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Preface 
Calendering is a process in which a polymer material is pushed ahead through the narrow region 

between two rotating rolls in such a way as to produce a thin sheet. This mechanism is extensively 

studied in the past few decades. The pioneering theoretical studies on calendering were carried out 

by Gaskell [I] and Mekehey [2] for the Newtonian case. The text book of Middleman [3] also 

reports the results of calendering for Newtonian and power-law fluids. Sofou and Mitsoulis [4] 

employed lubrication theory to study the calendering of viscoplastic sheets. Numerical 

investigation of shape of free surfaces of entering and exiting sheets to calender viscoelastic sheets 

with a finite thickness was carried out by Mitsoulis [ S ] .  The combined effects of asymmetry and 

viscous heating for the non isothermal nip flow in calendering were considered by Dobbels and 

Mewis [6]. In addition, the effect of viscous dissipation on the calendering process of Newtonian 

and power-law fluids has been studied by Kiparissides and Vlachopoulos [7]. Recently, the 

influence of the temperature-dependent consistency index on the exiting sheet thickness in the 

calendering process of a power law fluid was reported by Arcos et al. [8], and they found a decrease 

of about 6.91% for the calendered thickness. In all the works reported above, the fluids are not 

viscoelastic in the usual sense, because they have no memory. Accordingly, Zheng and Tanner [9] 

carried out an analysis of the calendering process using the power-law and the Simplified Phan- 

Thien-Tanner fluid models. The authors focused on determining the separation criterion at the roll 

exit plane. For the viscoelastic case, they determined the separation point using the criterion of 

zero tangential traction. As a fundamental result, they determined that unlike the inelastic case, the 

sheet was found to be thicker after leaving the nip. More recently Arcos et al. [lo] presented a 

theoretical analysis of the calendering exiting thickness of viscoelastic sheets using Simplified 

Phan-Thien-Tanner model. They are followed by Siddique et al. [ l  11 who provided the analysis of 



flow in a calendering process using the constitutive equation of third order fluid. The dissertation 

is based the review of the two papers by Siddique et al. [l 11 and Arcos et al. [lo]. 

Chapter 1 is introduction in nature and includes some basic definition and equations. The result 

of Siddique et al. [l 11 are reproduced in detail in chapter 2. Chapter 3 is a detailed review of work 

carried out Arcos et al. [lo]. 
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Chapter 1 

Preliminaries 

This chapter includes some basic definition and fundamental equations. 

1.1 Basic definitions and concepts in fluid mechanics 

1.1.1 Fluid 

A substance (material) that distorted is continuously under the influence of some external stress 

is called fluid. 

1.1.2 Flow 

A substance (material) goes under distortion when some external forces applied on it. If dis- 

tortion increases continuously, the phenomena is called flow. 

1.1.3 Distortion 

It  is relative change in position or length of the fluid particle. 



1.1.4 Fluid mechanics 

Fluid Mechanics is that branch of mechanics in which we deals with the behavior of fluids either 

at  rest or in motion. 

1.1.5 Viscosity 

A measure of resistance to flow when the fluid is in motion is called viscosity of that fluid. It  

is usually denoted by p. 

1.1.6 Gradient of velocity 

Let V(xi,  t )  , i = 1 , 2 , 3  where xi are the Cartesian coordinates, denotes the velocity field for 

the fluid in motion. Then we define the gradient of velocity field as 

which in matrix form becomes 

where vi, i = 1 ,2 ,3  are the components of velocity field V. 

1.1.7 Divergence of a vector 

Its expressed as 



1.1.8 Divergence of a tensor 

For an arbihary tensor S of order two, it is defined as 

where Sij are the components of S. 

1.1.9 Pressure 

Pressure p is the magnitude of the normal force F per unit surface area A. It  is a scalar quantity. 

Mathematically 

1.1.10 Newton's law of viscosity 

Let us consider motion of fluid between two parallel surface generated by the motion of upper 

surface. Let ul (xz) be the component of fluid velocity in XI- direction. Then Newton's law 

of viscosity states that the shear stress is directly and linearly proportional to the rate of 

deformation. Mathematically, we can write 

where T is the shear stress and dul/dxa is the deformation rate. 

