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ABSTRACT 

The application of compressed sensing (CS) to biomedical imaging is exciting because 

it allows a reasonably accurate reconstruction of images from far fewer measurements. 

For biomedical imaging, CS can increase the imaging speed and consequently decrease 

the radiation dose. While the idea of CS has been used to reduce the acquisition time of 

magnetic resonance imaging (MRI), x-ray computed tomography (CT) and microwave 

imaging (MWI), unfortunately the computation time of image recovery has increased 

as the nonlinear CS reconstruction algorithms are fairly slow. Reconstructing high- 

dimensional signals or biomedical images from compressively sampled data is a 

fundamental challenge faced by the CS. 

In this dissertation, we propose a suite of novel CS recovery methods that can efficiently 

recover the Fourier encoded biomedical images (MRI, parallel-beam CT and MWI) 

from a small set of randomized measurements. The initial part of the current work 

presents CS based reconstruction of sub-sampled biomedical imaging modalities using 

projection onto convex sets (POCS) and separable surrogate functional (SSF) methods. 

The iterative shrinkage based SSF algorithm incorporates the linear estimate ofthe error 

to improve the reconstruction quality. It does not involve any matrix inversion and is 

used to estimate the missing Fourier samples of the original image by applying data 

consistency in the frequency domain and soft thresholding in the sparsifying domain. 

The idea of using hybrid evolutionary techniques for the sparse signal recovery is 

presented next. It proposes how to combine the heuristic techniques such as Differential 

evolution (DE), genetic algorithms (GA), and Particle Swarm Optimization (PSO) with 



iterative shrinkage algorithms to faithfully reconstruct sparse signals from a small 

number of measurements. Based on the notion of GA, a modified POCS based 

algorithm is developed. This novel CS recovery technique uses two different estimates 

for the initialization and iteratively combines them to recover the original Fourier 

encoded image. 

In the last part, we use hyperbolic tangent function separately to develop a 

reconstruction algorithm and a non-linear shrinkage curve for thresholding. As the 1,- 

norm penalty is not differentiable, the proposed hyperbolic tangent based function is 

used to closely approximate the 1,-norm regularization by a differentiable surrogate 

function. Using the method of gradient descent, a simple update rule is developed. The 

algorithm is shown to perform well for one dimensional (1-D) sparse signal recovery 

as well as CS reconstruction of Fourier encoded biomedical imaging. The idea is further 

extended by using hyperbolic tangent based approximations for the soft-thresholding 

that provide flexibility in terms of its adjustable parameters. Besides using synthetic 

data, the effectiveness of the proposed techniques are also validated using the real data 

collected from the MFU and MWI scanners. 
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CHAPTER-1 

INTRODUCTION 

Medical imaging techniques such as Magnetic Resonance Imaging (MRI), x-rays 

Computed Tomography (CT) and Microwave Imaging (MWI) etc. are becoming 

increasingly important tools in medical decision making that offer useful information 

about the medical conditions of the patients. 

Unlike CT scanners which generate images by passing x-ray (ionizing) radiations 

though the body, MRI is considered to be a nonionizing and non-invasive imaging 

modality as it uses magnet and radio waves to produce images. MRI provides excellent 

depiction of soft tissue contrast and its variant, known as Functional MRI (fMRI) can 

be used to record the functional activities of the brain by measuring the associated 

changes in the blood flow. However, MRI is much slower and takes longer acquisition 

time than CT. 

Microwave imaging is another promising modality that is based on the scattering 

phenomena of microwave signals (1GHz to 30 GHz). Microwave radiations can 

penetrate inside the human body and can retrieve various structural and functional 

information based on the tissue water content. It is a noninvasive imaging modality and 

is becoming popular because of its ability to detect breast cancer in the early stages. 

The recent technological advancement in the field of biomedical imaging has resulted 

in massive clinical data. It is therefore necessary to find methods and tools that can 

sparsely represent the biomedical data. This will not only reduce the storage 

requirements but will also be beneficial in extracting the useful information efficiently 

thereby reducing the diagnosis time. There is another challenging problem related to 



the data acquisition. The scanners used to acquire these images are generally 

claustrophobic, loud, slow, uncomfortable, and may involve exposure of patient to the 

harmful radiations. In order to get a high resolution image, the Nyquist rate is very high. 

So, it is necessary to reduce the massive amount of the acquired data for the following 

purposes: 

1. To speed up the long acquisition time and increase the imaging rate to achieve 

a full or nearly real-time monitoring. 

2. To obtain high resolution in time, and high resolution in 3-dimensional space 

of internal body structure for image-guided surgery imaging. 

3. To minimize the processing/diagnosis time and less exposure of patient to the 

ionizing radiation dose as in the case of CT. 

4. To alleviate discomfort of the patients because of the slow acquisition, even if 

there are no hazards of EM radiations as in the case of MRI, fMRI and MWI. 

5. To keep the dataflow tractable for diagnosis and follow-up of human diseases. 

6. To reduce to the storage size and save battery power in case of wireless 

applications such as telemedicine. 

The accelerated acquisition time can also reduce the motion artifacts due to respiratory 

and cardiac cycles which is a common issue in dynamic cardiac imaging. Furthermore, 

in biomedical imaging via neutron scattering, limited sensors may be available or 

measurements may be extremely expensive. Therefore, reconstructing a high quality 

image from reduced number of measurement may be highly cost-effective. 

While the underlying principle and physical quantities being imaged by CT, MRI and 

MWI are different but their scanners naturally acquire the encoded samples instead of 

direct pixel values. So the acquisition process can be modeled by a set of linear 



measurements of the form y = a x ,  making these imaging modalities a potential 

application for the CS. 

1.1 Compressed Sensing 

Like natural images taken by digital cameras, biomedical images can also be 

compressed using popular compression techniques. However, in the conventional 

transform coding such as JPEG and JPGE-2000 etc., the measurements of the image 

are acquired first (through Nyquist criteria) and then using a sparsifying transforms e.g. 

Discrete Cosine (DCT) and Wavelet Transforms (DWT), most of the small energy 

coefficients are discarded to achieve the desired level of compression. This sample- 

then-compress framework of conventional compression methods introduces extra 

overhead thus making these algorithms inefficient. 

Compression using transformed coding is essentially a post-processing operation. In 

recent years, a new data acquisition protocol known as compressive (or compressed) 

sampling (or sensing) has seen enormous growth and interest in the areas of 

signallimage processing, information theory, statistics and neural networks. The theory 

of compressed sensing (or sampling) suggests that a sparse or compressible signal can 

essentially be recovered using measurement rates below the conventional Nyquist rate 

[I-31. 

A sparse signal is one that has many zero and few nonzero coefficients. CS uses non- 

linear recovery techniques to reconstruct the original sparse signal from small number 

of non-adaptive random projections that are proportional to the sparsity level of the 

signal, instead of its ambient dimensionality [4-51. 

Contrary to the transform coding, CS suggests that the encoding process can be made 

efficient by combining the compression step directly with the acquisition thus avoiding 
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the unnecessary information to be captured and processed. CS has enormous practical 

applications in biomedical imaging such as MRI, fMRI, CT and MWI which involves 

slow acquisition process. Three essential requirements for the application of 

compressed sensing to biomedical images are the image sparsity, incoherent sampling 

and non-linear reconstruction algorithm [6-81. 

The encoder part of CS is relatively simple and consists of the non-adaptive and 

incoherent linear measurements of the form y = a x .  However, the CS decoder is very 

challenging because of the computation cost in the (nonlinear) image reconstruction 

process. Many reconstructions algorithms have been proposed for compressed sensing 

in the recent past. However, most of these algorithms are general purpose and require 

too many iterations making the recovery inefficient, specifically if the images have 

large dimensions as in the case of biomedical applications [9-111. 

The numerical algorithms used for the sparse signal recovery frequently involve finding 

solution to the least squares optimization problem with 11-norm regularization. As the 

1,-norm penalty is not differentiable, so it rules out the possibility of using the efficient 

optimization techniques that call for the derivative of the objective function. Devising 

an efficient and lower cost CS recovery technique for high dimensional biomedical 

images is still considered as one of the fundamental challenging task which is the main 

focus of this dissertation. 

1.2 Main Contributions 

This work is motivated by the desire to propose a number of efficient reconstruction 

methods for compressively sampled biomedical imaging modalities such as MRI, 

parallel-beam CT and MWI. The proposed recovery algorithms are based on the 

iterative shrinkage methods which are well suited for large dimensional signals. These 
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suits of algorithms estimate the original image from its perturbed observation 

(measurements) and therefore recast the reconstruction as denoising or interference 

cancellation problem. 

The dissertation also presents some novel work related to the shrinkage curves used for 

soft-thresholding. A flexible hyperbolic tangent function is proposed for approximating 

the shrinkage curve. Hyperbolic tangent function is also used in a totally different 

context to surrogate the 1,-norm by a differentiable function for developing a gradient 

based sparse reconstruction algorithm. 

The main contributions of this work are summarized below: 

Development of fast and efficient CS recovery techniques for Fourier encoded 

biomedical imaging using the family of iterative-thresholding algorithms. By 

incorporating data consistency constraint in the Fourier domain, computationally low- 

cost sparse recovery algorithms such as separable surrogate functional (SSF) and 

parallel coordinate descent (PCD) are shown to perform well in CS recovery of 

biomedical images . 

Sparse signal reconstruction has been carried out using heuristic techniques such as 

differential evolution (DE), genetic algorithm (GA) and particle swarm optimization 

(PSO). It has been shown that, by using deterministic algorithm, the convergence speed 

of evolutionary algorithm can be improved. 

Using the idea of GA, a modified projection onto convex set based algorithm is 

developed for the recovery of compressively sampled MR images. 

A novel sparse recovery algorithm is proposed to surrogate the 1,-norm by a 

differentiable function. The algorithm is shown to efficiently recover MRI, parallel- 

beam CT and MWI from sub-Nyquist measurements. 



A flexible hyperbolic tangent based soft-thresholding is proposed. The novel 

thresholding is shown to perform well with iterated-shrinkage algorithms to recover the 

biomedical images from compressive measurements. The proposed nonlinear function 

can also be used in place of soft-thresholding for imaging denoising. 

The proposed techniques are applied to various biomedical imaging modalities using 

phantom as well as original images from the scanners. All the results related to MRI 

experiments are validated using the real brain images taken from the MRI scanner at 

St. Mary's Hospital, London. The microwave imaging uses a phantom image developed 

at the Laboratory of Electromagnetic and Acoustic Imaging and Prognostics (LEAP), 

University of Colorado Denver, USA. 

1.3 Thesis Outline 

The rest of the thesis is organized as follows: 

Chapter-2 starts with an introduction of sparse representation and compressed sensing 

with special focus on biomedical imaging modalities. It also provides a brief literature 

review of the related work, followed by the quality assessment metrics used in the CS 

reconstruction methods. 

Chapter-3 provides the underlying physics and mathematical details to show that the 

data acquisition of MRI, parallel CT and MWI scanner can be model as a Fourier 

encoded measurement process, making it a potential application for the compressed 

sensing. POCS based algorithm is then applied to recover MR, CT and microwave 

images from sub-sampled measurements. 

Chapter-4 presents the mathematical detail of SSF based CS recovery algorithm. It 

incorporates the linear estimate of the residual error in POCS algorithm to further 



improve the reconstruction quality. The viability of the technique is used to reconstruct 

Fourier encoded images from a reduced dataset. 

Chapter-5 provides two hybrid sparse recovery algorithms based on evolutionary 

techniques. Particle swarm optimization and genetic algorithms are combined with SSF 

to speed up the convergence. Based on the idea of GA, a novel CS reconstruction 

method for Fourier encoded imaging is also presented. The novel approach uses 

multiple initialization and randomly combines two estimates to reconstruct the final 

image. 

Chapter-6 is based on the differentiable surrogate approximation of 11-norm. The 

proposed smooth function is used to develop an iterative algorithm for the CS 

reconstruction using a simple gradient descent for the solution update. The results are 

validated to recover 1 -D sparse signal, original MR, CT and MW images. 

Chpater-7 starts by providing an equivalence between undersampling and denoising. It 

presents a novel thresholding scheme based on hyperbolic tangent function. This 

flexible thresholding can be used with any of the iterative shrinkage algorithm for the 

recovery of biomedical images as well as denoising. 

Chapter8 concludes the work along with the future work. 



CHAPTER-2 

SPARSE REPRE,SENTATION AND COMPRESSED SENSING 

This chapter revisits the basic concepts of sparse representation and compressed 

sensing, mainly in the context of biomedical imaging modalities such as MRI, CT and 

MWI. It also provides a brief description of the background work related to the 

application of compressed sensing to various biomedical imaging. Different quality 

assessment parameters used in the experimental work are also discussed. 

2.1 Sparse Representation 

Sparse representation aims to approximate an image or signal in the most parsimonious 

way by representing it as a linear combination of few elementary signals (known as the 

basis or atoms) drawn from a fixed collection (called dictionary) [9-101. The sparse 

representation for a signal or image gives us the advantage of fast computation, less 

storage requirement and efficient transmission. The recently developed theory of 

compressed sensing (CS) has further revolutionized the field of sparse signal 

approximation with the claim that a sparse signal can be recovered from far few 

measurements that are needed by the conventional Nyquist theorem [l-41. 

2.1.1 Sparsity: From Basis Expansion to Sparse Representation 

Basis representation breaks up the (discrete and continuous time) signals as a linear 

combination of fixed basis signals (atoms). In its general form, the basis expansion of 

a signal x ( t )  can be expressed as [12] : 



where {$y(t))YEr is a fixed set of basis signals, ay is a discrete list of numbers called 

the transformed coefficients and r E Z is a discrete index set. 

The basis expansion of Eq-2.1 discretizes a signal x(t) by translating it into discrete 

list of numbers (aY) in such a way that the signal can be reconstructed. It is also referred 

to as the "atomic decomposition". 

If the basis are orthonormal i.e. (I&$,,I) = 6(y - y'), the coefficients can be 

computed through a simple inner product: 

a, = (x(t>1 $y(t)) (2.2) 

The well-known examples of orthonormal basis expansion are the continuous and 

discrete time Fourier series, discrete Fourier transform (DFT), Sinc interpolation or 

reconstruction, convolution, DCT and wavelet. 

Mathematically, any real or complex-valued DT signal of length n can be treated as 

(column) vector in an n-dimensional space. Similarly, a (gray-scale) biomedical image 

X can be represented by a matrix. However, without loss of generality, the biomedical 

images can be brought into a vector form by stacking all its columns into a single vector. 

Thus, for the discrete case (x E Rn ), Eq-2.1 can be written as [13]: 

where ai are the expansion coefficients and a E (Cn is the representation vector. The 

operator Y = [Q!J, ...$,-,I is a unitary matrix (i. e.  YYH = I), known as the basis 

matrix or dictionary or sparsifying transform. In the classical example of Fourier series, 



Qi are harmonically related complex sinusoids, Y is the normalized Fourier matrix and 

cxi are the Fourier coefficients. 

Eq-2.3 represents a linear system with the same number of equations as unknowns. As 

V is a square and invertible matrix (Y-' = Y") having no null-space, the 

representation of signal x is unique [14]. 

An orthonormal basis representation of the signal has the following advantages: 

i. The transformed coefficients ai may carry semantic information such as the 

frequency contents (as in the case of Fourier series or DFT). 

ii. According to the Parsevel theorem, energy of the original signal is preserved 

in its transformed coefficients i.e. llxllg = Ilall;, where 11-112 represents the 

Euclidean norm corresponding to p = 2 of the general l p  -norm defined as: 

. . . 
111. The expansion gives a discrete representation even for the continuous time 

signals. The coefficients can therefore be processed through digital computers. 

iv. The transformation may provide the energy compaction that leads to the sparse 

representation of the signal or images. 

A simple example of the energy compaction property can be seen in the Fourier series, 

where the Fourier coefficients of a signal falls off quickly if it has more derivatives (in 

time domain), leading to an implicit compression in the frequency domain. 

