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ABSTRACT 

This thesis describes the two applications Mackey-Glass time series prediction and 

nonlinear channel equalization usiqg kernel algorithms which are based on reproducing 

kernel Hilbert spaces (RKHS). The mathematical theory of reproducing kernel Hilbert 

space provides the powerful basis for the nonlinear adaptive filters in high dimensional 

feature space such as KLMS and KAPA. After nonlinear transformation from input 

space to high dimensional feature space the kernel trick is exploited to express inner 

product with kernel evaluation. Due to their high dimensionality, kernel adaptive filters 

are universal approximators. Moreover kernel algorithms do not stuck in local minima. 

Simulation results are the evidence of the better performance of the said approach. 
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Chapter 1 

1 INTRODUCTION 

Channel equalization is a practice used to improve link quality in unfriendly 

environment. In communication systems a transmitted signal when passed through 

communication channel is corrupted by the channel impairments. The basic idea of 

equalization is to reverse the distortion incurred by the communication channel. In the 

other way round, an inverse model-of the channel is constructed so that channel effects 

could be nullified [ I ] .  Historically, in digital communication systems, channels 

equalization has been studied using linear FIR models [2]. But in real world 

communication, channels are highly nonlinear due to channel impairments like 

multipath fading etc. These kind of channels are out of the scope of linear filters [3]. 

Therefore some nonlinear models were required to cope with the nonlinearities of the 

system. 

Most of the recurrently encountered data in real world has chaos in nature and thus 

constitutes chaotic time series. Mackey-Glass time series is frequently used prominent 

chaotic time series. Mackey-Glass time series is chaotic time series to model the 

nonlinear systems. Mackey-Glass time series is generated by ordinary differential 

+ 
equations [4]. This series become a benchmark to test the nonlinear modeling capability 

of many algorithms. 



Linear adaptive filters are widely used for linear channel equalization and linear system 

identification but LMS results are not good while dealing with nonlinear data. Kernel 

adaptive filters are adopted with Reproducing kernel Hilbert spaces. In kernel adaptive - 
filters the inputs are transformed to high dimensional feature space with the help of 

some nonlinear mapping cD. Then successive linear operation are applied on this 

transformed data. 

1.1 Problem statement 

Nonlinear channel equalization and time series forecasting are hot topics of the 

research in this modern era. Many physical channels exhibit nonlinear characteristics 

[ 5 ] .  To equalize the channel corrupted by noise sources especially when the channel is 

nonlinear is a challenging task. Nonlinear Channel equalization and time series 

prediction of Mackey-Glass Time-series using kernel methods, the kernel least mean 

square(KLMS) and the kernel Affine projection Algorithm(KAPA), that can provide 

excellent results at minimal cost is a challenging assignment that has to be addressed 

seriously. This will promises optimal results that can guarantee efficiency and accuracy. 

1.2 Proposed work 

Kernel adaptive filters are adopted with reproducing kernel Hilbert spaces. The 

inputs are transformed to high dimensional feature space with the help of some 

nonlinear mapping cD. Then successive linear operation are applied on this transformed 

data [ 6 ] .  In this work successful application of kernel methods (KLMS and KAPA) are 

studied on nonlinear channel equalization and Mackey-Glass time series prediction. 

I 



Nonlinear modeling capability and universal approximations are some exclusive and 

attractive features of kernel based algorithms. These important features lead their 

importance in nonlinear problems [6]. In this work the Kernel algorithms are applied to 

nonlinear problems. The aim is to construct a nonlinear filter with the ability to map the 

nonlinearity of the system accurately. The iterative nature of adaptive filter is supposed - 
to follow this iterative mechanism: 

f i  = fi-l + Gain (i) e(i) 

where fi is current value of updating function while fi-l shows its values at previous 

iteration. Reproducing kernel Hilbert space, a high dimensional space, is used to 

achieve this objective. Moreover, this feature space has linear structure. In this work I 

will use kernel least mean square (KLMS) and kernel affine projection Algorithms 

(KAPA) to equalize the nonlinear channel and to predict Mackey-Glass Time series. 

1.3 Thesis organization 

In this introductory chapter, background of the problems is stated. Since both the 

problems are nonlinear so the need for algorithm with nonlinear modeling capability is 

stressed. After presenting brief introduction in chapter 1,  Chapter 2 is dedicated to 

present basics of adaptive filters, its importance and explanation with block diagram is 

shown. Then nonlinearity is defined relative to the linearity condition. The two 

properties of a linear systems are discussed. Nonlinear systems are mathematically 

represented by nonlinear system of equation like nonlinear recurrent relationships and 

nonlinear differential equations. After that chapter 3explains reproducing kernel Hilbert 

spaces. Startmg from inner product spaces, its definition and properties and then 

gradually reaching to RKHS. Inner product space has to satisfy three properties the 

symmetry, the bi-linearity and positive definite norm. An inner product space is called 

3 - 



Hilbert space when it is complete and a Hilbert space with kernel satisfying reproducing 

property is called reproducing kernel Hilbert space. Chapter 4 explains kernel 

algorithms in detail. This chapter is the heart of the thesis. Least mean square and affine 

projection algorithms are derived and then kernel least mean square and kernel affine 

projection are derived with mathematical details. All of the algorithms are summarized 

in algorithm tables. 

Chapter 5 is there to elaborate in details the applications; the nonlinear channel 

equalization and Mackey-Glass time series. Channel equalization, its importance and 

types are discussed. Then nonlinear channel equalization with block diagram is given. 

The second application is Mackey-Glass time series. Its equation and the way how it is 

generated then brief introduction to its parameters are given. Chapter 6 is dedicated to 

the simulation and results of my work. Applications are simulated in Matlab r2012a. 

The results are shown in terms of mean square error. The effects of the change in step 

size parameters and different noise levels to get optimum solution is also tabulated, 
- 

subsequently. Finally, chapter 7 concludes the thesis with numbered conclusion 

remarks. Scope of the work is written at the end for interested scholars to dig out the 

world of kernel filters. References are given at the end of thesis for the cited literature. 

