To092Y

Intrusion Detection and Response using
Mobile Agent Technology

Acs. Ne. (FMB8) .’.’..'.fff’

DATA ENTERED

Developed by
Muhammad Ashraf Nadeem

Reg.# 25-CS/MS-01

Supervised by

International Islamic University, Islamabad
(2004)

doe Ne. /rvu.//..—.’.zg b

("\

S

Y
Qﬁ ‘(§ 0o 8-
/ NA L
| - Cé’?‘ﬂpu,}m SeCw\j}y ,

A C r‘fﬁ‘!P bJeA. /)eff,uﬁ; 5},@&) -

gecmi{j Moaknr €

4se. Wo. (Ill)?::..i’ng

International Islamic University,

Islamabad
Dated: 21 February 2004

Final Approval

It 1s certified that we have read the project report, titled “Intrusion Detection and Response using Mobile Agent
Technology” submitted by Muhammad Ashraf Nadeem. It is our judgment that this project is of sufficient
standard to warrant its acceptance by the International Islamic University, Islamabad, for the Degree M.S.

Computer Science.

Committee
External Examiner h 5 ,Jﬁ .
Dr Nazir A. Sangi,
Head, ' <

Department of Computer Science,
AIOU, Islamabad.

Internal Examiner '
Dr. S. Tauseef-ur-Rehman, /

Head, / \ —_—
Department of Telecommunication Engg. Sciences,

UL

Supervisor | .

Dr. Muhammad Sher
Department of Computer Sciences
International Islamic University,
Islamabad.

A dissertation submitted to the
Department of Computer Science,
International Islamic University, Islamabad
as a partial fulfillment of the requirements
for the award of the degree
MS Computer Science

Declaration

1 hereby declare that this software, neither as a whole nor as a part thereof has been
copied out from any source. It 1s further declared that 1 have developed this software
entirely on the basis of personal efforts made under the sincere guidance of my teachers.
No portion of the work presented in this report has been submitted in support of any

application for any other degree or qualification of this or any other university or institute

of learning,

Muhammad Ashraf Nadeem

Dedication

Dedicated to The Holy Prophet Muhammad (Allah’s grace and peace be upon him)
lord of the world and the thereafter. 1 offer my humblest thanks to him, who made us
aware of our creator and guided us to the track, which leads to the success, who is a

symbol of love and affection for all the creatures of Allah.

i

Acknowledgements

First of all I pay my humble thanks to Almighty Allah who knows all the things hidden
or evident in this universe, even the things which pass through our hearts, who created

me and gave me the courage to complete this project. It is said in the Holly Quran:

“Does man think that he will be left uncontrolled, (without purpose)? Was he not once
a drop of ejected semen? Then he became a clot, so He created and fashioned him and
made him into two sexes, male and female. Is He who does this, not able to bring the

dead to life?” [Surah alQiyama: 36-40]

Without His help and blessings, I was unable to complete the project.

I also offer my humblest thanks to The Holy Prophet Muhammad (Allah’s grace and
peace be upon him), who made us aware of our creator and guided us to the track, which

leads to the success, who is a symbol of love and affection for all the creatures of Allah.

I feel highly privileged in taking opportunity to express my profound gratitude and sense
of devotion to my supervisor Dr. Muhammad Sher, DCS, International Islamic
University, Islamabad for his inspiring guidance, consistent encouragement, sympathetic
attitude, and dynamic supervision. Special thank to Dr.Hafiz Farooq Ahmed(NIIT) and
Dr. Muhammad Saleem Rathore (PAEC)who gave me their precious time and helped

me a lot to figure out the problems and to get rid of confusions.

I cordially regard the inspiration, prays, encouragement and all kinds of support of my
loving and affectionate parents and family for their motivation in every aspect of my
study enabling me to complete this project.

I also express my cordial and humble thanks to all my friends and teachers for their

untiring help and cooperation in completing this project.

Muhammad Ashraf Nadeem

Intrusion Detection and Response using Mobile Agent Technology Project in Brief

Project in Brief

Project Title:

Objective:

Undertaken By:

Supervised By:

Technologies Used:

System Used:

Operating Systems Used:

Date Stafted:

Date Completed

Intrusion Detection and Response using
Mobile AgentTechnology

To detect and respond the intruders in an
automated way at computer speed using
mobile agent technology.

Muhammad Ashraf Nadeem

Dr. Muhammad Sher

e TCL/TK ver 7.0
¢ D’ Agents
e Java

Intel® Pentium 111

¢ Microsoft® Windows® 2000
Professional

¢ Red hat Linux(family)

o Microsofi® Windows® XP
Professional

27" November, 2002

30" October, 2003

Intrusion Detection and Response using Mobile Agent Technology Abstract

Abstract

Today the computer security community is in search of novel solutions to achieve
efficient detection and response mechanisms. It is especially because attackers intervene
in an automated way, at computer speed. Therefore, there is need of such intrusion
detection and response systems, which detéct and respond at the same speed so that
damage may be minimized.

We have designed an intrusion detection and response system prototype based on
mobile agents. OQur agents travel between systems in a network, obtain information,
classify & correlate the information and report to the manager of the intrusion detection
and response system (IDRS) which is responsible for responding the attack.

vi

Intrusion Detection and Response using Mobile Agent Technology Table of Contents

Table of contents

T IO I OM o oo oo e et ee e e e e e e e e e e et et s e e et e b s s e s easaaaseaseaabraneeserann e eanneans 2

1.1 BACKZTOUNA. ..ottt ettt sttt et s b e bbbt evs st ebs s be b s st e b e st e et e eenns 2
1.2 Shortcomings of current intrusion detection systems e eteereeieteeettesateeeseeeanteeate s ataeeanaeenaesanees 4
1.2.1 Lack OF EfTICIENICYcoouiivieeeicccrectrene ettt e sbssse s s aene e s s b e sn e e s e eanaenees 4
1.2.2 High Number of False POSIIVES..........c.ccccoceimeneiinieniiiniiiii ettt eensas st 4
1.2.3 Burdensome Maintenance.................ccovvrerurreneenieneenintiie sttt s 5
124 Limited FIEXiDUIYceooiiiiieiiiiiccnie ettt sttt e 5
1.2.5 Vulnerability to Direct AACK............coeiveienririeneiicetiee e s v enes 5
1.2.6 Vulnerability t0 DECEPHON.............c.ieirriitiicii ettt ettt cn e et e ess s s st e bt s s e aeas 5
1.2.7 Limited Response Capabilityccooeeeveriiiiaveereiinereeiee ettt sttt s 6
1.2.8 No Generic Building MethodolOyccoveeeeriiiimninminncnii et 6
1.3 ABECIIS ..ottt eet e te st e et e e bt e st e s be s tee s e eesateee e f e ua e e e bt aese e es S Seneeeebe S et e e E S e r e e s iRt s ar s e bn s eabe s et 6
1.3.1 SOfIWATE ABCIIES ..ottt ettt et e r e et e et e s b e e b e e e b s e s b e s ta s s bbesbaseen 7
1.3.2 TYPES OF ABERS.........covrririientireieceesiesee e nsesteeebastentenb e te st e se et casensareesatssassrnssbssmsnssasnassssnass 7
L1321 MODIIE ABENLSooviiiiiiiiieiiccieteee et cee ettt et et eseeesaee s b e e ras e ses e reessmeesenseenessaeeesbres 7

1.4 Mobile Agent TEChNOIOZYc.cociiviiiiiiiiictciierter e eee et sevessesasses s e s e ssbesesnsasanssrassnasses 8
1.4.1 Mobile Agents for INtrusion DeteCtionccooeiiiierieniiiirrie et crenree s e s e e enes 9
142 Advantages of using MObIle AZENS............cccoiriiiriinineiinerenncercete et seen et eens 10
1.42.1 Overcoming Network LatenCyccooceiriiiiiiiiiiinrnsenr e eere ettt 10
1.42.2 Reducing Network Load.............ccceouiiiiiiiiiiiiiiiicreesrereese v e esre s st ee e e eenreessenens 11
1.42.3 Asynchronous Execution and AUOMOIYccoermrimtricerrrnieorerneensesseareeserssesseessinennes 11
1.42.4 Structure and Composition...................... et ettertert et ate et e er et et atabeaneraetaebeeneerberserens 12
1425 Adapting DynamuCallyccooooimiriiniiiieeee et see sttt sne s e ennene 13
1.42.6 Operating in Heterogeneous ENVITONMENLSc.cooeiiiiveeciecrenieieeneeeneccveeeeeveesesseesnnes 13
1.42.7 Robust and Fault-tolerant Behaviorcccoooooieiiiincriiiiceeneeneceveee e seesrenaeesesasneens 14
LA28 Scalability........c.cocoieeiiiiieieieceeee ettt ettt st ebe e aeenrasaes 15

1.5 PrOJECE OVEIVIEWooiuiiiiiiiiiieiie et cetieeteseeecaaeste st s eessesanesstaesasaanntessnnesnsseesesessesssnnesseesantesns 15
1.6 Architecture..........cccovvreviiinineccnenrineennes Jeteresieee et st r st et s et et e nae et e R e ne et et e g et eeaeeheanaent 16
1.6.1 MONILOTINE ABEMLooviiiiiiieiiierteererieeeetr et e st eteeeertastsesbeertessessseastessessassesesassssennesnsaensenns 16
1.6.2 Route Tracing AEnt (RTA).........cccoouiimieriiiiieeie et eeeerecees e eeeestecenesresnesssaessesssnessnssesssneane 17
1.6.3 Information Gathering Agent (IGA).........ccoiiiririiiie e et reer e e e seesaestestas e s e nens 17
1.6.4 MENAGET ..ottt cee ettt stee et sateseenbb v e e e e s sresseeeaa st eeneessaenseemsaseaessesansonsesnteassenne 18
1.6.5 ManABET LOZoouiiiiiiii ittt rtt e e re e e e e et e ba e re e eebae e se e aaa e s e et re e st eaenbeean 18
1.6.6 INFOrMALION LIOE ...ttt ecte sttt et e b e st e b e b st e e rbesr s ssaestesaesbassssensbasnsensan 18
1.7 HOW G WOTKS -t eciesrer et ea et et e e s s eseesssressesaastnebsssssraensesbessestessaesaensanssssenss 19
1.7.1 OVEIIAPD TIACINE.ccveveeiiiereriiiieseeseeiteertenaeesiesseeses e sbesbasseessersessentersessantanssebesssensessorsensessens 20
1.7.2 Response MEChaNISINSccooviiiiiiiiieeeeiecee et e s et eteeseeeneebeeeteeereesseesneesseneenseeseansens 21
1.7.2.1 Response at the ROSEIEVEL.............coueieiieiiiiiiccccce et et e sa b nes 21
1722 Responding at the target.............cccovviiieiiiiiiieain v sn e e eteeree st e sesresbesbaeses s ssseneennens 21
1.7.2.3 Responding at the SOUITE............cc..coivieviiiiiieeeinnieniesienreirsresseesesteesseseessesassessesseesessesssonsons 21

1.8 Objectives.................. e ereehtereehteeete e tertabee e eare st e Rt e s ee s e beenseaseeneest e sneteeaseereeehneeteenteeneeneaesen 22
2 System ANALYSISc.oiiiiiiiiii et 24
2.1 SHUCIUIE ANALYSISceceevieieieeicieiei et e et ste et et tese s ebeasssesss s st s sesbeseennssenssmenesseseesennen 24
22 ANALYSIS MOAELovmiiiiiiiiecec et tev ettt er ettt seas v et s eneeeenenas 24
221 Entity Relation DIagraimocooiiiiiiiiieiceret ettt ettt 26
222 Data FIow DIQZRAIMccooviiiieeeeece ettt a st o s eee s 27
223 PSPEC ...ttt ettt st ten et r ettt st s et et e e e e st nenranen 30
2.2.3.1 INtAlzZe the SEIVETc.coiiiieieiiiiieece ettt sttt et e eeero e es 30
2232 IOEIACE WIth BSET......oiiiiiiiiccicti ettt ettt s st en et eeeee e eaen 30
2.233 DRIECE MLSIS.......c.coiiieiiiiiiieie ettt sttt ettt ees ettt er s aeseseassse e enenas 30
2234 Dispatch Route TRACING ABENL............ccoviuiuiirriieieieeieeretee et seree e e oo eeeeeeeseenes 31
2235 DEECEROULEc..oiirie ittt e oo eeeaens 31
2.23.6 Gather INFOrMAtION.ooouioiiimiriiiiiieieee ettt eee s e aenen 31

vii

Intrusion Detection and Response using Mobile Agent Technology Table of Contents

22.3.7 Decide about the MLSIoooeoiivveniiinniiiiineenensd etrrerteee et eaee e rrnerraeenreees 32
2.2.3.8 Response to the IMTUAETcccccoiiriiiiiiiiiiiiiirr ittt 32
224 State Transition Diagram (STD).........cccooiriiriiiiiieiiiicee e 32
225 Control Specification (CSPEC).........ccccooiiiiniiiic ittt e 33
23 Object-Oriented ANALYSISccoveereririereiiiiiii et 33
2.4 A Unified Approach to Object-Oriented Analysiscooviiiieiiiiiiiiiiieee e 33
2.5 DOMAIn ANALYSIS.........ccviieienrieiitineceeneet ettt bbb s b e b s b s a e e r e st e na s e 34
25.1 Reuse and Domain ARIYSIS.ccceeeriiniiieiiii ittt sttt st 35
252 The Domain Analysis Process...........c.ovveniniiniinind ireeeeerreeresbe s aabe et e e e et st et e e bear s b 35
2.52.1 The Domaintobe Investigated.............ccoceriiininniriiin e e 36
2.5.2.2 Categorization of Items Extracted from the Domain..............cconininninincnnnnincninn. 36
2.5.2.3 Collection of Representative Sample of Application in the Domain..............ccocoeeevivennnnnne. 36
2.5.2.4 Development of Analysis Model for the Objectsccooviiiiiiiinniniiiee 37
2.6 The Object-Oriented ANALYSIS PIOCESScccoveiveririericiieiiieniiiiiirerescnsre e er et sbssa e essa s 37
2.6.1 USE-CaSES........eeeeeeeiiiieeeteerteeeterereesee s sateseseeaessaeeaseess et saaatesanssrae s s ssersssasseessessaRtasasaesrtenanassnne 37
2.6.1.1 Use-Cases inthe SySteIMccciveriiiniiiiiiiirrii sttt 37
2.6.1.2 ACtOrS inthe SYSIEMcccouiuiiieiiiiieeciinie et s 38
2.6.1.3 Use cases in Expanded FOMAtcc.ccoiiiniiniiiniiiniiineininere i esses e enes 38
26.1.4 UseCase DIaBIANL.ccc.ooiiiieeieiiiicie et eeereeiesesee st ssesan et s e sae s sbb e s e e e s s ss e saasss 45
26.2 Conceptual MOAE]coviiiiiiieieiniie e ettt et et e e s s sa s sssr s a e es e basbe e 46
3 DIESIBI oottt bbbt 48
3.1 Relation of analysis t0 deSi............cocviiiiriemnniiniiniiiiiictre e 48
3.2 DeSigN PrNCIPIEScc.oiiiiiiiieiiiieee ettt st et e ea e e b e e 49
33 DIESIEIN TYPEScueeveereeririireerreeraesnereesessessassestenternententeneesseteneestessenaeseensensenssoseentsmtessensssseessossonns 50
33.1 DAtADESIBIL......ccoeeuiiiiiiicieeicte ettt et eae e e bt e e e saeat e ieesss s b e bessesebesaba s b e s R e s b et anRseaeen 50
332 ArchiteCtural DESIZN.........cceeiiiiieeec et er e sr e st essanesae et s sbbesbeesrassnnsseassmesnsesns 50
333 Architectural DesiZi PIOCESSccociiiiiiiiriieiiiiieeiee e iieseeesees treseseesaesstaresessesssnsaonssssanss e 51
334 Architecture Design of SORWAE ..ot sre s e e sseenenee s 51
335 INtErface DIESIBILoiiiiiiie ittt e e s te st e st re e sr e st bar e st e s st e st e e s st ante 53
336 Procedural DESIZIoooiiiiiiieeecere et e et e re et e e et a e e e e e ae e btees 53
34 Object-Oriented DESINL..........ccoociviiiiireiiiiiiircieriasisiesieetasiresssesesorssssaessesibessessssssasessessesssssssas 54
3.5 DESIZN PAMEINSccoiiiiiiiicieiieie ettt tr sttt st ee e s eseesereesae e sentesnsasseesesbessanesonuassans 55
3.5.1 Describing a DeSign PAEIMScccocuiiiiiieiiiiiiiiieieeeine e eseessseessbeesssessasessesssssassasesssesssases 55
352 Using Patterns in DESIZN............c.oioiiiiiiiiiieciece e cree e st s e s e s ssea e re e s saaeseeesnnaens 56
3.6 Object-Oriented DeSiBN PIOCESScociiiiiiiiiriiiieceeeieeiaestee e ssesiaessessaesssessessasssesseessasssenseas 56
3.6.1 Structural MOEL...........ooiiiiicieec et sre e be et e besstesne s e e sen e anesansneesnes 56
3.6.2 WhAt QS @ CIASSTcveiiirevnriiesteeatreeresessesese e assesressessassessessassassassssntansessesnessessassersassnoss 56
3.63 FINAING A ClaSS ...ttt ettt e et et ae st e b e bsebeemse st e s esessaens 57
3.6.3.1 Class DHABIAI..........ccooiiuiiiieieiiet et ettt e et es et ebe s s et eassee st ebansasassassansasesensas 58
3.6.4 Behaviotal MOGELcccoociiiiiieiiiieicseneecene et s et eas e e b esb e b e s a et s veareesnennes 58
3.6.4.1 Interaction Diagrams............ et eteeeet et ettt h bt s e e bt e R s e et At ae R s R et R e b et saererenanane 59
3.6.42 SequenCe DIABIAMceiieiieeeniiretieiecenti et eercere e eeressessesassecresteessereeseessensassessenssensenton 59
3.6.43 State Transition DIAGIamSccocveiiiirieniiiinieeie e stentecestess e sre et ete e eseesbssssstesreentessesas 60
4 TMPIemMENtation...................cocoeiiii oot 64
4.1 Implementation Techniques............ et teertete e ee taate s bt e e teare e Rt e st e e b e stasbe R b e e haereaba st b easaesaesnsans 64
41.1 Object-Oriented PrOBramImMingcevreviiiiieeiiieeeiereesesseeneesesesesesaesesesssesessesessesessaes 64
412 Agent Based PIOZIAMIINEooooiiiiiiiiiireicceie s seve e oo sbestesestasseresrsssassonssssnes 64
4.2 IMPlemMENtAtion TOOIS.............ccoiuiiiiieeteiicirecee ettt ee e tes s ere v e eresaenssreebensenestemsessones 65
421 D ABENLS ..ottt ettt areete e e et e re e ete et a e ebeeteetsshtereereenb s etsente s e b e eteenteasententas 65
4.2.1.1 ABENEMOVEIMENLocooviiiiiiieeeetie ettt ettt et eeeaee e e esae e aesraeesessatesaseseans 66
! 4.2.1.2 Agent COMMUIECAONccoeeiriitiiieeerieiti it iereiaeesteees e esteeseesessreeresesssssseseessnssssssans 66
. 422 TCL ettt eb st a s st st e e et st e b et eee et et en et et enenannene 66
4221 TCL SCHPLAS ABEIS....c..oeviiieeriiiiteteeeteestecsiessiresesiessesesessersoressessssessarsssessensstonsonsores 67
Y 4.3 Implemetation of Some Important Functionalities........................cccoceviiiiieiinrcecceeceeececeeeeeea 68
43.1 MONUOMNG ABENL ..ottt ettt s et se e b essebe st estereetaabanssrsareans 68

