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Preface

In 1922, the Polish mathematician Stefan Banach established a remarkable fixed
point theorem known as the “Banach Contraction Principle” (BCP) which is one
of the most important results of analysis and considered to be the main source of
metric fixed point theory. It is the most widely applied fixed point result in many
branches of mathematics because it requires the structure of complete metric space
with contractive condition on the map which is easy to test in this setting. The
BCP has been generalized in many different directions. In fact, there is vast amount
of literature dealing with extensions / generalizations of this remarkable theorem.
Fixed point theory is an essential subject which works as a bridge between pure and
applied mathematics, if in pure mathematics it can solve non linear and trancendental
equations then in applied mathematics it is quite helpful to work out the differential
equations (ODE and PDE). Fixed point theorem deals with the assurance that a
mapping T on a set X has one or more fixed points, i.e. the functional equation
Tz = z has one or more soloutions. A large variety of the problems of analysis in
applied mathematics relates to finding soloutions of nonlinear functional equations
which can be formulated in terms of finding the fixed point of a nonlinear mappings.
In fact, fixed point theorems are extremely substantial tools for proving the existence
and uniqueness of the solutions to various mathematical models.

Van Roovij, A. C. M.[20] for the first time introduced the concept of the ul-
trametric space and non-Archimedean functional analysis in 1978. In a metric, if

the triangular inequality is replaced by the stronger triangular inequality (d{z, z) <















¢

If (1.1) holds for h = 1, then f is called nonexpansive and if (1.1} holds for fixed
h < oo, then f is called Lipschitz continuous. Clearly, for the mapping f, the follow-
ing obvious implications hold:contraction =-contractive= nonexpansive=Lipschitz
continuous.

Definition 1.1.2. [20] Let (X, d) be a metric space. If the metric d satifies

(i) d{z,y) > Qand d(z,y) = 0 iff z = 4;

(ii} d(z,y) = d(y, =} (symetric);

(iif) d(z,y) < max{d(z, z),d(z,y)}

for all ¢, y, 2 € X is called strong triangle inequality;

It is called ultrametric on X. Pair (X, d) is an ultrametric space.

Definition 1.1.3. [2] A self mapping T : X — X on the metric space (X, d) is said to

be quasi-contraction if d(Tx, Ty) < k. max{d(z,y), d(z, Tz),d(y, Ty}, d(z, Ty),d(y, T'x)}

where 0 < k < 1.

Definition1.1.4{18] A sclf mapping 7 : X — X on the metric space (X, d) is said to
be contractive mapping if d{Tz, Ty) < max{d{z, Tz),d(y,Ty)} forallz,y € X,z #v.
Definition 1.1.5 [20] An ultrametric space is said to spherically complete if the in-
tersection of nested balls in X is non-empty.

Definition 1.1.6. An element z € X is said to be a coincidence point of f:X—-X
and T': X — C (X} if fx € Tx. We denote C (f,T) = {z € X such that fz &€ Tz}
the set of coincidence points of f and T.

Definition 1.1.7. Let (X, d) be an ultrametric space, and f: X — X and 7 : X —
C'(X). f and T are said to be coincidentally commuting at z € X if fz € Tz implies

JTzCTfz.
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Definition 1.1.8. Let C (X} denote the class of all non empty compact subsets of X.
For A, B € C(X) the Hausdorff metric is defined as H (A, B) = max {sup,.p d (z, A) ,sup,c 4 d (z,b)
where d (z, A) = infd(z,a), a € A.

Definition 1.1.9 [18] A self mapping T : X — X on the metric space (X,d)
is said to be contractive mapping if d(Tz, Ty) < max{d(y,Tz),d(z, Ty)}; for all
r,ye X,z #y.

Definition 1.1.10 Edelstein(3] for all z,y € X and « # y then d(Tz, Ty) < d{z,y).
Definition 1.1.11 A self mapping T : X — X on the metric space (X, d) is said
to be contractive mapping if d(T'z,Ty) < max{d(z,Ty),d(y,Tz),d(z,y)}; for all
T,y € X,z # 1.

Definition 1.1.12 Let (X, d) be a metric space. A mapping T : X — X is said to

be F-contraction if there exist 7 > 0 such that for all z,y € X,

[Tz, Ty)] > 0= 7+ F(d{Tz,Ty)) < Fd(z,y))

Let B be the set of real number and F be the set of all function F : (0,00) — R
satisfying the following condition.

(i) F is strictly increasing.i.e for z,y € (0,00) such that z <y, F(z) < F(3).

(ii) For each seuence {a,}>>, of positive number lim,_a, = 0 if and only if
lim,, ., F (3,) = —co.

(iii} There exist X € (0, 1) such that lim,_o+ o*F (o) = 0.
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1.2 SOME PREVIOUS THEOREM ABOUT THE

FIXED POINT IN ULTRAMETRIC SPACE

Theorem 1.2.1 [4] Let (X, d) be a spherically complete ultrametricspace. If 7 :
X — X is a mapping such that d(Tx, Ty} < maz{d(z,y), d(z, Tz),d(y, Ty) };for all
g,y X,z #y.

Then 7" has a unique fixed point in X.

Theorem 1.2.2 (Zorn’s lemma). Let S be a partially ordered set. If every totally
ordered subset of S has an upper bound, then S contains a maximal element.
Theorem 1.2.3 Let (X, d} be a compact metric space and T : X — X mapping.
Assume that

3d{z, Tz) < d(z,y) implies d(Tz, Ty) < d(z,y); for 2,y € X;. Then T has a unique
fixed point.

Theorem 1.2.4 Let (X, d) be a spherically complete ultrametric space and 7 : X —
C(X) a set-valued mapping. Assume that

2d(z, Tz) < d(z,y) implies H(Tz,Ty) < d{z,y) for 2,y € X. Then T has a fixed
point.

Theorem 1.2.5[5] Let (X, d) be the spherically complete ultrametric space if T :
X — 2% is such that H (Tz,Ty) < {d(z,y),d(z,Tz),d(y, Ty)} for any z,y € X ,
x # y. Then T has a fixed point (i.e there exist x € X, such that z € Tx).
Theorem 1.2.6Let X bc a metric space and T : X — X a generalized nonexpansive
mapping. Then for all z;y € X,

(a) d(Tz,T?z) < d(z, Tz);



(b) Either %d(&:.]‘:}:) < d(z.y) or 3d(T%, Tx) < d(Tz, y);

(c) Either d{T2, Ty) < d(x,y) or d(1*z, Ty) < d{Tx., y).



Chapter 2

Some Fixed Point Results on

Ultrametric space

In metric fixed point theory the contractive conditions on underlying functions play
an important role for finding solution of fixed point problems. Banach contraction
principle is a fundamental result in metric fixed point theory. Due to its importance
and simplicity, several authors have obtained many interesting extensions and gener-
alizations of the Banach contraction principle. B.E Rhoades [18), listed contractive
mapping which is a generalization of Banach contraction principle. Van Roovij.A.C.M
[20] introduced a new metric called Ultrametric and C.Petalas and F.Vidalis[13] and
later on Gajic Lj proved a fixed point results in Ultrametric space as a generalization
of the Banach contraction principle. Over the couple of years, it Lias been generalized
in different directions by several mathematician .

Main Results

11
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Theorem 1 Let (X,d) be a spherically complete wltrametricspace. If T : X — X 15
a mapping such that for every z,y € X,z # y

d(Tz,Ty) < max{d(z,Ty),d(y,Tz),d(z,y)} (2.1)

Then T has o unique fized point.

Proof. Let S, = S (a;d(a,Ta)) denote the closed sphere centered at a with radii
d(e,Ta) and let F be the collection of these sphere for all a € X. The relation 5; =%
Sy if Sy C S, is a partial order on F. Now consider a totally order subfamily Fy of

F. Since (X, d) is spherically complete. We have that
NS, =5 #0.
SueFl
Letbe S and 5, € Fy. Also let £ € 5, then
d(z,b) <d(b,Th) <max{d(ba),d(a,Ta),d(Ta,Th)}.

Using equation (2.1) we have

d(z,b) < d(b,Th) < max{d(b,a),d(a,Ta), max{d(a,Tb),d(b,Ta),d(a,b)}}.

As
d(a,Th) < max {d(a,b),d (b, Th)},
and
d(b, Ta) < max{d (b,a) ,d (a, Ta)}.
Therefore

d(z,b) < max{d(ba},d(e,Ta), max {d(e,b),d(d,Th)}, max{d(h,a),d(a,Ta)},d(a,bd)}

< max{d{a,b),d(a,Ta)} =d(a,Ta)

= d(z,b) <d(e,Ta).
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Now

d(z,a) < max{d(z,b),d(b,a)} £ d(e,Ta).