* 

1.4 Review of the literature 

In communication systems inverse modeling is an important part of the receiving 

systems. Channel equalization is hot topic in modern research. Many well-known 

algorithms are applied on this problem. In past, linear adaptive algorithms were used 

for equalizing channel impairments. LMS is the widely used algorithm used for channel 

equalization [2]. The reason of its wide spread use is its simplicity and least complexity. 

- 
This is very simple mechanism but is confined to linear domain. It does not help when 

4 



the relation between input and output is highly nonlinear. Nevertheless, it is famous 

that the LMS can only reduce the error estimate to some degree [7]. While Recursive 

Least square (RLS), On the other hand, converges considerably quicker than the LMS 

algorithm. The tradeoff is between numerical instability and computational complexity 

[8]. Number of affine projection based adaptive filter algorithms like standard version 

of affine projection algorithm and regularized affine projection algorithm were used. 

Using affine projection, a step size parameter is carefully chosen to get better 

convergence and MSE. During the adaptation process the optimal selection of the step 
i 

size parameter, least steady state MSE and quick convergence can be obtained. These 

algorithms include Variable Step Size versions of affine projection and normalized 

LMS [9]. 

In solving filtering and prediction problems it is well known to apply linear 

adaptive algorithms like LMS, KLMS, APA and RLS etc. [8]. Lately, as an extension' 

of the linear counterparts, kernel adaptive filters have been proposed that adaptively 

learn the non-linear systems. Kernel adaptive filters are derived by applying the kernel 

method to linear adaptive filters, and several algorithms were proposed, i.e. KLMS, 

KRLS and KAPA etc. [lo].  



Chapter 2 

- 2 ADAPTIVE FILTERS 

2.1 Linear adaptive filters 
1, 

Adaptive Filter theory consist of three main parts: the linear filter, weight update 

mechanism and the cost function which is the mean square error, normally. Linear 

adaptive filters build a linear combination of input and weights of the system. Linear 

filters learn the adaptation sequentially. By adaptive we mean that the system is self- 

designing in which the adaptive filter depends on a recursive algorithm for its operation. ' 

Adaptive filters have incorporated weight update mechanism that allows these filters to 

adjust their free parameters repeatedly in response to the changes in the surrounding 

_ environment [ 7 ] .  I n  all this process the learning process is online. Their learning 

mechanism is very simple. That is the reason adaptive filters are widely used in system 

identification, in adaptive noise cancellation, in communication receivers as adaptive 

equalizers, and in radar and sonar-as adaptive beam forming etc. This is very simple 

mechanism but is confined to linear domain only. It does not help when the relation 

between desired response and input is highly nonlinear [6]. 

Typical adaptive filters comprises of two core portions; one is transversal filter 

and the other is adaptive weight control mechanism as shown in Figure 1. Transversal 



filter is linear FIR filter which con~olves input with the weights of the filter. The other 

part is responsible for adaptive learning depending on the error calculations. This 

adaptive mechanism is the heart of algorithms. 

Transversal filter w ( i )  

Adaptive weight- 
control mecha . 

-.- - - 

Figure I :  Linear-Adaptive Filter; A block diagram 

2.2 What is nonlinearity? 

"It is the property of chaotic system which cannot be decomposed into the parts and 

reassembled into the same thing, and do not change in proportion of the change in input" 

[ I  I]. The relation between input and output of the system is not linear rather input 

output relationship is curved, Or the input output relation which does not satisfy 

properties of a linear system i.e. superposition principle. 

2.2.1 Properties of a linear system 

The input output relationship f (4 that satisfy following properties is called linear 

system. 

1 .  Addition 



2. Scalar multiplication 

f (ax> = a f  (XI 

These two conditions can be combined to form superposition principle. 

The system which does not satisfy superposition property is simply nonlinear system 

1121. 

2.3 Modeling nonlinear systems 

Nonlinearity lead to randomness and unpredictable nature termed as chaos. Nonlinear 

events must be modeled with the system capable of nonlinear approximations 1131. 

Most of the real world systems exhibit nonlinear behavior. Nonlinear systems are 

characterized by nonlinear equations. Nonlinear equations include Nonlinear Algebraic 

equations, nonlinear recurrent relationships and nonlinear differential equations. 

Discrete nonlinear systems are represented by nonlinear recurrent relationships. This 

kind of relationship is used in sequences or train of samples related by nonlinear 

functions of previous terms. In nonlinear channel equalization and system identification 

problems the nonlinearity is modeled by nonlinear recurrent relationships [14]. The 

famous Mackey-Glass time series is generated by using nonlinear ordinary differential 

equations [15]. 

2.4 Nonlinear Adaptive Filters 

Nonlinear filtering can be accomplished in so many ways. But here nonlinear 

filtering in Reproducing Kernel Hilbert Space is discussed. The theme is to transform 

the input data into high dimensiogikl feature space then adaptive filtering is performed 

on this transformed data in feature space. This high dimensional space is associated to 

8 



input space by some nonlinear function. Theory of Reproducing Kernel Hilbert Space 

(RKHS) is used to transform input into high dimensional feature space by some 

nonlinear transformation function. After transformation three basic parts of linear 

adaptive filtering i.e. linear filter, weight update mechanism and the cost function, can 

be exploited. While finding + 

I 
Adaptive weight- 

control mechanism 

.. Figure 2: Nonlinear Filter structure 

the output of the system, instead of taking inner product in feature space we find kernel 

evaluation using the vectors of input low dimensional space. This is called Kernel trick. 
1C 

Kernel trick enable us to compute output without finding inner product. Rather kernel 

evaluation is used in input space. Kernel evaluation in input space is equivalent to inner 

product in feature space. 



Chapter 3 

t 

3 REPRODUCING KERNEL HILBERT SPACES 

(RKHS) 

Reproducing kernel Hilbert space is high dimensional feature space. This high 

dimensional space has linear structure to be exploited in modeling nonlinear filters in 

feature space. Using RKHS approach, nonlinear filters are developed in the linear 

space. Before going into details of Reproducing Hilbert Space it seems better to revise 

* theory of Inner Product Space. 