1.2 Classification of fluids 

Generally, fluids can be classified into following types. 

1.2.1 Inviscid fluids 

Fluids of zero or negligible viscosity falls in the category of inviscid fluids. Such can exert only 

normal stress (pressure) on a submerged surface. 



1.2.2 Real fluids 

Real fluids are those fluids for which viscosity is finite. A real fluid can exert tangential (shear- 

ing) stress in addition to normal stress on a submerged surface. 

Real fluids are further divided into two categories. 

Newtonian fluid 

All real fluids that obey the Newton's law of viscosity are known as Newtonian fluids. 

Non-Newtonian fluid 

All such fluids in which shear stress is non-linearly proportional to velocity gradient are 

known as non-Newtonian fluids. For unidirectional motion of such fluids, we can write 

where k is the consistency index and n is called power-law index. For n = 1, the above relation 

reduce to Newton's law of viscosity. 

1.3 Types of flow 

Flows are broadly classified in following types, 

1.3.1 Laminar flow 

A flow in which fluid particles move in straight lines is said to be laminar. In this flow path of 

individual particles do not intersect with each other. 



Fig 1.1: Laminar flow representation 

1.3.2 Turbulent flow 

A flow in which fluid particles moves in irregular fashion in all direction is said to be turbulent. 

In this flow path of individual fluid particle intersect with each other. 

Fig 1.2: Turbulent flow representation 

1.3.3 Uniform flow 

A flow in which flow characteristics do not change from point to point is said to be uniform. 



1.3.4 Non-uniform flow 

A flow in which flow properties changes from point to point is said to be non-uniform. 

1.3.5 Steady flow 

A flow is said to be steady in which fluid properties do not change with respect to time. For 

such a flow 

where 7 represents any fluid property. 

1.3.6 Unsteady flow 

The flow is regarded as unsteady if the fluid properties changes with respect to time i.e. 

1.3.7 Compressible flow 

A flow in which there are no changes in density is known as compressible flow. Flows of gases 

are compressible in nature. 

1.3.8 Incompressible flow 

A flow is said to be incompressible in which density remains constant. Flows of liquids are 

generally incompressible. 

1.3.9 Rotational and irrotational flow 

If individual fluid particles rotate about their own axes during the flow, then flow is known a 

rotational. Otherwise, it is irrotational. Mathematically, for irrotational flow 



1.4 Dimensionless numbers 

1.4.1 Weissenberg number 

The Weissenberg number We is a dimensionless number used in the study of viscoelastic flows 

and named after Karl Weissenberg. It is the ratio of the relaxation time of the fluid and a 

specific process time. 

1.4.2 Reynolds number 

It  is the ratio of inertia force to the viscous force. It is denoted by Re. 

1.5 Fundamental equations 

The motion of fluid whether Newtonian or non-Newtonian can be analyzed using the following 

equations. 

1. Continuity equation 

2. Equation of motion 

1.5.1 Continuity equation 

The equation of continuity is based on the law of conservation of mass which states that the 

mass of a closed system remains constant. Mathematically it is expressed as 

where p is fluid density. 

1.5.2 Equation of motion 

The equation of motion is based on law of conservation of momentum. In mathematical form 

it is expressed as 



where T is stress tensor, b is body force and 

is the material derivative. 

1.6 Navier-Stokes equation 

The equation of motion for Newtonian fluids is generally known as Navier-Stokes equation. For 

Newtonian fluids 

T = -p6.. . + p (VV+OV+ (1.14) 

where t denotes transpose and dij is the identity tensor. Inserting (1.14) in (1.12), we get 

1.7 Techniques of solution 

There are numerous of techniques to solve differential equations. Two of them namely; pertur- 

bation method and Runge-kutta method are described below. 

1.7.1 Perturbation method 

The most powerful technique to solve nonlinear partial differential equations is perturbation 

method. Perturbation method leads to an expression for desired solution in term of power 

series in some small parameter called perturbation series. The leading term in this power series 

is the solution of exact solvable problem. In this technique we assume a very small physical 

parameter, expend the dependent variables in power series of small parameter and then put 

this series into original equation(s) and conditions (boundary and initial). After equating the 



terms corresponding to power of small parameter, one get system of linear differential equation. 

Solving such system sequentially one gets the solution of the original problem. 

