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Preface

Understanding of the vibrational properties of the carbon nanotubes (CNTs) and their uses
have been involved in various areas such as electronics, optics, medicine, charge detectors,
sensors, field emission devices, acrospace, defence, construction and even fashion. lijima
[1] Investigated CNTs remarkable properties, a bulk of research work was pcrformed for
their high springiness and characteristic ratio. Falvo et al. [2] found a very effective Young
modulus and tensile potency. Li and Chou [3] analysed well-bonding strength and
superconductivity between carbon atoms. Sakhaee et al. [4] discussed vibrations of CNTs.
Vibration of CNTs have been studied extensively in the last fifteen years and vanious cost
effective continuum models such as thin shell, [5] beam and [6] ring, [7] as well as other
continuum models. Li and Chou [3] and Cao et al. [8] have been proposed to capture the
new physical phenomena and quantified the mechanical properties and identified the major
factors that effect the mechanical behaviour of CNTs. Chapter 2 comprises on vibration
analysis of a cylindrical shell i.e. natural frequency of the cylindrical based shell is
investigated for simply supported-simply supported (S-S) boundary condition. The
equations of motien of cylindrical shell are taken by employing Love’s first approximation
shell theory which are then solved numerically by using wave propagation approach. The
obtained results of the natural frequencies are confirmed with those in previously published
literature. Chapter 3 comprises on the vibrational analysis of CNTs of different shapes by

using different boundary conditions.
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Chapter 1

Introduction

1.1 Vibration

Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium
point. The word comes from Latin vibrationem (shaking, brandishing). The oscillations
may be periodic, such as the motion of a pendulum or random, such as the movement
of a tire on a gravel road. Some important notations and nomenclature are defined in

the subsequent sections.
1.1.1 Frequency and Time Period

Frequency is the number of occurrences of a repeating event per unit time. Whereas
the period is the duration of time of one cycle in a repeating event, so the period is
the reciprocal of the frequency. For example, if a new born baby's heart beats at a
frequency of 120 times a minute, its period is half a second, i.e. 60 seconds divided by
120 beats. Frequency is an important parameter used in science and engineering to
specify the rate of oscillatory and vibratory phenomena, such as mechanical
vibrations, audio (sound) signals, radio waves and light. The frequency at which a
system tends to oscillate in the absence of any driving or damping force or one can say
the frequency at which a system oscillates subjected to no external force is named as

natural frequency.
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the model can be more realistic as compared to the one parameter model i.e. Winkler

model.
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1.4 Carbon Nanotubes

1.4.1 Introduction

Coal and diamonds, sand and computer chips, cancer and healthy tissues:
variations in the arrangement of atoms have distinguished the cheap from the cherished,
the diseased from the healthy. Arranged one way the atoms make up soil, air and water.
Arranged in the other way they make ripe strawberries. Arranged one way they make
up homes and fresh air, arranged another they make up ash and smoke. Our ability to
arrange atoms lies at the foundation of nanotechnology Iijima discovered CNTs in
1991. The prefix “nano” corresponds to a basic unit on a length scale, meaning 10
meters, which is a hundred to a thousand times smaller than a typical biological cell or
bacterium. CNTs have a vaniety of applications because of their distinctive molecular

structure and their fascinating mechanical and electrical properties.



1.4.2 Structure of CNTs

The structure of CNTs can be considered as arising from the folding of one or more
layers of graphite to form a cylinder composed of carbon hexagons. These nanotubes
have a hemispherical "cap" at each end of the cylinder as shown in the Fig. 1.6. They

are light, flexible and thermally stabile and are chemically inert.

Graphene Sheet Nanotube

Fig. 1.6. Formation of CNT from graphcne sheet

Nanotubes are composed entirely of sp> bonds which are stronger than the sp’ bonds
found in diamond. This bonding structure provides them with their unique strength.
Nanotubes align themselves into ropes held together by van der Waals force. Under
high pressure, nanotubes can merge together, trading some sp? bonds for sp® bonds,
giving great possibility for producing strong, unlimited-length wires through high-

pressure nanotubes linking.
1.4.3 Types of CNTs

Basically nanotubes are two types depending upon the layers as shown in Fig. 1.7.

They are






along the other tube axis that intersects a carbon atom nearest to the Armchair line

(point B).