3.1 Inner product space 
Ir 

"In linear algebra, an innerproduct space is a vector space with the addition of an inner 

product. The inner product is a generalization of the 'dot product' regularly used in 

vector algebra" [16]. An inner product is also termed as normed vector space because 

a norm is associated with the inner product, naturally. [17] 

3.1.1 Elementary properties of an inner product space 

Ixt  we have t ~ 1 0  vector v and u.  To be In Inner product space they must satisfy the 

- propertlrs given bellow: 



1.  Symmetry 

t 

< u, u > 2 0 With equality if and only if u = 0 

"A complete inner product space is called Hilbert space. Historically, inner product 

spaces are sometimes referred to as pre-Hilbert spaces" [18]. Completeness is defined 
0 

by: "If every Cauchy sequence of vector convergence to a limit in H then inner product 

space H is complete" [6]. A special Hilbert space with a kernel is Reproducing Kernel 

Hilbert space (RKHS). 

Let a vector space H is spanned by real valued kernel generated functions of u 

K (u, .). Assume h ( a )  and g (.) are two functions chosen from that space H that are 

correspondingly denoted by. 

-? 

and 

- 
where the ai , b, belongs to U for all i and j and are called expansion coefficients. The 

inner product of the functions h and g 

satisfies the properties of Symmetry, Scaling and distributive property and finally the 

squared norm or positive definiteness. For these evidences, the bilinear fonn < h, g > 

is definitely an inner product. 



3.2 Reproducing property 

To be a Reproducing Kernel Hilbert space Kernel Hilbert space must hold 

reproducing property. Let g( . )  is real valued function of u i.e. g ( . )  = K (  u , .). 

Taking inner product with another real valued function h, we get 

This is recognized as reproducing property. The kernel K(U , u') is the function of 

input vectors while input vector belongs to U. Subsequent two conditions to be satisfied 

for a kernel to be a reproducing kernel K(U , ul)of vector space H. 

1. For every input vector u belongs to U, kernel must be in feature space H. 

2. Reproducing property must be satisfied by the kernel K(U , u') 

Mercer I<ernel also hold these conditions, therefore mercer kernel is also called 

reproducing kernel. The space spanned by mercer kernel is called reproducing kernel 

space H. If the reproducing kernel space H is complete, it is called reproducing kernel 

.r Hilbert space (RKHS). 

3.3 Mercer Theorem 
t 

Mercer theorem states that a continuous, symmetric, non-negative definite 

reproducing kernel ~ ( u ,  u '  ), the fimctions of the input vector u and u', can be extended 

as follow 



where /Ii and cp i  are Eigen values and corresponding Eigen functions correspondingly. 

A nonlinear mapping cp from input space U to high dimensional feature space can be 

In vector form 

This equation is also called kernel trick and is the essence of kernel methods. 

Calculating inner product in high dimensional space is cumbersome task due to high 
.t 

Figure 3: Nonlinear mapping: cp: U+F 

e 

dimensionality of the data. So, Instead of finding inner product in high dimensional 

space F equivalent kernel evaluation is used. Kernel evaluation enable us to do 

calculations in relatively low dimensional input space U. Hence computational 
* 

complexity is reduced remarkably. 



.L 

The well-known commonly used continuous, symmetric, positive - definite kernels 

from input space U to high dimensional space F are 

1. Gaussian Kernel 

And the polynomial kernel 

- 3.4 Kernel Adaptive Filters 

Kernel adaptive filtering is a filtering technique used to solve nonlinear 

problems. Linear adaptive filters in rkhs is termed as kernel adaptive filters. Modeling 

nonlinear data is done with ease uEng kernel adaptive filters. 

The summery of the scheme is given bellow: 

I .  Transjornzation: Using reproducing kernel input vector is transformed into high 

dimensional feature space. In such a way that kernel evaluation can be efficiently used 

to find inner product in high dimensional space. 

2. Proper linear operations: Transformed data is subjected to some linear operations 

t If the algorithm is formulated in terms of inner product (on in terms of kernel 

evaluation) computation in high dimensional feature space in not necessary. [6] Rather 

computations are carried out in input space using "kernel trick". Reproducing Kernel 

4 



Hilbert Space (RKHS) provides convexity, linearity and universal approximation 

capability as is the major requirement in modeling nonlinear filter. 

Here is an example to show why transformation to high dimensional space is 

helpful in learning. Let we have two dimensional input u = [u ,  , uzIT and let the - 
nonlinear mapping be 

f (u,, u2)  = a,u, + a2u2 + a,u12 + a4u2' 

where ai ( f o r  i = 1,2,3,4) are some constants. f (ul ,  u2)  is nonlinear combination of 

u1 and U Z .  Clearly a linear combiner trying to model the function f (ul, u2)  by linear 

coinbinations of ul and uz can't model it accurately because of the square terms present 

in the fimction f'(ul, u z ) .  On the other hand by using kernel method the transformation 

of the input is as follow 

Using nonlinear transformation function cp two dimensional input u = [u,, u2] 

is transformed to nonlinear data. Dimensions of this transformed input is clearly greater 

than that of untransformed input. Moreover the relation between input and transformed 

input is nonlinear (due to square terms). At this stage, it is easy to formulate linear 

combination of the high dimensional transformed input. 

It is obvious that mapping into feature space has made the job easy. Voltera and 

Weiner series can be seen as the special cases of kernel methodology [19]. The - 
complexity of these series is no more dependent on the order of nonlinearity and the 



input dimensionality when Voltera and Weiner series is formulated as linear regression 

problem in Reproducing Kernel Hilbert Space. 

Based on these evidences the goal is modeling the linear adaptive filters in 
t 

Reproducing Kernel Hilbert Space for optimizing in least square sense. As classic 

adaptive filters are formulated in terms of inner products we get nonlinear adaptive 

filters in feature space in such a way that kernel evaluation in input space is equivalent 
Ir 

to inner product in feature space. Hence achieving universal approximation and 

avoiding algorithm to stick in local minima 

Linear adaptive tilters are special case of kernel adaptive filters when these 

filters are expressed in feature space. So kernel adaptive filters can be termed as 

generalization of the linear adaptive filters. The weights and hence memory of kernel 

adaptive filters shows growing structure. Kernel adaptive filters form growing radial 

basis function network. By this way they learn the network topology and hence 

* 
adaptively adjust its free parameters. Learning is good combination of previous data 

and error correct~on. Memory based learnmg causes an increase In computat~on tlme. 