1.7.2 Runge-Kutta method 

Runge-Kutta method are single step method with multiple stages per step. It  is a most popular 

ODE solver. It  is an iterative methods and important family of implicit and explicit method 

which are used for numerical solutions of an differential equations, this methods were developed 

by German mathematician C.Runge and M.Kutta in 1900. Modern development in this method 

are mostly in 1960s. In this method, we will use iterative scheme which depends upon different 

values of k, where k are the known stages of R-K method. To solve any differential equation we 

have to know the value of xo. Scheme of second order Runge-Kutta method is described below 

where 

clearly 

then generalized form will be 



It requires four evaluation of the function f per time step. 

1.8 Calendering 

The term "Calender" is derived from the Greek word Kylindros which means cylinder and 

according to the Webster's International Dictionary it means to press as cloth, rubber, paper 

between roller in order to make smooth and glossy (shinning). It  is the process of forming a 

flowable material into sheet by passing it between two or more rotating cylinders. Fluid flow 

between rotating cylinders is the physical basis of calendering process We shall describe in detail 

such flow for two different materials in chapter two and three, respectively. 



Chapter 2 

Analysis of flow of third-order fluid 

in calendering process 

In this chapter, we review the work of Siddique et al. [ll] where the authors have analyzed 

the flow of non-Newtonian material when it is dragged through a narrow region between two 

co-rotating rolls. The mass and momentum conservation equations are non-dimensionalized 

and solved for the velocity and pressure using the perturbation method. The dimensionless 

leave-off distance in calendering process is expressed in term of eigen value problem. Various 

operating variables such as maximum pressure, the roll separating force, power transmitted to 

the fluid by the rolls are also calculated. 

2.1 Governing equations 

The law of mass and momentum for an incompressible flow of a third-order are 

where S is the extra stress tensor. For third-order fluid 



where a i ( i  = 1,2) and Pi(i = 1,2,3) are the material constant of third-order fluid and Ai = 

(1,2,3) is the ith Rivlin-Erickon tensor. The first Rivlin-Erickon tensor is defined as 

A1 = (VV) + ( v v ) ~ ,  

while higher order tensor are given by the following formula 

An = - + (V  . V) An-1 + An-1 (VV) + ( v v ) ~  An-1 n > 1. ( aa, (2.5) 

It has been proved by Fosdick and Rajagopal.[l2] that for a thermodynamically compatible 

third-order fluid the material parameter must fulfill the following constraints: 

In view of above constraints model (2.3) reduce to 

S = PAI + a1A2 + a 2 ~ :  + &A3 + 8 3  ( t r ~ : )  A1, (2.7) 

Substituting Eq. (2.7) in Eq. (2.2) and using the definition (2.4) and (2.5) , we may find 

For two dimensional flows like calendering, we define 

v = [ ~ l  (51,521 , u2 (XI, 52) , 01 . 

For the subsequent analysis, we replace ul, u2 by u, v and XI ,  x2 by x, y. 



Fig.1. Schematic diagram of flow problem. 

using the above definition of velocity in Eq. (2.8), we get 

d h  ad a {(E" + E")}  = o, 
- - v (-pd + 0 2 d )  - B- - 83a, - 283 ay ax ay ay 8~ ay 

where 



and 

q2 = u2 + v2. 

In the nip region the following approximations are valid 

In order to find the characteristics scales for velocity and pressure, we define the following scales 

for x, y and u. 

The equation of continuity (2.1) along with (2.18) allows us to write 

From (2.19), it is a found that magnitude of transversal velocity, vc is smaller then the longi- 

tudinal velocity. A balancing between pressure and other terms yields 

In view of the above discussion, Eqs. (2.10) - (2.12) are reduces to: 

where 



is the modified pressure. The appropriate boundary condition to be satisfied by the velocity 

component u are: 

where is the linear velocity of the roll. The height of the roll surface from the center line is 

defined as 

h ( I )  = Ho + R - ( R ~  - x2)1'2. (2.26) 

Since, it is intended to perform the analysis for x << R, therefore h (x) may be approximated 

2.1.1 Dimensionless formulation 

Let us introduce the following dimensionless variables 

Fig. 2. Representation of flow geometry in dimensionless variables. 