Fig. 1.8. Chiral vector of a nanotube

Now connect A and B with our chiral vector €}, .The wrapping angle @ (not shown) is
formed between €, and the Ammchair line. If ), lies along the Armchair line {(a=0°),
then it is called an "Armchair" nanotube, If @=30°, then the tube is of the "zigzag" type.
Otherwise, if @<<30° then it is a "chiral" tube. The values of n and m determine the
chirality, or "twist" of the nanotube. The chirality in turn affects the conductance of the
nanotube, its density, its lattice structure, and other properties. Fig. 1.9 shows the

different types of carbon nanotubes according to their structure.

i B cEEER

Zigzrag tubes

Fig. 1.9. Different wrapping to form nanotube.
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1.4.4 Applications of CNTs

CNTs exhibit unique electronic and mechanical properties because of their curvature.
Because of their inimitable properties, CNTs find a number of interesting applications
in different fields of engineering. Some of the applications discussed by Ajayan and

Zhou [9] are as follows:

Carbon nanotubes have the right combination of properties i.e. nanometer size
diameter, structural integrity, high electrical conductivity, and chemical stability that

makes good electron emitters.

. Prototype matrix-addressable diode flat panel displays can be fabricated using CNTs as

the electron emission source.

Nanotubes can be used as reinforcements in composite materials. Nanotube
reinforcements will increase the toughness of the composites by absorbing energy

during their highly flexible elastic behaviour.

. Nanotube filled polymers can be used in electromagnetic induction (EMI) shielding

applications.

Because of its hollow geometry and nano scale diameter, it has been predicted that the

carbon nanotubes can store liquid and gas in the inner cores through a capillary effect.

CNT’s because of their extremely small sizes, high conductivity, high mechanical
strength and flexibility, they are used in electrical instruments as well as other

scanning probe instruments, such as an electrostatic force microscope.

. MWCNT and SWCNT tips were used in a tapping mode to image biological molecules
such as amyloid-b-protofibrils with resolution never achieved before,

11



. Nanotubes with controlled helicities could be used as unique probes for molecular
recognition, based on the helicity and dimensions, which arc recognized by organic

molecules of comparable length scales.

CNTs have relatively straight and narrow channels in their cores which can be filled

with foreign materials to fabricate one-dimensional nanowires.

Since the electrical resistivity of SNWTs were found to change sensitively on exposure

to gaseous ambient, hence CNTs can be used as chemical sensors.

They can be used to dissipate heat from tiny computer chips. Nanotube composite
motor brushes are better lubricated, sironger and more accurately mouldable. CNTs
have already been used as composite fibres in polymers and concrete to improve their
mechanical, thermal and electrical properties of the bulk product. Nanotubes are critical
material that enables construction of space elevators from earth to geosynchronous
orbit. Gao [10] found that CNTs have the highest reversible capacity of any carbon
material for use in lithium-ion batteries. Because of their negligible weight, they find
application in space applications. Since nanotubes are similar scale size of DNA,
promisimg possibilities can be expected by introducing them to reinforce tissue
scaffolds. CNTs have a high surface area and their ability to attach to any chemical

species to their sidewalls provides an opportunity for unique catalyst supports.
1.5 Wave Propagation Approach

For the present study, the wave propagation approach is employed to analyse the
vibration characteristics of cylindrical shells. This approach is very simple and easily

applicable to determine the shell frequencies and has been successfully applied by a

12



number of researchers. For separating the spatial and temporal vanables, the following

shapes of modal displacement functions are assumed:
u(x,9,t) = A cos(ng)e@t=kmx,
v(x,0,t) = B sin(n)e' @m0,
w(x,8,t) = C cos(n@)e'(@t—kmX),

in the axial, circumferential and radial directions, respectively. The coeflicients 4, B
and C denote the wave amplitudes respectively in the x, 8 and z directions, respectively.
n is the number of circumferential waves and K, is the axial wave number that has been
specified for a number of boundary condition. These axial wave numbers K, are chosen
to satisfy the required boundary conditions at the two ends of the vibrational
characteristics of cylindrical shells. w is the natural circular frequency of the cylindrical
shell. On substituting these expressions u,v and w in the governing equations and
simplifying those algebraic expressions and rearranging the terms, the frequency
equation is written in the form of eigenvalue problem. On solving this Eigen value
problem by using some computer software the three frequcncies are obtained

corresponding to the axial, circumferential and radial displacements.
1.6 Literature Review