So z € 8, implies that S, C S, for all S, € Fy. Hence S, is an upper bound of F' for
the family Fy. So by Zorm's lemma F has a mazimal element say S,,z € X. Now we

are going to prove that Tz = z. Suppose Tz # z, i.e. d(2,Tz) > 0. Now
d(T2,TTz) < max{d(z,TTz),d(Tz,Tz),d(z,Tz)}.
As
d{z,TTz) < maxd(z,T2),d (T2 TTz).

Therefore

d(T2,TTz) < max{d(z,T2),d(T2,TTz),d(2,Tz2)},
implies that
d(T2,TTz) < max{d(z,T2),d(T2,TTz)} =d(z,T2)
which implies that
d (T2, TTz) <d{2,Tz).

let y € Br, implies

d(y,Tz) <d(Tz,TTz) <d(z,Tz)

implies that

d(y,Tz) <d(z,Tz)

as

d(y,z) <max{d(y,Tz),d(Tz2)} =d(z,Tz)
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implie
d(y,z) < d(z,Tz)

this means that y € 5, and that St, C S,. On the other hand z ¢ St;.Since
d(z,Tz)>d (Tz2,TTz)

So St g S., which is a contradiction to the mazimality of S,. Hence z = Tz.

For the uniquness let T'u = u be another fized point, for u # z we have that
d(z,u) =d (Tz,Tu) < max{d(z,Tu),d{u,Tz),d{z,u)} =d (z,u)
implies
d (z,u) < d (z,u)
which i3 a contradiction, s0o 2 = u

Ezample 2 Let (X = R, d) is o discrete metric space which is an ultrametric space.

0 #fa=1b
d{a,b) =

1 ifa#b

Let Ta = ¢ then T'c = c is the fized point where c is any real constant.

Theorem 3 Let (X,d) a spherically complete ultremetric space.if T : X — 2% is

such that for any a,b € X |a # b satisfying condition
H (Ta,Th) < max {d(a,Th),d(b,Ta),d(a,b)}.

Then T has a fized point on X.
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Proof. Let S; = S(a;d (e, Ta)) denote a closed sphere centered at a of radii d (a, Ta) =
inf,era d (4,2) for all @ € X and let F be the collection of these sphere. Then the
relatioS, <X S, iff Sy C S, is a partial ordered on F. Let F; be a totally ordered
subfamily of F. Since (X, d} is spherically complete. So

NS, =S #0.
S.€F
Let be S, € F) obviously b € S; as S, € Fy,80

d(b,a) <d {(a,Ta).

Take © € Ta such that

d (a,uv)=d {a,Ta)

(it is possible becaus Ta is non empty compact set). If a = b then 5, = Sp.Assume
that a # b. =

let z € S, which implies that
d (z,by<d (b,Th) < uigifbd(b’ v)
< max {d (b,a),d{a,u) ,uié'qubd(u, v)}
< max{d(a,Ta), H (Ta, Th}}
Using equation (1)

d (ﬂ, b) <d (b, Tb) < max {d (a= Ta') y IMBX {d (aa Tb) ,d (b1 a)}}

d(a,Th) < max{d(a,b),d (b, Tb)}
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and

d (b, Ta) < max {d(b,a},d(a,Ta)}.

Therefore
d(z,b) < max {d(a,Ta), max {d{a,b),d(b,TH)},max {d(b,a),d(a,Ta)},d(a,b)}

= max {d(a,Ta),d(b,a),d (b Th)}

=d(a,Ta)

which implies that

d{z,b) <d(a,Ta)

Now

d(z,a) < max{d(z,b},d(b,a)} < d(a,Ta)

implies that

d{z,a) < d(a,Ta).

Soz € S; and S, C S, for all 5, € Fy. Hence S, is the upper bound of F for the
family F1. So by Zorn’s lemma F has a maximal element say S, . We are going to

prove that z € Tz. Suppose z ¢ Tz then there exist 7 € 7'z such that
d(2,Z2)=d(z,Tz}).

Let us prove that 5; C S,

d{z,Tz) < H (T'2,TZ)

< max{d(z,TzZ},d(zTz),d(z,%)}
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< max {max {d(z,2),d(z,TzZ)} ,max {d (Z,2) ,d (2, T2}} ,d(2,2)}
< max{d(z,77),d(2,Tz),d(2,2)}
= max {d(z,Tz),d(z,Tz)}

which is possible only for

d(z,TZ) < d(z,T2)

which implies that

d(z,Tz) <d(2,Tz).
Let y € 57 implies that
d(y,2) < d(ZTz) <d(2,Tz)
implies that
d(y,Z) < d{2,Tz)
As
¢((y, 7)) < max {d(y,2),d(Z, 2)}
=d(2,Tz)
y € S; implies that S; G S, as z ¢ S which is a contradiction to the maximality of

S;. Hence z € Tz.

Theorem 4 Let (X, d} a spherically complete ultrametric space. If f and T are self

mapping salisfying

TX C fX (2.2)

d(Tz,Ty) < max{d (fz, fy),d(fz,Ty) ,d(fy,Tz)} ,x £y (2.3)
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Then there exist z € X such that z = Tz. PFurther if f and T are coincidentally
commuting at z. Then z is the unique common fized point of f and T.

Proof. Let S, = (fa;d(fa,Ta)) denote the closed sphere centered at fa with radii
d(fa,Ta). Let F be the collection of these sphere for all a € X. Then the relation
Sg 2 8 iff Sp € S, is a partial order on F. Let F| be a totally ordered subfamily of

F. Since (X, d) is spherically complete, we have

N Sa=S5#0

S.€R

Let fbe S and S, € F) then fbe S, hence

d(fb, fa) < d(fa, Ta) (2.4)

ifa=">then S, = S,. Assume thata #£b.Let £ € S, then

d(z, fb) < d(fb,Tb)

< max {d(fb, fe),d(fa,Ta),d(Ta,Th)}
= max {d (fa, Ta),d(Ta,Tb)}
< max {d(fa, Ta), max {d(fa, /) d (fa, T) d (fb, Ta)}}

As

d(fa,Tb) < max{d(fa, fb},d(fb,Th)}

and

d{(fb,Ta) < max {d(fb, fa),d(fa,Ta)}



19

Therefore
d(z, fb) < d(fb,Tb) < max {d(fe,Ta),max {d(fa, fb),max {d(fa, fb),d(fb,Tb)},max {d(fb, ;

=d(fa,Ta) (2.5)
= d(z, fb) < d(fa,Ta)
Now
d{z, fa) < max {d(z, fb),d (fb, fa)}
<d(fa,Ta) from (2.4) and (2.5)

Thusz € S,. Hence Sy C S, for any S, € Fy. Thus S, is an upper bound in F for the
familyFy and hence by the Zorn’s lemma F has a marimal element say S,, z € X. We
are going to prove that fz = Tz. Suppose that fz 3 Tz,since T2 € TX C fX ,there

exist w € X such that Tz = fw.Clearly z # w.

Now from (2.3) we have

d(fw,Tw) = d(TzTw)
< max{d(fz, fw),d(fz,Tw),d(fw, Tz}}
= d(fz, fw)
= d{fw,Tw) <d(fz, fw)
Thus fz € Su, hence S, € S,, which is a contradiction to the mazimality of S,, hence

fz=Tz.

Further assume that f and T are coincidently commuting at z then

Pe=f(f2)=f(T2)=Tfz=TT2=T>
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Suppose fz # z from (2.3) we have
d (Tfz,Tz) < max {d (fz, fz),d(f%2,T2) ,d(f2,Tf2)}

=d(Tfz,Tz)

= d(Tf2,Tz) < d(Tfz,Tz).
which is a contradiction so fz = z thus

fz=Tz=2.

For uniqueness let u be another fized point such that
u= fu="Tu
and u # z.Now
d(Tz,Tu) < max {d(fz, fu),d (fu,Tz),d{(fz, Tu)}
=max {d(fz,Tz),d(fz,Tu}}
= mex{d(Tz, fz),d(fz,Tu)}

=d(Tz,Tu)

= d(T2,Tu) < d(Tz,Tu)

Which is a contradiction sou=z. m
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Ezample § Let (X, d) is discrete metric space

0 ifz=y
d(I1y):
1 ifr=y

LetTz =2 ::uri,df::=’T+2 has a common fized point T = 2.

Theorem 6 Let (X, d) a spherically complete ultrametricspace. Let f : X — X and T :
X — C(X) be satisfying

TrC fX forallz e X (2.6)

H(Tz,Ty) < max{d(fz, fy),d(fz,Ty),d(fy.Tz)} . forallz,y € X,z #y (2.7)

Then there exist 2 € X such that fz€ Tz .