To avoid this there 1s need to choose some informative data samples instead of all 

training data. Dealing with largrand redundant data set kernel algorithms reduce 

training time and result in a relatively squee7ed network with equivalent accuracy. 

Wovcltt C'i itcrion M. idely used procedure used to select int'ormat~ve data ximples 

m o n g  lalgc data sct [6]  In kesncl adaptive filters thc l~ncar structurc of underlying 

reproducing Hilbcrt Space, where thc algorithm exists, is exploited. 



3.5 Bottleneck 

There are few limitations in kernel adaptive filters. First, regularization is- 

required. Selection of kernel function is another big issue to deal with carefully. The 

recursive mechanism in kernel adaptive filters has embedded structure with growing 

memory that is why kernel operation is memory intensive operation. So the need of 
T. 

reducing the growing network size of kernel adaptive filters is handled such that 

perfonnance of the filter is unchanged. 



Chapter 4 

4 KERNEL ALGORITHMS 

0 

In solving filtering and prediction problems it is well known to apply linear 

adaptive algorithms like LMS, KLMS, APA and RLS etc. [8]. Lately, as an extension 

of the linear counterparts, kerneladaptive filters have been proposed that adaptively 

learn the non-linear systems. Kernel adaptive filters are derived by applying the kernel 

method to linear adaptive filters, and several algorithms were proposed, i.e. KLMS, 

KRLS and KAPA etc. [lo]. This chapter is dedicated to the study of two Kernel 

Algorithms, the Kernel Least Mean Square (KLMS) Algorithm and Kernel Affine 

Projection Algorithm (KAPA). The simplest algorithm among the family of kernel 

algorithms is Kernel Least Mean Square (KLMS) Algorithm. Following the same 

methodology explained in chapter 2 (Reproducing Kernel Hilbert Spaces) the least 

" mean square (LMS) algorithm is transformed directly into high dimensional feature 

space (RKHS). Over-all procedure for linear LMS is followed to derive kernel LMS. 

Inner product is found by kernel evaluation using reproducing property of RKHS. 

Calculating inner product in featme space by kernel evaluation of the input space is 

indeed the key benefit of RKHS approach. 



4.1 Least Mean Square Algorithm (LMS) 
4 

In linear LMS linear FIR model is assumed for filtering. That is, the relation 

between input u(i) and desired response d (i) is linear. With the assumption that input 

vector u(i) and desired response d ( i )  are known LMS follow these steps. 

To initialize the algorithm, if prior knowledge of tap weight vector is known use it. 
- 

Otherwise assume it to be zero i.e. 

w( i ) is Es t~~nate  of the tap weight at iteration i is to be computed. For i = 0, 1,2, 3. .  ... 

" Compute 

where e(i) is called error, p is Rep size parameter, chosen precisely, and w(i) is 

estimate of weight update vector at i time. To estimate the tap weights the algorithm is 

optimized in least square sense. The cost function is mean of the squared error i.e. 

Standard LMS can be derived by taking gradient of the cost function J(w)  with respect 

to tap weight vector w. a~ 



+ 

= - 2 C;!, u(i) [d ( i )  - wT ~ ( i ) ]  (as e ( i )  = d ( i )  - wT u ( i ) )  

at time i 

Now from method of steepest descent 

so by putting the value of cost function gradient, we get 

Hence, we obtain LMS algorithm as bellow 

Summary of LMS algorithm is given bellow. Weight vector is initialized as zero, 

usually. 

Algorithm I :  Least Mean Square AlgWithm 

I~utializatioil 

w(O) = (3 . choose 

Colnputatlon: 

~ h i l e  u (i) . d(i) 1 are available do 

e(i) = d(i) - IVT (i - 1) 11 (i) 

\v( i ) = w( 1 - 1  ) + [l e(i) t ~ (  I ) 

IL 

The simplicity of the LMS algorithm is evident from Algorithm 1 [6] 



4.2 Kernel Least Mean Square Algorithm (KLMS) 

- It is well-known that linear filtering model is used is LMS. If the mapping 

between input u and desired response d is highly nonlinear then this kind of situation is 

out of the scope of standard LMS i.e. reduced performance is observed for LMS. To 

cope with the nonlinearity of the ipput data another useful algorithm of the same kind 

is formulated called kernel LMS. Kernel LMS is based on Reproducing Kernel Hilbert 

Space (RKHS) approach. This is in turn LMS in RKHS. This algorithm is clever 

enough to map the nonlinearity, efficiently. To start with, the input u(i) is transformed 

into high dimensional feature space F as q(u( i ) )  and w(i) to w(i), the weight vector in 

feature space F. Now following the similar stochastic gradient procedure as followed for LMS 

the kernel LMS can also be derived easily. 

For simplicity cp( u(i)) w~ll  be treated ascp(i). 

.c 

Initially w (0) = 0 

and e ( i )  = d ( i )  - oT ( i  - 1 )  cp ( i )  

weigh update mechanism: o(i)s o ( i  - 1 )  + p e ( i )  cp ( i )  

High order of similarity can be observed in the two algorithms. or cp ( i )  is much better 

model compared with wT u ( i )  due to high dimensionality of former. Yet, cp is not 

known directly so carrying out the computation in another way. 

Repeatedly putting the values of weight vector, we get 



. . .  

= N O )  + p C),, e(j)cpO') 

+ O( i ) = p Cfi=l e(j)cp(j) (o(0) is assumed to be zero; initial condition ) 

This alternative approach lead to the conclusion that transformed o( i ) can be found 

by present and previous i-step trwsformed inputs weighted multiplied by error and 

scaled by step size parameter p. Now, for new input u' the output of the system is found 

by taking inner product of the transformed version if this new input u'  and the 

transformed weight vector. 

~ ( i ) ~  ( ~ ( u ' )  = 

I* 

Inner product of transformed input and the transformed weight serve as the output of 

the system. Now by using kernel trick the output of the system (or equivalently the 

inner product) can easily be computed in the input space. 

