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PREFACE

Fixed point theorems deal with the assurance that & mapping 7" on a set X has one or more fixed
points, t.e., the functional equation z = T’z has one or more solutions. A large variety of the problems
of analysis and applied mathematics relate to finding solutions of nonlinear functional equations which
can be formulated in terms of finding the fixed point of a nonlinear mappings. In fact, fixed point
theorems are extremely substantial tools for proving the existence and uniqueness of the solutions to
various mathematical models {differential, integral and partial differential equations and variational
inequalities ete.} existing phenomena arising in broad spectrum of fields, such as steady state tem-
perature distribution, chemical equations, neutron transport theory, economic theories, functional
analysis, epidemics, biomedical research and flow of fiuids etc.

The Banach fixed point theorem is commenly known as Banach contraction principle, which states
that if X is a complete metric space and 7' a single.valued contraction self mapping on X, then 7" has
a unigue fived point in X. This theorem looks simple but plays a fundamental role in the field of fixed
point theory and has become even more important because being based on iteration, it can be easily
implemented on a computer. Subseguently many authors generalized the Banach fixed point theorem
in different way (see[1-20,22-61}) and the references therein. .

Following the Banach contraction principle Nadler [47] intreduced the concept of set valued con-
tractions and established that a set valued contraction possesses & fixed point in a complete metric
gpace.

Jachymski et al. [31] established a result which generalized the Banach contraction principle for
graphs, Beg et al. [14],/15] extended some resuits of [31] by defining G-contraction for muiti-valued
mappings. Kirk et al. [5] proved some remarks which was based on the idea of a metric transform
and extended Nadler’s theorem.

In 2000, Branciari [18] introduced the concept of generalized metric spaces, where the trian-
gle inequality is replaced by the inequality d{z,y} < d{(z,u) + d{u,v) + d{v,y) for &l pairﬁrise
distinet points z,y,u,v € X. Various fixed point results were established on such spaces, see
{[8].1201,1381,[34],{43},[44],]45].[46],[58],160]) and the references therein.

In 2012 Wardowski [61] introduced a new type of contraction called F-contraction and prove a
new fixed point theorem concerning F.contraction.

Secelean [57] showed that the condition {F2) in definition of F.contraction introduced by War-
dowski [61] can be replaced by condition (F2') or (F2''), Piri et al. [50] described a large class of func-
tions by replacing condition (F3') instead of the condition (F3) in the definition of F-contraction in-
troduced by Wardowski [61]. Cosentino et al, [19] presented some fixed point results for F.contraction

of Hardy-Rogers-type for single-valued mappings on complete metric spaces, Sgroi et al. [56] estab-



lished fixed point thecrems for multi-valued F-contractions of Hardy-Rogers-type for multi-valued
mappings on complete metric spaces.

More recently Hussain et. al. [25], introduced a-GF-contractions and obtained fixed point results
in metric spaces and partiaily ordered metric spaces. They also established Suzuki type results for
such GF~{,~ont,ré.cticns.

'The thesis is divided into four chapters,

Chapter 1, is essentially an introduction, where we fix notations and {erminologies to be used. It is
a survey aimed at recalling some basic definitions and facts. While some of the classical and recent
results about fixed point existence are also presented in this chapter.

Chapter 2, deals with some new fixed point theorems concerning metric transforms for uniform local
multivalued graph contractions in complete metric spaces with a graph.

Chapter 3, is devoted to the study of Hardy-Rogers-Type fixed point theorems for generalized F-
contractions in complete metric spaces.

Chapter 4, concerned with the study of fixed point results of generalized contractions on generalized

metric space to extend the idea of Jieli et al. [33],[34].



Chapter 1

Preliminaries

The aim of this chapter is to present basic concepts and to explain the terminclogy used through
out this dissertation. Some previously known resuits are given without proof in order to keep the
chapter with reasonable length. Section 1.1 deals with some basic concepis. In section 1.2, we present
the notion of Hausdorfl metric on the family of non-empty closed bounded subsets of a metric space.
Section 1.3 concerns with the concept of metric transform and fixed point results concerning metric
transforms. In section 1.4 the terminology of graphs and related notions are given. In section 1.5 we
present the concept of generalized metric space which is a generalization of metric space and recall
some fixed point theorems on generalized metiric spaces in the related literature. In section 1.6 the

notion of F-contraction and fixed point theorems concerning F.contractions.

1.1 Some basic concepts

Throughout the thesis we shali denote by R the set of all real numbers, by R™ the set of all positive
real numbers, by N the set of all positive integers. For a nonempty set X, we shall denote by N(X}
the class of all nonempty subsets of X, by CL{X)} the class of all nonempty closed subsets of X, by

B(X) the class of all non empty bounded subsets of X, by CB(X} the class of all nonempty closed



and bounded subsets of X.
Definitionl.1.1 [39] Let (X,d) be a metric space. A point ¢ € X is said to be a fixed point of
mapping T X — X fx = Tz,
In 1922, Ranach gave the following useful definition of confraction.
Theorem 1.1.2 [16] Let (X,d) be a complete metric space and T : X — X be a contraction
mapping (Le Yo,y € X, d{T=, Ty} < kd{z,y), where k € {0,1)), then T has a unique fixed point.
Definition 1,13 55/ Let T: X — X and o: X x X — [0,+00}. We say. that T is a-admissible if
z,y € X, a{z,y) = 1 implies that of Tz, Ty) > 1.
Pefinition 1.1.4 [54) Let 7: X — X and o, 17 : X x X - [0, 4-00) two functions, We say that T is o-
admissible mapping with respect ton ifr,y € X, afz,y) 2 n{z,y) implies that o(T'z, Ty} 2 (T, Ty).
M n{z, ¥y} = 1, then above Definition reduces to Definition 1.1.3. If a{x,¥) = 1, then 7" is called an
r-subadmissible mapping.
Definition 1.1.5 [28] Let {X,d) be a metric space. Let T X — X and a,7: X X X - [0, +x) be
two functions. We say that T is a ~ n-continuous mapping on (X, d} if for given z € X, and sequence

{z,} with

Tp = T a8 1 — 00, ¥{Tp, Lni1) 2 Wy, Tney) foralln e N= Ty, — Ta.

Definition 1.1.6 [26] Let {X,d) be a metric space, T : X — CL{X) be a given closed-valued
multifunction and @ 1 X x X — [0, +00). We say that 7 is called a,-admissible whenever a{z,y} > 1
implies that o (T, Ty) > 1.

Definition 1.L7 [30] Let T : X ~» CL{X} be a multifunction, a,7 : X x X - [0,-+o0} be two

functions where 5 is bounded. We say that T is a.-admissible mapping with respect to 5 if a{z,y) >



nl{z,y) imples o (T2, Ty} > 5, (Ta, Ty}, v,y € X, where a.(A,B) = inf {a{x,y}:x € A, y € B}
and n,{4,B) =sup {n{z,y):x € A, y € B}.

If g{z,y) = 1 for all o,y € X, then this Definition reduces to Definition 1.1.6. In the case
afw,y) =1 forall 2,y € X, T is called 5, -subadimissible mapping.
Definition 1.1.8 {2] Let (X, d) be a metric space, Let T: X — CL{X)and a: X X X — [0, +00} be
two functions, We say that T is a-continuous multivained mapping on {CL{X), H) if for given x € X,
and sequence {x, } with NIZi::Pmd(xn,:z) =0, a{Tn, Tney) = 1foralln € N mu ﬂiim (Tzp, Tz) = 0.

Theorem 1.1.9 [22] Let (X, d) be a metric space and T : X — X be a self mapping. Assume that
d(Tz, Ty) < d{x,y), holds for all z,y € X withz # y.

Then T has a unique fixed point in X
Definition 1.1.10 (8] Let X be a non-empty set, T be a self- mappingon X, and o, 8 : X — [0, 00)

be two mappings. We say that T is a cyclic (e, S)-admissible mapping if
ze€X, a{z) 21 =m 3T} >1,

and

zeX, Bz} zl=a{Tz) =1,

1.2 Hausdorff metric

Hausdorff metric is a measure of the resemblance of two sets {of geometric points). Let {X,d) be
a metric space. For # € X and A, B C X, we denote p{A,B) = supD{z, B) and D(z, A} =
red

inf {d{z,y) : v € A}, Let H be the Hausdorfl metric induced by the metric d on X, that is

H(A, B) = max{p(4,B), p(B,A)}, for 4,B ¢ CB(X).



A point z € X is said to be & fixed point of mapping T: X — CB{X)ifr € Tz.
Definition 1.2.1 [47] A mapping 7" : X — CB(X) i5 called a muitivalued contraction mapping if

there exists a awmber &k € (0,1} such that
H(Tz,Ty) < kd(z,y), z,y€ X,

Theorem 1.2.2 [47] Let {X,d} be a complete metric space and suppose T : X s CB(X) be a
multivalued contraction mapping. Then T has a fixed point.
Definition 1.2.8 [47] A metric space (X, d) is called a e-chainable metric space for some ¢ > 0 if

given z,y € X, there is n € N and a sequence (z;);.o such that
Ty =2, Tp =y and d{z-1,2) <e fori=12,...,n

We shall require the following well known facts due to definition of H.
Lemma 1.2.4 47] Let 4, B ¢ CB({X) with a € A. If ¢ > 0 then there exists an element b ¢ B s’a.zch
that d{e,b) < H{A, B)Y 4«
Lemma 1.2.5 [6] Let {A,} be a sequence in CB(X) and 1,aEﬂzf?m}:j'(flﬂ,A) = 0for Ae CB{X) Y
Ty & Apand nii"{*nm (£, 2) =0, then ¢ € A,

One example of a metric on CB{X) which is metrically equivalent to the Hausdorff metric H i5

the metric H+, Which was introduced in [36]. The metric H* is defined by setting
H*(AB) = ZIE (oA B) +p(B, 4)), for A, B € CB(X).

Definition 1.2.6 [37] Let {X,d) be a metric space. A multivalued mapping 7 : X — CB(X) is

called H*- type multivalued weak contractive if



(1) there exasts k € (0,1} such that

H* (T2, Ty) < kmax {d (z,v),d(x, Tz}, d(y,Ty), d(z.Ty) +d(y,T%) }

2

for all z,y ¢ X,

(2) if for every z in X, y in Tz, € > 0, there exists z in Ty such that
dly, 2) < HH{Ty, Tz) +¢.

Theorem 1.2.7 [37] Let (X.d} be a complete metric space and T : X — CB(X) an H'-type

madtivalzed weak contractive mapping. Then 1" has a fixed point.

1.3 Metric transform

Blumenthal [12],113] introduced the concept of metric transforms.

Definition 1.3.1 Astrictly increasing concave function ¢ : [0, 00) — R for which ¢{0) = 0 is called &
metric transform.

Remark [12] If (X, d) is a metric space and if p{x,y) = ¢(d{z,y)) for each z,y € X, where ¢ I8 a
metric transform, then (X, p) is also a metric space.

Definition 1.3.2 47} A mapping T : X — CB(X) is said to be an {¢, k}-uniform local multivalued

contraction{where € > 0 and k ¢ (0,1}) if for
z,y € X, dlx,y) < e == H{Tz, Ty} € kd(z,y).

Recently Kirk et al. [5] proved some remarks which was based on the idea of a metric transform and

extended Nadier's theorem as follows.



Theorem 1.3.3 [5] Let (X, d) be & metric space and T : X — CB(X). Suppose there exists a metric
transform ¢ on X and & € {0,1) such thaf the following conditions hold:
a} for each 2,y € X,

H{H{Tx, Ty)) < kd(z,y),

b} there exists ¢ € {0,1) such that for ¢ > 0 sufficiently smali,
kt < plet).

Then for € > § sufficiently small, 7" is an {¢, ¢}-uniform local multivalued contraction on (X, d).
Theorem 1.3.4 [5] Let (X, d) be a complete and connected metric space, If 7" : X — CB(X) is an

(e, k}-uniform local multivalued contraction, then T has a fixed poins.

1.4 Metric spaces endowed with a graph

Consider a directed graph ( such that the set of its vertices coincides with X {i.e, V(G) = X} and the
set of its edge E{G) = {{z,y} € X x X,z + y} .We assume that & has no parallel edge and weighted
graph by assigning to each edge the distance between the vertices. For details about definitions in
graph theory, see{{211}. We can identify G as {V(G), E(G)). G denotes the conversion of & graph
¢, the graph obtained from G by reversing the direction of iis edges. 5 denctes tﬁe undirected graph
obtained from G by ignoring the direction of edge of . We consider G as a directed graph for which

the set of its edges is symmetric, thus we have
E(G) = B(G)UE(G™).

Definition 1.4.1 A subgraph of a graph G is a graph H such that V(H) ¢ V(G) and E(H} ¢ E(G)

and for any edge (z,y) € E{H}, z,y € V(H). The number of edge in G constituting the path is called



the length of the path.
Definition 1.4.2 A graph G is connected ¥ there is a path between any two vertices of G, If a
graph (7 is not connected, then it is called disconnected. Moreover, (& is weakly connected if g’ is
connected. Assume that G is such that E(G) is symmetric and z is a vertex in G, then the subgraph
G consisting of all edges and vertices, which are contained in some path in G beginning at z, is called
the component of & containing . In this case the equivalence class (2] defined on V{G) by the rule
R{uRv if there is a path from u to v} s such that V{(G,) = [z],.
Definition 1.4.3 Let z and y be vertices in a graph . A path in & from z to y of length
n{n € NU{0}) is a sequence (z;);., of n + 1 vertices such that we = =, 7, = y and (xi-1, %) € E{(G)
fori=14,2,..,n

Jachyrski proved the following well known Banach contraction principle for graphs.
Theorem 1.4.4 [31] We say that a mapping T : X — X is a Banach G-contraction or simply

G-contraction H T preserves edges of G, ie.,
vz .,y € X((z,y) € E(G) = (T(2), T(y)) € B(G))
and T decreases weights of edges of & in the following way:
Ik € (0,1),Vz .y € X{{z,¥) € E(G) = d(T(x), T(¥)) < kd{z,y)).