18 



Using (2.28) the governing Eq. (2.22) and boundary conditions (2.25) take the form 

on y  = h ( x )  = 1 + x2 

a u - ~  on y=O 

where * are omitted for brevity. The standard condition to be satisfied by the pressure and 

pressure gradient are 

~ = P = O  at x = A  

P=O at x = - x f  

where X is the dimensionless leave-off and -xf  is the entry point where sheet first bites the 

rolls. 

2.1.2 Flow rate and sheet thickness 

The volumetric flow rate in dimensional form reads 

1+x2 

Q = l + X 2 = L  udy (2.32) 

where X is an eigen value of the problem. The following are the two flow regions based on the 

sign of pressure gradient. 

0 -x f  5 x  5 -A where dpldx > 0  

0 -A 5 x 5 X where dpldx < 0  

The relation between x f  and entering sheet thickness is 

The expression relating exiting sheet thickness with X is 

19 



2.2 Perturbation solution 

In view of the nonlinear nature of the governing equation (2.29), the perturbation method will 

be employed for the analytical solution. To this end, the quantities u, P, Q, and X are expressed 

as 

Substitution of above expressions in Eqs. (2.30) - (2.33) yields the following system at various 

orders of p: 

2.2.1 System of zeroth-order 

2.2.2 System of first-order 



2.2.3 Solution of zeroth-order system 

Solving Eq. (2.39) subject to boundary conditions (2.41),  we get 

Utilizing (2.45) in (2.40) and performing the integration, 

1+x2 

I + X O = ~  uody 

The expression for zeroth-order pressure gradient turn out to be 

Integration of above expression gives 

+ ( 1  - 3 ~ ; )  (arctan ( X I  - arctan (JG)) ] 
In view of (2.46) the expression of zeroth-order velocity uo becomes 

The unknown eigen value of the problem X o  can be found by evaluating the expression (2.48) 

in the limiting case Po -+ 0 as x -+ -00 and keeping the fact in mind that H f / H o  is known. 



This gives X o  = 0.4751. 

2.2.4 Solution for first-order system 

Substitution of (2.48)  in (2.42)  yield the following determing equation for ul : 

2 3  2 d2u1 - dPl 81 (x2  - A,) y ---- 
By2 dx (1  + x2)9 

Twice integrating and using the boundary conditions ( 2 . 4 4 ) ,  we find 

From (2.43) and (2 .50) ,  we get 

Now to obtain the expression of PI, we integrate the expression 

and get 

arctan ( x )  
PI ( 2 )  = 0.0129 arctan ( x )  - (6.07501; - 4.11371: + 0.92851: - 0.0699) 

-2.4860 4.5669 2.3084 0.0069 0.0086 + 
4.0500 

+ 

6.0750 2.7424 0.6190 

+ (( ( 1  + x 2 ) 2  (1 + x q 2  1 - 
( ( 1  + x q 2  

+ 

( 1  + .q2 



- 0.0466 ) - 0.0129 arctan (//F) + 6.0750~: - 41137Af 

arctan ( d G )  
-2.4860 4.5669 2.3084 + 0.9285~: - 0.0699 +--- 

(1 + A:)~ 

The final expression of velocity can be obtained substituting the expression of dPl/dx in (2.50) 

Assuming that Hf/Ho is known and taking the limit of the expression (2.53) PI + 0 as 

x -+ -m, we get X 1  = 0.3336. 

The formulas for engineering quantities of interest which include roll separating force and 

power input are given below: 

Roll separating force 

Power input 



2.3 Results and discussion 

The velocity profile u for different values of non-Newtonian parameter at  eight different loca- 

tions x = -0.5, - 0.25, 0, 0.25, 0.4, 0.5, 0.6, l is shown through Figs. 3 - 10. Fig. 11 

illustrates the variation of pressure gradient dp/& for different value P. The pressure distribu- 

tion over the entire range of x for different values of ,!3 is shown in Fig. 12. It is observed that 

velocity u decreases by increasing the non-Newtonian parameter over each of the cross-section 

x = -0.5, -0.25,0.25,0.4,0.5, 0.6. However at cross-section x = 0 and x = 1 the situation is 

somewhat different. Here, the velocity u decreases near the center line while it increases over 