! viii

Intrusion Detection and Response using Mobile Agent Technology Table of Contents

43.1.1 MaIMOGUIEc.ocviiiienieirteeecee ettt ettt ettt e et ee st b e b e e 68
43.12 Report of Monitoring Agent t0 Manager............cccooeeeviiiiiinienriniciinnieiie e eassenses 72
432 Information Gathering AZENt.............cooocviiiiiiiiiniie et sar s e e 72
43.2.1 Creating Informatin Gathering ABEnl............ccccovviiriiiiiiiiciiiiieiin e 72
433 Route TrACINE ABEIL............oooiiieeieceeteeeeite ettt st et st eess s e st s s e s te et srnssneeenn e basabesns 73
433.1 Moving Route Tracing t0 amachine...............ccccceciriiiiinincnicnicnnie e 73
4.3.3.2 EXporting time SLAIMPcocvvuiriiereeierrienietentenaesesreesseessessesssessressmsssssssssssssssssssesssesaes 73
434 Working With 08 fI1eScceoviiieiiiecr ettt sr st s sassaessaesanssnes 73
43.4.1 Initializing alog file..............ccceeevninnnnnnnnen et tereerrereeesteetesteesaeeraesseeseratessaaarassreesrnesren 73
4342 Resetlogfile..........cccooennnriiiinunncnnnnen eteeteteteseeteuer et et as et ebe st ebes et e b e s ese s eeese e besennenen 74
B4.343 SeLIOBTIIE ..ottt et e et sra e st et s s s e sneere e reeneeenns 74
4344 WIHEEO LOB ..ottt et s e ee et e e s e s ss e b esraasbnaenten 80
435 MANAGET ...t tr et e e se st e e s b e e re s e se e e e net e e s ee s st e s aaessenesneneaabenes 84
44 Is0lating SOUTCE/TATGELccociviiriiieieeieee ettt e e e b sas s oabansn s 86
15 TSI ..ottt ettt et e e e et e e be e eabeerneerbae bt e eas e e bt e eaneeeneeenne 89
5.1 TESUIE PTOCESScoceeiiiiiieiie ettt ste s sae s s eve st e srae s st e esea e samessaeessnessneessneennns 89
52 GENETal TYPES OF EITOTSccuoiiiiiiiiieiiieeieeeese e see st e e e s e st e ste e bessessrenteseeneenbeseessensesnesneennens 89
53 Testing STAtEIes...........cc.covvevieiiiiecrieieieeeeeeer e e eeetterteesaeestaenteeebtresrtea st eentteenasaentsaeraeen 89
5.3.1 UNIETESHNE.eveieeiiieeeeerierteeteet et et et etteteeatsee s s e sesse st e s ss e saesensersaesessaenesotenssnessasaenassaeenes 90
532 INteration TESHIE.........c.coovviiiieiecierie it ecreceterraeecre et e ssveestessneesreessneseseessseessreeossnesnes 920
53.2.1 Top-down IMEBIAtiON...........ccoriiiiiiiiiicrine et eteere st e s enee e e e st seesees e s e anesaennens 91
5.3.2.2 Bottom-up INEEration...........c.ocoo ittt ettt ettt ene 91
5.3.2.3 ReBIession TSNP,ccoirureverriniertaiteieine et eierie e essestessaesessessasssesessasssasesnsessansessensens 91
533 Validation TESHNEcccovviriiieerirririrrrerieeseeesescesresesressestrsssesersessassessesssessessersnssessnssansanes 91
534 SYSICIMI TCSUNE ...ttt ettt ra e sa et s et et e st et et eee e s e et e e ebeeenseseees 91
5.3.4.1 SeCUMLY TESUIEGc.cceiiruereeirietiieieeretreeeesecetetaetesbesestasstssseseebeseassstensasessessassesessssssensons 92
5342 SHIESS TESHNP.........cccceerreiriiiniesiieeererereseseaeetee e ereebeetestesbessessesssssaesaessassassassassaassassesnons 92
5.3.43 Performance TESUNEcccvreriiiierienieirinieeieisiseeseerseteeras s srasseasaessestessensessessessasseseons 92
54 Object-Oriented Testing SIrAtEIESccecerieiiecrirentairirestecereste et essasasssessssaessessessassasanenss 92
5.4.1 Unit Testing in the OO COmtEXL..............lvoiiiiiiiieiniiiteciiecreriere s eete e e tesessaresssesessaseesaesassens 92
542 Integration Testing in the OO COMEXL............cceoriniiiiiiiieeecerere e e e sses e sanens 93
5421 Thread-based TESHNE..........c.cieveiiiieiiiieiiiienetetereeitersesersessessersessessessesessrassasssessassarsserss 93
5422 USe-based TESHNB.........ccoceevveieriiireeresienesrestastesresrestessessesessessessessnssestessassnasaessensessnssessen 93
5423 CIUSEEr TESHIB.cocieuiiiiririircritee ettt et ei et ereaee e s s e e e e e sbe e esa et e sessasbsasaassastensessansens 93
543 Validation Testing inthe QO CONLEXLccooiiiiiiiiiiireecre e teeerere e ere st rerssressoreens 94
55 TESEPIAN......cviiniiiie ettt et et e bbb e st as et b a e ebe b et ebesaerneneabesteanerennana 9
5.5.1 Intrusion Detection and Response Test Plan............c.cccoeiviericiesienrevvoenenresnseneensvessonseneens 94
56 Test Design SpecifiCation.............ccoveereeieieiiiccccr et eeerersreeaenenenns 95
5.6.1 Intrusion Detection and Response Test Design Specification................ccocceeceemereierecrivennenee, 96
5.7 TeSt CaSE SPECIHICALON.ooveeieeiriirc et sbe e sis et et er e st esasnnessssassansaronsons 97
571 Load teSt fOr MANAGET.........c.oooiiieic ettt ee ettt eae s 97
572 Load Test for TAMGEL..........c.ccoiiiiiiiriiiite ettt sae ettt aene e snans 98
513 Race Condition Test for AACKETccccvviivirriieeeererceeeeec e seasseennes 98
574 Race condition Test for MONtoring AZENtc.coovvvieeenerieineneeieeesereeeseseeeseoeseonsens 99
5175 Stress Test for MANABETc.coveuerureueeetiietieieec ettt se et eeeseee s eeeeneaeeeseseannen 100
5.7.6 Performance Test for MANAGETc.covviiuieieineicceeceeececes ettt eeneee 100
517 Performance Test for Route Tracing ABENLtoouemiveeeeieieceeeeeeerereeeeseeeeeseesseeesessens 101
5,18 Performance Test for Information Gathering AZENt.................coccvvveeereereereererereeereresessreinns 102
579 Performance Test for MONMOMNE AENL..............c.ooomiuimomiieeeeeeeeeee e eeeeeeeeeeeseseseeseseeasns 102
5710 Class Test for IDRMATocoimiiiiiiieieteeee ettt eeeeeeeeesse s ssessseseeaeeeessesesssans 103
5.7.11 Use Based Test for IDRMATcooooiiiieiiiiriiiteree et eeteee et ee e eee e ses s sesesese e 103
5712 Regression Based Test for IDRMATccocouoiiieiieiiiiie e eeee st seee e seesess s sseens 104
5.713 Cluster Test for IDRMATcocoiuimiimieieteteie ettt eeeeeeeeeseseeeeseeessesesssessseseeesesesseens 105
5.7.14 Behavior Test for IDRMATcooooiiiiiiiiiireiieitee et ee s eeese s s sesese e s s 105
5.7.15 Security Test for IDRMATcocoooiiiiiiiiieiieeeeeeeeeeee e eeeeeeee e eeessesesesesee s ssesenne 106
5716 User Interface Test for IDRMATccoooiieiiiiiireiieieieiceececeeeeeree e e s s ses s ese e ssesesans 107

Intrusion Detection and Response using Mobile Agent Technology Table of Contents

~N N

5.7.17 Scenario Based Test O IDRMATco.ooovmeivirreeceeeeseieerrteeceevireessssssseseesssvssessssesansenesen 107
5.7.18 Random Test fOr IDRIMATcooooiiiiiiiiiitieeitieceeeteeieeeesrteeeseessseeesesesnranseesessssnreeseerasnres 108 -
CONCIUSION. ... et e ettt e e e e e e e e e 110
References and Bibliography ... 112

Chapter 1

Introduction

Chapter 1 Introduction

1 Introduction

Behind every invention or creation, there exists a need. The need behind the invention of
aero planes was to allow people to travel faster. The need behind the invention of electric
light was to allow better visibility during dark hours. Still, in this age, many things are being
invented based on certain human needs.

Software engineering works on the same principles. A new human need in the world

of computers gives birth to a new computer system every time. Hence, our system is based

upon strong human need as well.

1.1 Background

The concept of intrusion detection was first proposed by James Anderson [1] in 1980, did
not blossom until 1987 when Dorothy Denning published her seminal intrusion detection
model [2]. Early IDS implementations employed a monolithic architecture whereby data
collected at a single host was analyzed at a central point, at or adjacent to the point of
collection [3, 4, 5]. Because monitoring account activity on a single host does not reveal
attacks involving multiple hosts, IDS designers subsequently developed network-based IDSs
that use a model of the network traffic to infer anomalies or misuses from low-level network
packets traveling among hosts [6]. Network-based 1DSs can be characterized as a change in
perspective from host-centric to network-centric detection. A netw;rk-centric approach
resolves a number of performance and integrity problems as well as problems associated with
the reliance on audit trails. [7].

The US government provided significant funding for research in IDSs realizing that
its computer systems were insecure. Hundred of millions of dollars have probably been spent
on IDS research within last fifteen years [11].

| Nearly all present-day commercial IDSs follow a hierarchical architecture.
Information gathering occurs at leaf nodes, network-based or host-based collection points.
Event information 1s passed to intemal nodes that aggregate information from multiple leaf

nodes. Further aggregation, abstraction, and data reduction can occur at higher internal nodes

Intrusion Detection and Response using Mobile Agent Technology 2

Chapter 1 Introduction

until the root node is reached. The root is a command and control system that evaluates
attack situations and issues responses. The root typically reports to an operator console where

an administrator can manually assess status and issue commands.

e s

(*°} (**\ HumanRun

l (1) :

poet)= Secunty Consoles

™ Command and

/'\M control nodes ‘
)]

I

,.\/'

" A
Aggregation
“\ nodes
Y g i X Intrusion
- = detection nodes

» = Intrusion Information Flow

Figure 1.1Distributed Hierarchical Intrusion Detection Architecture

In general, hierarchical structures result in efficient communications, whereby refined
information filters upward in the hierarchy and control downward. The architecture is
excellent for creating scalable distributed IDSs with central points of administration, but.
somewhat rigid because of the tight binding between functionality and lines of
communication that tend to evolve. While IDS components tend implicitly toward a
hierarchy, this tendency is not strict. Communications can occur, in general, between any
type of components and not solely on a one-to-one or master/slave basis. For example, to
improve notification and response, a collection unit may directly communicate a critical
event to the command and control node, as well as an aggregation node. Moreover, peer
relationships among command and control nodes are needed when different administrations
manage portions of an enterprise network, or distinct and separate networks [8].

At least one IDS design, Cooperating Security Managers [9], uses a network
structure, where information flows from any node to any other node, by consolidating the
collection, aggregation, and command and control functions into a single component residing

" on every monitored system. Any significant events occurring at one system that stem from a

Intrusion Detection and Response using Mobile Agent Technology 3

Chapter 1 Introduction

connection originating from another are reported back to the system manager of the
originating system by the security manager at the system where the event occurred. In
situations where the originating system of the connection is an intermediate node in a
communication chain, the system manager is obliged to report onward to the next system
manager in the chain. Because of the potential for unconstrained communication ﬂoW,
network structures, in general, tend to suffer from communications inefficiency when taken
to the extreme (i.e.,, everyone directly communicating with everyone else). They can

however, compensate for this inefficiency with flexibility in function.

1.2 Shortcomings of current intrusion detection systems

Present-day IDSs are less than perfect. Developers continue to address shortcomings
through the improvement and refinement of existing techniques, but some shortcomings are
inherent in the way IDSs are constructed. The most common shortcomings include the

following items:

1.21 Lack of Efficiency

IDSs are often required to evaluate events in real time. This requirement is difficult to
meet when faced with a very large number of events as is typical in today’s networks.
Consequently, host-based IDSs often slow down a system and network-based IDSs drop

network packets that they do not have time to process.

1.2.2 High Number of False Positives

Most IDSs detect attacks throughout an enterprise by analyzing information from a
single host, a single application, or a single network interface, at many locations throughout
the network. False alarms are high and attack recognition is not perfect. Lowering thresholds
to reduce false alarms raises the number of attacks that get through undetected as false

negatives. Improving the ability of an IDS to detect attacks accurately is the primary problem

facing IDS manufactures today.

Chapter | Introduction

1.2.3 Burdensome Maintenance

The configuration and maintenance of intrusion detection systems often requires
special knowledge and substantial effort. For example, misuse detection has usually been
implemented using expert system shells that encode and match signatures using rule sets.
Upgrading rule sets involves details abnormal to the expert system and its language for
expressing rules sets, and may permit only an indirect specification of the sequential
interrelationships between events. Similar considerations may apply to the addition of a

statistical metric, typically used for detecting unusual deviations in behavior.

1.2.4 Limited Flexibility

Intrusion detection systems have typically been written for a specific environment
and have proved difficult to use in other environments that may have similar policies and
concems. The detection mechanism can also be difficult to adapt to different patterns of
usage. Tailoring detection mechanisms specifically to the system in question and replacing
them over time with improved detection techniques is also problematic with many IDS
implementations. Often the IDS needs to be completely restarted in order to make changes

and additions take effect.

1.2.5 Vulnerability to Direct Attack

Because of the reliance on hierarchical structures for components, many IDSs are
susceptible to attack. An attacker can cut off a control branch of the IDS by attacking an
internal node or even decapitate the entire IDS by taking out the root command and control
node. Typically, such critical components reside on platforms that have been hardened to
resist direct attack. Nevertheless, other survivability techniques such as redundancy,

mobility, dynamic recovery, etc. are lacking in current implementations.
1.2.6 Vulnerability to Deception

A network-based IDS evaluates network packets using a generic network protocol
stack to model the behavior of the protocol stack of the hosts that it is protecting. Attackers

take advantage of this inconsistency by sending specially adapted packets to a target host,

Intrusion Detection and Response using Mobile \gent Technology

Chapter 1 Introduction

which are interpreted differently by the 1DS and by the target. This can be done in various
ways such as altering fragmentation, sequence number, and packet flags. The attacker
penetrates the target while the IDS either is blind to the attack or fooled into interpreting that
the target resisted the attack.

1.2.7 Limited Response Capability

IDSs have traditionally focused on detecting attacks. While detection serves a useful
purpose, oftentimes a system administrator is not able to immediately analyze the reports
from an IDS and take appropriate action. This gives an attacker a window of opportunity in
which to freely operate before being countered by the actions of the administrator. Many
IDSs are beginning to implement automated response capabilities to reduce significantly the
time available for attackers to extend their grip on a network. However, they are limited in

their ability to adapt dynamically to an attack.

1.2.8 No Generic Building Methodology

In general, the cost of building an IDS from available components is considerable, due in
large part to the absence of a structured methodology. No such structuring have emerged
from the field itself. This may be partly a result of a lack of common agreement on the -

techniques for detecting intrusions.

1.3 Agents

We can define an agent as anyone or anything that acts as a representative for another
party, for the express purpose of performing specific acts that are seen to be beneficial to the
répresented party. A software agent, which has been around for approximately twenty five
years, is a software program that performs tasks for its user within a computing environment.
Technically speaking, most fourth generation software applications could be defined as
agents. Everyday we ask computers, through software, to perform hundreds of different tasks
for us, essentially calling upon their agency attributes. As we descend deeper into the concept
of agency, we can see that there are distinct characteristics that collectively constitute a

software agent. Software agents are differentiated by other applications by their added .

Intrusion Detection and Response using Mobile Agent Technology 6

Chapter 1 Introduction

dimensions of mobility, autonomy, and the ability to interact independent of its user’s

presence.
1.3.1 Software Agents

A software agent is loosely defined as a program that can exercise an individual’s or
organization’s authority, work autonomously toward a goal, meet, and interact with other
agents. A software agent comprises the code and state information needed to carry out some
computation and requires an agent platform to provide the computational environment in

which it operates.

1.3.2 Types of Agents

There are two types of agents.
1. Static agents
2. Mobile agents
As we are using mobile agents so leaving the discussion of static agents, we directly come to

mobile agents
1.3.2.1 Mobile Agents

Stationary agents remain resident at a single platform, while mobile agents are
capable of suspending processing on one platform and moving to another, where they resume
execution of their code. Mobile software agents provide a new and useful paradigm for
distributed computing. Unlike the client-server computing paradigm, relationships among
entities tend to be more dynamic and peer-to-peer, stressing autonomous collaboration.

A significant number of mobile agent systems have been developed at universities
and by industry. Although mobile agents retain the characteristics of autonomy and
collaboration as with intelligent agents, emphasis is on mobility characteristics, often relying
on simple straightforward algonthms for reasoning and collaboration through less elaborate
interpretation of messages.

Mobile agents potentially provide various advantages for intrusion detection and
response systems, in particular over more traditional monolithic intrusion detection systems

(IDS). Although large part of the disadvantages of traditional IDS can be addressed by

Intrusion Detection and Response using Mobile Agent Technology ' ' 7

Chapter | Introduction

distributed IDS systems, what seems promising and deserving of pointing out is the fact that
mobile agents may allow to perform some tasks better than with other technologies.

This research is to develop mobile agent (MA) architecture for distributed detection
and response to attacks in large-scale networks. It will exploit the flexibility of MA to more
efficiently detect and respond to intrusions by significantly reducing the time to do so. Other
required MA characteristics, such as dependability and portability are also important for 1D
but will be addressed as a secondary objective in the research. However, the architecture to
be developed is an application architecture and dependent of OS platform (Linux) and MA
system environment (D’ Agents).

This research is new in the sense that it will fully exploit the mobility of MA in complement

to existing IDS systems.

1.4 Mobile Agent Technology

IDSs implemented using MAs is one of the new paradigms for intrusion detection. MAs
are a particular type of software agent, having the capability to move from one host to
another. A software agent can be defined as
“A software entity which functions continuously and autonomously in a particular
environment , able to carry out activities in a flexible and intelligent manner that is
responsive to changes in the environment ... Ideally, an agent that functions continuously ...
would be able to leam from its experience. In addition, we expect an agent that inhabits an
environment with other agents and processes to be able to communicate and cooperate with
them, and perhaps move from place to place in doing so0.”

Mobile agents have been a research topic of interest for several years, yet this
research has for the most part remained within laboratories and has not experienced a wide-
scale adoption by industry. The development of the World Wide Web application, however,
has dramatically stimulated interest in this area of research by offering the possibility of a
widely deployed application that could use mobile agent technology. The research
community visualizes mobile agents launched via web browsers to gather information and

interact with any node in the network. IBM and General Magic were early pioneers of this

vision, [7,8].

Intrusion Detection (Mldﬂcspon.ce using Mohile .r’lgwAll— 72’0/;'1()1()‘L';\." S e

Chapter 1 . Introduction

An important observation to make about most of the early work in this field is the
assumption made by most researchers about a totally open system. That is, the security
problems being addressed are those found in a system with open connectivity and with the
maximum possible threats. Several researchers reached conclusions indicating that the
paradigm was not useful since there were always certain threats that could not be adequately
countered while maintaining a totally open system. Partly because of these conclusions, as
well as well publicized attacks against early Java-enabled systems, security related problems
have hindered the widespread adoption of MA technology. Security architectures have been
defined, but they contain too much residual risk for most applications. Recent work at the
University of Tulsa, for example, proposes using mobile agents for data mining purposes.
Such an application requires providers of information to keep their systems "open" to a
multitude of users, most of whom are unknown to the host. A good overview of current
maobile agent projects and technology is provided in [9].

However, relatively little work has been done on using a mobile agent architecture for
the purpose of providing a security capability, such as intrusion detection. If a mobile agent
architecture is designed for a specific purpose such as system administration or security
function maintenance, then strong authentication may be enforced and the residual risk
decreases significantly. |

While MAs are an extraordinarily powerful tool, their implementation has been
hindered by security considerations. These security considerations are especially critical for
intrusion detection systems, with the result that most security research in this field has
concentrated upon the architecture necessary to provide security for mobile agents. We claim
that such negative results are not fatal to the proposed study since these security issues are
likely to be addressed by the research community and there will be few authorized users of

the MA-based IDSs within an organization.

1.4.1 Mobile Agents for Intrusion Detection

For mobile agents to be useful for intrusion detection, it is necessary that many, if not
all, hosts and network devices are installed with an MA platform. This is not a far-fetched
assumption because an MA platform is general-purpose software that enables organizations

to implement many different applications. If MAs become popular, every new host may

Intrusion Detection and Resp()nser ;l.virrg Mobile A génl '/bc.;/:;l(;l;;.é\') o 9

Chapter | Introduction

come preinstalled with a MA platform just as today most personal computers come bundled
with a Java interpreter in the web browser. Contrast t}:is to many IDS schemes that assume
that a host-based IDS is installed on every host. It is generally too expensive to install a
proprietary solution (like a host-based [DS) on every host in a network, but it is not unusual

to install a general-purpose interpreter on every host.

1.4.2 Advantages of using Mobile Agents

A number of advantages of using mobile code and mobile agent computing paradigms
have been proposed [11,12]. These advantages inciﬁde: overcoming network latency,
reducing network load, executing asynchronously and autonomously, adapting dynamically,
operating in heterogeneous environments, and having robust and fault-tolerant behavior. This

section examines these claims and evaluates their applicability to the design of ID systems.

14.2.1 Overcoming Network Latency

Mobile agents are useful for applications that need to respond in real time to changes in
their environment, because they can be dispatched from a central controller to carry out
operations directly at the remote point of interest. In addition to detecting and diagnosing
potential network intrusions, an IDS needs to provide an appropriate response in order to
protect and defend the network from malicious behavior. While a central controller can send
messages to the nodes within the network and issue instructions on how to respond to a
particular condition or perceived threat, the approach is problematic. For example, the central
controller may have to respond to a number of events throughout the network in addition to
handling its normal processing load and become a bottleneck or a single point of failure. If
connections to this central server are slow or unreliable, the network communications are
susceptible to unacceptable delays. Mobile agents, since they are distributed throughout the
network, may take advantage of alternate routes around any problem communication links. It
will always be faster to send a message to a network node to execute predetermined, resident
code, rather than send a mobile agent to the node. However, such an architecture requires that
all response and reconfiguration actions be predefined, replicated and distributed throughout
the network. The response mechanism then constitutes, in effect, a large distributed database,

raising serious administration problems concerning configuration management, consistency,

Irusion Derection and Response nsing Mobile Agent Technology 10

Chapter | Introduction

and transaction control. Innovative responses, by definition, must be transmitted at least once
to each affected node, either by conventional or network means, a series of messages, or by a

mobile agent. Of these choices, the mobile agent technique offers the fastest response.

