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Abstract

Statistical distributions systematically analyze variability in real-world prob-

lems by providing suitable models. To address limitations in existing distri-

butions, numerous new distributions have been developed and are contin-

uously studied. Researchers are dedicating significant efforts to modifying

these well-known distributions to more accurately capture the complex na-

ture of data and enhance their efficacy. In the similar vein, Odd Generated

distributions have their own importance in modeling the real life data in

these days due to limited resources, time and expenses. In view of that, the

goal of the current research proposal is to derive more flexible and valid

form of current classical Dagum distribution by combining with a new gen-

erator Sin Exponentiated Odd Generalized Pareto.

In this research work, A new more flexible distribution known as"Sin Expo-

nentiated Odd Generalized Pareto X family of distribution (SEOGPX)" has

been proposed. A novel and more versatile generator is introduced in the

initial approach. In the subsequent approach, this new generator is applied

to the baseline distribution to develop an extension of the Dagum distribu-

tion. By considering both empirical data sets and simulated data, this re-

search have extensively studied various statistical characteristics, including

the quantile function, moments, incomplete rth moment, hazard function,

survival function, order statistics, and Rényi entropy. The SEOGPD model

exhibited significant flexibility in modeling the dataset compared to other

distributions evaluated in the study.



Nomenclature

• AIC Akaike information criterion
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Chapter 1

Introduction

1.1 Historical Background

Continuous probability distributions play a crucial role in statistical theory

and applications, providing a framework for modeling and analyzing ran-

dom variables that can take on an infinite number of values within a speci-

fied range. In the realm of continuous probability distributions, the concept

of a probability density function (PDF) takes center stage. The PDF is func-

tion that describes the likelihood of a continuous random variable falling

within a particular interval.

Probability distributions in survival analysis are fundamental for mod-

eling the time until the occurrence of an event of interest, such as death,

disease onset, or equipment failure. Commonly used distributions include

the exponential distribution, which assumes a constant hazard rate and is

characterized by its simplicity and memoryless property. The Weibull dis-

tribution is more flexible, accommodating increasing or decreasing hazard

rates over time, depending on its shape parameter. The log-normal distribu-

tion, which models situations where the logarithm of survival time follows

a normal distribution, is suitable for data with a long right tail. Another
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important distribution is the Gompertz distribution, often used in demog-

raphy for modeling human mortality. These distributions provide different

ways to estimate and interpret the survival function, hazard function, and

other related metrics, enabling more accurate predictions and insights into

the survival data. By selecting an appropriate distribution, researchers can

better understand the underlying mechanisms influencing the time-to-event

and make more informed decisions in fields such as medicine, engineering,

and social sciences.

Generators in the context of statistical distributions are powerful tools used

to modify existing probability distributions, enhancing their flexibility to

better fit complex real-world data. These generators transform baseline dis-

tributions can capture a wider range of behaviors and patterns in the data.

By employing the generators, statisticians and researchers can develop more

nuanced and accurate statistical models and distributions, enabling a deeper

understanding of the underlying processes and improving predictive pow-

er across diverse applications in medicine, engineering, and social sciences.

Eugene et al.,(2002) [4] proposed beta generated (G) family of distributions,

Zografos and Balakrishnan(2009) [5] proposed gamma-G family, Cordeiro

and de Castro(2011) [6] defined Kumaraswamy-G family, Bourguignon et

al.,(2014) [8] introduced weibull-G family, Al-Shomrani et al.,(2016) [15] pro-

posed TL family of distributions and Cordeiro et al.(2019) [18] introduced

the OD-G family of distributions.

The use of trigonometric functions to enhance the flexibility of existing dis-

tributions is a relatively recent and innovative approach in statistical model-

ing and survival analysis. Trigonometric functions, such as sine and cosine,

offer a high degree of mathematical adaptability, allowing for smooth and

continuous transformations of baseline distributions. By integrating these

functions, researchers can introduce periodic components and oscillatory

behavior into the models, which can be particularly useful for capturing

cyclic patterns and seasonality in the data. This method can significantly

3



improve the properties of existing distributions, such as their shape and tail

behavior, leading to better fitting models that more accurately reflect the

complexities of real-world phenomena.

Modern statistical developments are in, e.g. Kumar et al.,(2015) [13]; Jamal

and Chesneau(2019) [19] and Souza et al.,(2019) [21]. In specifically, Souza

et al.,(2019) [21] established a new Sin-G distribution with the CDF ;

Dl(x) = sin

{
π

2
L(x)

}
, xεR

Where L(x) is baseline distribution function of any distribution and Souza et

al.,(2019) [21] also proposed the new Cos-G class. They both are very simple

trigonometric classes , these both classes have a remarkable degree of flex-

ibility in statistical modeling due to the smoothly occurring periods of the

trigonometric functions. This feature is illustrated by the development of

the Cos-G and Sin-G class of trigonometric distribution, with favorable out-

comes in comparison to useful model competitors.

1.2 Preliminaries

1.2.1 Odd Exponential Generalized Distribution

Tahir et al.,(2015) [14] proposed the new class of distribution called the odd

generalized exponential family. Moreover, in recent years, some new gener-

ators of distributions based on the exponential distribution such as the OGE

distributions and OEG distributions were proposed and analyzed by Tahir

et al.,(2015) [14].

The Cumulative Distribution Function (CDF) of OGE family is given as:

F (x) =

(
1− e−η

G(x,κ)

Ḡ(x,κ)

)τ
x>0,
η,κ>0 (1.2.1)

4



Where Ḡ(x, κ) = 1−G(x, κ) is the survival function and G(x) is the CDF of

a continuous type distribution.

Then the corresponding probability density function is:

f(x) =
ητg(x, κ)

Ḡ(x, κ)

(
1− e−η

G(x,κ)

Ḡ(x,κ)

)τ−1
e
−ηG(x,κ)

Ḡ(x,κ) x>0,
η,κ>0 (1.2.2)

Where f(x) is the Probability Density Function (PDF) of a continuous type

distribution and η and τ are two additional parameters.

1.2.2 Generalized Pareto Distribution

The Generalized Pareto Distribution (GPD) was introduced by Maurice Fréchet,

a French mathematician, in the early 20th century. Fréchet made significant

contributions to the field of probability and statistics, and he introduced the

GPD as a way to model extreme values in a distribution.

The CDF of GPD is;

QG(z; ~) = 1− {1 +D(z; ~)}−
1
~

where D(z; ~) is the CDF of any contiunous distribution and ′~′ is the shape

parameter.

While the corresponding Probability Density Function (PDF) is given by:

qG(z; ~) =
1

~
{1 +D(z; ~)}−

1
~−1d(z; ~)

z =
x− µ
σ

x>µ,
µ(−∞,∞)

where d(z; ~) is the PDF of any contiunous distribution and ′µ′ and ′σ′ are

the location and scale parameters.respectively.
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The Generalized Pareto Distribution (GPD) is a probability distribution used

in extreme value theory to model the tails of a distribution. It is often em-

ployed to assess and model extreme events, such as unusually large values

in a dataset. The GPD is commonly applied in fields such as finance, mete-

orology, and hydrology to estimate the probability of extreme events, such

as floods, high wind speeds, or financial market crashes. The choice of the

GPD for modeling extreme values is often motivated by its ability to capture

the tail behavior of the distribution, allowing for a more accurate estimation

of extreme quantiles.

1.2.3 Dagum Distribution

The Dagum distribution is a continuous probability distribution. The distri-

bution was first introduced in the early 1970s Dagum,Camilo (1977) [3], it

is named after Camilo Dagum, who proposed it in a series of papers in the

1970s.

• the shape parametr(p)

• the scale parametr(a)

• the location parameter(b)

The CDF of introduced distribution is:

D(z; ~) =

{
1 +

(z
b

)−a}−p
While the corresponding PDF is given by:

d(z; ~) =
ap

z

[ (
z
b

)ap{(
z
b

)a
+ 1
}p+1

]
a,b,p>0,
x>0

6



where a, b and p are the scale ,location and shape parameters respec-

tively.

The Dagum distribution is employed in various fields, including economics,

finance, and reliability engineering, to model data with heavy tails and pos-

itive skewness. It is particularly useful for analyzing income distribution,

lifetime data, and other phenomena where extreme values play a signifi-

cant role. The Dagum distribution can be used to model the distribution of

lifetimes or durations of products, making it relevant in certain contexts re-

lated to reliability and survival analysis. In applications such as reliability

engineering or actuarial science, where the focus is on the lifespan of compo-

nents, products, or individuals, the Dagum distribution may be employed

to describe the distribution of time until failure or other relevant events.

1.2.4 Validity

The validity of a probability density function (PDF) is vitally important to

ensure that the function meets the necessary benchmark for a valid proba-

bility distribution. A valid PDF must satisfy two main conditions:

• Probability Density Fuction of distribution must be positive

• Integral of PDF must be equal to 1

the validity is mathematically defined as:

∫ ∞
−∞

f(w)dw = 1

where f(w) is the PDF of distribution.Estimate the validity of PDF verify

that the function accurately represents a probability function.
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1.2.5 Survival Function

Survival function is the branch of statistics and its find extensive applica-

tion in the analysis and modeling of time-to-event data, encompassing the

lifespan of products, the duration until a system failure, or the time until a

medical event occurs.Survival analysis deals with the study of time until an

event of interest occurs, such as the failure of a machine, the occurrence of

a disease, or death.The survival function is denoted as S(w). Survival func-

tions are commonly employed in a range of areas, such as medical research,

engineering, and social sciences, to study and simulate time-to-event data.

The survival function S(w) is defined as;

S(w) = P (W > w) = 1− F (w)

where ′P ′ is the probability ,′w′ is the some time and and ′W ′ is the random

variable denoting the time of death.As time increases the survival function

can be increasing or decreasing and approaches to zero.

1.2.6 Hazard Function

The hazard function denotes the rate of failure occurring at a specific mo-

ment, taking into account the survival until that moment.The hazard func-

tion is mathematically defined as the ration of the PDFf(w) of an event oc-

curring in a small time interval around time t to the length of that time in-

terval S(w).

The hazard function is defined as:

h(w) =
f(w)

s(w)
where S(w) = 1− F (w)

8



where h(w)denotes the hazard function ,f(w) is thr probability density func-

tion and S(w) is the survival function.The hazard rate is a measure of ten-

dency to fail, if the value of the hazard function is large, there will be greater

probability of failure.

1.2.7 Quantile Function

A distribution can be effectively described by employing the quantile func-

tion, which serves as a significant measure.The summarization of the spread

and central tendency of a data-set is an invaluable tool, offering significant

benefits in numerous scenarios.The Quantile function is also known as the

inverse cumulative distribution function(CDF).