Using this equation, output of the system can be found as 

It is surprising to see that output of the filter is independent of the weight rather output" 

is sum of the previous error multiplied with kernel evaluation on previously received 

data. This is indeed LMS in RKHS. Output is calculated by kernel evaluation. This new 



algorithm is called kernel least mean square (KLMS) algorithm. Generalization of the 

said algorithm is as follow: 

If f i  is nonlinear mapping between input and output it time i we will get the following- 

learning rule: 

f i - I  = p e ( i )  K(u(.~), -1  

* output: f ,-,(u(i)) = p Cj2: e ( i )  ~ ( u V ) , u ( i ) )  

Error: e ( i )  = d ( i )  - fi-,(u(i)) 

Weight update: fi = fi-I + ~ e ( i > ~ ( u O ' > ,  . - 
In kernel least mean square algorithm new kernel unit is assigned to the upcoming 

training data. The input u(i)  is considered as the center and ai = p e ( i )  as expansion 

coefficients. During training period these centers and expansion coefficients are stored 

in the memory called dictionary. That is the reason kernel operation is memory 
-, 

intensive operation. Kernel least mean square algorithm is summarized in Algorithm 2 

[61. 



.Ic 

Algorithm 2: Kernel least mean square algorithm 

Initialization: 

Chose step size parameter 11 and kernel type K 

Computation: 

While { u(i) . d(i) 1 available do 

-X- 

cunqmte the output 

? ~ b  compute the enor 

?% store the neu' center 

?4 compute and store the coefficients 

end while 

*- 

Practically. in feature space, the access to transformed weights and the transformed 

input is not available directly. They are known implicitly, therefore updating process is 

done through expansion coefficients. The relation between weights o and expansion - 
coefficients a, is given bellow: 



* 

4.3 Difficulties 

There are few things to be specified yet. First is kernel selection, that is, it is a serious - 
concern to choose suitable kernel capable of modeling the problem satisfactorily. The 

other is to choose suitable step size parameter; p and the last is to deal with the 

lncrcasing network size. 'The network size of the kemel algorithm keep on increasing 

with iterations. Therefore kernel methods are memory exhaustive methods. So suitable 
- 

measures to be taken to reduce the network size while maintaining good performance. 

It is recognized that the Gaussian kernel has universal approximation capability in 

RKHS. If any specific kernel is not given in the problem then Gaussian kernel is chosen 

T by default 161. The remarkable features of Gaussian kernel is that it is stable numerically 

and do not stuck in local minima. For the said reasons Gaussian kernel give very good 

results. Gaussian kernel is given by the following equation 

K(u,u+= exp(-a (lu - u'll) 

and the polynomial kernel 

K ( U ,  u') = (UTU' f 1)' 

where in Gaussian kernel a is the kernel paraineter. The kernel parameter is also termed 

as smoothing parameter or kernel size. While p is order of the polynomial function in 
-.c 

polynomial kernel. To cope with the increasing network size of kernel function a 

method called 'Novelty Criterion' is proposed. 



w 

4.4 Affine Projection Algorithm (APA) 

One of the most capable algorithms for filtering problems is the affine projection (AP) 

algorithm. Numerous effective approximations and implementations of AP algorithm 

are used in a diverse applications. Applying kernel trick to affine projection algorithm 

to derive an algorithm working best in nonlinear domain called kernel affine projection 

algorithm ( IUPA) .  APA inherits the simplicity of LMS while decreasing gradient noise 

thus increasing LMS performance. 

A least square regression data model can be constructed as 

e(i)  = d(i) - wTu(i )  

where d(i)  and e( i )  are desired response and error respectively, while u(i) is L x 1 
't 

data vector with covariance matrix R, = E [uuT], a positive definite matrix. Rdu = 

E [ d  u ]  is cross-covariance vector of u and d. The error is minimized in least square 

sense, which will give - 
minj(w) = E [d  - wT u ]  

The optimum solution (Weiner solution) is glven by w, = R-'rdU.  

To approximate w ,  several methods are adopted. Examples are 

1 .  Gradient Descent method 

Estimation of w is found iteratively using the following weight update equation 

w( i )  = w(i - 1)  + p[rdu - R,w(i - I)] 4.1 

i 

while w(0)  is some initial guess, assumed zero normally. 

2. Newton's recursion: 



This method is used normally to avoid slowness or to increase convergence speed. 

Wcight updatc of Newton recursion is 

w(i )  = w(i - I )  + p ( R ,  + E I)- '  [rdu - RU w(i - I ) ]  4.2 
-C 

while w(0)  is some initial guess, assumed zero normally. Division by zero is avoided 

by taking a small positive number, the smoothing factor E. And p is step size parameter 

to be chosen initially. - 
3. Stochastic gradient algorithm 

Stochastic gradient algorithm replace R ,  and rdu by local data approximation. LMS 

and Affine projection algorithms are two famous members of stochastic gradient 

algorithm family. There are many methods to get these kind of approximation. It is - 
assumed that desired response d ( 1 ,  d ( 2 ,  d ( 3 ,  . . } and input vector u 

{ u (11, u (2), u (3), . . . } are known. 

To approximate covariance matrix R,  and cross-covariance vector r d ,  LMS uses - 
instantaneous values of R ,̂ = u(i)uT(i) and rTU = d(i)u(i). Putting these values in 

steepest descent (equation 4.1) and Newton recursion algorithms (equation 4.2), we get 

w(i )  = w(i - 1)  + pu(i) [ d ( i )  - ~ ( i ) ~  w(i - I ) ]  
* 

and 

On the other hand, affine projection algorithm uses superior approximations. Ru and 

rdu are approximated by K most new inputs and observations. 

Let U (i) = [u(i - K + I ) ,  . .. . , u(i) 1, , 

and 

rlr 



Then 

and 

1 rTu = - U (i)d (i) 
-I K 

Substituting equation 4.3 and equation 4.4 into weight update of gradient descent and 

Newton recursion, we obtain the following results called affine projection algorithm. 

and 

where d is desired vector and U is input data matrix. 

The last two equations are called APA- 1 and APA-2 respectively. 

4.5 Kernel Affine projection Algorithm (KAPA) 

.c 

Adopting the similar approach as followed to derive kernel LMS, the kernel affine 

projection algorithm is derived next. Transformed input vector is represented 

by cp(u(i)). For the sack of simvicity q(u(i)) will be used as cp(i), further. It is 

assumed that desired vector { d  (1), d (2), d  (3), ... . ) and input data vector 

{ cp (I), cp ( 2 ) ,  cp (3), ... . . ) are known. 