FPurther assume thal

d(fz, fu)a < H(Tfy,Tu),for all z,y,u € X with fr € Ty (2.8)

and

f and T are coincidentally commuting at z. (2.9)

Then fz is the unique common fized point of f and T.
Proof. Let S, = (fa;d(fa,Ta)) denote the closed sphere centered at fa with

radius d (fa,Ta) and let F be the collection of these sphere for all a € X. Then the
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relation S, < Sy ¢ff Sy C S, is a partial order on F. Let Fbe a totally order subfamily
of F. Since (X, d) is spherically complete,we have
NS, =S#0.
Sa€F

Let fbe S and S, € Fy,then fb e S,. Hence

d(fb, fa) € d(fa,Ta) (2.10)
tfa => then S, = S,. Assume that a # b. Let z € S, then

d{z, fb) < d(fb,Th).
Since Ta is compuact there exist u € Ta such that

d{fa,u) =d(fe,Ta) (2.11)

consider

q)

d(fb,Tb) = inf d(fb,c) < max {d(fb,fa),d(fa,u),gbd(u,c)}

< max{d (fa,Ta),d(Ta, Th)} from (2.10) and (2.11)

< max{d(fa,Ta),d(fb,Th)} from(2.10) and(2.7)

thus

d{(fb,Tb) < d(fa,Ta) (2.12)

Now

d(z, fa) < max {d(z, fb),d(fb, fa)} < d(fa,Ta), from(2.10) and(2.12).
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Thusz € S, and S, C 5, for any S, € F. Thus S, is an upper bound in F for the
family Fand hence Zorn's lemma F has a maximal element say S, z € X.

We are going to prove that fz € Tz. Suppose fz ¢ Tz,since Tz is compact, there exist
k € Tz such that

d(fz,Tz) =d{fz,k)

From (2.6} there ezist w € X such that k = fw,thus
d(fw,Tz) = d(fw, fw} (2.13)
Now

d(fw,Tw) < H(Tz,Tw) < max{d(fz, fw},d(fz,Tw),d(fw,Tz)} = d(fz, fw)

Hence f2 € Sy thus S, € S, which is a contradiction to the mazimality of S,. Hence
fz € Tz. Purther assume that (2.8) and (2.9) write fz = p,then p € Tz. from(2.8)

we have

d{p, fp) = d(fz, fp)
< H(Tfz,Tp)=H(Tp,Tp) =0
implies that fp = p.From(2.9) we have
p=fpe fTzCTfz=Tp

Thus fz = p is a common fized point of f and T. Suppose g € X, q # p is such that

g = pq € Tq from (2.7) and (2.8) we have

d(p,q) =d(fp,f) < H(Tfp,Tq)



= H (Tp,Tq) < max{d(fp, fq) ,d(fp,Tp),d(fq,Tq)} = d(p,q)

implies p = g thus p = fz is the unique common fired point of f andT. =

Theorem 7 Let (X, d) be a spherically complete wltrametric space. If S,T: X —- X

are mapping such that

d(Tz,Ty) < {d(Sz,Sy),d(Sz,TSy),d(Sy,TSz)}Vr,y € X, o #y (2.14)

d(Sz, Sy) < d(z,y) (2.15)
TSz =8TzVz € X (2.16)

Then S and T have a unique common fized point in X.

Proof. Using condition (2.15) and (2.16) in (2.14) we have

d{(Tz,Ty) < max {d(Sz, Sy),d(Sz,TSy},d(Sy,TSz)}

which implies that

d(Tz,Ty) < max{d(z,y),d(TSy,St),d{TSz, Sy)}
= max{d(z,y),d(STy, Sz),d{STz, Sy}}
< max{d(z,y),d(Ty,z),d(Tz,y)}

= max{d(z,y),d(z,Ty),d(y, Tz)}

Using theorem(1) T has a unique fized point .i.e there ezist z € X such that z = Tx.
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Now we are to prove that z = Sz.Suppose that z # Sz

d(z,5z}) =

which implies that

d(Tz, STz) = d(Tz,TSz)
max {d (Sz, §%) ,d (7, TS) ,d ($%2,TS2)}
max {d (Sz, §%2) ,d (Sz,5°T7) ,d ($%2,TSz)}
max {d(z,S2),d(Sz, SSTz),d(S5z,5T2)}
max {d(z,S2),d (2, STz),d (Sz,Tz)}

max {d (2,52),d(2,82),d(52,2)} = d(z,52)

d(z,52) < d(z, Sz}

Which is a contradiction and hence z = Sz.

Uniquness: If possible let z and w be two distinet fized point of S and T then

d(z,w) =

d(z,w) <

d(Tz,Tw)
max {d (5z, Sw),d(Sz, TSw),d (Sw,TSz)}
max {d(z,w)},d(z,w),d(w, 2)}

d(z,w)

which €8 not possible and hence z = w. So z 8 the unique fized point of S and T.

NOTE: If we put S = I {identity map) then the theorem(7) reduce to theorem (1). m

Theorem 8 Let (X,d) be o spherically comnplete ultrametric space. If T, f and g are

self maps on X satisfying

g(z) € f(2) (217)



44

26

d(g(z),9(y)) < max{d(f (Tz),f(Ty)),d{f (Tz),9(Ty)),d(f (Ty),9(Tz))} forallz,y € X, x #y

(2.18)

d{(Tz,Ty) < d(z,y) (2.19)
T(f(2))=f(T(z))andT (¢(z)) = 9(T (z)) , for allz € X. (2.20)

Then Tz = fz = gz. Further if f and g are commutative then there exist ¢ unique
common fized point of T, f and g.

Proof. Using equation(2.19) and (2.20) equation(2.18) becomes
d{g(z),9(v) < max {d(T (fz),T (f)),d(T (fz),T (9y)),d(T (fy), T (92}}}

= d{g(z),9(¥)) < max{d(fz, fy},d(fz,gv},d(fy,97)}

by theorem (4) z is the unique common fized point of f and g.i.e z = fz = gz. Now

we are going to prove that z = Tz. Suppose z # Tz, then
d(z,Tz) = d(gz, Tgz) = d(gz, Tz} < max {d (fTz, fT%2),d (fT2,9T%z) ,d (fT?2,gTz)}
=max {d (Tfz,Tfz) ,d (Tfz,T?gz) ,d (T*fz,Tgz)}
=max {d (Tz,T%2),d (Tz,T%z) ,d (T*2,Tz) }
=d (T2, T%2) < d(z,Tz) from equation (2.19)

= d(2,Tz) < d(2,Tz) which i3 a contradiction hence z = Tz.Thus z = fz = gz =
Tz.

Uniqueness: Let w be a different fized point of f, ¢ and T such that w % z. Then

d (2, w) = d{gz, gw) < max{d(fTz, fTw) ,d(fTz,¢gTw),d(fTw,gT2)}
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= max {d (z,w),d{z,w),d (z,w)}
= d(z,w) < d{z,w}

which 1s not possible. Hence z = w.So0 z is the unique common fived point of f,g end
T.
Remark:If we put T = I (identity map) then the theorem(8) reduce to theorem (4) d.c

d{gz, gy) < max{d(fz, fy),d(fz,gy),d(fy,gz)}. =



Chapter 3

Fixed point in ultrametric space

using F-contraction

In this chapter, we establish somne results on coincidence and common fixed points
for a single-valued map, a pair of single-valued maps and of single-valued map with a
multi-valued map in an Ultrametric space which satisfy F-contraction. Qur theorems
generalize and extend the theorems of Mishra and Pant[Generalization of some fixed
point theorems in ultrametric spaces, Adv. Fixed Point Theory, 4(1)(2014), 41- 47],

there by generalizes some known results in the existing literature.

Theorem 9 Let (X, d) be a spherically complete ultrametric space and let T : X — X

be a single value map such that

d(Tz,Ty) > 0=>14+F (d(Tz,Ty)) < F(max{d(z,y),d(z,Ty) ,d (%, Tz)}),forallz,y € X,F ¢
(3.1)
Then T has a unique fized point.

29
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Proof. Fora € X let S, = S(a;d(a,Ta)) denote the closed sphere with center at
a and radius d(a,Ta). Let A be the collection of these spheres for all a € X. Then
the relation S, < Sy if and only if Sy, T S, i3 o pertial order on A. Now consider a

totally ordered subfamily A, of A.Since (X, d) is spherically complete ,we have
NS, =85 # 0.
Sa€A41
Letbe S and S, € A,. Ifz €8, then
d(z,b) < d{b, Th) < max{d(b,a),d(a, Ta),d(Ta, Th)}

Using egquation (3.1) we have

d(z,b) < d(b,Th) < max {d{b,a),d(a,Ta), max{d (¢, Th),d(b,Ta),d(a,b)}}.

As

d(a,Th) < max {d(a,b) ,d (b, Th)}
and

d (b, Ta) < max {d(b,a},d (a, Ta)}
Therefore

d{z,b) < max{d(b,a},d(e,Ta), max {d(a,b),d(b,Th)} max{d(b,a),d{a,Ta),d(a,b)}}

< max {d(b,a),d(a,Ta),d (b, Th)}

< max {d (e, b),d(a,Ta}}

= d(e,Ta)
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which implies

d(z,b) <d(e,Ta).