Energy compaction property has a direct relation with the sparse representation. If a 

signal or image x can be represented as a superposition of k atoms in the Y-domain, 



then the column vector a is known as the k-sparse representation of x and Eq-2.3 can 

be re-written as [l 11: 

where the k set of indices {ni)&, correspond to the knon-zero entries of the coeficients 

of the basis signals. The representation vector a E Rn is said to be k-sparse and will 

only have k < n non-zero coefficients. Mathematically speaking, Ilallo = k where 

( I . ( I o  is the I ,  pseudo-norm defined as: 

Where it is assumed that O0 = 0. Thus the lo quasi norm is a counting hnction that 

returns the number of non-zero elements (sparsity) of the signal. 

Real world signals including biomedical images are seldom sparse in a transformed 

domain but are instead compressible. A compressible signal has magnitude of 

coefficients that decay according to a power law when sorted in a descending order. A 

compressible signal can be closely approximated by a sparse signal by setting all the 

small values of its coefficients equal to zero 115, 161. 

2.2 Compressed Sensing for Biomedical Images 

As the information contents of a sparse signal are much smaller than its bandwidth, one 

can design an escient sampling scheme by taking the number of measurements 

proportional to its information contents. The theory of CS claims that for the class of 

sparse or compressible signals, the required number of measurements is usually smaller 

than the Nyquist limit and is instead proportional to the sparsity level of the signal. CS 



is based on three important principles, namely sparsity, incoherent sampling or 

measurements and non-linear recovery which are discussed briefly below. 

2.2.1 Sparsifying transforms for biomedical images 

The most popular analytical transforms used for the sparse representation of biomedical 

images are discrete cosine transform, total variation and wavelet. 

2.2.1.1 Discrete Cosine Transform (DCT) 

DCT is an alternative to the Fourier series with the following two main differences that 

makes it more attractive for certain applications: 

i. The expansion coefficients and the (ortho) basis functions are real-valued. 

ii. Each basis has half integer number of cycle. 

The (I-D) DCT basis for Rn are defined as [I  71: 

For 2-D biomedical images, one can extend the 1-D DCT basis of Eq-2.6 into separable 

bases. Let $i, j( l l  p )  be the 2-D DCT basis for Rn x Rn, then: 

, P = @ ) @ j  0 I i l j  I n - 1 

As the bases $ i ( l )  and $ j ( p )  are orthogonal, the 2-D DCT basis $i, j( l ,  p )  are also 

orthogonal. As an example, Fig-2.1 shows the 64 DCT basis functions for n = 8. The 

basis are indexed by two integers i and j  an each basis comprises of 8 x 8 image block. 

So, any arbitrary 8 x 8 image patch can be represented as a weighted sum of these 64 

different DCT basis functions (image block). The transformed domain (DCT) 



coefficients can be obtained by a simple inner product of the image patch with each of 

these basis functions. 

The DCT is widely used for image compression because of its ability to sparsify the 

images. The basic idea is that while the energy of an 8 x 8 image block is less evenly 

distributed in the pixel domain, the DCT concentrates this energy onto a relatively small 

number of transform coefficients. To demonstrate the energy compaction property of 

DCT, we apply it to a microwave image. Fig-2.2 shows a 6 ~ 1 . 5  inches near field 

microwave image developed at the Electromagnetic and Acoustic Imaging and 

prognostics (LEAP) lab of the University of Colorado Denver and Anschutz Medical 

Campus, using a customized coaxial tip antenna. The image was acquired by using 

raster scanning with excitation frequency =I0 CHz. The image reconstructed from its 

10% largest DCT coefficients is also shown in the figure. It is clear that by acquiring 

the most significant DCT coefficients, the original image can be reconstructed 

faithfully. 

Figure-2.1: DCT basis q!~~,~(l,p)for 0 4 i, j I 7 

Sparse representation with DCT is good if the image is smooth. However, it suffers 

when transforming a signal that has time varying andlor singularity characteristics. 
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There is a general issue with the transforms that are based on Fourier basis. The general 

Fourier basis uses complex exponentials which are periodic and time-unlimited. Once 

the signal is transformed using Fourier basis, it loses time information. So, in certain 

cases, it may not be the best solution to use it for the representation of time-limited 

signals or if temporal resolution is required. Wavelet transform is a useful tool and 

captures both frequency and time information of the signal [18]. 

Onainal Scan 

-- 
I 

50 100 150 m3 
inch 

Reconstruction from 10% largest DCT coefficients 

inch 

Figure-2.2: Original and reconstructed microwave image from 10% DCT coeficients 

2.2.1.2 Wavelet Transform 

The wavelet consists of a single time-limited basis function ("little wave") that satisfies 

certain properties and is known as the mother wavelet. The entire library of the ortho- 

basis is created from it by the operations of time-shift and scaling. The wavelet 

representation of a 1 -D, continuous-time finite energy signal is given by: 

x ( t )  = C i , j  a i , j $ i , j ( t )  = C i , j ( X  $ i j )  $ i , j ( t )  (2.7) 

where the wavelet basis GiJ ( t )  are indexed by two variables. These basis are 

reconstructed from a single mother wavelet $(t). Changing the choice of $(t) can lead 



to different types of wavelet transforms. For the case of discrete wavelet transform 

(DWT), a typical wavelet is compressed i-times and shifted j-times to obtain the 

orthonormal basis i.e. 

1 
$i,j(t) = -$~(2- ' t  - j), i, j E Z 

fi 

For a DT signal x E Rn, the DWT is computed by passing it through a series of low 

and high-pass filters. Using quadrature mirror filter (QMF) algorithm, the impulse 

response of the high-pass filter g(i) is calculated from that of the low-pass filter h(i) by 

the relation: 

After filtering, half of the samples are retained by down-sampling (decimating) the 

outputs of the filters. The schematic diagram of (two-level) wavelet decomposition is 

shown in Fig-2.3. 

Input 
Signal 

Decimation 

Figure-2.3: Block diagram of the QMF algorithm for D WT 

The signal transformation is generally repeated for as many levels as desired by further 

decomposing the low-pass version of the signal. 

The inverse discrete wavelet transform (IDWT) is computed by a similar multilevel 

process as shown in Fig-2.4. The impulse responses of the IDWT filters are calculated 

as follows: 



hl ( i )  = (- l)l-nh(l - i )  

gl (i) = (- l)l-"g(2n - 1 - i) 

Reconstructed 
Signal 

Figure-2.4: Block diagram for ID WT using QMF algorithm 

Wavelets are extremely useful tools and are widely used for the sparse representation 

of biomedical images such as CT and brain MRI [6, 71. They have the ability to 

automatically adapt to the singularities in the images. DWT is also used for 

compression in JPEG-2000 [5, 191. 

The 2-D wavelet transform can be easily implemented for biomedical images. This is 

usually done by treating an n x n image once as a series of 1-D row signals and once 

as a series of 1-D column signals. The 1-D DWT for all the n-rows of the image is 

calculated first and the same process is repeated on the n-columns after that. 

Fig-2.5 shows a real MR image of human head that was acquired at St. Mary's Hospital 

London using 1.5 Tesla GE HDxt scanner. To obtain its Daubechies-2 (db2) wavelet, 

the Haar transform is applied by filtering the image with 1-D kernels horizontally and 

applying the same filters vertically resulting in four output images. The process is 

further continued with the low-low pass image thereby resulting in a total of 7 images. 

The resulting 7 bands obtained using the Daubechies 2-taps filter (h = [%, 

% 1, = [% , - with two layers of resolution are shown in Fig-2.6. 



Figure-2.5: Original MR Image of human head 

Figure 2.6: 7-bands of Daubechies 2-tap filters when applied to brain MRI. 

Furthermore, Fig-2.7 demonstrations the compressibility of the MR image (Fig-2.5) in 

the Wavelet domain. The figure is obtained by sorting the pixel values and wavelet 

coefficients in descending order. The rapid decay of the wavelet coefficients of the MR 

image shows that it can have a nearly sparse representation in the transformed (wavelet) 

domain 



Sparsity of MRI in image vs Wavelet Domain 
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Figure-2.7: Sorted coeflcients of MRI in pixel and wavelet domain. Only 1000 

significant values are shown for cornparsion 

The sparse approximation using transform coding may be either adaptive or non- 

adaptive. In the non-adaptive (linear) sparse approximation, only the desired number of 

transformed coefficients are retained at fixed location. However, in the adaptive (non- 

linear) approximation, the biggest number of transformed coefficients are kept and the 

rest are thrown away. For DCT, there is little difference between the two. However, 

nonlinear wavelet approximations adapt to the singularities and outperform the linear 

approximation [ S ]  . 

2.2.1.3 Total Variation ( T v  

TV is a commonly used to sparsely represent piece-wise smooth biomedical images. It 

measures the variations in the images and is computed by summing the norms of the 

discrete gradient [20].  Let X E Cnxn be a discrete space biomedical image with xi,j 

denoting the pixel value at ith row and jth column, then its TV is defined as: 



2 
TV(X) = ~ i , j  J 1 v ~ ( i , j ) ~ 1 ~  + Ivz(i,j)xI = ~i,jI~v(i , j )x~~ (2.10) 

where V1(i,j)X E CnXn and V2(i,j)X E Cnxn are the horizontal and vertical difference 

on image X respectively i.e. 

and V(i,j)X = [Vl(i,j)X v , ( ~ , ~ ) x ] ~  E Cnxnx2 is the discrete gradient of the image. A 

biomedical image is said to be k-sparse in the total-variation sense if IITV(X)II, = 

k. Fig-2.8 shows a 256 x 256 standard shepp-Logan phantom image that is used 

primarily in the biomedical image reconstruction such as computed tomography (CT). 

This image is not directly sparse but has gradient-based sparsity. 

SheppLogan phantom image 

Horizontal Difference Vertical Difference 

Figure-2.8: Gradient based sparsity of Shepp-Logan image 
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Once a signal has sparse representation (direct or in a transformed domain), CS 

provides a framework for its recovery from sub-Nyquist incoherent measurements 

2.2.2 Incoherent Sampling (measurements) 

In the theory of CS, the sensing or sampling mechanism at the encoder can be 

represented as a linear transformation of a length n signal vector x to a length m vector 

y with m << n: 

where the transformation matrix a: Rn + Rm is known as the measurement or sensing 

matrix and is formed from the sampling/sensing waveforms (or test functions) 

piT, pZT ... pmTas rows. Thus, the measurement or observation vector y is obtained 

from the non-adaptive linear projections (transformation) of the original signal x.  

As given in Eq-2.11, the generic notion of the sampling as inner product of the 

signallimage x against the test functions (pi )  allow us to successfully apply CS to 

biomedical images where the scanners naturally acquire the encoded samples instead 

of direct pixel values. The choice of pi varies from one imaging modality to another. 

For example, if the sensing waveforms (p i )  are sinusoids at different frequencies, then 

@ is essentially a Fourier matrix and the measurement vector contains Fourier 

coefficients as in the case of magnetic resonance imaging (MRI). Similarly, if the test 

functions are delta ridges then a is the discrete Radon transform and the measurements 

are line integrals as in the case of computed tomography (CT) [5] .  

For a square (m = n) and invertible matrix a, the transformation is reversible which 

means that the input signal can be exactly recovered from the output (i. e. f = a-'y ). 



However, there are some practical situations where it is preferable to use a rectangular 

transformation matrix (m << n) having less number of rows than the columns. In 

context of linear algebra, this leads to an under-determined system of linear equations. 

In the framework of CS, this is equivalent to acquiring less number of measurements 

than the ambient dimensionality of the original signal while in the application of 

biomedical imaging e.g. MRI and CT, this directly corresponds to a reduction in the 

acquisition (scan) time and less exposure to the radiation dose respectively [7,21]. 

For the under-determined system, the matrix has a null space which means that 

different vectors can result in the same measurements after the transformation. Thus, 

there are infinitely many solutions that make the recovery process ill-conditioned. In 

the MRI case, it means that the final linear reconstructed image from its partial Fourier 

data will have aliasing artifacts because of violation of the Nyquist criterion. Figure- 

2.9 depicts the issue of aliasing during the final reconstruction of the undersampled MR 

image by skipping every other line at the MR scanner (coherent sampling). The folding 

over of the image is clearly seen in the final reconstructed image that is obtained using 

a linear recovery technique by acquiring 50% equispaced samples of the original MRI 

data of Fig-2.5. 

Thus, it is not possible to reduce the acquisition time of the biomedical images by 

simply reducing the data points collected by the scanners. However, the theory of CS 

suggests that if the images are sparse or compressible and the measurements are 

incoherent (i.e. the sensing matrix Q, satisfies certain properties), then the recovery 

from the partial data is possible using a non-linear reconstruction algorithm. 

CS recovery works well when the representation and measurement basis pair (Y, a )  

are highly uncorrelated. In the context of CS, there are three domains and two different 

transformations associated with a biomedical image, as shown in Fig-2.10. 
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Figure-2.9: Aliasing due to linear reconstruction of MRIfiom its partial Fourier data 

(Sparsifying basis) Y cP (sensing basis) 

Figure-2.1 0: Different domains and transformations in CS 

Assuming the measurement and sparsifying bases to be orthonormal, their mutual 

coherence is defined as the maximum value of the inner product between the vectors of 

the two bases [4]: 

PW~@> = (6 I < L , J < ~  max I< IliIvj >I) E [L&] 

here both Y, Q, E Cnxn and 6 is the normalization constant. As an example, the 

Fourier basis and canonical basis are maximally incoherent with p = 1. High value of 

coherence indicates that there are correlated vectors between the two bases which is 



undesirable in CS. High value of incoherence leads to higher undersampling factors and 

specifies that a signal with sparse representation in a given sparsifying domain (Y) must 

be spread out in the domain where it is acquired. It means that the measurement basis 

vectors cpj  needs to be completely unstructured (noise-like) [5]. This is where the 

importance of random matrices comes into the theory of CS. 

It has been shown that Gaussian random matrices can be used for the acquisition at CS 

encoder as they are largely incoherent with any choice of basis Y [3]. However, purely 

random matrices cannot be used for practical problems as they are computationally 

inefficient and need a large storage. Other preferable choices of sensing matrices are 

Bernoulli matrices with entries +I ,  noiselets and random Fourier matrices. 

The notion of coherence allows us to choose the domain where the image can be 

compressively sampled. In the example of MRI, MWI and parallel-beam CT, is taken 

as the Fourier matrix and Y can be a DCT or DWT matrix. 

When @ E Emxn and Y € Enxn, the measurements as CS encoder can be treated as a 

dimensionality reduction problem. Using Eq-2.3 an Eq-2.11, the observation vector can 

be written as: 

y =  a x =  @(Ya) = A a  (2.12) 

Here A = W P E  C m x n  is the new measurement matrix that maps the sparse 

representation of x into the measurements. From Eq-2.12, it is clear that the problem of 

CS recovery is equivalent to the sparse representation problem. For Matrix A to be good 

for CS, it has to satisfy the restricted Isometry Property (RIP) [22,23]. RIP is a necessary 

condition on matrix A that guarantee a stable recovery for k-sparse or compressible 

signals. An m x n measurement matrix A is said to satisfy the RIP of order k with 

isometry constant Sk E (0,l) if: 



(1 - Jk) llalli 5 IIAalli 5 (1 + 6 k ) l l a l l t  

for all k-sparse vector a (i.e. llallo 5 k). 

For good measurements matrices the isometry constant 6k is close to 0 which assures 

that k-sparse vectors cannot be in the null space of A. This is equivalent to saying that 

every subset of k columns taken from matrix A are nearly orthogonal. It is known that 

random Gaussian or Bernoulli matrices as well as matrix formed by randomly selecting 

columns from Fourier matrix have small isometry constants. 

The philosophy of CS is based on the fact that the number of measurements required 

for the reconstruction of a signal is proportional to the compressed size of the signal, 

rather than its uncompressed size. The number of compressively sampled 

measurements (m) directly depends on the coherence of the sensing matrix (A = @T) 

and sparsity level (k) [1,4]. 

m 2 ~ . p ~ ( @ , ~ ) . k . l o g n  

here p(@, Y) is the coherence and C is a positive constant. Empirical results show that 

a k-sparse signal can be recovered from m I 4k incoherent measurements. 

For biomedical images such as MRI and MWI the data is acquired by recording the 

Fourier coefficients and not the pixels, DCT or wavelet coefficients. At the encoder 

(scanner), the acquired measurements can be written in the form o f y  = Fux (i.e. 

