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ABSTRACT

Optimization of Nonlinear system parameters faces various challenges in the research
community due to uncertainty and correlated parameters. In this research, key term separation
method is used for mathematical modeling of IN-OE system and identification is accomplished
by using evolutionary-based Evolutionary Mating Algorithm (EMA) and chaotic evolutionary
mating algorithm (CEMA) in exploration process of EMA. The fitness function used to identify
IN-OE system parameters implements mean-square error (MSE) between desired and estimated
values. Simulations results demonstrate that EMA with a chaotic sinusoidal map (CEMAY)
executes better results than the EMA, its other chaotic variants, as well as other recently
introduced metaheuristics for diverse variations in the system model. MSE based analysis and
results of statistical test illustrate the performance of CEMASY for the identification of the IN-OE

system.
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CHAPTER 1
INTRODUCTION

1.1 Overview

Nonlinear systems are widely used in engineering applications as well as social, economic,
physical and life sciences fields [1]. Nonlinear identification models represent the dynamics of
nonlinear systems especially when linear models cannot depict the accurate system parameters
[2]. Hammerstein and Weiner Models provide insight knowledge about the nonlinear systems
dynamics [3]. Neural state space identification are used to represent deep learning based
nonlinear state space models [4]. Nonlinear grey box models can also estimate the physical
parameters of nonlinear systems [5]. Application of nonlinear systems are industry 4.0 [6], visual
object tracking [7], mobile robot network [8], triangulation of GPS [9], civil engineering [10],
smart grids [11], auxiliary model identification [12], and many other research applications.

Figure 1.1 represents nonlinear system applications that are commonly used in engineering.

Input Nonlinear output-error (IN-OE) is a block-oriented Hammerstein identification model of
input nonlinear system. The parameters of IN-OE model are estimated by applying parameter

identification techniques and metaheuristic algorithms.
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Figure 1.1: Nonlinear System Applications



1.2 Problem Statement

Optimization of IN-OE system induces an essential role in various domains of engineering
problems. Traditional methods struggle in finding global optima due to various challenges such
as complexity, scalability, convergence and robustness. These challenges makes identification of
IN-OE system parameters is a difficult task which can be achieved by using metaheuristic
algorithms. During brief literature review, it has been observed that complexity of the problem
increases especially the dimensions of the problem by using the different optimization
techniques. However metaheuristic algorithms still not applied on the IN-OE model. Moreover,
the optimal parameters of metaheuristic algorithms vary for different problems. This research
explores the identification of IN-OE system parameters through metaheuristic algorithm which is

very useful in designing the controller of nonlinear systems.

1.3 Contributions

The major contributions of this research work are:

e Enhanced variants of the EMA namely CEMA1, CEMA2, CEMA3, CEMA4, CEMAS,
CEMAG6, CEMA7, CEMAS, CEMA9, and CEMAI10 are proposed by incorporating ten
chaotic maps for engineering optimization problems.

e The evaluation of CEMA1, CEMA2, CEMA3, CEMA4, CEMAS, CEMA6, CEMA7,
CEMAS, CEMAY, and CEMA10 is done on mathematical functions having both uni and
multimodal features.

e The robustness of CEMA1, CEMA2, CEMA3, CEMA4, CEMAS5, CEMA6, CEMA7,
CEMAS, CEMA9, CEMAIO0, is also assessed for IN-OE model against COA, EMA,

HHO, and PSO indicating its realism in real-world applications.

1.4 Thesis Organization

Chapter 1 presents an overview, problem statement and objectives of research. Chapter 2 covers
the literature review of harmonics estimation and mathematical model of parameter estimation of
power system harmonics. Chapter 3 describes the proposed methodology based on DE and
MLADE. Chapter 4 discusses the results and stimulations. Chapter 5 presents the conclusion and

future work of research.



CHAPTER 2

LITERATURE REVIEW

This chapter presents the literature review of IN-OE model parameters optimization by using

metaheuristic optimization algorithms.

2.1 IN-OE Model

Hammerstein and Weiner models are block oriented system identification models used to find
out the solution of linear and nonlinear systems. Both models have same elements but integrated
in reverse order. The nonlinear system selected for this research proposal is based on
Hammerstein model known as nonlinear input output-error (IN-OE) system. It comprises of two
main subsystems i.e. static nonlinear subsystem and the other one is linear dynamical subsystem
[13]. Keeping in view the features of linear dynamic subsystem, IN-OE system can be classified
as output-error and equation-error systems. Output error models are frequently used in the field

of stochastic process specifically for the identification of nonlinear system parameters [14].