The quantile function of a distribution is defined as,

W = F−1(x)

Where F−1(x) is the Inverse Cumulative Distribution Function (ICDF) of

any distribution and W is quantile function.

1.2.8 Moment Generating Function

A moment generating function (MGF) is a mathematical concept used in

probability theory and statistics to uniquely characterize a probability dis-

tribution. It is a way of encoding all the moments of a random variable into

a single function.The moment generating function of a random variable W

is denoted by MW (t) and is defined as:

MW (t) = E[etW ]

9



where:

• t is a real-valued parameter.

• E[etW ] denotes the expected value operator.

• W is a random variable.

The moment generating function is particularly useful in deriving moments

of distributions, finding distributions of linear combinations of random vari-

ables, and proving theorems related to convergence of random variables.

1.2.9 Rényi Entropy

Rényi entropy is a generalization of Shannon entropy, named after Alfréd

Rényi, a Hungarian mathematician. It provides an alternative way to mea-

sure the uncertainty or randomness in a probability distribution.For a dis-

crete random variable W with probability mass function p(w).The Rényi en-

tropy of order ` is defined as:

HW ;R(`) =
1

1− `
log[HX(`)]

where;

HX(`) =

∫
R

f `W (w)d(w), for ` > 0 ` 6= 1

Rényi entropy has applications in various fields such as information theory,

statistical physics, and machine learning.

1.2.10 Order Statistics

In the context of a set of data points, the order statistics provide valuable in-

sights by presenting the values of these data points in ascending order. This

10



allows researchers and analysts to better understand the distribution and

characteristics of the data, enabling them to make informed decisions and

draw meaningful conclusions.Order statistics are a fundamental concept in

the fields of statistics and probability theory, focusing on the arrangement

and ranking of observations within a given sample.

For example, consider a sample of n observations:Z1, Z2, Z3, ...Zn. The order

statistics are denoted as follows:

• The minimum value:Z(1)

• The second smallest value:Z(2)

• The third smallest value:Z(3)

• And so on, until:

• The maximum value:Z(n)

These order statistics can be useful in various statistical analyses, such as

determining percentiles, constructing confidence intervals, and performing

hypothesis tests.

Let Zı(ı ≤ n) be random variable in order that are independently and iden-

tically distributed.Then the corresponding CDF is given by

FZ(v:n)
(z) =

n∑
ı=v

 n

ı

 [FZ(z)]ı [1− FZ(z)]n−1

1.2.11 Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a statistical technique utilized

to determine the optimal values of parameters within a model by maxi-

mizing the likelihood of observing the provided data.This process involves

the formulation of a likelihood function based on both the model and da-

ta,followed by the utilization of optimization techniques to identify the pa-

rameter values that result in the observed data being most probable.
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Let W1,W2,W3, ...Wn a random sample from a distribution with probabil-

ity density function (pdf) or probability mass function (PMF) denoted by

f(w; ∅) where ∅ represents the parameter to be estimated.The likelihood

function L(∅) is defined as the joint probability density function of the sam-

ple given the parameter’s ∅,which is defined as:

L(w; ∅) =
n∏
i=1

f(Wi; ∅)

1.2.12 Goodness of Fit Criteria

Goodness of fit criteria are employed to evaluate the degree to which a sta-

tistical model accurately represents the observed data. These criteria offer

quantitative measures that enable the assessment of how well a model de-

scribes the data. Several commonly used goodness of fit criteria exist, which

aid in determining the adequacy of a model in describing the observed data.

• Akaike Information Criterion (AIC)

• Bayesian Information Criterion (BIC)

• Consistent Akaike Information Criterion (CAIC)

Akaike Information Criterion (AIC)

The Akaike Information Criterion (AIC) serves as an indicator of the com-

parative excellence of a statistical model with respect to a specific dataset. It

imposes a penalty on models with a higher number of parameters, with the

goal of striking a balance between the model’s goodness of fit and its com-

plexity. Smaller AIC values are indicative of models that fit the data more

effectively. It can be defined as:

AIC = 2q − 2 log(L)
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where,

• log(L)represents the Log-Likelihood function calculated using the M-

LEs.

• q is number of parameters in the model.

Bayesian Information Criterion (BIC)

BIC is similar to AIC but places a stronger penalty on models with more

parameters. It is calculated as;

BIC = q log(m)− 2 log(L)

where,

• log(L) represents the Log-Likelihood function calculated using the M-

LEs.

• q is number of parameters in the model.

• m is sample size.

Like AIC, lower BIC values indicate better-fitting models.

Consistent Akaike Information Criterion (CAIC)

The Consistent Akaike Information Criterion (CAIC) is a modified version

of the Akaike Information Criterion (AIC) that specifically addresses the is-

sue of bias in finite sample sizes. It is particularly beneficial in cases where

the sample size is small or when the number of parameters in the model is

relatively large compared to the sample size.

The CAIC is defined as:

CAIC = −2 log(L) + 2d
n

n− d− 1

13



where,

• log(L) represents the Log-Likelihood function calculated using the M-

LEs.

• d is number of parametersin the model.

• n is sample size.

1.2.13 Simulation

A simulation study might make use of a straightforward model or one that

is highly complex,depending on the sort of research for which the model

is produced.The major purpose of simulation research is to understand the

real system.Simulation study may have sophisticated model or simple one

depending on research type.The main goal of the researchers is to create a

simulation model that takes into account every imaginable factor.A simula-

tion study is carried out in statistics to evaluate the effectiveness of the new

statistical strategy that the researcher has suggested.

1.3 Research Objectives

• To propose a new Sin Exponentiated Odd Generalized Pareto type

generator.

• To generate a new more flexible extension of Dagum distribution by

using new trigonometric generator.

• To explore the proposed distribution’s statistical properties.

• To utilize the MLE technique for obtaining parameter estimates.

• To determine the effeciency of the distribution under study by using

both real and simulated datasets.
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1.4 Study Outline

This thesis is categorized into five chapters.

• In Chapter 1, is introductory in nature and provides genesis of the

probability distributions. And a new methodology is proposed for

generating a new family of Sin Exponentiated Odd Generalized Pareto

Dagum and its general mathematical properties are derived.

• In Chapter 2, A brief survey of the literature on existing Odd Generat-

ed distributions and their applications are given.

• In chapter 3, Sin Exponentiated Odd Generalized Pareto X-Family of

generator is introduced by using the proposed methodology. The struc-

tural and statistical properties including moments, moment generat-

ing function, entropy, survival function, hazard function and order s-

tatistics are derived.

• In chapter 4, Dagum distribution is developed by using the proposed

methodology. The structural and statistical properties including mo-

ments, moment generating function, entropy, survival function, haz-

ard function and order statistics are derived.

• In Chapter 5, The parameters are estimated by using maximum like-

lihood estimation technique. The simulation study is carried out to

examine the performance of the proposed distribution. The proposed

SEOGPD model is fitted on real-life data sets to highlight its compati-

bility. The thesis discussion conclusion have been reported.
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Chapter 2

Literature Review

Numerous studies have suggested the utilization of diverse generated class-

es to expand the parameter space within distributions. These enhanced dis-

tributions have demonstrated their applicability in modeling data across a

wide range of disciplines. In this chapter literature survey relating to the

current study is presented.

Abonongo, A. I. L., (2024) [30] introduces the transformed sin Dagum distri-

bution, a modification of the Dagum distribution based on the transformed

sin-G family. It effectively models positively skewed, approximately sym-

metric, and decreasing datasets, and can handle both monotonic and non-

monotonic hazard rates. They derived various statistical properties, includ-

ing the quantile function, moments, and order statistics, and use maximum

likelihood estimation for parameter estimation. Monte Carlo simulations

confirm the consistency of the estimators. Applied to real-life datasets, the

transformed sine Dagum distribution demonstrates a superior parametric

fit compared to competing models.

El-Khabeary et al., (2024) [28] study that Multivariate distributions, such as

the bivariate Dagum distribution, are essential in economic, social, and busi-

ness fields but are often challenging for non-specialists due to their complex
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mathematical forms. This paper provides a statistical table with exact values

for the bivariate Dagum cumulative distribution in cases of dependence and

independence of random variables, as introduced by K. M. El-Khabeary et

al., (2023) [27]. They also present an approximate distribution using numer-

ical double integration, along with the corresponding statistical table and

some numerical examples. Finally, They conduct a comparison study be-

tween the exact and approximate values.

Sherwani et al., (2023) [25] propose the MOED, featuring four shape param-

eters and one scale parameter, is introduced. To streamline calculations, al-

ternative expressions for the MOED are derived. The study explores various

properties of the MOED, including dispersion, central tendency, hazard rate,

and survival rate. Additionally, network properties such as moments, quan-

tile function, median, and MD random number generator are derived. Pa-

rameters are estimated using the MLE method, with performance assessed

via Monte Carlo Simulation. The MOED’s application and performance are

evaluated using three real-life data sets, comparing it to the MOD distribu-

tion, Exponentiated Dagum (ED), Dagum (D), Burr III, K-Burr III, KLL, and

LL distributions. Four information criteria are utilized to compare these dis-

tributions, showing the MOED’s superior performance.

Peter O Koleoso., (2023) [26] explores an OLD distribution has been con-

structed. The ODG family of distributions served as the model for the distri-

bution. With the help of pertinent supporting plots of the PDF, hazard func-

tion, survival function, etc., the structural properties of the distribution have

been determined. They investigate the OLD distribution’s performance by

fitting it to two skewed datasets in addition to the Dagum, Lomax, and WD

distributions (WeiDaD, DaD, and LomD). Compared to other distributions

taken into consideration in the study, the distribution showed a great deal

of flexibility in modeling the two datasets.
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Tanis et al., (2019) [22] introduce the approximation Bayes estimation issue

with three parameters for the log-Dagum distribution. First, the MLEs for

unknown parameters of the LD distribution are produced, together with

asymptotic confidence intervals based on these estimators. Moreover, the

Tierney and Kadane approximations are used to produce estimated Bayes

estimators under squared error loss function for the unknown parameter-

s of this distribution. A Monte-Carlo simulation research is conducted to

evaluate the mean square errors and biases of the approximation Bayes es-

timators and maximum likelihood estimators. The study of actual data for

this distribution is finally completed.