A=Fu), where Fu is the partial Fourier matrix. So, if the random undersampling of 

frequency domain (Fourier) data results in incoherent artifacts in the sparsifying domain 

such as DCT or wavelet, then the final image can be reconstructed using a nonlinear 

recovery algorithm. In MRI, the incoherence between sparsity and sampling bases can 

be improved using variable density, spiral or radial sampling. For MWI, a nonuniform 

raster scan provides better incoherence with sparsifying basis [24]. However, it is 



appropriate to consider the prior knowledge of the image class before designing a 

sampling pattern. 

2.2.2 Non-Linear Recovery 

Given the sensing matrix @ (or A) and measurement vector y, the aim of the CS 

reconstruction algorithm is to estimate the original signal x (or a) .  From Eq-2.3, it clear 

that the CS recovery (finding a given A andy) is a specific type of sparse 

approximation problem. Therefore, sparse representation algorithms plays a vital role 

in the recovery of compressively sampled biomedical images. Mathematically 

speaking, the CS recovery algorithm has to solve an underdetermined systems of linear 

equations where the number of equations (acquired data at the scanner) is less than the 

number of unknowns (pixel values of the biomedical image). 

One possible approach is to find the minimum norm solution by solving the following 

least square minimization problem: 

1 
E = argmin - I(y -  all: 

a 2 

However, the final reconstructed image obtained from (2.14) is severely distorted even 

if the sampling is incoherent. An improved solution can be obtained by including a 

proper regularization term in the objective (cost) function. So, for the general inverse 

problem corresponding to Eq-2.12, the recovery algorithm can be formulated by the 

following Lagrangian form: 

where p E R'is the Lagrange multiplier that adjusts a trade-off between the 

representation error (data fidelity) and the regularizer term X(a). The function X(a) 



operates element-wise on vector a. It is selected to promote sparsity and usually takes 

the form [3-51 

Fig-2.1 1 shows the scalar fbnction lalP that is used in the computation of norm. It is 

clear that as p approaches zero, the curve becomes an indicator function of the lo-norm. 

For p = 2, the problem presented in Eq-2.15 reduces to the classical Tikhonov 

regularization with a proper closed form solution. But again, this will not work for the 

CS recovery as it uses 1,-norm which does not promote sparsity. Ideally, the lo-norm 

(p = 0) of an image provide the exact measure of its sparsity. However, its practical 

implementation is limited as the problem becomes computationally intractable (NP- 

hard). Surprisingly, it has been shown that in many situations of practical interest, the 

1,-norm (corresponding to p = 1) can be used in place of the lo-norm to recover the 

compressively sampled biomedical images [ 1-41. 

Figure-2.1 1: Behavior of scalar function 1 a lP 
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To conclude, the encoder part of CS is relatively simple and consists of the non-adaptive 

linear measurements. However, the CS decoder is very challenging because of the 

computation cost in the image reconstruction process. Devising an efficient and lower 

cost CS recovery technique for high dimensional biomedical images is still considered 

as one of the fundamental challenging task which is one of the main goals of this 

dissertation. 

2.3 Related Work 

Before the development of modern CS theory, some of the key ideas of CS were applied 

to biomedical imaging. In the earlier work, reweighted least-squares and its variants 

were used for sparsity based imaging methods to solve the associated nonlinear 

reconstruction problems [25]. The method of combining random sampling with 

nonlinear recovery algorithm for the recovery of MRI and tomography was presented 

in [26] 

The introduction of CS theory immediately found important applications in the diverse 

medical imaging modalities. Its first potential application was MRI because of the slow 

acquisition and its pressing need to reduce the sampling rate. The subsequent work 

includes brain [7], coronary [27], dynamic and cardiac [28, 291, pediatric [30] and 

parallel MR imaging 1311. CS has also been successfully applied to optical imaging 

modalities including diffusion optical tomography [32] and opto-acoustics tomography 

[33]. Because of its ability to shorten the scan time and consequently reduce the 

radiation does, CS has seen fast growth in CT over the last decade [34-351. The 

application of CS to imaging modalities like Positron Emission Tomography (PET) or 

Single Photon Emission Computed Tomography (SPECT) is relatively few because 
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these modalities are mainly photon-limited instead of sampling-limited [36,37]. In a 

relatively recent work, several encouraging results have been reported by using CS for 

2D and 3D ultrasound images [38]. CS applications to microwave imaging is relatively 

new. In [24], CS is demonstrated to improve the efficiency of microwave imaging. The 

new and cutting-edged applications includes motion corrected CS [39], matrix 

completion [40], tensor completion [41] and dictionary learning for biomedical imaging 

[lo, 421. 

Because of the transformative potential for preclinical and clinical applications, 

algorithm development and system designs, the applications of compressed sensing to 

biomedical imaging are enormous. Almost all of these applications strongly rely on a 

non-linear recovery algorithm for the image recovery from the undersampled data 

which is a challenging and fascinating task. While CS has reduced the acquisition time 

and the amount of raw data, unfortunately the computation time of the image recovery 

has increased. In the initial work of CS, convex optimization was used to solve the 

recovery problem by developing algorithms for the following constrained formulation 

[12]: 

2 = arg min)la(ll subject to y = A a  
a 

(2.1 7) 

which is known formally as a Basis Pursuit (BP). BP is a natural convex relaxation of 

the sparse decomposition problem and is computationally tractable. Other major classes 

of CS reconstruction algorithms include greedy pursuit, non-convex optimization and 

Bayesian framework [43]. Greedy algorithms such as Orthogonal Matching Pursuit 

(OMP) [44], Stagewise OMP [45] and Compressively Sampled Matching Pursuit 

(CoSaMP) [46] operate by iteratively selecting the columns of the dictionary while 

keeping track ofthe current approximation and the residual. At each iteration, it chooses 



the column that is most closely correlated with the residual and possibly involves least 

square projections which makes the iterations computationally expensive. 

Other popular recovery methods include Bregman iterations [47], Gradient Projection 

for Sparse Reconstruction (GPSR) [48] and sparse reconstruction by Separable 

Approximation (SpaRSA) [49]. A comparison of three CS reconstruction algorithms 

(SPGL1, NESTA and RecPF) for biomedical imaging can be found in [50]. Most of the 

CS reconstruction algorithms are general purpose and require too many iterations 

making the recovery inefficient, specifically if the images have large dimensions as in 

the case of biomedical applications [ l  1,5 11. 

Contrary to the previous algorithms that mostly involve expensive operations e.g. 

solving least square and matrix factorization, Iterative Shrinkage-Thresholding (IST) 

7 - algorithms utilize only simple operations such as matrix-vector multiplications. 
L 

Shrinkage is an appealing sparsity inducing method and is known to be best suited for 

the denoising of Gaussian noise [51,52]. The popular types of IST are Iterative Hard 

Thresholding (IHT) [53,54], fast iterative shrinkage thresholding algorithm (FISTA) 

3-'1 [55], separable surrogate functional (SSF) and parallel coordinate descent (PCD) [56]. 

IST algorithms minimize the following Lagrangian formulation to get the sparse signal 

approximation [57] : 

1 
l? = argmin -1ly - ~all i  + Pllalll 

a E C n  2 

where p 2 0 is the regularization parameter. For the orthonormal basis (A  = Y), it has 

been shown that a closed form solution to the optimization problem of (2.18) is given 

ai > P  
ai < -P 
Otherwise 



Where a = Y x  = {ai)r=l are the transformed coefficients and Tp(.)  is the element- 

wise thresholding (shrinkage) operator. 

Because of the computational simplicity, near-optimal error guarantee and robustness, 

the suite of algorithms presented in this dissertation are mainly based on IST methods 

such as SSF, PCD etc. These methods are applied to solve the following optimization 

problem for the Fourier encoded image such as MRI, parallel-beam CT and MWI. 

2 = argrnin(f l l Y  - Fuxll: + PllYxlll) (2.20) 
Y 

2.4 Quality assessment parameters 

To assess the quality of the final reconstructed image, standard performance metrics 

such as correlation, fitness value, peak signal-to-noise ratio (PSNR), structural 

similarity index (SSIM) [58], improved-signal-to-noise ratio (ISNR) and artifact power 

(AP) are used. 

PSNR is one of the widely used quality assessment measure and is considered to be an 

approximation to human perception of reconstruction quality. For a (256 x 256) 

biomedical image, the standard definition of PSNR is [5]: 

255 256 
P S N R  = 20 log,, 

ISNR is another commonly used metric for quantitative evolution of reconstruction 

results and is defined as: 

ISNR = 10 loglo 

The higher the value of ISNR, the better the quality of reconstructed image. 

AP has been derived from "square difference error" and is calculated as: 



Reconstructed image with a smaller value of AP indicates a better quality. 

The computation of SSIM between two images ( x  and 2) is based on the luminance, 

contrast and structure of the images. It is computed on various windows of the 

reconstructed image using the relation: 

where Gland C2 are constants that depends on the dynamic range of the images. 

p, and pz represent the mean values while a: and a; denote the variances of the 

original and estimated image respectively. ax? is the covariance between of original 

and recovered image. SSIM is a scalar value in the interval [- 1,1]. The maximum value 

1 is achieved when both images are exactly identical. 

2.5 Summary 

This chapter presented an overview of the sparse representation and compressed 

sensing with focus on biomedical imaging. The commonly used analytical sparsifying 

transforms were reviewed as well. Finally, quality assessment metrics were also 

discussed after briefly reviewing the applications of compressed sensing to various 

biomedical imaging modalities. 



CHAPTER3 

BIOMEDICAL IMAGING MODALITIES AND PROJECTION ONTO 

CONVEX SETS BASED CS RECOVERY 

This chapter presents the physical principles and mathematical descriptions related to 

the data acquisition of three biomedical imaging modalities, namely parallel-beam CT, 

MRI and MWI. The underlying physics for each of these imaging techniques is 

different but they share some common properties. For example, their scanners record 

the encoded (Fourier) measurements and the acquisition process can be represented by 

a linear model of the form y = @x, making them a potential application of CS. It has 

been shown that iterative POCS algorithm can be used to recover these images from 

less number of Fourier data. 

3.1 Magnetic Resonance Imaging (MRI) 

MRI scanners use magnetic field and radio frequencies rather than ionizing radiations 

such as x-rays used in CT. Majority ofthe clinical MRI machines use a superconducting 

magnet having magnetic flux density, Bo, of 1.5 or 3 Tesla (T). This field is about 

50,000 times the earth magnetic field (0.00003 T). 

The human body is composed of 70% water (H20 )  which comprises of hydrogen and 

oxygen atoms. MRI uses the magnetic properties of hydrogen atom to produce images. 

The hydrogen atom has only one proton that yields a magnetic field (called magnetic 

moment) due to its spinning. In the absence of an external magnetic field, the net 

magnetic moment is zero because of the random orientation of the protons. However, 

in the presence of an external magnetic field (Bo), a greater proportion of the protons 



(hydrogen nuclei) align themselves parallel (low energy state) than antiparallel (high 

energy state) to the direction of the applied field. This gives rise to a net magnetic 

moment, Mo, in the direction of B, and is called longitudinal magnetization. The proton 

spins around the long axis of the applied magnetic field at a frequency known as Larmor 

frequency which is about 63.9 M H z  for 1.5 T clinical scanner. 

MRI scanners use three gradient coils, one in each of the cardinal directions to alter the 

longitudinal magnetic field. It gives MRI the capacity to image directionally along the 

x, y and z-axis. Gradient coils help to excite only a slice of interest in the imaging 

volume by varying the precession in the object. The x, y and z-gradients (G,, G y ,  G,) run 

along the horizontal, vertical and long axes to produce sagittal, coronal and axial images 

respectively. 

MRI scanners also use radio frequency (RF) coils that come with different designs for 

each body part to produce best possible diagnostic images. The RF coils are used to 

transmit a second magnetic field, B,, or RF pulse (at Larmor frequency) which results 

in the disturbance of the proton alignment. This causes some low energy parallel 

protons to flip to a high energy state decreasing the longitudinal magnetization and 

producing a magnetization component M,,, that is transverse to Mo. The flip angle (a)  

depends on the duration of the pulse and the strength of the magnetic field (B,) which 

is usually a few pT. 

When the RF pulse is removed, the transverse magnetization Mxy experiences an 

exponential decay with a time constant T2 while the longitudinal component M, 

recovers exponentially with a time constant TI.  The TI and T, relaxation times will vary 

depending on the tissue composition and structure. The changing magnetic moment of 

the net magnetic vector (sum of longitudinal and transverse magnetization) results in 



free induction decay (FID) that induces a changing voltage in the receiver coil and is 

used for imaging in MRI. 

As shown in Figure 3.1, three types of spatial encoding are generally used for MRI. 

These are called slice selection, phase encoding and frequency encoding [59]. 

Magnetic resonance occurs at a particular slice (subvolume) where the transmitted RF 

pulse has a frequency close to the Larmor frequency at that slice. Other slices cannot 

absorb this RF energy because of different procession frequencies due to gradient fields. 

The frequency of the RF pulse is determined by the magnitude of the slice selection 

gradients and the slice position (Bop G,,z). The thickness of the slice is controlled by 

the range of frequencies (bandwidth) of the applied RF pulse. After the slice selection, 

the scanner measures the transverse magnetization with two dimensional distribution 

by applying additional gradients that cause spins at different spatial locations to precess 

at different rate, so that their individual contributions can be measured. 

TR (re~eat time) 

Phase encoding Frequency encoding 

Figure-3. I Pulse sequence diagram representing various gradients for spatial 

encoding 



By applying a constant gradient Gy (in the y direction) to the selected slice, the 

precession frequency will change linearly in this direction. The phase encode gradient 

is turned on for a brief period of time. When the gradient is turned off, the Larmor 

frequency returns to a constant value. The signal at different positions will accumulate 

a different phase along they axis. This process of locating MR signal by changing the 

phase of spins is called phase encoding. Spatial resolution directly depends on the 

number of phase encoding levels used. 

Similarly, by applying a constant gradient G, (in the x direction), the Larmor frequency 

will vary linearly in that direction. With gradient on, the recorded signal will exhibit 

different frequencies along the x axis. This process is known as frequency encoding and 

the corresponding gradient is known as read out gradient. 

Final MR image is obtained after collecting a series of frames of data involving many 

RF excitations and the application of gradient fields in an orderly manner that generates 

a map with unique phase-frequency pair at each point in the two spatial dimensions. 

During each readout, the samples are stored in a raw matrix know as k-space. To f i l l  a 

single line in the k-space, the RF pulse is applied which is followed by phase and 

frequency encodings. This process is repeated after every TR (repetition time) seconds 

till the entire k-space is filled. It is worth mentioning that the acquisition time of MRI 

heavily depends on the number of phase encoding steps as the frequency encoding 

process is fast and the samples along the frequency encoding dimension are acquired 

instantaneously. 

For the conventional MRI using spatial encoding, the complex data collected by the 

receiver coils at the scanner takes the form of a volume integral [7, 601: 

~ ( k )  = x(r)  eJkr d r  =< (pk(r),x(r) z (3.1) 
slice 



The vector k, which is the integral ofthe gradients, is interpreted as the vector of spatial 

frequency coordinates and pk(r) = e-jkr are the Fourier Basis. x(r) represents the 

spatial domain image. So the conventional MR gives a Fourier encoded image. 

As the data is recorded digitally, so all the measurements are taken at discrete space r,. 

Thus, the discrete version of Eq-2.1 is [7-81: 

Where the matrix @ = F is the Fourier matrix. So the k-space is the 'raw data space' 

with Fourier coefficients of the desired MR image. The original MR image is 

reconstructed by taking the inverse Fourier transform (IFFT) of the acquired k-space 

data i.e. x = a-'y = F-'y. 

Fig-3.2 shows the k-space and the original MR image that is extensively used in our 

MRI related experiments. It was acquired at St. Mary's Hospital London using 1.5 Tesla 

GE HDxt scanner with an eight-channel head coil and a gradient echo sequence with 

the following specifications: TR/TE=55/10 msec, FOV =20 cm, bandwidth=31.25 

KHz, slice thickness= 3 mm, flip angle= 90•‹, matrix size=256~256. 

