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ABSTRACT

This thesis describes the two applications Mackey-Glass time series prediction and
nonlinear channel equalization using kernel algorithms which are based on reproducing
kernel Hilbert spaces (RKHS), The mathematical theory of reproducing kernel Hilbert
space provides the powerful basis for the nonlinear adaptive filters in high dimensional
feature space such as KLMS and KAPA. After nonlinear transformation from input
space to high dimensional feature space the kernel rick is expioited to express inner
product with kernel evaluation. Due to their high dimensionality, kernel adaptive filters
are universal approximators, Moreover kernel algorithms do not stuck in local minima.

Simulation results are the evidence of the better performance of the said approach.
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Chapter 1

I INTRODUCTION

Channel cqualization is a practice used to improve link quality in unfriendly
environment. In communication systems a transmitted signal when passed through
cornmunication channel is corrupted by the channel impairments. The basic dea of
equalization is to reverse the distortion incurred by the communication channel. In the
other way round, an inverse modebof the channel is constructed so that channel effects
could be nullified [1]. Historically, in digital communication systems, channels
equalization has been studied using fimear FIR models [2]. But in real worid
commmmunication, channels are highly nonlinear due to channel impairments like
multipath fading etc, These kind of channels are out of the scope of linear filters [3]
Therefore some nonlinear models were required to cope with the nonlinearities of the
system.

Most of the recurrently encoﬁﬁtered data in real world has chaos in nature and thus
constitutes chaotic time series. Mackey-Glass time series is frequently used prominent
chaotic time series. Mackey-Glass time series is chaotic time series to model the
nonlinear systems. Mackey-Glass time series is generated by ordinary differential
equations [4]. This series become a benchmark to test the nonlinear modelin g capability

of many algorithms.



Linear adaptive filters are widely used for linear channel equalization and linear system
identification but LMS results are not good while dealing with nonlinear data. Kermnel
adaptive filters are adopted with Reproducing kernel Hilbert spaces. In kernel adaptive
filters the inputs are transformed ;o high dimensional feature space with the help of

some nonlinear mapping ®. Then successive linear operation are applied on this

transformed data.

1.1 Problem statement

Nonlinear channel equalization and time series forecasting are hot fopics of the
research in this modern era. Many physical channels exhibit nonlinear characteristics
[5]. To equalize the channel corrupted by noise sources especially when the channel is
nonlinear is a challenging task. Nonlinear Channel equalization and time series
prediction of Mackey-Glass Time-series using kemel methods, the kernel least mean
square(KLMS) and the kernel Affine projection Algorithm{(KAPA), that can provide
excellent results at minimal cost is a challenging assignment that has to be addressed

seriously. This will promises optimal results that can guarantee efficiency and accuracy.

1.2 Proposed work

Kernet adaptive filters are adopted with reproducing kernel Hilbert spaces. The
mputs are transformed to high dimensional feature space with the help of some
nonlinear mapping . Then successive linear operation are applied on this transformed
data [6]. In this work successful application of kernel methods (KLMS and KAPA) are

studied on nonlinear channel equalization and Mackey-Glass time series prediction,

-



Nonlinear modeling capability and universal approximations are some exclusive and
atrractive features of kernel based algorithms, These important features lead their
importance in nonlinear problems [6]. In this work the Kernel algorithms are applied to
nonlinear problems. The aim is to construct a nonlinear filter with the ability to map the
nonlinearity of the system accurately. The iterative nature of adaptive filter is supposed
to follow this iterative mechanism:
fi = fioy+ Gain{i)e(i)

where f; s current value of updating function while fi; shows its values at previous
iteration. Reproducing kernel Hilbert space, a high dimensional space, is used to
achieve this objective. Moreover, this feature space has linear structure. In this work I |
will use kernel least mean square (KLMS) and kernel affine projection Algorithms

(KAPA) to equalize the nonlinear channe! and to predict Mackey-Glass Time series.

1.3 Thesis organization

In this introductory chapter, background of the problems is stated. Since both the
problems are nonlinear so the need for aigorithm with nonlinear modeling capability is
stressed. After presenting brief introduction in chapter 1, Chapter 2 15 dedicated to
present basics of adaptive filters, its importance and explanation with block diagram is
shown, Then nonlinearity is defined relative to the linearity condition. The two
properties of a linear systems are discussed. Nonlinear systems are mathematically
represented by nonlinear systemn of equation like nonlinear recurrent relationships and
nonlinear differential equations. After that chapter 3explains reproducing kernel Hilbert
spaces. Starting trom inner product spaces, its definition and properties and then
gradually reaching to RKHS, Inner product space has fo satisfy three properties the

symmetry, the bi-linearity and positive definite norm. An inner product space is called



Hilbert space when it is complete and a Hilbert space with kernel satisfying reproducing
property is called reproducing kemel Hilbert space. Chapter 4 explamns kernel
algorithms in detail. This chapter is the heart of the thesis. Least mean square and affine
projection algorithms are derived and then kernel least mean square and kemel affine
projection are derived with mathematical details. All of the algorithms are summanzed
in algorithm tables.

Chapter § is there to elaborate in details the applications; the nonlinear channel
equalization and Mackey-Glass time series. Channel equalization, its importance and
types are discussed, Then nonlinear channe! equalization with block diagram is given.
The second application is Mackey-Glass time series. Its equation and the way how it is
generated then brief introduction to its parameters are given. Chapter 6 is dedicated to
the simulation and results of my work. Applications are simulated in Matlab r2012a.
The results are shown in terms of mean square error. The effects of the change in step
size pararpeters and dif{erem.zzoise levels to get optimum solution is also tabulated,
subsequently. Finally, chapter 7 conciudes the thesis with numbered conclusion
remarks. Scope of the work is written at the end for interested scholars to dig out the

world of kernel filters, References are given at the end of thesis for the cited literature.

-

1.4 Review of the literature

In communication systems inverse modeling is an important part of the receiving
systems. Channel equalization is hot topic in modemn research. Many well-known
algorithms are applied on this problem. In past, linear adaptive algorithms were used
for equalizing channel impairments. LMS is the widely used algorithm used for channel
equalization [2]. The reason of its wide spread use is its simplicity and least complexity.
This is very simple mechanism but is confined to linear domain. It does not help when

4



the relation between input and output is highly nonlinear. Nevertheless, 1t is famous
that the LMS can only reduce the error estimate to some degree [7]. While Recursive
Least square (RLS), On the other hand, converges considerably quicker than the LMS
algorithm. The tradeoff is between numerical instability and computational complexity
[8]. Number of affine projection based adaptive filter algorithms like standard version
of affine projection algorithm and regularized affine projection algorithm were used.
Using affine projection, a step size parameter is carefully chosen tc get better
convergence and MSE. During the adaptation process the optimal selection of the step
size parameter, least steady state Z\T%'SE and guick convergence can be obtained. These
algorithms include Variable Step Size versions of affine projection and normalized
LMS {9].