Definition 1.4,5 [31] A mapping 7' : X — X is called G-continuous, if given € X and sequence

{z}.

Py ~> wasn — 00 and (Tp, Tntea) € E(G)or alln € N imply Tz, — To.

Property A [31]: For any sequence ()}, oy 0 X, if 2, — 2 and {2n, 2ns1) € E(G) for n € N, then

(2n, ) € E(G).



Property B [32]: For any sequence (2n), o in X, if 2, — « and (n, Zn41) € E(G) for n € N, then
there is a subsequence (x ), .y With {zs,,7) € E(G} for n e N,

Beg et al. [14],[15] obtained sufficient condition: for the existence of a fixed point of a multivalued
graph contraction mapping and common fixed points for muitivalued graph contractive mappings in
meiric spaces endowed with a graph .

Definition 1.4.6 [14] The mapping T : X — CB(X} is said to be a graph contraction(G-contraction)

if there exists a &k € (0, 1} such that
H{Tz,Ty) € kd{z,y) for all {z,y) € E{(G)},
and f u € Tz and v € Ty are such that
d{u, v} < kd{z,y}+a foreacha >0

then {u,v) € E{G).
Theorem 1.4.7 [14] Let {X, d} be a complete metric space and suppose that the triple {X,d, G) has
the property A. Let T': X — X be a G-contraction and Xy = {z € X : {z, T2} € E{G}}. Then the
following statements hold:

Ifor anv z &€ X, T} {1:}5 has & fixed point,

2.f X ot § and @ is weakly connected, then 7" has a fixed point,

3 X7 e U {[m}é tr & X*;‘}, then? | X’ has a fixed point,

43 T C E(G) then T has a fixed point,

5. Fie (T) @ if and only if Xo 5 8.

10



1.5 Generalized metric space

Definition 1.5.1 [18] Let X be a non-empty set and d : X x X — {0, 00) be & mapping such that
for all z, ¥ ¢ X and all distinet points u,v € X, each of them different from = and y, one has
() d{zy) =0 ey,
(i) d{z,y) = d{y,7),
(i) d{z,y) < d(z,u) +dl{u,v) +d{v,y}.

Then {X,d} is called a generalized metric space{or for short g.m.s}.
Definition 1.5.2 Let {X,d) be a g.m.s, {z,} be a sequence in X and z ¢ X, we say that {z,} is
convergent to z if and only if d (zn, ) — 0 as n — co. We denote this by z, ~ =,
Definition 1.5.3 Let {X,d) be a g.m.s and {z,} be a sequence in X. We say that {z,} is Cauchy
sequence i and only i d{2n, Ty ) = 0 85 1, M~ 00,
Definition 1.5.4 Let {X,d) be a g.m.s. We say that (X, d) is complete if and only if every Cauchy
sequence in X converges to some element in X.
Lemma 1.5.5 {3] Let { X, d) be ag.m.s and {z, } be a Cauchy sequence in (X, d} such that d (z,,, &}
0 as n — oc for some z € X. Then d{zy,y) — d{z,¥} a8 n — oo for all y € X. In particular,
{,} does not converge to y if ¥ # =,
Lemma 1.5.6 {35] Let (X,d) be a gm.s and {z,} be a Cauchy sequence in {X,d} and z,y € X,
Suppose that there exists a positive integer N such that
(i} @ & T for all m,m > N
(i1} @, and z are distinct points in X for ali n > N;
{iil} m, and y are distinct points in X for all n > N;
{iv) n{irz?c.’cd(zﬂ,,x) s ﬂhj{iod(:::m'y).

Then we have v = y.

11



We denote by © the set of functions #: (0, o0) — {1, 00} satisfying the following conditions:
{1} § is non-decreasing,
{©2) for each sequence {t,} C (8,00}, n{zinmﬁ(tﬂ) = 1 if and only if n{t}?wtn =
(03} there exists r € {0,1) and £ € (0, oo} such that ;Eﬁ;}ﬂ?‘"ﬂﬂ w £,
Theorem 1.5.7 [33] Let {X,d) be a complete g.m.s and 771 X — X be a given mapping. Suppose

that there exist § € © and k € (0,1) such that
oy € X, d{Ta,Ty)# 0 == 6{d{Tz,Ty)) <[0(d(z,y))]".

Then T has a unique fixed point.
Example 1.5.8 [33] The following functions @ : (0,00} — (1, 0¢) are elements of ©
(1) 6(t) = eVt
(2) 6(2) = eV,
(3)6(t) =2~ Zarctan (%), O<y< 1, >0
Theorem 1.5.9 [34] Let (X, d) be a complete g.m.s and T : X - X be a given mapping. Suppose

that there exist § ¢ © is continucus and % € {0, 1} such that
zy € X, d{Te,Ty)#0==6{d(Tz,Ty)) <0 (M(z,9)]",

where

Mz, y) = mm{d(may)ed(:B?Tx} >d(y!Ty)} .

Then T has a unique fixed point.

12



1.6 F-contractions

Definition 1.6.1 [61] Let (X,d) be a metric space. A mapping T : X — X is said to be an

Fegontraction if there exists v > ( such that
Ve,y € X, d(Tz,Ty) > 0= v+ F (d(Tw,Ty}) < Fld{z,v}}, (1.1)

where F': R -3 R is a mapping satisfying the following conditions:
(F1) F is strictly increasing, ie. for all 2,y € R* such that & <y, F(z} < F(y);
{F2} For each sequence {a, }22, of positive mumbers, njfigo ap, == 0 if and oniy i ﬂl}g’zo Flap) = —o0;
(F8) There exists & € (0, 1) such that almig]zd?akf‘(a) =

‘We denote by F, the set of all functions satisfying the conditions {F1)-{F3).
Example 1.6.2 [61] Let ¥ : R* — R be given by the formula F(a) = Inc. It is clear that F satisfied
(F1)-(¥3) ((F3) for any & € (0,1). Each mapping 7 : X — X satisfying {1.1) is an F.contraction such

that

d(Ta, Ty} S e "dlz,y), forall z,y € X, Ta # Ty

It is clear that for 2,y € X such that Tz = Ty the inequality d{T'z, Ty} < ¢~7d(z, y), also holds, l.e.
T is a Banach contraction,

Example 1.6.3 [61] If F(r) = Inr+r, r > 0 then F satisfies (F1)-(F3) and the condition (1.1) is of
the form

%@eﬁﬁ’w}“d(%w <e T, forall ey e X, Tu#Ty.
Y

Remark 1.6.4 [61] From (F1} and {1.1) it is easy to conclude that every F-contraction is necessarily
eontinuous.

Theorem 1.6.5 [61] Let (X, d) be a complete metric space and let 7 : X — X be an F- contraction.

13



Then 7" has a unique fixed point z¥ € X and for every # € X the sequence {T"&}nen converges to
.

Definition 1.6.6 [19] Let {X, d) be a metric space. & mapping T : X — X is called an F-contraction

of Hardy-Rogers-type if there exists F € F and 7 > 0 such that
T4 F{d(Tz, Ty)) < Fed(z,9) + Bd{x, Tz} + yd (v, Ty) + éd (z, Ty} + Ld(y, Tz}), (1.2)

forall z,y ¢ X with d{Tz, Ty} > 0, where 0, 8,7, 0, L >0, 6 + B4+ v+ 28 = ] and v # 1.
Theorem 1.6.7 [19] Let (X, d} be a complete metric space and let 7" : X —s X. Assume there exists

F e F and 7 > 0 such that T is an F-contraction of Hardy-Bogers-type, that is
T+ F{d(Te, Ty)) £ Frd(z,y) + Bd(z,Tz) + vd (y, Ty} + 5d (2, Ty) + Ld{y, T'z)),

for all x, ¢y &€ X with d{Tz,Ty) > 0, where £, 8,4, 6, L 28, 6+ 8+ v+ 20 =1and v # 1. Then T
has a fixed point, Moreover, if K+ & -+ L < 1, then the fixed point of T' is unique.
Theorem 1.6.8 [56] Let (X, d} be a complete metric space and let T : X — CB(X). Assume there

exists F ¢ F and v > 0 such that

2r 4+ F{H(Tz, Ty < F ( , (1.3}

wd(z,y) + Bd(z, Tz} +~diy, Ty) +
éd (=, Ty} + Ld(y, Tx)

for all z,y € X with Tx % Ty, where 8, 5,7,6, L 20 s+ 8 +v+20=1and v5 1. Then T has a
fixed point.

Hugsain et al. [26] introduced a family of functions as follows.

Let Ao denotes the set of all functions G : R*4 — R satisfying:
(G} for all £, 80, 8a,ts € RY with tyégfaty = 0 there exists v > 0 such that

G{tl » t?s zﬁs té) s T
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Example 1.6.9 [25] If Gt1,ty,ta, by} = rev™inititatadel where v € RY and 7 > 0, then G € Ag.
Definition 1.6.10 [25] Let (X, d) be a metric space and T be a self mapping on X. Alsc suppose
that o, X x X ~s [0, +o0) be two functions. We say that T is a-n-G'F.contraction if for 2,y € X,

with 9{z, Tz} £ a{z,y) and d(T'z, Ty} > 0 we have
Gld(z, Tw), dly, Ty), d(z, Ty), d(y, Tz)) + F (d(T=z, Ty)) < F{d(x,y)), (1.4)

where G ¢ Ag and F ¢ F.
On the other hand Secelean [57] proved the following lemma.
Lemma 1.6.11 [57] Let F : RT — R be an increasing map and {a,}ro.; be a sequence of positive
real numbers. Then the following assertions hold:
{a} if nEﬁmF {ap) = —oo then ni{rzman w3
(by if inf F' = o0 and nigzman == {3, then n%%ﬂ:lmF {an} = —oc.
By proving Lemma 1.6.11, Secelean [57] showed that the condition {F2) in Definition 1.6.1 can be
replaced by an equivalent but a more simple condition,
(F2) inf I = 00
or, also, by
(F'2'") there exists a sequence {ay, }oo , of positive real numbers such that n.l}ﬁlm (o) = —o0,
Recently Piri {50] replaced the following condition instead of the condition (#3) in Defintion 1.6.1.
(£37) F is continuous on ({3, o0} .
We denote by Az the set of all functions satisfying the conditions (F1), (F2') and (F3').
For p > 1, F(a) = —Fp satisfies in (F1) and (F2) but it does not apply in (F3) while satisfy

conditions (F1}, (F2) and {F3'). Therefore Az ¢ F. Again, fora > 1,t € (0,2}, F{a) = Wﬁ%}“}?’

where [a] denotes the integral part of o, satisfies the condition (F1} and (F2} but it does not satisfy

15



{F3'), while it satisfies the condition (F3) for any k € {1,1). Therefore F ¢ Ax. Also, if we take
Fla)=Ineg, then F € F and F € Ax. Therefore, Ax N F # Q.
Theorem 1.6.12 [50] Let T" be a self-mapping of a complete metric space X into itself. Suppose

F & Ax and there exists v > { such that

Vo, y ¢ X, d(Tz, Ty} > 0= v+ F{d{Tz, Ty)} < Fdz,y)}.

Then T" has a unique fixed point 2* € X and for every z € X the sequence {T"=}32,; converges to

"

r.
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Chapter 2

Fixed point in metric spaces with a

graph

Jachymski et al. [31] established a result which generalized the Banach contraction principie for
graphs, Beg et al. [14],]15] extended results of Jachymski et al. [31] by defining G-contraction for
multi-valued mappings, Kirk et al. [5] proved some remarks which was based on the idea of a metric
transform and exiended Nadler’s theorem.

In this chapter, we extend some resuits of Kirk et al.[5] on a metric space endowed with a graph.

2.1 Fixed point results on a metric space with a graph

1n this section we introduce the notion of an uniform local muitivalued graph contractions on a metric
space endowed with a directed graph . we also prove some new fixed point theorems concerning
metric transforms for such contractions.
We start this section with the definition of an {e, k)-uniform local multivalued graph contraction.
Definition 2.1.1 Let (X, d) be a metric space with a graph G, a mapping T : X — CB(X) is

said to be an (g k)-uniform local muitivalued graph contraction {where ¢ > 0 and &k € {0,1)) i for
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every (z,) € B(G),

d{z,y} < € =2> H(Tz,Ty) < kd(z,y),

and f v € Tz and v € Ty are such that
d{u,v) < kd{z, ) + o for each a > 0.