The error is minimized in least square sense, which will give 

mini(@) = E [ d -  oT ~ ( u ) ]  - 
To estimate weight vector through stochastic gradient descent method (equation 4. l ) ,  

we have 



and by stochastic Newton method (equation 4.2), we have 

where @(i) = [cp(i - K + I), ... , cp(i)]. The last two equations are the kernel versions 

of affine projection and known as KAPA-I and KAPA-2 respectively. 

h 

4.5.1 KAPA- 1 (Simple KAPA) 

The simplest algorithm among the family of kernel affine algorithms is KAPA-1 and 

therefore it is celled simple-KAPA. Weight vector in high dimensional feature space is 
;b- 

not known explicitly. The same procedure is repeated here to derive weight vector in 

t e m s  of linear combination of transformed input vector and expansion coefficients. 

Practically the access to the transfosmed weights is not feasible that is why updating of 

weight vector is indirectly accomplished by expansion coefficients. Expansion 

coefficients are defined by T 



Filter output is given by inner product of transformed input data matrix and transfotmed- 

weight vector 

Now using kernel trick, the output is written as 

Error is computed by 

-r 

e ( i )  = d ( i )  - 

Putting equation 4.7 and @(i)  = [q(i - K + I), ... , q(i)] in weight update equation 

of I U P A -  1 (equation 4.5), we get 



Where kernel evaluation notation ~ ~ , j  = ~ ( u ( i ) ,  ~ ( j ) )  is used for simplicity. 
t 



.4lgor-ithni 3 Kernel Affinr Projection Algorithm 



4.5.2 IWPA-2 (Normalized KAPA) 

In the same manner, using equation 4.3-4.4 and 4.7 in equation 4.1, the Newton 

- Recursion for kernel algorithm is summarized as bellow. 

where G(i) = @(i)T@(i) is named Gram matrix. 

The rest of the algorithm is similar to that of Algorithm 3. 



Chapter 5 

- 
5 APPLICATIONS 

The two kernel algorithms explained earlier are applied to two problems; one from class 

of inverse modeling and other fiom prediction. What is nonlinear channel equalization 

and what is its importance? What is Mackey-Glass time series and what is its 

importance and usage? These are the two question to be answered next. 

5.1 Nonlinear Channel Equalization 

Equalization is a practice used to improve link quality in unfriendly environment. The 

basic idea of equalization is to reverse the distortion incurred by the communication 
I 

channel. In typical communication system information signal is transmitted over 

transmission channel. Transmitted signal while passing through transmission channel 

get corrupted by the channel distortions. 
X 



Figure 4; A typicul communication system 

To equalize the channel impairments and the aim to get error free communication 

equalizer are used. Most of the real world communication channels are nonlinear e.g. 

wireless communication channels,tnd satellite communication channels etc. Nonlinear 

channel is modeled as cascade connection of linear filter and subsequent nonlinearity, 

as depicted in Figure 5. 

Figure 5;  Nonlinear channel model 

H(z) is transfer function of linear finite impulse response (FIR) filter. This FIR filter is 

"- modeled as 

It is very clear from the above equation that the current signal s( i)  and a delayed version 

of the signal scaled by 0.5 are added together to get output. The output is then needed 

to give as an input to nonlinearity defined by the following equation. 



The square term in the above nonlinear equation is responsible for nonlinearity. Where 

n(i) is white Gaussian noise which is added to the received signal. Hence nonlinear 
* 

system is cornbinely represented by the following set of equations. 

Linear channel impairments, that result in transmission quality degradation, like 

attenuation, spreading and phase jitter and nonlinear chaiinel impairments like 

interference, shadowing, harmonics, additive noise, Inter Symbol Interference (ISI), 

.c 

produced by inultipath in time dispersive channels, are compensated with equalizers. 

Channel impairments causes uncertainty in the received data samples. Receiver 

receives a distorted signal. The samples of the received signal take any value instead of 

-@. 

taking discreet levels that were supposed to receive. Receiver is left with no option 

except to estimate the signals originally transmitted. Channel transfer function is used 

to model the channel characteristics in which certain signal components are attenuated 

and delayed uniquely. Coefficients of the channel are unknown and time-varying 

generally. Statistical changes in the channel causes channel coefficients to vary- 

accordingly. The job of the equalizer is to track the time-varying channel 

characteristics iteratively then try to reverse its effects and hence called adaptive 

equulizer. [20] A typical block representation of adaptive equalizer is depicted in the 
C 

Error! Reference source not found.. In which u(n) is input to the system of which 

transfer function is unknown. In telecommunication we may refer this system as 

channel through which a signal will be transmitted. Signal distortions are due to this 

channel and equalizer is there to reverse the changes incurred by this channel. Output 

of the channel x ( n )  is treated as input to the adaptive equalizer. Output of the equalizer 



is then subtracted from desired response d (n )  resulting in the error. This error d(n )  
-m? 

and output of the channel x(n) is used to adaptively adjust transfer function of 

adjustable filter in least square sense. This process is carried out iteratively until mean 

square error (MSE) is minimized to its least steady state position. 

U ill l 

Figure 6: Block diagram of an adaptive equalizer 

Adaptive equalizations are of two types, basically: one is linear and the other is 

nonlinear equalization. Linear equalizer is simple implemented without feedback path. 

The nonlinear equalizer, on the other hand, has some feedback mechanism. These are 

extensively used in wireless communication channels where linear equalizers are 

insufficient to cope with the nonlinearities introduced by the channel [21].Equalizer is 

trained by feeding training sequence to the equalize input. Data transmission in OFDM 

systems is accomplished by sending data chunks or data blocks one after other. To 

equalize such a channels training sequence is inserted between successive data blocks. 