Dey et al., (2017) [17] discuss From multiple perspectives, the characteristics

and approaches for estimating the unknown parameters of three-parameter

Dagum distribution are discussed. Various mathematical and statistical prop-

erties of the Dagum distribution, including quantiles, moments, moment

generating function, hazard rate, mean residual lifetime, mean past lifetime,

MD about the mean and median, various entropies, Bonferroni and Lorenz

curves, and order statistics, are explored. Although the primary focus is on

estimation from a frequentist perspective, several estimation methods are

briefly discussed, including MLE, moments, L-moment, percentile-based,

least squares, maximum product of spacings, minimum distances, Cramér-

von-Mises, Anderson-Darling, and right-tail Anderson-Darling estimators.

Monte Carlo simulations are conducted to compare the estimation perfor-

mances of the proposed approaches for both small and large samples.

Tahir et al., (2016) [16] introduce the WD distribution, a new lifetime model

based on the Weibull G class. This model is characterized by a flexible densi-

ty function that can be symmetrical, left-skewed, right-skewed, or reversed-

J shaped. It exhibits various hazard rate shapes, including constant, in-
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creasing, decreasing, upside-down bathtub, bathtub, and reversed-J shaped.

They derived several structural properties, including quantile functions, or-

dinary and incomplete moments, and probability weighted moments. Ad-

ditionally, They provide explicit expressions for Rényi and q-entropies and

derive the density function of order statistics as a mixture of Dagum densi-

ties. Using maximum likelihood estimation, They demonstrated the mod-

el’s effectiveness through a simulation study and applications to real data,

where it outperforms the beta-Dagum, McDonaldDagum, and Dagum mod-

els.

Silva et al., (2015) [12] explore a novel model with five parameters known as

the extended Dagum distribution. Among other distributions, the proposed

model includes the log-logistic and Burr III distributions as special exam-

ples. The moments, mean deviations, generating and quantile functions,

Bonferroni, Lorenz, and Zenga curves are all derived. We acquire the order

statistics’ density function. The maximum likelihood approach is utilized

to estimate the parameters. The information matrix observed is established.

The significance of the new model is demonstrated through an application

to actual data.

Oluyede, B. O.,and Ye, Y., (2014) [11] proposes a new distributions connect-

ed to WD. The Dagum distribution’s probability-weighted moments and

the ensuing weighted distributions are shown. Many WD distributions, in-

cluding length-biased Dagum, proportional hazard moment Dagum, pro-

portional reverse hazard moment Dagum, and Dagum distributions as spe-

cial instances, are included in this family of distributions. The WD distri-

bution’s entropy and Fisher information are obtained. They used the MLE

process to estimate the model parameters. They offer examples and a com-

parison of this model with the generalized Lindley, generalized gamma, and

WGG distributions.
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Chapter 3

Sin Exponentiated Odd

Generalized Pareto X-Family of

Distribution

3.1 Introduction

Generators are tools used to modify the existing distributions by adjusting

specific characteristics. The main focus of this chapter is to introduce a new

generator by using the trignometric function and flexibility of existing dis-

tributions is a relatively recent and innovative approach in statistical proba-

bility modeling.

This approach is especially popular among researchers,Eugene et al.,(2002)

[4] proposed beta generated (G) family of distributions, Zografos and Bal-

akrishnan(2009) [5] proposed gamma-G family, Cordeiro and de Castro(2011)

[6] defined Kumaraswamy-G family, Bourguignon et al.,(2014) [8] introduced

weibull-G family, Al-Shomrani et al.,(2016) [15] proposed TL family of dis-

tributions and Cordeiro et al.(2019) [18] introduced the OD-G family of dis-

tributions.

20



3.2 Sin Exponentiated Odd Generalized

X-Family of Distribution

3.2.1 Sin Exponentiated Odd Distribution

In introduction it is discussed that Tahir et al.,(2015) [14] proposed the new

class of distribution called the odd generalized exponential family. Then the

PDF and CDF of Sin Odd-Generalized Exponential X-Family of distribution

is;

SOE(y;α; β) = sin

{
π

2

(
1− e−α

Q(y)

Q̄(y)

)β}
y>0,
α,β>0 (3.2.1)

sOE(y;α; β) =
αβπq(y)

2Q̄(y)
cos

{
π

2

(
1− e−α

Q(y)

Q̄(y)

)β}
×
(

1− e−α
Q(y)

Q̄(y)

)β−1
e
−αQ(y)

Q̄(y) y>0,
α,β>0 (3.2.2)

Where Q̄(y) = 1−Q(y)

3.2.2 The Generalized Pareto X-Family of

Distribution

The PDf and CDf of Generalized Pareto X-Family of distribution was intro-

duced by Maurice Fréchet, in the early 20th century.

QG(z; ~) = 1− {1 +D(z)}
1
~ (3.2.3)

where z = x−µ
σ

x ≥ µ

qG(z; ~) =
1

~
{1 +D(z)}−

1
~−1D(z) (3.2.4)
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Where ~ is the shape parameter.

3.3 Sin Exponentiated Odd Generalized

Pareto X-Family of Distribution(SEOGPX)

By using (3.2.3), (3.2.4) into (3.2.1) and (3.2.2) respectively,

The CDF of SEOGPX family of distribution is,

SSEOGPX(z) = sin

π2
1− e

−α 1−{1+D(z)}−
1
~

[1−{1−{1+D(z)}−
1
~ }]

β
 (3.3.1)

Given by is the relevant probability density function(PDF) is,

sSEOGPX(z) =
αβπ

2~
{1 +D(z)}− 1

~−1D(z)

[1− {1− (1 +D(z))− 1
~}]

×e
−α 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

×

1− e
−α 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

β−1

× cos

π2
1− e

−α 1−{1+D(z)}−
1
~

[1−{1−(1+D(z))
− 1

~ }]

β
 (3.3.2)

3.3.1 Expansion of CDF and PDF

The CDF of expended form of Sin-G family of distribution Souza et al.,(2019)

[21] is given as

sin

{
π

2

(
1− e−α

Q(y)

Q̄(y)

)β}
=
∞∑
n=0

(−1)i

(2n+ 1)!
x2n+1
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So, The CDF of the SEOGPX family of distribution is

sin

π2
1− e

−α 1−{1+D(z)}−
1
~

[1−{1−{1+D(z)}−
1
~ }]

β
 =

∞∑
i=0

(−1)i

(2i+ 1)!

×

π2
1− e

−α 1−{1+D(z)}−
1
~

[1−{1−{1+D(z)}−
1
~ }]

β


2i+1

SSEOGPX(z) =
∞∑
i=0

(−1)i

(2i+ 1)!

(π
2

)2i+1

×

1− e
−α 1−{1+D(z)}−

1
~

[1−{1−{1+D(z)}−
1
~ }]

β(2i+1)

(3.3.3)

Now expanded form of PDF: By taking derivative of (3.3.3)

sSEOGPX(z; ~) =
∞∑
i=0

(−1)i

(2i+ 1)!

(π
2

)2i+1

β(2i+ 1)

×

1− e
−α 1−{1+D(z)}−

1
~

[1−{1−{1+D(z)}−
1
~ }]

β(2i+1)−1

× d

dz

1− e
−α 1−{1+D(z)}−

1
~

[1−{1−{1+D(z)}−
1
~ }]



sSEOGPX(z; ~) =
αβ

~

∞∑
i=0

(−1)i

(2i+ 1)!

(π
2

)2i+1

(2i+ 1)

×

1− e
−α 1−{1+D(z)}−

1
~

[1−{1−{1+D(z)}−
1
~ }]

β(2i+1)−1

×e
−α 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

× {1 +D(z)}− 1
~−1D(z)

[1− {1− (1 +D(z))− 1
~}]2

(3.3.4)
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Consider

e
−α 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

1− e
−α 1−{1+D(z)}−

1
~

[1−{1−{1+D(z)}−
1
~ }]

β(2i+1)−1

As the binomial series is:

(1− z)a−1 =
∞∑
b=0

(−1)b

 a− 1

b

 zb (i)

Applying on above considered term

=
∞∑
j=0

(−1)j

 β(2i+ 1)− 1

j

 e
−αj 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

×e
−α 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

=
∞∑
j=0

(−1)j

 β(2i+ 1)− 1

j

 e
−α(j+1)

1−{1+D(z)}−
1
~

[1−{1−(1+D(z))
− 1

~ }]

put all in equation (3.3.4)

sSEOGPX(z) =
αβ

~

∞∑
i=0

∞∑
j=0

(−1)i+j

(2i+ 1)!

(π
2

)2i+1

× (2i+ 1)

 β(2i+ 1)− 1

j


× e

−α(j+1)
1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

× {1 +D(z)}− 1
~−1D(z)

[1− {1− (1 +D(z))− 1
~}]2

(3.3.5)
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Now consider

e
−α(j+1)

1−{1+D(z)}−
1
~

[1−{1−(1+D(z))
− 1

~ }]

As the exponential expansion is;

e
−λ(ς+1)

G(x)

Ḡ(x) =
∞∑
k=0

(−1)kλk(ς + 1)k

k!

G(x)k

Ḡ(x)k

Applying on the above considered term

=
∞∑
k=0

αk(j + 1)k

k!

{1− (1 +D(z))−
1
~}k

[1− {1− (1 +D(z))−
1
~}]k

So

e
−α(j+1)

1−{1+D(z)}−
1
~

[1−{1−(1+D(z))
− 1

~ }] =
∞∑
k=0

(−1)kαk(j + 1)k

k!

× {1− (1 +D(z))−
1
~}k

[1− {1− (1 +D(z))−
1
~}]k

so the equation (3.3.5) becomes;

sSEOGPX(z) =
∞∑
i=0

∞∑
j=0

∞∑
k=0

αk+1β

~k!

(−1)i+j+k(j + 1)k

(2i+ 1)!

×
(π

2

)2i+1

(2i+ 1)

 β(2i+ 1)− 1

j


× {1 +D(z)}− 1

~−1D(z)

[1− {1− (1 +D(z))− 1
~}]2

× {1− (1 +D(z))−
1
~}k

[1− {1− (1 +D(z))−
1
~}]k

(3.3.6)
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Now consider

{1− (1 +D(z))−
1
~}k

[1− {1− (1 +D(z))− 1
~}]2[1− {1− (1 +D(z))−

1
~}]k

= [1− {1− (1 +D(z))−
1
~}]−(k+2){1− (1 +D(z))−

1
~}k

As the generalized binomial expansion is;

(1− x)−n =
∞∑
h=0

(−1)h

 n

h

xh (ii)

Applying on the above considered term

=
∞∑
l=0

(−1)l

 −(k + 2)

l

 {1− (1 +D(z))−
1
~}l

×{1− (1 +D(z))−
1
~}k

=
∞∑
l=0

(−1)l

 −(k + 2)

l

 {1− (1 +D(z))−
1
~}k+l

the equation (3.3.6) becomes

sSEOGPX(z) =
∞∑
i=0

∞∑
j=0

∞∑
k=0

∞∑
l=0

αk+1β

~k!