Then (u,v} & E (G},

Theorem 2.1.2 Let {X, d} be a complete metric space with graph G such that ( is weskly connected,
the triple (X, d, &) has the property 4 and T : X —~ CB(X} be an (¢, k)-uniform local multivalued
graph contraction on {X,d) and Xp = {z € X : {2, T} € E{@) } % & Then T bas fixed point.
Proof. Let 9 € Xr, then there exists @y € T'zp such that {@g,2y) € E{G}. Since T is an
(e, k)—uniform local multivalued graph contraction on (X, d), so there exists ¢ > 0, & € (0,1} and for
d{zg, 1y) < ¢, we have

H{(Tzg, T21) € kd(zo,x1).

Using Lemma 1.2.4, we have 2o € T'zy such that

d(-‘f?z'&“z). £ H(T2e,Tz:)+k

& kdlzo,z)+ k.

Again because of T" is an (e, k)—uniform local multivalued graph contraction, {x1,z2) € E(G),
d{xy, 2} < €, we have

H(Tx1 . Tﬂ?g) Q kd(x; R .-"'3‘2).
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Lemma 1.2.4 gives the existence of an o3 € T'zg such that,

dlzg,23) < H(Tx1,Tm2)+k2

< kd{zy, 1) + k2

A

kzd(wo, 1)+ 2k,

Continuing in this manner, we have 2,1 € T2, such that (2n, Tne1) € B{G), d{&n, Tny1) <€ and

d(xﬂamn—f—l) < k™d ($0,$1> + nk™.

Now for m > n,

d(mm Tm) < dizp, mn—i—!) +d (xn«iwl - NS I SN +d (xmmzs T}
-} ) w1 )
< d(${;,:61} Z £+ Z ikt
EE ) fe=rp

Thus {z,} is a Cauchy sequence in X and X is complete, so {z,} converges to a point z in X. Now,

we prove ¢ is fixed point of 7" By using property 4, we deduce
(Zn,2) € BE{G) forne N,

Now since T is anfe, k)-uniform local multivalued graph contraction, for n € N, d (2., 7) < ¢, we
have,

H{Te,, T2) € kdlz,, ).

Since zp4q € Tz, and x,, — 2. Therefore by Lemma 1.2.5, z € Tr. Next as {x,,2) € E{(G) for
n € N, G is weakly connected, we infer that (2,21, T2, ., Zn, 2} isapathin Gand so 2 € X = [ma]a.

Now we present stmple condition in terms of metric transforms which implies that a mapping
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T X — CB(X) is an (¢, k}-uniform local multivalued graph contraction on {X,d}. Notice that if ¢
is taken to be the identity mapping, the following result reduces to the definition of an {e, k)}-uniform
local multivalued graph contraction.

Theorem 2.1.3 Let {X,d) be a metric space and endowed with graph G and T': X —s CB(X). Set
Xpw {z € X {x,Tx) € E(G)} # 0. Suppose there exists a metric transform ¢ on X and & € {0,1)
such that the following conditions hold:

a) for each (z,y} € E(G),

HH(Tz, Ty)) < kd(z,1),

b) there exists ¢ € {0, 1) such that for £ > 0 sufficiently small,

ki < ¢(ct),

ciforue¢Trandve Ty

d(u, v} < kd(z,y) + o foreach a> 0.

Then (v, v} € E{(G}.
Then, for ¢ > 0 sufficiently small, 7" is an (e, ¢}-uniform jocal multivalued graph contraction on (X ,d).

Proof. Let z € X, then there exists ¥ € Tz such that {z,y) € F(G), from {a) we observe that

¢(H(Tz,Ty)) < kd(z,y).

Suppose there exists ¢ € {0,1}, such that for £ sufficiently small,we have form ()

kt < ¢ (et).
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Then for d{x,y) sufficiently small,

Sinee ¢ is strictly increasing. This implies that

H{(Tz,Ty) € cd(z, y).

Thus from condition {c} and previous inequality, for € > 0 sufficiently small, T is an (e, ¢}-uniform
local multivalued graph contraction on (X, d}.

Theorem 2.1.4 If, in addition to the assumptions of theocrem 2.1.3, X is complete, (7 is weakly
connected and the triple (X, d, G} has the property A, then T has a fixed point.

Example 2.1.5 Consider X = {0,1,1} = V(G) to be a subset of R with the usual metric defined as
d(z,y) = |z — y}, so that (X,d} is a complete metric space and E(G) = {(1,4),(0, %)} is such that

ACE(G)and let T X~ CB(X) defined as

{0} if £=0
T(w)=< {0.3} if o=
{$} if =]

Also consider a metric transform

£

Since 1 € X is such that there exists 1 € 7'{1) with (1,3) € E(G), then Xy # 0. We see that for

each (x,y) € E(G), ¢ (H (Tz,Ty)) < kd{z,y) . Indeed, if (z,y) = (1, {), we have

oo (2) = ({3} )
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This tmplies

& (H (Tu)j (%))) - (“12*) = 0.66d (1, %) < kd (1, %) . where k = 0.66.

Next if (x,y) = (0,3), we have

s () - u2)-

D]

This implies

" (H (’.Z“’(U), T (;))) b (%) = 0.66d (0, %) < kd (o, é) . where k = 0.66.

Thus the condition (o) is satisfied. Let & € {0,1) and select ¢ € (k,1). Then

5 . et c ek

Since ¢ > k, then condition (b} is also satisfied. It is easy to check that condition {c} is satisfied.
Therefore all assumptions of Theorem 2.1.4 are satisfied and clearly 0 and 1 are fixed point of 7.
Remark 2.1.6 If we assume G is such that E(G) = X x X, then clearly Theorem 2.1.4 gives Kirk’s
result [5]{ Theorem 1.3.4).

‘We now introduce the concept of H¥-type multivalued weak graph contraction mappings in metric
space endowed with a graph G,
Definition 2.1.7 Let {X,d} be a mefric space with graph G. A multivalued mapping I' : X —
CB(X}) is called H™-type multivalued weak graph contraction if

{1} there exists k £ {0,1) such that

HY(Tz,Ty) € kmax {d(x, ), d (@, Tz),d{y, Ty), dz,Ty) ;- d(y,Tx)}
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for all (z,y) € E{(G),

{2) if for every z in X, y in T'z, ¢ > 0 there exists z in Ty such that

d(y.z) < H* (Ty,Tz) +¢, then (y,7) € E(G).

Theorem 2.1.8 Let (X, d) be a complete metric space with graph G such that G is weakly connected,
the triple {X, d, G} has the property 4 and 7' : X — CB{X) be an Ht-type multivalued weak graph

contraction mapping,

Xy ={z € X :{z,u) € E(G) for some u € Tz} &

Then T has a fixed point.
Proof. Let € > ( be given, let 5 € Xr. Fix an cjement x; € Ty such that {29, 2:) € E(G). Since

T is H*-type multivalued weak graph contraction, we have

d{xp, T'ry) +d(iﬂ1;'f&"0)}

H* Ty, Tay) € kmax {d {xg,21),d (20, T0)  d {21, T21), 5

We can select x4 € T'r; such that

dlay.zy) £ H*{Tm{;,ng)+e

d{xo, Txs) “i"d(ﬂ?l,'fxe}} +e

<  kmax {d(xg, x1},8 (@, Txo),d {zy, Tw1}, 5

= kmax {d(ﬁﬂo,&?z}sd(ze,xz),d(xz,xz),m%@“m} +€

(I{J!xl) +d(xiax2)} e

4
< k max{d{:r:g,:m},d(x{;,x;),d(m;,xz), 5

= kmax{d{zg, 1), d{m, 23)} +e
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If max {d (zg, 21) ,d (1, 22)} = d (21, 23}, then it is a contradiction. Therefore

max {d (zg, 21) ,d{®1,22)} = d{zo, 21},

which implies,

d{x1,22) < kd{zg,71) + &

This implies {xy,x2) € E{G), we have

d{z1,Twg) + d{z2, Tx) }

H%{T,’EhTﬁlg) <  kmax {d{x;,:cg) ,d(x;,Txl},d{:zg,Txg) N 5

s kd (X, X} .
Similarly there exists 23 € Ty such that

d{zg,zs) € HY{Tx,Tag)+e

< kdlmy,zy)+e

A

k*d (g, 21) + €

Continuing in this way, we have .41 € Tz, such that (2, Z.41) € E(G),
d{xn, Tna1) € k%d(xg, 24} +€ forallnelN,

Set €= (k% — k™Yd(zg, ©1). Then from previous inequality it follows that

d(ﬂ"m Znti) € kﬁd(xesxi} 4+ {k% " kn)d(xﬂv z1}

= k¥d(ze,21).
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Which implies

It is clear that {z,} is bounded

d{ﬁ:o, :En)

A &p, Tpi1) € k% d(zg, 1)

. In deed, for any n € N, we have

8 Zd{%-’ﬂiu)
g}
< (1+k% + & it +...+k%) d{zo, 1)

< (1 TS S s ) d(zo, 71)

3
N — £ .
T {g, 21} < 00

Thass {@y} is & Cauchy sequence in X gince X is complete, there exists £ € X such that im 2, = 2.

Now we prove that z is a fixe

TR X

d point of the mapping 7. Assume that d{z,Tx} > 0. By using

the property 4 and the fact of T being a H'-iype multivalued weak graph contraction, we have

(n,2) € E(G),

1 .
5 {olTen, T2) + p(Tw Tan)}

it follows that

: Jim

= HM Tz, Tz)

< kmax {d(xmx}:d(mmen)1d(333T$)> )

d{zn, Tz) +d(z, xm-ﬂ}
2 1

d{zn, Tx)+d{z, T} }

A

k max {dwmm),d(%xm),d(oc,rx),

nf {p(Tey, T2} + p{Tx, Tw,)} < kd{z,Tx}.

Since niimm inf d{zy41.2) = 0 exists, and

(o, Ta) o= % {(dlz, T2y +d(Tz,2)) < :1?- (p(Tan, Ty + p{Tz,Txn)) + d{@niy, z),
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it follows that

dlx, Tz} < é lim_iof (p(Tzn, T'z) + p{Tz, Txy)) +,1§f.?m inf d{zpr, )

€ kd{z,Tz}+ lim d{zpe1,2) = kd(2,Tz) < d{e, Tz},

a contradiction. This implies that d(z,T'z) = 0 and T'z is closed. Hence © € T'z. Next as {z,,2) €
E{G) for n € N, (¢ is weakly connected, we infer that {@s, %1, 22, ..., En, T} is & path in & and so

reX = Exg}(«;.
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Chapter 3

Hardy-Rogers-Type fixed point
theorems for generalized

F-contractions

In 2012, Wardowski [61] introduced a new type of contraction called F-contraction and prove a new
fixed point theorem concerning Flcontraction, Piri ef al. [50] described a large class of functions by
replacing condition {F3') instead of the condition {F3) in: the definition of F-contraction introduced
by Wardowski [61]. Cosentino et al. {19] presented some fixed point results for F-contraction of
Hardy-Rogers-type for single-valued mappings on complete metric spaces. Sgroi et al. [56] established
fixed point theorems for multi-valued F.contractions of Hardy-Rogers-type for multi-valued mappings
on complete metric spaces. More recently Hussain et. al[25], introduced a-7-GF-contractions and
obtained fixed point results in metric spaces and partially ordered metric spaces. They also established
Suzuki type results for such 7 F-contractions.

The aim of this chapter is to extend the concept of F-contraction into an o-n-GF.contraction
of Hardy-Rogers-type for single-valued, muiti-valued mappings. We also establish some new Hardy-

Rogers-Type fixed point results for a-r-GF-contraction, multi-valued a-np-GF-contraction in complete
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meiric spaces.

3.1 Hardy-Rogers-Type fixed point results for o~GF~Contractions

In this section we establish fixed point theorems for a.-GF-contraction of Hardy-Rogers-type for
single-valued mappings in a complete metric space. We start this section with the definiticn of a.n-
(: F-contraction of Hardy-Rogers-type.

Definition 3.1.1 Let {X,d) be a metric space and T be a self mapping on X, Also suppose that
@, X XX — |3, +00) be two functions. We say that T' is an o-p-GF-contraction of Hardy-Rogers-

type if for z,7 € X, with n{z, Tz} < afz,y) and (T, Ty) > 0, we have

G {d{z,Tx),d(y, Ty),d(x, Ty}, d(y. Tx)} + F (d(Tz,Ty}} (3.1)

< Fwd(z,y)+ 8d{x,Tx) +vd(y,Ty) +8d(z, Ty} + Ld(y,Tz)},

where G € Ap, F e Ap, 0, 8,78,L20, 6+ 8 +v+28=1andvys£ 1,
Theorem 3.1.2: Let {X,d) be a complete metric space. Let T be a self mapping satisfying the
following assertions:

(1} T is an a~admissible mapping with respect to 7

(1) 1" is an a-n-GF-contraction of Hardy-Rogers-type;

(i1} there exists zg € X such that afze, Txo} > n{xe, Te);

{v) T is o ~ m~continuous.