The purpose of this training sequence is to inform the decoder to regulate its parameters 

for approaching data blocks [22] [23]. 

s 



5.2 Mackey-Glass time series 

Most of the recurrently encountered data in real world has chaos in nature and 

- thus constitutes chaotic time series. Mackey-Glass time series is frequently used 

prominent chaotic time series. In 1977 Mackey and Glass model physiological system 

using nonlinear ordinary differential equation and hence called Mackey-Glass time 

series. lnteresting examples of sackey-Glass time series are weather data, stock 

exchange data. The Mackey-Glass time series is extensively applied in glucose 

metabolism and production of red blood cells [24]. So, Mackey-Glass time series is 

used for performance analysis of many nonlinear algorithms. The prediction of chaotic 

time series means to predict delayed version of x ( t  ). Predicting Mackey-Glass time 

series is benchmark test in the community of time series prediction. This system has no 

input and only one output. The Mackay-Glass equation is time delay differential 

equation. This nonlinear time series is expressed as follow 

In above equation the pa rze t e r s  a, b and n have real values while 7 is real 

valued time delay. x ( t )  represents the value at time t and x ( t  - 7 ) represents values 

after some delay of r .  It represent chaotic behavior when 7 > 17. This equation was 

used by Mackey and Glass to model physiological control systems [I 51. Mackey-Glass 

equation represents a typical feedback system. The key benefit of its simplicity has led- 

to make it standard model to assess the nonlinear modeling capability of nonlinear 

algorithms. 



Chapter 6 

6 RESULTS AND SIMULATIONS 

d 

Application of nonlinear filtering techniques known as kernel algorithms is studied on 

nonlinear channel equalization and prediction of short time Mackey-Glass time series. 

This thesis is confined to the application of the two algorithms, among the family of 

kernel algorithms, kernel LMS and kernel APA. Nonlinear channel is equalized with 

- 
KLMS and KAPA and their performance comparison is shown. 

6.1 Nonlinear channel equalization 

6.1.1 Comparison of LMS and KLMS 

- 
Due to simplification of LMS it is extensively used for channel equalization but here 

KLMS is applied for equalization of nonlinear channel problem. A communication 

channel, which is nonlinear in nature, is exhibited as linear FIR filter with a subsequent 

nonlinearity, as shown in Figure 5. This nonlinear channel is characterized by equation 

(5.1. A signal s ( i ) ,  where i is from 1 to N, is transmitted through the nonlinear channel.' 

At the receiving end of the channel additive white Gaussian noise (AWGN) corrupts 

the signal. The signal thus received is represented as r( i ) ;  1 I i I N .  s ( i )  is the input 



signal to be transmitted through nonlinear channel, n(i) is white Gaussian noise. Its 

mean is zero and the variance is a2. While r(i) is received signal to be given to equalizer 

as its input. The job of the equalizer is to track the time-varying channel characteristics 

iteratively then try to reverse its effects and hence called adaptive equalizer. 

6.1.2 MSE performance 

Mean square error is measured for each algorithm and then mean square error for LMS 

I I I I I I 
0 200 400 600 800 lo00 

No. of Itaatbm 

Figure 7: MSE comparison for LMS and KLMS for channel 
equalization problem 

and KLMS is compared. The mechanism stated in Algorithm 2 is followed to 

implement KLMS. 1000 data points are used for training the nonlinear filter then 5000 

data samples are tested subsequently. Training data points updates the weights of the 

filter. Then this updated weight is used for testing data. Again Gaussian kernel is 

selected with kernel parameter 0.07 and p 0.1. For LMS p is 0.009. The results, hence 

achieved, are portrayed in the figure 5.1. 



It is obvious from the above learning curves that KLMS outperforms LMS in terms of 

-* 

MSE. 

6.1.3 BER performance 

Another useful comparison is tabulated bellow. This table compares LMS and KLMS 

for changed noise levels. All of the results produced in subsequent table is generated' 

for 10 Monte Carlo simulations. Kernel parameter is 0.1 while step size for LMS and 

KLMS is 0.006 and 0.2 respectively. The results are summarized in the form of "mean 

.c 
+ standard deviation". The comparison is made for three different noise levels. 

Table 1: Mean error comparison for LMS and IUMSfor difjrent noise levels in nonlinear 
channel equalization problem 

.. 
Table 1 shows better results for KLMS. For each noise level or certain BER mean error 

is less for KLMS compared to LMS. 

Algorithm BER(a = 0 . 5 )  
-5 

BER(a = 0 . 2 )  BER(a = 0 . 7 )  



- 6.1.4 MSE Comparison of KAPA-I and KAPA-I1 with the previous 

algorithms 

Mean square error performance is compared for LMS, affine projection, Kernel LMS, 
--C 

Kernel APA-1 and Kernel APA-2. Training data is 1000 samples and testing data 

contain 5000 samplcs. The kernel parameter for Gaussian kernel is 0.1. The o is set to 

0.1. Tra~n ing  sequence is used to update weights of the filter. This updated weight is 

further used for testing data. The mean square error for the test data set is calculated 

f 

and is plotted against number of iterations. 

- 

'\ 
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Figure 8: MSE graphs for LMS, KLMS, APA-1, KAPA-1 and KAPA-2 
compared 

Results tor 50 Monte Carlo sin~ulations are plotted in Figure 8. Mean square error is 
I). 

calculated from the output and the desired signal. Graph shows that the performance of 

linear filtering algorithms are comparable i.e. LMS and APA - 1 curves are almost 



overlapping. Similarly KLMS and KAPA-I are alike but KAPA-2 outperforms all of- 

the above. 

- 6.2 Macltey-Glass Time Series Prediction 

Mackey-Glass time series is a time series, chaotic in nature, and is generated by time 

delay nonlinear ordinary differential equation as bellow 

d x ( t )  nx(t  - z) - .- - - h x ( t )  -t 
t l  t 1 s x ( t  - r ) (  

wherc a. b, c and .r are rc;d numbers. It is observed that Mackey-Glass time series shows 

chaotic behavior when .r is greater than 16.8 r 17 [25]. It is customary to take a = 0.1, 

b = 0.1 and z = 30. while using these parameters in above equation 5000 samples of 
t 

the tiinc series data are obtained and are stored in the mat file mg.inat. Samples of the 

time serics data are obtained by sampling x ( t ) ,  continuous curve, at the sampling rate 

of 6 scconds. The chaotic behavior of Mackey-Glass series, thus formed, is shown in 

- Figure 8 

A M a c k e y - G l ; c s s  tbme ser le  (tau=30) 
1 4 r------ -- , 

Figurr 9 .  Chaotic hrhuvior o/ Mac.key-G'1u.w Time Series (~=30) 



6.2.1 Performance of LMS and KLMS in terms of MSE 

The order of the filter i.e. M is 10. It implies that most recent 10 values fiom the past 

input samples are taken to predict the current value, our desired response. Aim is to 

compare performance of LMS against KLMS. A portion of 500 data points is taken to 

train the filter and other 100 points fiom the mat file mg.mat for testing purpose. 