2.2 Identification Methods

Several identification techniques have been proposed in literature for IN-OE model parameters.
Especially over-parameterization [15], multi-innovative identification [16], key-term separation
[17], hierarchical identification [18], and auxiliary model [19] are more prominent techniques

applying on nonlinear system applications.

The over-parameterization techniques can be applied on complex nonlinear systems in order to
re-evaluate the system variables so that output behaves linearly. Furthermore optimization
algorithms can be used to find out the best values of system key parameters. This technique has
also been used with other methods to find the nonlinear system parameters. F. Ding and X.
Zhang applied this technique in 2021 to identify the IN-OE system parameters. L. Xu and H. Ma
proposed the hierarchical identification algorithm to identify the nonlinear IN-OE systems with
high dimensions and complex structures in 2021. Feng Ding applied the key-term separation
method on IN-OE model which helps to avoid excessive calculation required in over

parameterization technique. Recently gradient iterative method and least square iterative



technique were proposed for the identification of IN-OE system parameters. Table 2.1 represents

the limitations of iterative methods and techniques applied on IN-OE model

Table 2.1: Identification methods of IN-OE

Algorithm Used/Tuning Year of
Title Limitations
Methods Publication

Nonlinear IN-OE system ) ) ) Problem in finding global

) ) Gradient based iterative o ) ) )
using key term separation minima especially with noise 2021

method & least square method ] )
method[9] induction

Complexity increases with

Nonlinear IN-OE system AM-GI, O-AM-LSI & AM- increase in no of iterations and

2021
using auxiliary model [10] MIGTI algorithms leads to increase
computational cost

Nonlinear IN-OE system

) O-AM-HLSI & O-AM-HGI )

using over ) Overfitting problem and slow

o algorithms 2023

parameterization method convergence

[11]

2.3 Metaheuristic Optimization Algorithms

Metaheuristic optimization algorithms are also very effective to estimate the IN-OE system
parameters. These algorithms are very useful to solve complex computational problems
efficiently through optimization of system key parameters [20]. A lot of researchers proposed
new metaheuristic algorithms to solve real world problems [21]. Optimal solution in energy
sectors especially in the field of smart grids was proposed using harmony search metaheuristic
algorithm [22]. In medical field, classification of heart related disease were also identified
through combination of different metaheuristic algorithms [23]. In control system problems,
metaheuristic algorithms provides optimal solution to control the attitude and altitude of
unmanned aerial vehicle [24]. Metaheuristic algorithms also provide optimal solution in the
networks of wireless sensors [25]. They are applied for estimation of harmonics in power
systems [26]. Metaheuristic algorithms can be categorized as evolutionary process based
algorithms [27], physics based algorithms [28], human inspired algorithms [29] and swarm

intelligence algorithms [30]. Figure 2.1 represents the categories of metaheuristic algorithms.



‘ Evolutionary Algorithms Physics Based Algorithms

| Evolutionary Mating Algorithm (EMA) Colliding Body Optimization (CBO)
| Learner Performance Based Behavior Algorithm (LPB) | | Vortex Search (VS)

i Strength Pareto Evolutionary Algorithm 2 (SPEAZ2) State of Matter Search (SMS)

| Genetic Algorithm (GA) Electromagnetic Field Optimization
| Directional Permutation Ditterential Algorithm (DPDA)| Ray Optimization (RO)

METAHEURISTIC ALGORITHMS

Swarm Intelligence Algorithms Human Inspired Algorithms
Bacterial Foraging Optimization (BFO) 'Stock Exchange Trading Optimization (SETO)
|Imperial Competitive Algorithm (ICA) Ideology Algorithm (IA)
| Particle Swarm Optimization (PSCY) League Championship Algorithm (LCA)
| Ant Colony Optimization (ACO) | Tug of War Optimization (TWO)
| Artificial Bee Colony (ABC) Interior Search Algorithm (ICA)