Investigations of free vibration of CNTs have been examined with regard to their
properties and material behaviour. For practical applications, it needs more exploration
to examine vibration characteristics of single-walled carbon nanotubes (SWCNTs).
Moreover, vibration properties of CNTs have significant role in material strength
analysis and have practical importance. A reliable knowledge of vibrational data is also

important for an optimized design of processes and apparatus in various engineering
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and science fields (for instance electrical, biological sciences and chemical
engineering). New innovative improvement and technologies such as nano-probes,
emanation panel spectacle, nano-electronics, and chemical sensing and drug
deliverance have been proposed. Vibration problems of SWCNTs can be investigated
experimentally, theoretically and by simulation techniques. Poncharal et al. [11] and
Treacy et al. [12] performed experiment to calculate the resonance frequency of multi-
walled CNTs (MWCNTSs) for clamped-free excited by clectrical loads or thermal
process. Zhao et al. [13] applied molecular dynamics (MD) simulations for the
investigations of natural frequencies and to predict the Young’s modulus. Moreover,
Hsu et al. [6] reported the resonant frequency for CNTs model of chiral SWCNTs and
these tubes are observed under a thermal vibration. The Timoshenko beam model
(TBM) has been used for implicating the shear deformation and rotatory inertia of
CNTs and nonlocal theory (NLT) of elasticity is employed for the vibration analysis of
SWCNTs. Molecular structural mechanics (MSM) method of L1 and Chou |14] has
been employed in order to understand the feasibility of SWCNTSs as a Nano resonator.
The measured fundamental frequencies were perceptive to dimensions such as diameter
and length along with boundary conditions (clamped-free or clamped) of SWCNTs.
The static and dynamics properties of CNTs are computed by using MSM method
successfully Li Chunyu et al. [15] and the natural frequencies of SWCNTs are
investigated in Refs. C. Y. Li et al. [16] and Li Chunyu [15]. Gibson ct al. [17]
investigated high fundamental frequencies of 10~300GHz (and 100~1500 GHz) at
length-to-diameter of 6~20 nm (0.4~0.8 nm), respectively, for CNTs. Chirality of
nanetubes does not have a momentous effect on the fundamental frequency, however,
CNTs have higher values of fundamental frequency at the lower values of diameter.

Another rescarch group with armchair and zigzag CNTs investigated the fundamental

14



frequency with different values of length-to-diameter ratio. Swain et al [18] concluded
that zigzag CNTs have higher frequencies than armchair CNTs. Moreover, continuum
mechanics models depicted that thickness and Young’s modulus of CNTs plays a
significant role for vibrational analysis of nanotubes. In addition, Fereidoon et al. [19]
performed the analysis of a {CNT) reinforced polymer using a 3D finite-element model
and constructed a non-bonded interphase region and the surrounding polymer with

multi scale finite-element model.
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Chapter 2
Vibrational Analysis of Cylindrical Shell

2.1 Introduction

This chapter comprises on the natural frequency of the cylindrical shell investigated for
simply supported (S-S) boundary condition by using wave propagation approach. The

equations of motion for cylindrical shell are taken from Love’s thin shell theory.
2.2 Mathematical Formulation of Equations of Motion

Consider a cylindrical shell having geometrical parameter length, radius, and thickness
denoted by L, R, h respectively. The cylindrical shell has material properties Young'’s
modulus, poison ratio and mass density represented by E, v, p respectively. An
orthogonal coordinate system is established in the middle of the cylindrical shell for
representation of axial, circumferential and radial displacements denoted by x, & and z.
While w, v and w' are the displacements in the axial, circumferential and radial

directions respectively.

Fig. 2.1. Cylindrical shell fumished with geometrical parameters.
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The equations of motion (2.1)-(2.3) are obtained by using Love’s theory of the shell.

N, 10N,  o%
= 2.1
ax TRae - Pae (21)

BNy 10N, 20My 1 Mg a2y’

1 2z = , 2.2
3 "Ro8 'R ox TrREos ~Placz (22)
M, 20°M., 1 9°My N, '’