In solving filtering and prediction problems it is well known to apply linear
adaptive algorithms like LMS, KLMS, APA and RLS ¢tc. [8]. Lately, as an extension”
of the linear counterparts, kemnel adaptive filters have been proposed that adaptively
learn the non-linear systems. Kernel adaptive filters are derived by applying the kernel
method to linear adaptive filters, and several algorithmg were proposed, i.e. KLMS,

KRLS and KAPA etc. [10].



Chapter 2

2 ADAPTIVE FILTERS

2.1 Linear adaptive filters

-

Adaptive Filter theory consist of three main parts: the linear filter, weight update
mechanism and the cost function which is the mean square error, normally. Linear
adaptive filters build a linear combination of input and weights of the system. Linear
filters learn the adaptation sequentially. By adaptive wa mean that the system s self-
destgning in which the adaptive filter depends on a recursive algorithm for its operation.
Adaptive filters have incorporated weight update mechanism that allows these filters to
adjust their free parameters repeatedly In response to the changes In the surrounding
environment [7]. In all this process the learning process is online. Their leaming
mechanism is very simple. That is the reason adaptive filters are widely used in system
identification, in adaptive noise cancellation, In communication receivers as adaptive
equalizers, and in radar and sonag as adaptive beam forming etc. This is very simpie
mechanism but is confined to linear domain only. It does not help when the relation
between desired response and input is highly nonlinear {61,

Typical adaptive filters comprises of two core portions; one is fransversal filter

and the other is adaptive weight control mechanism as shown in Figure 1. Transversal



filter is linear FIR filter which conyolves input with the weights of the filter. The other
part is responsible for adaptive learning depending on the error calculations. This

adaptive mechanism 1 the heart of algorithms.

b
/
“““) / i'{{}
- Transversal fiter wi) b e
/ ]
//
{
f
I
|
i Adaptive weight-

control mechanism

din

Figure [ Linear.Adaptive Filter; A block diagram

2.2 What is nonlinearity?

“It is the property of chaotic system which cannot be decomposed into the parts and
reassemnbied into the same thing, and do not change in proportion of the change in mput™
[11]. The relation between input and output of the system is not linear rather input
output relationship is curved. Or the input output relation which does not satisfy

properties of a linear system 1.e. superposition principle.

2.2.1 Properties of a linear system

The input output relationship f (J that satisfy following properties is called linear
system,
L. Addition
fx+yi=f(x}+ f(¥)

7



2. Scalar multiplication

flax) = af(x)
These two conditions can be combined to form superposition principle.

The system which does not satisfy superposition property is simply nonfinear system

[121].

2.3 Modeling nonlinear systems

Nonlinearity lead to randomness and unpredictable nature termed as chaos, Nonlinear
events must be modeled with the system capable of nonlinear approximations {13},
Most of the real world systems exhibit nonlinear behavior. Nonlinear systems are
characterized by nonlinear cquations. Nonlinear equations include Nosnlinear Algebraic
equations, nonlinear recurrent relationships and nonlinear differential equations.
Discrete nonlinear systems are represented by nonlinear recursent relationships. This
kind of relationship is used in sequences or frain of samples related by nonlinear
functions of previous terms. In nonlinear channel equalization and system identification
problems the nonlinearity is modeled by nonlinear recurtent relationships {14]. The
famous Mackey-Glass time series is generated by using nonlinear ordinary differential

equations [15].

2.4 Nonlinear Adaptive Filters

Nonhnear filtering can be accomplished in so many ways. But here nonlinear
filtering 1n Reproducing Kernel Hilbert Space is discussed. The theme is to transform
the input data into high dimensioggl feature space then adaptive filtering is performed

on this transformed data in feature space. This high dimensional space is associated to



input space by some nontinear function. Theory of Reproducing Kernel Hilbert Space
{RKHS} is used to transformt input into high dimensional feature space by some
nonlinear transformation function. After transformation three basic parts of linear
adaptive filtering i.e. linear filter, weight update mechanism and the cost function, can

be exploited. While finding -

y N
wLir Universal function Vi
+ approximator }’ »
[ S // e i 1
- Adaptive weight- e (i)
control mechanism
A 7
d iy

Figure 2: Nonlinear Filter structure

the output of the system, instead of taking inner product in feature space we find kernel
evaluation using the vectors of input fow dimensional space. This is called Kernel trick.
Kernel trick enable us to compute output without finding inner product. Rather kernel
evaluation is used in input space. Kernel evaluation in input space is equivalent to inner

product in feature space.
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Chapter 3

3 REPRODUCING KERNEL HILBERT SPACES
(RKHS)

Reproducing kernel Hilbert space is high dimensional feature space. This high
dimensional space has linear structure to be exploited in modeling nonlinear filters in |
feature space. Using RKHS approach, nonlinear filters are developed in the linear
space, Before going into details of Reproducing Hilbert Space it seems better to revise

theory of Inner Product Space.

3.1 Inner product space

-

“In Hinear algebra, an inner product space is a vector space with the addition of an inner
product. The inner product is a generalization of the ‘dot product’ regularly used In
vector algebra™ [16]. As inner product s also termed as normed vector space because

a norm is associated with the inner product, naturally. [17]

3.1.1 Elementary properties of an inner product space
Let we have two vector v and w. To be in Inner product space they must satisfy the

properties given betlow:

10



b. Symmetry
CUV>SEPU>
2. Bi-lincarity
o agutpywom gl U w4l UW >
3. Posiiive Definitoness:

< u,u >2 0 Witheqgualityifandonlyifu=20

“A complete inner product space is called Hilbert space. Historically, inner product
spaces are sometimes referred to as pre-Hifbert spaces™ [18]. Completeness is defined
by: “If every Cauchy sequence of vector convergence to a limit in H then inner product
space H is complete™ [6]. A special Hilbert space with a kernel is Reproducing Kernel
Hilbert space {RKHS)Y

Let a vector space H is spanned by real valued kernel generated functions of u
¥ (u, -). Agsume % () and g (-} are two functions chosen from that space H that are.

correspondingly denoted by.

h=Siair{c,.)

and

g7 dj= b (<)

where the a; , b; belongs to U for all i and j and are called expansion coefficients. The

inner product of the functions h and g
= ¥ ~
<h, g>= Lo Zie ik(c, €5) b

satisfies the properties of Symmetry, Scaling and distributive property and finally the -
squared norm or positive definiteness. For these evidences, the bilinear form < &, g >

is definitely an mner product.

i1



3.2 Reproducing property

To be a Reproducing Kernel Hilbert space Kernel Hilbert space must hold
reproducing property. Let g() is real valued function of w ie. g{.) = x{u,.)

Taking inner product with another real valued function 4, we get

t
< h,g>=<hxk{u,)>= Zas k{c,u)

{2}

This is recognized as reproducing property. The kernel x(ut, 1) is the functien of
input vectors while input vector befpngs to U, Subsequent two conditions to be satisfied

for a kernel to be a reproducing kernel x(u, u')of vector space H.