Now

d(zr,a) < max{d(z,b),d (b(,a))} < d(e,Ta)

Sox €S5S,=> 5, C S, forall S; € A;. Hence Sy 9 an upper bound of A for the family
Ay, So by Zom’s lemma A has a mazimal element say S, for some z € X. We are Lo

prove that z = Tz. Suppose z # Tz. Using equation(3.1)
T+F (d(T2,TTz)) < F (max {d (z,Tz),d (2, TTz) ,d(Tz,T2)}) = F (max {d(2,Tz),d (z,T%z) })

As

d(z,TTz) < max{d (z,T2),d(Tz,TTz)}
therefore
7+ F(d(T2,TT2)) < F(max{d(z,T7),d(T2,TT2),d(2,T2)})
= 7+ F(d(T2,TT2)) < F (max {d(z,T2),d (Tz,T%2)})

which implies that

F(d(Tz,T?%)) < F(d(2,T2))
and since F i3 increasing function so
d(Tz,T%2) < d(z,Tz).

Now if y € 51, then

d(y,Tz) < d(T2T%z) < d(z,Tz)
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and

d(y,z) < max{d(y,Tz),d(Tz2)} =d(2,T2)

which implies that y € S,.Hence Sr, C S,. Since d(2,Tz) > d(Tz,T%z) implies
z ¢ St,. Therefore St, & S; which is a contradiction to the mazimality of S,. Hence
z =Tz, So z i3 the common fized point of T.

Uniquness: Let w be a different fized point. For w # z we have from equation (3.1)

7+ F(d(z,w)) = 7+F (d(Tz,Tw)) < F(max {d(z,w),d(2,Tw),d(w,T2)}) = F (d{z,w))

which implies that
F(d(z,v)) < F(d(z,w))
= d(z,w) < d(z,w),

a contradiction therefore z = w. Hence z is the unique common fized point of T. m

Ezample 10 Let (X = R,d) is a discrete metric space

0 ifr=y
d(z,y) =
1 ¢fzx#y

Let Tx = ¢ then Te = ¢ is the fized point where ¢ is any real constant.

Theorern 11 Let (X,d) be a spherically complete ultrametric space. If T and [ are

single value maps on X salisfying

T(X) € f(X) (3.2)
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d(Tz,Ty) > 0= 7+ F(d(Tz, Ty)) < F (max {d(fz, fy),d(fz,Ty),d(fy, Tz)})

(3.3)

Joralz,ye X,z #y where F € 7,7 > 0.Then there ezist z € X such that fz =Tz,

Further if T and [ are coincidentally commuting at z then z is the unigue common
fixed point of T and f.

Proof. Fora € X let S, = S (fa;d(fa,Ta)) denote the closed sphere with center

at fa and radius d{fa,Ta). Let A be the collection of these sphere for alla € X then

the relation S, < S, if and only if S, C S, 18 a partial order on A.Now consider a

totally order subfamily A, of A. Since (X, d) s spherically complete, we have
n S,=8#90.
€A,

Let fbe S and S, € Ay then fbe S,.Hence
d(fb, fa) < d(fa,Ta) (3.4)
Using equation (3.3)
7+ F(d(Ta,Th)) < F (max{d(fa, fb) ,d (fa,Tb),d(fb,Ta)})
Which implies
F(d(Ta,Th)) < F(max{d(fa, fb),d(fa,Th),d(fb,Ta)}).

Hence

d (Te, Th) < max {d(fa, fb),d (fa,Tb),d (fb,Ta)} (3.5)
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Ifa=bthen S, = Sy.Let a # b and let x € S, then
d(z, fb) < d (fb,Th) < max {d(fb, fa),d (fe,Ta),d(Ta, Tb)}
= max {d (fe,Ta),d(Ta,Th)} from(3.4)
< max {d(fa, Ta),d(fa, fb),d(fa,Tb),d(fb,Ta)} = d(fa,Ta)

which implies that

d(z, fb} < d(fa,Te) (3.6)

Now

d(z, fa) < max {d(z, fb),d(fb, fa)}

< d(fa,Ta) from (3.4) and (3.6).

Thusz € S,. Hence S, C S, for any S, € A;.Thus S, is an upper bound in A for the
family A, and hence by the Zorn's lemma A has a maximal element say 5, for some
z € X. We are going to prove that fz = Tz. Suppose fz #Tz. SinceTze TX C fX

there ezist w € X such that Tz = fw, clearly w # z. Consider
7+ F(d{fw,Tw)) = 7+ F (d(Tz,Tw))
< F(max{d(fz, fw),d(fz,Tw),d(fw,T2}})
which implies that
F(d(fw,Tw)) < F (max{d(fz, fw),d(fz, Tw),d(fw,T2)}) = F(d(fz, fw))

which implies that

F{d(fuw,Tw)) < F(d(fz fu))
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Thus

d(fw,Tw) < d{fz, fw)

Hence fz ;C_ Sw. Therefore 5, ;C_ S. which is a contradiction to the marimality of
S;. Hence f2 =Tz.

Since f and T' are coincidentally commuting at z then
frz=f(f2) = f(T2) =T (fz) =T
Now to show that fz = z. Suppose fz # z, then we have
T+ F(d(Tf2,Tz)) < F (max {d (f*2, fz} ,d (f*2,T2),d(f2,Tfz)})
= F(d(Tfz,T2) 1+ F{d(Tfz,Tz))
< F(d(TfzT2)

implies that

F(d(Tfz,Tz)) < F(d(Tfz,Tz))
which gives
d(Tfz,Tz) <d(Tfz,Tz)
a contradiction. Hence fz = 2. Thus fz = Tz = z. Therefore z is the common fived

point of f and T

Uniqueness: Let w be a different fized point. For w # z we have
7+ F(d(z,0)) = 7+ F (d(Tz,Tw)) < F (max{d(fz, fv),d{fw,Tz},d(fz, Tw)})

Hence we have

F(d(z,v)) < F (max{d(fz fv),d(fw,T2),d(fz,Tw)})
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= F(d(z,w))

= F(d(z,w)) < F(d(z,w))
which implies that
d(z,w) <d{z,w)

which is a contradiction. Therefore z = w. Hence z is the unique common fized point
of fandT. =
Ezample 12 Let (X, d) is discrete metric space

0 ife=y
1 fr#y

Let Ty = 3 and fx = = has a common fized point = = 3.

d(z,y) =

Theorem 13 Let (X, d) be a spherically complete ultrametric space. If T : X — 2%

is a multivalue mapping such thai

H(Tz,Ty) >0=> 1+ F(H(Tz,Ty)) < F(max {d(z,y),d(z,Ty),d(y, Tz)})

3.7)

Joralz,ye X, Fc Fr>0. Then T has ¢ fized point on X.

Proof. For a € X let S, = S (a;d (2, T'a}) denote the closed sphere with center at
a and radius d(a,Ta) = iEan d(a,z) > 0. Let A he the collection of these sphere,the
relation 5, = 5 if and only if S, C S, is a partial order on A. Now consider a totally

order subfamily A, of A. Since (X, d} is spherically complete, we have

N S.=S5#0

SnEAl
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Let b€ S and S, € A; Obviously b € S, as S, € A;.50
d{b,a) < d{a,Ta).

Take u € Ta such that

dfa,u) =d(a,Ta).

(it is possible because T'a is non empty compact set). If ¢ = b then S, = S;. Assume

that a # b let £ € S, which implies that
d(z,b) <d(b,Th) < uié]}fbd {b,v) < max {d (b,6},d(a,u) ,uigg'bd (%, v)}
< max {d(a,Ta},H (Ta,Th)}
Using equation (3.7)

d{z,b) < d(b,Th) < max {d (a,Ta),max {d{a,Tb),d(b,Ta),d(a,b)}}

As

d{(a,Th) < max {d (a,b},d (b, Tb)}
and

d (b, Ta) < max{d(b,a),d(a,Ta)}.
Therefore

d{z,b) < max {d (a,Ta),max {d (a,b) ,d (b,T)} ,max {d (b,a),d (a,Ta)},d{a,b)}

= max {d (a,Ta),d (b,a),d(b,Th)} = d(a, Ta)

= d(z,b) < d(a,Ta)
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Now

d{z,a) < max {d(z,b),d (b,a)} < d{a,Ta)
= d(z,a) < d(e,Ta)

Sozxr €S, and 5, C S, for all §, € A;. Hence S, is the upper bound of A for the
family A;. So by Zorn’s lemma A has a maximal element say S,. We are going to

prove that z € T'z. Suppose z ¢ Tz then there exist z € Tz such that
d(z,2) =d(z,T2).