Ly Y ph—, (2.3)
dx2 R 0x08 R? 982 R ot

where N, Ng, Ny and M,, Mg, M, represent force resultant and moment resultant

respectively. Which are defined in the literature as

N, [Aln A 0 By B 07 e
Ng 12 Az2 0 Bi; By 0 |je
Ny _ 0 0 Ay 0 0O Bglly (2.4)
M, Bis Biz 0 Dy Dip O [kaf” '
Me B!, By, 0 Dj, D}, 0 ||k
Mxo [0 0 B, 0 0 Dil* 2t

where ey, e, v and k,, ky, T represent the reference surface strains and the surface

curvatures, respectively. Whereas Aj;, B;; and Dj;(i,j = 1, 2 and 6) are the membrane,

i p
coupling and flexural stiffness and given as

h/2

[ estrzzyan @5)
—h/2

[ ijr Ur U}_

To represent reduced stiffness which is due to an isotropic matenal, define

vE E
Cu=0Qn=7—"17 Cu=7—77 Q= ATV (2.6)

where @;; is reduced stiffness and i,j = 1, 2 and 6. The ratio thickness to radius (h/R)

of thin walled cylindrical based shell is less than 0.05. This ratio has an impact upon

the natural frequency. There are number of theories to describe the motion of shell.
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Only Love’s theory is being discussed here to study vibrational behaviour of cylindrical
shell. Love’s theory define relationship between strain-displacement and curvature-

displacement which are given as

( = [311* 1 (613' ) Jvr 1 au')] 27
el!eZJY - axaR 39 +w '(E-l-ﬁﬁ ] ( . )
w1 {3*w odv 1{d*w v
Uy ko 7) = [‘ 972 '"'Ei(aez - %)‘"’R’(axae B E)} (28)

where e,,e,,y and ky, k7 are straing and curvatures of the reference surface
respectively. These parameters are then replaced into Eq. (2.4) and find the
terms N,, Ng, Ny, My, Mg, M,y and put into the Eq. (2.1)-(2.3). The equation (2.9)

represent motion for a cylindrical shell in the form,

22w

L“u' + lev' + L13W' = ptw
62 .

Lygw + Lopv' + Lypzw = p; a; ' (2.9)
22w

L31u’ + L32v' + L33W' = Pr ?

where L; (i, = 1,2, 3) are differential operators and defined as:

o, 62 :56 62
bn = A5+ 77 392

_ (Alp+4ge) 27 (By3+2Bfe) 82

Ly, = R axae+ RZ xd0 "’
L A0, 07 (Bl +2Bi) 9
B™ R gx “19x3 R? 3xao?’
=(A12+A:56) 8? +(B{2+2336) a2
21 R 9x06 K~ 8x00°’
3Bge 4Dgg\ 07 22 2Bz, Dg\ 07
L,=1A4 22
22 ( sst 2 TR Jaxz T\ R: T Re TR 392
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22 B3\ @ B;, D\ 83 By, +2Bgs Dy, + 4D g3
L23=(22+ 22) (22+ 22) (12"’ 66 12 T 66)

‘R2 " R3 /90 \R3 " R*]a6® R R? dx?96"
. =_£i+ . 0% (Bl +2Bl) 3
31 R dx  119x3 R? 9xa392’

L _( 22 Bz;z) d (Bﬁz Dﬁz) a° (Biz"'ZBée Di2+4Dés) a°
32 = +

7 TR\ Tk )T R R? 8x200’
. =_ﬁ+2312 a% 2B., 8% L a4 _Dip +2Dg a4 Dy a*
33 R? R 3x2 R3 962 “lgxt R?2  9x2802 R* 3g%

2.3 Solution Methodology

The wave propagation technique has been applied by many scientists to analyse
vibrational features of the cylinder shell. Zhang et al. [21], Liu et al. [22], Natsuki et al.
[23] and Xuebin [24] are some of them. Same approach is also applied in this
manuscript to calculate the natural frequency of the cylindrical shell. Consider the
following displacement functions to impart the spatial and temporal variables

w(x, 8, t) = A cos(ng)efwt—kmx)

v(x,6,t) = B sin(nf)e’@t=km®) 3, (2.10)
w(x,8,t) = C cos(n@)e!@tkm*)

in the x, & and z direction, respectively. Coefficients 4, B, C are wave amplitude for
different orthogonal coordinates. To denote circumferential wavenumber and axial
wave number symbolically, n and k,, is used respectively. The axial wavenumber k,,
is different for different kind of boundary conditions. k,, is elected to meet the
boundary condition at both the ends of the cylindrical shell and «w denote the natural

circular frequency of the shell,
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Use Eq. (2.10) into Eq. (2.9) to simplify and rearrange the expressions. Then, to
calculate the frequency an equation is formed. This equation would be an eigenvalue
problem and can be written as:

6{1 6{2 C1'3 A ph 0 0114
-0y Gy C-Ea Bl =w?|0 ph  Ol|B], (2.11)
c

G G Gy ¢ 0 phllC

where the matrix adjacent to the left hand is stiffness matrix with cocfficients C/ (L) =