(−1)i+j+k+l(j + 1)k

(2i+ 1)!

×
(π

2

)2i+1

(2i+ 1)

 β(2i+ 1)− 1

j


×

 −(k + 2)

l

 {1 +D(z)}−
1
~−1D(z)

× {1− (1 +D(z))−
1
~}k+l (3.3.7)
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Now consider

{1− (1 +D(z))−
1
~}k+l{1 +D(z)}−

1
~−1

As the binomial series is;

(1− x)n =
∞∑
h=0

(−1)h

 n

h

xh (iii)

Applying on the above considered term

=
∞∑
e=0

(−1)e

 k + l

e

 {(1 +D(z))−
1
~}e

×{1 +D(z)}−
1
~−1

=
∞∑
e=0

(−1)e

 k + l

e

 {1 +D(z)}−( e+1
~ +1)

Now the equation (3.3.7) becomes;

sSEOGPX(z) =
∞∑

i,j=0

∞∑
k,l=0

∞∑
e=0

αk+1β

~k!

(−1)i+j+k+l+e(j + 1)k

(2i+ 1)!

×
(π

2

)2i+1

(2i+ 1)

 β(2i+ 1)− 1

j


×

 −(k + 2)

l

 k + l

e


×D(z){1 +D(z)}−( e+1

~ +1)

sSEOGPX(z) =
β

~

∞∑
i,j=0

∞∑
k,l=0

∞∑
e=0

AijkleD(z){1 +D(z)}−( e+1
~ +1) (3.3.8)
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Where,

Aijkle =
αk+1

k!

(−1)i+j+k+l+e(j + 1)k

(2i+ 1)!

(π
2

)2i+1

(2i+ 1)

×

 β(2i+ 1)− 1

j

 −(k + 2)

l

 k + l

e


3.3.2 Statistical properties of SEOGPX

3.3.3 Survival Function

The survival function of SEOGPX family of distribution is obtained as,

S(z) = 1− T (z) (3.3.9)

By substituting (3.3.1) into (3.3.9)

SSOE−PX(z) = 1− sin

π2
1− e

−α 1−{1+D(z)}−
1
~

[1−{1−{1+D(z)}−
1
~ }]

β
 (3.3.10)

3.3.4 Hazard Function

The hazard function, in survival analysis, represents the instantaneous risk

of an event occurring at time t, given that the subject has survived up to that

time.This function helps in assessing the probability of failure or an event

occurring within a very short time interval,

hSEOGPX(z) =
t(z)

1− T (z)
(3.3.11)
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By putting (3.3.1) and (3.3.2) into (3.3.11)

hSEOGPX(z) =
αβπ

2~
{1 +D(z)}− 1

~−1D(z)

[1− {1− (1 +D(z))− 1
~}]

× e
−α 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

×

1− e
−α 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

β−1

×

cos

π
2

1− e
−α 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

β


1− sin

π
2

1− e
−α 1−{1+D(z)}−

1
~

[1−{1−{1+D(z)}−
1
~ }]

β


(3.3.12)

3.3.5 Quantile Function

The Quantile function of SEOGPX family of distribution is,

SSEOGPX(z) = P

By adding the results of equation (3.3.1) in above expression we get;

sin

π2
1− e

−α 1−{1+D(z)}−
1
~

[1−{1−{1+D(z)}−
1
~ }]

β
 =P (3.3.13)

where P is an usual uniform random number.We must first solve (3.3.13) for

z in order to determine the inverse CDF. so taking the sin−1 on both sides of
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(3.3.13) π2
1− e

−α 1−{1+D(z)}−
1
~

[1−{1−{1+D(z)}−
1
~ }]

β
 = sin−1 P

1− e
−α 1−{1+D(z)}−

1
~

[1−{1−{1+D(z)}−
1
~ }]

β

=
2

π
sin−1 P

1−
(

2

π
sin−1 P

) 1
β

=e
−α 1−{1+D(z)}−

1
~

[1−{1−{1+D(z)}−
1
~ }]

Taking log on both sides,

log

{
1−

(
2

π
sin−1 P

) 1
β

}
=−α 1− {1 +D(z)}− 1

~

[1− {1− {1 +D(z)}− 1
~}]

1− {1 +D(z)}− 1
~

[1− {1− {1 +D(z)}− 1
~}]

=− log

α

{
1−

(
2

π
sin−1 P

) 1
β

}

1− {1 +D(z)}−
1
~ =− log

α

{
1−

(
2

π
sin−1 P

) 1
β

}
× [1− {1− {1 +D(z)}−

1
~}]

1− {1 +D(z)}−
1
~ =− log

α

{
1−

(
2

π
sin−1 P

) 1
β

}

− log

α

{
1−

(
2

π
sin−1 P

) 1
β

}
× {1− {1 +D(z)}−

1
~}

30



{1− {1 +D(z)}−
1
~}

[
1− log

α

{
1−

(
2

π
sin−1 P

) 1
β

}]
= − log

α

×

{
1−

(
2

π
sin−1 P

) 1
β

}

{1− {1 +D(z)}−
1
~} = −

log
α

{
1−

(
2
π

sin−1 P
) 1
β

}
[
1− log

α

{
1−

(
2
π

sin−1 P
) 1
β

}]
{1 +D(z)}−

1
~ = 1 +

log
α

{
1−

(
2
π

sin−1 P
) 1
β

}
[
1− log

α

{
1−

(
2
π

sin−1 P
) 1
β

}]

z = D−1

1 +

log
α

{
1−

(
2
π

sin−1 P
) 1
β

}
[
1− log

α

{
1−

(
2
π

sin−1 P
) 1
β

}]
−~ − 1

(3.3.14)

3.3.6 Moment Generating Function

The moment generating function (MGF) of a random variable X is defined

as MX(t) = E[etX ], where E denotes the expectation.

Mz(t) = E[exptz] =

∫
R

exptxf(z)dz

=⇒ exptz =
∞∑
r=0

(tz)r

r!

Mz(t) =
∞∑
r=0

tru′

r!
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using equation (3.3.8), the SEOGPX family of distributions moment gener-

ating function is,

Mz(t) =
β

~

∞∑
i,j=0

∞∑
k,l=0

∞∑
e=0

∞∑
r=0

Aijkle
tr

r!

∫
R

zrD(z)

×{1 +D(z)}−( e+1
~ +1)dz

(3.3.15)

3.3.7 Moments

u′r = E(zr) =

∫
R

zrt(z)dz

The SEOGPX familys rth ordinary moment by using equation (3.3.8) is given

as,

u′r =
β

~

∞∑
i,j=0

∞∑
k,l=0

∞∑
e=0

Aijkle

∫
R

zrD(z){1 +D(z)}−( e+1
~ +1)dz (3.3.16)

By putting r=1,2,3,...... we can obtain 1st, 2nd, 3rd...

ordinary moments of distribution.

3.3.8 Incomplete rth Moment

The rth incomplete moment by definition is:

φr(t) =

∫ t

−∞
zrf(z)dz

The rth incomplete moments of SEOGPX family of distribution

by using (3.3.8) is:

φr(t) =
β

~

∞∑
i,j=0

∞∑
k,l=0

∞∑
e=0

∞∑
r=0

Aijkle
tr

r!

∫ t

−∞
zrD(z)

× {1 +D(z)}−( e+1
~ +1)dz (3.3.17)
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3.3.9 Mean Residual Life

The estimated remaining life duration of a unit that survives at time t. It is

defined as,

m(t) =
1

1− F (t)

[
u−

∫ t

−∞
zf(z)dz

]
− t

Mean residual life of SEOGPX family of distribution by using (3.3.8 is,

m(t) =
1

1− T (t)

[
u− β

~

∞∑
i,j=0

∞∑
k,l=0

∞∑
e,r=0

Aijkle
tr

r!

∫ t

−∞
zD(z)

× {1 +D(z)}−( e+1
~ +1)dz

]
− t (3.3.18)

3.3.10 Rényi Entropy

The R’enyi entropy Renyi (1961) [2] is defined as;

IR =
1

1− δ
log

[∫
R

tδ(z)dz

]
δ 6= 1 δ > 0 (3.3.19)

By using equation (3.3.2)

tδ(z) =

(
αβπ

2~

)δ
[{1 +D(z)}−

1
~−1D(z)]δ

× 1

[1− {1− (1 +D(z))−
1
~}]2δ

×e
−αδ 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

×

1− e
−α 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

δ(β−1)

×

cos

π2
1− e

−α 1−{1+D(z)}−
1
~

[1−{1−(1+D(z))
− 1

~ }]

β


δ

(3.3.20)
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consider cos

π2
1− e

−α 1−{1+D(z)}−
1
~

[1−{1−(1+D(z))
− 1

~ }]

β


δ

By using the series expansions for the cos function;

{
cos

π

2
G(x)

}i
=
∞∑
j=0

bj(i)
(π

2
G(x)

)

cos

π2
1− e

−α 1−{1+D(z)}−
1
~

[1−{1−(1+D(z))
− 1

~ }]

β


δ

=
∞∑
p=0

bp(δ)

π2
1− e

−α 1−{1+D(z)}−
1
~

[1−{1−(1+D(z))
− 1

~ }]

β


2p

tδ(z) =
∞∑
p=0

bp(δ)
(π

2

)2p(αβπ
2~

)δ
× [{1 +D(z)}−

1
~−1D(z)]δ

× 1

[1− {1− (1 +D(z))−
1
~}]2δ

× e
−αδ 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

×

1− e
−α 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

β(2p+δ)−δ

(3.3.21)

Now consider

1− e
−α 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

β(2p+δ)−δ
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again using binomial series (iii)

=
∞∑
q=0

(−1)q

 β(2p+ δ)− δ

q

 e
−αq 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

so the equation (3.3.21) becomes;

tδ(z) =
∞∑
p=0

∞∑
q=0

(−1)qbp(δ)
(π

2

)2p(αβπ
2~

)δ
×[{1 +D(z)}−

1
~−1D(z)]δ

× 1

[1− {1− (1 +D(z))−
1
~}]2δ

×

 β(2p+ δ)− δ

q

 e
−α(q+δ)δ 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }] (3.3.22)

Substituting (3.3.22) in equation (3.3.19)

IR =
1

1− δ
log

[(
αβπ

2~

)δ
δ

∫
R

∞∑
p=0

∞∑
q=0

Wpq

× [{1 +D(z)}− 1
~−1D(z)]δ

[1− {1− (1 +D(z))−
1
~}]2δ

×e
−α(q+δ) 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]dz

]
(3.3.23)

where

Wpq = (−1)qbp

(π
2

)2p β(2p+ δ)− δ

q


3.3.11 Order Statistics

Let ζ1, ζ2, ζ3, , , ζn be followed by the PDF of the ordered random tth order

statistics is defined as

th:n =
t(ζ)

β(h, n− h+ 1)

n−h∑
m=0

(−1)m

 n− h

m

T (ζ)m+h−1
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Using expanded form of CDF and PDF of SEOGPX distribution from

(3.3.3) and (3.3.8)

T (ζ)m+h−1 = Sm+h−1

1− e
−α 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

β(2i+1)(m+h−1)

where;

Sm+h−1 =
∞∑
i=0

(−1)i

(2i+ 1)!