remainder of the cross-section by increasing P. Fig. 11 indicates that the magnitude of the 

pressure gradient at the nip point decreases by increasing P while it shows opposite behavior 

otherwise. The plot of pressure verses x shown through Fig. 12 reveals an increase in pressure 

by increasing P.  The numerical values of sheet thickness exiting sheet thickness (H/Ho), power 

input (P,) and roll separating force (F) are tabulated in Table 1 for different values of /3. The 

numerical values of unknown eigen value of the problem X are also given in Table. 1. It is 

observed that the leave-off distance, exiting sheet thickness, power input, and roll separating 

force increases by increasing P. 



1 

0.99. Isothermal Newtonian case 

3 3 00.8 8. 

3 

v 
b= 0.0, 0.25, 0.5, 0.75, 0.9 

Fig. 3. Effect of P on velocity at x = -0.5. Fig. 4. Effect of P on velocity at x = -0.25. 

Fig. 5. Effect of @' on velocity at x = 0. 
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Fig. 6. Effect of P on velocity at x = 0.25. 



Fig. 7. Effect of P on velocity at x = 0.4. 
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Fig. 8. Effect of P on velocity at  x = 0.5. 

Fig. 9. Effect of P on velocity at x = 0.6. Fig. 10. Effect of /? on velocity at  x = 1. 
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Fig. 11. Effect of P on pressure gradient. 

X 

Fig. 12. Effect of P on pressure distribution. 



Table 1. The effect of material parameter P on leave-off distance, final sheet thickness, 

power input and roll separating force 

1 ,!3 1 X I Sheet thickness H/Ho  I Power input p Roll separating force < I 



Chapter 3 

Theoretical analysis of calendering 

of Phan-Thien-Tanner fluid 

$11 In this chapter,we review the work of Arcos et al. 1101 where in authors have analyzed the flow 

fill of Phan-Thien-Tanner fluid in calendering process. The mass and momentum conservation 
I 

0'  
equations are utilized under lubrication approximation to model the flow problem. Closed 

7 , 1  
cl form expressions for velocity and pressure gradient are obtained using perturbation technique 
of 
ji' ccp ' for small values of Weissenberg number. For large values of Weissenberg number numerical 
a1 

integration is carried out to obtain pressure for known value of exiting sheet thickness. A *! 
comparison of approximate analytical and numerical solution is carried out to validate the 

approximate solution. The engineering quantities of interest such as maximum pressure, the 

roll-separating force, and power transmitted to the fluid by the rolls are calculated and discussed 

in detail for various values of Weissenberg number 

3.1 Forrnulat ion 

The geometry of the problem is same as discussed in Fig. 2.1. of chapter 2. However, the 

fluid model considered here is different. In the present analysis, the calendering material is 

characterized by the constitutive simplified Phan-Thien-Tanner (SPTT) fluid. Since the flow 

is two-dimensional and planar in the nip region, therefore the governing equations (2.1) and 

(2.2) in components form become 



For a simplified PTT fluids, T , ~  satisfies the following equation 

where E is the elongational parameter of the SPTT model, X j  represents relaxation time and 

r) represents polymer viscosity coefficient of the material. The polymer viscosity coefficient 

in term of zero-shear rate viscosity, is defined as r) = 70 ( 1  + 2 d j  ( du /ay12 )  . In the nip 

region and either side of it, the roll surfaces are nearly parallel when Ho << R, thus allowing 

the lubrication approximation to be valid. Thus in the flow domain v << u and 2 << g. The 

boundary conditions associated with Eqs. (3.1) - (3.3) are 

where the first condition represents the symmetry of the flow about the central plane while the 

second one is well-known no-slip condition to be satisfied by the fluid at  roll surface. Let us 

scale the variables x, y and u as follows 

Utilizing the above relations in continuity equation, we get 



The above relation indicates that order of magnitude of transversal velocity is smaller than 

longitudinal velocity. From expression (2.27) LC = d m ; .  The value of characteristic pressure 

can be obtained by performing an order of magnitude analysis on the basis of length and velocity 

scales defined above. This yields 

Ho Ho 

3.2 Dimensionless equations 

The above discussion allows us to define the following dimensionless variables 

In the above relationship Q represents the dimensionless volumetric flow rate which is constant. 