1.4.2.2 Reducing Network Load

One of the most pressing problems facing current IDSs is the processing of the huge
amounts of data generated by the network traffic monitoring tools and host-based audit logs.
IDSs typically process most of this data locally. However, abstracted forms of the data are
often sent to other network locations where the data is further abstracted and then eventually
sent to a central processing site that evaluates abstracted results from all location in the
network. Even though the data is usually abstracted before being sent out on the network, the
amount of data can still place a considerable communication load on the network. Mobile
agents offer an opportunity to reduce the network load by eliminating the need for this data
transfer.

Instead of transferring the data across the network, mobile agents can be dispatched to the
machine on which the data resides, essentially moving the computation to the data, instead of
moving the data to the computation, thus reducing the network load for such a scenario.
Clearly, transferring an agent that is smaller in size than the data to be transferred reduces the
network load. These benefits hold when the comparison is made between encrypted

lightweight mobile agents and the relatively larger data to be transferred.
1.4.2.3 Asynchronous Execution and Autonomy

IDS architectures that are coordinated by a central host require reliable communication
paths to the network sensors and intermediate processing nodes. The critical role played by
this central controller makes it a likely target of attack. Mobile agent frameworks allow IDSs
to continue operation in the event of the failure of a central controller or communication link.
Unlike message passing routines or Remote Procedure Call (RPC), once the mobile agent is
launched from a home platform it can continue to operate autonomously even if the host
platform from where it was launched is no longer available or connected to the network. The
coordination of 1DS sensors and filters can be protected from the loss of network connections

since the mobile agents do not require control by another process. A mobile agent's inability

Intrusion Detection and /(e.q;urﬁe u.\'.ingl\luhi/(".Igenl '/l’b/mo/ugv N

»

Chapter | Introduction

to communicate with central controller would not prevent it from carrying out its assigned
tasks.

Although disconnected operation is possible, a number of issues need to be addressed.
Distributing the functions of a central controller among the network components is a non-
trivial problem. Another problem concerns the operational methods of MAs themselves. For
example, Java-based MAs typically load their class files dynamically, as needed, from their
home platform. The ability to dynamically load classes also has security.[12] implications. If
the home platform is not available, these class files may be provided by the local host or must
be found and transferred from a remote trusted host. Class loading from a remote platform or
the local host platform raises a number of security issues. The class files may have been
modified in such a way as to alter the functionality of the agent or even to allow for

eavesdropping of the agents' transactions. Class versioning problems may also yield
pping p

problems from which the MAs may be able to recover.

1.4.2.4 Structure and Composition

MAs allow for a natural way to structure and design an IDS. For example, rather than a
monolithic static system, an IDS can be divided into data producer and data analyzer
components and represented as agents. The data producer provides an interface to the
networks it sniffs or audit trails it filters. Multiple analyzers, each responsible for detecting a
single attack or a small set of attacks, interact with the producer to look for attacks. Under
such a framework, MAs from multiple vendors can be used to create an IDS. If a company
has the best detector for attack X and another company has the best detector for attack Y,
then we can use MAs from both vendors to detect X and Y. Even where manufacturers do
not produce agent-based products, it may be possible to reconstitute the product as an agent
through wrapping or other techniques. In such an environment, users can also write
customized MAs to detect events specific to their environment and work seamlessly with the
other MA components. Although this approach applies equally as well to an IDS composed
of static components, the agent orientation and mobility considerations provide inherent

motivation for identifying and compartmentalizing functionality.

Intrusion Detection and Response using Mobile Agemt Technology 12

Chapter | Introduction

1.4.2.5 Adapting Dynamically

Just as the network's configuration, topology, and traffic characteristics change over time,
so should the types of network tests performed and activities monitored. Each computing
node in the network will require different tests and these tests will change over time; some
tests will nc;longer be necessary, while new tests will need to be added to the test suite as
new vulnerabilities and threats evolve. MAs provide a versatile and adaptive computing
paradigm as they can be retracted, dispatched, cloned; or put to sleep as network and host
conditions change. For example, as better MAs detectors for an attack are developed they can
be sent out on the network to replace the older version, or if an MA is producing too many
false positives it can be recalled or gracefully terminated. MAs also have the ability to sense
their execution environment and autonomously react to changes. For example, if the
computational load of the host platform is too high and the host's performance doesn't meet
the agent's service expectations, the agent and its data can move to another machine that can
better satisfy its computational needs. MAs can distribute themselves among the hosts in the

network in such a way as to maintain the optimal configuration for solving a particular

problem.

1.4.2.6 Operating in Heterogeneous Environments

Large enterprise networks are typically comprised of many different computing platforms
and computing devices. One of the greatest benefits of MAs is the implementation of
interoperability at the application layer. Interoperability at the computer or transport layer,
such as solutions provided by single vendors, requires significant changes to the host’s
environment. Interoperability at the presentation layer, such as the CIDF model [13], limits
flexibility in updating the system for new attacks. Conversely, while MA frameworks must
be installed on each host, MAs themselves are independently configurable. Since mobile
agents are generally computer and transport-layer independent, and dependent only on their
execution environment, they offer an attractive approach for heterogeneous system
integration. MAs' ability to operate in heterogeneous computing environments is made
possible by a virtual machine or interpreter on the host platform. Data fusion efforts can be
facilitated by having mobile agents run on switches, routers, and other networking elements.

MAs can run on any computing node that can host an agent platform. The ability of MAs to

Intrusion Detection and Response using Mobile Agent Technology 13

Chapter | Introduction
¥

operate in heterogeneous environments also provides an opportunity for the easy integration
of network-based and host-based tools operating on various platforms. COTS interoperability
may also be facilitated via the use of Agent Communication Languages (ACL) designed for
network security testing and intrusion detection domains. Although the MA framework
allows an IDS to operate in heterogeneous environments, the tests performed or tasks
assigned to the mobile agents are for the most part platform-dependent. Therefore, unless a
common programming interface for intrusion detection functions is available, agents must
either be restricted to a single class of host or be designed to accommodate heterogeneity in

some fashion (e.g., dynamically load or intrinsically convey the host dependent code).
¥
1.4.2.7 Robust and Fault-tolerant Behavior

The ability of mobile agents to react dynamically to unfavorable situations and events
makes it easier to build robust distributed systems. For example, if a host is being shut down,
all agents executing on that machine are warned, whenever possible, and given time to
dispatch and continue their operation while preserving their execution state on another host
in the network. Their support for disconnected operation and distributed design paradigms
- eliminate single point of failure problems and allow mobile agents to offer fault-tolerant
characteristics. While there are many features of MAs that enable applications to be robust
and fault-tolerant, we should mention a few drawbacks. The ability of the mobile agents to
move from one platform to another in a heterogeneous environment has been made possible
by the use of virtual machines and interpreters. Virtual machines and interpreters, however,
can offer only limited support for preservation and resumption of the execution state in
heterogeneous environments because of differing representations in the underlying hardware.
For example, the full execution state of an object cannot be retrieved in Java. Information
such as the status of the program counter and frame stack is currently forbidden territory for
Java programs. Conventional fault-recovery techniques aren't sufficient for the mobile agent
computing paradigm. For example, check pointing before and after arrival, and upon
completion of certain transactions or events may be necessary to ensure for acceptable fault-
recovery. With each check-pointing procedure and non-repudiation mechanism invoked,

however, more overhead is introduced. Even though an arsenal of techniques exist to provide

Intrusion Detection and Response using AMobile Agent Technology - 7 14

Chapter | : Introduction

security and fault-tolerance, the designer must be careful in selecting which mechanisms to
use and how they impact the overall system performance and functionality.

Although mobile agents possess a great deal of autonomy and perform well in disconnected
operations, the failure of the home platform or other platforms that the agents rely on to
provide security services can seriously reduce their intended functionality. Even though a
mobile agent can become more fault-tolerant by moving to another machine, the mobile
agent's reliance on the safe operation of a safe home or trusted platform places restrictions on
its functionality. Designers of mobile agent platforms are also faced with tradeoffs between
security and fault-tolerance. For example, in order to address the security risks involved in
"multi-hop" agent mobility, some agent architectures have been built on centralized client-
server models requiring agents to return to a central server before moving on to another host

machine. Clearly, addressing the security risks in this manner renders all the mobile agents

vulnerable to a failure of the central server.
1.4.2.8 Scalability

The computational load on centralized IDSs increases as more processing nodes are
added to the networks they monitor. As networking technology continues to improve,
increased bandwidth and network traffic will place greater demands on these centralized
architectures. Distributed MA IDS architectures are one of several options that allow
computational load and diagnostic responsibilities to be distributed throughout a network. As
the number of computing elements in the network increases, agents can be cloned and

dispatched to new machines in the network.

1.5 Project Overview

In developing Intrusion detection and response system (IDRS), we propose a new
intrusion detection and response model. IDRS will reduce the overhead of the system and
detect new or unknown forms of attack. Our goal is not to detect all intrusions precisely but
to detect many intrusions efficiently. To accomplish this goal, our system works by watching
events that may relate to intrusions named as Marks Left by Suspected Intruder (MLS1).An

MLSI is found when one of these events will occur.

Intvusion Detection and Response nsing Mohile Agent Technology 15

Chapter 1 ‘ Introduction

I. Modification of critical files such as /etc/passwd, /t;tc/shadow, /etc/hosts.equiv and
/ thosts

2. su-id command was issued

Instead of analyzing all of the users' activities, if an MLSI is found, IDRS will gather
information related to the MLS], analyze the information, and decide whether an intrusion
has occurred. For example, IDRS monitors whether or not critical files related to system
security have been modified, since, in many cases, intruders tamper with them. However,
because legitimate users may also_change the files, the sys'tem cannot conclude solely based
on file modifications that an intrusion has occurred. IDRS therefore gathers further

information related to the modification of the file before deciding if an intrusion has

occurred.

1.6 Architecture

In many present day conventional network intrusion detection systems, each target
system transfers its system log to an intrusion-detection server, and the server analyzes the
entire log in search of intrusions. In a large-scale network deploying an intrusion detection
system, network traffic will be extremely high, since the volume of the system logs that are
routinely transferred is very large, though most of it has no information related to intrusions.
Therefore, this type of intrusion detection system on a large-scale network does not fulfill its
function efficiently. To solve this problem, we adopted a mobile-agent paradigm in
developing IDRS. Mobile agents autonomously migrate to target systems to collect only
information related to intrusions, eliminating the need to transfer system logs to the server.

IDRS consists of a manager, monitoring agent, manager logs, information Log, route-tracing

agents, and information-gathering agents.

1.6.1 Monitoring Agent

The monitoring agent, present on each target system, monitors system logs in search
of MLSIs. If a monitoring agent finds an MLSI, it reports this finding to the manager. The
monitoring agent also reports on the type of MLSI.

Intrusion Detection and Response using Mobile Agewt Technology - . 16

Chapter | Introduction

1.6.2 Route Tracing Agent (RTA)

The intrusion-route tracing agent traces the path of an intrusion and identifies its point
of origin, the place from which the user leaving an MLSI remotely logged onto the target
host. In the course of finding the origin, a tracing agent can find any intermediate nodes that
were compromised. When a RTA goes to the next system, first it checks information Log. If
there is no information in the information Log about this particular MLSI, the RTA then
completes its task, enters information in the information Log and moves on to the next
compromised system. If information already exists in the information Log information
related to that MLSI, meaning that another agent has already traced this particular MLSI.
Then the tracing agent enters its reference in the information Log and returns to the manager.
At a specific point, where RTA cannot proceed to the next system, it means that this
particular system is the origin of the intrusion. So RTA retumns to the manager after putting

information into the information Log,

1.6.3 Information Gathering Agent (IGA)

An information-gathering agent collects information related to MLSIs from a target
system. Each time a RTA in tracking down of an intruder is dispatched into a target system
by the manager, it activates an information-gathering agent in that system. Then the
information-gathering agent collects information depending on the type of MLSI, retums to
the manager, and reports.

If the RTA migrates to another target system, it will activate another information-
gathering agent on that system, which will gather information on that system. Many
information-gathering agents may be activated by many different RTAs on the same target
system. An information-gathering agent is not capable of deciding whether an intrusion has
occurred or not. An Information gathering agent posts the following information onto the
manager log. Depending on that information manager decides whether an intrusion has really
occurred or not. IGA puts the following information on the manager log.

1. ID of the information gathering agent.

2. The name of the target system from where information was gathered.

3. The name of the target system preceding the target where information was gathered.

Intrusion Detection and Response using Mobile Agent Technology 17

Chapter | Introduction

4. Information gathered on the target system
1.6.4 Manager

The manager analyzes information gathered by information-gathering agents and
detects intrusions. It manages Manager log and process of dispatching the RTAs and
provides an interface between administrators and the system. The manager accumulates and
weighs the information entered by the IGAs on the manager log, and if the weights exceed a
set threshold, the manager concludes that an intrus“ion has occurred. After dispatching RTAs,
the manager has no concern with the movement of RTAs. i1.e. where the RTA will go after a

specific system.

1.6.5 Manager log

This i1s on the manager’s machine, which is a means of exchanging information
among IGAs because it is shared area, accessible by all IGAs. Information gathering agents
(IGAs) put information in an unarranged manner (not with respect to intrusion route) into

the manager log independently. This unorganiéed mass of information is arranged in the

manager log.

1.6.6 Information Log

It 1s also shared area, which exists on every target system, used by RTAs for exchanging
information. Any RTA can know whether a track under its inspection has already been
traced by other agents, and can use this information in deciding where to go because the
manager have no concern with the migration of RTAs. Therefore, many RTAs may trace the
same intrusion. To avoid this overlapping, RTAs exchange information with each other
regarding their respective information. Tracing agents employ the information Log for
exchange of information to avoid re-tracing, RTAs“put following information in the
information Log.

1. Name of the following system

2. Process ID in the following system

3. Time stamp when the user logged onto the target system

Intrusion Detection and Response using Mobile Agent '/'ec/','no/}';gf N T

Chapter | Introduction

Process ID leaving the MLSI, or the name of the target system where the tracing
agent begins the trace
Tracing agent's ID

Time stamp when the agent began the trace

1.7 How it works

The manager, monitoring agent, and RTA work together in the following way.

1.
2.
3.

Each monitoring agent on the target system seeks an MLSI from the system log.

1f the monitoring agent detects an MLSI, it reports to the manager.

The manager dispatches a RTA to the target system where the MLSI was detected.
The RTA arrives at the target system and activates an information-gathering agent.
After activating the information-gathering agent, the tracing agent investigates the
point of origin of the MLSI in an effort to identify the user's remote site. The tracing
agent can derive this from the accumulated data about network connection and
processes running on the system.

The information-gathering agent collects information related to the MLSI on the
target system.

After collecting information, the information-gathering agent, independent of the
tracing agent, returns to the manager, and enters the information on the manager log.
The RTA moves to the next target system on the tracing route, and it activates a new
information-gathering agent.

If the tracing agent arrives at the origin of the route, or cannot move anywhere, or if
other RTAs have chased the route it could follow, it returns to the manager and puts

the report about its bearings on the manager log.

When many MLSIs are found by a single target system in different sessions over a short

period, many RTAs corresponding to the MLSIs are launched into the target system. A RTA

is not able to make judgments about intrusions, and is not capable of deciding whether an

intrusion has occurred.

Intrusion Detection and Response using Aobile Agent Technology 19

Chapter 1 Introduction

1.7.1 Overlap Tracing

A tracing agent begins to trace from the point in a target system where an MLSI s first
detected. If a user who leaves the MLSI leaves another MLSI on his way to the target, another
tracing agent will be dispatched. For example, suppose user X remotely logs onto target
systems A, B, C, and D in.this order: A - B - C - D. User X compromises the systems and
MLSIs are detected on targets D and B respectively.

Intrusion Route Not'rficatic:n ofn_'MLSI

TargetA Targkt B TargetC Target D

Manager

Dispatch agéht Dispatch agent

Figure 1.2: Overlap Trace.

The sensors of D and B report to the manager independently, and the manager dispatches
tracing agents to both targets D and B. The tracing agent DA traces intrusions in the following
order: D - C - B - A. Tracing agent BA, on the other hand, traces in the following order: B - A.

The two agents' tracings therefore overlap on B — A

Intrusion Detection and Response mmq\/ohrlelqeur7e£h;ol(7g\“ 0

Chapter 1 Introduction

1.7.2 Response Mechanisms

Our main emphasis was to detect intruders but we gave a light touch to response to
intruders. However, humans cannot automate what they themselves cannot do. For
responding the detected intruders, we present following mechanisms.

1. Response at the host level

2. Response at the network level

1.7.2.1 Response at the host level

Responding at the host level, the following two mechanisms may be applied
1. Responding at the target

2. Responding at the source
1.7.2.2 Responding at the target

After detecting an attack, it is essential to automatically respond at the target host. A
quick response can prevent the attacker from establishing a better foothold and using the
penetrated host to further compromise the network. It can also minimize the effort needed to

recover damage done by the attacker.

1.7.2.3 Responding at the source

Responding at the attacker’s host gives IDRS a much greater power to restrict the attacker’s
actions. Without using mobile agents, it is unlikely that an IDRS would have sufficient
access to an attacker’s host in order to take corrective action. While this option has
limitations, since it requires an agent platform be active on the attacker’s host and the attack

to come from within the management domain, it als¢ has the potential to be a very effective

part of the IDRS.

At network level, there are further three mechanisms
1. lIsolating the target
2. lsolating the source

3. Kill TCP connection between source and target.

Intrusion Detection and Response nsing AMobile A gem Teclmology 21

Chapter 1 Introduction

1.8 Objectives

- The proposed research will respond to the increasing need of organizations to effectively
protect their large-scale enterprise networks (intranets, extranets) from malicious intrusions.
The work will investigate in mobile agent systems for addressing the following issues:

e How an IDS (intrusion detection system) can be integrated with agent technology for
augmenting the ID functions in a network.
¢ How agents’ mobile and autonomous characters can be exploited to support the following
functions:
¢ Real-time detection and assessment function: Monitoring attacks and assessing their
significance.
¢ Checking the stafus of network nodes and of the IDSs deployed onto them, verifying
integrity and consistency, and reporting to the main monitoring system.
» Response function: Take appropriate action in terms of focused intelligence gathering
or of protective action by dispatching ID agents. ‘
e Dependability: Determine how resilience to faults and subversion of IDS can be
improved by such a mobile agent system.
The first task of the research is to perform a state-of-the-art analysis of the domain.
Subsequent tasks to be addressed are:
e Based on established attack/intrusion classifications, identify the intrusion types
which cah be best addressed by the system and define a realistic intrusion scenario.
o Define the system architecture.
* Develop a functional prototype.

¢ Investigate the dependability requirements of the system.

Intrusion Detection and Response usingl\ fobile 1 gcnl ﬂ;/m/(}é. o 7 22

Chapter 2

System Analysis

Chapter 2 Svstem Analysis

2 System Analysis

At technical level, software engineering begins with a series of modeling tasks that
lead to a complete specification of requirements and a comprehensive design represehtation
for the software to be built. The Analysis model, actually a set of models, is the first technical
representation of a system. Over the years many methods have been proposed for analysis
modeling. However two of them are now dominate the analysis modeling landscape. The
first, structured analysis is a classical modeling method and the other approach is object
oriented method. We have used both modeling techniques for the analysis of the software

“Intrusion Detection and Response using Mobile Agent Technology”.

2.1 Structured Analysis

Structured analysis is a model building activity. Using a notation that satisfies the
operational analysis principles, we create models that depict information (data and control)
contents and flow, we partition the system functionally and behaviorally, and we depict the
essence of what must be built. Structured analysis was not introduced with a single landmark
paper or book that was a definitive treatment of the subject. Early work in analysis modeling
was begun in late 1960s and early 1970s, but the first appearance of the structured analysis

approach was as an adjunct to another important topic—Structured Design.

2.2 Analysis Model
The Analysis Model must achieve three primary objectives.
1. Describe what is actually required.
2. Establish a basis for the creation of a software design.
3. Define a set of requirements that can be validated once the software is built.
To accomplish these objectives, the analysis model derived during the structured

analysis takes the form illustrated in Figure 2.1.

At the core of the model lies the data dictionary — a repository that contains

description of all data objects consumed or produced by the software. Three different

Imtrusion Detection and Response using Mobile Agent Technology 24

Chapter 2 System Analysis

diagrams surround the core. The entity-relationship diagram (ERD) depicts relationships
between data objects. The ERD is the notation that is used to conduct the data modeling
activity. The attributes of each data object noted in the ERD can be described using a data

object description.
The Data flow Diagram (DFD) serves two purposes:

1. Provide an indication of how data are transformed as they move through the

system.

2. Depict the functions and sub functions that transform the data flow.

The DFD provides additional information that is used during the analysis of the
information domain and serves as a basis for the modeling of function. A description of each

function presented in the DFD is contained in a process specification (PSPEC).

Relationshigp Diagram
Diagram

jn . Kntity- Data Flow ‘%‘

%\
-\
o}
S.

3~ Figure 2.1 Analysis Model
U“é .