Let us prove that 55 C S,.

d(7,TZ) <7+ F(H(TzT7) )< F(max{d( 27Tz ,d(%Tz) ,d(237) })
< F(max {max {d (2,%) ,d (z,TZ)} ,max {d (%, 2) ,d (z,T2)},d(2,2)})
< F(max{d(z,Tz),d(2,T2),d(z,%)}) = F (max {d (z, T%) , d (2, T2)})
=d(z,TZ) <7+ F(H(T2,TZ)) < F(max {d(z,Tz) ,d(2,Tz)})
= d(2,Tz) < F(H (T2, T2)) < F (max {d(z,Tz7) ,d(2,T2)})
= d(z,T7) < H(T2,T7) < max {d(2,T%),d(z, Tz)}

which is possible only for
d(z,T7) < d(z,Tz)

this implies that
d(z,T%) < d(z,Tz)

Let y € S5y = d(1,7) < d(7,T7) < d{2,Tz) = d(y,7) < d(2,Tz). As d(y,z) <

max {d(y,%),d(Z,2)} = d(z,Tz) ,y € S, implies that Sz & S, as z ¢ S; which is a

contradiction to the maximality of S,. Hence z€ T'z. w
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Theorem 14 Let (X,d) be a spherically complete ultrametric space. If f : X — X

18 @ gingle value map and T : X -+ C (X} i3 o mutivalue map satisfying

TrCfX forallze X (3.8)
and
H(Tz,Ty) > 0= 7+ F(H (T2, Ty)) < F (max {d(fz, fy) ,d(fz,Ty),d{fy,T7}})

(3.9}
For all z,y € X, where F € F, 7 > 0.Then there ezist 2 € X such that fz €
Tz Purther if
a(fz, fu) < H(T fy,Tu),

Jorallz,y,vw € X with fxr € Ty and f and T are coincidentally commuting at z then
Tz is the unique common fized point of f and T.

Proof. Fora € X let S, = S(fa;d(fa,Ta)) denote the closed sphere with center
at fa and radius d{fa,Ta). Let A be the collection of these sphere for all a € X the
relation S, <X 5; if and only if S, C S, is a partial order on A. Now consider a totally
order subfamnily A; of A. Since (X, d) is spherically complete, we have

&lrﬁwAlS‘1 =5#0
let fb €S and 5, € A; then fb € 5,. Hence
d(fb, fa) < d(fa,Ta) (3.10)
If @ = 5 then S, = S,. Assume that a # b let z € S, then d(x, fb) < d(fb,Th) . Since

T'a is compact there exist u € Ta such that

d(fa,u) =d(fa,Ta) (3.11)
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Using (3.9)
T+ F (H (Ta,Tb)) < F (max {d (fa, fb},d(fa,Tb),d(fb,Ta)})
= F(H (Ta,Tb)) < F (max {d(fa, b),d(fa,Tb),d(fb,Ta)})
= H (Ta,Tb) < max {d (fa, fb),d(fa, Tb),d(fb,Ta)}
= H (Ta,Tb) < max {d(fe, fb),d(fa, fb),d (b, Tb),d(fb, fa},d(fa, Ta)}
— max {d (fa, fb),d{fa, Ta),d(fb,Th)} = max{d(fa,Ta),d(fb, Th)} from (3.8)
= H(Ta, Tb) < max{d(fa,Ta),d(fb,Tb)}
Now consider
d(fb,Th) = inf d(fb,c) < max {d( 14, fa),d(fa,u), infd (u, c)}
< max {d(fa,Ta),d(Ta,Th)} from (3.10) and (3.11)
< max {d(fa,Ta),d (fb,Th)} from (3.10) and (3.9)

Thus

d(fb,Th) < d(fa, Ta) (3.12)

Now
d(z, fa} < max {d(z, fb}),d(fb, fa)} < d(fa,Ta) from (3.10) and (3.12).

Thus z € 5,. Hence S, C 9, for any 5, € A;. Thus S, is an upper bound in A for the
family A; and hence by Zorn’s lemma A has a maximal element say 5,, z € X. We
are going to prove that fz € Tz, Suppose that fz ¢ T'z. Since Tz is compact, there
exist & € Tz such that

d(fz,Tz)=d(fz k).
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Since Tz C fX so there exist w € X such that k = fw.Thus
d(fz,Tz) = d(fz, fw)
clearly w # z using equation (3.9)
T+ F(H(Tz,Tw)) < F(max {d(fz, fw},d(fz,Tw),d(fw,Tz}})
= F(H(TzTw)) < F (max{d (fz, fw},d(fz,Tw),d(fw,T2)})
which implies that
H (T2, Tw) < max{d(fz, fw),d(fz,Tw),d(fw, T2)}
Now
¢(fw,Tw) < H (T2, Tw) < max{d(fz, fw),d(fz,Tw),d(fw,Tz)} = d(fz, Tw)
= d(fw, Tw) < d(fz,Tw).

Hence fz ¢ S,. Thus S, € S, which is a contradiction to the maximality of S;. Hence
fzeTz.

Now consider
d(fz,f'z) = d(fz,ff2) < H (Tf2,Tfz) =0
= ffz=fz

Thus

fz=ffze fT2CTfz

Hence fz is the common fixed point of f and T'.

Uniqueness: Let Tw be another fixed point such that fz 3¢ fis.Using equation (3.9)

T+ F(H(Tfz,Tw)) < F (max{d(ffz, fw),d(ffz,Tw),d(fw,Tf2}})
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= F(H(Tfz,Tw)) < F (max {d(ffz, fw),d(ffz,Tw),d(fw,Tfz}})

= H{Tfz,Tw) < max {d(f fz, fw),d(ffz,Tw),d (fw,Tfz}}.

Now consider
d{fz, fw) < H(Tfz,Tw) <max{d(ffz, fw),d(ffz,Tw),d(fw,Tfz)} <d(fz, fw)

= d(fz, fw) <d(fz fw)

a contradiction so fz = fw. Hence fz is the unique common fixed point of f and T.

Theorem 15 Let (X, d) be a spherically complete ultrametric space and let T : X —

X be a single value map such that

d(Tz,Ty) > 0=> 7+ F (d(Tz,Ty)) < F(max {d(z,Tz),d(y,Ty)}),forallz,y € X,7 >0
(3.13)

Then T has a unique fized point.

Proof. For a € X let 5, = S(eg;d(e,Te)}) denote the closed sphere with center
at ¢ and radius d (a, Ta) . Let A be the collection of these spheres for all ¢ € X. Then
tbe relation S, < S, if and only if S, C S, is & partial order on A. Now consider a

totally ordered subfamily A; of A. Since (X, d) is spherically complete ,we have

NS, =S #0.

SaEAl

letbe S=be S; as S, € A1. Hence

d(a,b) < d(e,Ta).
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a contradiction. Therefore,

d(z,b) <d(a,Ta).

So z € S, hence S; C S, for any S, in A;.Thus S} is the upper bound for the family
A; in A, and hence by Zorn’s lemma A has a maximal element say S5, for some

2 € X. We are to prove that z = T'z. Suppose that z # Tz. Using equation(3.13)
T+ F (d(Tz,T%2)) < F{max {d(2,Tz},d (Tz,T?z)})
= F (d(T2,T*2)) < F(max {d(z,Tz),d (Tz,T%2)})
= F(d(T2,T*2)) < F(d(2,T%)).
Since F is increasing function so
d(Tz,T%z) < d(2,T2).
Now if y € Sr, then

d(y,Tz) <d(Tz,T%) <d(z,Tz).

d(y,z) < max{d(y,Tz),d(Tz z}} =d(z,Tz)
= d(y,2) < d(s,T2)

which implies ¥ € §,. Hence S, C 8,.Since d(z,Tz) > d(Tz,T%2) implies z ¢
Sy,. Therefore St, g S, which is a contradiction to the maximality of S,. Hence

z =Tz is the common fixed point of T

Uniqueness: Let w be a different fixed point by equation(3.13) for w # z we have

T+ Fd(z,w)) =7+ F(@d(T2,Tw)) < F(max{d(z,Tz2),d (w,Tw)})
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= F(d{(z,w)) < F (max {d(2,Tz),d(w, Tw}})
= d{z,w) < max{d(z,Tz),d(w, Tw)}
=>d{z,w) <0
Which is a contradiction so w = z. Hence z is the unique common fixed point of T'.

Theorem 18 Let (X, d) be a spherically complete ultrametric space. If T : X — 2%

is ¢ multivalue mapping such that

H(Tz,Ty)>0=>1+F(H(Tz,Ty)) £ F(max {d(z,Tz),d(y,Ty}}) forallz,ye X, Fe F,7 >

(3.14)

Then T has e fized point on X.