Additive white Gaussian noise which corrupts the data samples is zero mean and with 

the variance a = 0.4. Step size parameter p is 0.2 for LMS. In KLMS case Gaussian 

kernel is default choice. For Gaussian kernel, the kernel parameter i.e. 'a' is taken 1. 

Here the step size is also chosen 0.2. Training data is used to update the weights and 

then these weights are used to find error on testing data. The mean of the squared error 

is our performance measure. MSE is shown against number of iteration in Fig. 

Figure 10: Mean Squam Error graph for iMS and KLMS 

This plot shows that increase in number of iteration reduces the mean square enor. 

Same behavior is observed for LMS and KLMS. But KLMS outperforms LMS and 



steady t a t c  MSE {'or KLMS is lesser than that of LMS. It is worth noting that 

coil\ C ~ C I I C C  01'  the tw'o algorithms arc same which shows that eigen-value spread in 

rcp~otli~c~iig I~cr11e1 Hilbi i t  space 15 slin~lar to that of input space. 
-m& 

Anothcs comparison bctwccn LMS and KLMS is shown in Table 2. For KLMS the 

kcl-l~cl Ix\i-;iinctcs I S  onc in Gaussian kernel i.e. a=l .  The results are sunlinarized after 

taking I 5 0  IClonlc C'arlo simulations. Noise power for this simulation is 0.04. 

t 

I<csul~\ I I I  rk a b o \ ~  t h l c  15 tabulated in "avcrage standard deviation" manner. It is 

1 c i l~ lc ,  -7 WSI: /'(11*/0i 1 1 1 ~ 1 1 ~  r co~ iyar isonfor  Kernel LMS and LMS for different ,U 

clcal lioil~ 11ic 1;1h1c thal. KLMS outperforms LMS. This is mainly due to nonlinear- 

modcllng cupab~lity of KLMS (as time series being tested is nonlinear). 

Testing MSE 

0.020606~0.0011907 

0.00803 18*0.00078386 

0.0055852rt0.00075515 

0.0061523+0 0018801 

- 

Ilgorithms 
I 

- - - -- . . 

I 

L l l 5  

0 . 2 . 2  1'c.sti)rmance o i  KAPA-I and KAPA-I1 
* 

Training MSE 

0 0 18904*0 00063824 

I ~ C I - I I L ~ ~  : i t  I ' I I I C  p1-oqibi'~lon i~lgorithln is applied to Mackey-Glass time series prediction. 

0 0075952*0.00030297 
-- - . 

, - - .- - . . 

I I I I I I 7 I t  i~~lplies thi~t 7 most recent values from the past input 

\,irnplc\ . L I C  ~ A e l l  tu cstllllcte the current sample, or the desired response. The aim is to 

cornlxirc perlbrmanct. 0 1  KAPA-I, KAPA-2 with LMS and KLMS. A portion of 500 



data points is used to train the filter and another 100 data samples for testing mean 

square error. Training samples are used to update the weights of the filter and then this 

updated weights are used to test mean square emor. Additive white Gaussian noise 

which corrupts the samples has zero mean and with the variance o = 0.001. Again for 

LMS the step size is 0.2. Gaussian kernel is taken as kernel for KLMS. For Gaussian 

kernel the kernel parameter is chosen 1. Here the step size is also chosen 0.2. Training 

data is used to update the weights and then these weights are used to find error on testing 

data. The mean of the squared error is our performance measure. MSE is shown against 

number of iteration in Figure 10. 

2 1 o - ~ ~  
100 200 300 400 500 

iteration 

Figure 11 : MSE comparison for LMS, KLMS, M A - I  and KAPA-2(MackeyGlass) 



, t l lc I c\LII~\ t l i ;~t krrl~el algoi-]thins shows much better results 

, ~ i i i , , , , . , . ,  .., .11cii !lii:.ti ~ounler&!s. Moreover, KAPA outperforms KLMS in terms 



Chapter 7 

7 CONCLUSION AND FUTURE WORK 

Nonlinear channel equalization and prcdiction of Mackey-Glass time series are studied ' 

thoroughly. Two algorith~ns, kmrcl least mean square algorithm and kernel affine 

projection algorithm, among~cllc f i ~ n ~ i l y  of kernel algorithms are applied on these 

, problems. Kernel least mean squarc is the simplest among all. Kernel affine projection 

algorithms give relatively better results. 

7.1 Conclusions 

Results and simulation presented in the ldst section, the following conclusions are 

drawn. 

i. Nonlinear kernel ad tpt~vc filters i.e. KLMS and KAPA are efficiently 

applied on the two nonlinear problems i.e. nonlinear channel, 

equalization and hlu, ht:y-Glass time series prediction. 

ii. In both channel equii1iz;ction and Mackey-Glass prediction problems 

learning curves for niean square error shows that KLMS and KAPA are 

convergent and give less mean square error compared to linear adaptive 

algorithms. KAPA is evcn better than KLMS in terms of MSE curves. 



. . . 
111. 

iv. 

v. 

For different noiw Ic~els  the results are consistent. Tabulated results 

shows that increilsing bit error rate decreases the performance. Still, for 

KLMS mean squ;irc uror is lesser than that of LMS. 

The variatims in step sizes for KLMS show the improvement in 

performance, hence MSE is decreased. 

The comparativt *iudi,,\ 01' linear and kernel adaptive algorithms, in all 

cases, reveals thc tiict that for nonlinear problems kernel algorithm, due 

to their high dimensionality and universal approximation capability, 

give better results. 

7.2 Future Directions 

In future one may go for other kenlcl algorithms like kernel recursive lease square and 

extended kernel least square ilgoritl~n~ ior nonlinear problems. Heuristic computation 

techniques like genetic algorithm, particle swarm optimization, differential evolution, 

ant colony optimization and bee colony optimization etc. can also be studied for 

nonlinear channel equalization and Mackey-Glass time series prediction. 
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