Intrusion Detection and Response using Mobile Agent Teclnology 25

Chapter 2 System Analysis

The State-transition diagram (STD) indicates how the system behaves as a
consequence of external events. To accomplish this, the STD represents the various modes of
behavioral modeling. Additional information about control aspects of the software is

contained in the control specification (CSPEC).

2.2.1 Entity Relation Diagram

ERD is used to define the relationship between different entities or objects. These
objects are joined with the other based on the relationship they have. ERD focuses solely on
data (and therefore satisfies the first operational analysis principle), representing a “data
network” that exist for a given system. ERD is especially useful for applications in which
data and the relationships that govern data are complex.

Put Info. R | Information Log.

Manager Log.

Maintain Route Tracing
Agent
Monitoring Agent
Manager H—
< MLSI Detect

o
[

/ ’l‘;ep;n \\>-)
\\ e T

Generate
/\
s
“ e

/
e L

Information
Gathering Agent “ Attacker

Figure 2.2 ERD for Intrusion Detection and Response using Mobile Agent Technology

Intrusion Detection and Response nsing Mobile Agent Technology 20

Chapter 2 Svstem Analysis

2.2.2 Data Flow Diagram

As information moves through the software, it is modified by a series of
transformations. A DFD is a graphical technique that depicts information flow and the
transforms that are applied as data move from input to output. The DFD is also known as

Data flow graph or a bubble chart.

The DFD may be used to represent a system or software at any level of abstraction. In
fact, DFDs may be partitioned into levels that represent increasing information flow and
functional detail. Therefore the DFD provides a mechanism for functional modeling as well
as information flow modeling. In doing so, it satisfies the second operational analysis

principle (i.e. creating a functional model).

A Context Level DFD or Level 0 DFD is called fundamental system model or a
context model represents the entire software element as a single bubble with input and output
data indicated by incoming and outgoing arrows, respectively. Additional processes and
information flow paths are represented as the Level ‘0. The bubble at level O is expanded at
Level 1 to reveal the processes and functions in detail and so on. And the information about

the functions and processes are provided in PSPEC in either simple English or in PDL form.

Attacker
- Attacker

Target Intrusion

Detection and —
Man: Response Using { larget

Anager Mobile Agent

Technology

RTA —

Figure 2.3 Context Level (Level))DFD for Intrusion Detection and Response Using Mobile Agent
Technology

Figure 2.3 shows the Context Level DFD for the software Intrusion Detection and
Response Using Mobile Agent Technology. This level is the highest level of abstraction

where no details are shown; only the input to the software and output from software is

Intrusion Detection and Response using Mobile Agent Technology 27

Chapter 2 System Analysis

shown. There is only one bubble which is the software and reveals no function of the

software

Now the DFD is expanded and level 1 shows the detail of the process or functions of

the software.

ok or Info. ;m Info. Target

Altacker v MLSI

ar ’ Response
Target Info. ‘(I\FILS]\ Manager

v Report
Res Info.
Manager esponse
Managerial Info. Attacker

- / Response

RTA Info.

Figure 2.4 Level 1 DFD for Intrusion Detection and Response using Mobile Agent Technology

i:igure 2.4 expands the bubble in Level 0 DFD and here the level of abstraction
decreases but only up to the functions still the sub functions are not reveled. It also shows the
information flow and the arrows, to show which process sends the information and which

process use the stored information.

Monttor

Target MLSI

Manager

Figure 2.5 Level 2 DFD for response to MLS]
Level 2 DFD process Response to MLSI is shown in Figure2.5. This level shows the
sub functions of the process response to MLSI. It shows that the Monitoring Agent will first
keep on monitoring all MLSIs and when an MLSI is found it will detect it and then

monitoring agent will report the MLSI to the manager.

Intrusion Detection and Response using Mobhile Agent Technology 2%

Chapter 2 System Analysis

Now the level 2 DFD for the process managerial response.

. RTA RTA data.
Manager ¢
8 dispatcher Target
Info.
RTA —> Info.
Info.
Target

From manager To Target

Isolate
target/attacker

A4

Figure 2.6Level 2 DFD for Managerial Response

Level 2 DFD for the process managerial response is shown in figure 2.6. which shows
that how the manager of our system responds when an MLSI is reported to the manager by a
monitoring agent. And this level 2 DFD describes the minimum level abstraction and shows

the actual functionality. But the process isolate target/source needs more expansion which is

further expanded to level 3 in figure 2.7.

Manager Info.
N y
MO b Attacker

Figure 2.7Level 3 DFD for isolate targét/ attacker

Info.

Target

Level 3 DFD for the process isolate source/target is shown in figure 2.7.. This shows
how the manager will response to the attack. 1t will either isolate the target or isolate the
source. So that the damage may be minimized

More information about the process functionalities is described in PSPEC.

Intrusion Detection and Response using Mobile Agem Technology 29

Chapter 2 : : System Analysis

2.2.3 PSPEC

The Process specification contains the detailed information about the processes
defined in the DFD. These details either can be in simple English or in Program Design
Language (PDL) format. In simple English, the process is defined in simple words while in
PDL, the process is written in the format similar to the algorithms but they are not complex

as algorithms are. We will define the process in PDL.

2.2.3.1 Initialize the Server

Procedure Initialize the server;
Read the command;
If command is valid then initialize the se'rver;
Else do not initialize the serVer;
End if;
Endproc

2.2.3.2 Interact with user

Procedure Interact with user;
Read the input data,
If data is valid then send user command to the server;
Else do not send user command to server;
End if;
Endproc

2.2.3.3 Detect MLSIs

Procedure monitor for MLSls
Monitor for MLSIs
If MLSI found
then send message to manager
MLSI detected
Send type of MLSI

Invrusion Detection and Response using Mobile Agent Technology 30

Chapter 2 System Analysis

End if;
Endproc

2.2.3.4 Dispatch Route Tracing Agent

Procedure dispatch RTA
Send RTA to target host
Endproc

2.2.3.5 Detect Route

Procedure detect route
See information log on that host
If information already exists in information log
then put ID of RTA in it
return to the manager
else search entire log
find the IP address of the next compromised host
start an IGA on this machine
put the info about next compromised host in the information table
g0 to next compromised host
end if;
if IP address of next compromised host not found
then retumn to the manager
else repeat the procedure
end if;

endproc;

2.2.3.6 Gather Information

Procedure gather information

Get name of target machine

Intrusion Detection and Response using Mobile Agent Teclhology 31

Chapter 2 Svstem Analysis

Get name of next compromised machine

Get all other information related to MLSI
Return to the manager

Put all its belongings onto the manager board
Put own ID onto the manager board

Endproc;

2.2.3.7 Decide about the MLSI

Procedure decide
Accumulate the information which is on the manager log
Check it against set threshold
If weight exceeds the set threshold
Then it is Intrusion
Invoke response procedure
End if;
Endproc;

2.2.3.8 Response to the intruder

Procedure response
Isolate the target or isolate the attacker

Endproc;

2.2.4 State Transition Diagram (STD)

The State Transition Diagram indicates how the system behaves as consequence of
external events. The labeled transition arrows indicate how the system reacts to the external
events as it traverses the defined states. By studying STD, a software engineer can determine

the behavior of the system and can ascertain whether there are “holes” in the specified

behavior.

Intrusion Detection and Response using Mobile Agent Technology, 32

Chapter 2 System Analysis

Control T T sh l(:&m—d ’°||w
utdown Msg.
__RTAshutdownMSG | papager _ 2nhidown Msg
Report T
Target ‘ Attacker
Attack l

Monitor & Detect

MLSI

Figure 2.8 State Transition Diagram for the system

2.2.5 Control Specification (CSPEC)

The Control Specification (CSPEC) represents the behavior of the system in two
different ways. ’One- is called specification behavior and the second one is called
combinational specification. Control Specification contains STD (Specification behavior)
and a PAT (Combinational Behavior) table based on the Level 1 DFD. The STD reveals
enough information so we do not need to create the PAT. The CSPEC does not give us any
information about the inner working of the processes that are activated as a result of this

behavior.

2.3 Object-Oriented Analysis

It is a method of analysis that examines the requirements of end-user from the

perspective of objects and classes found in the vocabulary of problem domain.

2.4 A Unified Approach to Object-Oriented Analysis

Over the past decade, Grady Booch, James Rumbaugh, and lvar Jacobson have
collaborated to combine the best features of their individual object-oriented analysis and
design methods into a unified method. The result, called the Unified Modeling Language
(UML), has become widely used throughout the industry.

UML allows a software engineer to express an analysis model using a modeling

notation that is governed by a set of syntactic, semantic, and pragmatic rules.

Intrusion Detection and Response using Mobile Agent Technology 33

Chapter 2 System Analysis

In UML, a system is represented using five different “views” that describe the system
from distinctly different perspectives. Each view is defined by a set of diagrams. The

following views are presented in UML:

o User Model View. This view represents the system (product) from the user’s (called
actors in UML) perspective. The use-case is the modeling approach of choice for the
user model view. This important analysis representation describes a usage scenario

from the end-user’s perspective.
:

o Structural Model View. Data and functionality are viewed from inside the system.

That s, static structure (classes, objects, and relationships) i1s modeled.

e Behavioral Model View. This part of the analysis model represents the dynamic or
behavioral aspects of the system. It also depicts the interactions or collaborations

between various structural elements described in the user model and structural model

VIEws.

¢ Implementation Model View. The structural and behavioral aspects of the system

are represented as they are to be built.

¢ Environment Model View. The structural and behavior aspects of the environment

in which the system is to be implemented are represented

In general, UML analysis modeling focuses on the user model and structural model

views of the system. UML design modeling addresses the behavioral model, implementation

model, and environmental model views.

2.5 Domain Analysis

Analysis for object-oriented systems can occur at many different levels of
abstractions. At the business or enterprise level, the techniques associated with OOA can be
coupled with a business process engineering approach in an effort to define classes, objects,
rélationships, and behaviors that model the entire business. At the business area level, an
object model that describes the workings of a particular business area (or a category of
products or systems) can be defined. At an application level, the object model focuses on

specific customer requirements as those requirements affect an application to be built.

Intrusion Detection and Response nsing Mobile Agent Technology 34

Chapter 2 System Analysis

We will conduct OOA at a middle level of abstraction. This activity, called domain
analysis, is performed when an organization wants to create a library of reusable classes

(components) that will be broadly applicable to an entire category of applications.

2.5.1 Reuse and Domain Analysis

Object-technologies are leveraged through reuse. The benefits derived from reuse are
consistency and familiarity. Patterns within the software will become more consistent,
leading to better maintainability. Be certain to establish a set of reuse “design rules” so that

these benefits are achieved.

2.5.2 The Domain Analysis Process

Software domain analysis is the identification, analysis and specification of common
requirements form a specific application domain, typically for reuse on multiple projects
within that application domain ... [Object-oriented domain analysis is] the identification,
analysts, and specification of common, reusable capabilities within a specific application

domain, in terms of common objects, classes, subassemblies, and frameworks ...

The goal of domain analysis is straightforward: to find or create those classes that are

broadly applicable, so that they may be reused.

Technical Class
| teratire Taxonomies

v

Existing

Annlications Reuse
- Standards
Customer > .
Sources of Slrvevs Domain Domain
Domain I : . Functional Analysis
Knowledge | Expert Analysis Madels Model
. Advice >
Current/Future i

Renitirements

Domain
| annnanes

v

Figure 2.9 Input and Output for Domain Analysis.

Domain analysis may be viewed as an umbrella activity for the software process. By
this we mean that domain analysis is an ongoing software engineering activity that is not

connected to any one software project. In a way, the role of a domain analyst is similar to the

Intrusion Detection and Response using Mobile gemt Teclmology 35

Chapter 2 Svstem Analysis

role of master toolsmith in a heavy manufacturing environment. The job of the toolsmith is to
design and build tools that may be used by many people doing similar but not necessarily the
same jobs. The role of the domain analyst is to design and build reusable components that

may be used by many people. Working on similar but not necessarily the same applications.

Figure 2.9 illustrates key inputs and outputs for the domain analysis process. Sources
of domain knowledge are surveyed in an attempt to identify objects that can be reused across
the domain. In essence domain analysis is quite similar to knowledge engineering. The
knowledge engineer investigates a specific area of interest in an attempt to extract key facts
that may be of use in creating an expert system of artificial neural network. Duning domain

analysis, object (and class) extraction occurs.

We performed the following series of activities during the domain analysis process:

2.5.2.1 The Domain to be lnvestigafed

To acgomplish this we isolated the business area, system type, or product category of
interest. Ne);t, both OO and non-O0 “items” were extracted. OO items include
specifications, designs, and code for existing OO application classes; support classes (e.g.
GUI classes); commercial off-the-shelf (COTS) component libraries that are relevant to the
domain; and test cases. Non-OO items encompass policies, procedures, plans, standards, and

guidelines; parts of existing non-OO applications; and COTS non-OO software.

2.5.2.2 Categorization of Items Extracted from the Domain

The items were organized into categories and the general defining characteristics of -
the category were defined. A classification scheme for the categories was proposed and

naming conventions for each item were defined. Classification hierarchies were established.

2.5.2.3 Collection of Representative Sample of Application in the Domain

To accomplish this activity, we ensured that the application in question had items that
fit into the categories that have already been defined. During the early stages of use of object-
technologies, a software organization has few if any OO applications. Therefore, we

identified the conceptual (as opposed to physical) objects in each [non-OQ] application.

Intrusion Detection and Response using Mobile Agent Technology 36

Chapter 2 System Analysis

2.5.2.4 Development of Analysis Model for the Objects

The analysis model served as the basis for design and construction of the domain

objects.

2.6 The Object-Oriented Analysis Process

The OOA process doesn’t begin with a concern for objects. Rather, it begins with an
understanding of the manner in which the system will be used—by people, if the system is
human-interactive; by machines, if the system is involved in process control; or by other

programs, if the system coordinates and controls applications. Once the scenario of usage has

been defined, the modeling of the software begins.

A series of techniques is used to gather basic customer requirements and then define

an analysis model for an object-oriented system.

2.6.1 Use-Cases
Use-cases model the system form the end-user’s point of view. Created during

requirements elicitation, use-cases should achieve the following objectives:

e To define the functional and operational requirements of the system (product) by

defining a scenario of usage that is agreed upon by the end-user and the software

engineering team.

e To provide a clear and unambiguous description of how the end-user and the system

interact with one another.
e To provide a basis for validation testing.

2.6.1.1 Use-Cases in the System

A use-case 1s a high level piece of functionality that the system provides. The

following are the use-cases in our system.

e Generate MLSI

e Monitor MLSI

Intrusion Detection and Response using Mobile Agent Technology 37

Chapter 2 System Analysis

e Detect MLSI
e Send Report to Manager
e Dispatch RTA

¢ Search Next Compromised Host

¢ Fill Information Log

o Create IGA

¢ Move to Next System

e 1GA report to Manager
e RTA report to Manager
e s It Intrusion

s Isolate Target

Isolate Source
2.6.1.2 Actors in the System
An actor is anyone or anything that interacts with the system being built. These are
the actors in our system.
o Attacker/User
s Target
e Manager

2.6.1.3 Use cases in Expanded Format

e Use-Case: Generate MLSI

Actors: Attacker/User

Subject: Generate an MLSI

Summary: User will click on the Generate MLSI button and attacker will
perform a malicious action called an MLSI.

Type: Essential, primary

Iutrusion Detection and Response using Mobile Agent Technology 38

Chapter 2 System Analysis

Typical Course of Actions:
1. This use-case will begin when user will access the machine in the network
for which it has no proper privileges.

2. User click the button labeled “ Generate MLSI” on attacker machine.

¢ Use-Case: Monitor MLSI

Actors: Target

Subject: Monitor for MLSIs on the host

Summary: This use-case will monitor all malicious activities of remote/local
users which has totally no privileges or have no proper privileges to access that
particular area of the system to which they are accessing or exceeding their privileges
or rights A

Type: Essential, primary

Typical Course of Actions:

1. Monitor the activities of users.

2. When a malicious action is performed by any user ,it will do an action.

Alternative Courses of Actions:

la . If it is normal activity, ignore it, and keep on monitoring

e Use-Case: Detect MLSI

Actors: None

Subject: Detect an MLSI

Summary: Detect malicious actions of user which are using the network. And are
accessing the target machine without proper privileges.

Type: Essential | Primary

Typical Course of Actions:

I. This Use-Case begins when the Monitor MLSI use-case uses this use-case.

2. ltresponds by sending a message to the manager machine.

Intrusion Detection and Response using Mobile Agem Technology 39

Chapter 2 System Analysis

e Use-Case: Send Report to Manager
Actors: Target
Subject: Send the report to manager
Summary: Sends report to the manager about the malicious activity of the user
which accessed the system from any node in the network and performed any
malicious activity, and penetrated into that area of the target for which he was not
allowed to penetrate.
Type: Primary, Essential
Typical Course of Actions:
1. This Use-Case begins when the Detect MLSI use-case uses this use-case.
2. It responds in a way that it sends a report to the manger machine that a

malicious action is performed.

¢ Use-Case: Dispatch RTA
Actors: Manager
Subject: Dispatch Route Tracing Agent to Target machine
Summary: Manager will dispatch a Route Tracing Agent(RTA) to the target
machine where an MLSI was detected and was reported by the monitoring agent to
the manager.
Type: Primary , Essential
Typical Course of Actions:
1. This use-case begins when the Report to manager use-case reports to the
manager machine.
2. Go to the target machine.
3. See the entries in the information log,
4. 1If information log is empty then start searching the area which was under

attack.

e Use-Case: Search Next Compromised Host
Actors: None

Subject: Search for Next Compromised Host--

Imtrusion Detection and Response nsing Mobile Jgent Technology 40

Chapter 2 Svstem Analysis

Summary: This use case will search the next compromised host which was
compromised by the attacker before accessing the target so that the system can know
which system in the network is source of the malicious action. Because the attacker
never wants to leave its identification. It first compromises the node in the network
which has less security, then by using that system it éompromises the node which has
higher security than that and finally using that compromised host it accesses its
desired host and accesses the area for which it is not allowed.

Type: Essential, Primary |

Typical Course of Actions:

1. This use-case begins when the Dispatch RTA use-case uses this use-case

2. Search for next compromised host.

e Use-Case: Fill Information Table
Actors: None
Subject: Fill Information Log
Summary: This use-case fill information Log which is on target machine.
Information Log is a shared area on every host in the network.
Type: Primary ,Essential
Typical Course of Actions:
1. This use-case begins when the “Search next compromised host” use-case
completes its work .
2. Gather information about next compromised host.

3. Put the information into the information Log.

¢ Use-Case: Create IGA

Actors: None

Subject: Create Information Gathering Agent

Summary: This use-case will gather information about the MLSI. And put that
information in a shared area on the manager machine. That is, after completing its

task it will go the manager machine and put the information in the manager Log,.

Intrusion Detection and Response using Alobile Agent Technology 41

Chapter 2 Svstem Analysis

Depending on the information, Manager will decide whether an intrusion has actually
occurred or it is just a false alarm.
Type: Primary, Essential
Typical Course of Actions:
1. This use-case starts its Work when RTA will fill the information Log.
2. RTA will create information gathering agent.

3. Gather information related to MLSI.

e Use-Case: Move to Next System

Actors: None

Subject: Move Route Tracing Agent to the next compromised host

Summary: Move Route Tracing Agent to the next compromised host when the
task of the route tracing agent has completed.

Type: Primary, Essential

Typical Course of Actions:

1. This use-case will begin when RTA will lcomplete its work.

2. Move to the next compromised host.

e Use-Case: IGA Report to Manager
Actors: None
Subject: IGA Report to Manager
Summary: After gathering information from the target machine about the MLSI,
IGA will go back to the manager machine and will put information in the manager
Log.
Type: Primary, Essential
Typical Course of Actions:
1. This use case will begin when Information Gathering Agent completes its
task on the target machine.
2. Gather information about MLSI on the target system.
3. move to the manager machine.

4. Put the information gathered onto the manager Log.

Intrusion Detection and Response using Mobile Agent Technology 42

Chapter 2 System Analysis

e Use-Case: RTA Report to Manager

Actors: None

Subject: RTA report to the manager machine.

Summary: After Roaming to all the compromised hosts, Route Tracing Agent
will reach to such a machine from where it will not find any information about the
next compromised host. From this system RTA will go back to the manager machine.
And will report about the attacker system.

Type: Primary, Essential

Typical Course of Actions:

1. This use case will start when RTA will complete its task and is on such a
system that if finds no compromised host.

2. Go back to the manager machine.

3. Put the information about the last system(the system from where RTA

came back)

e Use-Case: Is It Intrusion

Actors: Manager

Subject: Decide MLSI whether it is intrusion

Summary: When all RTAs have come back to the manager machine dispatched
from manager, and all the IGAs which were created by the RTAs. And they put the
information on the manager board then manager will decide whether the MLSI was
an intrusion or an event of normal access(false alarm).

Type: Primary, Essential

Typical Course of Actions:

I. This use case will be activated when all the RTAs and IGAs came back to
manager machine.

2. Decide whether the MLSI occurred is an intrusion.

Alternative Courses of Actions:

2a. 1fitis not an intrusion then exit.

Intrusion Detection and Response using Mobile Agent Technology 43

Chapter 2 System Analysis

e Use-Case: Isolate Target

Actors: Manager

Subject: Isolate Target machine

Summary: Cut the TCP/IP connection of the target so that all the network
packets delivered for this particular machine may not come to the machine so that
damage may be minimized.