Figure 2.1: Categories of Metaheuristic Algorithms

Evolutionary Algorithms relies on Darwinian Theory. This class of metaheuristic algorithms
includes Quantum based avian navigation optimizer algorithm [31], Strength Pareto
Evolutionary Algorithm 2 [32], Genetic Algorithm [33], and Directional Permutation Differential
Evolution Algorithm [34] and Learner Performance based Behavior algorithm [35]. Quantum
based avian navigation optimizer algorithm (QANA) was proposed in 2021. This algorithm
explores the idea of precise navigation of migratory birds while travelling to long-distance aerial
paths. This approach divides the population into multiple groups in order to find out best
parameters. This algorithm is effectively applied on partial landscape analysis. Another
evolutionary strategy algorithm named as Strength Pareto Evolutionary Algorithm was proposed
in 2023. SPEA is an improved version of Pareto Archived Evolutionary Strategy. SPEA2
improves local search ability to get effective results. It is successfully implemented in UAV
cargo delivery services. Genetic Algorithm (GA) was proposed in 1992. GA has the ability to
solve the real world problems of any engineering field. Based on fitness function GA arrange
tournaments to develop new population for finding the optimal solution. In 2021, a new
metaheuristic algorithm Directional Permutation Differential (DPDE) Algorithm was proposed
by Shangce Gao to find out the solution of Photovoltaic Generation System. In this algorithm,
strong global exploration ability helps to estimate the system parameters and avoiding from local
optima. A Learner Performance based Behavior algorithm (LPB) was proposed in 2021. LBP is

based on accepting graduate students in different departments at university and defining the



procedures to improve the study level of students through GPA in different stages. The
parameters used in LBP are crossover and mutation. This algorithm is successfully implemented

on travelling salesman problem.

Metaheuristic algorithms based on physics laws are also developed in literature such as colliding
body optimization [36], vortex search algorithm [37], matter search optimization algorithm [38],
electromagnetic field optimization algorithm [39], and ray optimization Algorithm [40].
Colliding Body Optimization was established in 2019. It works on colliding bodies’ principle in
which collision of two bodies in one direction is acceptable. Two groups are developed from
population one from best side and the other group from middle. The first group is stationary
while the middle group is moving towards the best solution. New mass and velocity values are
obtained after the collision process. Then termination conditions are checked. It is successfully
applied on systems composed of continuous variables as well as discrete variables. Vortex
Search (VS) Algorithm was proposed in 2015. Its working principle is formulated on vortex-like
occurrence in non-rotational incompressible fluids. It is effective in training of feed forward
neural networks. The State of Matter Search optimization algorithm was proposed in 2013. The
basic idea used in SMS algorithm is dependency of best solution upon the states of matter. It is
successfully implemented in template matching optimization problems. Electromagnetic Field
Optimization Algorithm was proposed in 2015. It is formulated on attraction and repulsion forces
of electromagnet. It is successfully implemented on optimal coordination of directional over
current relays. Ray Optimization Algorithm (RO) is established on Snell’s Law of refraction.
The direction of light changes when passes through different medium. The best solution depends
upon ray scattering, ray movement and ray convergence parameters. It is successfully applied on

truss structures design.

Metaheuristic Algorithms are also Swarm Intelligence (SI) based in which behavior of species
1.e. birds, fish, ants, is used to provide optimal solution such as bacterial foraging algorithm [41],
salp swarm algorithm [42], particle swarm optimization [43], ant colony optimization [44],
synergistic swarm optimization algorithm [45] and Imperialist Competitive Algorithm [46].
Bacterial Foraging Algorithm was published in 2007. It is articulated on coli bacteria foraging
behavior. The chemotactic reflexes of bacteria provide the optimal solution of real world

problems. It is successfully implemented in solar PV parameters optimization problem. Salp



Swarm Algorithm (SSA) is also used to solve optimization problems. This algorithm uses
swarming behavior of salps when routing and hunting in oceans. It is successfully implemented
in marine propeller design parameter optimization. PSO was proposed in 1995. It is based on the
movement of birds. The speed and velocities of the birds are decided to find the solution. It is
successfully implemented in portfolio optimization problem. ACO was established in 1992. It
relies on the collective behavior of ants to find out the solution. It is successfully used in image
detection problems. Synergistic Swarm Optimization Algorithm (SSOA) integrates swarm
intelligence with synergistic cooperation in order to search the efficient optimal solution.
Imperialist Competitive Algorithm (ICA) was proposed in 2002. ICA is based on imperialist
concept in which each agent or colony tries to make empire by capturing the small colonies. The
competition among empires finds out the best solution of the problem. It is successfully applied

on optimal design problem of skeletal structures.

Several human-inspired algorithms are also established to solve optimization problems such as
stock exchange trading optimization [47], ideology algorithm [48], league championship
algorithm [49], tug of war optimization [50], and interior search algorithm [51]. They are
formulated on the human behaviors and interactions. Stock exchange trading optimization
(SETO) algorithm is formulated on traders’ behavior when prices fluctuate in stock market. It is
successfully implemented in global optimization problem. Ideology Algorithm (IA) is based on
behavior of political party’s individuals who tries to improve their ranking and position in party.
It is successfully applied in unconstraint optimization problems. League Championship
Algorithm (LCA) was offered in 2014 used for optimization problems. In this algorithm artificial
teams are developed to play championship. Progress of each team and players performance are
analyzed to find out best solution of optimization problem. Tug of war optimization (TWO) was
developed in 2021. The working principle of this is taken from the game tug of war. Each
candidate is treated as a team participated in a rope pulling competitions. Team performance is
determined by pulling force exerted on each other. TWO algorithm is very useful in multimodal
and non-convex function. Interior search algorithm (ISA) was proposed in 2014. The working
principle is based on interior decoration and design. Systematic methodology is used to create
space for interior design and decoration strategy that fulfils customer satisfaction. The customer