Then T has a fixed point in X. Moreover, T' has a unique fixed point when oz, ¥) > n{z,z} for
all o,y e Fio(Thland v+ 6+ L < 1.
proof. Let zy € X, such that a(zp, Txg) 2 nlwe, Tze). For mp € X, we construct a sequence

{&n}oeq such that z; = Tag, 2y = Tz; = T2zq. Continuing this process, Tpay = T2, = T g, for
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all n € N. Now since, 7" is an a-admissible mapping with respect to 5 then ofxg, x1) = afwg, Tz} >

nlzg, Txg) = 1{zy, 21}. By continuing in this process we have,
MW net, TCpt) = Y Tpw1, ) € {Bpet1, ), foraline N, (3.2

if there exists ng € N such that d{x,,, T@n,) = 0, then x,,, is fixed point of T' and, there is nothing

to prove. S¢, we assume that
Lp o Tpay Or d{Tan. 5, Ty} >0, forallne N, (3.3)

Since, T" is an oG Fecontraction of Hardy-Rogers-type, we have

G d(xn ----- 1eTxnw1)ad(xneTwn)a
d{ena1, T2y}, d{2n, T0n }

) "}“F{d{TmnmlaTz:n)}

< F wd (Tpm1,2n) + Bd {_Inw}sTxnw--I) + 44 {(Zn, Tan}+
- $d{@pt, Tap) + Ld{z,, Tag.s)

which implies

5} G(d(xnwz,an),d(dlﬂ,,$n+1),d($nm1,$n+.1),0) {34)

b (d(TfEn—w}. ' Tmn))

c kRl (2pes, Zn )4 B (Znet, Tone1} + 7 {0, Ton) +
6 {2y, Tan) + Ld (T, TTn1) '

Now sinee, d{@,,.y. Ty ).8{Cn, Tne1 )-8 Tp1, Tney .0 =0, s0 from {G)} there exists 7 > 0 such that,

G(d(-’l‘nuz, xn); d(xm 37%4—2)1 {1, xn«f—l)a G) = 7,
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From (3.4}, we deduce that

T+ F{d(Tope1,Ton))
< F &d(xn»hxn) "‘F“.Sd(:gn«v}aTxnw}) "i'"'yd{mmen) +
B 8d (21, Tn) + Ld(zn, TT0.1)

This implies

Fd{Tzy 1,T2,))

Ed xnwisxn +i9d (xnuZaT-ﬂn—-vl) "1"')’55(5’373} T:Gn)'i'“ -
d(@net, Tan} + Ld{zn, T2n..1}

hd(d’.‘ﬂu;,mn +:8d(£n 1s$n) +’¥d($m$n+z)+ o
(;d (mn 1>$n+l) -+ Ld (xns m\n)

i
/"‘""""“‘\/*‘m\/"m\

xn—wiaxﬂ}“{“ﬁd{xnmiaﬂ?n)“'E"Yd{xna-amﬂ)"}" o
éd (mﬂwlsxﬂ) 4 éd (mng xn+1)

= F((r+8+8)d{zn1.%n) + (v +8)d{xn, Tns1)) ~ 7
and hence
Fld{Top.1.Tap)) < F{{k+ B8+ 8)d(2p1,20) + {7+ 8) d(Zn, Zn+1}) .
Since F is strictly increasing, we get
(T Tn) < {6+ 0+ 8)d{tper,zn) + (v + 8 d{2n, Tni1) -
This bmplies

(l—y -8 d{Tenuy, Ten) < {4+ 4+ 8 d{xn_1,2n), forallneN,
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From £+ 8+ v+ 26 = 1 and v # 1, we deduce that 1 —v — 4§ > 0 and so

ATy, Ten) < Md (@nety @n) = d(Tno1,@n), for all n € N,
Consequently
F (d« (Txnei. Txn)) < F{d{zn-1, 33,—;)) - 7. (3'5)

Continuing this process, we get

F{d{Ten 1, T2n}))

A

Fd{zn, Tp))~T
o F(d(Txnmz}Tznml)) -
< F(d(xnw2s xnwl)) -2

= F{d(Trn-5,T2n2)} ~ 27

AN

Fd(zn-3,Tn-2)) = 37

A

F (d(:rg,:‘ﬂl)} a1 % 2

This implies that

FAd(Tapey, Tey)) < F{d{zg, 1)) — nT. (3.6)

And so lim F{d{Taguy,Ta,)) = —oo, which together with (F2'} and Lemma 1.6.11 gives that
im d{z,, Tz,) = 0. (3.7
T

Now , we claim that {z,},., is a Cauchy sequence. Arguing by contradiction, we have that there
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exists € > ( and sequence {p(n)},~., and {g(n)};-, of natural numbers such that

pln) > gln) > n, HZpny: Tomy} = € HTpmy—1,Topy) < 6 foralin e N

S0, we have

€ S Hpm) Zon)) S UTp(nys Tp(my—1) + Hp(n)-1, Ty(n))
< d(xp{nhizp(n)w-z) 4+ €

A Zptnyets T Tp(n)—1) + €

i

Letting n —» oo in {3.9) and using {3.7), we obtain

i d(20, Zom)) = €
Alsa, from {3.7) there exists a natural number n; € N such that
d(zpny Tpimy) < 5§ ond gy, T2ytoy) < =, foralln zm.
Next, we claim that
AT wpinys Ty} = HEpinyas Tytrya1) > 6, for all n 2 ny.

Arguing by contradiction, there exists m 2 ny such that

d<xp(m}«§—1 1 Lglm)+3 ) = 0.
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It follows from (3.8}, (3.11) and (3.13) that

¢ < d(@ptmys Tgimy) S A &Lpimys Tpmy+1) + Upimy+1, Tg(m))

tA

d(ﬁ?p(m), Tpem)wi) + d(xp{m}+1>$q{m)+1) + A Lg(m)+11 Tg(m))
- d{:cp{m},T:Ep{m}) + d(:cp(m}+1, $q(m}+1) + d(zq{m}»qu{m})

< £+0+€
4 4’

This contradiction establishes the relation (3.12) . Hence, it follows from (3.12) and {3.1) that

e ( 4 {ZTptnys Ty} + & (Tgpnys TBy(my) »
A {Zp(nys TZgmy) + & (Tg(nys TZptny)

< F ( % (Tp(n)s Za(m)) + B (pu) T2ptmy) + ¥4 (2o Ty} + )
8d (2p(n)s Tgmy) + Ld (24(n), T2p(r))

) + F (d (Tzp(ny TZg(ny))

exists 7 > 0 such that,
G(0,d (@4(m), Tq(m)) + & (Tpimys Tem)) + & (Zan) TTp(my)) = 7
Therefore,
7+ Fd {(Txpmy, Tom))) (3.14)

< p| e @emymam) +Bd (@piar, Topmy) + 70 (Zq T2emy) + )
8d (Zptny> Toyemy) + LA (2g(n), Tpny )

By using (F3'), (3.7}, (3.10) and (3.14), we have
T4+ Fle} <F((k4+d+Lie)= Fe).

This contradiction show that [z,}°, is a Cauchy sequence. By completeness of {X,d), {&n}ioy
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converges to some point z in X. Since T is an a-r-continuous and 9{@p..1, 2n) < @{Zn-1,25), for all
n € N, then o,,3 = Tz, -+ Tz as n — oo. That is, z = T'z. Hence z is a fixed point of 7. Let

z,¥ & Fiz {T) where » # y, then from

G{d(x,Tw),d(y, Ty) . d(z,Ty) ,d{y, Tx)) + F (d{Tx, Ty}

A

F(xd(z,y) + Bd{x, Tx) + vd (y, Ty) + 6d (, Ty) + Ld(y, Tz))

i

F{ls +8+Lydlz,y))

we get,

7+ F(d(e,9) S F((s+6+L)d(z9)),

which is a contradiction, if K + 8+ L < 1 and hence ¢ =y,
Theorem 3.1.3 Let {X,d) be a complete metric space. Let T" be a self mapping on X satisfying the
following assertions:

(i} T is an c-admissible mapping with respect to n;

(i1} T is an a-n-GF-contraction of Hardy-Rogers-Type;

(iii} there exists zg € X such that ofzg, Txe) > n{ze, Txo);

{iv) if {@,} Is 2 sequence in X such that o(@n, Tnaq) 2 HEn, Tnt1} With £, — & a8 n — 00 then
either

(Tn, ©) > 9(Tan, Tn) or {T?2q, ) 2 9T 0,, T3x,),

holds for all m ¢ NL
Then 7 has a fixed point in X. Moreover, T" has a unique fixed point when a(z,y) > n{z, ) for

all ;,y & FielTiand v+ 6+ L < L.
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proof. As similar lines of the Theorem 3.1.2, we can conclude that

Ty, Tng1) 2 Hn, $n+1} and Tp — T 88 1~ 00

where Tz, = Tpat. By {iv), either

ATz, ) 2 9T 20, T?2,) of T2 2n, 2) 2 0{T%2,, T2,),

holds for all n € N. This implies

Q($n+1,i‘€) Z n(mn+lamn-+~2) or Q‘(E,ﬁ.g, m} Z T]{In+21 $n+3)'

Then there exists a subsequence {Zn, } of {#,} such that

??{xmc : T"Bﬂk) e n(mnk s xnk»}:}} < a(znk &)

and from {3.1}, we deduce that

G{d{n,, T, ), dx, T3), (T, T2}, d(2, Tn, }) + F (d(Tn,, T2))

< F(xd{(zn,,2) + Bd{Ta,, Tn, ) +¥d (0, T2} + 6d (20, , Te) + Ld(x, Ty, ).

This implies

; d ’ 4+ f5d 1 &0 +
F(d(Tan, Tz)) < F £ (T @) + B (T Ty . (3.15)
vd{z, Tz} + 0d (2, , Tx) + Ld(z,20, 41)
From (F1) we have
d(xnk+IsTx) < (3‘16)

KA (Tpy . T} + »8d(‘7~:nk : mnk"i-l) +yd (@, Lo} + 8d (xn, , Tz} + Ld(2, Ty 41).
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By taking the limit as k — oo in: {3.16), we obtain
d(z, Tz} < (74 8)d(z, Tz} < d{z, Tz}, (3.17)

Which implies d{@, Tz} == 0, thus z is a fixed point of 7", Uniqueness follows similarly as in theorem

3.1.2.
Theorem 3.1.4 Let (X, d} be a complete metric space and T be a continuous selfmapping on X If

for z,y € X with d{z, Tz} < d(x,y) and 4(Tz, Ty) > 0, we have

G(d(z, Tz}, d(y, Ty}, d(z, Ty), d(y, T2)) + F (d(Tz, Ty))

< F{ed{x,y)+ Bd(x,Tx) +vd (3, Ty) + dd (z, Ty) + Ld(y, Tz)),

where G € Ag, F € DAp £,8,786L 20,6+ 84+ v+28 =1, k+8+L <landy#1. ThenT hasa

unique fixed point.

ofz,y) = d{z,y) and n{z,y) =d{z,y) forall z,y € X.

Now, since d{z,y} < d{z,y) for all 2,y € X, so a(z,y} > 5z, y) for all z,y € X. That is, conditions
(1) and (31} of Theorem 3.1.2 hold true. Since T is continuous, so T" is a-n-continuous. Let n{z, T2} <

alz,y) and d(Tz, Ty} > 0, we have d{x, Tx} < dlz,y} with d{Tz, Ty} > G, then

Gld{x, Tz}, d(y, Ty}, d{z, Ty}, dly, Ta)) + F{d(Tz,Ty))
< Fsd(z,y) + Bd{z,Tx) +vd{y,Ty) + 8d (2, Ty} + Ld(y. Tx)).
Fhat is, T is an a-p-GF-contraction of Hardy-Rogers-type. Heace, all conditions of Theorem 3.1.2
satisfied and T has a unigue fixed point,
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Corollary 3.1.5 Let {X,d)} be a complete metric space and T be a continuous selfmapping on X. If

for x,y € X with d{z, Tx) < d{z,y) and (T2, Ty) > 0, we have

7o+ Fd(Tx,Ty)) < F(kd(z,y) -+ Bd{z, Tz} + vd{y, Ty) + 8d (2, Ty) + Ld{y, Tz)),

where v > 0, 8, 8,78, L >0, k4 B+9+2 =1, g+8+L <1, vs5 1 and F &€ Ap. Then T has a
unique fixed point.
Corollary 3.1.6 Let {X,d) be a complete metric space and T be a continious selfmapping on X. If

for z,y € X with d{z, Tz} < d(z,y) and d{T2, Ty} > 0, we have

rev mindleTa) ds Ty).dle T deTOt | B (d(T2, Ty))

< F{sd{z,y) + Bd(z, Ta) + vd (y, Ty} + éd (2, Ty) + Ld(y,Tx)) ,

where 7 >0, 5, 5,7%.0, L, v 2 0, 6+ 84y + 28 =1, 864+ 8+ L <, v 1and F € Ay, Then T has a

unique fixed point.