Proof. For a € X let S, = S{a;d(a,Ta)) denote the closed sphere with center
at a and radius d (g, Ta) . Let A be the collection of these spheres for all ¢ € X. Then
the relation S; < S if and only if S, C S, is a partial order on A. Now consider a
totally ordered subfamily A, of A. Since (X, d) is spherically complete ,we have

NS, =S #40.
Sa€Ay
Letbe S=>be S, a8 S, € A;. Hence

d{a,b) < d(a,Ta).

Ietbe S=>b€e S, a8 S, € Ay, hence d(a,b) < d{(a,Ta). Take u € Ta such that

d(a,u) = d(a,Ta).(it is possible because T'a is non empty compact set). If a = b
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then S, = Sp. Assume that a # b, let z € 5, s0
d(z,b) <d(dTh) < ﬂiéqubd {(b,v) < max {d (b,a),d(a,u), uiélﬁfbd (u, v)}
< max {d(a,Ta), H (Te,Th)} < max {d(a,Ta),max {d(a, Ta},d(b,Th)}} from (3.14)
=d(e,Ta)

= d(z,b) < d{(a,Ta).S0z € S, hence S, C S, for any S, in A;. Thus S, is the upper
bound for the family A; in A, and hence by Zorn’s lemma A has a maximal element
say S, for some 2z € X. We are to prove that z € Tz. Suppose that z ¢ Tz. Then

there exist Z € T'z such that
d(z2,Z) =d(z,Tz).

Now

d(z,T2) <7+ F(H(T2,Tz)) < F (max{d(2,T2),d(z,T7)})
= F(d(z,T2))
= d(z,TZ) < F (H(T2,T7)) < F (d(z,Tz))
= d(z,Tz) < H(T2,TZ) <d(z,T2)
= d(z,T7) < d(2,Tz).
Let y € S; implies that

d(y,z) <d(Z,Tz) < d(2,T2)

= d(y,7) <d(2,Tz).
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d{y,z) <max{d(y,2),d(z,2)} = d(2,Tz)
= d(y,2) <d(z,Tz)

vES, = 5 ;Ct S;, a8 z ¢ Sz which is a contradiction to the maximality of S,. Hence
zeTz

Now we extend the idea to pair of junck type mapping. ™

Theorem 17 Let (X,d) be a spherically complete ultrametric space. If Tand f are

gingle velue mapps on X satisfying

TX C fX (3.15)

d{Tz,Ty) > 0=>7+F (d(Tx,Ty)) < F(max{d(fa,Ta),d(fb,Th)}) forallz,y € X,z # y
(3.16)
where F € F,7 > 0.Then there ezist z € X such that fz = Tz. Further if T and f

are coincidently commuting at z. Then z is the unique common fixed point of T and

f.

Proof. Fora € X let S, = S(fa;d(fa,Ta)) denote the closed sphere with center
at fe and radius d(fa,Te). Let A be the collection of these sphere for all @ € X
then the relation S, < 5} if and only if S, C S, is a partial order on A.Now consider

a totally order subfamily A; of A. Since (X, d) is spherically complete, we have

SGQAIS“ =5#0.
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Let fb € S and S, € A, then fb € S, Hence
d(fb, fa) < d{fa, Ta) (3.17)
Using equation (3.16)
T+ F(d(Ta,Th)) < F (max {d (fa, Ta),d(fb, Th)})
= F(d (Ta,Th)) < F (max {d(fa,Ta),d(fb,Th)})
= d(Ta, Tb) < max {d(fa, Ta),d (fb, Th)} (3.18)
If a = b then S, = S,. Suppose a # blet 7 € S,
= d(z, fb) < d(fb,Th) < max {d(fb, fa),d(fe,Ta),d(Ta,Th)}
< max{d{fb, fa),d(fa,Ta}, max{d(fa,Ta),d(fb,Th)}} using (3.18)
= d(fa,Ta) using equation (3.17) (3.19)
= d(z, fb) < d(fa,Ta).
Now
d(z, fa) < max {d(z, fb),d (fb, fa)} < d(fa,Ta) from (3.17) and(3.19).

Thus x € S, = S, C S, for any S, € A;. Thus S, is an upper bound in A for the
family A, and hence by Zorn’s lemma A has a maximal element say S, for some
z € X. We are going to prove that fz = Tz.Suppose fz # TzSince T2 € TX C fX

there exist w € X such that Tz = fw and z # w. Now consider

T+ F{d(fw,Tw)) =7+ F(d(T2,Tw)) £ F(max {d(fz,Tz},d (fw, Tw)})
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= F{d(Tfz,Tz)) < F {max {d(fz, Tfz),d(fz, Tz)})
= d(Tfz, Tz} <max {d (f*2,Tfz),d(fz,Tz}}
= d{Tfz,Tz) <0

Which is a contradiction, hence fz = z. Therefore z is the common fixed point of f
and T.

Uniqueness: Let w be another fixed point for w # z, we have
T+ F(d(2,w)) = 7+ F (d(T2,Tw)) < F(max{d(fz,Tz),d{fw,Tw)})
= F(d{Tz,Tw)) < F(max {d(fz,Tz),d{fw, Tw)})
= d(Tz,Tw) < max{d(fz,Tz),d(fw, Tw)}
= d({Tz,Tw) < max{d(Tz,Tz),d (Tw,Tw)} =0
=d(Tz,Tw) <0
Which is a contradiction.which is a contradiction. Therefore 2 = w.Hence z is the
unique common fixed point of f and 7. =
Example 18 Let (X = R,d) is discrete metric space
0 fx=y

d{z,y) =
1 ifz#y

Let Tz = 6 and fz = &5 has a common fized point T = 6.

Theorem 19 Let (X,d) be a spherically complete ultrametric space. If f : X — X

is a single value map and T : X — C{X) 19 a mutivalue map satisfying

Tz C fX forallze X (3.20)
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and
H(Tz,Ty) > 0= 1+ F(H(Tz,Ty)) < F(max{d (fz,Tz),d{(fy,Ty)}) (3.21)

Forall z,y € X, where F € F, 7 > 0.Then there exist z € X such that fz €
Tz.Further if

d(fz, fu) < H(Tfy,Tu),

Jorallz,y,u € X with fz € Ty and f and T are coincidentally commuting at z then

Tz is the unigque common fized point of f and T.

Proof, Fora € X let S, = S(fa;d(fa,Ta)) denote the closed sphere with center
at fa and radius d(fe,Ta). Let A be the collection of these sphere for all a € X the
relation S, < 5, if and only if S, C S, is a partial order on A.Now consider a totally
order subfamily A; of A. Since (X, d) is spherically complete, we have

s..QAIS" =S5#0
let fb€ S and S, € A; then fb € 5,.Hence

d(fb, fa) < d(fa,Ta) (3.22)

if a = b then S, = S;.Assume that a # b let x € 5, then d (z, fb) < d(fb, Tb). Since

Ta is compact there exist u € Ta such that
d(fa,u) =d(fa,Ta) (3.23)
Using (3.21)

7+ F (H (Ta,Th)) < F(max {d(fa,Ta),d(fb,T)})
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= F(H (Ta,Tb)) < F (max{d (fa, Ta),d(f5,T5)})
= H(Ta,Th) < max {d(fa,Ta),d(fb,Tb)}
Now consider
3(7078) = iafd (7b,0) <max {16, ), (0,0), g )}
< max{d(fa, Ta), H (Ta,T)} from (3.22) and (3.23)
< max{d(fa, Ta),d (fb,T)} from (3.22) and (3.21)

Thus

d(fb,Th) < d(fa, Ta) (3.24)
Now
d(z, fa) < max{d(zx, fb},d(fb, fa)} < d(fe,Ta) from (3.22) and (3.24).

Thus z € S, hence S, C S, for any S, € Ay. Thus S, is an upper bound in A for the
family A; and hence by Zorn’s lemma A has a maximal element say S;, z € X. We
are going to prove that fz € Tz.Suppose that fz ¢ T'z. Since T’z is compact, there
exist & € Tz such that

d{fz,Tz)=d(fz,k).

Since T'r C fX so there exist w € X such that ¥ = fw.Thus
d(f2,Tz)=d(fz, fw)

clearly w # z using equation (3.21)

7+ F(H (T2, Tw)) < F (max{d(fz,Tz),d{fw, Tw)})
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= F(H (Tz,Tw)) < F (max{d(f2,Tz),d(fw,Tw)})

which implies that
H(Tz,Tw) < max{d (fz,Tz},d(fw, Tw})}

= max {d(f2 fuw),d(fuw,Tw)} = d(f2,Tu)
= H (Tz,Tw) < d(fz,Tw)

Now

d{fw,Tw) < H(Tz,Tw) <d(fz,Tw)
= d(fw,Tw) < d(fz,Tw).

Hence fz ¢ S,.Thus S, € S, which is a contradiction to the maximality of S,. Hence
fz €Tz

Now consider

d(fz,f22) =d(fz,ffz) < H(Tf2,Tfz) =0
= ffz= fz.

Thus

fz=ffze fTzCTfz.