I. Forevery input vector o belongs to U, kernel must be in feature space H.

2. Reproducing property must be satisfied by the kernel x(u, ¢')

Mercer Kemel also hold these conditions, therefore mercer kernel is also called’
reproducing kernel. The space spanned by mercer kerel is called reproducing kernel
space H. If the reproducing kernel space H is complete, it is called reproducing kernel

Hilbert space (RKHS),

3.3 Mercer Theorem

-

Mercer theorem states that a continuous, symmetric, non-negative definite
reproducing kernel x{u, '), the functions of the input vector u and u’, can be extended

as follow

12



k(u,u'} = Z A; @i(we ()
=1

where A; and @; are Eigen values and corresponding Eigen functions cotrespondingly.
A nonlinear mapping ¢ from input space U to high dimensional feature space can be
shown as follow

@ = [0 W0, (w505 (w)]

In vector form

)T p) = k) 31

This equation is also called kernel trick and is the essence of kemel methods.

Calculating inner product in high dimensional space is cumbersome task due fo high

P()

Figure 3: Nonlinear mapping: @: U>F

dimensionality of the data. So, Instead of finding inner product in high dimensional
space b equivalent kernel evaluation is used. Kernel evaluation enable us to do
calculations in relatively low dimensional input space U. Hence computational

-

complexity is reduced remarkably,

13



The well-known commonly used continuous, symmetric, positive — definite kernels

from input space U to high dimensional space F are

1. (aussian Kernel -

k(u,u’) = exp(—al| u—u'{|)

And the polynomial kernel

)(u,u) = (uu' + 1)

- 3.4 Kernel Adaptive Filters

oy

Kernel adaptive filtering is a filtering technigue used to solve noniinear
problems. Linear adaptive filters in rkhs is termed as kemnel adaptive filters. Modeling

nonlinear data is done with ease ufing kernel adaptive filters.
The summery of the scheme is given bellow:

Transformation:  Using reproducing kernel input vector is transformed into high
dimensional feature space. In such a way that kemel evaluation can be efficiently used
to find inner product in high dimensional space.

Proper linear operations: Transformed data is subjected to some linear operations.

if the algorithm is formulated in terms of inner product {on in terms of kernel
evaluation) computation in high dimensienal feature space in not necessary. [6] Rather

computations are carried out in input space using “kernel trick”, Reproducing Kernel

-~
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Hilbert Space (RKHS) provides convexity, linearity and universal approximation

capability as is the major requirement in modeling nonhinear filter.

Here is an example o show why transformation to high dimensional space is
helpful in leaming. Let we have two dimensional input u = [u; , wz]" and let the

nonlinear mapping be

£y, uy) = aqug + Gouy + agtty® + aquy?

where a; (for i = 1,2,3,4) are some constants. £ (i, t3) 15 nonlinear combination of
u, and 1. Clearly a linear combiner trying to model the function f(uy, up) by linear
combinations of u; and uy can’t model it accurately because of the square terms present

in the function f (1, ¥,). On the other hand by using kemne! method the fransformation

of the input 1s as follow
@
(atq, Up) = (X, Xp, X3, X4, X5, Xg) == (1» 1‘12;\/-2‘111“2;1122» ﬁui»\/ﬁuz)

Using nonlinear transformation function ¢ two dimensional input u = [uy, 4y}
is transformed to nonlinear data. Dimensions of this transformed input is clearly greater
than that of untransformed input. Moreover the relation between input and transformed
input is nonlinear (due to square terms). At this stage, it is easy to formulate linear

combination of the high dimensional transformed input,

. dy X5 OaXg
f{xl,xz,x:;,X4,xs,x6) = 0. Xy + Xy +0.X3 “+ [27°% & Rl S

vZ V2
It is obvious that mapping into feature space has made the job easy. Voltera and
Weiner series can be scen as the special cases of kernel methodology [19]. The

complexity of these series is no more dependent on the order of nonlinearity and the



input dimensionatity when Voltera and Weiner series is formulated as linear regression

problem in Reproducing Kernel Hilbert Space.

Based on these evidences the goal is modeling the linear adaptive filters i
Reproducing Kernel Hilbert Space for optimizing in least square sense.  As classic
adaptive filters are formulated in terms of inner products we get nonhinear adaptive
filters in feature space in such a way that kernel evaluation in input space is equivalent

—

to inner product in feature space. Hence achieving universal approximation and

avoiding algorithm to stick in local minima.

Linear adaptive filters are special case of kemnel adaptive filters when these
filters are expressed in feature space. So kernel adaptive filters can be termed as
generalization of the linear adaptive filters. The weights and hence memory of kernel
adaptive filters shows growing structure. Kemel adaptive filters form growing radial
basis function network. By this way they leamn the network topology and hence
adaptively adjust its free parameters. Learning is good combination of previous data
and error correction. Memory based learning causes an mcrease i1 compulation tme.
To avoid this there is need to choose some informative data samples instead of all
training data, Dealing with largé and redundant data set kernel algorithms reduce
traming time and result in a relatively squeezed network with equivalent accuracy.
Novelty Uniterion s widely used procedure used o select informative data samples
among large data set. [6] In kernel adaptive filters the Hnear structure of underlying

reproducing Hilbert Space, where the algorithm exists, is exploited,
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3.5 Bottleneck

There are few lmitations in kernel adaptive filters. First, regularization is~
required. Selection of kernel function is another big issue to deal with carefully. The
recursive mechanism in kerne! adaptive filters has embedded structure with growing
memory that 1s why kersel operation is memory intensive operation. So the need of
reducing the growing network size of kemel adaptive filters 1s handled such that

performance of the filter is unchanged.
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Chapter 4

4 KERNEL ALGORITHMS

in solving filtening and prediction problems it is well known to apply linear
adaptive algorithms like LMS, KLMS, APA and RLS etc. [8]. Lately, as an extension
of the linear counterparts, kernel_gdaptive filters have been proposed that adaptively
learn the non-linear systems, Kernel adaptive filters are derived by applying the kernel
method to hnear adaptive filters, and several algorithms were proposed, i.e. KLMS,
KRLS and KAPA etc. [10]. This chapter s dedicated to the study of two Kernel
Algorithms, the Kernel Least Mean Square (KLMS) Algorithm and Kernel Affine
Projection Algorithm {KAPA). The simplest algorithm among the family of kemcl*
algorithms Is Kernel Least Mean Square (KLMS) Algonthm. Following the same
methodology explained m chapter 2 (Reproducing Kerngl Hilbert Spaces) the least
mean square {L.MS} aigorithm is transformed directly into high dimensional feature
space (RKIS). Over-all procedure for linear LMS is followed to derive kernel LMS.
Inner product is found by kernel evaluation using reproducing property of RKHS.

Caleulating inner product in featt¥e space by kernel evaluation of the input space is

indeed the key benefit of RKHS appreach,
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4.1 Least Mean Square Algorithm (LMS)

Inn linear LMS linear FIR model is assumed for filtering. That 1s, the relation
between input u({} and desired response d{({} is linear. With the assumption that input
vector (i) and desired response d (i} are known LMS follow these steps.

To initialize the algorithm, if prior knowledge of tap weight vector is known use it.