Using the above transformation Eqs. (3.1) - (3.3), after dropping the asteriks can be written 

In the above equation = ( H ~ / ~ R ) ' / ~  << 1 is a geometrical parameter, Re = P U H ~ / T , I ~  is the 

Reynolds number which for the typical calendering process is of order of or low5. This 

indicates that inertia plays a minor role this process. Neglecting the terms involving /3 and 

Re, Eqs. (3.12) and (3.13) reduce to: 

and 



The constitutive relation (3.4) in dimensionless form read: 

Here We is the Weissenberg number which is defined as We = Xf U/Ho.  It represents the ratio 

between elastic and viscous stresses. The dimensionless boundary condition are: 

The boundary condition (3.17) and (3.18) are not sufficient to determine the pressure distribu- 

tion. The additional conditions in the case of finite sheet examined here are as follows: 

Eq. (3.15) shows that p is independent of y. Integration of Eq. (3.14) and after application of 

the boundary condition (3.17) and substitution of the result in Eq. (3.16) one gets 

The above equation along with the definition of the flow rate 

gives the complete description of the problem. In Eq. (3.22) X is the unknown eigen value of the 

mathematical problem. It is related to exiting sheet thickness by the expression A2 = H / H o  - 1. 
From the above equation it is desired to solve the flow problem in the regions, one where dpldx is 

positive (-xf 5 x 5 -A) and the other where dpldx is negative ( -A  5 x 5 A). The next section 

is devoted to this task where the dimensionless velocity and pressure profiles are obtained for 

each region. 



3.3 Perturbation solution 

In this section, we determine the dimensionless velocity, pressure profiles and leave-off distance 

of the sheet for small values of the Weissenberg number using regular perturbation technique. 

To this end we propose the following expansions: 

where the leading order solution uo, po, Qo, and A, represent the Newtonian case, whilst the 

corrections ul, pl, Ql,and X1 are the contribution of the viscoelastic effects. Substituting the 

above expansions into Eq. (3.21) and Eq. (3.22) and collecting the like power of we2, we 

obtain the following systems: 

3.3.1 System of zeroth-order 

dpo duo y = - 
dx dy' 

- Xf I x I Xo, 

1+z2 

Q o = l + X ~ = ~  uody, 

boundary conditions will be 

3.3.2 System of first-order 



boundary conditions will be 

3.3.3 Zerot h-order solution 

The solution for Eq. (3.27) and Eq. (3.28) is given by: 

with 
dpo - = -3 

( x i  - x 2 )  
for x f < x < A o .  

dx ( 1  + x213 ' 

Integration of (3.34) and using po (Ao) = 0  gives 

From above equation, the value of X o  which is related to final sheet thickness is obtained by 

using the condition po ( - x f )  = 0. This gives 

o = -  H f / H o - 1  
"O (& + arctan (ho)) ( 1  - 312,) - ( 1  - 31;) [&p& + arctan ( (%/HO - 

(I+%) 

+2 ( I+$)  ( H f  / H O - ~ ) ' / ~  

( ~ f  1 ~ 0 ) ~  

Taking - x f  sufficient large, which corresponds to the case of infinite reservoir of fluid upstream 

from the nip region, it is found that X o  = 0.4751. This value is exactly the same as found 

in section 2.2.3 of chapter 2. Since the introduction of the transformation Y = y/  ( 1  + x 2 ) ,  



facilities the examination of velocity distribution in easy manner, therefore the zeroth-order 

velocity profile can be expressed as 

3 
uo = 1 + - (y2 - 1) , for all dpo/dx. 