Hence fz is the common fixed point of f and 7.

Uniqueness: Let fw be another fixed point such that fz # fw. Using equation {3.21)
T+ F(H(Tfz,Tw))=7+ F(H(T2,Tw)) < F (max {d(fz,Tz),d{(fw, Tw}})

= F(H (Tf2,Tw)) < F (max{d (fz,T2),d(fw, Tw)})



q-

B )

‘qr

54

= H(Tfz,Tw) <meax{d(fz,Tz},d{fw,Tw}}.

Now consider
d{z,w) =d(fz, fw) < H(Tfz,Tw) < max{d(fz,Tz),d(fw,Tw)} =0

= d(z,w) <0

a contradiction so fz = fw.Hence fz is the unique common fixed point of fand 7.

Example 20 Let X = (—00,00) endowed with the usual metric and T : X — X
defined by Tx = z + == for all x € X Note that X is complete and T is contractive

1+e*

mapping but T does not have o fired point.

0 ifr=y
d{r,y) =
1 ifz#y

Let Tz =3 and fr = ¥ has a common fizved point z = 3.

Theorem 21 Let (X,d) be a spherically complete ultrametric space and let T : X —

X be a single value map such that

d{Tz,Ty) > 0= 7+ F (d(Tz,Ty)) < F(max {d(z,Ty),d(y, Tz)}},forallz,y e X, 7> 0

(3.25)

Then T has o unique fized point.

Proof. Fora € X let S, = S({a;d (a,Ta)) denote the closed sphere with center

at a and radius d (e, Ta) . Let A be the collection of these spheres for all « € X. Then
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and
d(b,Ta) < max {d(b,a),d(a,Ta)}.
s0
d(z,b) < d{b, Tb) < max {max {d (a,b),d (b, Tb)} , max {d (b,a) ,d (a, Ta)}}
= max {d (b, a),d(a, Ta),d (b, Th)} < max{d(a,Ta),d (b, Th)}
= d(z,b) < d(b,Th) < max {d(a,Ta),d (b, Th)}

if

d(b,Th) < d(a, Ta)
then

d(z,b) < d(a,Ta).
if

d(a,Ta) < d (b, Tb)
then

d(z,b) < d(b,Tb) < d(b,Th)
= d(b,Tb) < d (b, Tb)

Which is a contradiction, therefore

d(z,b) < d(a,Ta)

so z € Sp.Now

d(z,a) < max {d(z,b),d(b,e)} < max{d(z,b),d (s, Ta)}
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=d{a,Ta)
= d(z,a) < d(a,Ta}

So z € 8, hence S, C S, for any S, in A;.Thus S, is the upper bound for the family
A; in A, and hence by Zorn’s lemma A has a maximal element say S, for some

z € X. We are to prove that z = T'z. Suppose that z # Tz. Using equation(3.25)

7+ F(d(T2,TT2)) < F(max {d(2,TT2),d(Tz T2)})

d{z,TTz) < max{d(z,Tz),d(Tz,TTz)}

Therefore

T+ F(d(T2,TTz)) < Fmax{d(2,Tz),d(Tz,TTz)}
= F(d(2,Tz))
=17+ F(d(T2,TTz)) < F(d(2,Tz))
= F(d(Tz2,TTz)) < F(d(2,Tz))
Since F is increasing function
d{Tz,TTz) < d(z,Tz).
Now if y € St, then
d(y,Tz) <d{T2,TTz) <d(2,Tz).

And

d{y,z) <max{d(y,Tz),d(Tz,z)} =d(2,Tz)
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= d{y,2) £ d(z,Tz)

Which implies y € S,. Hence Sy, C S..Since d(z2,Tz) > d(T2,T?z) implies z ¢

Stz. Therefore Sr, g S, which is a contradiction to the maximality of S.. Hence
z = Tz is the common fixed point of 7.

Uniqueness: Let w be a different fixed point by equation(3.25) for w # 2 we have
T+ F{d(z,w)) =7+ F(d(Tz,Tw)) < F (max {d(z, Tw},d(w, Tz)})

< F (max {max {d (2, w) ,d(w,Tw)}, max {d(w, z),d (z,T2}}}) = F (d (z,w))
-7+ F(d(z0)) € Fd(z,0)
= F(d{z,w)) < F(d(z,w})

therefore

d{z,w) < d(z,w)

Which is a contradiction. m

Example 22 Let (X, d) is discrete metric space

0 ifr=y
d{z,y) =
1 ffz#y

Let Tz = ¢.Then Tc = c i3 the common fized point where ¢ is any real constant.

Theorem 23 Let (X,d) be a spherically complete ultrametric space. If T : X — 2%

6 ¢ multivalue mapping such that

H(Tz,Ty} > 0= 7+ F (H (Tz,Ty)) < F (max{d (z,Ty) ,d(y,Tz)}) foraliz,ye€ X, FEF, 7> 0

(3.26)
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Then T has a fized point on X,

Proof. For a € X let S, = S(a;d(a,Ta}) denote the closed sphere with center
at ¢ and radius d(a,Ta) . Let A be the collection of these spheres for all ¢ € X. Then
the relation S, < S, if and only if S, C S, is a partial order on A. Now consider a
totally ordered subfamily A; of A. Since (X, d} is spherically complete ,we have

$55,=540
Letbe S=2>b€ S, as §;, € A;. Hence

d(a,b) <d(a,Ta).

Take u € Ta such that d (g, u) = d(a, Ta).(it is possible because T'a is non empty compact set) . If

a = b then S, = 5. Assume that a # b, let £ € Sy, so
d(z,b) < d(bTh) < u]élngd (b,v) < max {d (b,a),d (a,u), Jé‘ﬁd (u, ‘u)}

< max{d(a,Ta), H (Ta,Th)} < max{d(a,Ta},max {d(a,Tb},d (b, Ta)}} from (3.26)

As

d(a,Th) < max {d(a,b),d (b, Th)}
and

d (b, Ta) < max {d(b,a),d(a, Ta)}
therefore

d{z,b) < max {d(a,Ta),max {d(a,b),d(b,Th)}, max {d (b,a),d(a,Ta)}}
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= max {d (b,a) ,d(a,Ta),d(b,Th)} = d(a,Ta)
= d(z,b) < d(e,Ta).

Now

d(z,a) < max {d(z,b),d(b,a)} < d(a,Ta)
= d{z,a) < d(a,Ta)

Soz € 8, hence S; C 8, for any S, in A;. Thus S, is the upper bound for the
family A; in A, and hence by Zorn’s lemma A has a maximal element say S, for some
z € X. We are to prove that z € T'z. Suppose that z ¢ T'z. Then there exist Z € Tz
such that

d(z,Z) =d{z,Tz).

Now

d(z,Tz) <7+ F(H(T2,T7)) < F(max {d(2,Tz) ,d(2,Tz)})
< F(max {max {d(2,2),d(z,T2)} ,max {d(z,z) ,d (2, Tz)}})
< F(max{d(z,Tz),d(z,Tz)}) = F (d(z,Tz))
This implies
d(z,T7) < F(H (T2 T7)) < F(d(z,Tz))
= d(z,T%) < H (T2,T7) < d(z,Tz)
= d(7,77) < d(2,T7).

Let y € By implies that

d(y,7) < d(Z,T7) <d(z,Tz)
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= d(y,7) < d(2,Tz).

d (y! z) < max {d (y, E) ,d (Es Z)} = d(z: TZ)
= d(y,z) £ d(z,Tz)

yES, = 5 g S;, a8 z ¢ St which is a contradiction to the maximality of S;. Hence
zeTz.

Now we extrnd the idea to pair of junck type mapping. =

Theorem 24 Let (X,d) be e spherically complete ultrametric space. If Tand f are

single value mepps on X satisfying
TXCfX {3.27)

d(Tx, Ty} >0=> 7+F{d(Tz,Ty)) < F(max{d(fa,Tb},d(fb,Ta)}) forallz,yc X,z #y
(3.28)
where F € F, 7 > 0.Then there exist z € X such that fz = Tz. Further if T and f

are coincidently commuting at z.Then z is the unique common fized poinl of T and

f.