Otherwise agsume if to be zero Le.

w(0) = 0

Compute

e(i) = d(i)~- w(i~1) u(i)

w{i) = w{i—1)+ pe(Huli)
where e{i) is called error, u is Tep size parameter, chosen precisely, and w(i) is
estimate of weight update vector at i time. To estimate the tap weights the algorithm is

optimized in least square sense. The cost function is mean of the squared error fe.

N

JW) =) el

f=1 .

N
= > @) - whu®)?

= Zii(d( 0?2 - whu(®) u(@w — 2d(H w u@))

Standard LMS can be derived by taking gradient of the cost function /(w) with respect

10 tap weight vector w, s

Tw] = ZN“ (0 + 2w’ u(D)u()" —2d(D)u@®)

19



= = 29N u() [d(D) — whu()] (ase(iy = d({) - wu()

= wzz;u(z) e(i)

at lime ¢
= - 2uli) e{i)
Now from method of steepest descent
w(i)=w(i -1)-;;“%}
so by putting the value of cost function gradient, we get
wii )= w(i-1)-2p (-2 u(d e(®)
Hence, we obtain LMS algorithm as bellow
wli)=wi{i-IY+ueliYali)
Summary of LMS aigorithm is given bellow. Weight vector is initialized as zero,

usuatly.

Algorithm 1. Least Mean Square Alg®rithm

Initakization:

w{0) =G . choose n

Computation:

While { u (i) . d(i) } are available do
ey =dHy-wi{i-Din{d)

wiidz=w{i-Iy+ueyu{1)

The simplicity of the LMS algorithm is evident from Algorithm 1 [6].

20



4.2 Kernel Least Mean Square Algorithm (KLMS)

It is well-known that linear filtering model is used is LMS. If the mapping
between fnput u and desired response d is highly nonlinear then this kind of situation 15
out of the scope of standard LMS i.e. reduced performance is observed for LMS. To
cope with the nonlinearity of the {gput data another useful algorithm of the same kind
is formulated called kernel LMS, Kernel LMS is based on Reproducing Kernel Hilbert
Space {RKHS) approach. This is in turn LMS in RKHS. This algorithm is clever
enough to map the nonlinearity, efficiently. To start with, the input u(y} is transformed
into high dimensional feature space F as g(u(i)) and w{i) to ufi}, the weight vector in

feature space F. Now following the similar stochastic gradient procedure as followed for LMS

the kernel LMS can also be derived casiy.
For simplicity @{ u(i}} wilt be treated as@(i).
initially () =0

and e(N=d{)-&'(i~1) ¢ {
weigh update mechanism: (i o (( — 1) +pe(i) @ ()
High order of similarity can be observed in the two algorithms. @’ ¢ (i) is much better
model compared with wT u (i) due to high dimensionality of former. Yet, ¢ is not
known directly so carrying out the computation in another way.
w(i) =w(i-1)+uede(i)

Repeatedly putting the values of weight vector, we get

w(i) =w(i~1)+pe@de(i)

={w(i-2) +pe(i ~De(i—1) ]+ neld e (i)

=o(i-2)+rplei-De(i-1) ~eMe(i)]

23



=@ {i-3)+ule(-2yp (i-2) +eli-De{i-1) +ee@(i)} *

o(i)=p T, e(NEU)  (0(0)is assumed to be zero; initial condition )

This alternative approach lead to the conclusion that transformed w{ { ) can be found
by present and previous i-step trgnsformed inputs weighted muitiplied by error and
scaled by step size parameter . Now, for new input u? the output of the system is found
by taking mner product of the transformed version if this new input u” and the

ransformed weight vector,

i

MOICORY I RIOPIOL FICS

j=1
O eW) = 1) () [pG) o))
T=1

Inner product of transformed input and the transformed weight serve as the output of
the system. Now by using kernel trick the output of the system (or equivalently the
inner product) can easily be computed in the input space.

ONICSERICATS

Using this equation, output of the system can be found as

Wi @) = ;zZeo') k(')
=1

-

It is surprising to see that output of the filter is independent of the weight rather output
is sum of the previous error multiplied with kermnel evaluation on previously received

data, This is indeed LMS in RKHS. Output is calculated by kerne! evaluation. This new
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algorithm is called kernel least mean square (KLMS) algorithm. Generalization of the
said algorithm is as follow:

If f; is nonlinear mapping between input and output it time / we will get the following~
learning rule:

frer =1 i (D) k(u(),.)

Output: feer{u @) = u B3 e () x(u(), u(®))
Error; e(i) = d(i) fi‘l(u(i))
Weight update: fi = fioq +pe{Dx(u(),.)

In kernel least mean square algorithm new kernel unit is assigned to the upcoming
training data, The input u{i) is considered as the center and a; = p e{{) as expansion
coefficients. During training period these centers and expansion coefficients are stored
in the memory called dictionary. That is the reason kernel operation is memory

intensive operation. Kernel least mean square algotithm is summarized in Algorithm 2

16]

23



Algorithm 2: Kernel least mean square algorithm

[nitialization:

Chose step size parameter y and kernel type «

Computation:

While { u(i) . d(i) } available do
% compute the output
o twiip=u T e() x(u(), u(i)
% compute the error
o) = d(i) - 1 (@)

%% store the new center

¢ = {cli-1), uiy}

% compute and store the coefficients

a; = pe(l)

end while

Practically, in feature space, the access to transformed weights and the transformed
mput 1s not available directly. They are known implicitly, therefore updating process is

done through expansion coefficients. The relation between weights o and expansion

—-

coefficients a; is given bellow:

w(i} = j_g a;(é')#?(/)
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4.3 Difficulties

There are few things to be Speciﬁ&i yet. First is kernel selection, that is, if 13 a serious
concern to choose suitable kernel capable of modeling the problem satisfactorily. The
other is to choose suitable step size parameter; y and the last is to deal with the
ncreasing network size. The network size of the kernel algorithm keep on increasing
with ierations. Therefore kernel methods are memory exhaustive methods, So suitable
measures 10 be taken to reduce the network size while maintaining good performance.*
It is recognized that the Gaussian kernel has universal approximation capability in
RKHS. If any specific kernel 18 not given in the problem then Gaussian kernel 15 chosen
by default {6]. The remarkable features of Gaussian kernel is that it is stable numernically
and do not stuck in local minima. For the said reasons Gaussian kernel give very good
results. Gaussian kernel is given by the following equation

w(u, um= exp(—a {lu—ul|)
and the polynomial kernel

k(') = (uu' + 1)

where in Gausstan kemel a is the kemel parameter, The kemel parameter is also termed
as smoothing parameter or kerpel size, While p is order of the polynomial function in_

polynomial kemel, To cope with the increasing network size of kernel function a

method called 'Novelty Criterion’ is proposed.
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4.4 Affine Projection Algorithm (APA)

One of the most capable algorithms for filtering problems is the affine projection (AP}
algorithm. Numerous effective approximations and implementations of AP algorithm
are used in a diverse applications. Applying kernel trick to affine projection algorithm
to derive an algorithm working best in nonlinear domain called kernel affine projection
algorithim (KAPA). APA inherits the simplicity of LMS while decreasing gradient noise
thus increasing LMS performance.
A least square regression data model can be constructed as
e(iy = d(i) — wiu{i)
where d(i) and e{i} are desir.ed response and error respectively, while #{(i) is L x 1
data vector with covariance matrix R, = F [uuT], a positive definite matrix. Ry, =
E {d u] is cross-covariance vector of # and d. The error is minimized in least square
sense, which will give
-
minj(w) = E[d~ w' u]
The optimum solution (Weiner solution) is given by w, = R™'rg, .
To approximate w, several methods are adopted. Exampiles are
1. Gradient Descent method

Estimation of w is found iteratively using the following weight update equation

w(i) =wl{i— 1)+ ulrg, - Ryw{i — 1)] 4.1

while w(0) is some initial guess, assumed zero normally.