(X, d) is a complete metric space. Define the mapping 7' : X — X by, T{5} = §; and T(5,) =

Spe1, for all n > land a{x,y) = 1, n{z,y) = %, G{ly,ta, ta,tg) = 7 where 7 = % > §. Since

i ATEALO) = iy Tpmn? o Lol < 1 7 is not Banach contraction.  Clearly
{81, T{S1)} > n{S;,T(51)) and 7 is an a-n-continuous. Let a(Sp, Sn) = 5{Sm, Sp) for all m,n € N,
then T8, T'Ss) » n{1Sm, T8,). That is, 7" is an o-admissible mapping with respect fo 7. On

the other hand taking F{r) = «“-;;5- 7 € AF, we obtain the result that T is an a-n-G F.-contraction

, 6= & and L = 5. To see this, let us consider the

Ll

of Hardy-Rogers-type with & = = 1, y =
following calculation. We conclude the following three cases:

Case 1:
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for every m € N,m > n = 1, we have

T(Sm) =~ T(S1) = |81 ~T(Em)l=[Sm-t =S =2x34+3x 4+ +(m~—1)m,
18m = Syl = 2x3+3x44..+mim+ 1),
1S —T(Sm)l = [Sm = Smt| =m{m+1},
1S ~T(S)| = |91~ 8 =0

Since m > 1 and

~1
2x3+ .. +(m-Dm
< -1
é(2><3»«1~,.‘+m(m+1}}+%m(m+ 1)+
L@x3+. +mm+ 1))+ 5@ x84+ .+ (m—1)m)
We have
7 H
5= 2x3--+-3x4+...+(m»~1)m+{2X3+3X4+"'+(m“1)m}
< i- s +
2 F@2x34 . +mm+1))+imm+ 1)+
HFCx3+. . +mm+ 1)+ 5 X3+ .+ (m—-1)m)
2x34+3x44 .. +(m~1jm]
1
1Ex34 . +mim+ 1))+ im{m+ D+
H2x3+ . +mim+ 1)+ 5@ x3+ .+ n-1)m)

1@x3+ . tmm+ L)) +imm+ D+
H2x3+ . F+mm+ I+ 5 2x34 .+ (m~-1)m)
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So, we get

7 1
-— T{8n) T (8
1
< o= - +
T1Sm = 511+ 1B — T (Sl T £ 18— T (5001 & % 19 — T (801 + 5 151 = T (8]
1 1, 1 1 .7
5 [Sm — 51l + 7 18m ~ T (Spm)} + g 11~ T (S1)] + ' |8 ~ T (S}l + T 1S “T(S’m)f] .
Case 2:
for 1 < m < n, similar to case 1.
Case 3.
for m > n > 1, we have
[T (S} —~T{Sp) = mx{n+D+n+1mH4+2+.. . +{m-1m,
|Sem — Spl = {(n+1{n4+2)+(n+2)(n+3)+...+mim+1),
JSm - T{Sm)J = me “‘Sm-wlj = m(m+ 1):
S —T (S} = [Sn—Sni]=n{n+1},
S~ T{S) = Sm=Saal=nn+1+.4+m{m+1},
Sy —T{8p) m 18y~ Smeal=mm+1}(n+2)+ .+ (m—1)m.
Sincem >n > 1, and
e}
nx{ntlj+n+DnR+2)+ . +m-Om
-1

Hin+ D+ +.+tmim+1))+dmm+ 1)+ in{n+ 1)+
S+ dm-m+ G+ En+2+ .+ m—1)m)

39



Therefore

1
nx{n+ly+(n+n+2+ . +{m-1)m

! +
2

Exn++m+1n+2)+.+(m—1)m]

<. ! +
2 Ha+ D+ +wtmm+ D)+ imm+ D)+ in(n+ 1)+
Hnm+D+ o+ m-Dm)+ L({(n+1D)(r+2)+ .. 4 (m—1)m)

ax(n+1}+n+{n+2)+ .+ {m-1)m]

1
< - +
l Hn+Dn+2)+ . +m{m+ D) +imim+ D+ dn(n+ 1)+ ]
)

Hnm+ D+ +m-Dm)+ 5+ DR+ +..+{m-Um

Hn+Dn+ 2} +mim+1))+ dm{m+ 1)+
Inn+ B+ dmn+D+o+m-~Dmi+S({(r+ )R+ +... +m~1)m) ‘

7 ! + 1T (S} = T (S)]

1

< - ‘s 3 . “4‘
% é’sm """ Sn| + ‘j’; |Sm “T(Smx + 'é’ ’Sn - r(SﬂN "E“ ":g‘é iSm - T(Sn)[ + i% iSﬂ, ‘“—T(Sm){
1 . i e o }. " *":E“" - »Z* -
5 [Sm = Sul 4+ 5 18m = T (Sm)l+ 5150 = T (Sa){ + {5 [Sm = T (Sa)l + 75 [Sn T(S’“)E] '
Therefore
7
5+ F (AT (80). T (5n)

< F (%d(sm,sn) 38 T (Sm) + 58(S0, T (8:)) + 75(Sm, T (Sn)) + 75(S, T (Sm))) '

for all m,n € N. Hence all condition of Theorem 3.1.2 are satisfied, T has a unique fixed point (here,

& is fixed point of 77,
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3.2 Hardy-Rogers-Type fixed point results for multivalued o~GF-Contractions

We start this section with the following definitions.
Definition 3.2.1 Let (X,d) be a metric space, T : X — CB{X) be a given multifunction and
a: X xX — [0,+00). We say that T is called e,-admissible whenever a(z,y) > 1 implies that
o {Tz, Ty} > 1.
Definition 3.2.2 Let 7': X — CB(X) be a multifunction, a,%: X X X — [0, +00) be two functions
where 7 is bounded. We say that T is a,-admissible mapping with respect to n if ofz,y} 2 9{e,y)
implies a,{Tz, Ty} > n,(Tz,Ty), z.y € X, where o,(4, B} = inf{afz,y):z€ A, y € B} and
n A, By =sup {9{e,y):x € A, y € Bl

Hn{r,yy =1 for all z,y € X, then this Definition reduces to Definitior: 3.2.1.
Definition 3.2.3 Let {X,d) be a metric space. Let T : X — CB(X) and a,n: X x X — [0, +00)
be two functions, We say that 7" is o — n-continuous multivalued mapping on {CB(X), H} if for
given © € X, and sequence {z,} with nwl}gzmd(mma:) = 0 and &{Zn, Tni1) = HEn, Bnsq) for all
ne N== ngrjzmH{Txn.Tzﬁ) = (.
Definition 3.2.4 Let {X, d) be a metric space and "X — CB (X} . Also suppose that ., : X x X —
[0, +oc) be two functions. We say that T is a multivalued a-n-GF-contraction of Hardy»«Rogers«t&pe

if for o,y € X, with gz, y) < a{z,y) and Tz % Ty we have

2G (d(z, T'z), d{y, Ty}, diz, Ty), d(y, T)) + F (H(Tw, Ty)) (3.18)

< Filed(z,y)+ Bd{x,Tx) +vd{y, Ty} + 6d (a, Ty) + Ld {y, Tx}) ,

where Ge A, FPe F o878, L2806+ 84+ v+ 2 =1and v# L
Theorem 3.2.5 Let (X, d) be a complete metric space. Let T : X —— CB{X) satisfying the following

assertions:
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{1} 7' is an a,-admissible mapping with respect to o;
(it} T" is a muitivalued a-p-G F-contraction of Hardy-Rogers-type;
(iii) there exists zp € X and a7 € Tzo such that afze, z1) 2 y{ze, 215
{iv} T" s a — p-continuous multivalued mapping.
Then T has a fixed point in X.
proof. Let ¢ € X, and x; € Tz such that oz, 1) > n{zp, 1), Since T is an o,-admissible

mapping with respect to 1, so we have
cn{Txg, Tw:) > 0 Txo, Ter ) {3.19)

If z1 € Try, then x4 is a fived poist of 7" and thus, we have nothing to prove. So, we assume that
zy ¢ Ty, then Tag # Txy. Since F is continuous from the right, there exists & real number A > 1

such that

F{hH (Tag, T21)y < F(H{Tze,Tay)) +

o d{wo, Tzo), 421, T4},
d(zg, Ty, d(z1, Txg) |

Now from d{zy, Te1) < hH (T2, Tx1), we deduce that there exists @y € Txy such that
d{xy, 29} < RH (Two, Tz},
Consequently, we obtain

FPld(zy,22)) < FRH(Tzo,Tx1))

< F(H(Tzy,Ta1)} +

b d(xG:TxD)ad{mlthi)}
d(mg,Tﬁii),d(ﬁf],Tx{}) .
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Which implies

Ve d(:ﬁg,T:.‘Ce),d(zl, T.’L‘]),
d{xg, T'xy), d(e1, Txe)

) + F(d(x?u:cﬁ))

iA

2 ( d{zq, Tzg), d{z1, T1 ),

+ F{H(Tzo, Tx1)} +
d{xe, Tzs ), ey, Tag)

G d(szTxﬁ)td{xerxl}}
d{xﬂv T&?g), d{.’.ﬂ'; [ T.?’JG)

[A

F kd (29, 31) + Bd {2, TTp) + v (3, Ty } + _
+
§d (zg, T'xy) + Led (x5, Tp)

o d{zp, T'xg), d{zy, Txy),
d‘(m()a T:’Ei)s d(xl‘r T;B())

we get

. ( d(mo, T1), d(z1, T2),

d{wg, w2}, d(xy, 1)

) + Fld(zr, 22))}

P sd (E{;,:{h) + f3d (zg,Tz:g)+’yd(m1,sz)+
éd {zg, Tzy) + Ed(zy, Txg)

This inplies
G{d{we, 71}, d(®1, 29), Ao, 2}, 0) -+ F (d{z1, 22})

P rd {2g, 21} + Bd {20, Tzo) + vd (21,721} +
od (ZQ,T.’E;) + Ld(z;, Txo)

Now since, d{g, €1 ).d{z, 22).d{2g, x2).0 = 0, so from (G) there exists 7 > 0 such that,

G(d(&»"u, xﬂ,d{a:;, :L‘g), d(ma, (L‘j;), 0) = 7.
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Therefore from (3.20} we deduce that

?‘+F d{x1,$2

< wd (o, 21) + Bd (g, Txo) + vd (21, T2y} +
h §d (xo, Ty} + Ld (x4, Txo)

kd{zg, 31} + Fd (20, 21) + vd {21, 22) + )

IIIIII ( dd{zg, )
xd {zg, 1) + Bd (wo, 21) + vd (21, 20} +
&d :1:0,2“1)"4"555(3‘;,3:2
S F 4B+ deo,m)+ (v +5)d(os,22).

From {F1}, we deduce
d{zy, @) < (K + B+ & d{xg, zy) + v+ ) d{xy, 22}
This implies
(1 =y~ 8yd (w1, %) < (k+ B+ ) d{xo, 1)
From k4 B4+ 28 = 1 and v +# 1, we deduce that 1~ —§ > 0 and so

{%+ﬁ+ﬂ
(1=

d{xy,®2} < d(iv”e,-’i?z) = ¢ (@9, 21} -

Consequently

F {d{x;_,:}:z)) < F(d(.’cn,.’l};)) -,

Note that #; # @o(since ry ¢ Tx1). Also, since o (T, To1) 2 1. (T®0, T21}, &1 € Txo and 9 € Ty,

then afxy,we) = n{e1, z2). So au(Txy, T22) > 7.{Txz1, Te). Again since F is continuous from the



right, there exists a real mumber A > 1 sach that

F{hH (T2, T2}y < F{H(Tay,Tz2))+

e d(:ﬁz,T$1),d($2,T$2),
d(z1, Twp), d(z2, Tw1) |

Now from d (@, T2y} < hH (T'xy, T2}, we deduce that there exisis 23 € T'z2 such that
d(xz,xg) < hH (Tthxg) ‘
Consequently, we obtain

Fld{zq,z3)} < F(hH(Tzy,Tz))

< F(H(Tz),Tza)} +

a d{zy, Tz}, d(ze, T22),
d(ey, Tg),d(za, Ta1) |

Which implies

o ( d(zy, Tay), d{ze, Tan),

) + Fd{zz, 3))
d(ﬁ?; ,T:Bz), d(mz,TiBl)

1A

QG ( d(xls T‘(EZ}Q d(&,"'g, sz))

4 F (H{T.’BI,T.’EQ)) -+
d{wy, Tag}, d{we, Tx1)

d{xy, Tay), d{za, Tg),
d(:rl, sz), d(a':g} T.‘.Cz }

éd{zy, Taa} 4+ Ld {@g, T4}

x

. ( wd (21, #2) + B (31, Tz} + vd (2, Twg) + ) .

d(mz, T{L‘] ), d(xz, Tﬂ:‘g),
d{zy, Tzg}, d(zs, Ty)
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we get

o dw®y, 22), dlzg, 23),
d‘(ml 3 3:3)9 d($2: x?)

F ke (21, 2) + Bd {1, Ty} + vd (22, Tag) +
. 8d (z, Tag) + Ld (22, T2y)

) + Fld{zz,3))

A

This implies

G{d(x;, z2), d(z2, x3), d(1, 23), 0) + F (d(wg, T3}

< F kd {z1,2) + Bd (@1, Tx1) + vd (9, Taa) +
"""" 8d{zy, Tws) + Ld (s, Ty '

Now since, d{%y, 22).d{xy, T3).d{x1, 73}.0 = §, so from {G) there exists 7 > 0 such that,

G{d(i‘],xg), d(.‘ﬂg, :::3), d(ﬂ:l, xg), {}) =T,
Thersfore from {3.21) we deduce that

7+ F{d{zs, z3))

. pf FGEne) 5d(£1,Twz)+’Yd(I2>T$z)+)

dd{xy, ey} + Ed (zg, 721}

( wd (Ty, 22} + Bd (21, 29) + vd (29, T3) + )

<
od ($},$3)
< &d(:‘ﬁz,:ﬂg ﬁd($1,$2)+‘}‘d($2,:£3)+
- éd 11?1,11»‘2) -+ &d (E2,$3)
< (k+ B+ 8 d(zy,mg) + (v + 8 d (22, 23))

From {F1}), we deduce

d{zp,x3) < (k+ B+ 8)d(zg, 22) + (v + 8)d (@, 23) .
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This implies

(1—y— 0y d{wg,23) < {x+ B+ 8)d (21,22}
From e+ B+v+25 =1 and v # 1, we deduce that 1 — v — § > 0 and so

(k4 8+94)

d{xg, 23} < A=~=73)

d(.ﬁ';],.’ﬂg} e d(iB1,IB2),

Consequentiv

Fd{go, 23} € F(d{zy,20}} ~ 7.