K-Spa MR Image 

Figure-3.2: Fourier encoded MR image 
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Reducing the scan time of MRI by simply undersampling the k-space (as is done in CS), 

results in a smaller field of view (FOV). FOV of the MR image is defined by the gap 

between the phase encode lines. If the distance (Ak,,) between phase encode lines is 

doubled by uniformly undersampling the k-space, FOV will reduce to half of the 

original and aliasing will occur [61]. This effect is shown in Fig-3.3. 

Instead of uniform undersampling, CS uses other undersampling patterns such as radial 

and variable density which take more samples at the center of the k-space than its outer 

periphery [47, 621. It is due to the fact that most of the energy of MRI is concentrated 

at the center of the k-space. High frequency information about the image such as edges, 

contours etc. are preserved at the outer edges of the k-space. Fig-3.4 shows the 

relationship between the image space and k-space. To show how different parts of k- 

space contribute in the MR image formation, two different MR images are 

reconstructed by sampling the center and outer periphery of the k-space. This 

information is quite useful in designing an undersampling pattern for CS acquisition. 

Figure-3.3: Aliasing due to the uniform undersampling of k-space 
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Samples h r n  m t e r  of k-space 

Samples other than center of k-space 

Figure-3.4: Eflect of undersampling the k-space on reconstructed image 

3.2 Parallel beam CT 

Unlike MRI which uses magnetic field and RF pulses, CT involves shooting x-rays 

through the human body. CT imaging measures the attenuation coefficients f (x ,  y) of 

the object being imaged. The scanner acquires the projection data pe(r)  by recording 

the intensities of x-ray radiations after it has passed through the object at different 

angles. As shown in Fig-3.5, parallel beam CT uses parallel beams of radiation with 

angle 6 to form projections. For a single measurement, the x-ray beam travels along a 

projection line r = x cos(8) + y sin(8) defined by the space parameters ( r ,  8 ) .  The 

final image is reconstructed using the Fourier transforms of these projection functions 

(measurements) at various angles. 



Mathematically, the projection and attenuation functions are related by a line integral 

[63] : 

(3.3) 
Lo,, 

where Lo,, represents a line passing through the point ( x  cos(8), y sin(8)) and parallel 

to the t-axis. Eq-3.3 is often known as the Radon transform. So in CT, the Radom 

transform is computed physically by the attenuation of the x-rays as they pass through 

the tissues. 

Figure-3.5: Projections in parallel beam CT 

Using change of variables, x = -t sin 8 + r cos 8 and y = t cos 8 + r sin 8, the line 

integral of Eq-3.3 can be parametrized in the form [63,64]: 

Here 6(.) is the Dirac delta or continuous-time impulse. In modern CT, the x-ray beam 

is directed and the detector sweeps around the patient to collect thousands of projections 

at various angles. To discretize the collected data, a square grid is superimposed on the 

image with the assumption that the value of attenuation coefficient is small within each 



cell of the grid. Thus, for a given set of discrete measurements pi (i = 1,2 ... m) 

corresponding to line integrals at different angles Bi and offsets ri, the discrete version 

of Eq-3.4 becomes [65]: 

pi = f (x, y) b(x cos i + y sin Oi - q)dxdy =< f, pi > (3.5) 

This equation is similar to Eq-3.2 (y = a x )  of MRI. However, for CT is constructed 

from delta ridges by observing line integrals. 

The parallel beam CT image can be recovered by using the Fourier slice theorem which 

relates the Fourier transform of a projection to the Fourier transform of the object along 

a radial line. It states that the one-dimensional Fourier transform of a parallel projection 

of an image f (x,y) taken at angle 9 gives the value of the two-dimensional Fourier 

transform F (w,, my) along one line subtending an angle 9 with the ox-axis. Therefore, 

if the two-dimensional Fourier transform of the cross-sectional image f (x,y) are 

restricted to the radial lines (as shown in Fig-3.6), the original image can be estimated 

by the inverse Fourier transform. It means that parallel beam CT can be modeled as a 

Fourier encoded imaging modality where the measurement matrix 4) is a radially 

sampled Fourier matrix. 

3.2 Microwave Imaging (MWI) 

MWI not only finds applications in the medical imaging, but it has widely been used 

for non-destructive testing as well. It is considered to be a preferred imaging technique 



for early breast cancer detection as compared to X-rays and MRI because of its low 

cost, safety and high contrast [66]. 

Figure-3.6: Radial lines used to sample the Fourier transform of an object for CT 

imaging 

MWI is transmission-reflection imaging modality that uses a scanning system with a 

single antenna probe. In its simplest form, the scanner starts measurements on the 

sample under test (SUT) and utilizes raster scanning with uniform stepsize. The antenna 

collects data (reflection coefficients) as it moves from one position to another. Tissues 

with anomaly have different electrical and magnetic properties that result in a different 

reflection coefficient which is translated into a contrast during the final image 

formation. For high resolution image, the stepsize is very small resulting in a longer 

acquisition time. The theory of CS can, therefore, be used to randomly sample the SUT 

and reduce the acquisition time. 

Fig-3.7 shows the measurement arrangement for MWI. The transceiver (antenna probe) 

is shown to be located at position (x ' ,  y', zo) and a general point on SUT is selected at 

location (x, y, 0). Let f ( x ,  y) represent the reflectivity function of the SUT, which is 



defined to be the ratio of the reflected to incident field. The backscattered microwave 

reflection coefficients s(x l ,  y ' )  is essentially the superposition of reflections from all 

points on the illuminated area of SUT multiplied with the roundtrip phase [67,68]: 

Where R = J ( x  - x ' ) ~  + (y - Y ' ) ~  + zO2 is the distance between transciever and 

target point on SUT and k = is the wavenumber (c represents speed of light and 

w is the angular frequency). 

As in the case of CT and MRI, the data is acquired in discrete form. So if m discrete 

measurements are acquired, then Eq-3.7 takes the form: 

position fl 

target point 
tx,nz=O) 

Figure-3.7: Measurement configuration for M I  



Fourier transform plays an important role in the MWI reconstruction. It has been shown 

that Eq-3.8 can be solved for f (x ,  y) using the relation [67,69]: 

f (x, y) = ' 5 ? { ~ 2 D  w, y)WikzzO 1 (3.9) 

where FZD = F(wX, %) is the 2-D Fourier transform and k ,  = , / 4 k 2  - k: - k$z, 

(where k ,  and k ,  are the spatial wavenurnbers). 

Eq-3.9 shows that MWI shares one important property with MRI and CT. It can also be 

modeled to obtain the image from the Fourier measurements. 

3.3 POCS based Recovery of Fourier encoded images 

Based on the idea of projection onto convex sets [15,70,7 11, a computationally low cost 

algorithm can be obtained to recover Fourier encoded images from partial set of 

measurements. The algorithm can be derived by considering solution to the scalar 

version of the minimization problem presented in Eq-2.18. i.e. 

Where z, x E R and Tp ( z )  is the scalar-valued shrinkage function. Its value depends on 

the minimizing variable x and z. As 1x1 is not differentiable at x = 0, each term of 

(3.10) is differentiated separately and solved for x .  This yields the desired shrinkage 

function that is given by [55,72]: 

z + p ,  Z C - p  = I  z - p ,  z > p  
0, otherwise 



The parameter P is recognized as the thresholding parameter. The shrinkage function 

T p ( z )  maps the input value z to a desired output value. It induces sparsity by setting 

smaller values of z (lzl  < P )  to zero and shrinking the larger values (121 2 P )  towards 

zero. 

With the assumption that the elements xi of vector x are independent, each term of the 

objective function of the form f ( x )  = f lly - xll: + Pllxlll can be minimized 

1 
separately by solving argmin ; (yi - xi)' + Plxil which has a closed form solution 

xZ = Tp(y i )  [731. 

Fig-3.8 shows how the computationally low-cost POCS based algorithm can be used to 

recover the Fourier encoded image iteratively by solving (2.20). 

Initialization: xo = 0, yo = y, i = 1 I 

1 4) Increment i by 1 & repeat 1-3 until convergence 

Figure-3.8: POCS algorithm (with block diagram) for Fourier-encoded image 

recovery 



The algorithm moves back and forth between two main steps to estimate the missing 

samples. It uses data consistency and soft-thresholding in the Fourier and sparsifying 

domains respectively. 

Fig-3.9 shows the experimental results of POCS based recovery when the original MR 

image of Fig-2.5 is compressively undersampled in the k-space. Partial Fourier samples 

are collected using variable density sampling pattern. The original image is recovered 

using linear reconstruction and POCS based recovery technique. Linear recovery is 

done by taking inverse FFT of the undersampled image by replacing the missing 

sampling data with zeros. The resulting image is severely distorted. However, the POCS 

based algorithm produces a reasonably accurate image. It uses soft-thresholding in the 

wavelet domain with P=0.019. During each iteration, the missing samples are estimated 

while the already acquired data remain unchanged. 

The quality of the final reconstructed image vary with the selection of the thresholding 

parameter p .  Its actual value mainly depends on the undersampling pattern and the 

sparsifying transform used. For improved reconstruction quality, proper selection of the 

thresholding parameter is important. Fig-3.10 shows the decrease in mean-square-error 

(MSE) between the original and the final reconstructed image for various values of P.  

Similarly, Table-3.1 lists the final values of the MSE and correlations attained by the 

final reconstructed MR image. These values are recorded by fixing different values of 

the parameter /3 and running the POCS algorithm for 10 iterations. 

The algorithm of Fig-3.8 treats the CS recovery as a denoising problem. The effect of 

undersampling in the Fourier domain is equivalent to adding (Gaussian-like) noise in 

the image domain. So, the POCS based algorithm essentially estimates the original 

image from its noisy (undersampled) version. The transformed domain coefficients of 



the image having values less than the thresholding parameter P are treated as noise and 

are discarded during the shrinkage operation. However, values sparse coefficients 

above the threshold are linearly adjusted to recover the original image. 

Original MR image k-space undersampling patterns 

Linear reconstruction POCS 

Figure-3.9: Recover of compressively sampled MRI using POCS 

To further demonstrate the effectiveness of the POCS based recovery 

algorithm is applied to reconstruct a microwave image as shown in Fig-3.1 

was 

expe 

obtai 

:rime] 

, scheme, the 

1. This image 

ned using random raster scanning. The undersampling pattern used in the 

i t  is also shown in Fig-3.1 1. In this case, the recovery uses DCT as a 
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sparsifying transform and therefore the nonlinear shrinkage is applied to the DCT 

coefficients. The algorithm runs for 10 iterations to generate the final image which is 

shown in Fig-3.12. It can be seen that the simple POCS algorithm can produce 

reasonably good image from the undersampled Fourier data. 

0.5 r r r r r r r r 

1 2 3 4 5 6 7 8 9 10 
Number of iterations 

Figure-3.10: Eflect of thresholdingparameter on the quality (MSE) of reconstructed 

MR image. 
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Table-3. I Values of MSE and correlations attained by theJina1 MR image 
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Figure-3. I I :  Original MKI along with the undersampling pattern 
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Figure-3.12: POCS based recovery of compressively sampled MWI 



3.4 Summary 

This chapter presented a common framework for the data acquisition of MRI, parallel- 

beam CT and microwave imaging. It has been shown that the measurements recorded 

by the scanners of these imaging modalities can be molded by a system of linear 

equations. Fourier transform plays a vital role in the acquisition process. These 

properties make them suitable for the application of compressed sensing. Finally, a 

simple POCS based algorithm was used to recover the Fourier-encoded images from 

less number of random measurements. 



CHAPTER-4 

COMPRESSIVELY SAMPLED FOURIER-ENCODED IMAGE 

RECONSTRUCTION USING SEPERABLE SURROGATE FUNCTIONAL 

In this chapter, a novel CS recovery technique is proposed that is based on the idea of 

separable surrogate functional (SSF) method. Like POCS technique, the proposed 

algorithm iterates between soft-thresholding in sparsifying domain and incorporates the 

data-consistency constraint in the Fourier domain. However, the reconstruction quality 

is improved by incorporating the linear estimate of the residual error. The performance 

of the algorithm is validated using the real human head as well as phantom MR images 

taken from the MRI scanner. The results of recovery are compared with the POCS and 

Low-Resolution reconstruction methods based on the standard metrics like improved 

signal-to-noise ratio, correlation and artifact power (AP). The method is also applied to 

faithfully recover other Fourier-encoded biomedical images such as parallel-beam CT 

and MWI. 

4.1 Rapid imaging and compressed sensing 

Compressed Sampling /Sensing technique facilitates simultaneous acquisition and 

compression of compressible or sparse signals and has the potential to reduce the scan 

time of biomedical images during the acquisition. Unlike the hardware-based 

acceleration, compressed sensing is an algorithmic reduced acquisition method. 

In the real world biomedical applications, higher temporal resolution and lower 

radiation dose have been constantly pursued. The application of CS to Fourier encoded 

images such as MRI is useful because of the fact that the data acquisition process in 



MRI is inherently sequential and the scan time increases linearly with the number of 

samples taken in the frequency domain (k-space) [74,75] . 

One way to reduce the acquisition time in MRI is to decrease the repetition time (TR) 

by applying stronger gradients for shorter time, that is rapid switching. However, high 

gradient amplitudes and rapid switching can produce peripheral nerve stimulation 

leaving little room for MR scanners to improve the imaging speed through the hardware 

design implementation [76]. 

The MR imaging time can also be reduced by acquiring more k-space lines (phase 

encoding steps) in one radio frequency (RF) excitation as in the echo-planner imaging 

(EPI) [77,78]. However, this limits the amount of spatial information that can be 

recorded in a single readout resulting in a lower signal to noise ratio (SNR). Another 

way to reduce the MR data acquisition time is to under-sample the k-space by skipping 

every other phase encoding line. This can be achieved at the cost of smaller field of 

view (FOV) that contributes to the aliasing (folding over) of the original image [79, 

801. 

To increase SNR and improve the imaging speed, simultaneous data acquisition with 

multiple receive coils in MR scanners have been used which is known as parallel 

imaging (PI) [81-831. However, the final image reconstruction needs coil sensitivities 

information, which is sometimes difficult to measure with high accuracy [7, 841. 

The imaging speed of MRI can also be accelerated by using non-Cartesian sampling 

such as radial or spiral instead of the conventional Cartesian sampling. Although 

sampling along the spiral trajectories well utilizes the gradient system hardware, the 

reconstructions from non-Cartesian sampling are not generally robust to system 

imperfections [6,85]. 



Accelerating MR measurements using CS exploits the sparsity of MR images during 

the reconstruction from partial Fourier data. The requirement of incoherent sampling 

can be achieved with the variable density k-space sampling method to reduce aliasing 

artifacts during the MR image reconstruction. Variable density sampling scheme 

sufficiently sample the center of the k-space that contains most of the energy of MR 

images and significantly under sample the outer k-space region to reduce the scan time 

[62,86]. 

Besides MRI, other potential applications of CS in biomedical imaging are CT and 

MWI [87-911. The acquisition time of CT is faster as compared to MRI but it involves 

exposure to ionizing x-ray radiations. The commercially used CT scanners are mostly 

based on the analytical reconstruction techniques such as filtered back projection 

(FBP). The traditional FBP algorithm can reconstruct the final image accurately when 

the projection data are densely sampled. However, if the projection data is sub-sampled 

for the purpose of reducing the radiation dose, the analytic algorithms yield 

reconstructed image with severe aliasing artifacts [92-931. As CS reconstruction 

techniques have a significant potential to recover the undersampled image, it can be 

applied to reduce the radiation dose in CT. 

In this chapter, we develop a simple CS-based iterative method that can be used to 

reconstruct the Fourier encoded images (MRI, parallel-beam CT and MWI) from less 

number of samples. The algorithm solves the I,-regularized least square problem to 

recover the final image from compressively sampled measurements. 

4.2 11-regularized least square problem for Orthonormal basis 

The general 1,-regularized least square problem involves solution to the following 

mixed 1, - l 2  cost function: 



Here A E Rmxn, y E Rm and x E Rn are the sensing matrix, measurement vector and 

estimated signal or image respectively. P E R is the Lagrangian multiplier. 