1,2, 3). The square matrix on the right hand side of the frequency equation is the mass
matrix which depends upon the shell parameter and boundary conditions which

depends on end points of cylindrical shell. The cocfficients C;; are given as:

nzA'GG
11 = A kZ + Rz’
Lo+ Al B, + 2B;
. 12 66 D12 66
Ci, = mkm( B + Rz ,

A B;, + 2B,
Cly = iKp (f + Biykf + n? 2t “),

ty 2B}, Db 4B, 4D,
' 22 22 22 I 66 66
622_’12(?2”’ g3 R4)+k'%1( s+t R T Re )

: 2.8.‘I B, D’ B’ + ZB’ D' +4D,
! 22 22 2 22 22 2 12 66 12 66

'
633

Ay, 2kZ n? Di, + 4Dg, D3,

Eq. (2.11) is solved with the help of MATLAB to obtain the frequency related to axial,

circumferential and radial displacement.
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2.4 Results and Discussions

To verify the accuracy of present results, a comparison is made with the results present
in litcrature for the simply supported-simply supported (S-S) boundary condition. The
natural frequency of the cylindrical shell is obtained by using the parameters £=30 X
108 Ibfin?, L/R =4, h/R =1/20,v=0.3, p = 7.35 X 10 *Ibf s? in™ of the shell. Table
2.1 is a comparison of the present natural frequencies of isotropic cylindrical shell with
those obtained by Warburton [20] and Loy [25]. These frequencies are compiled with
different axial mode numbers m and simply supported-simply supported (S-S)
boundary condition is used. It is found that the natural frequency continuously increases
with the increasing number of axial mode number m. Table 2.2 shows the two sets of
results of natural frequency of a cylindrical shell with axial mode m =1 and for
different circumferential wave number n. It is seen from the Table 2.2, the frequency
of the shell first attains its minimum and then arises with the increasing value of n.
Moreover, the Table 2.1 and Table 2.2 indicate the small difference in the frequencies
with the frequencies obtained by the researchers. The geometrical parameters of the
shell are used same as were found in the literature. Then, it may be the effect of two
different approaches i.e. wave propagation and the technique used by the researchers.

Which proves the accuracy of wave propagation approach.

Variation of natural frequency is also discussed through graphically. In Fig. 2.2 natural
frequency is plotted against the circumferential wavenumber n by taking different axial
mode and it is noticed that the frequency first attains its lowest value and afterwards it
arises with growing worth of circumferential wave number n in all cases of axial mode.
Fig. 2.3 illustrates the change in natural frequency against length to radius ratio of

simply supported boundary condition. It can be seen from the Fig. 2.3 the natural
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Table 2.2 Evaluation of natural frequencies(Hz) versus the number of values of
circumferential wavenumber for parameters (E=2.1 x 10" N/'m?, m=1, L=041 m, h

=0.001 m, v =0.3, p = 7850 kg/m’, R = 0.3015 m) of the cylindrical shell.

m n Gonealves [26] Present results Difference%
= —
1 7 303.35 301.9299 0.47
8 280.94 278.9986 0.69
9 288.71 286.3749 0.81
10 318.40 315.8318 0.81
11 363.33 360.6421 0.74
12 419.19 416.4385 0.66
13 483.51 480.7430 0.57
14 554.97 552.2161 0.50
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frequency decreases with swelling ratio of length to radius for different values of
circumferential wave number. From Figs. 2.2-2.3, it is demonstrated that natural

frequency declines with the variation of L/R ratio as circumferential wavenumber.

Table 2.1 Evaluation of natural frequencies(Hz) versus the nuimnber of values of axial
mode for parameter (L=8, R=2 in, p = 7.35 X 10~* Ibf s? in®* E=30x10° Ibf in?,
v=0.3) of cylindrical shell.

n m Warburton [20] Loy et al. [25] Present
R — — —— = "%
2 I 2046.8 20438 2042.7
2 5637.6 5635.4 56319
3 89353 8932.5 8926.4
4 11405 11407.5 11399.4
5 13245 132532 132437
6 14775 14790.0 14779.9
3 1 21993 2195.1 2194.4
2 4041.9 4035.5 40312
3 6620.0 6614.6 6605.9
4 9124.0 9121.0 9108.4
5 11357 11359.0 113434
6 13384 13392.3 13374.9
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Table 2.2 Evaluation of natural frequencies(Hz) versus the number of values of

circumferential wavenumber for parameters (E=2.1 x 10! N/m?, m=1, L=041m, h

=0.001 m, v = 0.3, p = 7850 kg/m’, R = 0.3015 m) of the cylindrical shell.