2. Newton’s recursion:

26
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This method is used normally to aveid slowness or 16 increase convergence speed.
Weight update of Newton recursion is

w(i) = wi—1) + g Ry + e )7 {ray — Ryw{i—1)] 4.2

while w{0) is some initial guess, assumed zero normally. Division by zero is avoided
by taking a small positive number, the smoothing factor £ And u is step size parameter
to be chosen initially. —

3. Stochastic gradient algorithm
Stochastic gradient aigorithm replace R, and rg, by local data approximation, LMS
and Affine projection algorithms are two famous members of stochastic gradient
algorithm family. There are many methods to get these kind of approximation. itis
assumed that desired response {d(1),d{(2),d(3),...} and input vector u
{u (1), u(2)u(3),.. . Yareknown,
To approximate covariance matrix R, and cross-covariance vector ryg, LMS uses
instantaneous values of B, = u{i)u’ (i) and ¥, = d{{du(i). Putting these values in
steepest descent {equation 4.1) and Newton recursion algorithms (equation 4.2), we get

w(i) = w{i—1) + wu(@) [d@)~ u®)"w(i ~ 1)}
—
and
w(i} = w(i—1) + pu(@) [uT u(@) + ¢ [7d) - u(OTw(i — 1))

On the other hand, affine projection algorithm uges superior approximations. R,, and

T4, are approximated by K most new inputs and observations.

Let U@ =u(~K+1), .4l x

and

d(i) = [dG = K + 1), .0, d()]
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Then

R, = E-U(_i)UT{i) 43 -
K
and
1
P = ZUWAQD) 44

Substituting equation 4.3 and equation 4.4 into weight update of gradient descent and
Newton recursion, we obtain the following results called affine projection algorithm.
wi{i) = w(i—1) + w U [dD) - VO w(i - D)
and
w(i) = w(i—1) + pU@OUOTUE + e I"Hd@) - UOTw(i - 1))
where d is desired vector and U is input data matrix.

The fast two equations are called APA-1 and APA-2 respectively.

4.5 Kernel Affine projection Algorithm (KAPA)

Adopting the similar approach as followed to derive kemel LMS, the kernel affine
projection algorithm is derived next. Transformed input vector is represented
by @(u(})). For the sack of simPlicity e@{uli)) will be used as (i), further. It is
assumed  that desired  vector {d(1),d(2),d(3),....} and input data vector
{@ (1), (2),¢(3).... }areknown
The error 1s minimized in least square sense, which will give

min j(@) = E [d- o p(w)]
To estimate weight vector through stochastic gradient descent method {equation 4.1),
we have
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w(i) = @(i~1) + u@d)[d) - ¢{) (i - 1] 4.5)

and by stochastic Newton method (equation 4.2), we have

o) = w(i—1) + p @@ [SOT QW + e N7Hd(D) - PO (i~ 1) 4.6}

where ®{i) = {@{i ~ K + 1), ..., @{i}]. The last two equations are the kernel versions

of affine projection and known as KAPA-1 and KAPA-2 respectively.

4.5.1 KAPA-1 (Simpie KAPA)

The simplest algorithm among the family of kernel affine algorithins is KAPA-~1 and
therefore 1t is celled simpie-iiAP&,_}Veight vector in high dimensional feature space is
not known explicitly. The same procedure is repeated here to derive weight vector in
terms of linear combination of transformed input vector and expansion coefficients,
wl(0) = 0

w(l) = pd(1) ¢(1) = al (1) ¢(1) [Asa;=pd(1)]

w(2) = al (2} (1) + a2 (2) ¢(2)

w@) = al Gye(l) + a2(3)¢(2) + a3 (D ¢(3)

i1
w(i-1 =) -1 ()
J=1 4.7)
MOEDRACLN
7=1

Practically the access to the transformed weights is not feasibie that is why updating of

weight vector is indirectly accomplished by expansion coefficients. Expansion
coefficienss are defined by -
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a (i)

i1
p(d(i}—iﬁ}(iw 1) Ki,j’)f k=i

! 4.8)

[
]

i

aﬂz’-1}+p(d(k)»~ a}-(iwi)[(k’j>; i—-K+1<hk<i~1

s

e

a, (i1}, 1<k<i~K+1

Filter output is given by inner product of transformed input data matrix and transformed=~

weight vector

il
(1w (i = 1) = (#7) {Y @~ 1) e()
- =
i-1
=|loli-K+1),..,00] za; (-1 el
F=1
=) a; (i~ DPTi— K+ De()
7=1
i1 i-1
Zaj (i ~ i)fpr(wl)fp(i},za; (~1) " D))
f=1 Jul
Now using kernel trick, the output is written as .
=[St @y (= DKimrgrn o s 2vnt 8 (0= DKy o 25z @ (0= iy )
Error is computed by
e(i) = d(i} — P} (i~ 1)
i-1 i1 i-1
e(i) = d(i)— a; (i — 1)*{1'“--5({»1,1': oy f B (i — 1)K£—~1,jrz a; (I ~ 1)xy;
j=1 =1 J=i

il

Putting equation 4.7 and {1} = [¢(i — K + 1), ..., @{D)] in weight update equation

of KAPA- {equation 4.5}, we get
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o)) = w(i-1) + u @) [d{i) - )T @i - 1)]

w() = wi-1) + pe(H el

1L

= > qi-1D e +ulel-K+1), .., 01O el®

i=1
{1 K

=Y a =DM+ Y ne@el=j+1
j=1 j=1

Where kernel evaluation notation k; ; = k{u{i), u(j)} is used for simplicity.
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Algorithm 3 Kernel Affine Projection Algorithm

Iutrahraneen
Chozs stap slze perarester p

1

o (i = ua

o

Computation: -
while Suvi}, difd} avadable do

Ypoalivoaiz answ unt
f{= 1= g
forkemie{i:~K+1it0ido
% evzluate output of the current network
Vil = E',,.l @, (- Lisg

Yo compuate erroTs

L)
ra
e

ELiin. m iR} -
%2 update the wun(l, K} most recent wnits
a i = (0= 1Y TEEY
andd for
if i K then
Yo neep the Temammng
fork=lwwi-Kdo
e (Y= ey (F — 1)
end for

end if | and while




4.5.2 KAPA-2 (Normalized KAPA)

In the same manner, using equation 4.3-4.4 and 4.7 in equation 4.1, the Newton
*  Recursion for kerne] algorithm is summarized as bellow,
{=1
w(i—1)= ) ai -1l

)
e{i} =D ~ e wl(i — 1)
and

wl{iy = wli — 13+ p@U 60 + eI} e(d)

where G(i) = @Y () is named Gram matrix.