Continuing in this way, we can define a sequence {zn} ¢ X such that ¢, ¢ Tz, 2ny1 € Ty,

??*(T:’Bﬂthwﬂ) < O (TxHMZ}TIn) (322)
and
F(d(zn, 2n41)) < F(d(Zn1,20)) — 7, (3.23)
for all n € N. By (3.23}, we have
Fld(zn, 2n1)) € F{d{@ne1,20)) —7 (3.24)
< FPld(zn-2, Tp-1}) — 27 < . S Fld(z0,3)) — 07

for all n & N, Taking Hmit ag n — o0 in {3.24), we deduce
lim F{d{xn, @qey)) = —00,
FL—— 00

By using (F2), we have

niimmd {Tn, Tppy) = 0 (3.25)
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Now from (F3), there exists 0 < k < 1 such that

lim _{d (@n, 2os)]" Fd (@n, 2n41)) = 0.

TR sk

By ({3.24), we have

d($n1$n+1}k F(d(xmxn+1)) . d(xﬁsmn+l)kp(d{xﬁsxl))

< —nrld (@, 2na1)]” < 0.
Letting n —— oo in (3.27) and applying {3.25) and (3.26), we have,

lim 7 |d (2, a4} = 0.

T 00

(3.26)

(3.27)

(3.28)

It follows from {3.28) that there exists n; € N such that n{d (wm:‘cn“))k <1 for all n > n,, this

imples

1
d{Tpn, Tne1) £ .
ni

For all m > 5 > n; by using (3.29) and the iriangle inequality, we have

d{xna xm} S d(fﬂn, zn»&l) + d($n+11$ﬂ+‘2} T d(&?m.._;,.’!:m)
e o 1
< d{Tp, na11 < —
; ( »H) é i%

e o
Since the series Z -;--1%» is convergent, taking limit as n — oo in {3.30}, we get
i .

fagy

lim d{zp,2m} =0

Fh Tyt 0

(3.29)

This shows that {z,} is a Cauchy sequence. From the completeness of X, there exists # € X such

that lm dizg, 2) = 0. As n, (Tzp— 1, T2} € 0u(T2pr, Tag) for all n € N, we have n{2n, ZTres) <



a{Tn, Bns1) for all n € N. By o-n-continuity of the multivalued mapping 7', we get

n}i_z_{lmH(Tmex) = {,

Now we obtain

d{z, Ty = n}%fflwd(xm,;,iﬁz) < ﬁ@mH(Txn,Tm) == (),

Therefore, £ € T'x and hence T' has a fixed point.
Theorem 3.2.6 Let {X, d) be a complete metric space. Let T:X — CB (X) satisfying the foliowing
assertions:

{i} T is an o,-admissible mapping with respect to 7

(ii} T" is & multivalued a-n-G F-contraction of Hardy-Rogers-Type;

(it} there exists ¢ € X and 2y € Tz such that alwg, x1) > Bz, 21 );

(iv) if {z.} is a sequence in X such that a{2,, Tnat) 2 ¥{Za, Fna1) With 2, — & as n — oo then
either

a(Tn, ) 2 0T n, T220) 0F @ (T%20,2) 2 0 (T2a0, T2,

holdsforalln e N,
Then T has a fixed point in X,

proof. As similar lines of the Theorem 3.2.5, we can conclude that

f{&n, Tna1) = HTn, o1} and &, — 2 a8 0 — 00,

Since, by {iv), either

(T2 ) 2 (T %0, T2} OF (T30, ) 2 (T30, T30,
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holds for all n € N. Since 2441 € Ty, 50 we have
A Tny1, &) > ??(xn+25$n+2) or a(Tn4g, &} 2 WTniz, Tnia)s
Then there exists a subsequence {2, } of {#,} and Xpe41 € T'zn, such that
Tf(xm . mﬂﬁ—i) < a(xﬂk?x}

and so from (3.18} we deduce that

dlxn, Ty, },d(x, T ¥
ag | H@nnTon,) dlz,Ta) + F (H(T2n, . Tz))
(2, Tx), d{x, Ty, )

<

7 K (i, T) + B (Xry, , Ton, ) + ¥d (2, T2) +
8d(zy, , Txp, ) + Ld (z,Tz,,)

Which implies

o ( A2 Tn, ), d{z, T3),

+ F{d(@n,41,T})
d(mﬂ-k! T-'Z:}, d(.’:ﬁ, Tznk}

<

G ( d{zp, Ty, ), d{z, Ta),

) + F{H{Tzy,,,Tx))
#Hzp, T}, dlz, Tx,, }

(FA)

rl " (Zrgs €) + 86 (@ny, Tn, ) + ¥ (7, Tw) +
dd{xp,, T2} + Ld{z, T2y, )

F Ed(x?zmx} "f'ﬁd(w’!k!x’?k-H} + 7‘:{{93} Tx} +
éd (man‘T) +Ld{$szﬂh+i)

We get

£ (T, 2) + BBy, By} +vd (3, Ta) + )

27 + F (d(2n, 41,T2)) < F
8d{zn,  Tz) + Ld(z, Ty, 1)



Since F is strictly increasing, we have

d(xﬂk“é“lﬂ Tﬂ‘) < (3'3}")

#d (mﬂ-k ,:L‘) + 5d (xﬂmxng*i“l) + 'Td (m! Tm) + dd (wﬂm T‘T") + Ld(x! xﬂk"ﬂ)'
By taking the limit as & - oo in {8.31), as v + ¢ < 1 we obtain
d{z, Te) < (v +6)dlz,Tx) < d{z,Tz). {3.32}

Which implies d (z,T'2) = 0. Thus z € Tz, implies z is a fixed point of T".
Corollary 3.2.7 Let (X,d) be a complete metric space and T : X —» CB(X} be a continuous

multivalued mapping. If for z,y € X with d(z, Tz} < d{z,y} and Tx £ Ty, we have
21+ F(H(Tz,Ty)) < F (kd{z,y) + B8d (2, Tz) +vd (y, Ty) + éd (2, Ty) + Ld(y, Tx}},

where 7 > 0, K, 5,76 L >0,k + f+v+20=%and v 1 and F € F. Then T has a fixed point in

X.
Corollary 3.2.8 Let {X.d) be a compiete metric space and 7' : X — CB(X) be a continuous

multivalued mapping. If for o,y € X with d{z, Tz} < d(e,y) and T'z £ Ty, we have

9pe? min{d{z, Tx),d{y, Tyt d{e, Ty} Ay T2)} 4+ B (H(T:E, Ty))

< F{wd{z,y) + fd{z, Tz) + vd{y, Ty} + éd (=, Ty) + Ld{y, Tz))

where r > 0, 8, 8,76, Le >0,k +F+v+20=1,v5 Land F € F. Then T has a fixed point in X,
Example 8.2.8 Let X = [0,1}, T: X — CB(X) be defined as T'z = [0, §] and d be the usual metric
on X. Define a,7: X x X -~ [0,00), G : R*" — R* and F : R+ — R by ofz,9) = §, n{z,y) = +r

G (ty.ts,ta,t4) = 7 where r = In (\/4-) and F(t} = In{t) + ¢t € F for all t > 0. It is easy to check that
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conditions (1), (i) and (iv)of Theorem 3.2.5 hold, Now for all 2,y € X , Tz £ Ty, we obtain

2G (d{x, Tx), d{y, Ty), d(z, Ty}, dly, Tz)} + F(H(T2, Ty))
= 274 F(H{Tz,Ty)}
= In{4) +ln(H{Te, Ty))+ H{T2,Ty)

= () +In(zly~ al) + gly - ]

< o) +inGly - 2+ Sly - al
< In(4) + ln(%) + 1n{~§~iy - ) + giy -2

= (G- vt a4 gu-al) + (o -yl + 5l —al+ 5ly -3l

= Wiyt gy W2 5%~ Yl + gy 5 1Y
1. H 1 ¥ 1 yi 35 z

< el PO il PR BT PUR il PR 4 g e

= m(zi“"‘ o+ gl 21*8'1" 2|+16]x 2]+16y QD“‘“

(st e 3l ei 3o sl 31+ b~ 3)

= F{sd{z,y)+ Bd(z,Ta} + ~vdly, Ty) + dd{z, Ty) + Ld(y, Tx}}.

Hence T is a multivalued a-n-GF-contraction of Hardy-Rogers-Type withk = 3, =, v=}, 8= &

[+ 1

and L = % {that is, condition (#) of Theorem 3.2.5 holds). Therefore all conditions of Theorems 3.2.5

are satisfied and T has a fixed point



Chapter 4

Fixed points of generalized
contractions in generalized metric

spaces

Very recently Jieli et al. [33],i34] established new fixed point theorems in the setting of Branciari
metTic spaces.

In this chapter, we extend the results given in [33],[34] by using the concept of cyclic (e, 8)-
admissible mappings obtained in [8]. As an application, we apply our main results for proving fixed

point theorems involving a cyelic mapping.

4.1 Fixed point results of generalized contractions with cyclic(e¢, 5)-

admissible mapping in generalized metric spaces

Now, we state and prove otr main resulis in this section.
Theorem 4.1.1 Let {X d} be a complete gm.s, T': X -— X be a given map and let o, 81 X s

[0, o0} be two mappings. Suppose that the following conditions hold:



(1) there exists 8 € © and &k € {0,1) such that

2y € X, d(Ta,Ty) # 0 == a()8(y) .6 (d (T2, Ty)) < 1 (= v))]°,

(2} there exists ©g € X such that a{ze) 2 1, B{xo) > 1and 8(Txe) 2 1,
(3} T is a cyclic {@, #)-admissible mapping,
{4)one of the following conditions holds:

(4.1) T is continuous,

(4.2) if {z,.} is a sequence in X such that 8(x,}) 2 1 foralin € Nand z, — 5 a8 n — 00, then
Biz) = L
Then T has a fixed point. Furthermore, H o {x) > land S{x) > 1 for every fixed point © ¢ X, then
T has a unique fixed point.
Proof. Let zg ¢ X be such that a(zg) 2 1, Alze) = 1 and 8{Txp) 2 1. We define the iterative
sequence {Z,} in X by the rule 2, = Tin.1 = Tz for all n € N, Obviously, if there exists
ng ¢ N for which TR0y = T gy then T™ x4 shall be a fixed point of 7. Thus, we suppose that

d(T"xp, T™ 2o} > 0 for every n € N. Now from conditions (2) and (3), we get that

a{zo) 2 l==> B{z1) =B (Tx0) 21

and

Bizo) > e a(ey) = a{Tay) 2 1.

By a similar way, we get

a{T"zg) > tand (T zp) > 1foraline N,




Which implies

a (T 1xg) B(T™ap) 2 1 for alin € N,

also

o (T Vap) B (T zg) 2 1foralln e N.

From condition {1} and inequality (4.1}, then for every n € N, we write

8 {d (T"20, 7" 2q))

A

o < [6(d (zo, Tz V)] .

A

Thus we have

1 < 8 (d (T2, T 2p}) < 10 (d(wo, Tzo))¥ foralln € N.

Letting n — o, we obtain

lim ¢ (d (i"“mu,ilm+1x{;)) .

by R T ']

that together with (©2) gives as
lim d(T"zo, 7" 2q) = 0.
i e 00

From condition (©3), there exist v ¢ ({,1) and ¢ & (0, 0o} such that

Jim 0 (d (T, 7" ap}) ~1
o {d (T, ToH )]

< a (T ag) B(T™z0) 0 {d {T o, T zg)) .

[0 (d (T~ 26, T"20))]* < [0 (d (T %20, 7" 20))]*

= £,

(4.1)

(4.9)

(4.3)

(4.4)

(4.5)



Suppose that £ < oo. In this case, let B = »,g > 0. From the definition of the limit, there exists ng € N

such that

6 (d (Tz0, T*20)) ~ 1
[d{Tn2o, T+ gg)]

—f < B for all n > ny.

This tmplies

6 (d (T™zq, T ap)} ~ 1
{d (T”:}:{), T“"é"i.'ru )}"'

»{~B=FB foralin > ng.

Then

n [d (T zg, T )] "< An [0 (d(T™zq, T 20)) — 1] for all n > ng,

where A = %. Suppose now that £ = oo. Let B > § be an arbitrary positive aumber. From the

definition of the Himit, there exists ng € N such that

6 {d {T™xo, T+ zp}) — 1
[d (T, T+ 2g)]

= B for all n 2 ng.
Whieh implies

n[d (T mg, T 20)] "< An [6 {d (T, T 129)} — 1] for all n > ng,
where 4 = %. Thus, in all cases, there exist A > § and ng € N such that

n{d (T 2o, T 20)]" < An (6 (d (T"ro, T 2g)) ~ 1] for all n 2 ny.
By using (4.4}, we get

n [d (T™e, T ag)]” < An (19 (d(zo, Tzo))F ~ 1) for all 2 > nq. (4.6)



Letting n ~— oo in the mequality {4.6), we obtain

lim nld (T"’:cg;T"“:f:g)]r == {,

o Rt g
"Thus, there exists n; € N such that

1
nt

d (T4, T 2g) < —r for all » > n;. (4.7)

i
Now, we will prove that T has a periodic point. Suppose that it is not the case, then T™zg % Ty

for all n,m € N such that n # m. Using condition {1) and inequality (4.2}, we get

8 (d {T™zg, T 220))

< a{T™ ag) BT ag) 0 {d (TP, T720)) .