m n Goncalves [26] Present results | Difference%
1 7 303.35 301.9299 B E;? -
8 280.94 278.9986 0.69
9 288.71 286.3749 0.81
10 318.40 315.8318 0.81
11 363.33 360.6421 0.74
12 419.19 416.4385 0.66
13 483.51 480.7430 0.57 |
14 554.97 552.2161 0.50
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2.5 Conclusion

In present study, natural frequency of the cylindrical shell is analysed and simply
supported (S-5) boundary condition on both ends of shell is applied. Equations of
motion of cylindrical shell are considered using the Love’s thin shell theory. To solve
the equation of motion, wave propagation approach was applied. Further, MATLAB
computation package is used to obtain the numerical results. The ohtained results are
elaborated through graphically and discussed in detail. Present results are almost similar
to the results present in open literature, It is found that natural frequencies of cylindrical
shell obtained by using wave propagation approach first decrease up to its minimum
value and then increase with ascending values of circumferential wave number n.
Another result is also concluded that the length to radius ratio also effects in the
frequency of the shell and it descend with increasing value of the radius ratio. This

result is checked with different circumferential wavenumber n through tables.
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Chapter 3

Vibrational Analysis of Carbon Nanotubes Based on

Cylindrical Shell by Inducting Winkler and Pasternak

Foundation

3.1 Introduction

This chapter is concerned with the vibrational analysis of CNTs with their all shapes
i.e. Armchair, Zigzag and Chiral by employing five different boundary conditions (S-

S, C-C, C-F, F-§, C-8I).
3.2 Mathematical Formulation of Equations of Motion

Consider a CNT having geometrical parameters such as length, radius and thtckness
denoted by L,h and R correspondingly. CNTs have the material properties such as
Young’s modulus, poison ratio and mass density denoted by E, v, p respectively. An
orthogonal system x, 8 and z is established on the middle of the CNTs to show the
displacement in the axial, circumferential and radial direction. To relate the

displacement in x, & and z direction consider the function u, v and w.

Fig. 3.1. Coordinate system and shell structure of CNT,
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11

Consider the Egs. (2.1)-(2.3) for the motion CNTs by Love’s first shell theory.
Equations of motion for both cylindrical shells and carbon nanotubes are taken same
because analogousness of the cylindrical shell model and CNTs leads to the wide use
of the shell model for CNTs structures. For instance, Yan et al. [27] studied the linear
and nonlinear vibration behaviours of double-walled carbon nanotubes based on
Donnell’s cylindrical shell model. Using the wave propagation approach and
substituting moment and force resultants the above equations can be written in the form
of differential operators and adding the terms which describe the Winkler and Pasternak

foundations (Kw — GV2w) in the z-direction.

*w )
Lyzww+ Ly +Lgw = Pe gz
2.,
L21'U.' + Lzzv’ + L23W’ = pt—'a-t':-z— by (34)
2w 2
Lyjw + Lyv + Lyjzw = ptF + Kw — GV w )

where G and K are elastic foundations which have been discussed in the chapter 1. The

differential operator V2 is defined as:

Vi= a?—+1az 3.5
T 9x? ' ROO? (3:5)

along with the differential operator L;;{(i,j = 1,2, 3) with respect to x and  which had

been defined in previous chapter.
3.3 Solution Methodology

The cquations of motion for a CNT are same as were used for the motion of cylindrical
shell. The other parameters like displacement functions, notation for the material

properties and displacement functions are also same like the previous equations. So in
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value problem and its solution can be obtained by using computer software. The

equation 1s:
Cih Ciz Cis Ph 0 0114
-3, €3, €y —cu 0 ph O B (3.7)
—Cin G GCi 0 0 ph

where the matrix adjacent to left hand of above equation is stiffness matrix with
coefficients C;;(i,j = 1,2,3). The square matrix on the right hand of the frequency
equation is the mass matrix which depends upon the shell parameters and boundary
conditions which depend on ends points of CNT. The coefficients C;; are given as:

Z2 At
n“Age

C{y = Ay ki + Rz

'+ Al Bi, + 2B
C{z=iﬂ.km( 12R 66+ 12 Rz 66)'

, . A, , Bi, + 2B
613 = EKm (? + Bllk'l'?ﬂ. + ﬂ.z Tﬁﬁ »

! 2B, D3, 4B, 4D
cr. = 2 {222 22 Y2z 2 gt 66 66
22 n (R2 R3 —+ R4 k + _R + R2 ,

22 2B, B D Bi, + 2By Dy, +4Dg
C;_3=n(_2£+ 2 +n? (_;E.Fﬂ) k':;l( 12 66 , 12 66)),

R? R® R* R R?