2 

3.3.4 First-order solution 

In this sub section we intend to find the correction to the leading order solution of the dimen- 

sionless velocity, pressure profile and the final sheet thickness due to non-Newtonian effects. To 

this end we integrate Eq. (3.30) substituting the expression of dpo/dx and get 

where C1 ( x )  is an integration constant. The above expression in term of the variable Y after 

applying the boundary conditions (3.32) takes the form 

Insertion of (3.39) in. (3.31) gives 

1 d ~ l  Q1 = --- 54 (x2  - A;) 
(1  + X 2 l 3  - - E  

3 dx 5 (1 fx214 

The left hand side of Eq. (3.40) is unknown. To find the value of Q1, we apply the boundary 

condition dpl/dx = 0 at x = A1. This gives 

Using the above value of Q1 in (3.40) and after doing some algebra we end up with th  following 

expression dpl l d x  : 

--- (A: - A ; ) ~  - ( x2  - 

( I + x ~ ) ~ ( I + A : ) ~  (1  + x2)' 



valid in the region -xf 5 x < X1. Integration of above expression yield the pressure distribution 

The dimensionless leave-off distance X1 may be found from Eq. (3.43) by using the condition 

pl = 0 at x = -xf i.e 

The explicit expression of pressure after integrating Eq. (3.43) and using boundary condition 

(3.32) turn out to be 

x (A: - 3x (A: - ( 2 3 1 ~ 8  - 63x40 + 21~: - 5) arctan (x) 

+ 2 2 1 + x : ) 4  
+ + 

4 P - t ~  ) ( 8 (1 + x2) (1 + A:)~ 1024 

3 (A: - arctan (x) + + @ ((A; + 3, + 3, + 1) + (11, - 3, - 39, - 25) 
8 (1 + A:) 120 (s)~ 



Similarly, performing integration in Eq. (3.44) result in the following determining equation for 

A 1 

(A: - 
~ ( x : - x ; ) ~  + (231~6, - 63Xt + 2 1 ~ ;  - 5) arctan (JG) 

+ + 
1024 + 

4 (z)~ (1 + x: )~  8 (2) (1 + 

(231~:  - 6 3 ~ 6  + 21Xi - 5) arctan (A1) + 3 (A: - arctan (A1) + 
1024 (3.46) 

8 (1 + q4 
Now for given value of Hf/Ho, the corresponding value of Xo can be found through Eq. (3.36) 

and then using this value we may consecutively obtain XI and pl from Eqs. (3.46) and (3.45), 

respectively. 

3.4 Numerical solution 

The solution in previous section was valid for small values of Weissenberg number We. To 

obtain solution for large values of We, we outline in this section a numerical algorithm is based 

on Runge-Kutta method. Integration of Eq. (3.21) and application of boundary condition 



(3.17) and (3.18) yields : 

Using Eq. (3.47) in Eq. (3.22) gives the volumetric flow rate 

Application of boundary condition dpldx = 0 at x = X gives: 

Substituting value of Q from Eq. (3.49) in (3.48), we get the following implicit expression for 

From Eq. (3.50), the pressure distribution is represented by 

Now, from Eq. (3.51) pressure distribution can be obtained as a function of x by assuming 

X and We to be known. Any root finding algorithm can be used to obtain the values of 

pressure gradient at each longitudinal location x. Now to find the value of local pressure, we 

integrate dpldx using Runge-Kutta method starting from x = X and applying the boundary 

condition p = 0 at x = A. The integration carried out until the pressure becomes negative. The 

corresponding value of x gives the location of -xf, where entering sheet bites the rolls and from 

which the thickness of entering sheet can be found through the relation xf = (HJIH, - 1)'12. 



A step size of Ax is 0.001.i~ chosen in all the simulation's. 

3.5 Roll separating force 

The force separating the two rolls is given by the expression 

F P U R  - (we) = L 3  (We) ,  w H0 

where W is the width of rolls and 3 (We) is the dimensionless force function given by 

in which 

3.6 Power input 

The power transmitted to the fluid by the rolls can be found by integrating the roll velocity 

and shear stress along the surface of roll 

where (We) is the dimensionless power function, which is given by 

p (We) = - 6 h  I? (We) (1 + x2) dx. 