< [0 (T a0, T ag))]F < [0 (4 (T 220, T 20))]" (4.8)

74N

o < [0 {d (0, T22o))]* .
Letting n —— o0 in the above ineqguality, we obtain
i 6(d(T720, T o)) = 1. (4.9)

By using (©2), we have

Hm d{T™z0, T %2) = 0.

E{ Suaua g *]

Similarly from {©3) there exists no ¢ N such that

4 (T2, T™2) < - for all n > g, (4.10)
i+
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Let h = max {ng, n; }. we consider two cases,

Case 1: If m > 2 is odd, then writing m = 2L+ 1, L > 1, using (4.7}, for all n > h, we obtain

d (Tn:cg,Tn+mwe) < d (Tnzn,Tn+lm{}) A+ (TnH‘xo, Tm'z:ne)

deo d (Tn+2Lxe, Tn+2L+Zx0)

i i i

R e a T s
n¥  (n4 17 (n4 2L
|

< Z;‘g

A

e

Case 20 m > 2 is even, then writing m = 2L, L > 2, using {4.7} and {(4.10), for ali n > k, we have

d (’me{;? Tn+mx0) < d (Tnﬁg, Tn+2f£9) +d {’Im+2$0, Tm+3:tg)

Fors 4 d (T TRH2E0)

i 1 1

< m}f“i-w%m..*%-“w
nt o (n+4 2)F (n+2L 1)
o~ 1

< s

Thus, combiuning all cases, we have

E;foraiinzh,meN.

'91

O
d (fm.,ﬂ{} T“*m:z:g S Z

[ace)

Since the series Z -4 is convergent (since I > 1}, we deduce that {7z} is a Cauchy sequence. From
i

dumre
the completeness of X, there z € X such that "z - 2 a8 11— 0o {that is, lm d{T™xzg,z) = 0).
T e 20
Now, we assume that T is continuous. Hence, we have
ze= lim T igg= lim T{T") = T( tim T‘":tg) =Tz
kS e ¥ Rt 1o W]

Next, we will assume that condition (4.2} holds. Hence § (2} > 1. we can suppose that 7" +lgy # Tz
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for all n (or for n large enough). Using condition {1}, we have

6 (d (T 20, T2))

EA

a{T zo} B{(z) 6 {d (T 20,72))

PN

[6{d{T™zp, 2))]).

Which implies

f{d (T“*lxg,Tz)) < B {d{T e, z))]k

[0 (d (T2, T2)}] < klnlf(d(T"z,2))] < [0 (d (T2, 2))].

This implies from {©1) that

d (T mg, T2} < d{T" %0, 2)

{etting n - 00 in the above inequality, we get 77"y — Tz From Lemma 1.5.6, we obtain
z = Tz, which is a contradiction with the assumption: T does not have a perfodic point. Thus 7" has

a periedic point, say z of period ¢. Buppose that the set of fixed points of T is empty. Then we have

g>1andd{z,T2) >0

By using condition {1} and inequality {4.1), we get

6(d(z,Tz)) = #{d{T%,T%2)) < a(T92) B(T92) .6 (d (92,77 2))

< BTN <6(d(2,T2),

which is a contradiction. Thus the set of fixed points of 7" is non-empty (that is, T has at least one fixed

point ). Now we suppose that 7,4 € X are two fixed points of T such that d(z,u) = d (T2, Tu) > 0.
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From the hypothesis, we find that « (z) 2 1 and #{z} > 1. Using condition (1}, we obtain

Gld(z,u)) = 6{d{T2,Tu)) <alz}f(z).0(d{lzTu}}

< Bz w)* <8(d(zw),

it is a contradiction. Therefore T has a unigue fixed point.

Example 4.1.2 Let X' = {0,1,2,3,4}. Defined: X x X — R as follows

di{z,z) = 0,foralizeX,
d(1,2) = d{2,1)=3,
4(2,3) = d{3,2)=d{1,3)=d(3,1) =1,

diz,y} = lz-—yl, otherwise.

1% is clear that (X, d} is a complete g.m.s, but it is not metric space because d does not satisfy triangle

inequality on X, Indeed,

3=d(1,2)>d(1,3)+d(3,2)=1+1=2

Let T': X — X be the mapping defined by

2 if .2,
T (2) = fze{0,1,2,3}
¢ H g4,
Define
1 i ' . 2.3},
o(z) = ifze{0,1,2,3} ?
0 otherwise,
and
1 fre {0,123},
Bo) = { 0.1,2.3},
& otherwise.



Also define 6 (0,00} — (1,00} by

0(t) = ev1.

It is not difficult to show that # € © and T is a cyclic {o, #)-admissible mapping. We shall prove
that the hypotheses of Thecrem 4.1.1 are satisfied by 7. Now if {z,} is a sequence in X such that

Bfzn) > 1 and z, — 7 as n — 00, Therefore, 2, € {0,1,2,3}. Hence z € {0,1,2,3}, that is

a(z)8(4).6(d(T(2),T4))) o(z)B{4).8(d(2,0))

< )N,

for all £ € {0,1). So the hypotheses of Theorem 4.1.1 hold and hence, T' has a unique fixed point.
But the result of Jleli et al. [33] {the hypotheses of Theorem 1.5.7) can not applied to 7. In deed, for

re=2,y =4, we get

0(d(T(2),T(4))

8(d(2,0)) =6(2)

¢ [ = pae

for all k € (0,1).
Since a metric space is a generalized metric gpace, we can obtain the following result from Fheorem
+.1.1.

Corollary 4.1.3 Let {X,d} be a complete metric space, " : X — X be a given map and let

{1} there exists § € @ and & € (0,1) such that
2,y € X, d(Tz,Ty) # 0= a(z) B(y) 8(d(Tz,Ty)) < [B{d(z, )",
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{2) there exists xg € X such that a(xp) > 1, B(zp) > 1 and 8(Tx) 2 1,
{3} T is & cyclic (o, Ar-admissible mapping,
{4)one of the following conditions holds:
{4.1} T" is continuous,
{4.2) if {xn} is a sequence in X such that {z,) > 1 foralin ¢ Nand £, — z as n — oo, then
Blz) 2L
Then T has a fixed point. Farthermore, if a{z) > land 8{z} = 1 for every fixed point z € X, then
T has a unigue fixed point.
Example 4.1.4 Let X = [, 1] and d: X x X — Rygiven by d{z,y) =z~ yf forall 2,y ¢ X. It is

easy to show that (X, d) is a complete metric space. Let 7' : X —- X be the mapping defined by

3 if edg
T@ﬂw{ ? teeln) ,
0 ¥ 2=1

and @, 51 X — [0, 00) be given by

1 if 2 € [0,1)

G otherwise

a(m)mﬁ(:«")%{

Also define 8 (6,00} — {1,000} by

9 (t) = eVt

It is not difficult to show that ¢ € © and T' is a cyclic (@, 8)-admissibie mapping. We shall prove that
the hypotheses of Theorem 4.1.1 {or Corollary 4.1.3) are satisfied by 7. Moreover, the result of Jieli

et al. {33] can not applied to T". Now if {z,} is a sequence in X such that 8{z,} > 1 and &, — z as
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n —— o0, Therefore, z, € [0,1). Hence z € [0, 1}, that is 8 (x} > 1. Next for z € [0,1},y = 1, we have

a(z) B(1) .0 (d (;}0))

19(d(z,1))]", forali k € (0,1).

a{z) 8 (1) .6(d(T (x),T (1))

A

So the hypotheses of Theorem 4.1.1 {or Coroliary 4.1.3) hold and hence, T has 2 fixed point. But the

hypotheses of Theorem 1.5.7 can not applied to T. In deed, for & = %,y =1, we get

(@) = (G-
o2 = (a3

H

forall £ € (0,1).
Caorollary 4.1.5 [33] Let (X, d) be a complete gan.s and T : X — X be a given map. Suppose that

there exists 8 € © and & € {0, 1)} such that

r.y € X, d(z,y) # 0 == 0 (d(Tz,Ty)) < [0 (d(z,9)))*.

Then T has a unique fixed point.

Proof. Setting a{z) =1 and S{x} = 1 for all # € X in Theorem 4.1.1, we get this resuit.
Theorem 4.1.6 Let (X, d) be a complete gm.s, T : X ~— X be a given map and let 2, 8: X —
10,00} be two mappings. Suppose that the following conditions hold:

(1) there exists # € © is continuous and & € (0,1) such that

2,y € X, d(Tz,Ty) # 0 = a(z) 8{y) 9(d(T,Ty)) < [9(R(z, v))I,
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where

d{z, Tz)d(y, Ty)

Riz,y) = max{d(x,y}, d{z, Tz),d{y, Ty}, 1+ d(z,y)

2

(2) there exists @g € X such that a(ze) 2 1, f{zo) 2 1 and 8{(Txo) 2 1,
(3) T is a cyclic {, f)-admissible mapping,
{4)one of the following conditions holds:

(4.1} T is continuous,

{4.2) if {z,,} is a sequence in X such that 8(x,)} > 1foralin € Nand 2, ~ 2 asn — o0 , then
Blx) 2 1.
Then 7" has a fixed point. Furthermore, if a{z} > land 8(z) > 1 for every fixed point x € X, then
¥ has a unique fixed point.
Proof. Let 39 € X be such that a{xg) > 1 and S(zs)} > 1 and 8(Tzy) > 1. We define the
iterative sequence {&,} in X by the rule x, = T'gpoy = T™xg for all n € N. Obviously, if there exists
ng € N for which Tz = T™0 7 g then T™ 34 shall be a fixed point of T. Thus, we suppose that

d{(T"xo, T 1ag) > 0, for every n € N. Now from (2} and (3}, we get that
a(&,"g) > 1= Bz} 2ﬁ(T$0) >1

and

B{z) 2 1 == a(z) = a{Tzp) 2 1.

By a similar way, we get

w{T"xg} > Land B8 (IMxy) > 1foraline N
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‘Which imnplies

o (T m) BT zp) 2 1foralln €N, {4.11)

also

o (T ag) B (1™ 1zp) 2 1 for alln € N, (4.12)

From condition {1} and inequality {4.11}, then for every n € N, we write

6 (d (T, T"‘“ng))

< (T”'"ng) B (T"wo) .8 (d{T™ w0, T"* e} .

1A

k
a (1720, o) (7, TT" ) })]

d{ ™ g ST ag yd(T" 20, TT  20)
i3
( d{T"z4,TT Zo), W ST P e

.
Tn ICEQ T+ &‘g) d(Tn.'Eg Tn“i“i:b‘g} R
= T“ fzg, T“xe)d('{‘“:zg T“""mo)

TAdi T ey, Teg)

10 {max {d (T g, T"0) & (T"50, T 20} })]". (4.13)

If there exists » € N such that max {d (T z¢, T"2q) ,d (T %0, T"120) } = d (T, T 20}, then

inequality {4.13) turns into
0 (d (T20, T 00)) < [0 (& (T700, 7))

this implies

In [6(d (726, T"  0))] < kIn [ (d(i”"mg,T“+1xg))] \

that is a contradiction with k € {0,1). Therefore max {d {T" 1zp, T 20} ,d {T"%0, T™ " 1zg} } =
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d {T" Yaq, T"xo) for all n € N. Thus, from (4.13), we have
8 (d (T™z0, T™'20)) < [6(d (T 20,T20)))]" for all n € N.
Which implies

6 (d(T"zo, T 'ag)) < [6(d (T o, T20))]"

< [0(d (T 20, T a0))]¥ < ... < (w0, Tz
Thus we have
1 < 8(d (T™0, 7™ w0)) < [0 (d(o, Tao)))* for alin € N, (4.14)
Letting n — o0, we obtain
lim 8 {d (T"zo, T" ' 20)) = 1, {4.15)
R s

that together with (©2) gives as
Hm d{T™me, 7" ) = 0.
TR e OO0

From condition {©3), there exist r € (0,1) and £ € (0, o] such that

L -1 -
i 8 (d (T"zo, T izg)) — 1

= {.
nmoo  [d{TP@g, T 1zg)]"

Suppose that £ < oc. In this case, let B m % > 8. From the definition of the Hmit, there exists ng € N

such that

6 (d{T"xe, T gp)) — 1
{d (Tnxi)a zm+1z8}]r

— £ < B for all n > ny.

This lmplies

& (d (Tn.’ﬁ(}, T“*’lzg)) !
[ (7720, T iag)]

> £~ B=F5 foraln>ng.
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Then

n [d (T2, T 7)) ] "< An [9 (d (T o, T ig)) — 1] for all n > ng,

where 4 = 4. Suppose now that £ = oco. Let B > 0 be an arbitrary positive number.

definition of the limif, there exists ng € N such that

8 (d {(ITmzg, T zg)) — 1
[d (Tmzo, T )]

> B forasll n > nyg.
Which impties

n [d (T"2o, T" )] < An [0 {d (T7mo, T 2g)) ~ 1] for all n > ny,

n [d (T, T 20)]" < An (6 {d (T2, 7™ 20)) — 1] for all n 2 ne.
By using {4.14), we gei
n [d (T™0, T" 1) < An ({9 (d(zo, Tzo))]*" ~ 1) for all n > ng.
Letting n — oc in the inequality {4.16), we obtain
Jim n [d (T, T 20)]" = 0.
"T'hus, there exists n; € N such that

d{Tee, T g} < jz for all n > n;.