If the basis are orthonormal i.e. A = Y (with Y ~ Y  = I), minimizing the objective 

function of Eq-4.1 is quite simple. Utilizing the fact that unitary matrices preserves the 

length after transformation. i.e. IlYxll$ = IIYHxll$ = Ilxll$: 

Here xo = YHy is the projection of lower dimensional signal onto the original higher 

dimension space. The last step shows that the overall problem reduces to n independent 

one-dimensional problems which can be solved using soft-thresholding of Eq-3.11. So 

if matrix A is unitary, the minimizer of Eq-4.1 can be obtained in two steps: (1) Find 

back-projection using xo = y H y  and (2) applying thresholding Tp(.) to individual 

entries of xo. 

In the CS recovery problem, the sensing matrix Q, is not unitary (and perhaps non- 

square). However, the problem can be addressed in various ways to use the shrinkage 



tools. One approach is to use proximal splitting methods, which is a natural extension 

of POCS [55,94]. 

4.3 Proposed Recovery algorithm 

The SSF algorithm is proximal algorithm. It works on the idea that instead of 

minimizing the original cost function of Eq-4.1, a surrogate function f ( x )  can be used 

to get a closed form expression for its global minimizer. The new objective function is 

obtained by adding a distance term d ( x ,  xo)  to the original function. Starting with an 

initial vector xo ,  and a suitable constant c, the solution to the following simpler 

optimization problem (based on the proximal functions) can be easily computed: 

argmin f i x )  = argmin Lf(x) + d ( x ,  x o ) ]  
X X 

1 P 
= argmin - Ilx - zolli + - llxlll 

x 2 C 

The last step can be obtained after a simple mathematical manipulation with zo = 

1 - a T ( y  - ex) + x0.  The closed form solution for the minimizer of the surrogate 

function f ( x )  can be obtained by applying shrinkage on zo with thresholding parameter 

P .  equal to - 1.e. 

2 = Tplc(z0) = TpIc (:@'(y - @ x )  + x 0 )  



To use SSF for the recovery of compressively sampled Fourier-encoded biomedical 

images, one needs to minimize the proximal function corresponding to the following 

cost function (in Lagrangian form): 

f (x) = ; IIY - ~uxll: + PllY~lll (4.3) 

The proposed SSF based method iteratively obtain the minimizer of Eq-4.3 by updating 

the recovered image using the following update equation (derived from Eq-3.5): 

P ~ + ~  = Y-I ( T ~ ,  (Y (:F-~o, - F X ~ )  + xi))] 
C 

(4.4) 

The algorithm is initialized with an initial guess that is computed by filling in the 

uncollected Fourier data with zeros. This essentially corresponds to the least square 

solution of the undersampled image and is severely degraded by noise artifacts due to 

undersampling. Shrinkage in the Wavelet or DCT domain is applied to sparsify the 

image. The proposed algorithm estimates the missing Fourier coefficients due to 

undersampling, while the already acquired Fourier data remain unchanged. The detailed 

steps involved in the proposed technique are shown in Fig-4.1. It also depicts the block 

diagram of the SSF based recovery algorithm. The block "POCS" in Fig-4.1 refers to 

the steps involved in the diagram of Fig-3.8. The SSF based recovery algorithm utilizes 

POCS but it applies the thresholding step on the linear combination of the back- 

projected error term and the previous estimate. 

Various stopping criteria such as achieving the desired fitness value or attaining a fixed 

number of iterations can be used to halt the execution of the algorithm. The fitness at 

the it" iteration can be computed through IIFUxi - yll;. 



Input: 
y = F,x ( Pmtial Fourier measurments) 
p = Thresholding paramter 
c = SSF paramter 

output: 
2 = Estimated image 

Algorithm: 
Initialization: 
xo = F-'@) (Initial solution), yo = y,i = 1 

Iterations: (increment i by 1 ) 
1. Back-Projection: 
e = ~ - ' ( y ~ - ~  - F X ~ - ~ )  

2.  Shrinkage in spanlfying domain 

xi = e + xt-d)]  
3. Data consistency in frequency domain 

Yi = FCxt); ylIacq = Y 
Repeat iteration until stopping criteria is  met. 

Result: 
a = ~ - l ( y ~ )  

Figure-4. I :  The proposed SSF based recovery algorithm (with block diagram) 

4.4 Recovery of MR images using the proposed algorithm 

We apply the proposed SSF based algorithm to faithfully recover the original human 

brain and phantom MR images from partial Fourier data. Both of these data sets are 

acquired through 1.5 Tesla GE HDxt scanner with an eight-channel head coil and a 

gradient echo sequence with the following parameters: TR/TE=55/10 msec, FOV 



=20 cm, bandwidth=31.25 KHz, slice thickness= 3 mm flip angle=90•‹, matrix 

size=256 x 256 at St. Mary's Hospital London. Fig-4.2 shows both the original brain 

and phantom images used in the experiments. 

Original phantom Image Original barin Image 

Figure-4.2: Original phantom and brain images taken fiom the MRI scanner. 

The images are undersampled 4-fold in the Fourier domain using variable density 

sampling. These undersampled images are then reconstructed with the proposed 

method using Wavelet (Daubechies 4) as the sparsifying transform. The proposed 

algorithm removes the incoherent artifacts due to the undersampling and essentially 

acts like a denoising algorithm. 

To compare the final results, we also use zero-filling (ZF), low resolution (LR) and 

POCS techniques to reconstruct the original image. ZF linearly reconstructs the 

undersampled image by zero-filling the missing k-space data. For LR, the image data 

is acquired with the same number of data points containing centric-ordered data around 

the center of the k-space. 

The proposed algorithm is initialized with ZF as an initial guess. Other parameters for 

the reconstruction algorithms are set as follows: number of iterations=lO and SSF 



constant c = 100. Optimum values of p are selected empirically for each case to have 

a better performance comparison. Fig-4.3 shows the phantom image reconstruction 

using LR, POCS and the proposed SSF based techniques along with the Fourier 

sampling masks. To further emphasize the reconstruction accuracy of proposed 

algorithm, the final reconstructed phantom image with the proposed algorithm is shown 

in Fig-4.4. The difference of the recovered image with the original phantom image is 

also given indicating the accuracy of the algorithm. The improvement in terms of the 

SSIM at each iteration is depicted in Fig-4.5 for POCS and SSF based recovery. It is 

clear from the figures that the proposed method is able to reconstruct the phantom 

image faithfully as compared to LR and POCS. 

Low resolution POCS Proposed method 

Corresponding sampling patterns 

Figure-4.3: Recovery (phantom MRI) using various techniques 



Sampling pattern Proposed Reconstruction Difference with original image 

Figure-4.4: Recovery of phantom image with proposed algorithm. 

Figure-4.5: Comparison (phantom MR image) based on Structural similarity (SSIM) 

0.95 
m 

The reconstruction accuracy of the proposed algorithm, based on the parameters like 

ISNR, AP and correlation, has also been shown using the human brain image. Fig-4.6 

shows the graphical comparison of POCS and SSF methods on the basis of ISNR, while 

Fig-4.7 depicts the decrease in the reconstruction cost function at each iteration. It is 

- - 

clear that the proposed SSF-based method yields better performance in the fixed 

number of iterations. The final brain images reconstructed with ZF, LR, POC and SSF- 

based methods are given in Fig-4.8. The reconstruction accuracy of the proposed 
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method can be seen from the outstanding difference of each recovered image with the 

original MR image. It is clear that the image reconstructed with SSF based algorithm is 

very close to the original image. 

The parametric comparison of the proposed algorithm with other techniques in terms 

of correlation, PSNR and artifact power, are as given in Table-4.1. 
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Figure-4.6: Comparison based on ISNR (brain image) 
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Figure-#. 7: Comparison on the basis ofjtness value (brain image) 
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Zrro filted reconstruction Difference with wigmal Image 

POCS based reconstruction Wfkrence with original Image Recovery with pmposed method Difference ~ j l h  original Image 

Figure-4.8: Difference of the recovered images with the original brain image. 

I 1 PSNR 1 Artifact power 1 Correlation I 

Table-4. I :  Comparison of M R  brain image based on PSNR, AP and correlation 

I LR t---- 
1 POCS 

SSF 

4.5 Recovery of parallel beam CT using the proposed method 

The proposed SSF based algorithm can be used to recover the original CT image from 

a reduced set of projections. It brings the projection data into the Fourier domain 

ensuring data consistency during each iteration. To apply the algorithm, a 512 x 512 

Shepp-Logan is generated, as shown in Fig-4.9(a). Each pixel value of the image 

represents the attenuation coefficient. The projection data is generated by computing 

0.9796 
0.9965 
I 

0.9982 1 

8.6419 
16.3936 
20.9532 

0.0062 
0.0047 -- 
0.0022 



the line integrals across the image at various angles. It is shown in Fig-4.9(b) and is 

commonly known as 'sinogram'. 

Figure-4.9: CTphantom image (a) and corresponding sinogram (b) 

The image is compressively sampled in the Fourier domain using radial lines. The star- 

shaped sampling pattern is shown in Fig-4.10(a) that is used to acquire only 43028 

Fourier measurements of the original image. Fig-4.1 0(b) shows the reconstructed image 

that is computed by replacing the missing data with zero. This corresponds to the 

minimum energy solution. 

Radial snxtlpling pattern Minimum Energ (Zero Filling) 

(4 ( b )  

Figure-4.1 0: (a) undersampling pattern (b) aliased CT image 
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The proposed algorithm is compared with POCS based recovery and filtered back 

projection (FBP) reconstruction. The necessary parameters of the proposed recovery 

algorithms such as SSF constant c, number of iterations etc. are kept the same as those 

used for MR experiments. Normally TV is used as sparsifying transform for CT 

reconstruction. However, in our experiment we use Wavelet domain for thresholding. 

The final reconstructed images with FBP, POCS and SSF based algorithms are shown 

in Fig-4.1 1 having Peak-Signal-to-Noise ratios 63.38 db, 74.71 d b  and 80.16 db  

respectively. 

(a) FBP reconstrucrion (b) POCS based recovery (c) Proposed Reconstrcutin 

Figure-4.1 I: Final reconstructed CT image with various algorithms 

4.6 Reconstruction of MWI using SSF based method 

The CS based near field microwave imaging experiment was performed in our group 

at the Electromagnetic and Acoustic Imaging and prognostics (LEAP) lab of the 

University of Colorado Denver and Anschutz Medical Campus, using a customized 

coaxial tip antenna with the following imaging parameters: excitation frequency = 

10 G H z ,  lift-off distance = lmm (much smaller than a couple of wavelengths) and step 



size = 5 x 5 steps where 1 inch=200 steps. A 6 x 1.5 inches microwave 

backscattering image is acquired by using raster scanning for a sample under-test 

(SUT), shown in Fig-4.12. It is worth noting that the spatial resolution using this high 

resolution microwave imaging technique exceeds the Abbe's limit (best spatial 

resolution determined by half wavelength, which is 1.5 cm here) by measuring the 

evanescent waves in the near field regime. Millimeter-to sub-mm scale resolution has 

been obtained under current imaging setup. However, the point to point raster scanning 

mode make the data acquisition (DAQ) tedious and time consuming. For CS 

reconstruction the SUT is compressively undersampled using a sampling mask shown 

in Fig-4.13 during DAQ phase. The probe stop at a random position while scanning the 

SUT line by line. The undersampled image obtained is noisy and blurred. 

Original Scan 

0 1 2 3 4 5 6 

inch 

Figure-4.12: fully sampled SAR image of SUT 

Figure-4.13: Selective raster scanning for MWI acquisition 



The proposed algorithm is applied to recover the original microwave image from the 

under sampled image which is illustrated in Fig-4.14. Here DCT is used as a sparsifying 

transform i.e. Y =DCT matrix. The rest of the parameters for the reconstruction 

algorithm are the same as those used for MR and CT recovery problems. 

Under-sampled image 

inch 
Recovered SUT image 

inch 

Figure-4.14: Under-sampled (top) and recovered microwave image (bottom) 

The aforementioned three experiments of Fourier encoded biomedical imaging 

validates that the proposed SSF based recovery algorithm can be used to reconstruct the 

original MR, parallel beam CT and MW images from compressively sampled data. 

4.7 Summary 

A novel CS reconstruction method for under-sampled Fourier-encoded images has been 

presented. The recovery technique is based on the SSF algorithm with data consistency 

ensured in the frequency domain. The proposed technique iteratively implements 



shrinkage in the wavelet domain to minimize the mixed 1, - l 2  reconstruction cost 

function. During each iteration, the algorithm synthesizes the missing Fourier data 

using back-projection and soft-thresholding, making the final image close to the 

original. It has been demonstrated that the proposed technique can be used to faithfully 

reconstruct the phantom as well as the original MR, parallel beam CT and microwave 

images from compressively sampled data. The experimental results show that the SSF- 

based recovery technique as applied to the partial Fourier data outperforms the LR, 

POCS, FBP and linear recovery methods in term of PSNR, AP, correlation and ISNR. 



CHAPTER-5 

SPARSE SIGNAL RECONSTRUCTION USING HYBRID EVOLUTIONARY 

ALGORITHMS 

This chapter presents some novel ideas of recovering a k-sparse (1-D) signal from 

compressed measurements using evolutionary techniques such as genetic algorithms 

(GA) and particle swarm optimization (PSO) along with iterative shrinkage algorithms. 

The proposed hybrid mechanisms with proper regularization constraints not only 

accelerate the convergence of the evolutionary algorithms, but also estimate the original 

sparse signal with an acceptable precision. Finally, a modified POCS algorithm for 

Fourier-encoded images is presented that can recover the biomedical images from 

compressively sampled incomplete Fourier data. The proposed algorithm is based on 

the combined idea of POCS and evolutionary computing techniques, specifically 

genetic algorithms. 

5.1 Evolutionary algorithms 

Unlike heuristic algorithms, deterministic algorithms are mathematically elegant, but 

require a good starting point for convergence and are never user-friendly. GA and PSO 

are examples of evolutionary algorithms which are simpler, but lack rigorous 

mathematical foundations [95]. These algorithms are considered to be unconstrained 

search techniques. So the application of GA and PSO for solving constrained 

optimization is quite challenging [96-991. Heuristic algorithms are considered suitable 

for solving computationally intractable problems of the form: 



fi = argmin l l ax  - Y l l f  subject to llxllo 5 k 
X 

(5.1) 

However to speed up the convergence, a deterministic algorithm is required for solving 

the 1, minimization problem of (5.1) [loo]. 

5.1.1 Particle Swarm Optimization (PSO) 

PSO is a general-purpose heuristic optimization approach having simple structure that 

uses a population (group of candidate solutions) of search agents called particles [ l o  1- 

1041. The PSO based algorithm assigns randomized velocities to each particle to 

explore the search space. The velocities of particles are iteratively updated, based on 

their previous velocities and their distances from local and global bests. The velocity 

update equation is given by [105]: 

vi = w x v i - ~  + clrl(pi - + c2r2(pg - (5-2) 

Where c,, c2 are problem dependent constants while rl and r2 are two different 

uniformly distributed random numbers in the interval (0,l). The scalar w E [0,1] is the 

inertial weight. pg is the particle having best fitness in the entire population and is 

referred to as global best. pi is the local best that represents the best previous position 

of ith particle as determined by the cost function. Varying the free parameters cl, c2 and 

the inertial weight w can greatly affect the performance of the algorithm [ I  061. 

In the conventional PSO, the position xi of the ith particle is updated according to its 

velocity: 

Xi = Xi-1 + vi (5.3) 

The algorithm generally starts with a random population of size ranging from 20 to 50 

particles depending on problem. During each iteration, particles move based on their 

velocity while the velocity itself is updated using the global and local best positions. 



5.1.2 Genetic Algorithms (GA) 

Genetic algorithm is another heuristic algorithm that is based on the principles of 

genetics [107-1101. In GA, every individual in the population is referred to as a 

chromosome that acts as a candidate solution. The chromosome comprises of elements 

that are called genes. The effectiveness or cost of each chromosome is determined 

through a fitness function (Ilax - yll$). With the help of cross over, the genes of 

different chromosomes (parents) can be combined in a variety of ways to produce the 

offsprings having different fitness values. The new population is formed with the 

natural selection by combining the best (in terms of fitness) parents and offsprings. In 

this way the algorithm proceeds to search for the best candidate solution (chromosome). 