3.7 Graphical results and discussion 

In this section, graphical results are displayed in order to analyze the effect of Weissenberg 

number on velocity distribution, pressure gradient, longitudinal pressure profile, roll separation 

force and power input function. Figs 1 and 2 are plotted to see the influence of Weissenberg 

number on longitudinal distribution of pressure gradient for X = 0.2923 and X = 0.440, respec- 

tively. It is observed that as a result of imposed boundary condition the pressure gradient is 

zero at x  = A, the location where sheet exit from the rolls. Moving left to this point result in 

negative values of pressure gradient with a minimum occurring at x  = 0. Beyond this point, the 

pressure gradient begin to rise reaching to zero at  x  = - A  and from here it continues to increase 

to a maximum at x  = -x f  in some cases while in other the maximum is achieved before the 

entry point. The maximum deviation in pressure gradient with respect to Weissenberg number 

is seen at the nip region i.e x  = 0. However, near x  = f X the effects of Weissenberg number 

are not pronounced. It is further observed that an increase in Weissenberg number result in 

decrease of pressure gradient in the neighborhood of x  = 0 and x  = - x f .  The profiles of dimen- 

sionless pressure distribution in the domain -x f  < x  5 X for various values of Weissenberg 

number are shown in Figs. 3 and 4 for X = 0.2923 and X = 0.440, respectively. It  is observed 

that pressure monotonically increases from zero at x  = X to a maximum at x  = - A  and then 

decreases to zero at  the entry point x  = -s f .  Moreover, the maximum deviation in pressure 

with respect to Weissenberg number occurs at  x  = -A. It is found from the present calcula- 

tions that for the case of X = 0.440 and We = 0.9 (Fig. 4) the value of pressure at x  = -A 

is 36% less than its corresponding value for X = 0.440 and We = 0. As an implication of this 

decrease in pressure by increasing Weissenberg number, the point -xf  where sheet first bites 

the rolls is further shifted to left resulting in extension of length of contact between the rolls 

and the fluid. The dimensionless velocity u at two axial stations x  = -0.6 (dpldx > 0) and 

x = 0.1 (dpldx < 0) for different values of X is shown through Figs. 5 and 6. It is observed 

that for the case when (dpldx > 0) the dimensionless velocity u increases with the Weissenberg 

number. Moreover, the effects of Weissenberg number on u are more pronounced at the cen- 

terline. On the contrary, such effects diminish in the vicinity of the rolls. The variation of u 

with Weissenberg number at axial location x  = 0.1 where dpldx < 0 is shown in Fig. 6. It  is 

evident from Fig. 6 that u decreases at center plane with Weissenberg number while it shows 



opposite trend near the rolls. Fig. 7 presents a comparison of numerical values of X obtained 

through numerical and analytical solutions as a function of entering sheet thickness H f  /Ho  for 

We = 0.08. This figure indicates an excellent correlation between the result obtained via both 

solutions. Fig. 8 shows the plot of X obtained via numerical solution as a function of H f / H o  

for different values of Weissenberg number. It  is noted that H f  /Ho  < 10, viscoelastic effects 

tend to decrease the sheet thickness. However for H f / H o  > 10 an opposite trend is observed 

i.e viscoelastic effects produce an enhancement in the sheet thickness. The roll separating force 

and power transmitted to the fluid by the rolls as a function of We and for different values of X 

are plotted in Figs 9 and 10 respectively. It is observed that for a fixed value of A, an increase 

in Weissenberg number causes a decrease in the dimensionless roll separating force. Similar 

observations is made for the case of dimensionless power transmitted to the rolls. I t  is further 

noted that each of these variables is also a decreasing function of leave-off distance X. 

X -03 -&6 -0.4 -0.2 0.0 02 0.4 

X 

Fig. 1. The longitudinal distribution of d p l d x  Fig. 3. The longitudinal distribution of pressure 

for different values of We with X = 0.2923. for different values of We with X=0.2923. 
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Fig. 2. The longitudinal distribution of d p l d x  Fig. 4. The longitudinal distribution of pressure 

for various values of We with X = 0.440. for different values of We with X = 0.440. 

Fig. 5. Transverse distribution of velocity for Fig. 6. Transverse distribution of velocity for 

different values of We for two different values of different values of We for two different values of 

X when d p l d x  > 0 and x  = -0.6. X when d p l d x  < 0 and x  = 0.1. 



Fig. 7. Plot showing X obtained through Fig. 8. Plot showing X obtained through 

numerical solution and analytical solution as a numerical solution as a function H ~ / H ~  for 

function H f / H o  for We = 0.08. various values of We. 

Fe Ke 

Fig. 9. Roll separating force as a function of Fig. 10. Power transmitted to  the fluid by the 

Weissenberg number for two different values of rolls as a function of Weissenberg number for 

A. three different values of A. 
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