Type: Primary, Essential

Typical Course of Actions:

1. This use case will be activated when the manager will decide that the
MLSI occurred is an intrusion.

2. Cut the TCP/IP connection of target.

e Use-Case: Isolate Source

Actors: Manager

Subject: : Isolate Attacker machine

Summary: Cut the TCP/IP connection of the Source so that it may not be able to
deliver further packets on the network so that damage may be minimized.

Type: Primary, Essential

Typical Course of Actions:

1. This use case will be activated when the manager will decide that the
MLSI occurred is an intrusion.

2. Cut the TCP/IP connection of Attacker

Intrusion Detection and Response using Mohile Agent Technology 44

Chapter 2 System Analysis

2.6.1.4 Use Case Diagram

Use-Case diagram in Figure 2.10 shows some of the use-cases in the system, some of

the actors in the system, and the relationships between them.

O)
I wses» —)
\\\D@nerate MLSI) ! Y)
, uses . A
Attacker D 'A_,,_,,_,\u ‘/ :_,//' / \
' { Moritor L1 3} HosTarge
e G
e N
{ IsoIa(eAttaoker) suses» /(] JAY
. »V_/—"/' ///
uses»
N VA /
N (DetectMLSt
@olale MaQ\K\ | tusess //Z\
/j — T =Y Isolate Target
«uTs»
Manager \D
ispatches \
T .
Move t
Route Tracing Agent Search :::: Comp. ove to Next sy@)
- k//

Figure 2.10 Use Case Diagram for Intrusion Detection and Response using Mobile Agent Technology

Intrusion Detection and Response using Mobile Agent Teclmology 45

System Analysis

Chapter 2

2.6.2 Conceptual Model
Conceptual Model in Figure 2.11 depicts the concepts found in the domain of the

system. In conceptual model we identify the conceptual (as opposed to physical) objects in

the application.

AttackedHost
-display

Manages Linput

output

4 mgrinput
rmgrOutput

Manager Isolates 1
-display Attatkes
input L Isolates
Loutput

Attacker

-display
-input
-output

Lattack

8
Lt

Figure 2.11 Conceptual Model for Intrusion Detection and Response using Mobile Agent Technology

e

Intrusion Detection and Response using Mobile Agent Technologv

Chapter 3

System Design

Chapter 3 . System Design

3 Design
Design is an iterative process transforming requirements into a “blueprint” for
constructing the software. It is the first step in the development phase for any engineered

product or system. It can also be defined as “the process of applying various techniques

and principles for the purpose of defining a device, a process or a a system in sufficient

\

detail to permit its physical realization.”

The designer’s goal is to produce a model or representation of an entity that will
later be built. The process by which the model is developed combines intuition and
Judgment based on experience in building similar entities, a set of principles and/or

heuristics that guide the way in which the model evolveé, a ultimately leads to a final

design representation.

3.1 Relation of analysis to design

For design, we need analysis results which serves as base information for design.

Infact we explore the analysis in detail and produce design such that it is directly mapped

into coding.

Relationship
Diagram__

The analysis model The design model

Figure 3.1: Relation of Analysis Model to Design Model.

Intrusion Detection and Response using Mobile JAgent Technology 48

Chapter 3 System Design

Figure 3.1 shows the realtion of Analysis model to Design model and the arrows
shows which of the information from the analysis model is necessary for which design.
Data Design is created using the DataDictionary and Entity-Relationship Diagram
information of Analysis model. Archicectural Design is creared using the information
from Data Flow Diagram of the Analysis model. Interface Design is also created using
the infromation from data flow diagram. Procedural Design uses the information from

CSPEC, PSPEC and state-transition diagram of the Analysis model.

3.2 Design Principles

Software design 1s both a process and a model. The design process is a set of
iterative steps that enable the designer to describe all the aspects of the software to be
built. It is important to note, however, that the design process is not simply a cookbook.
Creativé skill, past exprerience, a sense of what makes good software, and an overall

commitment to quality are critical success factors for a competent design.

Basic design principles enable the software engineer to navigate the design process.

The design principles are:

e The design process should not suffer from “tunnel vision”. A good
designer should consider alternative approaches, judging each based on

the requirements of the problem.
¢ The design shoud be receable to the anlysis model.
¢ The design should not reinvent the wheel.
e The design should minimize the intellcetual distance.
e The design should exhibit uniformity and integration.
e The design should be structured to accommodate change.

e The design should be structured to degrade gently, even when aberrant

data, events, or operating coditions are encountered.

o Design 1s not coding, coding is not design.

Intrusion Detection and Response nsing Mobile Agent Technology 49

Chapter 3 System Design

e The design should be assessed for quality as it is being created, not after

the fact.

e The design should reviewed to minimize coneptual errors.

3.3 Design Types

There are four types of Designs.

I. Data Design
2. Architectural Design
3. Interface Design

4. Procedural Design

3.3.1 Data Design

The Data Design transform the information domain model created during analysis
into the data structures that will be required to implement the software. The data objects
and relationships defined in the entity-relationship diagram and the detailed data content

depicted in the data dictionary provide the basis for the data design.

Data Design is the first of four design activities that are conducted during
software engineering. The primary activity during data design is to select logical
representation of data objects identified during the requirement definition and
specification phase. The selection process may involve algorithmic analysis of altemative
structures in order to determine the most efficient design or may simply involve the use

of a set module that provide the desired operations upon some representation of an object.

3.3.2 Architectural Design

The Architectural Design defines the relationship among major structural elements of
the program. This design representation—the modular framework of a computer

program—can be derived from the analysis model(s) and the interaction of subsystem

defined within the analysis model.

Intrusion Detection and Response using Mobile Agent Technology 30

Chapter 3 System Design

3.3.3 Architectural Design Process

Data flow-oriented design is an architectural design method that allows a convenient
transition from the analysis model to a design description of program structure. The

transition from information flow to structure is accomplished as part of a five step

process:
1. The type of information flow is established.
2. Flow boundaries are indicated.
3. The DFD is mapped into program structure.
4. Control hierarchy is defined by factoring.
5. The resultant structure is refined using design measures and heuristics.

3.3.4 Architecture Design of Software

The Program Structure of Intrusion Detection and Response Using Mobile Agent
Technology 1s show in Figures 3.2, 3.3,3.4, 3.5 of DFD level 1 and 2.

Intrusion Detection
and Response
using Mobile
Agent Technology

Information

Manager Gathering Agent

Monitoring Agent

Figure 3.2 Program structure of intrusion detection and response using mobile agent technology

Intrusion Detection and Response using Mobile Agent Technology 51

Chapter 3 System Design

Manager

Respond - Route Tracing Manager Manager
Monitoring Agent Agent Respond to MLSI Log

Collect information
about next
compromised host

Create Information
Gathering Agent

Figure 3.3 program structure of manager

Information
Gathering agent
Collect information Report to manager Putinfoin
manager log

Figure 3.4 Program structure of Information Gathering Agent

h
ro

Intrusion Detection and Response using Mobile Agent Technology

Chapter 3 ' System Design

Monitoring Agent

T T

Report MLS! to

Monitor MLSI Detect MLSI
: manager

Manage Info log

Figure 3.5program structure of Monitoring Agent

3.3.5 Interface Design

The interface design describes how the software communicates within itself, to
systems that interoperate with it, and with humans who use it. An interface implies a flow
of information (e.g. data and/or control). Therefore, the data and control flow diagrams
provide the information required for interface design. But as far as the user-interface 1s

concemed, our software 1s a service and services don’t have user-interface.

3.3.6 Procedural Design

The procedural design transforms structural elements of the program architecture
into a procedural description of software components. Information obtained from the
PSPEC, CSPEC and STD serve as the basis for procedural design. But Intrusion
Detection and Response using Mobile Agent Technology is not a typical apblication
software because it doesn’t have a main() function or starting point as it is present in

typical application software so it is almost impossible to describe it in procedural form.

The design activity is completed here and can easily be mapped in coding or

implementation section which is last activity of the software development process.

Intrusion Detection and Response using Mobile Agent Technology 33

Chapter 3 System Design

3.4 Object-Oriented Design

It includes a process of -object-oriented decomposition and a notation for

representing logical and physical as well as static and dynamic models of the system

under design.
The four layers of object-oriented design pyramid are:

e The Subsystem Layer contains a representation of each of the subsystems that
enable the software to achieve its customer-defined requirements and to
implement the technical infrastructure that supports customer requirements. The
subsystem design is derived by considering overall customer requirements
(represented with use-cases) and the events and states that are externally

observable (the object-behavior model).

o The Class and Object Layer contains the class hierarchies that enable the system
to be created using generalizations and increasingly more targeted specializations.
This layer also contains representations of each object. Class and object design is
mapped from the description of attributes, operations, and collaborations

contained in the CRC model.

e The Message Layer contains the design details that enable each object to
communicate with its collaborators. This layer establishes the external and
internal interfaces for the system. Message design is driven by the object-

relationship model.

¢ The Responsibilities Layer contains the data structure and algorithmic design for
all attnibutes and operations for each object. Responsibilities design 1s derived

using the attributes, operations, and collaborations described in the CRC model.

The design pyramid focuses exclusively on the design of a specific product or
system. It should be noted, however that another “layer” of design exists, and this layer
forms the foundation on which the pyramid rests. The foundation layer focuses on the
design of domain objects (called design patrerns). Domain objects play a key role in

building the infrastructure for the OO system by providing support for human/computer

Intrusion Detection and Response using AMobile Agemt Teclmology 54

Chapter 3 System Design

interface activities, task management, and data management. Domain objects can also be

used to flesh out the design of the application itself.

3.5 Design Patterns

The best engineers in any field have an uncanny ability to see patterns that
characterize a problem and corresponding patterns that can be combined to create a
solution. Throughout the OOD process, a softh}re engineer should look for every
opportunity to reuse existing design patterns (when they meet the needs of the design)
rather than creating new ones.

3.5.1 Describing a Design Patterns

All design pattems can be described by specifying the following information:

¢ The name of the pattern

e The intent of the pattern

e The “design forces” that motivate the pattem

o The solution that mitigates these forces

e The classes that are required to implement the solution

e The responsibilities and collaboration among solution classes

¢ Guidance that leads to effective implementation

e Example source code or source code templates

¢ Cross-references to related design patterns

The design pattern name is itself an abstraction that conveys significant meaning.

once the applicability and intent are understood. Design forces describe the data,
functional, or behavioral requirements associated with part of the software for which the
pattern is to be applied. In addition forces define the constraints that may restrict the

manner in which the design is to be derived. In essence, design forces describe the

environment and conditions that must exist to make the design pattern applicable. The

W
U

Intrusion Detection and Response using AMobite Agenr Feclmology

Chapter 3 System Design

pattern characteristics (classes, responsibilities, and collaborations) indicate the attributes
of the design that may be adjusted to enable the pattern to accommodate a variety of
problems. These attributes represent characteristics of the design that can be searched
(e.g. via a database) so that an appropriate pattern can be found. Finally, guidance

associated with the use of a design pattern provides an indication of the ramifications of

design decisions.

3.5.2 Using Patterns in ‘Design

In an object-oriented system, design patterns can be used by applying two
different mechanisms: inheritance and composition. Using inheritance, an existing design
pattern becomes a template for new subclass. The attributes and operations that exist in

the pattern become part of the subclass.

Composition 1s a concept that leads to aggregate objects. That is, a problem may
reduire objects that have complex functionality (in the extreme, a subsystem
accomplishes this). The complex object can be assembled by selecting a set of design
patterns and composing the appropriate object (or subsystem). Each design pattern is
treated as a black box, and communicates among the patterns occurs only via well

defined interfaces.

3.6 Object-Oriented Design Process’

UML design modeling addresses the structural model, behavioral model,
implementation model, and environmental model views.
3.6.1 Structural Model

Data and functionality are viewed from inside the system. That is, static structure

(classes, objects, and relationships) is modeled.

3.6.2 Whatis a Class?

A class is something that encapsulates information and behavior. Traditionally
we’ve approached systems with the idea that we have the information over here on the

database side, and the behavior over there on the application side. One of the differences

Innusion Detection and Response using Mobile tgent Teclmology 56

Chapter 3 Svstem Design

with the object-oriented approach is the joining of a little bit of information with the
behavior that affects the information. We take a little bit of information and a little bit of

behavior, and encapsulate them into something called a class.

3.6.3 Finding a Class

A good place to start when finding classes is the flow of events for the use-cases.
Looking at the nouns in the flow of events will let us know what some of the classes are.

When looking at the nouns, they will be one of four things:

e Anactor

e Aclass

¢ An attribute of a class

e An expression that is not an actor , class, or attribute

By filtering out all of the nouns except for the classes, we have found classes

identified for our system.

)

Intrusion Detection and Response using Mobile Agent Teclmology 57

Chapter 3 Svstem Design

3.6.3.1 Class Diagram

AftackedHost
-display
Manages input
-output
1 [mgrinput
-mgrOutput
1 +runAttackedHost()

Manager Isolates i

-display Attatkes

-nput ! Isolates
-output

+runManager() 1

Aftacker

-display
-input
-output
-attack
+work()
+attack()

Figure 3.6 class diagram of intrusion detection and response using mobile gent technology

A Class diagram in Figure3.6 is used to display some of the classes and packages
of classes in the system. It gives a static picture of the pieces in the system, and of the

relationships between them.

3.6.4 Behavioral Model

This part of the analysis model represents the dynamic or behavioral aspects of
the system. It also depicts the interactions or collaborations between various structural

elements described in the user model and structural model views.

Intrusion Detection and Response using Mobile [1gewm Technology 58

Chapter 3 System Design

3.6.4.1 Interaction Diagrams

An Interaction diagram shows, step-by-step, one of the flows through a use-case.

There are two types of Interaction diagrams:

e Sequence Diagram represents dynamic behavior which is time oriented. It can

show the focus of control.

e Collaboration Diagram represents dynamic behavior which is message oriented.

It can show the data flow.
3.6.4.2 Sequence Diagram
A Sequence diagram shown in Figure 3.7 is.an interaction diagram, which is

ordered by time; it is read form the top to the bottom.

We can read this diagram by looking at the objects and messages. The objects that

participate in the flow are shown in rectangles across the top of the diagram.
The actor objects, involved in the use-case are also shown in the diagram.

Each object has a lifeline, drawn as a vertical dashed line below the object. A message is
drawn between the lifelines of two objects to show that the objects communicate. Each

message represents one object making a function call of another. Messages can also be

reflexive, showing that an object is calling one of its own operations.

Intrusion Detection and Response using Mobile gemt Technology 59

Chapter 3

System Design

Module;:Manager

T‘

Module; AttackedHost

L]
Module:r\ttacker
MLSt

L}

Report MLSI

> Monitor MLSI

|1

Dispatch RTA

Report

> Create IGA

> Isolate Target

Isolate Attacker

-
1

Isolate Host

> Move to Next Host

Figure 3.7 Sequence Diagram for intrusion detection and response using mobile agent technology

3.6.4.3 State Transition Diagrams

State Transition diagrams in Figures 3.8, 3.9 and 3.10 shows the life cycle of a

single abject, from the time it is created until it 1s destroyed.

Intrusion Detection and Response using Mobile Agem Teclnology

60

Chapter 3 System Design

Generate MLSI

‘ Monitor MLSI ’

Detect MLS!

)
&

Figure 3.8 state transition diagram for the use case Generate MLSI

Move to Machine

@etoct Machine Typhl
o

@ove to Next Synt.er

[(Success)

[(Failure]

Goport to M.n.g.D

Figure 3.9: State Transition Diagram for Use-Case Dispatch RTA

Intrusion Detection and Response using Mobile Agent Technology 61

Chapter 3

System Design

M

————9@3!&1 Machine Typa

[Unknown]) J([Target]

Isolate Attacker

{Fallure]

{Succeass]

te Target

{Fallure]

{Success]

Figure 3.10: State Transition Diagram for Use-Case Isolate Machine

Intrusion Detection and Response using Mobile Agent Technoloyv

62

Chapter 4

Implementation

C l1dpter 4 Implementation

4 Implementation

This i1s very important phase in the software engineering pyradigm because no
matter how efficiently analysis has been done? or how briiliantly the design has been
prepared? Although programming is an outgrowth of analysis and design, all the
programming and implementation skills have to be applied here, because any
inefficiency on part of the programmer will hammer the quality of the software. Another
important aspect of this phase is that, although this phase is succeeded by the testing
phase, but during the implementaion phase the programmer is best equiped for glass box

testing of the software, because at this stage he has the access to the code.

4.1 Implementation Techniques

The following techniques are used during the implementation of our project.

4.1.1 Object-Oriented Programming

Although all areas of object technologies have received significant attention within
the software community, no subject has produced more books, more discussion, and
more debate than object-oriented programming (OOP). Hundreds of books have been

wirtten on C++ and Java programming, and hundreds more are dedicated to less widely

used OO languages.

The software engineering viewpoint stresses OOA and OOD and considers OOP
(coding) an important, but secondary activity that is an outgrowth of analysis and design.
The reason for this is simple. As the complexity of systems increases, the design
architecture of the end product has a significantly stronger influence on its success than

the programming language that has been used. And yet, “language wars” continue to
rage.
4.1.2 Agent Based Programming

In the software engineering context, reuse is an idea both old and new programmers

have stressed upon, since the earliest days of computing, but the early approach to reuse

Intrusion Detection and Response using Mobhile gent Teclmology . 64

Chapter 4 , . Implementation

was ad hoc. Today, complex, high-quality computer-based systems must be built in very

short time periods. This mitigates toward a more organized approach to reuse.

Computer-based software engineering (CBSE) is a process that emphasizes the

design and construction of computer-based systems using reusable software

“components.”

Agents are task oriented objects. When we want to move agents(Mobile agents), we use
such criteria, that, with minimum amount of code, we can do enough work and be able to
complete our task.Actually our emphasis 1s on creating lightweight mobile agents hence

we are using such a tool in which migration of agents across the plateforms is easiest.
4.2 Implementation Tools

Our software is developed using three tools D Agents, TCL | and java. The reason
for selecting these tools is that some work in the background on the system level is done
in TCL and as our work is with Agents ,not simply agents but mobile agents and for the
mobilty of agents we have to use some tool and the tool we have selected is D Agents.
D Agents is an interpreted version of the interpretor of TCL. In the following text we

describe the main reasons of selecting these tools.

4.2.1 D Agents

D Agent is a powerful tool for the rapid development of complex agents that run
on Unix(family) workstations.It is an effective plateform for developing mobile agents
and for the development of small to medium sized applications. As D Agents are
developed in a scripting language TCL , so D Agent’s agents can use all of the standard
'TCL commands as well as special set of commands that are specifically designed as 5
TCL extension(D Agents). These special set of commands allow an agent to migrate an
agent from one machine to another, to create child agents, to communicate with some
other agents, and to obtain the agent’s current network location.In addition,D Agents, like
all TCL based systems, can be extended with user defined commands to create a more

powerful agent system—for example, a set of text processing commands can be made

Intrusion Detection and Response using Mobile Agent Technmology 65

Chapter 4 Implementation

available to all agents at a particular site. This provides developers with the ability to

come up with services for users which can be easily accessed by the agents.

4.2.1.1 Agent Movement

The real power of agents comes with the ability to move from machine to
machine. In D Agents, this migration is accomplished with a single command
agent _jump . Which can appear anywhere in an agent. It captures the current state of the
agent and transfers this image to the server on the destination machine. The server
restores the state image and the agent continues the execution from the command
immediately after the agent jump. In other words agent jump, allows an agent to
suspend its execution at an arbitrary point, transport to another machine, and resume
execution on the new machine at the exact point at which it left off. Once an D Agent’s
agent has migrated to the machine, it can access resources and communicate with other

agents on that machine. Once it finishes its local task, it can migrate to the next machine.

4.2.1.2 Agent Communication

Once an agent is at particular place,it goes about its tasks by cofnmunicating with
other agent at the site. There are two ways for agents to communicate.with each other.
The first is message passing, which uses the traditional send and receive concepts. The
agent_send command sends the message to another agent and agent_receive command
receives the incomming message. The second form of the communication 1is a direct
connection, which is essentially a message stream. An agent establishes a direct
connection with an other agent using the agent_meet command. The two agents then

cxchange the messages over the connection.

4.2.2 TCL

TCL is a string-based command language. The language has only a few fundamental
constructs and relatively little syntax, which makes it easy to learn. The basic

mechanisms are all related to strings and string substitutions, so it is fairly easy to

Intrusion Detection and Response using Mobile Agent Technology 66

Chapter 4 Implementation

visualize what is going on in the interpreter. The model is a little different than some
other languages we already familiar with.
TCL is high level scripting language. It has enjoyed enormous popularity in the
UNIX community. As TCL is interpreted, so it is highly portable and easier to make
secure. It can be embedded in other applications, which allows these applications to
implement part of their functionality with mobile TCL agents. TCL can be extended with
user defined commands. Which makes it easy to tightly integrate agent functionality with
rest of the language and allows a resource to provide a package of TCL commands that
an agent uses to access the resource. A package of TCL commands is more efficient than
encapsulating the resource within an agent and i1s an attractive alternative in certain

application
4.2.2.1 TCL Script as Agents

A D Agents’s agent is a TCL script that run on the top of the modified interpreter
and a TCL extension. The modified interpreter provides the explicit stack and the state
capture routines. The extension provides the set of commands that the script uses to
migrate , communicate, and create child agents.