The steps involved in using GA to solve an optimization problem are shown in Fig-5.1 

Generate Intual Selection of Individud 

Mutation G 
Fimess Evaluation of 

Update population G 

End 

Figure-5. I :  Flow chart of generic GA 



In spite of many achievements, one of the main problems of GA is the premature 

convergence which is related to the loss of genetic diversity of the population [112- 

1131. One way to avoid this problem is through mutation. However, for sparse signal 

recovery, the ordinary mutation will not work, making the chromosome denser and 

compromising the sparsity constraint. Constraints can be incorporated in the fitness 

function (indirect constraint handling) as well as in the chromosomes (direct constraint 

handling). However, indirect constraint handling does not work well for the sparse 

problems [96,114]. 

5.2 The Proposed Hybrid Particle Swarm Optimization 

The proposed technique uses a combination of stochastic (PSO) and deterministic (SSF) 

algorithms to solve the sparse recovery problem for solving the constrained 

optimization of (5.1). The desired sparsity level is guaranteed in all the initial particles 

(population). However, the particles lose their sparsity after velocity updates, so hard 

thresholding is followed by the next position update to make sure that the sparsity 

constraint is properly maintained throughout. 

When the fitness (mean square error) of the global best particle does not change in the 

specified iterations, then SSF algorithm is accessed to update the position of the second 

best particle in the population using: 

where rand is a positive random number and Tp is the shrinkage operator with 

threshold P .  The loss of sparsity is compensated by using the hard thresholding after 

each SSF update. 



Figure-5.2 describes the proposed hybrid PSO algorithm in detail for Matlab 

implementation. The vector indx contains the indices of the array when sorted in the 

descending order. The hard thresholding operator LzIk sets all except the k largest 

elements of vector z to zero. 

Input: Dictionary O E RmXn , compressed measurement y E R m ,  sparsity level k, 
population size N, PSO parameters cl, cz and w. SSF parameter P for thresholding. 
Output: A k-sparse vector x E Rn 

1)  Initialization: Generate Nparticles randomly with desired sparsity level 
X = [x1,x2, ......... x N ] ,  xi E Rn and IlxilJo 5 k V i 5 1 5 N 
V = 0, Velocity matrix 

2 )  Fitness Evaluation: Compute fitness of each particle 
f ,  = f i t (x l ,  x2,  ......... x N )  

= [f19f2, ...... - . f N ] ,  fi = (Ox[  - Y ) ~ ( @ x L  - Y )  
[ f s  indx ] = sort( fx ,  descend) 
fxs = Vxl, fx2, ......... fxN] With fxl < fx2 ......... < f x ~  

3) Local and global best (Initial): Matrix P contains local best particles 
P = X(indx) 

= [pl ,  pz,  ......... pN] where pi has f itnesfxi 
p, = p, , initial global best 

4) Velocity & Position update: Velocity and position update of each particlc 
according to Eq-5.2 and Eq-5.3 respectively. 
V=velocity (V, P, X, p,, C T ,  CZ,  W )  

=[vl,  v2, ......... vN] 
X = position(X, V )  

......... =[[xl jK,  [x2jK, [ x ] ~ ] .  where xi = xi-l +vi 

5 )  SSF Algorithm: If fxlremains the same in the specified consecutive 
iterations then replace the second particle with SSF update: 
x2 = Tp(xl +rand x O T ( y  - O x l ) )  , Ilxillo 5 k 

6 )  Update local and global best: Based on fitness, local and global bes 
particles are updated 

f xz  = f i t(X) 
[ f x z s  indx  ] = sort(fzx, descend) 

...... ......... fxzs = Vx21rfx22, . . . f x z~ I  With fx21 < fx22 < ~ X Z N  

X z  = X(indx) 
= [xZ1, xZ2,  ......... x Z N ]  where xzi has f i tnesfxzi 

I If(fxzl < fxJ then p, = xzl and fxl=fxzl ,(new global best) 

I r f ( f xz i  < fxi) then pi = xzi and fxi=fxZi, V i 5 1 I N (Local bests) 

Loop to step (4) until the stopping criteria (a sufficiently good fitness or 
maximum number of iterations) is meet. 

1 7 )  Output: Global best x = p. 

Figure-5.2: The proposed hybrid PSO algorithm 



5.3 Proposed Hybrid Genetic Algorithm 

Solving (5.1) with the conventional GA is not possible as offsprings may not follow the 

sparsity constraint even if it is fulfilled by the parents. In the proposed algorithm, the 

direct constraint handling has been used to ensure the desired sparsity level before and 

after cross-over through hard thresholding. Like hybrid PSO, SSF is used to update a 

chromosome when the fitness of the best chromosome does not change in a predefined 

consecutive iterations, thereby preventing the convergence issue. These modifications 

allow the hybrid GA to recover the sparse signal with an acceptable level of accuracy. 

Figure-5.2 lists the detailed description of the proposed hybrid genetic algorithm. 

nput: Sensing matrix 9~ RmXn , measurement vector y E Rm, sparsity level k, population size N, 
hresholdine. Darameter B for SSF. -. 
)utput: An R-sparse vector x E R" 

1) Population Generation: Randomly generate N chromosomes 
...... G = [g1,g2, ...gN], gi E Rn and llgillo I k v i 5 1 < N 

2) Fitness Evaluation of parents & Sorting: Evaluate the fitness of each chromosome and sort 
them in the descending order (the lower the fitness, the better the chromosome) 
f, = f it(g,,g2, ......... gN) 

......... = [ f p l ,  fp2. f p ~ ] ,  fpi = (9g i  - yIT(@gi - Y) 
[f,, indx] = sort(f,, descend) 
f,, = Lfl, f2, ......... f N ]  with f ,  < fi ......... < fN 
G, = G(indx) 

= [g,,,g,, ......... gsN] where g, has f ihesfi 

3) SSF Algorithm: If fi remains the same in the specified consecutive iterations then replace 
the second particle with SSF update: 
g, = T&l + rand x aTOr - %I)) . Ilgillo 5 k 

4) Cross over: offsprings of size half of the population are generated in random fashion: 
C = xover(G,) 

= [c,, c, .......... 

5) Fitness Evaluation of children & Sorting: Same as step-2 but executed for offspring. 

fc = f i t  c,, c,, ......... cN) ( i 
[f,, indx] = sort(f,, descend) 
C. = C(indx) - . .  

= [CSI,C ,, .......... c I s- .1 
6 )  New population: Generate new population using half of the best parents and all children. 

G = [ &I, g,,. ... g; CSI. CSZ. ... c{] 

Repeat (2) - (6) until the stopping criteria meet. 
7) Output: The chromosome with best fitness is the candidate solution x = gSl 

Figure-5.3: The proposed hybrid genetic algorithm for sparse signal recoveiy 



5.4 Results and Discussions 

The results produced are based on the random Gaussian measurement matrix E 

R256x512. The rows of sensing matrix represent the measurements i.e. m = 2 56 and its 

columns denote the size of the sparse signal i.e. n = 512. This matrix is generated by 

taking the first m rows of an orthonormal matrix built through Gram-Schmidt procedure 

using an n x n matrix consisting of +I random entries. A one-dimensional test signal 

xo E R"' having sparsity k=85 with random support and magnitude is used for sparse 

signal reconstruction. This signal is compressively sampled to produce the 

measurement vector y = xo E R " ~ .  The population size comprising of N=20 

random particles (chromosomes for GA), having proper sparsity is used in the 

experiments. The thresholding parameter ( P )  required for SSF is taken as 0.001 

For PSO, the required parameters are set as follows: c1 = c, = 2 and inertia 

weight w = 0.9. Fig-5.4 shows the effect of decrease in the cost hnction by keeping 

all other simulation parameters same but varying the inertial weight only. It is clear that 

w = 0.9 produces optimum results for the current experiment. 

iterations fj) 

Figure-5.4: Performance of PSO with varying inertial weights 
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Figure-5.5 shows how the proposed algorithm accelerates the convergence of the 

conventional PSO. In the initial iterations, the SSF is not used, so the decrease in the 

cost function is similar for both PSO and hybrid algorithm. However, when the 

algorithm starts using SSF based on the access criteria, then the convergence of the 

proposed method becomes faster. 

Decrease in value of cost function vs Iterations 
30 r I I I 1 I I I I - Hybrid PSO 

0 
0 20 40 60 80 100 120 140 160 180 200 

No. of iterations (j) 

Figure-5.5 showing fast convergence achieved with the proposed method 

Fig-5.6 shows the signal amplitude values of recovered signal using conventional and 

the proposed hybrid PSO only. It is clear that the sparse signal reconstruction with the 

proposed algorithm can recover both the support as well as the signal amplitude values 

to an acceptable limit. 

Similarly, integrating SSF with GA also produces similar results. Fig-5.7 shows the 

comparison of hybrid GA with parallel coordinate descend (PCD) and SSF based on 

the normalized MSE. 



Table-5.1 lists the performance comparison based on other parameters like fitness value 

and correlation of the final reconstructed signals through various algorithms showing 

that the proposed hybrid algorithms can recover the original test signal precisely. 

Indices of nonzero entries Losstion of nonzem entrt. 

Figure-5.6: Signal reconstruction through conventional and hybrid PSO 
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Hybrid GA 
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Figure-5.7: Comparison of hybrid GA based on mean-square-error 
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Algorithm Used Correlation MSE Fitness u 

SSF 0.9087 0.20 17 2.7383 
PCD 0.7195 0.4836 6.8735 
PSO 0.8563 0.2668 5.1068 
G A 0.6102 0.6276 1 1.9948 
Hybrid GA 1 .OOOO 8.0656e-06 1.5 1 15e-04 
Hybrid PSO 1 .OOOO 3.6982e-06 8.5285e-05 

Table-5. I :  Values of various parameters such as correlation, MSE etc. achieved by 

different recovery algorithms 

The direct application of hybrid GA and PSO to recover biomedical images is 

computationally inefficient because of the large dimensions of the problem. An initial 

population of 20 particles or chromosomes mean that these algorithms will start with 

20 different biomedical images requiring lot of memory and computation power. All 

these images will need to undergo velocity and position updates in case of PSO. 

Similarly applying GA means that mutation and crossover will be applied to generate 

offsprings. However, some of the ideas of heuristic algorithms can be incorporated in 

iterative shrinkage algorithms to reconstruct biomedical images. 

5.4 Proposed modified POCS algorithm for biomedical images 

This section presents a novel CS reconstruction method for Fourier encoded images. It 

is based on POCS algorithm but it takes two images and then randomly combines them 

at each iteration to estimate the original MR image. Like POCS algorithm, the proposed 

technique iterates between soft-thresholding in the sparsifying domain with data 

consistency constraint in the frequency domain. Similarly, like GA it uses a random 

combination of the previous (two) estimates to reduce the mean square error of the 

reconstructed (offspring) image. During each iteration, the candidate solution is 



updated based on the fitness (i.e. MSE) values. The detail description of the proposed 

algorithm is shown in Fig-5.8. The algorithm can be used to recover compressively 

sampled Fourier encoded images. 

1put: 
y = Fux (partial Fourier measurements ) 
p = Thresholding paramter 
Y = Sparsifying transform 

1utput: 
P = reconstructed image 

Ugorithm: 
I. Initialization: 

xi,, xi, (Two initial solutions) 
II. Fitness Evaluation &sorting: 

[ X I  ,x , , f i . fz]  = f itness(xii,xizn Y )  
Where f /  = (F,X,~ - y ) H ( ~ u x , j  - y),j = 1,2 

Otherwise 
Ill. Iterations: 

1. Back-projection of error 
e b  = F-'@ - Fx1) + x1 

2. Shrinkage & random combination 
e, = Y-'(T@ (P(c x e b  + x,})) 
Where c is a random number. 
xn = rand x (e, - x,) + x2 
Where x, is a randomly selected vectc 

3. Data consistency (frequency domain) 
lr from xl and xi 

Yl = F(x,) 
ydil ,  i f  y[il = 0 

Y1[il = [y[ i] ,  otherwise 
4. Re-assignment based on fitness 

xt = F(xn)n ft = (Fuxt - yIH(Fuxt - Y )  
i f  ft I f,,x, = x,; x2 = X I ;  

But i f f ,  I f2,x2 = xt; 

Repeat (1-4) until stopping criteria is met. 
IV. Output: 2 = x1 

Figure-5.8: ModiJied POCS based algorithm for CS recovery 

For the purpose of demonstration, the proposed modified POCS algorithm is applied to 

recover the original MR image from variable density undersampling scheme. The 

algorithm is initialized with two images ( x i ,  and xiz) that are directly reconstructed 

from the undersampled data using zero filling with and without density compensation. 

During the first iteration, the two images are combined together to compute a new 

estimate. In the remaining iterations, the algorithm is used to consider two best (on the 



basis of fitness value) out of the three images to refine the estimated image. The final 

reconstructed image is shown in Fig-5.9. The Daubechies D4 Wavelet is used as 

sparsifjkg transform (Y) with scaling coefficients: 

h = {0.4830,0.8365,0.2241,-0.1294). 

Fig-5.10 shows the comparison of POCS and SSF based reconstruction methods with 

the proposed algorithm. For the same number of iterations, the proposed algorithm 

achieves better value of fitness value (i.e. MSE) indicating that it outperforms SSF and 

POCS based recovery techniques. 

Modified POCS Original Image 

Recove~y technique of proposed algorithm Recovered Image 

Figure-5.9: Final image recovery with modiJied POCS algorithm 
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Figure-5.10: Comparison of proposed algorithm with POCS and SSF 
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Table-5.2 shows the summary of the various performance metrics achieved by applying 

different recovery techniques to the same undersampled MR image. The algorithm can 

be applied to recover other Fourier encoded images including parallel beam CT and 

MWI. 

(: 

10 
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l POCS 

Table-5.2: Comparison of algorithms for MR image reconstruction 

! SSF 
L 

1 xi1 . 
I 

/ Xi2 -- 
hroposed 

PSNR 
8.6419 
16.3936 
20.9532 
8.9166 
6.73 14 

2 1.422 

Artifact power 
0.0062 
0.0047 

Correlation 
0.9796 
0.9965-- 

0.0022 
0.0325 - - -  
0.0538 - 
0.0021 

0.9982 
0.98 18 1 
0.9753 
0.9988 



5.6 Summary 

Solving the NP-hard 1,-minimization problem with the conventional PSO and genetic 

algorithms has the issue of slow convergence. Using the sparsity-constrained version 

of PSO and GA along with SSF not only accelerates the convergence but also precisely 

recover the support of the original sparse signal. The proposed hybrid combination is 

able to reconstruct the target (1-D) signal faithfully from less number of non-adaptive 

Gaussian projections. Based on the idea of GA, a modified POCS based algorithm is 

presented for the recovery of Fourier encoded imaging. MRI related experiments show 

that the novel algorithm performs better than the POCS and SSF based recovery 

techniques. 



CHAPTER-6 

CS RECOVERY BASED ON SMOOTH 11-NORM APPROXIMATION 

Sparse signal reconstruction methods are used in a wide range of applications such as 

compressive sensing, denoising, signal separation and general linear inverse problems. 

The numerical algorithms used for the sparse signal recovery frequently involve finding 

solution to the least squares optimization problem with 11-norm regularization. As the 

1,-norm penalty is not differentiable, so it rules out the possibility of using the efficient 

optimization techniques that call for the derivative of the objective function. This 

chapter presents a hyperbolic tangent based surrogate function to closely approximate 

the 1,-norm regularization. Simultaneously, an iterative algorithm is developed for 

sparse signal reconstruction that utilizes the gradient of the proposed smooth function. 

The algorithm can be used to recover the compressively sampled ( I  -D) signals as well 

as images from a reduced set of measurements. Various numerical and imaging 

experiments are used to illustrate the performance of the promising recovery method. 

It has been shown that the algorithm can be applied to reconstruct the compressively 

sampled Fourier encoded images from less number of acquired data, which makes fast 

imaging possible without compromising high spatial resolutions. 