The rest of the algorithm is similar to that of Algorithm 3.
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Chapter 5

5 APPLICATIONS

The two kernel algorithms explained earlier are applied to two problems; one from class
of inverse modeling and other from prediction. What is nonlinear channel equalization
and what s its importance?  What 1s Mackey-Glass time series and what is its

importance and usage? These are the two question to be answered next.

5.1 Nonlinear Channel Equalization

Equalization is a practice used to improve link quality in unfriendly environment. The
basic idea of equalization is to reverse the distortion incwrred by the communication
channel. In typical communication systern information signal is transmitted over
transmission channel. Transmitted signal while passing through transmission channel

get corrupted by the channel distortions.
-——
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Frgure 4: A typical communication system

To equalize the channel impairments and the aim to get error free communication
equalizer are used. Most of the real world communication channels are nonlinear e.g.
wireless communication channels and satellite communication channels etc. Nonlinear
channel is modeled as cascade conmection of linear filter and subsequent nonlinearity,

as depicted in1 Figure 5.

i

b X (i) r{i)
o-f H{z) »- Nonlinearity s o 2

Figure 3. Nonlinear channel model

Hezj is transfer function of linear finite impulse response (FIR) filter. This FIR filter is
- modeled as

x({}=s{)+05s(i— 1)
It is very clear from the above equation that the current signal s({) and a delayed version
of the signal scaled by 0.5 are added together to get output, The output is then needed
to give as an input to nonlinearity defined by the following equation.

r(i} = x{i) ~ 0.9 x*(i) + n(i)
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The square term in the above nonlinear equation is responsible for nonlinearity. Where
n(i) is white Gaussian noise which is added to the received signal. Hence nonlinear

e

system is combinely represented by the following set of equations.

x() = s+ 05s(i— 1)
(50

(i) = x(I) — 0.9 x2() + n{i)

Linear channel impairments, that result in transmission quality degradation, like
attenuation, spreading and phase jitter and nonlinear chamnel mpairments like
interference, shadowing, harmonics, additive noise, Inter Symbol Interference (ISI),
produced by multipath ia time dispersive channels, are compensated with equalizers.

Channel impairments causes uncertainty in the received data samples. Receiver
receives a distorted signal. The samples of the received signal take any value instead of
taking discreet levels that were %posed to receive. Receiver is left with no option
except 1o estimate the signals originally transmitted. Channel fransfer function is used
to model the channel characteristics in which certain signal components are attenuated
and delayed uniquely, Coefficients of the channel are unknown and #ime-varying
generally. Statistical changes in the channel causes channel coefficients to varye
accordingly.  The job of the equalizer is 10 track the time-varying channel
characteristics freratively then try to reverse its effects and hence called adapiive
equalizer. [20] A typical block representation of adaptive equalizer is depicted in the
Error! Reference source not found.. In which u{n) is input to the system of which
transfer function 18 unknown. In felecommunication we may refer this system as
channel through which a signal will be transmitted. Signal distortions are due to this
channel and equalizer 1s there to reverse the changes incurred by this channel, Quiput
of the channel x(n)} is treated as input 1o the adaptive equalizer. Qutput of the equalizer
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is then subtracted from desired response d{n} resulting in the error. This error d(n)
and output of the channel x{n) is used to adaptively adjust transfer function of
adjustable filter in least square sense. This process is carried out iteratively until mean

square error (MSE) is minimized to its least steady state position.
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Figure 6: Bk}ck diagram of an adaptive equalizer

Adaptive equalizations are of two types, basically: one is linear and the other is
nonlinear equalization. Linear equalizer is simple implemented without feedback path,
The nonlinear equalizer, on the other hand, has some feedback mechanism. These are
extensively used in wireless communication channels where linear equalizers are
msufficient to cope with the nonlinearities introduced by the channel {21} Equalizer is
trained by feeding training sequence to the equalize input. Data transmission in OFDM '
systems is accomplished by sending data chunks or data blocks one after other, ’To‘

equalize such a channels training sequence is inserted between successive data blocks.

The purpose of this training sequence is to inform the decoder fo regulate its parameters

{or approaching data blocks [22] 23]
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5.2 Mackey-Glass time series

Most of the recurrently encountered data in real world has chaos in nature and
thus constitutes chaotic time series. Mackey-Glass time series 1s frequently used
prominent chaotic time serics. In 1977 Mackey and Glass model physiological system
using nonlincar ordinary differential equation and hence called Mackey-Gilass time
series. Interesting examples of Mackey-Glass time series are weather data, stock
exchange data. The Mackey-Glass time series is exiensively applied in glucose
metabolism and production of red blood cells [24]. So, Mackey-Gilass time series is
used for performance analysis of many nonlinear aigorithms,. The prediction of chaotic
time series means to predict delayed version of x{(t ). Predicting Mackey-Glass time
series is benchrnark test in the community of time series prediction. This system has nol
input and only one output. The Mackay-Glass equation is time delay differential

equation. This nonlinear time series is expressed as follow

In above equation the par;rizeters ¢, b and n have real values while 7 is real
valued time delay. x(¢) represents the value at time tand x{t — 7 ) represents values
after some delay of 1. It represent chaotic behavior when v > 17. This equation was
used by Mackey and (lass to model physiological control systems | 15]. Mackey-Glass
equation represents a typical feedback system, The key benefit of its simplicity has fed~
to make it standard model to assess the nonlinear modeling capability of nonlinear

algorithms.
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Chapter 6

6 RESULTS AND SIMULATIONS

.

Application of nonlinear ﬁltering-tf-:chniques known as kernel algorithms is studied on
nonlinear channe} equalization and prediction of short time Mackey-Glass time series.
This thesis 15 confined to the application of the two algorithms, among the family of
kerne! algorithms, kernel LMS and kernel APA. Nonlinear channel is equalized with

KLMS and KAPA and their performance comparison is shown,

6.1 Nonlinear channel equalization

6.1.1 Comparison of LMS and KLMS

e

Due to simplification of LMS it is extensively used for channel equalization but here
KLMS is applied for equalization of nonlincar channel problem. A communication
channel, which is nonlinear in nature, is exhibited as hinear FIR filter with a subsequent
nonlinearity, as shown m Figure 5. This noniinear channel is characterized by equation
(5.1. A signal s(i), where i is from | to N, is transmitted through the nonlinear channel.™
At the receiving end of the channel additive white Gaussian noise (AWGN) corrupts
the signal. The signal thus received is represented as r{f); 1 < { < N. 5{{} is the input
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signal to be transmitted through nonlinear channel, n() is white Gaussian noise. Its
mean is zero and the variance is o2, While r({) is received signal to be given to equalizer
as its input. The job of the equalizer is to track the time-varying channei characteristics

iteratively then try to reverse its effects and hence called adaptive equalizer.