(π
2

)2i+1

th:n =
β

~β(h, n− h+ 1)

∞∑
i,j=0

∞∑
k,l=0

∞∑
e=0

n−h∑
m=0

Aijkle(−1)m

×

 n− h

m

Sm+h−1D(z){1 +D(z)}−(
e+1
~ +1)

×

1− e
−α 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

β(2i+1)(m+h−1)

(3.3.24)

Now consider

1− e
−α 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

β(2i+1)(m+h−1)

let

u = (2i+ 1)(m+ h− 1)

⇒

1− e
−α 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

β(2i+1)(m+h−1)

=

1− e
−α 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

βu
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again using binomial series (iii)

1− e
−α 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

βu

=
∞∑
s=0

(−1)s

 βu

s


×e
−αs 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

consider

e
−αs 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

using the power series expansion

e−x =
∞∑
i=0

(−1)ixi

i!

so the above considered term becomes;

e
−αs 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }] =
∞∑
s=0

∞∑
v=0

(−1)s+v

 βu

s



×

{
αs 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))−
1
~ }]

}v
v!

Substituting back in equation (3.3.24)

th:n =
β

~β(h, n− h+ 1)

∞∑
i,j=0

∞∑
k,l=0

∞∑
e=0

n−h∑
m=0

∞∑
s,v=0

Aijkle

×(−1)m+s+v

v!
Sm+h−1

 n− h

m

 βu

s


×

{
αs

1− {1 +D(z)}− 1
~

[1− {1− (1 +D(z))−
1
~}]

}v

D(z)

×{1 +D(z)}−(
e+1
~ +1)
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th:n =
β

~β(h, n− h+ 1)

∞∑
i,j=0

∞∑
k,l=0

∞∑
e=0

n−h∑
m=0

∞∑
s,v=0

Zc

×

{
1− {1 +D(z)}− 1

~

[1− {1− (1 +D(z))−
1
~}]

}v

×D(z){1 +D(z)}−(
e+1
~ +1) (3.3.25)

Where;

Zc = Aijkle
(−1)m+s+v(αs)v

v!
Sm+h−1

 n− h

m

 βu

s


3.3.12 Parameter Estimation

Since the parameters of the probability model are unknown, they need to

be estimated using sample data. In this section, the maximum likelihood

estimation method is applied to estimate these unknown parameters.

The likelihood-function(L) is defined as,

L =
n∏

w=1

t(zw; ∂) where ∂ > 0

As the PDF of SEOGPD by (3.3.2) is,

sSEOGPX(z) =
αβπ

2~
{1 +D(z)}− 1

~−1D(z)

[1− {1− (1 +D(z))− 1
~}]

× e
−α 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

×

1− e
−α 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

β−1

× cos

π2
1− e

−α 1−{1+D(z)}−
1
~

[1−{1−(1+D(z))
− 1

~ }]

β
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L =
n∏

w=1

[
αβπ

2~
{1 +D(z)}− 1

~−1D(z)

[1− {1− (1 +D(z))− 1
~}]

×e
−α 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

1− e
−α 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

β−1

× cos

π2
1− e

−α 1−{1+D(z)}−
1
~

[1−{1−(1+D(z))
− 1

~ }]

β

]

The log(L) is;

Log(L) = n logα + n log β + n log
π

2
+

(
−1

~
− 1

)
× log

n∑
w=1

(1 +D(zw; ~)) + log
n∑

w=1

d(zw; ~)

−2 log
n∑

w=1

[1− {1− (1 +D(zw; ~))−
1
~}]

−α
n∑

w=1

{1− (1 +D(zw; ~))−
1
~}

[1− {1− (1 +D(zw; ~))−
1
~}]

+(β − 1) log
n∑

w=1

1− e
−α {1−(1+D(zw ;~))

− 1
~ }

[1−{1−(1+D(zw ;~))
− 1

~ }]


+ log

n∑
w=1

cos

π2
1− e

−α 1−{1+D(z)}−
1
~

[1−{1−(1+D(z))
− 1

~ }]

β
 (3.3.26)

3.3.13 Some Special Cases

Gumbel Type-2 Distribution

Ogunde et al.,(2020) [23] proposed Gumbel Type-2 Distribution,

it’s CDF and PDF is;

F (x) = e−bx
−a

f(x) = abx−a−1e−bx
−a
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Where b is shape parameter.

Submitting it into (3.3.1) and (3.3.2)

GSEOGPT2G(z) = sin


π

2

1− e
−α 1−(1+e−bx

−a
)
− 1

~[
1−{1−(1+e−bx−a )

− 1
~ }
]

β

gSEOGPT2G(z) =
αβπ

2~
(1 + e−bx

−a
)−

1
~−1abx−a−1e−bx

−a[
1− {1− (1 + e−bx−a)−

1
~}
]

×e
−α 1−(1+e−bx

−a
)
− 1

~[
1−{1−(1+e−bx−a )

− 1
~ }
]

×

1− e
−α 1−(1+e−bx

−a
)
− 1

~[
1−{1−(1+e−bx−a )

− 1
~ }
]

β−1

× cos


π

2

1− e
−α 1−(1+e−bx

−a
)
− 1

~[
1−{1−(1+e−bx−a )

− 1
~ }
]

β
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Figure 3.1: Plot of the CDF and PDF of SEOGPG

The survival and Hazard rate

function are

SSEOGPT2G(z) = 1− sin


π

2

1− e
−α 1−(1+e−bx

−a
)
− 1

~[
1−{1−(1+e−bx−a )

− 1
~ }
]

β
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Figure 3.2: Plot of Survival Function of SEOGPG

HSEOGT2G(z) =
αβπ

2~
(1 + e−bx

−a
)−

1
~−1abx−a−1e−bx

−a[
1− {1− (1 + e−bx−a)−

1
~}
]

×e
−α 1−(1+e−bx

−a
)
− 1

~[
1−{1−(1+e−bx−a )

− 1
~ }
]

×

1− e
−α 1−(1+e−bx

−a
)
− 1

~[
1−{1−(1+e−bx−a )

− 1
~ }
]

β−1

cos

π
2

1− e
−α 1−(1+e−bx

−a
)
− 1

~[
1−{1−(1+e−bx−a )

− 1
~ }
]

β

1− sin

π
2

1− e
−α 1−(1+e−bx−a )

− 1
~[

1−{1−(1+e−bx−a )
− 1

~ }
]

β
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Figure 3.3: Plot of Hazard Function of SEOGPG

Logistic Distribution

Verhulst, P. F., (1838) [1] introduced the Logistic Distribution,

it’s CDF and PDF is;

F (x) = 1
1+e−x

f(x) = e−x

(1+e−x)2

Submitting it into (3.3.1) and (3.3.2)

LSEOGPL(z) = sin


π

2

1− e

−α
1−
(

1+ 1
(1+e−x)

)− 1
~1−1−

(
1+ 1

(1+e−x)

)− 1
~



β
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lSEOGPL(z) =
αβπ

2~

(
1 + 1

1+e−x

)− 1
~−1
{

e−x

(1+e−x)2

}
[
1− 1−

(
1 + 1

(1+e−x)

)− 1
~
]2

×e

−α
1−
(

1+ 1
(1+e−x)

)− 1
~1−1−

(
1+ 1

(1+e−x)

)− 1
~


1− e

−α
1−
(

1+ 1
(1+e−x)

)− 1
~1−1−

(
1+ 1

(1+e−x)

)− 1
~



β−1

× cos


π

2

1− e

−α
1−
(

1+ 1
(1+e−x)

)− 1
~1−1−

(
1+ 1

(1+e−x)

)− 1
~



β

Figure 3.4: Plot of CDF and PDF of SEOGPL

44



The survival and Hazard rate function are:

SSEOGPL(z) = 1− sin


π

2

1− e

−α
1−
(

1+ 1
(1+e−x)

)− 1
~1−1−

(
1+ 1

(1+e−x)

)− 1
~



β

Figure 3.5: Plot of Survival Function of SEOGPL
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HSEOGPL(z) =
αβπ

2~

(
1 + 1

1+e−x

)− 1
~−1
{

e−x

(1+e−x)2

}
[
1− 1−

(
1 + 1

(1+e−x)

)− 1
~
]2

×e

−α
1−
(

1+ 1
(1+e−x)

)− 1
~1−1−

(
1+ 1

(1+e−x)

)− 1
~


1− e

−α
1−
(

1+ 1
(1+e−x)

)− 1
~1−1−

(
1+ 1

(1+e−x)

)− 1
~



β−1

cos


π
2

1− e

−α
1−
(

1+ 1
(1+e−x)

)− 1
~1−1−

(
1+ 1

(1+e−x)

)− 1
~



β

1− sin


π
2

1− e

−α
1−
(

1+ 1
(1+e−x)

)− 1
~1−1−

(
1+ 1

(1+e−x)

)− 1
~



β

Figure 3.6: Plot of Hazard Function of SEOGPL
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Chapter 4

Sin Exponentiated Odd

Generalized Pareto Dagum

Distribution

The Dagum distribution, named after Camilo Dagum, is a continuous prob-

ability distribution primarily used in economics to model income distribu-

tion. It is a flexible distribution that can capture the heavy tails and skewness

often observed in real-world income data. The distribution is also utilized

in other fields such as finance, hydrology, and reliability engineering. The

Dagum distribution is known for its ability to model both the lower and up-

per tails of income distribution, making it suitable for analyzing economic

inequality and wealth distribution. Its parameters can be estimated using

various statistical methods, such as maximum likelihood estimation.

4.1 SEOGP Dagum Distribution

The distribution was first introduced in the early 1970s Dagum,Camilo (1977)

[3],it is named after Camilo Dagum, who proposed it in a series of papers in
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the 1970s. The PDF and CDF of Dagum distribution is;

D(z) =
ap

z

[ (
z
b

)ap{(
z
b

)a
+ 1
}p+1

]
(4.1.1)

D(z) =

{
1 +

(z
b

)−a}−p
(4.1.2)

Where p , a and b are the ’Shape’ , ’Scale’ and ’Location’ parameters respec-

tively.