Proof. Fora € X let S, = S(fe;d(fa,Ta)) denote the closed sphere with center
at fa and radius d(fa,7Ta). Let A be the collection of these sphere for all ¢ € X
then the relation S, < S, if and only if S, C S, is a partial order on A. Now consider

a totally order subfamily A; of A.Since (X,d) is spherically complete, we have

SQQAISQ =B+#0.
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Let fb€ S and S, € A, then fb € S,.Hence
d(fb, fa) < d(fa,Ta) (3.29)
Using equation (3.28)
T+ F(d(Ta,Tb)) < F (max {d(fa,Th),d(fb,Ta)})

= F(d(Ta,Tb)) < F (max {d(fa,Tb),d(fb,Ta)})
= d(Ta, Tb) < max {d(fa,Ta),d (fb,Th)} (3.30)

If fa = fb then S, = 5,.Supposefa # fblet x € S
= d(z, fb) < d(fb,TH) < max{d(fb, fa),d(fa,Ta),d(Ta, Th)}

< mox {d(fb, fa) ,d(fa, Ta) ,max {d (fa, Tt),d (fb,Ta)}} using (3.30)

As

d(fa,Th) < max {d(fa, fb),d(fb,Tb)}
and

d(fb,Ta) < max {d(fb, fa),d(fa, Ta)}.
Therefore

d(z, fb) < d(fb,Tb) < max {d(fb, fa),d(fa,Ta), max {max {d(fa, fb),d(fb,Th)} ,max {d(fb, fa),d ()
=d(fe,Ta)
= d(z, fb} < d{(fa,Ta)

Now

d(z, fa) < max {d(z, fb),d(fb, fa)} < d(fa,Ta)
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Thus z € 5, = S, C 5, for any S, € A;. Thus 5, is an upper bound in A for the
family A, and hence by Zorn’s lemma A has a maximal element say S, for some
z € X. We are going to prove that fz = T2.Suppose fz# T2 Since Tz € TX C fX

there exist w € X such that T2 = fw and z # w.Now consider

T+ F{d(fw,Tw)) =7+ F(d(Tz,Tw)) € F(max {d(fz,Tw),d(fw,Tz)})

d(fz,Tw) < max {d(fz, fw),d(fw, Tw)}
So
T+ F{d{fw,Tw)) < F (max {max {d (fz, fw),d(fw,Tw)},d(Tz,Tz)})
= F(d{fw,Tw)) < F (max {d(fz, fw),d (fw,Tw)})
= d(fw, Tw) <meax{d(fz, fw),d (fw, Tw)} = d(fz, fw)
= d{(fw,Tw) < d{(fz, fw).
Let y € S,, implies that
d(y, fw) < d(fw,Tw) < d(fz, fw) = d(fz,Tz)

= d{y, fw) <d(fz,Tz).

d(y, fz) < max {d(y, fw),d(fw, f2)} =d(f2,Tz), as Tz = fw.
So

d(y, fz) < d(fz,Tz).
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d{y, fz) < max {d(y, fw),d(fw, f2)} =d(f2,T2),es Tz = fw
= d(y, fz) £ d(fz,Tz).
Asye S, =8, % S, 88 fz ¢ S, which is a contradiction to the maximality of
S;. Hence Tz = fz. Suppose f and T are coincidentally commuting at z then
flz=f{f2)=f(T2) =T (fz) =Tz
To show that fz = 2. Suppose that fz # z.Now
T+ F(d(Tfz,T2)) < F (max {d (f*2,Tz),d(fz,Tfz)})
= F(d(Tfz,T2)) < F{max {d(f*2,Tz),d(fz,Tfz)})
= d(Tfz,Tz) < max{d(f*z, f2) ,d (fz, f*2}}
=d(f2 f*2) =0
= d(Tfz,Tz) <0

Which is a contradiction, hence fz = 2. Therefore 2 is the common fixed point of f

and T. Uniqueness:Let w he another fixed point for w # z, we have
T+ F(d(z,w)} =7+ F(d(T2,Tw)) < F (max {d(fz,Tw),d(fw,Tz)})
= F(d{(z,w)) < F (max{d(fz,Tw},d(fw,T2)})
= d(z,uw) < max{d(fz, Tw},d(fw,T2)}
= max {d (z,w),d (w,2)} = d(z,2) =0
= d(z,w) <0

Which is a contradiction.So z is the unique common fixed point of f and 7. =
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Example 25 Let (X = R, d) is discrete metric space

0 fz=y
d(z,y) =
1 ifr#y

Let Tz =3 and S5z = 5{—3 has a common fized point T = 3.

Theorem 26 Let (X, d) be a spherically complete ultrametric spaceIf f : X — X is

a single value map end T : X — C{X) is a mutivalue map satisfying
Tz C fX forallze X (3.31)
and
H(Tz,Ty)>0=> 7+ F(H (T2, Ty)) < F(max {d(fz,Ty),d{fy,Tx)}) (3.32)

Jor el z,y € X, where F € F, 7 > 0.Then there exist 2 € X such that fz €
Tz.Further if

d(fz, fu) < H(Tfy,Tu),

forallz,y,u € X with fr € Ty and f and T are coincidentally commuting at z then

Tz is the unique common fized point of f and T.

Proof. Fora € X let S; = S (fa;d{(fa,Ta)) denote the closed sphere with center
at fa and radius d(fa,Ta) . Let A be the collection of these sphere for all ¢ € X the
relation S, < S, if and only if S, C 9, is a partial order on A. Now consider a totally

order subfamily A; of A. Since (X, d) is spherically complete, we have

N S, =8#0

S.€A;
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let fb€ S and S, € A; then fb € S,..Hence
d(fb, fa) < d(fe,Ta) (3.33)

if fa = fb then S, = S).Assume that fa # fb let z € S then d(z, fb) <

d(fb,Tb) Since Ta is compact there exist u € Ta such that
d(fa,u) = d(fa,Ta) (3.34)

using (3.32)

T+ F(H (Ta,Tb)) < F (max {d(fa, Tb),d(fb,Ta)})

= F(H (Ta,Tb)) < F (max {d(fa,Tb),d(fb,Ta)})

= H(Ta,Tb) < max {d(fa,Tb),d(fb, Ta)}
Now consider
d(f5,T6) = infd (fb,c) < max {d (f5, fa),d(fa,u), infd (s c)}
< max {d(fa,Ta), H (Ta,Tb)} from (3.33) and (3.34)
< max {d(fa,Ta),d(fa,Tb),d (fb,Ta)}

= d(z, fb) < d(fb,Th) < max {d(fa,Ta),d(fa,Th),d(fb,Ta)}

d(fa,Tb) < max {d(fa, fb),d(fb,Tb)}

and

d(fb,Ta) < max {d(fb, fa) ,d(fa, Ta)}
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Therefore
d(z, fb) < max {d(fa,Ta}, max{d(fa, fb),d(fb,Tb)} ,max{d(fb, fa),d(fa,Ta)}}
=d(fe,Ta)
= d(x, fb) < d(fa, Ta)

Now

d(z, fa) < max {d(z, fb),d(fb, fa)} < d(fa,Ta)
= d(z, fa) < d(fa,Ta)

Thus z € S, hence S, C S, for any S, € A;. Thus S is an upper bound in A for the
family A; and hence by Zorn’s lemma A has a maximal element say S,, z € X. We
are going to prove that fz € T'z. Suppose that fz ¢ Tz. Since T’z is compact, there
exist k € Tz such that

d(fz,T2) =d(fz,k).
Since Tz C fX so there exist w € X such that k = fw. Thus
d(fz,Tz) = d{(fz, fw)
clearly w # z using equation (3.32)
7+ F(H Tz, Tw)) < F (max{d(fz, Tw), d (fw, Tz)})

= F(H(T2,Tw)) < F(max {d(fz,Tw),d(fw,Tz)})

which implies that

H(Tz,Tw) <max {d(fz,Tw),d(fw,Tz)}
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< max {max {d (fz, fw),d (fw, Tw)} ,max {d (fw, fz),d(fz,Tz)}}
= max{d(fz, fw),d(fz,Tz)} = d(fz,Tz)
H(Tz,Tw) < d(f2,T2)

Now

d(fw,Tw) < H(Tz,Tw) < d(fz,Tz).
= d(fw,Tw) < d(fz,Tz)

Let y € S,, then

d{y, fw) <d(fw,Tw) < d(fz,T7)

d(y, f2) < max{d(y, fw),d(fw, f2)} = d(fz,T7)
= d(y, fz) < d(fz,T%)
Where y € S, implies that S, € S, as fz ¢ S, which is a contradiction to the
maximality of S,. Hence fz € Tz.

Now consider
d(fz f22) =d(fz, ff2) <H(Tfz,Tfz}) =0
= ffz=fz.

Thus

fz=ffze fTzCTfz

Hence fz is the common fixed point of f and 7.

Uniqueness: Let fw be another fixed point such that fz # fw.Using equation (3.32)

T+ FH(Tfz,Tw)) =74 F(H(Tz,Tw)) € F(max{d (fz,Tw),d(fw,T2)})
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= F(H(Tfz,Tw)) < F(max {d{fz,Tw),d(fw, Tz)})
= H(Tfz,Tw) < max{d(fz,Tw),d{fw,Tz)}.

Now consider

d{z,wy=4d(fz, fw) < H(Tfz,Tw) <max {d(fz,Tw},d(fw,Tz)} =d(z,w)

=d{z,w} <d(z,w)

a contradiction so fz = fw. Hence fz is the unique common fixed point of f and T
[
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