6.1 Problem Statement 

It is a well-known fact that most of the efficient unconstrained optimization techniques 

such as method of steepest descent, Gauss-Newton method and least-mean-square 

(LMS) algorithm need the gradient of the cost function to obtain the optimum solution 

[115-1171. However, we cannot directly use these methods to minimize the objective 



function of problem (4.1) which involves expression ofthe form Cr=ll~iI. The function 

f (x) = 1x1 is continuous but not smooth everywhere, since it has kink at x = 0 and is 

not differentiable [I 18,1191. Differentiability is also an essential requirement for the 

non-linear activation function used to model a neuron in a neural network [120,121]. It 

is, therefore, necessary to use a smooth surrogate function to approximate 1x1. 

6.2 Proposed hyperbolic Tangent based surrogate function 

We propose a hyperbolic tangent based surrogate function that can be used to closely 

approximate I x 1. 

The hyperbolic tangent is an odd, non-convex, smooth and strictly increasing analytical 

bounded function. For the general case of y = z(x) = c tanh(yx), the slope of the 

function at the origin can be adjusted to any desired value with proper selection of the 

parameters c and y i.e.: 

y' = f (c - y)(c + y), with yl(0) = yc (6-1) 

For the aforementioned general case, the inverse output-input relation can be expressed 

as : 

1 
x = z - l ( y ) = - ; ; ( z o g e ( c + x ) - l o g e ( c - x ) )  (6.2) 

The role of hyperbolic tangent to approximate various functions is not uncommon in 

the field of signal processing and neural networks [121,122]. It can be used to 

approximate the signum (discontinuous) function, which is widely used for hard 

thresholding: 

IT' I 



In neural networks, hyperbolic tangent function is used for non-linear mapping because 

of its "S-shaped" curve. It performs better than other sigmoid activation functions with 

respect to computability, training times etc. and therefore plays a vital role in the 

backpropagation and Hopfield networks. The hyperbolic tangent is essentially 

equivalent to the logistic sigmoid function in that, one can be expressed in terms of the 

other, by scaling and translation transformation [12 1,123,1241. 

1 - - = -  I ' t a ~ ~ h ( ~ / ~ )  
l+e-% 2 2 (6.4) 

Recently, the hyperbolic tangent function has been used in the application of sparse 

signal processing to approximate the lo norm [125, 1261. The proposed smooth 

approximation is shown to perform better than the Gaussian and inverse tangent 

function based approximations. 

The facts that the hyperbolic tangent function has adjustable slope at the origin and is 

bounded by the line y = +I ,  make it suitable surrogate function for the l1 norm. We 

use it to approximate the non-differentiable function 1x1 that is used to compute the 1, 

norm i.e.: 

1x1 = XZ(X) = cx tanh(yx) L6.51 

Fig-6.1 shows the comparison of approximations for c = 1 and  y = 1,2,4. It is clear 

that larger y provides a close estimate of the function. 

From Eq-6.3 and Eq-6.5, it is clear that for c = 1 and  y >> 1, the approximation error 

is negligible for larger values of x .  Fig-6.2 shows the plot of mean-square-error of the 

proposed approximation, with respect to various selections of y, using three different 

bounds of x. These results show that, for better approximation, the appropriate value of 

the parameter y depends on range (magnitude values) the signal x. A signal with 

smaller values requires large value of y for better approximation near the origin. It is 



also worth mention that the function f (x) = x tanh(x) is convex in the interval x E 

[I, -11. 

X 

Figure-6. I Comparison of approximation for different values of y 

0 2 4 6 8 10 12 14 16 18 20 
Value of parameter y 

Figure-6.2 Mean-square error of the approximation for different bounds of signal 
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6.3 Proposed Recovery Algorithm 

For the scalar case of problem (4.1), the proposed approximation leads to the following 

minimization problem: 

where x, y, Tp (y) E R. The solution Tp (y) of problem (6.6) depends on the value of y 

and the Lagrangian multiplier P 

Differentiating f (x), equating to zero and solving for y yields: 

y = x + P[yx (1 - tanh2(yx)) + tanh(yx)] 

z x + p t a n h ( y x ) ,  Jyx( >> 1 i6.71 

A closed form mathematical equation for T'b) cannot be obtained by solving the non- 

linear Eq-6.7. However, it can be solved either graphically or using the approximation 

of Eq-6.3. Solving Eq-6.7 graphically is shown in Fig-6.3, where the solution Tg(y) in 

Fig-6.3b is obtained by exchanging the axes of Fig-6.3a. Using the approximation of 

Eq-6.3 leads to the following closed form solution: 

Y - P I  Y > P  
Y + P ,  y < - P  
0. Otherwise 

The update equation for the iterative form of the algorithm is derived by using the 

classical steepest descent method: 

where q is a positive constant called the stepsize or learning rate. Vf (xk) represents the 

gradient operator of the cost function at the k-th iteration. Assumingz(xi) = 

c xi tanh(yxi), the cost function is 



X 

6.3 (a) 
Y 

6.3 (b) 

Figure-6.3: Graphical solution to Eq-6.7 corresponding to y = 50 

The gradient of the cost function is easy to compute: 

V f ( x )  = mT(@x - y )  + p ~ ~ = I ~ ' ( ~ i )  

where for ai = c tanh(yxi ) ,  

Y 
z' ( x i )  = ;xi (C  - a i ) ( c  + a i )  + ai (6.12) 

The complete description of the proposed iterative recovery algorithm is shown in Fig- 

6.4. The algorithm is initialized by using the minimum l2 norm solution i.e. xo = 

~ ~ ( @ @ ~ ) y .  

The stepsize can be set empirically or can be adaptively computed using the well-known 

Barzilai and Borwein method [127]. As the proposed algorithm is based on the standard 

gradient-descent method using smooth regularization penalty, its convergence can be 

followed directly in the optimization literature. 



Input: Sensing matrix @ €Rmxn, measurement vector y E Rm, 

parameters y, p, q and sparsity level k = llxllo (optional), 

Output: A k-sparse vector Q E Rn 

Initialization: Select x, according to Eq.[12], index i=O 

Step-1 (Gradient Computation): Find Vf (xi) using Eqs-6.11 & 6.12 

Step-2 (Solution Update): Compute xi+, using Eq-6.9 

Step-3 (Shrinkage): Estimate Solution using (6.8) i.e. f i  = Tp(~i+ l )  

Step-4 (Optional): Incorporate Sparsity, Ri = /f 

where the operator [xIk sets all except the k largest elements of 

vector x to zero 

Step-5 (Repeat): If stopping criterion is not met, i=i+l and go to step-1 

Output: ji = f 

Figure-6.4: Proposed hyperbolic tangent based iterative algorithm for (I-D) 

sparse recovery 

The algorithm works well even if the sparsity of the signal is not known. However, the 

prior knowledge about the sparsity can greatly reduce the number of iterations by using 

the optional (step-4) of the algorithm. In order to use the proposed algorithm for the 

recovery of compressively sampled biomedical images such as MRI and microwave 

imaging, we also need to take the data consistency constraint into the consideration. 

The algorithm can be halted either after a fixed number of iterations or when the MSE 

of the estimated signal II@ji - yll; reaches an acceptable limit. 

6.4 Results of Simulation with Discussions 

In order to validate and evaluate the performance of the proposed algorithm, it is applied 

to reconstruct 1 -D sparse signal followed by CS recovery of biomedical images. 



6.4.1 Sparse Signal Recovery (1-D) 

In the first experiment, we generate a one dimensional sparse signal x E R"' having 

sparsity level k = llxllo = 85. The non-zero elements of the signal are randomly 

distributed at various locations. The signal is sampled using a random Gaussian matrix 

@ E R~~~~~~~ to obtain linear measurements. The values of several necessary 

parameters for the recovery algorithm are set as follows: q = 0.9, A = 0.01, y 2 10. 

The proposed algorithm takes the measurement vector y = @x E RZs6 and estimates 

the locations and values of the non-zero entries in the original signal. 

I 
50 100 150 200 250 300 

No. of measurements 

Figure-6.5: Compressively sampled sparse signal 

Fig-6.5 shows the random measurements obtained after sub-sampling the original 

signal. We take only 50% random projections as compared to the dimensionality of the 

original signal. Fig-6.6 shows the recovery of the signal using the minimum norm 

solution and the proposed algorithm. It is clear that the proposed recovery method is 



able to reconstruct the original signal almost perfectly from the sub-sampled signal of 

Fig-6.5. The hyperbolic tangent based 1,-norm approximation can also be used to 

recover the signal even if the level of sparsity is not known in advance. However, the 

algorithm takes more iterations to converge. Fig-6.7 shows the comparison of signal 

recovery using the proposed algorithm with and without the knowledge of sparsity. 
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Figure-6.6: Recovery with the proposed reconstruction algorithm 
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Figure-6.7: Signal recovery with and without knowledge of sparsity 

6.4.2 CS recovery of biomedical images 

As biomedical images are generally considered to be sparse in the transformed domain 

(such as DCT and Wavelet), so the non-linear shrinkage function of Fig-6.3 is applied 

to the entries of the estimated images in the sparsifying domain. Additionally, the 

algorithm incorporates the data-consistency in the Fourier domain and only estimates 

the missing Fourier samples. The already acquired Fourier samples remain unaltered 

during each iteration. The detailed description of the proposed algorithm for the CS 

reconstruction of biomedical images is shown in Fig-6.8. 



Input: 
y = F,x (Partial Fourier measurments) 
71 = step size, parameter y 
p = Thresholding parameter 

output: 

2 = Estimated image 
Algorithm: 

Initialization: 

x, = F-' (y) (Initial solution), i = 1 
Iterations: (increment i by 1 ) 
1. Gradient: 

Compute V f  (xi- i )  
2. Solution update: 

xi = X I - I  - qvf (xi-1) 

3. Shrinkage: 

% = Y-'{T~{(WX~)B 
4. Data consistency In frequency domain 

Y i  = G I ;  y,laq = Y 
Repeat iteration until stopping criteria is met. 

Result: 
j; = F-1 ( Y J  

Figure-6.8: Proposed hyperbolic tangent based algorithm for CS recovery of Fourier 

encoded imaging 

6.4.1 Experimental results with 2-D imaging 

In order to further validate the performance, we apply the proposed algorithm to recover 

the parallel-beam CT, MR and microwave images from partial Fourier data. All the 

images are compressively sampled in the frequency domain (k-space for MRI) by 

skipping 20% of their frequency data points. Different sampling patterns are used to 

check the robustness of the proposed recovery algorithm. The algorithm is then run for 

15 iterations to recover the images. The various necessary parameters needed for the 

algorithm are set as: y = 50,A = 0.02 and r ]  = 0.9. 



Fig-6.9 shows a 512 x 512 Shepp-Logan phantom that has been undersampled using 

radial sampling. The proposed algorithm is applied to reconstruct the original image. 

The recovered parallel-beam CT image along with the undersampled version are shown 

in Fig-6.10. 

Shepp-Logm Phwlmn Underrrrmphg pmm used 

Figure-6.9: Phantom image and the under-sampling pattern used 

Figure-6.10: Recovery of phantom image barallel-beam CT) with proposed 

algorithm 



For the recovery of MR images, the original human brain MR image obtained from 1.5 

Tesla GE HDxt scanner is used for the recovery. The image is undersampled using a 

variable density pattern. The original MR image and the corresponding variable density 

sampling pattern are shown in Fig-6.1 1, while Fig-6.12 depicts the undersampled and 

the reconstructed images. It is clear that the proposed algorithm can accurately 

reconstruct the compressively sampled MR images from the reduced data set of k-space 

samples. 

Standard metrics such as structural similarity index (SSIM), correlation, artifact power 

(AP), improved signal-to-noise ratio etc. are used to evaluate the performance of the 

proposed algorithm for MR images [22,23]. Fig-6.13 shows the improvement in SSIM 

during the recovery process for both the original and phantom MR images. 

Original human head MRI Variable density sampling 

Figure:-6.1 I: Original human head MR image and the corresponding sampling 

pattern 



Undersampled MR image Reconstructed Image 

Figure-6.12: Recovery of original MR image using proposed algorithm 
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Figure-6.13: SSIM improvement of the reconstruction images in each iteration 

The CS based near field microwave imaging experiment was performed in our group 

at the Electromagnetic and Acoustic Imaging and prognostics (LEAP) lab of the 

University of Colorado Denver and Anschutz Medical Campus by acquiring a 6 x 

1.5 inches microwave backscattering image using raster scanning for a sample under- 

test (SUT), shown in Fig-6.14. The SUT is compressively undersampled using a 
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random sampling mask shown in Fig-13 during DAQ phase. Here DCT is used as a 

sparsifying transform. The rest of the parameters for the reconstruction algorithm are 

the same as those used for MR image recovery problem. The proposed algorithm is 

applied to recover the original microwave image from the under sampled image which 

is illustrated in Fig-6.1 5. 

Finally, table-6.1 provides the numerical values of the various performance metrics 

such as AP, SSLh4 and ISNR etc. for the final images reconstructed using the proposed 

algorithm. 

Original Scan 

inch 

Sampling pattern 

Figure-6.14: SAR image and corresponding under-sampling pattern used 
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Recovered SUT image 

Figure-6.15: Under-sampled and recovered microwave image 

Table-6. 1: Comp~rison based on vurious performance mefrics 

i 
1 
1 Correlation 

I ISNR (db) 

j SSIM 

/ AP 
I 

6.5 Summary 

In this chapter, a hyperbolic tangent based approximation for the 11-norm is presented. 

Based on the differentiable surrogate function of the I ,  penalty, a novel sparse recovery 

Microwave Image 

Under-sampled Recovered 

0.9572 0.9978 

16.8199 30.7623 1 
I 

0.8131 0.9601 

0.0380 0.001 5 

CT (Phantom Image) 

Under-sampled Recovered 

0.9630 0.9973 

14.0975 26.4193 

0.4193 0.9575 

0.0697 0.0041 

algorithm is developed. The algorithm can reconstruct a 1-D sparse signal with and 

Original MRI 

Under-sampled Recovered 

0.9818 0.9987 

16.9548 28.5396 

0.5099 0.9640 

0.0325 0.0021 

without the knowledge of the sparsity of the original signal. It has been demonstrated 

that by incorporating the data-consistency constraint, the proposed technique can be 



used to recover the compressively sampled MR and high resolution microwave images 

from less number of samples. The performance of the algorithm is verified by using 

different types of under-sampling patterns and sparsifying transforms. The proposed 

method has the potential to speed up the imaging acquisition while retaining the 

superior spatial resolutions. 



CHAPTER-7 

A FLEXIBLE SOFT THRESHOLDING FOR ITERATIVE SHRINKAGE 

ALGORITHMS 

There is an equivalence between undersampling and additive Gaussian noise. In fact, 

CS undersampling introduces noise in the linear reconstructed images that can be 

modeled by the Gaussian like probability distribution function (pdf). The denoising 

algorithms generally require a thresholding step to set small coefficients to zero and 

shrink the larger coefficients towards zero. This chapter introduces a novel soft- 

thresholding method based on the hyperbolic tangent function. The proposed nonlinear 

function has adjustable parameters and can lead to various nonlinear shrinkage curves. 

It can be used with any iterative algorithm for denoising or equivalently CS recovery. 

Using the proposed thresholding function in the sparsifying domain and a data 

consistency step in the frequency domain, the iterative-shrinkage algorithms can be 

used to effectively recover the under-sampled Fourier encoded images. 

7. 1 CS Recovery and denoising 

The elementary denoising algorithms aim to estimate a signal or image from its 

perturbed observations. i.e. 

y = x + v  (7.1) 

Here x E Rn is the original image vector that is measured in the presence of an additive 

zero mean Gaussian noise v having probability distribution function (pdf) given by: 



If the image has a sparse representation in a transform domain ( x  = Aa), then the 

denoising algorithm seeks to find solution to the following optimization problem: 

minllallo subject to Ily - Aall; I 19 
a 

The threshold 79 is closely related to the noise power [128- 13 11. 