By using (4.1.1) and (4.1.2) into (3.3.1),(3.3.2)

The SEOGP Dagum distribution’s CDF and PDF is,

S(z)SEOGPD(z) = sin


π

2

1− e
−α

1−{1+(1+(x
b

)−a)−p}−
1
~

[1−{1−(1+(1+(x
b

)−a)−p)
− 1

~ }]


β
 (4.1.3)

s(z)SEOGPD(z) =
αβapπ

2~x

[
1 + {1 + (

x

b
)−a}

]− 1
~−1

×
{

(x
b
)ap

((x
b
)a + 1)p+1

}

× e
−α

1−{1+(1+(x
b

)−a)−p}−
1
~

[1−{1−(1+(1+(x
b

)−a)−p)
− 1

~ }]

×

1− e
−α

1−{1+(1+(x
b

)−a)−p}−
1
~

[1−{1−(1+(1+(x
b

)−a)−p)
− 1

~ }]


β−1

× cos


π

2

1− e
−α

1−{1+(1+(x
b

)−a)−p}−
1
~

[1−{1−(1+(1+(x
b

)−a)−p)
− 1

~ }]


β


×
[
1− {1− (1 + (1 + (

x

b
)−a)−p)−

1
~}
]−2

(4.1.4)
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Figure 4.1: Plot of CDF and PDF of SEOGPD

Figure 4.1(a) presents the probability density function of the SEOGPD dis-

tribution. It is evident that the SEOGPD distribution exhibits positive skew-

ness, characterized by a right-tailed curve. Additionally, the curve appears

flatter when different parameter values are varied.

Figure 4.1(b) illustrates the cumulative distribution function (CDF) of the

SEOGPD distribution. The curves exhibit a rising behavior at their peaks,

and a monotonically increasing trend is observed throughout.

4.1.1 Validity of SEOGP Dagum Distribution

The entire area under the curve is one.

∫ ∞
−∞

f(z)dz = 1
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By using the PDF of dagum distribution from

equation (4.1.2) and (4.1.4)

∫ ∞
0

αβapπ

2~x

[
1 + {1 + (

x

b
)−a}

]− 1
~−1
{

(x
b
)ap

((x
b
)a + 1)p+1

}

×e
−α

1−{1+(1+(x
b

)−a)−p}−
1
~

[1−{1−(1+(1+(x
b

)−a)−p)
− 1

~ }]

×

1− e
−α

1−{1+(1+(x
b

)−a)−p}−
1
~

[1−{1−(1+(1+(x
b

)−a)−p)
− 1

~ }]


β−1

× cos


π

2

1− e
−α

1−{1+(1+(x
b

)−a)−p}−
1
~

[1−{1−(1+(1+(x
b

)−a)−p)
− 1

~ }]


β


×
[
1− {1− (1 + (1 + (

x

b
)−a)−p)−

1
~}
]−2

dz

Let

w =
π

2

1− e
−α

1−{1+(1+(x
b

)−a)−p}−
1
~

[1−{1−(1+(1+(x
b

)−a)−p)
− 1

~ }]


β

when

z −→ 0 then w −→ 0

z −→∞ then w −→ π

2
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dw =
αβapπ

2~x

[
1 + {1 + (

x

b
)−a}

]− 1
~−1
{

(x
b
)ap

((x
b
)a + 1)p+1

}

×e
−α

1−{1+(1+(x
b

)−a)−p}−
1
~

[1−{1−(1+(1+(x
b

)−a)−p)
− 1

~ }]

×

1− e
−α

1−{1+(1+(x
b

)−a)−p}−
1
~

[1−{1−(1+(1+(x
b

)−a)−p)
− 1

~ }]


β−1

×
[
1− {1− (1 + (1 + (

x

b
)−a)−p)−

1
~}
]−2

dz

So,

∫ ∞
0

t(z)dz =

∫ π
2

0

coswdw∫ ∞
0

coswdw = sinw∫ π
2

0

coswdw = sinw

∣∣∣∣π2
0

= sin
π

2
− sin 0

sin
π

2
=1 (4.1.5)

4.2 Statistical Properties

4.2.1 Survival Function

By using CDF from (4.1.3)

SSEOGPD(z) = 1− sin


π

2

1− e
−α

1−{1+(1+(x
b

)−a)−p}−
1
~

[1−{1−(1+(1+(x
b

)−a)−p)
− 1

~ }]


β
 (4.2.1)
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Figure 4.2: Plot of Survival Function of SEOGPD

Figure 4.2 depicts the survival function of the SEOGPD distribution. The

figure demonstrates that the curves trend downward, indicating a decreas-

ing pattern. Variation in parameters results in a further decreasing trend,

leading to a gradual decline in the survival function.
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4.2.2 Hazard Function

By using (4.1.3) and (4.1.4)

hSEOGPD(Z) =
αβapπ

2~x

[
1 + {1 + (

x

b
)−a}

]− 1
~−1
{

(x
b
)ap

((x
b
)a + 1)p+1

}

× e
−α

1−{1+(1+(x
b

)−a)−p}−
1
~

[1−{1−(1+(1+(x
b

)−a)−p)
− 1

~ }]

×

1− e
−α

1−{1+(1+(x
b

)−a)−p}−
1
~

[1−{1−(1+(1+(x
b

)−a)−p)
− 1

~ }]


β−1

× cos


π

2

1− e
−α

1−{1+(1+(x
b

)−a)−p}−
1
~

[1−{1−(1+(1+(x
b

)−a)−p)
− 1

~ }]


β


×

[
1− {1− (1 + (1 + (x

b
)−a)−p)−

1
~}
]−2

1− sin

π
2

1− e
−α

1−{1+(1+(x
b

)−a)−p}−
1
~

[1−{1−(1+(1+(x
b

)−a)−p)
− 1

~ }]


β


(4.2.2)
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Figure 4.3: Plot of Hazard Function of SEOGPD

A comprehensive hazard function graph of SEOGPD distribution is pre-

sented in Figure (4.3(a)), (4.3(b)) and (4.3(c)) that exhibits all trends-initially

decreasing, constant, and finally increasing-can be best represented by a

bathtub-shaped hazard function. It can be seen that the curve illustrates

an initial high hazard rate due to early failures, a subsequent period of low
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and constant hazard rate indicating a stable operational phase.

4.2.3 Quantile Function

As the CDF of SEOGPD from (4.1.3)

SSEOGPD(z) = sin


π

2

1− e
−α

1−{1+(1+(x
b

)−a)−p}−
1
~

[1−{1−(1+(1+(x
b

)−a)−p)
− 1

~ }]


β
 (4.2.3)

SSEOGPD(z) = U

sin


π

2

1− e
−α

1−{1+(1+(x
b

)−a)−p}−
1
~

[1−{1−(1+(1+(x
b

)−a)−p)
− 1

~ }]


β
 = U

π

2

1− e
−α

1−{1+(1+(x
b

)−a)−p}−
1
~

[1−{1−(1+(1+(x
b

)−a)−p)
− 1

~ }]


β

= sin−1 U

1− e
−α

1−{1+(1+(x
b

)−a)−p}−
1
~

[1−{1−(1+(1+(x
b

)−a)−p)
− 1

~ }]


β

=
2

π
sin−1 U

1− e
−α

1−{1+(1+(x
b

)−a)−p}−
1
~

[1−{1−(1+(1+(x
b

)−a)−p)
− 1

~ }]

 =

(
2

π
sin−1 U

)β−1

e
−α(1−{1+(1+(xb−1)−a)−p}−~−1

)

[1−{1−(1+(1+(xb−1)−a)−p)−~−1}] = 1−
(

2

π
sin−1 U

)β−1

Taking log on b/s

−α
1− {1 + (1 + (x

b
)−a)−p}− 1

~

[1− {1− (1 + (1 + (x
b
)−a)−p)−

1
~}]

= log

{
1−

(
2

π
sin−1 U

) 1
β

}

1− {1 + (1 + (x
b
)−a)−p}− 1

~

[1− {1− (1 + (1 + (x
b
)−a)−p)−

1
~}]

= − 1
α

log
{

1−
(
2
π

sin−1 U
)β−1

}
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1− {1 + (1 + (
x

b
)−a)−p}−

1
~ = [1− {1− (1 + (1 + (x

b
)−a)−p)−

1
~}]

×
[
− 1
α

log
{

1−
(
2
π

sin−1 U
)β−1

}]

1−{1 + (1 + (
x

b
)−a)−p}−

1
~

=− 1

α
log

{
1−

(
2

π
sin−1 U

)β−1
}

+
1

α
log

{
1−

(
2

π
sin−1 U

)β−1
}

× {1− (1 + (1 + (
x

b
)−a)−p)−

1
~}

{1− {1 + (1 + (
x

b
)−a)−p}−

1
~}

{
1− 1

α
log

{
1−

(
2

π
sin−1 U

)β−1
}}

=− 1

α
log

{
1−

(
2

π
sin−1 U

)β−1
}

{1− {1 + (1 + (
x

b
)−a)−p}−

1
~} = −

1
α

log
{

1−
(
2
π

sin−1 U
)β−1

}
{

1− 1
α

log
{

1−
(
2
π

sin−1 U
)β−1}}

{
1 +

(
1 +

(x
b

)−a)−p}− 1
~

= 1 +

1
α

log
{

1−
(
2
π

sin−1 U
)β−1

}
{

1− 1
α

log
{

1−
(
2
π

sin−1 U
)β−1

}}

1 +

(
1 +

(x
b

)−a)−p
=

1 +

1
α

log
{

1−
(
2
π

sin−1 U
)β−1

}
{

1− 1
α

log
{

1−
(
2
π

sin−1 U
)β−1

}}
−~

(
1 +

(x
b

)−a)−p
=

1 +

1
α

log
{

1−
(
2
π

sin−1 U
)β−1}{

1− 1
α

log
{

1−
(
2
π

sin−1 U
)β−1

}}
−~ − 1

56



1 +
(x
b

)−a
=


1 +

1
α

log
{

1−
(
2
π

sin−1 U
)β−1

}
{

1− 1
α

log
{

1−
(
2
π

sin−1 U
)β−1

}}
−~ − 1


− 1
p

(x
b

)−a
=


1 +

1
α

log
{

1−
(
2
π

sin−1 U
)β−1

}
{

1− 1
α

log
{

1−
(
2
π

sin−1 U
)β−1

}}
−~ − 1


− 1
p

− 1

x

b
=



1 +

1
α

log
{

1−
(
2
π

sin−1 U
)β−1

}
{

1− 1
α

log
{

1−
(
2
π

sin−1 U
)β−1

}}
−~ − 1


− 1
p

− 1


− 1
a

x =b



1 +

1
α

log
{

1−
(
2
π

sin−1 U
)β−1

}
{

1− 1
α

log
{

1−
(
2
π

sin−1 U
)β−1

}}
−~ − 1


− 1
p

− 1


− 1
a

(4.2.4)