The most important commands are

® agent begin

® agent _submit

e agent jump

® agent_name

o agent send

* agenl recetve

* ageni meet

® agent accept

e agent end

An agent uses the agent begin command to register with the server and obtain an

identifier in the tlat namespace. An identifier currently consists of the IP address of the

server, a unique integer, and an optional symbolic name that the agent specifies later with

Tmirusion Detection and Response using Mobile Agent Technology 67

Chapter 4 Implementation

the agent name command. The agent submit command is used to create a child agent on
a particular machine. The agent jump command migrates an agent to a particular
machine. The command captures the internal state of the agent, packages the state image
for transport, and sends the state image to the destination server. The server retrieves the
state 1mage, selects a new identifier for the agent and starts a TCL interpreter. The TCL
ihterpreter restores the state image and resumes agent execution at the statement
immediately after the agent jump.

The agent send and agent receive commands are used to send and receive
messages. The agent meet and agent accept commands are used to establish a direct
connection between agents. For direct connections, the source agent uses agent meet to
send a connection request to the destination agent. The destination agent uses

agent accept to receive the connection request and send either an acceptance or

rejection.

4.3 Implemetation of Some Important Functionalities
4.3.1 Monitoring Agent
4.3.1.1 Main Module
/* get manager machine's IP address and owner and user and group */
if (HOME_DIR = util.getTrainds()) == NULL) {

log->write("unable to get home directory.");

exit(-1);

user = util.getldaEnvValue("USER");

log->write("%s\n", user);

group = util.getldaEnvValue("GROUP"),
log->write("%s\n", group);

managerlP = util.getldaEnvValue("MANAGER_IP");
log->write("%s\n", managerlP);

managerPORT = util.getldaEnvValue("MANAGER_PORT");
log->write("%s\n", managerPORT),

Intrusion Detection and Response using Mobile Agem Technology 68

Chapter 4 Implementation

mylP = util. getlP Address(util.getHostname()),
log->write("%s\n", mylP),
owner = util.getldaEnvValue("OWNER");

log->write("%s\n", owner);

if (managerlP == NULL || managerPORT == NULL || owner == NULL ||
user == NULL || group == NULL || myIP == NUL.L.) |

log->write("unable to get default value from config file.");

return(ERR_SETUP_MA);,

/* creat Tcpip instance */
if ((tcpip = new Tcpip(managerIP, (u_short)atoi(managerPORT))) == NULL) {
log->write("unable to create Tcpip instance.");

return(ERR_SETUP_MA);

/* change uid gid */

if (util. switchGroupld(group) < 0) {
log-;write("unable to switch group %s.", group);
return(ERR_SETUP_MA),

}

if (util. switchUserld(user) < 0) {
log->write("unable to switch user %s.", user),

return(ERR_SETUP_MA),

\
J

if (HOME_DIR = util gettlomeDir(user)) == NULL) {

DIurusion Detection and Response using Mobile A gew Technology 69

Chapter 4 ' Implementation

log->write("unable to get user %s's home directory.”, user),

return(ERR_SETUP_MA);

/* change HOME directory */

if (HOME = new char[strlen(HOME_DIR) + 7]) == NULL)
retun(ERR_SETUP_MA);

memset(HOME, "\0', strien (HOME_DIR) + 7);

strcpy(HOME, homes);

strcat(HOME, HOME DIR);

if (putenv(HOME) 1= 0) {

log->write("unable set environment variable \"LANG\".");

return(ERR_SETUP_MA);

/* main loop */

for (;;) {
if ((buf = new char{BUF_MAX + BUF_MAX]) —= NULL)
goto END;

memset(buf, \0', BUF_MAX+BUF MAX);

/* read one filtering log */
if ((read(fp, fingerPrint, BUF_MAX)) <= 0)
goto END;

/* setup client of socket connection */

1=0;

while ((tcpip->setupClient() != SUCCESS) && limiter >=1) {
if (i >= MAX_REPEAT_TIME) goto END;

Intrusion Detection and Response using Mohile Agemt Technology 70

Chapter 4

Implementation

if (debug == 0) {
if (1i>0) {

log->write("ERROR: Unable to connect to manager machine.\n");

log->write("ERROR: After %d sec, Connection request will be sen to

manager ,achine\n", intervalTime[i]);

}

i++;

2

sleep(interval Time[1}),

END:
/* clean up memory */
fingerPrint[0] = "\0";
if (buf '= NULL) delete [] buf;
buf=NULL;
i
delete(tcpip);

}

for (;;) {
if ((read(fd, misi, BUF_MAX)) <= 0)
continue;
#ifdef DEBUG
fprintf(stdout, "mlsi = %s\n", mlsi);
#endif
if (sscanf{mlsi, "%s %s %s %s %os %d",
uid, pid, session_id, audit_id, audit_date, &mlsiflag) < 0)
continue;

#tdef DEBUG

Intrusion Detection and Response using Aobile Agent Technology

71

Chapter 4 Implementation

fprintf(stdout, "%s %es %s %s %s %d\n", uid, pid, audit_id, session_id,
audit_date, misiflag);
#endif

plugin_load(sharedMemory, dtRuleDB,
uid, pid, audit_id, session_id, audit_date, mlsiflag,
managerlP, managerPORT, mylP),

[

L

4.3.1.2 Report of Monitoring Agent to Manager

e

/* send data to manager machine */
res = sscanf(fingerPrint, "%s %s %s %1024c",
uid, pid, session_id, audit_date);
if (res <0) {
tcpip->closeConnect();

goto END;

res = sprintf(buf, "%s %s %os %os %os %os",
uid, pid, myIP, session_id, audit_id, audit_date);
if (res < 0) {
tcpip->closeConnect();
goto END;

4.3.2 Information Gathering Agent

4.3.2.1 Creating Informatin Gathering Agent

Route Tracing Agent will use the follwing to create Information Gathering Agent.

catch any error

Intrusion Detection and Response nsing Mobile Agent Techology 72

Chapter 4 Implementation

if {[catch {

agent_submit $agent (local-ip) —vars machine ~procs iga —script { iga $machine}

agent_end
}error_message]} then {

agent_end.

}

4.3.3 Route Tracing Agent

4.3.3.1 Moving Route Tracing to a machine

Agent_jump machine /*machine is the variable for which Monitoring agent will provide
the value for the first time and then Route Tracing Agent will itself detect where to go

and the ip address of machine will be stored in the variable machine. */

4.3.3.2 Exporting time stamp
sscanf(fl, "%*s %s %s %s %s", month, day, hms, year);

for(1=0;i<12;i1++)
if (strcmp(month, MONTHS[1]) == 0)
break;
dt = (char *)malloc(21);
sprintf{dt, "%s/%02d/%s--%s", year, ++i, day, hms);
return(dt);

4.3.4 Working with log files

4.3.4.1 Initializing a log file
void init_loglist()

{
\

Tntrusion Detection and Response using Mobile Agent Technology 73

Chapter 4 Implementation

inti;

for (i = 0; 1 <= RETURN; i++) {
loglist[i] = (LOGLIST *)malloc(sizeoff LOGLIST)),
loglist[i]->sym = NULL;
loglist[i]->next = NULL;

-

-

4.3.4.2 Resetlog file
for (i = 0; 1 <= RETURN; 1++) {
free(loglist[i]->sym);
for (p = loglist[1}->next; p '=NULL; p=q) {
(= p~~next;
free(p->sym);
free(p);
}
loglist[i}->sym = NULL,;
loglist[i]->next = NULL,;

4.3.4.3 Setlog file
int set_log_list(au_token_t *tok, int type, char *delim, int retopt)
{

char default delim[}=",";

char *d;

char *hoge,

int 1;

char fld[BUF_LENGTH];

LOGLIST *p;

Intrusion Detection and Response using Mobile Agent Teclhnology 74

Chapter 4 Implementation

char time[BUF _LENGTH];

/* define delimitator */
if (delim == NULL) d = default_delim,

else d = delim;

- switch (tok->id)

{
/* AU_ARG */

case (0x2D):
for (p = loglistf ARG}; p->next != NULL; p = p->next)
sprintf(fld, "%d", (unsigned int)tok->un.arg.val);
p->sym = (char *)malloc(strlen(fld) + 1);
strcpy(p-ﬁsym, fld),
p->next = (LOGLIST *)malloc(sizeof(LOGLIST)),
p = p->next,
p->sym = NULL,;
p->next = NULL;
break;

/* AU_ATTR */

case (0x31):
sprintf(fld, "%o0", (unsigned int)tok->un.attr.mode);
loglistfFMOD]->sym = (char *)malloc(strlen(fld) + 1);
strepy(loglistfFMOD]->sym, fld);

strepy(fld, au_uid_to_uname((unsigned int)tok->un.attr.uid, type));
loglistfA_UID]->sym = (char *)malloc(strlen(fld) + 1);
strepy(loglist{A_UID]->sym, fld);

Intrusion Detection and Response using Mobile Agem Technology . 75

Chapter 4 Implementation

strepy(fld, a‘u_gid_to__gname((unsigned int)tok->un.attr.gid, type));
loglist{A_GID]->sym = (char *)malloc(strlen(fld) + 1),
strepy(loglist{A_GID]->sym, fld);

break;

/* AU_EXIT */

case (0x52):
sprintf(fld, "%d", (unsigned int)tok->un exit.status);
loglist[EXIT]->sym = (char *)malloc(strlen(fld) + 1),
strepy(loglist{ EXIT]->sym, fld);
break;

/* AU_HEADER */

case (0x14):
strcpy(fld, au_event_to_char(tok->un.header.event, type));
loglistt EVENT]->sym = (char *)malloc(strlen(fld) + 1),
strcpy(loglistf EVENT]->sym, fld);

strcpy(fld, au_event_to_class(tok->un header.event, type));

set_class_loglist(fld);

strepy(fld, au_time;to_char(tok->un.header.time, type));
hoge = export_timestamp(fld);

strcpy(time, hoge),

free(hoge);,

loglist[TIME]->sym = (char *)malloc(strlen(time) + 1);
strepy(loglist{ TIME]->sym, time);,

break;

/* AU_PATH */
case (0x23):

Intrusion Detection and Response using Mobile Agen Technology 76

Chapter 4 Implementation

loglist{PATH]->sym = (char *)malloc(strlen(tok->un.path.name) + 1),
strepy(loghst[PATH]->sym, tok->un.path.name);
break;

/* AU_RETURN */

case (0x27):
strcpy(fld, au_error_to_char(tok->un ret.retval, type));
loglistfRETURN]->sym = (char *)malloc(strlen(fld) + 1);
strepy(loglistf RETURN]->sym, fld),
break;

/* AU_SUBIJECT */

case (0x24):
sprintf(fld, "%s", au_uid_to_uname(tok->un.subj.auid, type));
loglist{ AUDITID]->sym = (char *)malloc(strlen(fld) + 1);
strepy(loglist{ AUDITID]->sym, fid);

sprintf(fld, "%d", tok->un.subj.sid);
loglist[SESSIONID]->sym = (char *)malloc(strlen(fld) + 1);
strepy(loglist{SESSIONID]->sym, fld); ”

strcpy(fld, au_uid_to_uname(tok->un.subj.euid, type));
loglistfEUID]->sym = (char *)malloc(strlen(fld) + 1),
strepy(loglistf EUID J->sym, fld);

strepy(fld, au_uid_to_uname(tok->un.subj.ruid, type));
loglist{S_UID]->sym = (char *)malloc(strlen(fld) + 1),
strepy(loghst[S_UID]->sym, fld);

strepy(fld, au_gid _to_gname(tok->un.subj.egid, type));
loglist{EGID]->sym = (char *)malloc(strien(fld) + 1);

Inirusion Detection and Response using Mobile Agent Technology 77

Chapter 4 : Implementation

strepy(loglist{ EGID]->sym, fld);

strepy(fld, au_gid_to_gname(tok->un.subj.rgid, type));
loglist[S_GID]->sym = (char *)malloc(strlen(fld) + 1),
strepy(loglist[S_GID]->sym, fld),

sprintf(fld, "%d", tok->un.subj.pid),
loglist[PID]->sym = (char *)malloc(strlen(fid) + 1);
strcpy(loglist[PID]->sym, fld);

if (tok->un.subj.tid.driver == 0) {
loglist[TTY]->sym = (char *)malloc(8);
strcpy(loglist[TTY]->sym, "console");

} else {
sprintf{fld, "%d", tok->un.subj.tid.driver);
loglist{ TTY]->sym = (char *)malloc(strlen(fld) + 1);
strcpy(loghst{TTY]->sym, fld),

}

break;

case (0x3C):
for (p = loglistt EXEC_ARG]; p->next |= NULL,; p = p->next)
p->sym = (char *)malloc(strlen(tok->un.exec_arg.args[0]) + 1),
strcpy(p->sym, tok->un.exec_arg.args[0]);
for (1 = 1; 1 < tok->un.exec_arg.num,; i++) {
p->next = (LOGLIST *)malloc(sizeof{ LOGLIST));
p = p->next;
p->sym = (char *)malloc(strlen(tok->un.exec_arg.args[i]) + 1);
strcpy(p->sym, tok->un.exec_arg. args{i]);

p--next = NULL;

Intrusion Detection and Response nsing Mobile Agent Techology 78

Chapter 4 Implementation

/* AU_TEXT */
case (0x28):
for (p = loglist{ TEXT]; p->next != NULL; p = p->next)
p->sym = (char *)malloc(strlen(tok->un text.data) + 1);
strcpy(p->sym, tok->un.text.data);
p->next = (LOGLIST *)malloc(sizeof{ LOGLIST));
p = p->next;
p->sym = NULL;
p->next = NULL;
break;

/* AU_SOCKET */

case (0x2E):
sprintf(fld, "%d", tok->un.socket Iport),
loglist[L_PORT]->sym = (char *)malloc(strlen(fld) + 1);
strepy(loglist[L._PORT]->sym, fld);

strepy(fld, au_ip_to_char(tok->un.socket.laddr));
loglist{L_ ADDR]->sym = (char *)malloc(strlen(fld) + 1);
strepy(loglist{L_ ADDR]->sym, fld);

sprintf(fld, "%d", tok->un.socket.fport);
loglist{fR_PORT]->sym = (char *)malloc(strlen(fld) + 1);
strepy(loglist{fR_PORT]->sym, f1d),

strepy(fld, au_ip_to_char(tok->un.socket.faddr));
loglist{fR_ADDR]->sym = (char *)malloc(strien(fld) + 1);
strepy(loglist{fR_ADDR]->sym, fl1d);

Intrusion Detection and Response using Mobile Agent Technology 79

Chapter 4 Implementation

break;

/* AU_COMM */

case (0x71):
sprintf(fld, "%d", tok->un_ parent.pid);
loglist[PPID}->sym = (char *)malloc(strlen(fld) + 1);
strcpy(loglist| PPID]->sym, fld);
break;

default:
break;

}
return (SUCC);

4.3.44 Write to Log

void Logging::write(const char * str, ...)
{

va_list param,;

char disp[4096];

char *tmp;

char timestr{1024],

va_start(param, str),

vsnprintf(disp, 4095, str, param);

while ((tmp = (char *)strchr(disp, '\n')))
tmp[0])="";

if (disp[strlen(disp)-1] == "\n")
disp[strlen(disp)-1]1=0;

if (log) {

Intrusion Detection and Response using Mobile Agent Teclmology 80

Chapter 4 Implementation

time tt;

t = time(NULL),
tmp = ctime(&t);

strcpy(timestr, tmp);

timestr[strlen(timestr)-1] = 0;

fprintf(log, "[%s][%d] %s\n", timestr, getpid(), disp);
fflush(log);

} else {
syslog(LOG_NOTICE, disp);

}

va_end(param);

if ((type = checkType(line)) == ERR_LOG_UNKNOWN) return(NULL);
token->type = type,

switch (type) {

“case LOG_SESSION_ID:
strcpy (token->session.arg, "");
res = sscanf(line, "%s %s %d %s %s Yos %os Yod %od %os Yos Yod Yos %1024c¢",
token->session.header, token->session.bsmid,
&(token->session.session_id), token->session.uid,
token->session.gid, token->session.ruid,
token->session.rgid, &(token->session.pid),

&(token->session.ppid), token->session.date,

Intrusion Detection and Response using Mobile Agem Technology 81

Chapter 4

Implementation

token->session.tty, &(token->session.mode),

token->session.cmd, token->session.arg);

if (res <0) return(NULL);

return(token);

case LOG_OPEN:
res = sscanf(line, "%s %os %d %os %os %os %s Yed %s %os Yos Yos %od",
token->open.header, token->open.bsmid,
&(token->open.session_id), token->open.uid,
token->open.gid, token->open.ruid, token->open.rgid,
&(token->open.pid), token->open.date, token->open.path,
token->open.owner, token->open.owner_group,

&(token->open.mode)),

if (res <0) returm(NULL),

return(token);

case LOG_CREAT:
res = sscanf{(line, "%s %s %d %s %s %s %os %d %os %os",
token->creat.header, token->creat.bsmid,
&(token->creat.session_id), token->creat.uid,
token->creat.gid, token->creat.ruid,
token->creat.rgid, &(token->creat.pid),

token->creat.date, token->creat.path);

if (res < 0) return (NULL),

return (token);

case LOG_SYMLINK:

res = sscanf(line, "%s %s %d %os %os %s Yos Yed Yos Yos %os",

Intrusion Detection and Response using Mobile Agent Technology

Chapter 4 Implementation

token->symlink_ header, token->symlink bsmid,
&(token->symlink.sessionTid), token->symlink.uid,
token->symiink.gid, token->symlink.ruid,
token->symlink.rgid, &(token->symlink.pid),
token->symlink.date, token->symlink text,

token->symlink.path);

if (res <0) return(NULL),

return(token);,

case LOG_CH_ATTR:
res = sscanf(line, "%s %s %d %s %s %s %s %d %os Yos %s",
token->ch_attr.header, token->ch_attr.bsnd,
&(token->ch_attr.session_id), token->ch_attr.uid,
token->ch_attr.gid, token->ch_attr.ruid,
token->ch_attr.rgid, &(token->ch_attr.pid),
token->ch_attr.date, token->ch_attr.owner,

token->ch_attr.path);

free(line);

if (res < 0) retum(NULL),

return(token);

case LOG_SESSION:

strcpy(token->sessionT header, strtok(line, ""));

’ ’

strcpy(token->sessionT.bsmid, strtok(NULL, ","));

’)

token->sessionT.session_id = atoi(strtok(NULL, ","));
strcpy(token->sessionT.uid, strtok(NULL, ","));

2 b

token->sessionT.pid = atoi(strtok(NULL, ","));

))

strepy(token->sessionT tty, strtok(NULL, "."));
strcpy(token->sessionT.date, strtok(NULL, ","));

>

Innrusion Detection and Response using Mobile Agent Technology 83

Chapter 4 . Implementation

return(token);

case LOG_CONNECTION:
strcpy(token->connection.header, strtok(line, ","));

> >

strcpy(token->connection.type, strtok(NULL, ","));

>

strcpy(token->connection.bsmid, strtok (NULL, ","));

’

token->connection.session_id = atoi(strtok(NULL, ","));
strcpy(token->connection.uid, strtok(NULL, ","));
token->connection.pid = atoi(strtok(NULL, ","});
strcpy(token->connection. tty, strtok(NULL, ","));
strcpy(token->connection.date, strtok(NULL, ","));

’ ’

return(token);

case LOG_LSOF:
break;

default:
return(NULL);

}
return(NULL);

4.3.5 Manager
#ifdef DEBUG

fprintf{stdout, "log = {\n%s}\n", log);

fprintf(stdout, "intrusion type = %c\n", *log);
#endif

switch(*log) {

case '0";

fprintf(stdout, "!! Root privilege maybe gained Mn"),

Tntrusion Detection and Response using Mobile Agent Techuology &4

Chapter 4 Implementation

break;
case'l"
fprintf(stdout, "!! File maybe overwrited "n"),
break;
case 2"
fprintf(stdout, "!! D-Analysis found intrusi.on Mn");
break;
default;
error_no_exit("lllegal data received"),
break;
b
ipaddr = inet_ntoa(*host);
fprintf(stdout, "!! HOST = %25s !"\n", ipaddr);

if (home_dir = getenv("HOME")) == NULL)
error_exit("unable to get home directory name");

memset(logfn, "\0', sizeof(logfn));

tt = time(NULL);

tp = localtime(&tt);

strftime(logfn, sizeof(logfn), "%Y%m%d%H%M%S.log", tp);

memset(logfile, "\0', sizeof(logfile));

strncpy(logfile, home_dir, strlen(home_dir));

strcat(logfile, "/log/");

strcat(logfile, logfn),

if ((fp = fopen(logfile, "w")) == NULL)
error_no_exit("Cannot open file"),

else

fprintf(stdout, "Check result ----> %s\n", logfile),

for (1 =0;1<65536; 1++) {

Inmtrusion Detection and Response using Mobile Agent Technology 85

Chapter 4 Implementation

if (*log == "\0") break;
fprintf(fp, "%c", *log++);
;
fclose(fp);
// setup signal
signal(SIGTERM, (*signal_handler)),
signal(SIGKILL, (*signal_handler));
signal(SIGSEGYV, (*signal_handler));

if ((childpid = fork()) < 0) {
error_exit("unable to fork child process.\n");
exit(1),
} else if (childpid > 0) {
signal(SIGTERM, signal_handler);,
signal(SIGKILL, signal_handler),
signal(SIGPIPE, signal_handler);

while (wait ((int *) 0) = childpid)

b

exit(0);
} else {
signal(SIGTERM, signal_handler);,
signal(SIGKILL, signal_handler);
signal(SIGPIPE, signal_handler),
alert_manager(); |
exit(0);

——

4.4 Isolating Source/Attacker

if ((tcpip->writeEncrypt(buf, key, pass, owner)) !'= SUCCESS) {

Intrusion Detection and Response using Mobile Leent Teclmology 86
/£ ; ! 4

Chapter 4 Implementation

‘if'(*log =="\0") break;
fprintf{fp, "%c", *log++);
}
fclose(fp);
// setup signal
signal(SIGTERM, (*signal_handler));
signal(SIGKILL, (*signal_handler)),
signal(SIGSEGYV, (*signal_handler)),

if ((childpid = fork()) <0) { _
error_exit("unable to fork child process.\n"),
exit(1);
} else if (childpid > 0) {
signal(SIGTERM, signal_handler);
signal(SIGKILL, signal _handler);
signal(SIGPIPE, signal _handler);

while (wait ((int *) 0) != childpid)

b

exit(0),
} else {
signal(SIGTERM, signal_handler);
signal(SIGKILL, signal handler),
signal(SIGPIPE, signal _handler);
alert_manager(),
exit(0);
j

4.4 Isolating Source/Target

if ((tcpip->writeEncrypt(buf, key, pass, owner)) = SUCCESS) {

Intrusion Detection and Response using Mobile Agent Technology 86

Chapter 4

Implementation

tcpip->closeConnect();
goto END;

}

/* close connection */

tepip->closeConnect();

[utrusion Detection and Respouse using Mobile Agent Technology

87

Chapter S

Testing

Chapter 5 Testing

5 Testing

The overall objective of the testing process is to identify the maximum number of
errors in the code with a minimum amount of efforts. Finding an error is thus considered

a success rather than failure. On finding an error, efforts are made to correct it.