22 2kE n? Di, + 4D, D}
Cis = (ﬁ + = Bly + 2B oz + Diskiy + 207k, (—”—R—z—‘f) + n“% +K

nz
+ G (k%l + EE))

Eq. (3.7) is solved by using computer software in order to get the frequency

corresponding to axial, circumferential and radial displacement.
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3.4 Results and Discussions

In Figs. (3.2)-(3.6) the alteration of natural frequency is drawn against the
circumferential wavenumber n for different shapes of CNTs without elastic foundation.
The graph describes the behaviour of natural frequency of Armchair, Chiral and Zigzag
shapes with five different boundary conditions. Natural frequency of all three shapes of
CNTs first decreases and then increases with increasing the value of circumferential
wavenumber for different boundary conditions. The properties of CNTs are elaborated

in Table 3.2,

In Figs. (3.7)-(3.11) the Change in natural frequency{Hz) is drawn against the
circumferential wavenumber n for different shapes of CNT in the presence of elastic
foundation. The graph shows the behaviour of natural frequency of Armchair, Chiral
and Zigzag shapes with five different boundary conditions. It is detected from the
results that natural frequency rises with the variation of circumferential wavenumber
for boundary conditions like S-S, C-C, C-F, F-S, C-Sl. In Figs (3.12)-(3.14) natural
frequencies (Hz) of CNT against length-to- radius ratio for various values of axial
wavenumber m are sketched. The graph describes the behaviour of natural frequency
of Armchair, Chiral and Zigzag shapes. Natural frequency decreases with increasing
L/R ratio in all shapes of CNTs. The elastic foundation is also taken into account. The
results demonstrate that natural frequencies of armchair, zigzag and chiral decreases
with the variation of L /R, whereas opposite trend is seen for axial wavenumber m. It
is also noted that CNTs with chiral shape obtained maximum frequency followed by

zigzag and armchair.
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Table 3.2, Material properties of CNT [26].

= —_— '—"'....=
Tube (n, m) Armcnair Zigzag (10, 0) Chiral (10, 2)
(16.1M
Radiusgi) 0.642/nm T u.3713mm " .4 13dnm
Wall Thickness(h) 0.1232nm 0.0878nm 0.0974nm
Density( p) 1.33g/cm3 2.3g/cm3 1.40g/cm3
Poison Ratio(v) 0.180 0.265 0.209
Young's modulus(E) 2.618TPa 3.939TPa 3.465TPa
Length(L) 6.427nm 3.713nm 4.134nm
1 L] L] T T L) T T
L9r _M_ﬂ "’I-
0.8k m==Tigzag “‘.\;’ -
e Gt W
7 v .
T s ,.--‘J:“" .
g .5 -~")'.’.;’ ]
g 0.
o
0.3}
0.2
0.1

Fig. 3.2. Variation in natural frequency(Hz) against circumferential wavenumber n, for

8-S boundary condition, whenm = 1,6 = 0, K = 0.
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C-C boundary condition, whenm = 1,& = 0,K = 0.
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Fig. 3.4. Variation in natural frequency(Hz) against circumferential wavenumber n, for

C-F boundary condition, whenm = 1,6 = 0, K = 0.
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Fig. 3.6 Variation in natural frequency(Hz) against circumferential wavenumber n, for

F-S boundary condition, whenm = 1,6 = 0,K = 0.
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C-F boundary condition, whenm =1, ¢ = 1.5 x 107, X = 5.5 x 107
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Fig. 3.10 Variation in natural frequency(Hz) against circumferential wavenumber n, for

F-S boundary condition, whenm =1, G = 1.5 x 107, K = 5.5 x 107.
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Fig. 3.11 Variation in natural frequency(Hz) against circumferential wavenumber n, for

C-SI boundary condition, whenm = 1, 6 = 1.5 x 107, K = 5.5 x 107,
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Fig. 3.12 Variation in natural frequency(Hz) of Zigzag shape CNT against length to

radius ratio L/R whenn=1,m =1, G = 1.5 x 107, K = 5.5 x 107.
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3.§ Conclusion

The purpose of the study is to determine the natural frequencies of CNTs based on
cylindrical shell by employing wave propagation approach for different boundary
conditions. The shapes of CNTs like Ammchair, Zigzag and chiral are also elaborated
for five different boundary conditions S-S, C-C, C-F, F-SI and C-S, respectively.
Natural frequencies are analysed with and without elastic foundation. Obtained results

are sketched graphically for each boundary condition.

