.3 Result

Finally, after successful completion of all the steps, SQL generation engine use all above information
and build a standard SQL statement that is understandable by the underlying database. So the result
we get by applying all of the above steps to our selected example is:

“select emp.ename, dept.dname from emp,dept where emp.deptno = dept.deptno;”

The query formed is then displayed on the user interface. If the system could not figure out some
thing meaningful from the user input appropriate messages are displayed to make necessary changes.

5. SUMMARY

This paper describes the effort made towards developing a simple Natural Language based database
interface agent that could generate Structured Query Language from the user’s entered input by using
keywords extraction technique. The solution is not targeted to a specific database and hence tried to
make it a simple and generic solution where complexities could be reduced as far as possible.

In third world countries there is lack of resources and appropriate guidance for carrying out research
in new and emerging technologies. We have tried to work in this area and put in effort to move in
the direction of making simpler solutions.

REFERENCES

[1] Gerald Gazdar, Chris Mellish. Natural Language Processing in Prolog/Pop11/Lisp.

[2] Russell SJ. and Norvig, P. (1995; 1998, January) Artificial Intelligence: A Modemn Approach.
(1999, March 27).

[3) Communications Research Centre - The CHAT Natural Language System. (1999, March 23).

[4] Chevalier, Monique; Dansereau, Jules; and Poulin, 1978. TAUM-METEO: System Description.
TAUM Group, University of Montreal, Montreal, Canada.

[5) SPANAM AND ENGSPAN: MACHINE TRANSLATION AT THE PAN AMERICAN
HEALTH ORGANIZATION. Muriel Vasconcellos and Marjorie Le6n 1, Pan American
Health Organization, 525 Twenty-third Street, N.W. Washington, D.C. 20037.

[6]) A Natural Language Database Interface For SQL-Tutor by Seymour Knowles

[71 Ana Maria Popescu, Oren Etzioni, Henry Kautz Towards a Theory of Natural Language
Interfaces to Databases.

[8) W.A. Woods, R.M. Kaplan, and B.N. Webber. The Lunar Sciences Natural Language
Information System: Final Report. BBN Report 2378, Bolt Beranek and Newman Inc.,
Cambridge, Massachusetts, 1972.

[9) D. Watren and F. Pereira. An Efficient Easily Adaptable System for Interpreting Natural
Language Queries. Computational Linguistics, 8(3-4):110-122, July-December 1982.

[10] Susan Feldman. Natural Language Processing in Information Retrieval.

[11] Asanee Kawtrakul. An Overview of a Role of Natural Language Processing in An Intelligent
Information Retrieval System.

35

[

!”_—7

S

© European Journal of Scientific Research, Vol 6, No 5, 2005

[12] P. Auxerre. MASQUE Modular Answering System for Queries in English — Programmer’s
Manual. Technical Report AIAI/SR/11, Artificial Intelligence Applications Institute, University
of Edinburgh. March 1986.

[13] P. Auxerre and R. Inder. MASQUE Modular Answering System for Queries in English — User’s
Manual. Technical Report AIAI/SR/10, Artificial Intelligence Applications Institute, University
of Edinburgh, June 1986.

36