5.1 Testing Process

Test consists of a number of test cases, where different aspects of the part of the
project under test are checked. Each test case tells what to do, what data to use, and what
results to expect. When conducting the test, the results including deviations from the
planned test cases are not 1n a test protocol. Normally a deviation indicates an error in the
system (although some times the test case is wrong, and the system is right). An error is
noted and described in a test report for removal or directly removed by the programmer

who developed that part.

5.2 General Types of Errors

Error can be of following types:

1. Functional error (e.g. function is not working correctly or missing).

2. Non-Functional error (e.g. performance is slow)

3. Logical error (e.g. error in algorithm, user interface errors is not considered as a

logical error).

5.3 Testing Strategies

A strategy for software testing may be viewed as the spiral (Figure 5.1). Unit
testing begins at the vortex of the spiral and concentrates on each unit (i.e., component)
of the software as implemented in source code. Testing progresses by moving outward
along the spiral to integration testing, where the focus is on design and the construction of
the software architecture. Taking another tum outward on the spiral, we encounter
validation testing, where requirements established as part of software requirements

analysis are validated against the software that has been constructed. Finally, we arrive at

Intrusion Detection and Response using Mobile Agent Technology 89

Chapter 5 ‘ Testing

system testing, where the software and other system elements are tested as a whole. To
test computer software, we spiral out along stream-lines that broaden the scope of testing

with each turn.

Svstem Testing

Validation Testina
Intearation Testing

Unit Testina

Code

Desian
Reauirements

Svstem Enaineerinag
Figure 5.1: Testing Strategy

5.3.1 Unit Testing

Unit testing focuses verification effort on the smallest unit of software design—the
software component of module. Using the component-level design description as guide,
important control paths are tested to uncover errors within the boundary of the module.
The relative complexity of tests is uncovered errors is limited by the constrained scope
established for unit testing. The unit test is white-box oriented, and the step can be

conducted in parallel for multiple components.

5.3.2 Integration Testing

Integration testing is a systematic technique for constructing the program structure
while at the same time conducting tests to uncover errors associated with interfacing. The
objective is to take unit tested components and build a program structure that has been

dictated by design.

Intrusion Detection and Response nsing Mobile Agen Technology 90

Chapter 5 Testing

5.3.2.1 Top-down Integration

Top-down integration testing is an incremental approach for construction of
program structure. Modules are integrated by moving downward through the control
hierarchy, beginning with the main control module (main program). Modules
subordinates (and ultimately subordinate) to the main control module control module are

incorporated into the structure in either a depth-first or breath-first manner.

5.3.2.2 Bottom-up Integration

Bottom-up integration testing, as the name implies, begins construction and
testing with atomic modules (i.e., components at the lowest levels in the program
structure). Because components are integrated from the bottom up, processing required

for components subordinate to a given level is always available and the need for stubs is

eliminated.

5.3.2.3 Regression Testing

Each time a new module is added as part of integration testing, the software
changes. New data flow paths are established, new /O may occur, and new control logic
is invoked. These changes may cause problems with functions that previously worked
flawlessly. In the context of an integration test strategy, regression testing is the re-
execution of some subset of tests that have already been conducted to ensure that changes

have not propagated unintended side effects.

5.3.3 Validation Testing

Validation can be defined in many ways but a simple definition is that validation

succeeds when software functions in a manner that can be reasonably expected by the
customer.
5.3.4 System Testing

System testing is a series of different tests whose primary purpose is to fully

exercise the computer-based system. Althougli each test has a different purpose, all work

futrusion Detection and Response nsing Mobile Agent Technology 91

Chapter 5 Testing

to verify that system elements have been properly integrated and perform allocated

functions.

5.3.4.1 Security Testing

Security testing attempts to verify that protection mechanisms built into a system

will, in fact, protect it from improper penetration.

5.3.4.2 Stress Testing

Stress testing executes a system in a manner that demands resources in abnormal

quantity, frequency, or volume.

5.3.4.3 Performance Testing

Performance testing is designed to test the run-time performance of software within
the context of an integrated system. Performance testing occurs throughout all steps in the
testing process. Even at the unit level, the performance of an individual module may be
assessed as white-box tests are conducted. However, it is not until all system elements are

fully integrated that the true performance of a system can be ascertained.

5.4 Object-Oriented Testing Strategies

The classical strategy for testing computer software begins with “testing in the
small” and works outward “testing in the large.” We begin with unit testing, then
progress towards integration testing, and culminate with validation and system testing. In
conventional applications, unit testing focuses on the smallest program unit—the
subprogram (e.g., modules, subroutine, procedure, component). Once each of these units
has been tested individually, it is integrated into a program structure while a series of
regression tests are run to uncover errors due to interfacing between the modules and side
effects caused by the addition of new units. F inally, the system as a whole is tested to

ensure that errors in requirements are uncovered.

5.4.1 Unit Testing in the OO Context

Class testing for OO software i1s equivalent to unit testing for conventional

software. Unlike unit testing of conventional software, which tends to focus on the

Intrusion Detection and Response using Mobile Agent Technology 92

Chapter 5 Testing

algorithmic detail of a module and the data that flow across the module interface, class
testing for OO software is driven by the operations encapsulated by the class and the state

behavior of the class.

5.4.2 Integration Testing in the OO Context

Because object-oriented software does not have a hierarchical control structure,
conventional top-doWn and bottom-up integration strategies have little meaning. In
addition, integrating operations one at a time into a class is often impossible because of
the “direct and indirect interactions of the components that make up the class”.

There are two different strategies for integration testing of OO systems:

54.2.1 Thread-based Testing

Thread-based testing, integrates the set of classes required to respond to one input

or event for the system. Each thread is integrated and tested individually.

5.4.2.2 Use-based Testing

Use-based testing, begins the construction of the system by testing those classes
(called independent classes) that use very few (if any) of server classes. After the
independent classes are tested, the next layer of classes, called dependent classes that use
the independent classes are tested. This layer of testing layers of dependent classes

continues until the entire system is constructed.

54.2.3 Cluster Testing

Cluster testing is one step in the integration testing of QO software. Here, a
cluster of collaborating classes (determined by examining the CRC and object-
relationship model) is exercised by designing test cases that attempt to uncover errors in

the collaborations.

Intrusion Detection and Response using Mobile Agent Technology 93

Chapter 5 Testing

5.4.3 Validation Testing in the OO Context

At the validation or system level, the details of class connections disappear. Like
conventional validation, the validation of OO software focuses on user-visible actions

and user-recognizable output from the system.

5.5 Test Plan

Test plan provides an overview of the testing effort for the product.

5.6.1 Intrusion Detection and Response Test Plan

e Introduction

Our testing effort descriptions summarize IEEE 829-1983 for Software Test
Documentation, which attempts to define a common set of test documents, to be

used across the industry.

o Test Items

Manager

Monitoring Agent
Route Tracing Agent

Information Gathering Agent

u A~ W N

Isolating the Target
6. Isolating the Source

« Features to be tested
Our Test Design Specification will summarize the features to be tested

o Features Not to be tested

1. Unit testing of the single modules can’t be performed. Because a single
module is not a stand-alone program. Stub software must be developed for

each unit test,

2. Comparison testing can’t be performed for the items: Isolating the
target and isolating the attacker. Because comparable software are not

available.

Intrvsion Detection and Response using Mobile Agent Technology 94

Chapter 5 Testing

3. Cyclomatic Complexity metric in the context of the basis path testing
method can’t be performed. Because the there are too many independent
paths

o Items Pass/Fail Criteria

Item will be considered as pass if the test lead to an expected result or the
behavior of the module is according to expectations. If otherwise the item will be

considered as failed.

¢ Suspension Criteria and Resumption Requirements

If the test leads to a BSOD (Blue Screen of Death) or a severe error message from
the operating system or a lethal software crash, further testing will be ceased. The

test will be redone, incase the bug can’t be reproduced.
e Test Deliverables

None

« Environment Needs

A Pentium® 111 or higher machine.
TCL 7.4 or higher

D Agents Ver 2.1 or higher

Sun Platform JDK for linux
Red-Hat Linux 7.2 (Family)

5.6 Test Design Specification

This specifies how a feature or group of features will be tested according to Standard 829.

Intrusion Detection and Response using Mobile Agent Technology 95

Chapter 5

Testing

5.6.1 Intrusion Detection and Response Test Design Specification
e Features to be tested

This specification includes

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

Stability of intrusion detection and response using mobile agent tech.
Validation of intrusion detection and response using mobile agent tech

User interface aspects of intrusion detection and response using mobile

agent tech

Performance issues of intrusion detection and response using mobile

agent tech

Scenarios and use-cases of intrusion detection and response using

mobile agent tech

Stability of Monitoring Agent

Validation of Monitoring Agent
Performance issues of Monitoring Agent
Stability of Route Tracing Agent
Validation of Route Tracing Agent
Performance issues of Route Tracing Agent
Stability of Information Gathering Agent
Validation of Information Gathering Agent
Performance issues of Information Gathering Agent
Stability of Manager

Validation of Manager

Performance issues of Manager

¢ Features not to be tested

Our test case specification (section 5.7) defines each test associated with this

design.

Intrusion Detection and Response using Mobile Agent Technology 96

Chapter 5 Testing

L Feature Pass Fail Criteria

A feature or a combination of features will be considered as pass if the tests lead to
an expected result, or the behavior of the module is according to expectations. If

otherwise the feature will be considered as failed.
5.7 Test case specification

This defines a test case. According to the standards 829, the test case specification

includes the following sections.
5.7.1 Load test for Manager
Test Items
1. Manager

Input Specification

None

Output Specification

None
Environmental Needs
A Pentium® I11 or higher machine.
Red Hat Linux (Family)

Special Procedural requirements

None

Intercase Dependencies

None

Inrrusion Detection and Response using Mobile Agent Technology 97

Chapter 5

Testing

5.7.2 Load Test for Target

Test Items
Target
Monitoring Agent

Input Specification

Attack from attack

Output Specification

None
Environmental Needs
A Pentium® II1 or higher machine.
Red Hat Linux (Family)

Special Procedural requirements

None

Intercase Dependencies

None

5.7.3 Race Condition Test for Attacker

Test Items

Attacker

Input Specification

None

Output Specification

None

Imtrusion Detection and Response using Mobile Agent Technology

9%

Chapter 5 Testing

Environmental Needs
A Pentium® 111 or higher machine.
Red Hat Linux (Family)

Special Procedural requirements

None

Intercase Dependencies

None

5.7.4 Race condition Test for Monitoring Agent
Test Items

Monitoring Agent

Input Specification

None

Output Specification

None
Environmental Needs
A Pentium® 111 or higher machine.
Red Hat Linux (Family)

Special Procedural requirements

None

Intercase Dependencies

None

Intrusion Detection and Response using Mobile Agent Technology 99

Chapter 5 ' Testing

5.7.5 Stress Test for Manager

Test Items

Manager
Input Specification
We simultaneously executed many disk intensive applications demanding
resources in abnormal quantity, frequency, or volume.

Qutput Specification

None
Environmental Needs
A Pentium® I or higher machine.
Red Hat Linux (Family)

Special Procedural requirements

None

Intercase Dependencies

None

5.7.6 Performance Test for Manager
Test Items

Manager

Input Specification

None

Output Specification

None

Intrusion Detection and Response using Mobile dgent Teclmology 100

Chapter 5 Testing

Environmental Needs
A Pentium® 111 or higher machine.

Red Hat Linux (Family)

Special Procedural requirements

None

Intercase Dependencies

None
5.7.7 Performance Test for Route Tracing Agent
Test Items
Route Tracing Agent

Input Specification

None

QOutput Specification

None
Environmental Needs
A Pentium® 111 or higher machine.
Red Hat Linux (Family)

Special Procedural requirements

None

Intercase Dependencies

None

Intrusion Detection and Response using Alobile . lgent Technology 101

Chapter 5

Testing

5.7.8 Performance Test for Information Gathering Agent

Test Items

Information Gathering Agent

Input Specification

None

Output Specification

None
Environmental Needs
A Pentium® II1 or higher machine.
Red Hat Linux (Family)

Special Procedural requirements

None

Intercase Dependencies

None

5.7.9 Performance Test for Monitoring Agent

Test Items

Monitoring Agent

Input Specification

None

Output Specification

None
Environmental Needs

A Pentium® II1 or higher machine.

Intrusion Detection and Response using Mobile Agent Technology

102

Chapter 5 Testing

Red Hat Linux (Family)

Special Procedural requirements

None

Intercase Dependencies

None
5.7.10 Class Test for IDRMAT
Test Items
Intrusion Detection and Response using Mobile Agent Technology

Input Specification

None

Output Specification

None
Environmental Needs
A Pentium® I or higher machine.
Red Hat Linux (Family)

Special Procedural requirements

None

Intercase Dependencies

None

5.7.11 Use Based Test for IDRMAT

Test Items

Intrusion Detection and Response using Mobile Agent Technology

Intrusion Detection and Response using Mobile Agent Technology 103

Chapter 5

Testing

Input Specification

None

Output Specification

None
Environmental Needs
A Pentium® II1 or higher machine.
Red Hat Linux (Family)

Special Procedural requirements

None
Intercase Dependencies
Class based test for IDRMAT
5.7.12 Regression Based Test for IDRMAT
Test Items
Intrusion Detection and Response using Mobile Agent Technology

Input Specification

None

Output Specification

None
Environmental Needs
A Pentium® II1 or higher machine.
Red Hat Linux (Family)

Special Procedural requirements

None

Inmtrusion Detection and Response using Mohile Agent Technology

104

Chapter 5 Testing

Intercase Dependencies
Use based test for IDRMAT
5.7.13 Cluster Test for IDRMAT
Test Items
Intrusion Detection and Response using Mobile Agent Technology

Input Specification

None

Output Specification

None
Environmental Needs
A Pentium® 111 or higher machine.
Red Hat Linux (Family)

Special Procedural requirements

None
Intercase Dependencies
Regression based test for IDRMAT
5.7.14 Behavior Test for IDRMAT
Test Items

Intrusion Detection and Response using Mobile Agent Technology

Input Specification

None

Output Specification

None

Intrusion Detection and Response using Mobile lgent Technology 105

Chapter 5 Testing

Environmental Needs
A Pentium® [1I or higher machine.

Red Hat Linux (Family)

Special Procedural requirements

None
Intercase Dependencies
Cluster based test for IDRMAT
5.7.15 Security Test for IDRMAT
Test Items
Intrusion Detection and Response using Mobile Agent Technology

Input Specification

None

Output Specification

None
Environmental Needs
A Pentium® TI1 or higher machine.
Red Hat Linux (Family)

Special Procedural requirements

None
Intercase Dependencies

Behavior test for [DRMAT

Intrusion Detection and Response using Mobile Agent Teclmology 106

Chapter 5

Testing

5.7.16 User Interface Test for IDRMAT

Test ltems

Intrusion Detection and Response using Mobile Agent Technology

Input Specification

None

Output Specification

None
Environmental Needs
A Pentium® 111 or higher machine.
Red Hat Linux (Family)

Special Procedural requirements

None
Intercase Dependencies
Security test for IDRMAT
5.7.17 Scenario Based Test for IDRMAT
Test Items

Intrusion Detection and Response using Mobile Agent Technology

Input Specification

None

Output Specification

None
Environmental Needs

A Pentium® 111 or higher machine.

Intrusion Detection and Response using Mobile lgem Teclnology

107

Chapter 5

Testing

Red Hat Linux (Family)

Special Procedural requirements

None
Intercase Dependencies
User interface test for IDRMAT
5.7.18 Random Test for IDRMAT
Test Items
Intrusion Detection and Response using Mobile Agent Technology

Input Specification

None

Output Specification

None
Environmental Needs
A Pentium® M1 or higher machine.
Red Hat Linux (Family)

Special Procedural requirements

None
Intercase Dependencies

Scenario based test for IDRMAT

Intrusion Detection and Response using Mobile Agent Teclmology

108

Chaptef 6

Conclusion

Chapter 6 conclusion

6 Conclusion

Mobile agent technology offers much to the field of intrusion detection and
response. The idea of mobile and autonomous components intuitively seems useful in
intrusion detection aI{d response and many other applications. However, it 1s difficult to
realize the benefits of mobile agent technology in practice. Despite these difficulties, the
technology appears to provide valuable extensions to current capabilities. Although the
barriers to creating practical mobile agent systems are high, the ability to move a running
program from one hardware platform to another is a useful feature. Ultimately, as the
security, performance, emerging technology, and standards barriers that inhibit this
technology fall, mobile agents will enter mainstream use.

There are three main research areas for using MAs to do intrusion detection
. Performance enhancements
2. Intrusion detection design improvements
3. Response improvements
Performance of an intrusion detection and response can be enhanced by creating light
weight mobile agents because time is most critical constraint in security applications.
Within design improvements there are three categories of research
1. New detection paradigms
2. New architecture paradigms
Improvements over existing designs
Further, the area of responding the detected intruders at network level is nearly untouched
yet. Work is required on this area also. To respond the detected attack, response system
may be automated because there is no such advantage of detecting an attack without

responding it in an automated way at computer speed so that damage may be minimized.

Imrusion Detection and Response using Mobile Agent Technology 110

References and Bibliography

Intrusion Detection and Response using Mobile Agent Technology References and Bibliography

7 References and Bibliography

1. James P Anderson, “Computer Security Threat Monitoring and Surveillance,”
Technical Report, James P. Anderson Co., Fort Washington, PA, April 1980.

2. Dorothy E. Denning, “An Intrusion Detection Model,” IEEE Transactions on
Software Engineering, Vol. SE-13, No. 2, pp. 222-232, February 1987.

3. Stephen E. Smaha, “Haystack: An Intrusion Detection System, ” Fourth
Aerospace Computer Security Applications Conference, Orlando Florida, pp.
37-44, December 1988.

4. Teresa F. Lunt and R. Jagannathan, “A Prototype Real-Time Intrusion-
Detection Expert System,”lEEE Symposium on Security and Privacy, April
1988.

5. Michael M. Sebring et ali, “Expert Systems in Intrusion Detection: A Case
Study,” National Computer Security Conference, pp. 74-81, October 1988.

6. L.Todd Heberlein, G.V. Dias, K. N. Levitt, B. Mukherjee, J. Wood, D.
Wolber., “A Network Security Monitor,” Procceedings of the Symposium on
Research in Security and Privacy, pp. 296-304, May 1990.

7. Biswanath Mukherjee, L. Todd Heverlein, and Karl N. Levitt, “Network
Intrusion Detection,” IEEE Network, pp. 26-41, May/June 1994.

8. Frincke, D., Don Tobin, Jesse McConnell, Jamie Marconi, Dean Polla, “A
Framework for Cooperative Intrusion Detection,” National Information
Systems Security Conference, pp. 361-373, October 1998.

9. Gregory B. White, Eric A. Fisch, and Udo W. Pooch. “Cooperating Security
Managers: A peer-based intrusion detection system,” IEEE Network, 10(1),
pp. 20-23, January/February 1996.