6.1.2 MSE performance

Mean square error is measured for each algorithm and then mean square error for LMS

1.1

s NG

MSE

] 200 400 600 800 1000
No. of Iterations

Figure 7: MISE comparison for LMS and KLMS for channel
equaiization problem

and KLMS is compared. The mechanism stated in Algorithm 2 is followed to
implement KLMS. 1000 data points are used for training the nonlinear filter then 5000
data samples are tested subsequently. Training data points updates the weights of the
filter, Then this updated weight is used for testing data. Again Gaussian kemnel is
selected with kernel parameter 0.07 and p 0.1. For LMS p is 0.009. The results, hence

achieved, are portrayed in the figare 5.1.



Tt is obvious from the above learning curves that KLMS ocutperforms LMS in terms of

Ll

MSE.

6.1.3 BER performance

Another useful comparison is tabulated bellow. This table compares LMS and KEMS
for changed noise levels. All of the results produced in subsequent table is generated™
for 10 Monte Carlo simulations. Kernel parameter is 6.1 while step size for LMS and

KLMS is 0.006 and 0.2 respectively. The results are summarized in the form of “mean

.. istandard deviation”. The comparison is made for three different noise levels,

Table |- Mean evrov comparison for LMS and KLMS for different notse levels in nonfinear
channel equalization problem

-

Algorithm BER(o = 0.2) BER(¢ = 0.5) BER(g = 0.7}

LMSae=0.006) | 0.16687+0.01946 0.18548+0.00937 | 0.20465£0.01 1508

KLMS(p=8.2) | 0.010693x0.0036213 0.07481320.0084 | 0.12073x0.022388

-

Table 1 shows better resuits for KLMS. For each noise level or certain BER mean error

is less for KLMS compared to LMS,
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™ 614 MSE Comparison of KAPA-1 and KAPA-II with the previous

algonithms
Mean square error performance is compared for LMS, affine projection, Kernel LMS,
Kemel APA-1 and Kemel APAE Training data 1s 1000 samples and testing data
contain 5000 samples. The kerne! parameter for Gaussian kernel is 0.1. The s 1s set to
0.1, Training sequence is used to update weights of the filter, This updated weight is

further used for testing data. The mean square error for the test data set is calcuiated

and is plotted against number of iterations.

1 . ,
e LMS
...‘_.-.-AZ)A_I

- 0.8} KLMS H
o KAPA-1
e RAPA-2

MSE

H L E

{} |
& 2000 40006 G000 8660 16000
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Figure B: MSE graphs for LMS, KLMS, APA-1, KAPA-1 and KAPA-2
: cornpared

Results for 50 Monte Carlo simulations are plotted in Figure 8. Mean square error is
calculated from the output and the desired signal. Graph shows that the performance of

Hinear filtering algorithms are comparable i.e. LMS and APA - 1 curves are almost
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overlapping, Similarly KLMS and KAPA-1 are alike but KAPA-2 outperforms all ofw

the above,

6.2 Mackey-Glass Time Series Prediction

Mackey-Glass thne serics 1s a time series, chaotic in nature, and is generated by time
delay nonhinear ordinary differential equation as bellow

b

dx(t) = A
- - b)({r} S 1 X(r .{):_.

where a. b, ¢ and T are real numbers. It is observed that Mackey-Glass time series shows

chaotic behavior when 1 is greater than 16.8 2 17 {25]. It is customary to take a = 0.1,
= 0.1 and T = 30. while using these parameters in above equation 5000 samples of

the time serics data are obtained and are stored in the mat file mg.anat. Samples of zhe*

time serics data are obtained by sampling x (), continuous curve, at the sampling rate

of 6 scconds. The chaotic behavior of Mackey-Glass series, thus formed, is shown in

=~ Figure §.
A hackey (Gass time sere (tauw=)
{ ,\Aﬂ
i
4
BE’E TEJIE@ 12043
: -
Figure & Chaotic behavior of Mackey-Glass Time Series (r=30)

b
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6.2.1 Performance of LMS and KLMS in terms of MSE

The order of the filter i.e. M is 10. It implies that most recent 10 values from the past
input samples are taken to predict the current value, our desired response. Aim is to
compare performance of LMS against KLMS. A portion of 500 data points is taken to
train the filter and other 100 points from the mat file mg.mat for testing purpose.
Additive white Gaussian noise which corrupts the data samples is zero mean and with
the variance o = 0.4. Step size parameter u is 0.2 for LMS. In KLMS case Gaussian
kernel is defamlt choice. For Gaussian kernel, the kemel parameter i.e. ‘a” is taken 1.
Here the step size is also chosen 0.2. Training data is used to update the weights and
then these weights are used to find error on testing data. The mean of the squared error

is our performance measure. MSE is shown against number of iteration in Fig.

0.12

0.1

0.08

0 100 200 300 400 500
Herations
Figure 10: Mean Squuare Error graph for LMS and KIMS

This plot shows that increase in number of iteration reduces the mean square error.

Same behavior is observed for LMS and KLMS. But KLMS outperforms LMS and



steady stute MSE for KLMS is lesser than that of EMS. Tt is worth noting that
cottvergence of the two algorithms are same which shows that cigen-vaiue spread in

reproducing kermel Hilbort space is similar to that of input space,
R
Another comparison botween LMS and KLMS is shown in Table 2. For KLMS the

taking a0 Monte Carlo simulations. Noise power for this simulation is 6.04.

Fabic I+ MSE Performance comparison for Kernel LMS and LMS for different u

Algorithms "i”r'aining MSE Testing MSE

LMS 0.0189040.00063824 | 6.02060620.0011907

CREMS( = 01y | 0.0075952+0.00030297 | 0.608031820.00078386

| KLMS( = 0.2) | 0.0055855£0.0003477 | 0.0055852£0.00075515

KEMS{n = 0.6) | 0.005525920.0011532  0.00661523x0.0618801

Results i the above whble is tabulated in “average | standard deviation”™ manner. It 13
clear fruny the wble tha, KEMS ocutperforms LMS. This is mainly due to nonlinearw

modeling capubility of KLMS (as time series being tested is nonlinear).