4.2.4 Moments

As rth moment of SEOGPX family of distribution from (3.3.15)

u′r =
β

~

∞∑
i,j=0

∞∑
k,l=0

∞∑
e=0

Aijkle

∫
R

zrD(z){1 +D(z)}−( e+1
~ +1)dz

By using PDF and CDF of dagum distribution

from (4.1.1) and (4.1.2)

u′r =
β

~

∞∑
i,j=0

∞∑
k,l=0

∞∑
e=0

Aijkle

∫ ∞
0

zr
ap

z

[ (
z
b

)ap{(
z
b

)a
+ 1
}p+1

]

×

{
1 +

{
1 +

(z
b

)−a}−p}−( e+1
~ +1)

dz (4.2.5)

57



u′r =K

∫ ∞
0

zr
ap

z

[ (
z
b

)ap{(
z
b

)a
+ 1
}p+1

]

×

{
1 +

{
1 +

(z
b

)−a}−p}−( e+1
~ +1)

dz (4.2.6)

Let,

K =
β

~

∞∑
i,j=0

∞∑
k,l=0

∞∑
e=0

Aijkle

Consider

∫ ∞
0

zr
ap

z

[ (
z
b

)ap{(
z
b

)a
+ 1
}p+1

]{
1 +

{
1 +

(z
b

)−a}−p}−( e+1
~ +1)

dz

Put {
1 +

{
1 +

(z
b

)−a}−p}
=~{

1 +
(z
b

)−a}−p
=~− 1

1 +
(z
b

)−a
=(~− 1)−

1
p(z

b

)−a
=(~− 1)−

1
p − 1

z

b
={(~− 1)−

1
p − 1}−

1
a

⇒ z =b{(~− 1)−
1
p − 1}−

1
a

ap

z

[ (
z
b

)ap{(
z
b

)a
+ 1
}p+1

]
dz = d~

when

z −→ 0 then ~ −→ 0

z −→∞ then ~ −→ 1
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=

∫ 1

0

br{(~− 1)−
1
p − 1}−

r
a~−( e+1

~ +1)d~

Consider;

{(~− 1)−
1
p − 1}−

r
a

As binomial serirs for negative exponents,

(x− 1)−n =
∞∑
q=0

(−1)q

 −n
q

xq

After applying the series on above considered expression, we get,

=br
∫ 1

0

~−( e+1
~ +1)

∞∑
t=0

(−1)t

 − r
a

t

 (~− 1)−
t
pd~

=br(−1)t

 − r
a

t

 ∞∑
t=0

∫ 1

0

~−( e+1
~ +1)(~− 1)−

t
pd~

=br(−1)t

 − r
a

t

 ∞∑
t=0

∫ 1

0

~−( e+1
~ +1)(~− 1)(−

t
p
+1)−1d~

As the beta function of 1stkind is

∫ 1

0

xα−1(1− x)β−1dx = β(α, β)

So,

br(−1)t

 − r
a

t

 ∞∑
t=0

∫ 1

0

~−( e+1
~ +1)(~− 1)(−

t
p
+1)−1d~
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=br(−1)t
∞∑
t=0

 − r
a

t

 β

{(
−e+ 1

~

)
,

(
−t
p

+ 1

)}

Substituting it into (4.2.6)

u′r =Kbr(−1)t
∞∑
0

 − r
a

t

 β

{(
−e+ 1

~

)
,

(
−t
p

+ 1

)}

u′r =
β

~

∞∑
i,j=0

∞∑
k,l=0

∞∑
e,t=0

Aijkleb
r(−1)t

∞∑
0

 − r
a

t


β

{(
−e+ 1

~

)
,

(
−t
p

+ 1

)}

4.2.5 Renyi Entropy

By using general form of Renyi Entropy of SEOGPX family

of distribution from (4.1)

IR =
1

1− δ
log

[(
αβπ

2~

)δ
δ

∫
R

∞∑
p=0

∞∑
q=0

Wpq

× [{1 +D(z)}− 1
~−1D(z)]δ

[1− {1− (1 +D(z))−
1
~}]2δ

e
−α(q+δ) 1−{1+D(z)}−

1
~

[1−{1−(1+D(z))
− 1

~ }]

]
dz

By using PDF and CDF of Dagum distribution

IR =
1

1− δ
log

[(
αβπ

2~

)δ
δ

∫
R

∞∑
p=0

∞∑
q=0

Wpq

×

[{
1 +

{
1 +

(
z
b

)−a}−p}− 1
~−1

ap
z

[
( zb )

ap

{( zb )
a
+1}p+1

]]δ
[

1−

{
1−

(
1 +

{
1 +

(
z
b

)−a}−p)− 1
~
}]2δ

×e

−α(q+δ)
1−
{

1+

{
1+(zb−1)

−a}−p}− 1
~

1−

1−
(

1+{1+(zb−1)−a}−p
)− 1

~

]
dz
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4.2.6 Order Statistics

The general form of Order Statistics of SEOGPX family of

distribution from (4.2)

th:n =
β

~β(h, n− h+ 1)

∞∑
i,j=0

∞∑
k,l=0

∞∑
e=0

n−h∑
m=0

∞∑
s,v=0

Zc

×

{
1− {1 +D(z)}− 1

~

[1− {1− (1 +D(z))−
1
~}]

}v

×D(z){1 +D(z)}−(
e+1
~ +1)

by using PDF and CDF of Dagum distribution from (4.1.1) and (4.1.2),

th:n =
apβ

z~β(h, n− h+ 1)

∞∑
i,j=0

∞∑
k,l=0

∞∑
e=0

n−h∑
m=0

∞∑
s,v=0

Zc

×

 1− {1 +
{

1 +
(
z
b

)−a}−p}− 1
~[

1− {1− (1 +
{

1 +
(
z
b

)−a}−p
)−

1
~}
]

v

×

[ (
z
b

)ap{(
z
b

)a
+ 1
}p+1

]{
1 +

{
1 +

(z
b

)−a}−p}−( e+1
~ +1)

(4.2.7)
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4.2.7 Parameter Estimation

By using PDF and CDF of baseline distribution from (4.1.1) and (4.1.2) in

(4.3),

Log(L) = n logα + n log β + n log
π

2
+

(
−1

~
− 1

)
× log

n∑
w=1

(1 +

[{
1 +

(zw
b

)−a}−p ]
) + log

n∑
w=1

[
ap

zw

[ (
zw
b

)ap{(
zw
b

)a
+ 1
}p+1

] ]
−2 log

n∑
w=1

[1− {1− (1 +

[{
1 +

(zw
b

)−a}−p ]
)−

1
~}]

−α
n∑

w=1

{1− (1 +

[{
1 +

(
zw
b

)−a}−p ]
)−

1
~}

[1− {1− (1 +

[{
1 +

(
zw
b

)−a}−p ]
)−

1
~}]

+(β − 1) log
n∑

w=1


1− e

−α

{1−(1+

[{
1+( zwb )

−a}−p
]

)
− 1

~ }

[1−{1−(1+

[{
1+( zwb )

−a}−p
]

)
− 1

~ }]



+ log
n∑

w=1

cos


π

2


1− e

−α

1−{1+

[{
1+( zwb )

−a}−p
]
}−

1
~

[1−{1−(1+

[{
1+( zwb )

−a}−p
]

)
− 1

~ }]



β
(4.2.8)
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Differentiating the log-likelihood function of SEOGPD with respect to α, β, a, b, p, ~

respectively and then putting results;

∂LogL(zw)

∂α
=
n

α
−

n∑
w=1

{1− (1 +

[{
1 +

(
zw
b

)−a}−p ]
)−

1
~}

[1− {1− (1 +

[{
1 +

(
zw
b

)−a}−p ]
)−

1
~}]

+ (β − 1) log
n∑

w=1

1
1− e

−α

{
1−(1+

{
1+( zwb )

−a}−p
)
− 1

~

}
[1−{1−

(
1+

{
1+( zwb )

−a}−p
)− 1

~

}]



× e

−α

{
1−(1+

{
1+( zwb )

−a}−p
)
− 1

~

}
[1−{1−

(
1+

{
1+( zwb )

−a}−p
)− 1

~

}]

×
{1− (1 +

[{
1 +

(
zw
b

)−a}−p ]
)−

1
~}

[1− {1− (1 +

[{
1 +

(
zw
b

)−a}−p ]
)−

1
~}]

−
n∑

w=1

1

cos


π
2


1− e

−α

1−{1+

[{
1+( zwb )

−a}−p
]
}−

1
~

[1−{1−(1+

[{
1+( zwb )

−a}−p
]

)
− 1

~ }]



β

× sin


π

2


1− e

−α

1−{1+

[{
1+( zwb )

−a}−p
]
}−

1
~

[1−{1−(1+

[{
1+( zwb )

−a}−p
]

)
− 1

~ }]



β
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× πβ

2


1− e

−α

1−{1+

[{
1+( zwb )

−a}−p
]
}−

1
~

[1−{1−(1+

[{
1+( zwb )

−a}−p
]

)
− 1

~ }]



β−1

× e

−α

1−{1+

[{
1+( zwb )

−a}−p
]
}−

1
~

[1−{1−(1+

[{
1+( zwb )

−a}−p
]

)
− 1

~ }]

(4.2.9)
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∂LogL(zw)

∂β
= n

β
+ log

∑n
w=1


1− e

−α

{1−(1+

[{
1+( zwb )

−a}−p
]

)
− 1

~ }

[1−{1−(1+

[{
1+( zwb )

−a}−p
]

)
− 1

~ }]


−Σn

w=1
1

cos



π
2



1−e

−α

1−{1+

[{
1+( zwb )

−a}−p
]
}−

1
~

[1−{1−(1+

[{
1+( zwb )

−a}−p
]

)
− 1

~ }]



β

× sin


π
2


1− e

−α

1−{1+

[{
1+( zwb )

−a}−p
]
}−

1
~

[1−{1−(1+

[{
1+( zwb )

−a}−p
]

)
− 1

~ }]



β

×π
2


1− e

−α

1−{1+

[{
1+( zwb )

−a}−p
]
}−

1
~

[1−{1−(1+

[{
1+( zwb )

−a}−p
]

)
− 1

~ }]



β

×log


1− e

−α

1−{1+

[{
1+( zwb )

−a}−p
]
}−

1
~

[1−{1−(1+

[{
1+( zwb )

−a}−p
]

)
− 1

~ }]


(4.2.10)
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∂LogL(zw)

∂p
= −

(
− 1

~
− 1

) n∑
w=1

1

(1 +

[{
1 +

(
zw
b

)−a}−p ]
)

×
{

1 +

(
zw
b

)−a}−p
log

{
1 +

(
zw
b

)−a}
+Σn

w=1

1[
ap
zw

[
( zwb )

ap

{( zwb )
a
+1}p+1

] ][[ a
zw

[ (
zw
b

)ap{(
zw
b

)a
+ 1
}p+1

] ]

+
1

zw

{(
zw
b

)a
+ 1

}p+2

(zw
b

)ap
[{
(zw
b

)
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The form of equations is not closed. Therefore it seems difficult to simply

calculate the values of parameter. To obtain MLEs,we utilize an iteration

process similar to the Newton Raphson technique, which is employed in

mathematics.