38



References

[1] S. Lijima, Helical microtubules of graphitic carbon, Nature 345, 56-58 (1991).

[2] M. R. Falvo, G. J. Clary, R. M. Taylor I, V. Chi, F, P. Brooks, S. Washburn, Bending
and buckling of carbon nanotubes under large strain, (1997).

[3] C. Y. Liand T. A. Chou, A structural mechanics approach for the analysis of carbon
nanotubes, International Journal of Solids and Structures 40, 2487-2499 (2003).

[4] A. Sakhaee-Pour, M. T. Ahmadian, and A. Vafai, Vibrational analysis of single-walled
carbon nanotubes using beam element, Thin- Walled Structures 47, 646652 (2009).

[5] B. L. Yakobson, C. J. Brabee, and J. Bernhole, Vibrational analysis of single-walled
carbon nanotubes using beam element, Phys. Re\-r. Lett. 76, 2511-2514 (1996).

[6] J. C. Hsu, R. P. Chang, and W. J. Chang, Resonance frequency of chiral single-walled
carbon nanotubes using Timoshenko beam theory, Physics Letters A 372, 2757-2759
(2008).

[7] T. Vodenitcharova and L. C. Zhang, Resonance frequency of chiral carbon nanotubes
using Timoshenko beam theory, Phys. Rev. B 68, 165401 (2003).

[8] G. X, Cao, X. Chen, and J. W, Kysar, Effective wall thickness of single walled carbon
nanotubes, Phys. Rev. B 72, 195412 (2005).

[9] R. M. Moghadam, S. A. Hosseini, and M. Salehi, The influence of stone thrower wales
defect on vibrational characteristics of single walled carbon nanotubes, Physica E 62,
80-89 (2014).

[10] Gao B., Enhanced Saturation Lithium Composition in Ball Milled Single Walled

Carbon Nanotubes. Chemical Physics Letters 327, 69. (2000).
[11]P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. De Heer, Numerical analysis of the
vibrational frequency of deformed single-wall carbon nanotubes, Science 283, 1513~

1516 (1999).

39



[12] M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Electrostatic deflections and electro
mechanics resonances of carbon nanotubes, Nature 381, 678—680 (1996).

[13] Q. Zhao, Z. H. Gan, and O. K. Zhuang, Exceptionally high Young's modulus observed
for individual carbon nanotubes, Electro analysis 14, 1609-1613 (2002).

[14]C. Y. Li and T. W, Chou, Vibrational behaviour of carbon nanotubes based nano
mechanical resonator, Appl. Phys. Lett. 84, 121-123 (2003).

[15] Li Chunyu and T.-W. Chou, Vibrational behaviour of single walled carbon nanotubes
based on c¢ylindrical shell model using wave propagation model, Nano-Mechanics of
Materials and Structures, Springer pp. 55—65 (2006).

[16] C. Y. Liand T. W. Chou, Single walled carbon nanotubes as ultrahigh frequency nano

mechanical resonator, Phys. Rev. B 68, (73405 (2003).

[17]R. F. Gibson, E. O. Ayorinde, and Y. F. Wen, Vibration of carbon nanotubes and their
composites, Composite Science and Technology 67, 1-28 (2007),

[18] A. Swain, T. Roy, and B. K. Nanda, Vibrational behaviour of single walled carbon
nanotubes based on cylindrical shell using wave propagation method, International
Jounal on Theoretical and Applied Research in Mechanical Engineening 2(4), 129-133
(2013).

[19] A. Fereidoon, R. Rafiee, and R. M. Moghadam, A modal analysis of carbon nanotubes
rein forced polymer by using a multi scale finite element method, Mechanics of
Composite Materials 49(3) (2013).

[20] Warburton, G.B. Vibration of thin cylindrical shells. J. Mech. Eng. Sci. 7, 399407

(1965).
[21] Zhang, X.M., Liu, G.R., Lam, K.Y., Vibration analysis of c¢ylindncal shells using the

wave propagation approach. J. Sound Vib. 239(3), 397401 (2001).

40