6.2.2 Pertformance of KAPA-T and KAPA-II

Kemel wifine pragection algorithm s applied to Mackey-Glass tme series prediction,
Urder ul v siier s chesen 7010 naplies that 7 most recent values from the past input
samples are tuken to estimeste the current sample, or the desired response, The aim is to
compare performance of KAPA-T, KAPA-2 with LMS and KLMS. A portion of 508
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data points is used to train the filter and another 100 data samples for testing mean
square error. Training saraples are used to update the weights of the filter and then this
updated weights are used to test mean square error. Additive white Gaussian noise
which corrupts the samples has zero mean and with the variance ¢ = 6.001. Again for
LMS the step size is 0.2. Gaussian kernel is taken as kemel for KLMS. For Gaussian
kernel the kernel parameter is chosen 1, Here the step size is also chosen 0.2, Training
data is used to update the weights and then these weights are used to find error on festing
data. The mean of the squared error is our perfonmance measure, MSE is shown against

number of iteration in Figure 10,

MSE

11 100 200 300 400 500
itgration

Figure 11: MSE comparison for LMS, KIMS, KAPA-1 and KAPA-2(dackey-Glass)
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s sl vonpaed or Jifterent step sives,

Lable 3 MNE pertormance comparisen-for LMS, KLMS, KAPA-] and KAPA-2

v Parameters Test mean square errors
A v | (10246080, 00078585
Wi i w2 E‘g(}.{}{)”;7{)4‘)3-.-t{).(}{)()3it’}i‘)
Kb no- 0L04 K =10 (.0061397x0,00038324
TR S KW U 0.1 | 0.0046028=0.000175%56

cioave mibulsted mthe tona of "average standard deviation”
fane the rosudts that kemel algorithms shows much better results

ol e sicn L counter parts. Moreover, KAPA outperforms KLMS in terms



Chapter 7

7 CONCLUSION AND FUTURE WORK

Nonlinear channel equalization and prediction of Mackey-Glass time series are studied
thoroughly. Two algorithins, kernel least mean square algorithm and kernel affine
projection algorithm, among twe funily of kemel aigorithms are applied on these
problems. Kemel least mean squarc is the simplest among all. Kernel affine projection

algorithms give relatively beiter results.

7.1 Conclusions ,

Results and simulation presented in the last section, the following conclusions are
drawn.

1. Nonlinear kernel adsptive lilters i.e. KLMS and KAPA are efficiently
applied on the itwo nonlinear problems ie. nonlinear channei,
equalization and Muckey-Glass time series prediction.

it.  In both c?zanm\:l equalization and Mackey-Giass prediction problems
learning curves for mean square error shows that KLMS and KAPA are
convergent and give less mean square error compared to linear adaptive

algorithms. KAPA is even better than KLMS in terms of MSE curves.
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iii.  For different noist levels the results are consistent. Tabulated results
shows that increasing bit error rate decreases the performance. Still, for
KLMS mean square error is lesser than that of LMS.

iv.  The variations in step sizes for KIMS show the improvement in
performance, hence MSE is decreased.

v.  The comparative siudics of linear and kernel adaptive algorithms, in all
cases, reveals the act that for nonlinear problems kernel algorithm, due
to their high dimensionality and universal approximation capability,

give befter results.

7.2 Future Directions

In future one may go for other kerael algorithms like kernel recursive lease square and
extended kernel least square algorithm for nonlinear problems. Heuristic computation
techniques like genetic algorithm, particle swarm optimization, differential evolution,
ant colony optimization and bee coleny optimization etc. can also be studied for

nonlinear channel equalization and Muckey-Glass time series prediction.

49



References

{1} A. Khalaf, M, Ashraf, "Improvements in the channe} Fqualizer Performance Using
Modified LMS and BP algdvithm.® L/CST International Journal of Computer Science

fssues, vol. Vol 9, no. Issue 2, March 2612

2] F Tong. B. Benson. Y. Li. R. Kastner, "Channel equalization based on data reuse LMS

algorithemn for shallow water achosic conumunication”,

{31 S Abrar, "Stop-and-Go Alge -ei; ms for Blind Channel Equalization in QAM Data

Cormmuncation system,” COMSATS.HT (CIIT), pp. 3540,

(4] W.C. Mead, R. D Jonesalh, Y. €. Lee, C. W. Barnesa, "Using CNLS-Net to Predict the

Mackey-Glass Chaotic Time Scr.. - " {EEE, pp. 4854584, 1991

[5] H. Samueli, Y. Lee, "Adaptive sutenna arrays and equalization technigues for high bit-

rate garn receivers”.

{6} I Principe, W. Liu, § Haykin, Kernel Adaptive filtering: A comprehensive

introduction, Witey, 2010,
[71 5. Haykin, Adaptive Filtering Theory, Prentice Hali, 2601,

[8] P.Sharma, P. Gupta, P. K. Singh, "Performance Comparison of ZF, LMS and RLS
Algorithms for Linear Adapt. .« Bqualizer " Livance in Electronic and Electric

Engineering, vol. 4, pp. pp. 5¥7-592, 2014,

{91 H.C. Shin. A, H. Sayed, "Variable Step-Size NLMS and Affine Projection
Algorithms," IEEE SIGNAL PROCESSING LETTERS, vol. 11, no. 2, pp. p. 132-135,

2014,

50



[10] F. Albu, D. Coltuc, M. Rotar, . “Mishikawa, "An efficient implementation of the
kernel affine projection algorithm ™ i &h International Symp osium on Image and

Stgnal Pro cessing and Analvsiv 15P4 2013), Trieste, 2013,

[11] D. Atherton, An Introduction i smlinearity in controll system, Ventus Publishing ApS,

2011

{121 W S, Steven , "chapter 5: Lincur Systems,” in The Scientist and Engineer's Guide 10

Digrital Signaf Processing, pp. 87-106,

[13] V. Lakshmicantham, § Leela, A.A. Martynyuk, Stability analysis of nonlinear systems,

New York: Marcell Decker Inc., [939.

{141 F. L. Lewis, S Jagannathan, A Yesildirek, Nueral Network controll of Robot

Manipulator and Nonlinear sy~ London: Taylor and Fransis Ltd, 1999

[15] R. Schwaiger, H. A. Mayer, "Fv taionary and Coevolutionary Approaches to Time

Series Prediction Using Generalized Multi-Layer Percepirons,” IEEE, 1999,

{16} G. Emch, Algebraic methods in staustical mechanics and quantum field theory., New

York: Wiley-Interscience, kit

[171 P K. Jain, K. Ahmad, "5.1 Definitions and basic properties of inner product spaces and
Hilbert spaces,” in Functional analysis {2nd ed }, New Age International, 1995, p. p.

203
{181 N. Young, An introduction to Hithest space, Cambridge University Press, 1988,

[19] B. lkopt, M. O. Franz, B. Sch . "A unifying view of Wiener and Volterra theory and

polynomuial kernel regression " Newral Computation, p. 3097 - 3118, 2006.

51



1201 L. Atapattu, G. M. Arachchip g Zii-Castro, H, Suzuki, D, Jayalath, "Linear Adaptive

Channel Equalization for Multiuser MIMO-CFDM systems," /EEE, 2012,
1211 R. Rappaport, Wirgless Communications Principles and Practice, Prentice Hall, 1996

(221 A. Tchamkerten i, E, Telatar, "Uat the use of training sequence for Channel estimation,”

IEEE transactions of information themry,

{237 ). . Manton, "Optimal Training Sequences and Pilot Tones for OFDM systems,” /£EE,

2001

[24] 8. Bhardwai, S. Srivastava, LR.P Gupta, "Chaotic Time Series Prediction Using

Combination of Hidden Markov Model and Neura! Nets,” IEEE, 2010.

{251 M. F. T. H. William, "Plastic Naiwork for Predicting the Mackey-Glass Time Series,”

TEEE, pp. 941-946, 1992,

[261 P P. Pokharel, W. Liu, 1. C. Fanope, "Kerne! LMS," JEEE, 2008,

%4