Assuming A to be an orthonormal basis e.g. DCT or wavelet, the solution of (7.1) can 

be easily obtained by simplifying the constrained term: 

I I Y  - AalE = IIA(AHy - a)lE 

= llAHy - all: = llz - all? 

here z = are the transformed domain coefficients. Incorporating the sparsity part 

(by applying thresholding), the following simple relationship can be used to estimate 

the denoised image [128,132]: 

9 = AS~(Z) = A$ ( ~ ~ y )  = ~a (7.2) 

Where the scalar P is thresholding parameter which depends on the noise power and 

sparsifying transform used. Sp is the scalar-valued hard-thresholding operator defined 

by: 

IZI  r P 
Sp(z) = (i: Otherwise 

The step by step description of computing the denoised version of the image using 

wavelet transform (AH = V) is shown in Fig-7.1 

1. Compute transform coefficients: z = Yy 

2. Use element-wise hard-thresholding: d = Sp (z) = lzlk 

3. Denoise image: 9 = Y-lC 

Figure-7.1: Transformed based image denoising 



To improve the results under various assumptions, different mathematical thresholding 

operators have been proposed in literature [133-1361. The idea is to map the values near 

the origin to zero and those away from the origin are shrunk towards zero. 

The random and irregular sampling at the CS encoder results in an incoherent (noise 

like) artifacts in the sparsifying domain. For the case of MRI or other Fourier encoded 

biomedical imaging (y = F,x), the linear reconstruction (by simply replacing the 

missing Fourier data with zeros and taking inverse FFT) results in artifacts that are 

much like additive Gaussian noise. The actual resulting noise due to subsampling 

depends on the undersampling pattern used [52] .  

For the variable density and radial undersampling patterns, used in our experiments, the 

histogram of the noise (in image domain) is shown in Fig-7.2. The error is obtained by 

the relation: 

In order to recover the original image, the CS decoder has to estimate the noise first. 

This essentially makes the CS recovery as a denoising problem. The CS reconstruction 

algorithm iteratively estimates the target signal from the noisy measurements. 

Fig-7.3 shows the histogram of the reconstructed error after 10 iterations of the SSF 

algorithm when applied to the brain MR image. It can be seen that the width of the 

Gaussian like error has decreased significantly. The variance (width) of the distribution 

is the mean-square-error of the estimated vector. 
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Figure:-7.2: Histogram of error (hetween original Fourier encoded image and linear 

reconstructed image) for (a) parallel beam CT (b) MRI 

Error befor applying 
k . .. . the algorighm 

Coefficient values 

Figure-7.3: Reduction in the variance of error during CS recovery 



7.2 MAP estimator for denoising and proposed thresholding 

Any linear transform of the zero-mean Gaussian noise results in a zero-mean Gaussian 

noise in the transformed domain. So applying wavelet transform to Eq-7.1 results in: 

z = w + v  (7.5) 

Where the random vectors z = 'Yy and w = 'Yx are the wavelet coefficients of the 

noisy observations and noise-free image respectively. The maximum a posteriori 

(MAP) estimator for the random vector w is given by: 

i? = argmax p(wJz) 
w€Wn 

Using Baye's rule and ignoring P(z) as using the fact that p(z) does not depend on w, 

the MAP estimator takes the form: 

i? = argmax p(z)w)pw(w) 
wEWn 

(7.6) 

The problem of (7.6) can be simplified by using some simple mathematics starting 

with p(z1w) = pv(z  - w): 

9 = argmax[pv(z - w)jpw (w) 
W 

= argmax[ln([p,(z - w) + In pw(w)] 
W 

1 llz-wlli 
2auZ ) + In pw (w) 

Where f (w) = Inpw(w). The MAP estimator for the wavelet coefficients of the 

original image can be obtained by differentiating the argument of (7.7) w.r.t. w and 

equating the result to zero i.e. 



For natural and biomedical images, the pdf of wavelet domain coefficients is generally 

more peaked at the center than Gaussian. Assuming the distribution of transformed 

domain coefficients be Laplacian i.e. 

gives f ' (Gi )  = -e sig(Gi). Solving Eq-7.8 results in 
Q 

JZov2 
zi = Gi + - . sig (Gi)  

o 

JZuvz Representing - = P and solving Eq-7.9 for Qi to get the nonlinear shrinkage: 
I7 

Gi(z)  = Tp(z) = max{)zl - P, 0 )  . s ig(z )  (7.10) 

Eq-7.10 indicates that the Laplacian distributed wavelet coefficients of the original 

image can be estimated by applying the element-wise shrinkage of Eq-7.10 to wavelet 

coefficients of the noisy image (or compressively undersampled image in case of CS). 

It means that the hard-thresholding (step-2) of Fig-7.1 will be replaced by Eq-7.10. 

In practice, the noise distribution may not be exactly Laplacian. So, the shrinkage 

function may slightly vary. We present a soft-thresholding nonlinear function based on 

hyperbolic tangent function that can closely approximate the operator of Eq-710. 

However, the proposed thresholding scheme is versatile and provides various 

adjustable parameters. The general form of the novel shrinkage operator is given by: 

As shown in Fig-7.4, the parameter c and y can be tuned to get various magnitude levels 

and adjustable rise of the thresholding function respectively. Fig-7.4 demonstrates 



another fact that Eq-7.11 can also be used to approximate Eq-7.10 very closely if 

k E [-I, + I ]  and /3 5 0.2 by taking c = (1 - P)  and fixing y = (1/P - 1). This is 

helphl because an image can always be normalized so that its values fall in the interval 

[- 1,1] either in pixel domain or in a transformed domain such as Wavelet and Fourier. 

Figure-7.4: Versatility of the hyperbolic-tangent based soft-thresholding 

Proposed thesholding (c=0.8) 

Original values of signal 

figure- 7.5: Approximation of Eq-7.10 using the proposed soft-thresholding (Eq- 7.1 I )  



The proposed thresholding function can be used with any iterative shrinkage algorithm. 

To show its performance, a 1-D sparse signal x E IR5l2(k,85) is recovered by applying 

the algorithm of Fig-6.4 but replacing the original shrinkage step (Step-3) by the 

proposed one (Eq-7.11). Similarly the same signal is recovered with SSF using the soft- 

thresholding of Eq-7.10. The shrinkage is performed on the estimated signal directly as 

it is assumed to be sparse in the time-domain. The promising results of the proposed 

algorithm are clear from Fig-6.4. 

Algorithm of Fig-6.4 with proposed thresholding 

Algorithm of Fig-6.4 with soft thresholding 

SSF with soft thresholding 

Number of iterations 

Figure- 7.6: performance of the proposed thresholding function 

The proposed nonlinear thresholding can be used with any iterative shrinkage algorithm 

to recover the compressively sampled Fourier encoded images. 



7.3 CS recovery of biomedical imaging (Denoising approach) 

In general, the iterative shrinkage algorithms estimate the denoised image by 

thresholding the wavelet coefficients i.e. 

h 

Xdenoise = y-1{T/3 ( v~) )  (7.11) 

The error between the denoised version and the original image is estimated and 

incorporated in the update equation. Assuming the acquisition transform to be 

orthonormal, the linear estimate of the error can be computed as: 

A A 

e = x - Xdenoise 

= AH (Y - A ftdenoise) (7.12) 

where y = A x  are the encoded measurements of the original image vector. The solution 

can be refined by using the update equation that considers the denoised image and the 

error estimate together. In general, the update equation takes the form: 

ft = Wdenoise + W e  (7.13) 

where W is the diagonal weight matrix. For SSF algorithm, W = I. For PCD, the weight 

matrix is computed offline using W = (A~A)-'  [56,57]. 

Eq-7.13 represents one iteration of the iterative shrinkage algorithms which comprises 

of a denoising step combined with the estimate of error. 

For the Fourier encoded biomedical images, A = F. So at the ith iteration, Eq-7.13 takes 

the form: 

xi = Y'-'{T~, (Y{W( F - ' @ ~ - ~  - F x ~ - ~ )  + (7.14) 

The thresholding parameter is usually scaled with different values that depends on the 

algorithm. For Fourier encoded biomedical imaging, the data consistency condition is 

also incorporated in the frequency domain at each iteration which means that the 



originally acquired Fourier samples remain intact. The general description of CS 

recovery is shown in Fig-7.7 

Input: 

y = F,x (Partial Fourier rneasurments) 

p = Thresholding paramter 

Output: 

2 = Estimated image 

Algorithm: 

Initialization: 

x, = F,-' @) (Initial solution), W = Precomputed weights 

yo = y,i= 1 

Iterations: (increment i by 1 ) 

I. Denoisiig including error estimate: 

xi = V-~{T~(Y{W( F-'(Y~-~ - Fxi-1) + xi-1)))) 

2. Data consistency in frequency domain 

Y' = w; 

Repeat iteration until stopping criteria is met. 

Result: 

Figure-7.7: A general denoising based CS recovery algorithm 

7.4 Experimental results 

For the purpose of demonstration, the algorithm of Fig-7.7 is applied to recover the 

original MR image using variable density undersampling scheme. The weight matrix is 

directly computed from the undersampled image by taking the inverse of the matrix 



corresponding to zero-filled reconstruction and then normalizing its value to the range 

[O, 11. For the shrinkage, the proposed hnction of Eq-7.11 is applied. Fig-7.8 shows 

the distribution (histogram) ofthe original MR image in the pixel (image) domain while 

Fig-7.9 displays the histogram of linear reconstructed image. The algorithm runs for 10 

iterations to reconstruct the original image. Each iteration comprises of linear estimate 

of the error, denoising and data consistency. The histogram of the recovered image is 

shown in figure in Fig-7.10 which is very close to that of Fig-7.8. 

normalized coefficients (pixel values) 

Figure-7.8: Distribution ofpixel values of the original MR image 
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Figure-7.10: Distribution ofpixel values of the reconstructed image 



In the second experiment, the MR phantom image taken at St. Marry hospital London 

is compressively sampled and recovered through the algorithm of Fig-6.4 using (a) soft- 

thresholding of Eq-7.10 and (b) proposed hyperbolic soft-thresholding of Eq-7.11. The 

sampling pattern, number of iterations and other common parameters are kept the same 

to have better performance comparison. The correlation based results are shown in Fig- 

7.1 1. The original as well as recovered images are shown in Fig-7.1 2. 

The versatility of the proposed hyperbolic tangent based soft thresholding has been 

validated using the SSF algorithm with both non-linear thresholding functions. Fig-7.13 

depicts the improvement in SSIM achieved using the proposed nonlinear function of 

Eq-7.11. As shown in Fig-7.14, the image reconstructed with the proposed nonlinear 

shrinkage has reasonably good quality as compared to the one recovered using soft- 

thresholding of Eq-7.10. 

Figure- 7.1 1 : Improvement in correlation using soft (Eq- 7.10) and proposed (Eq- 7. I I) 

thresholding function for MR recovery 

0.992 I r r -Proposed thresholding I [ 
1 2 3 4 5 6 7 8 9 10 

Number of iterations 



Original image Reconstruction using proposed thresholding 

Figure- 7.12: Reconstruction of MR phantom image using thresholding of Eq- 7.1 I 

r r r r I -- --.--..-Soft 'Ihresholding 

Number of iterations 

Figure- 7.13: Comparison based on SSIM using two dtfferent thresholding 



Recovery with Soft thresholding Recovery with proposed thresholding 

Figure- 7.14: SSF based Original MR Image reconstruction using soft-thresholding 

(Eq- 7.10) and the proposed (Eq- 7. I 1) 

7.5 Summary 

This chapter explores the connection between CS recovery and denoising. 

Undersampling in CS essentially leads to the addition of Gaussian noise in the original 

image. CS recovery using iterative thresholding algorithms effectively comprise of 

denoising step (computing the linear estimate of the error and applying thresholding) 

followed by data consistency in frequency domain. Nonlinear shrinkage curves plays a 

vital role in the reconstruction process. A novel shrinkage function (based on hyperbolic 

tangent) with adjustable parameters is also presented that performs well in the CS 

recovery as compared to the soft-thresholding. 



CHAPTER-8 

CONCLUSION 

8.1 Summary of thesis 

Compressed sensing is a novel acquisition protocol that operates at low sampling rates 

and has the ability to reduce the acquisition time; a feature that is highly desirable in 

biomedical applications such as magnetic resonance imaging (MRI), microwave 

imaging (MWI) and computed tomography (CT) where conventional acquisition 

techniques are time consuming or require longer exposure to hazardous radiations. The 

application of CS to biomedical imaging modalities has shorten the acquisition time 

and the amount of raw data, unfortunately the computation time of the image recovery 

has increased. In the initial work of CS, convex optimization based methods were 

applied to solve the non-linear CS recovery problem. However, these general purpose 

reconstruction algorithms are often slow and inefficient requiring too many 

computations especially for high-dimensional biomedical images. The main focus of 

this dissertation is to propose a novel suite of algorithms that can efficiently reconstruct 

Fourier-encoded biomedical images from sub-sample measurements. The proposed 

algorithms are used to estimate the missing Fourier samples by using data-consistency 

in the Fourier domain and shrinkage in the sparsity domain. The techniques presented 

are mainly derived from the iterative-shrinkage algorithms that are widely used for 

image denoising. 

It has been shown that a simple projection-onto-convex set algorithm can be 

applied to MR and microwave imaging modalities to reconstruct the final image 



fiom a reduced set of Fourier measurements. POCS estimates the missing 

samples by simply applying soft-thresholding in the sparsifying domain. 

A novel CS recovery algorithm based on separable surrogate functional (SSF) 

method is presented next. The update equation of SSF incorporates the linear 

estimate of residual error before applying non-linear shrinkage. Experimental 

results validate hat the SSF based reconstruction yields a better image quality 

as compared to POCS. 

Evolutionary techniques such as genetic algorithms (GA) and particle swarm 

optimization (PSO) are used in combination with SSF algorithm for the 

recovery of 1 -D sparse signals. This (heuristic-deterministic) hybrid mechanism 

greatly improves the convergence of GA and PSO. Based on the idea of GA, a 

modified POCS algorithm is also proposed for the reconstruction of Fourier 

encoded images. The novel recovery algorithm uses multiple initialization and 

randomly combines them during each iteration to estimate the original image. 

Introducing randomness in the recovery process provides improved results as 

compared to SSF based recovery. 

CS recovery algorithms generally use to reconstruct a high-quality image from 

the sub-sampled incoherent measurements by finding solution to the least 

squares optimization problem with 1,-norm regularization. However, the 1,- 

norm is not differential at the origin as the finction f (x) = 1x1 has a kink at x = 

0. To overcome this problem, a hyperbolic tangent based approximation has 

been proposed. Simultaneously, a gradient based algorithm is developed for the 

recovery of Fourier-encoded images. The proposed technique also proves its 

ability to recover a sparse signal with and without the knowledge of sparsity. 



Shrinkage is an appealing and well-known denoising technique. Undersampling 

in CS results in an image corrupted by Gaussian-like noise. The MAP estimator 

of a Laplace random variable in Gaussian noise leads to the soft-thresholding. 

However, in practice, the assumption of Gaussian noise and Laplacian 

distribution of transformed coefficients may not meet exactly. Therefore, a 

novel hyperbolic-tangent based shrinkage is proposed that can closely 

approximate the non-linear soft-thresholding function. The proposed non-linear 

shrinkage has adjustable parameters and is shown to perform well in 

reconstructing biomedical images from partial Fourier measurements. 

8.2 Directions for future work 

There are several directions and extensions for the future research work based on the 

ideas presented in this dissertation. For example: 

The work can be extended to dynamic MR imaging which requires rapid data 

acquisition to monitor fast signal-intensity changes. Because of the 

computational simplicity, the proposed algorithms can be also be used with 

parallel imaging to reconstruct rapid dynamic volumetric MR images with high 

temporal resolution, spatial resolution and motion robustness. 

In the current work, analytical sparsifying transforms (dictionary) were used. 

The recovery process may improve if an adaptive dictionary learning 

mechanism is incorporated in the reconstruction. The currently used dictionary 

learning algorithms such as K-SVD etc. are" computationally intensivez These 



learning techniques usually use pursuit algorithms for sparse coding which can 

be easily replaced by the proposed computationally low cost algorithms. 

The proposed CS reconstruction algorithms can be used for the recovery of 

videos from compressed measurements. However, it may need to incorporate 

an intelligent sensing mechanism to exploit the high correlation in a video 

sequence. 

Instead of recovering the entire biomedical image at once, the iterative 

shrinkage based CS recovery can be extended to patch-based CS reconstruction. 

Additionally, the non-linear shrinkage functions/curves for each patch may be 

learned adaptively. This shift from global to local and adaptive modeling is 

expected to provide better reconstruction quality. 
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