Lt

From the

(4.16)

(4.17)

Now, we will prove that T has a periedic point. Suppose that it is not the case, then T%zg % T™xg
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for all n,m € N such that n % m. Using condition (1) and inequality {4.12), we get

g (d (Tn.'o"{), Tn+2$c))

< a(T Yag) B (1™ g} .0 (d (T720, T 20}) -

A

[ &
¢ | max d (T Vg, Tz}, d (T 20, TT™ Mt}
m n 1 d T“"}“’Gq‘?mM‘zo)d(T"*‘lxg‘TT*“Hx{,)
L d(T +1$9,TT +1f39) y { T3 aidn~Tge, T gy}

_ 2
d (T Y@y, T ag) , d (T g, T o)
= 9 Tas d ( d(Tﬂhixo,Tnxﬂ)d(Trb+zx{}.Tn_Fng}

1, +2
T g, T 20) T¥d(T" Tag, 77 ' 2g)

k
d{rn—i ekl ,d Tn«-l 12‘% ,
o maxd 7m0 T 0) (T 0, T o) . (4.18)
d (Im+1$a, 2m+2£8{})

Since § is non-decreasing, we obtain from {4.18)

k
§ (d (TnI{th—i—ng}) < {ma‘x{ 8 (d (T”“ 3:01Tn+ 3;9)) !9 (d (Tn 13:0’Tn$0)) ' }} . (419)
0 (d T+ zq, T 224))

Let T be the set of n ¢ N such that

un = max{f(d (1™ 2o, T 0)) .6 {d (T o, T w0}) , 6 (d (T g, T 20)) }

= & (d (T“Mix{}; T"“x{;)) .
If |11 < oo then there N € N such that for all n > N,

max {# {d (T 2o, T zo}) , 0 {d (T @0, T25)) , 8 {d (T 20, T30} }

= max {6 {d(T™ 2o, T™z0)} , 8 {d (T™ zp, T 20)) } .
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In this case, we get from (4.19)

1 < 8{d{T"xe. T 1))

< [max {6 (d (T a0, T"x0)) ,0 (d (T 20, T ) }]*
for all n > N. Letting n — oo in the above inequality and using {4.13), we obtain

im 8{d (T, 7" 2g)) = 1.

——

If {7 = 00, we can find a subsequence of {u,}, then we denote also by {us}, such that
tin = G{d (T w6, T z9)} for n large enough.

in this case, we obtain from (4.19)

1 < 8{d{T e, T™2a0)} < [0 (d{T™ o, T  2a))]"
< BT 220, T 2e))]" < . < [6(d (w0, T220))]"
for n large. Letting n — oo in the above inequality, we obtain
Jim 6(d (T7zg, T ag) ) = 1. (4.20)
Then in all cases, {4.20) holds. Using {4.20) and the property (82), we have
Jim d (T2, T"* 220} = 0.

Similarly from {©3) there exists nz € N such that

d (T 20, T™*220) < — for all n.> ny. (421)

Tir
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Let h = max {ng,n; }. we consider two cases.

Case 1: f m > 2 is odd, then writing m = 2L 4+ 1, L > 1, using (4.17}, for all n > A, we obtain

d (Tn:}:o, Tm{“mxa) < 4 (Tn&?{), :Zm+1$0) +d (Tnnéuiib‘(}, T“+2$G)

o -l (Trx+2L$0’zm+2L+} 3:0)

S S
(n+1)°" (n+2L)"

7
f

74N
™8 3
31»1 Ll

3.

o

i
&

ase 20 If m > 2 is even, then writing m = 2L L > 2, using (4.17} and (4.21), for all n > h, we have

d ('Im.’ﬂg, T”‘""mxg)

A

d{T™z, T’““.’B{)) 4 d (T2 g, T“%:rg)
o o (Tn+2L»»1$9’ Tn»i-ZLxO)

1 1
S At ey
(o) (n+2L —1)*

N
‘!;HE“""

Thus, combining all cases, we have

=]

d(T™ee, T "z} < —;3;«: foralin>h,meN.
franty i
]
Since the series Z - is convergent (since & > 1), we deduce that {T™zp} is a Cauchy sequence.
: iy
PEEETT

From the completeness of X, there z € X such that Tz — z ag n —t 00. Now, we sssume that T

is continucus. Hence, we have

= lim T*gg = Jim T (T") =T ( lim T":z:a) =Tz,

fo—r

Next, we will assume that condition (4.2) holds. Hence 8 (2} > 1. Without restriction of the generality,

70



we can suppose that 7o # # for all n {or for n large enough). Suppose that d{z,Tz) > §, using

condition {1}, we have

¢ {(d{T™ 2o, Tz})

< a{T"zo) B(2) .6 (d (T, T2)).

- -k

d{(T"zg, 2}, d {T™2q, T s},

d{T™ 20, 1" o Y2, T2}
d{z,Tz}, ( 3+d(?‘"ze?«") '

[
N

max

_ '9 (m&x{ d(T"0, 2) ,d (T™z0, T 10) }) k'
I d{z,Tz) |

Which implies

&
P (d (?"n+1xg,Tz)) < lo (ma}c{ d(Tﬂ:r.ﬂ, z),d(Tﬂx{;,Tﬂ+ :}3{)) . })jl .

d{z,T%)

Letting n — o0 in the above ineguality, using the continuity of ¢ and Lemma 1.5.5, we obtain
0(d(z,T2) < 9(d(zTz)] < 6(d(z.T2),

which is & contradiction. Thus we have z = T'z, which is also a contradiction with the assumption: T’
does not have a periodic point. Thus T has a periodic point, say z of peried g. Suppose that the set

of fixed points of T is empty. Then we have

g>1and d{z,72) > 0.
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By using condition (1} and inequality (4.11}, we get

0(d(2T2)) = 0(d(T%T%)) € o (T912) B(19%) .0 (d (T92,77*2))

[6(d(z, TN < 8(d(=T=)),

A

which is 2 contradiction. Thus the set of fixed points of T is non-empty (that is, 7" has at least one fixed
point ). Now we suppose that z,u € X are two fixed points of T" such that d(z,u) = d(Tz,Tu) > 0.

From the hypothesis, we find that a{z) > 1 and $(z) > 1. Using condition (1}, we obtain

B{d{z,u)} = 6{(d(Tz,Tu)) <al2)B{(z)8{d(Tz,Tu}}

< W@ <0d(zu),

it is a contradiction. Therefore T has a unique fixed point.

Also we can obtain the following corollaries from Theorem 4.1.6.
Corollary 4.1.7 Let (X,d) be a complete metric space, T : X —- X be a given map and let
a, 31X ~— 0,00} be two mappings. Suppose that the following conditions hold:

{1} there exists 8 € © is continuous and & € {0, 1) such that

2,y € X, d(Tz,Ty) # 0 == a(z) 8(y) (d(T'z,Ty)) < [§ (B2, )",

where

diz, Tx)d(y, Ty)
1+d{z,y)

R(x,y) = max{d(z,y), d(x, Tz}, dly, Ty), b

{2) there exists ¢ € X such that a{zg) = 1, B{zg) = 1 and §{Tzg) > 1,

{3} T is a cyclic {«, #)-admissible mapping,
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{4)one of the following conditions holds:

{4.1} T is continuous,

{4.2) if {x,,} is a sequence in X such that 8{x,) 2 1for all n € N and %, ~— x as n — 00 , then
Bz 2 1.
Then 7" has a fixed poini. Furthermore, if a(z) > land B {x) = 1 for every fixed point x € X, then
7 has a unigue fixed point,
Corollary 4.1.8 Let {X,d) be a compilete g.m.s and 7' : X — X be a given mapping. Suppose that

there exist § € © is continuous and k € {0,1) such that
ny € X, d(Tz,Ty)#0==60(d(Tz,Ty) <OR(= ),

where

R{z,y) = max {d(a:,y) ,d(x,Tx),d(y,Ty),m;Ty) } )

14 d(a:,ym)wm

Then 7" has a unique fixed point.

Proof. Setting a{x) = 1 and 8(x) =1 for all * € X in Theorem 4.1.6, we get this result.
Corollary 4.1.9 [34] Let (X,d)} be a complete g.m.s and T : X — X be a given mapping. Suppose

that there exist § € © is continyous and &k & {0, 1} such that
Ty €X, d(Tz,Ty)#0==0(d(Tz,Ty) < (M (=,9)]",

where

M (z,y) = max {d{z,y) ,d{x, T}, d(y, Ty)}.

Then T" has a unigue fixed point.



4.2 Some cyclic contractions via cyclic (a, 5)-admissible map-

ping

In 2003, Kirk et al. [4] introduced the concept of cyclic mappings and cyclic contractions as follows.
Definition 4.2.1 [4] Let A and B be nonempty subsets of & metric space (X,d). A mapping T :
AUB »— AU B is called eyclic if T{A4) ¢ B and T{B) C A.
Definition 4.2.2 [4] Let A and B be nonempty subsets of a metric space {X,d). A mapping T :
AUB — AU B is called a cyclic contraction if there exists k € (0,1} such that d(Tx, Ty} < kd{x,y)
forallzc Aandy e B.

Notice that although a Banach-contraction is continuous, a cyclic contraction need not to be, This
is one of the important gains of fixed point results for cyclic mappings, see (9], [10], [11], [41], [42],
481, [49], [51], [52], [53], [59]).

In this section, we apply Thecrem 4.1.1 for proving fixed point theorems involving a cyclic mapping
in generalized metric spaces.
Definition 4.2.3 Let 4 and B be nonempty subsets of a gm.s {X,d). A mapping7': AUB — AUB
is called cyclic H T{AYC Band T(BYC A.
Theorem 4.2.4 Let A and B be two closed subsets of a complete g.m.s (X, d) such that ANB # ¢

and T: AUB — AU B be a cyclic mapping and § € ©. Assume that
6(d (T2, Ty)) S 16 (d=v)I",

forallz € A and y € B, where k € {§},1). Then T has a unique fixed point in AN B.

Proof, Define mappiogs ¢, 81 X — [0,00) by

1, Hrzed 1. ifzeB
a{x) = and f{z) =

0, otherwise 0, otherwise ‘
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Forz ¢ A and y ¢ B, we get

a(z) B(y) 8(d(Tz,Ty)) <0 (d(,¥))]*.

Therefore condition (1) of Theorem 4.1.1 holds. It is easy to see that T is a cyclic {«, f)-admissible
mapping. Since ANB # §, there exists 2z € ANB such that a{ze) > 1, f(xe) 2 1 and 8(Tzg) 2 1.
Next, we show that condition {4.2) in Theorem 4.1.1 holds. Let {x,,} be a sequence in X such that
B{z,) z lforalln ¢ Nand o, ~ & 88 9 ~ 00, ther z, € B for all n € N. Therefore z € B,
Which implies 8{z) 2 1. Now, the conditions {1}, (2), {3}, and {4.2) of Theorem 4.1.1 hoid. So, T
has a unique fixed point in AU R, say 2. H 2 € A4, then 2 = T2 ¢ B. Similarly, if 2 € B, then we have
z & A. Therefore z € AN B.

Corollary 4.2.5 Let 4 and B be two closed subsets of & complete metric space {X, d} such that ANB

Fhand T AUB — A UR be a cyclic mapping and ¢ € O, Assume that
6 (d(T=,Ty)) < [6(d(z,u))],

forall € A and y € B, where k € {0,1}. Then T has a unique fixed point in AN B.

Example 4.2.6 Let X = R endowed with the usual metric d{z,y) = [z —y] for all x,y € X and
T:AUB s AU D be defined by Tz = —§& where A = [-1,0] and B = [0,1]. Also define
6 (0,00} — (1,00} by 8{2} = e'. Then T has a unique fixed point. Indeed, for all z € A and all

¥ € B, we have

6(d(Tz,Ty)) = eimrwmewm[egzﬂ%

{ezx“yi]k, where k € [%, 1)

[6(d (9]

A
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Therefore, the conditions of Theorem 4.2.4 {or Corollary 4.2.5}hold with k ¢ [é, 1}and T has a unique
fixed point (here, z = { is 3 unique fixed point of T').

Similarly, we can prove the following theorem.
Theorem 4.2.7 Let 4 and B be two closed subsets of a complete g.m.s {X,d) such that AN B £ §,

T:4UB s AUB bea cyclic mapping and § € © is continuons. Assume that

§(d(Tz,Ty)) < [ (Rla,))];

R{z,y) = max{d(z,y}, d(z, Tz}, d{y, Ty},

d{z,Tx)d{y@}
L+d(z,y)

forall z ¢ 4 and y ¢ B, where k € (0,1}). Then 7 has a unique fixed point in AN B.
Corollary 4.2.8 Let 4 and B be two closed subsets of 8 complete metric space {X, d} such that ANB

#8T:AUB — AUB bea cyclic mapping and 8 € © is continuous. Assume that

6 (d Tz, Ty)) < 6 (R(z o))" ;

d(z, Tx)d(y, Ty)

R(w,y) = max{d(a,v), (s, Ta), d(y. TV), =5 T

b

forallz € Aand y € B, where k &€ {0,1). Then 7" has & unique fixed point in AN B.
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