10. W. Jansen, P. Mell, T. Karygiannis and D. Marks “Mobile agents in Intrusion
Detection”, proceedings of the 12" annual Canadian Information Technology
Security Symposium, Ottawa, Canada, June 2000

11. “Lightweight Agents for Intrusion Detaction” By guy Helmer, Johnny
S.K.Wong, Vasant Honavar,Les Miller Dapartment of computer Science

Lowa State Vniversity November 2,2000

2

Intrusion Detection and Response using Mobile Agent Technology References and Bibliography

12. C. A. Carver,J. M. D. Hill, J. R. Surdu, and U. W. Pooch, “A Methodology
for using Intelligent Agents to provide Automated Intrusion Response,” in
Proceedings of the IEEE Systems, Man, and Cybemetics Information
Assurance and Security Workshop, West Point, NY, June 6-7, 2000.

13. Wayne Jansen, Tom Karygiannis, “Mobile Agent Security”, Computer
Security Division, NIST Special Publication 800-19, june 2001

14. Wayne A. Jansen, “Intrusion detection with mobile agents”, National Institute

of Standards and Technology, April,2001

Books
15. Software Engineering A Practitioner’s Approach (Fourth Edition) by Roger S.

Pressman 1992, McGraw-Hill Companies Inc.

16. Mobile Agents By William T. Cockayne and Michael zyda Manning
Publishing Co.

Other

17. Biometric Security System Technology Page.

Research Paper

Second National Workshop on
Trends in Information Te‘chnology
(NWTIT 2003)

15— 16 November 2003

Note:-Our paper is selected on 30" Number in the following list

Level | selection means the work will be presented in the NWTIT as an
invited lecture. lts title and name of authors will be included in the book of
proceedings but the paper will not be part of the publication.

Level 2 selection means the work will be presented in the NWTIT and the
paper be published in the book of proceedings. Printing of the book will be delayed a
little after the commencement of NWTIT in order to give time to the authors for
improving the write-up. Meeting of the authors will be arranged with the paper
referees during the workshop to discuss the problems and possible improvements in
their papers. :
Referees from PJIT will select the papers to be published in PJIT. We call this Level
3 selection.

Hence our objective is to improve the standard of research and provide

training to the young researchers rather than keeping them away from the process by
strictly rejecting the papers.

Sr.
No. [Title of Paper Author (s) Result

Intrusion Detection and
30 |Response Using Mobile
Agent Technology

Muhammad Ashraf Nadeem |Selected
Muhammad Sher Level 2

fmj

Intrusion Detection and Response using Mobile Agent Technology

Muhammad Ashraf Nadeem
Department of Computer Science,
International Islamic University,
Islamabad
Anadeem_ch@yahoo.com

Abstract

Today the computer security

community is in search of novel solutions to
achieve efficient detection and response
mechanisms. It is especially because attackers
intervene in an automated way, at computer
speed. Therefore, there is need of such intrusion
detection and response systems, which detect
and respond at the same speed so that damage
may be minimized.
‘We have designed an intrusion detection and
response system prototype based on mobile
agents. Our agents travel between systems in a
network, obtain information, classify &
correlate the information and report to the
manager of the intrusion detection and response
system (IDRS) which is responsible for
responding the attack.

1. Introduction

The number of information warfare
attacks is increasing day by day and are
becoming increasingly sophisticated. Annual
rcports {roin the Computer Emergency Responsc
Team (CERT) indicate a significant increase in
the number of sccurity incidents cach ycar. Fig |
shows the rise in computer security incidents.
Only six incidents were reported in 1989 and

over 8200 were reported in 1999(12].

: T T T T T T T v 0
1089 1930 1991 1992 1993 1994 1935 1996 1997 1998 1999

Year

Figurc 1: CERT Rcportcd Incidents per Ycar

Muhammad Sher
Department of Compulter Science,
International Islamic University,

Islamabad
Msher3 13(@yahoo.com

This paper oflcrs a methodology of using mobile
agents for intrusion detection and response and
we proposc an cfficient solution for Intrusion
detection and response. After providing some
background information, we specify the
problems found in current intrusion detection
systems and propose a potential solution offered
by mobile agents.

This research will develop mobile agent
architecture for distnbuted detection and
response to attacks in large- scale enterprise
networks. It will exploit the flexibility of mobile
agents to more efficiently detect and respond to
intrusions by significantly reducing the time to
do so because time is most critical constraint in
computer sccurity. The architecture to be
developed is application architecture and is
operating system dependent (i.e. Linux) and
mobilc agent system architecture (D’s Agents).
We also have a look at new approaches for
aulomating response lo an intrusion, once
detected.

2. Background

The concept of intrusion detection was
first proposed by James Anderson [1] in 1980,
did not blossom until 1987 when Dorothy
Dcnning published her seminal intrusion
detection model [2]. Early IDS implementations
employ a monolithic architccture whereby data
collected at a single host was analyzed at a
central point. at or adjacent to the point of
collection [3. 4. 5). Because monitoring account
aclivity on i single host docs not reveal attacks
involving multiple hosts. IDS dcsigners
subscquently developed network-based 1DSs
that usc a model of the nctwork traffic to infer
anomalics or misuscs from low-level network
packets travcling among hosts [6]. Nctwork-
based 1DSs can be characierized as a change in

perspective from host-centric o network-centric
dctection. A nelwork-centric approach resolves a
number of performance and integrity problems
as well as problems associated with the reliance
on audit trails. |7].

The US govermment provided
significant funding for research in [DSs realizing
that itls computer systems werc insecure.
Hundred of millions of dollars have probably
been spent on IDS rescarch within last fiftcen
vears | 11].

Ncarly all present-day commercial
IDSs follow a hierarchical architecturc.
Information gathering occurs at leal nodes,
nctwork-based or host-based collection points.
Event information is passed to internal nodes
that aggregate information from multiple leafl
nodces. Further aggregation, abstraction. and data

~reduction can occur at higher intcrnal nodes

antil the root nodc is rcached. The root is a
command and control systcmm that cvaluatcs
attack situations and issues responses. The root
typically rcports to an operator console wherc an
administrator can manually asscss status and
issuc commands.

oai
S
——» = Intrusion Information Flow

Figurc 2: Distributed Hierarchical
Intrusion Detection Architecture

Huinan Run Security

} Consoles

} Command and
Control Nodcs

} Aggregation Nodes

intrusion Detection
} Nodcs

In general, hicrarchical structures result in
cflicicnt communications, whercby refined
information filters upward in the hierarchy and
control downward. The architecture is excellent
for creating scalable distributed IDSs with
central points of administration, but somewhat
rigid becausc of the tight binding bcetween
functionality and lincs of communication that
tend to cvolve. While IDS components tend
implicitly toward a hierarchy, this tendency is
not strict. Communications can occur. in
general. between any (vpe of components and
not solcly on a onc-to-onc or masier/slave basis.
For cxample. to improve notification and
responsc. a collection unit may dircctly
communicate a critical event to the command
and control node. as well as an aggregation
node. Morcover. peer relationships among

command and control nodes arc needed when
diffcrent administrations manage portions of an
cnlerprise network. or distinct and scparate
nctworks |8].

At Icast onc 1DS design. Coopcrating
Sccurity Managers [9]. uscs a network structure.
where information flows from any node to any
other node, by consolidating the collection,
aggregation, and command and control functions
inlo a single component residing on every
monitored system. Any significant events
occurring at onc system that stem from a
conncction originating from another are reported
back to the system manager of the originating
svstcm by the sccurity manager at the system
where the cvent occurred. In situations where
the originating svstcm of the connection is an
intermediate nodc in a communication chain. the
system manager is obliged o rcport onward to
the next system manager in the chain. Becanse
of e potential for unconstrained
comnmwunication flow, network structures, in
gencral. tend to suffer from communications
incfficicncy when taken to the extreme (i.c..
evervone directly communicating with everyone
clsc). They can however, compensate for this
incfficicncy with flexibility in function.

3. Shortcomings of Current
Intrusion Detection Systems

Present-day IDSs arc less than perfect.
Devclopers continuc (o address shoricomings
through the improvement and refinement of
existing techniques, but some shoricomings are
inherent in the way IDSs arc constructed {11,
12]. The most common shoricomings include
the foflowing:

1. Lack of EfTicicncy
High Number of False Positives
Burdensomc Maintenance
Lumited Flexibility
Vulncrability to Direct Attack

EERS

4. Advantages of Applying Mobile
Agents

Mobilc agent tcchnology can potentially
overcome a number of limitations intrinsic (o
existing IDSs that cmploy only static
components. For cxample. mobility and
autonomy make them ideal for detcction
schemes that follow a “cop on (he beat”
“immune system.” or other real-world

model [10] A number of advantages of using
mobile agent computing paradigms have been
proposcd and are relevant lor intrusion detection
svstems| 13, 14].

4.1. Overcoming Network Latency

Mobile agents can be dispatched to carry out
opcrations directly at the remote point of
interest, allowing them to respond in real time to
changes in their cnvironment. In addition (o
detecting and diagnosing potential network
intrusions. mobilc agents can provide
appropriatc responsc mechanisms. Such actions
include gathering attack information sent to or
cmiticd by the target of an attack. shutting down
or isolating a systcm undcr attack to protect it
from further damage. tracing the path of an
attack, and shutting down or isolating an
altacker’s system.

4.2. Reducing Network Load

Instcad of transferring the data across the
nctwork, mobile agents are dispatched to the
machine on which the data resides, essentially
moving the computation (o the data, instcad of
moving the data to the computation, thus
reducing the network load. A side benefit where
confidentiality is a concern, is the efficiency of
moving an encrypted agent and its refined data
versus all of the raw data in encrypted form.

4.3. Autonomous and Asynchronous
Execution

For large distributed systems the ability of the
systcin to continue o operatc when portions of it
are destroyed or become isolated is essential.
Mobilec agents can exist and function
independently from the creating platform,
making them useful as IDRS components.

4.4. Dynamic Adaptation

The ability for mobilc agent systcms (0 scnusc
their environment and react to changes is useful
in intrusion detection. Agents niay move
clsewhere to gain beller position or avoid
danger. clone themselves for redundancy and
paraliclism. or nurshal — other agents for
assistance. When combined with autonomous
and asynchronous exccution. these
characteristics Facilitate the building of robust
and fault-tolcrant systcms.

Besides these advantages. mobile agents
allow for a natural way to structure and design
an IDRS. The agent oricntation and mobility
considcrations provide an cffective way for
organizing data and functionality. Although our
intcrest is in applying mobilc agents to intrusion
dctection and response. it is unlikely that full
mobility of all components would ever be
cffective in practice, duc lo the associated
overhead. Therefore, some IDRS components
may cnd up as static agents or remain static oncc
deploved. Doing so allows the software agent
paradigm to be applicd and mobility to be uscd
only whcre appropriatc. Other practical factors
such as trust rclationships, performance
capabilitics. and location may also restrict
mobilc agents (o a subsct of available agent
platforms.

5. Proposed System

In developing Intrusion detection and responsc
system (IDRS). wc proposc a ncw intrusion
detection and responsc model. IDRS will reduce
the ovérhead of the system and detect new or
unknown forms of attack. Our goal is not to
detect all intrusions preciscly but to detect many
intrusions cfficicntly. To accomplish this goal,
our systcm works by watching events that may
relate to intrusions named as Marks Left by
Suspected Intruder (MLS1).An MLSI is found
when one of these events will occur.

1. Modification of critical files such as
letc/passwd, /etc/hosts.equiv,
/etc/shadow and /.rhosts

2. su-id command was issued

Instead of analyzing all of the users' activities, if

an MLSl is found. IDRS will gather information
rclated to the MLSIL, analyze the information,
and dccide whether an intrusion has occurred.
For example, IDRS monitors whether or not
critical files related to system security have been
modificd. since. in many cases. intruders tamper
with them. However, because Icgitimate uscrs
‘may also changc the files, the systein cannot
conclude solcly bascd on filc modifications that
an intrasion has occurred. 1DRS therefore
gathers further information related to the
modification of the filc before deciding if an
itrusion has occurrcd.

6. Structure of IDRS

In many present day conventional nctwork
intrusion detection systems, cach target svsiem
transfers ils system log to an intrusion-dctcction

server. and the server analyzes the entire log in
scarch of intrusions. In a large-scale nctwork
deploying an intrusion dctcction svsicm.
network traffic will be extremely high, since the
volume of the system logs that arc routinely
translerred is very large. though most of it has
no information rclated to intrusions. Therclore,
this tvpc ol intrusion dcicction sysicm on a
large-scale nctwork docs not fulfill its function
cfTiciently. To solve this problem, we adopted a
mobilc-agent paradigm in developing IDRS.
Mobile agents autonomously migratc to target
systcms (o collect only information rclated (o
intrusions, climinating the nced to transfer
sysiecm logs to the server. IDRS consists of a
manager. moniloring agent. manager board,
information register. routc-tracing agents. and
information-gathering agents.

6.1. Monitoring Agent

The monitoring agent. present on cach hosl,
monitors system logs in scarch of MLSIs. If a
monitoring agent finds an MLSL, it rcports this
finding to the manager. The monitoring agent

also reports on the type of MLSI.
6.2. Route Tracing Agent (RTA)

The intrusion-route tracing agent traces the path
of an intrusion and identifies its point of origin,
the place from which the user leaving an MLSI
remolely logged onto the target host. In the
course of finding the origin, a tracing agent can
find any intcrmediatc nodes that were
compromised. When a RTA goes to the next
system, first it checks information register. If
there is no information in the information
register about this particular MLSI, the RTA
then completes its task, enters information in the
information register and moves on 10 the next
compromised system. If information related to
that MLSI alrcady cxists in (hc infonnation
rcgister meaning that another agent has alrcady
traced for this particular MLSI. Then the tracing
agent cnlers its reference in the information
rcgister and returns to the manager. At a specific
point, where RTA cannot proceed 1o the next
systcm, it means that this particular system is the
origin of the intrusion. So RTA retumns to the
manager after putting information into the
information rcgister.

6.3. Information Gathering Agent (IGA)

An information-gathering — agent collecls
information rclated to MLSIs from a targel
svstem. Each time an RTA in tracking down of
an intruder is dispiched into a target systcm by
thc manager. it activatcs an information-
gathering agent in that system. Then the
information-gathcring agent collects information
depending on the tvpe of MLSI, returns to the
manager. and reports.

If the RTA migrates (o another target
svstem. it will activate another information-
gathering agent on that system, which will
gather information on that systcm. Many
information-gathering agents may be activated
by many diffecreat RTAs on the same target
system. An infonmation-gathering agent is not
capable of dcciding whether an intrusion has
occurrcd or not. An Information gathering agent
posts the information on the manager board.
Dcpending on that information manager decides
whether an intrusion has really occurred or not.
IGA puts the following information on the
manager board.

I. 1D of the information gathering agent.

2. The name of the target system from
where information was gathered.

3. The name of the target system
preceding the target where information
was gathered.

4. Information gathered on the target
systcm

6.4. Manager

The manager analyzes information gathered by
information-gathering agents and detects
intrusions. It manages Manager Board and
process of dispatching the RTAs and provides
an interface between administrators and the
system. The manager accumulates and weighs
the information entercd by the IGAs on the
manager board, and il the weights cxceed a scet
threshold. the manager concludes that an
intrusion has occurred. After dispatching RTAs,
the manager has no concem with the movement
of RTAs. i.c. where the RTA will go afier a
specific system.

6.5. Manager Board

This is on the manager's machine. which is a
means of exchanging inforniation among 1GAs
because it is shared arca. accessible by all 1GAs.
Information gathering agents (IGAs) put

tracing agents (o both targets D and B. The
tracing agent DA traces intrusions in the
following order: D - C - B - A. Tracing agenl
BA. on the other hand. traces in the following
order: B - A. The two agents' tracings therefore
overlapon B - A

9. Response Mechanisms

Our main emphasis was to dctect intruders but
we gave a light touch to responsc (o intruders.
However, humans cannot automate what they
themsclves cannot do. For responding the
detected imtruders, we present following
mechanisms.

1. Responsc at the host level

2. Responsc at the network level

9.1. Response at the Host Level

Responding at the host level. the following two
mcchanisms may be applicd

1. Responding at the targel

2. Responding at the source

9.2. Responding at the Target

After dctecting an attack, it is essential (o
automatically respond at the target host. A quick
response can prevent the attacker from
cstablishing a better foothold and using the
penetrated host to further compromise the
network. It can also minimize the effort needed
to recover damagce donc by the attacker.

9.3. Responding at the Source

Responding at the attacker’s host gives IDRS a
much greater power to restrict the attacker’s
actions. Without using mobile agents, it is
unlikcly that an IDRS would have sufTicicnt
access to an attacker’s host in order to take
corrective action. While this option has
limitations. sincc it requires an agent platform be
active on the attacker’s host and the attack to
come from within the management domain, it
also has the potential to be a very cffective part
of the IDRS.
At network level. there arce further three
mecchanisms

I. Isolating the targel i

2. lsolating the source :

3. Kill TCP conncction between source

and target.

10. Conclusion and Future Work

Mobile agent technology offers much to the
ficld of intrusion dctection and responsc. The
idea of mobilc and autonomous components
intuitively scens uscful in intrusion detection
and response and many other applications.
However. it is difficult to realize the benefits of
mobile agent technology in practice. Dcspite
thesc difficulties, the technology appears (o
provide valuable cxtensions 1o current
capabilitics. Although the barricrs to creating
practical. mobile agent systems are high. the
ability (o move a runuing program from onc
hardware platform to another is a useful feature.
Ultimately. as the sccurity. performance,
cmerging technology. and standards barricrs that
inhibit this tcchnology fall. mobile agents will
cnter mainstrcaim usc.
There arc threc main rescarch areas for using
MAs 1o do intrusion detcction

1. Performance cnhancements

2. Intrusion dctcction design improvemcenis

3. Responsc improveinents
Pcrformance of an intrusion dctection and
response can be cnhanced by creating light
weight mobile agents because time is most
critical constraint in security applications.
Within design improvements there are three
categories of research

1. New detection paradigms

2. New archilecture paradigms
Improvements over existing designs
Further, the area of responding the detected
intruders at network level is necarly untouched
vet. Work is required on this arca also. To
respond the detected attack, response system
may bc automated becausc there is no such
advantage of detecting an attack without
responding it in an automated way at computer
speed so that damage may be minimized.

11. Acknowledgments

Spccial thank to Dr. Muhammad Salecm
Rathore (PAEC) and Dr.Hafiz Farooq Ahmed
(NHT, NUST) who gavc us their prccious time
and helped us a lot to figure out the problems
and to gelt rid of confusions.

Furthcrmore ,many thanks to Munccb Ahmed
Awan and S.Tausccf-ur-Rchman for their co-
opcration.

12. References

14 James P Anderson. “Computer Security
Threat Monitoring and Survcillance.” Technical
Report. James P. Anderson Co.. Fon
Washington. PA. April 1980,

|2} Dorothy E. Denning. “An Intrusion
Declection Model.” IEEE Transactions on
Softwarc Enginecring, Vol. SE-13. No. 2. pp.
222-232. Fcbruary 1987.

13} Stephen E. Smaha, “Havstack: An Intrusion
Dectection System. ™ Fourth Acrospace
Computer Sccurity Applications Conference.
Orlando Florida. pp. 37-44. December 1988,

{4] Teresa F. Lunt and R. Jagannathan. ~A
Prototype Real-Time Intrusion-Detection Expert
Svstem."1EEE Symposium on Sccurity and
Privacy. April 1988.

151 Michacl M. Sebring ct ali. "Expert Systems
in Intrusion Dctection: A Case Study.” National
Computer Sccurity Conference, pp. 74-81.
October 1988,

[6] L.Todd Hebericin, G.V. Dias, K. N. Levitt.
B. Mukherjec. J. Wood. D. Wolber.. “A
Nciwork Sccurity Monitor,” Procceedings of the
Symiposium on Research in Security and
Privacy, pp. 296-304, May 1990,

17] Biswanath Mukherjec, L. Todd Heverlcin,
and Karl N. Levitt. “Network Intrusion
Dctcction.”™ IEEE Network. pp. 26~41. May/Junc
1994,

|8] Frincke, D, Don Tobin, Jessec McConncell,
Jamic Marconi. Dcan Polla, “A Framework for
Coopcrative Intrusion Detection,” National
Information Systems Security Conference. pp.
361-373. October 1998.

9] Gregory B. Whitc. Eric A. Fisch. and Udo
W. Pooch. “Coopcrating Sccurity Managers: A
peer-bascd intrusion detection systemn,” IEEE
Network. 10(1), pp. 20-23, January/Fcbruary
1996.

H10] W Jansen, P. Mcll, T. Karygiannis and D,
Marks “Mobilc agents in Intrusion Detection™.
proceedings ol the 12" anmual Canadiam
Information Technology Sccurity Syniposium,
Ottawa. Canada. Junc 2000

{11} -Lightweight Ageats for {ntrusion
Dectaction™ By guy Hclmer, johnny S.K.Wong.
Vasant Honavar.Les Miller Dapartment of
comiputer Scicnce Lowa Statc University
Novernber 2.2000

1121 C. A Carver.). M. D Hill. J. R, Surdn. and
U. W. Pooch. "A Mcthodology lor using
Intelligent Agents to provide Automated
Intrusion Response.”™ in Proceedings of the TEEE
Systems. Man. and Cybernetics Information

Assurance and Sccurity Workshop. West Point.
NY. Junc 6-7. 2000.

(13] Wavne Jansen. Tom Kan giannis. “Mabile
Agent Security ™. Computer Sceurity Division.
NIST Spccial Publication 800-19 junc 2001

{14] Wavne A Jansen, “latrusion detection with
miobile agents”™. National Institutc ol Standards
and Technology. April. 2001 :