74



Chapter 5

Applications and Simulations:

This chapter applies the Sin Exponentiated Odd Generalized Pareto Dagum

(SEOGPD) distribution to the real dataset to demonstrate the practical ben-

efits and applicability of the proposed model. Maximum likelihood estima-

tors (MLEs) for the model parameters are calculated, and several goodness-

of-fit statistics are computed. In order to assess the performance of the Max-

imum likelhood Estimates (MLE’s), some Monte Carlo simulation study for

various sample sizess has been conducted. The study utilized R-language

software for data generation, ensuring robustness across iterations to evalu-

ate the suitability of the fitted models. .

5.1 Application

The estimated CDFs of the data sets and the PDFs of the fitted distributions

are presented to visually assess the goodness of fit. Additionally, Probability-

Probability (P-P) plots are discussed to further evaluate the fit of the distri-

butions. We compare the Sin Exponentiated Odd Generalized Pareto Dagum

(SEOGPD) Distribution with Weighted Dagum (WD), Topp Leone Dagum

(TLD) distribution and Dagum (D) distribution. For SEOGPD distribution
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we estimate the unknown parameters by MLE to obtain the numerical val-

ues and then we used these estimated values to obtain the the Akaike In-

formation Criterion (AIC), Consistent Akaike Information Criterion (CAIC)

and Bayesian Information Criterion (BIC). In general the smaller the value

of AIC, CAIC, BIC, the better the fit to the data.

These information criterions are defined as:

AIC = 2p− 2(l)

CAIC =
2pn

n− p− 1
− 2(l)

BIC = p log(n)− 2(l)

Where l denotes the Log-Likelihood function evaluated at the MLEs, n is the

sample size and p is the number of parameters.

Data set:Failure of ball bearing Broderick O. Oluyede and Yuan Ye (2014) [9]:

The dataset includes 22 values, represents the number of million revolutions

before failure of each of 22 ball bearing in a life testing experiment.The da-

ta are: 17.88, 28.92, 33.00,41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56,

67.80, 68.64, 68.64, 68.88, 84.12,93.12, 98.64, 105.12, 127.92, 128.04, 173.40.

Summary of Data set is given below:

Table 5.1: Summary of the data set.
Min. Max. Q1 Median Mean Q3

17.88 173.40 46.40 62.68 70.71 90.87
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Table 5.2: MLEs of the data sets’ considered distributional parameters.
α β a b p ~

SEOGPD 22.2675 3.1174 0.0260 23.2743 3.7373 0.1059
WD 156.36 2.8208 97.1548 0.5 1 -
WD 113.10 2.5908 101.60 0 0.5 -
D 138.47 2.5890 124.19 - - -
TLD 2.2143 9.8580 15.2610 1.2920 - -

The SEOGPD distribution’s maximum likelihood estimates are shown in

Table 5.2. Figure 4.4 shows the Sin Exponentiated Odd Generalized Pareto

Dagum distribution for failure of ball bearing data set in both its theory

base and empirical density and distribution function forms. The Q-Q and

P-P plot of the data is shown in Fig. 5.2.The dataset’s summary is shown in

Table 5.1

Figure 5.1: SEOGPD’s empirical and theoretical CDF and PDF
??
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Figure 5.2: Empirical and theory-based CDF and PDF of SEOGPD with Q-Q
and P-Plots

Table 5.3: Goodness of fit tests.
AIC CAIC BIC

SEOGPD 139.8679 145.4679 146.4142
WD 189.2 190.6 192.5
WD 192.7 194.0 195.9
D 192.6 193.9 195.9
TLD 225.6006 227.9535 229.9648
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The distribution that best fits the data is the one with the lowest AIC, CAIC

and BIC value. Table 5.3 makes it very clear that the Sin Exponentiated Odd

Generalized Pareto Dagum distribution has lower AIC, CAIC, BIC values

than other distributions.As a result, the SEOGPD distribution gives a better

fit for the failure of ball bearing dataset.

5.2 Simulation

Equation (4.2.4) facilitates data generation from the SEOGPD distribution

for simulation analysis. The experiment was conducted 5000 times using

sample sizes n = 5, 10, 15, 20, 30, 50, 100, 200, 300, 400, and 500, with fixed pa-

rameter values (α=22.26,β=12.75,a=0.22,b=23.27,p=3.73,~=0.10). Mean square

error (MSE) and average bias were estimated for each sample size. The re-

sults indicate that increasing sample size leads to decreased MSE, reflecting

improved parameter estimation precision. Table 5.4 presents the Maximum

Likelihood Estimates of parameters for the SEOGPD distribution, highlight-

ing better estimation performance with larger sample sizes.
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Table 5.4: SEOGPD distribution’s estimated mean, MSE, and bias, together
with the actual value of α, β, a , b , p and ~.

TrueValues: α = 22.26 β = 12.75 a = 0.22 b = 23.27 p = 3.73 ~ = 0.09

n α̂ β̂ â b̂ p̂ ~̂
MLE 21.422196 16.522723 1.662633 13.212436 0.118125 1.731983

5 MSE 584.1792 79.51356 5.222816 41.68017 32.58051 9.540323
Bias 23.73434 1.886987 1.853664 2.865974 4.036395 2.273738

MLE 26.59837108 15.49031330 2.08404102 21.61127325 0.07967888 2.06706141
10 MSE 574.8169 70.61935 5.178344 32.1801 31.99716 6.605873

Bias 23.1546 6.493652 1.984118 2.442783 3.94276 2.130953

MLE 25.24526667 10.51031352 1.933614 21.08029 0.086033 2.326776
15 MSE 574.0595 61.1189 5.395929 27.79096 30.4017 6.510134

Bias 23.3302 5.950414 1.987326 2.472379 3.903733 2.099888

MLE 18.311391 15.1787984 3.05787577 19.4193613 0.04727273 1.5427904
20 MSE 568.1449 56.38444 5.382622 23.04276 29.80969 6.36907

Bias 22.25758 4.204921 2.035229 2.465319 3.88241 2.076168

MLE 28.5458095 10.3217341 10.3217341 15.9218487 0.1212167 2.7451825
30 MSE 559.8328 55.53155 5.381536 20.66568 28.79468 6.049398

Bias 23.72167 0.6397051 2.092392 2.509564 4.048388 2.120159

MLE 25.91077923 11.087508 2.02125982 18.35803611 0.0819831 2.343994
50 MSE 554.9358 45.98361 5.357567 19.82587 28.49601 6.010648

Bias 23.21626 2.733883 2.135666 2.605664 3.852379 2.03456

MLE 27.083567 18.565236 1.654387 23.038749 0.1005674 2.034479
100 MSE 535.1887 13.8246 5.167891 16.05231 24.65018 5.80416

Bias 23.67285 7.220444 2.154102 2.611894 3.94421 2.057745

MLE 22.702967 15.190682 2.639692 16.506047 0.061300 1.874427
200 MSE 535.1437 12.92415 4.955364 15.30843 23.78674 5.482224

Bias 23.0051 0.472614 2.176154 2.909089 3.897607 2.072236

MLE 25.806402 15.743974 3.239066 18.170094 0.0524978 2.010955
300 MSE 534.2956 8.975011 4.912563 14.10367 22.62131 5.106631

Bias 22.3795 1.972983 2.080646 2.806317 4.019328 2.097709

MLE 22.231129 13.786307 2.6964054 19.4368647 0.0584625 1.8902943
400 MSE 509.1411 6.630032 4.782713 14.28973 19.01862 4.528489

Bias 22.98282 3.264705 2.130274 2.976935 3.975925 2.067014

MLE 25.202923 18.102866 2.7419861 23.535192 0.055537 1.946666
500 MSE 507.31 3.22392 4.759553 13.1892 17.02352 4.32846

Bias 22.99664 7.29364 2.130087 2.911927 4.011864 2.107747

5.3 Conclusion

In this research work, A new more flexible distribution known as"Sin Expo-

nentiated Odd Generalized Pareto-X family of distribution (SEOGPX)" has

been proposed. A novel and more versatile generator is introduced in the

initial approach. In the subsequent approach, this new generator is applied
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to the baseline distribution to develop an extension of the Dagum distri-

bution. Several statistical properties of the new distribution are analyzed,

including moments, incomplete rth moment, hazard function, survival func-

tion, order statistics, and Rényi entropy.

The SEOGPD model exhibited significant flexibility in modeling the dataset

compared to other distributions evaluated in the study, highlighting its su-

perior efficacy over several well-established distributions.Given that the SEOG-

PD distribution has hazard ratio functions that can take the form of an upside-

down bathtub, a bathtub shape, as well as increasing, decreasing, constant,

and increasing-decreasing-increasing patterns depending on different pa-

rameter values, it is considered a flexible distribution for modeling. The

simulation findings show that as sample sizes rise, the mean squared errors

(MSEs), gradually decline.By comparing the values of criteria AIC, CAIC,

and BIC statistics, it is evident that the values for the SEOGPD distribution

are significantly lower than those of other existing distributions.

5.4 Recommendations

Future research could explore using this model on different datasets and

compare its performance with newer distributions. The estimation of pa-

rameters for the Sin Exponentiated Odd Generalized Pareto Dagum (SEOG-

PD) distribution can be studied using various methods, including the or-

dinary least squares method, weighted least squares method, Bayesian es-

timation, and the method of parametric bootstrap. This could lead to ad-

vancements in statistical analysis and modeling in various scientific areas.
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