satisfaction is directly proportional to the solution quality. ISA shows satisfactory results on



optimal welded beam design problem. Table 2.2 represents the advantages and limitations of

recently proposed metaheuristic algorithms.

Table 2.2: Advantages and limitations of recently proposed Metaheuristic Algorithms

Proposed
Algorithms Advantages Limitations
Year
LPB Avoid local optima in computation slow converge for complex problems 2021
problems
Very efficient in local search to find | Not good for problems having objectives
SPEA2 2023
dominant solution in each iteration more than 5
they can solve problems from various
GA domains, from engineering and slow due to their structural complexity 1992
medicine to finance and logistics
DPDE Strong global exploration ability computationally expensive 2021
CBO Independent from internal parameters low accuracy 2019
) Created number of local minimum
VS Fast execution ) 2015
points
better performance in global ]
SMS o Not suitable for complex problems 2013
optimization problems
Better approach to avoid the local Limited to constrained optimization
EFO ) ] ) 2015
optimal point and find global optimal problems
RO Require few parameters to tune poor local search ability 2012
effectively applied to solve real world )
BFO ] o Convergence is very slow. 2002
continuous optimization problem
the empires are fixed until they are
Effective in solving large-scale ]
ICA swapped for colonies and transformed 2007
scheduling problems )
into them
PSO computationally efficient Not efficient for large datasets 1995




good performance in solving discrete
ACO Convergence speed for large data sets 1992
problems

Does not require external parameters Not able to handle population diversity
ABC ) ] ) ] 2005
like crossover ratio and mutation ratio and slow global convergence

) ) gradually convergence towards optimal
SETO Very simple to implement ) 2021
point

Very less research work done on this

1A few parameters to adjust ) 2017
algorithm
LCA solve scheduling problem easily Limited to scheduling problems 2019
Show good results on non-convex Less research done on complex
TWO ] 2016
functions problems
ISA Require tuning of only one parameter slow convergence speed 2014

2.4 Evolutionary Mating Algorithm

Evolutionary Mating Algorithm (EMA) was proposed in 2023 [52]. It is based on Hardy
Weinberg equilibrium principle to produce new offspring. Environmental factor like predator is
also included in this algorithm. The main advantage of EMA comparing with other evolutionary
algorithms is the capability of fast searching because it divides the whole population into two
groups. EMA evaluates the performance of produced offspring and compare with performance of
parents. If the performance of produced offspring is better than parents then it is directly replaced
with its parents and controls the population expansion. The evaluation procedure of EMA is
directly used without defining sorting process which makes EMA evaluation process faster than
other optimization algorithms. The computational complexity of EMA is low because only two
parameters crossover probability and predator probability need to be identified. EMA has been
successfully tested on unimodal, multimodal and composite benchmark functions. EMA
efficiently approaches global optima solution by avoiding local optima in multimodal and
composite benchmark functions. The initialization process of EMA comprises of population
generation in the form of two matrices. The selection of search agents in the matrices is based on
sexual identity i e. male or female. The mating process is defined by using Hardy’s principle, in

which search agents are selected randomly from both matrices to produce one or more than one



new offspring. The performance of new offspring is evaluated with its parents also and will be
replaced if performance parameters of new offspring is better than its parent. The predetermine
values to identify the crossover probability and predator probability are obtained from tuning of
EMA parameters. EMA is very efficient to solve constraint optimization problems. It is applied
on various areas such as optimization of pneumatic servo systems [53], battery charge estimation
of electric vehicles [54], management of energy in smart buildings [55], solar power generation
[56], and energy management systems [57]. However it is still not applied in the system
identification problem to find out the optimal parameters of IN-OE model. This research work
explores the diversity of EMA by applying on IN-OE model and identify accurate parameters

using key term separation technique.

2.5 Chaos Theory

Chaos theory is a scientific approach to solve the complex system problems. According to this
theory, dynamical systems are highly dependent on its initial conditions, consist of primary
patterns (known as chaotic maps) and follow deterministic laws under specific time scale which
depends upon the system dynamics. The theory explains that how a small change in the initial
conditions can produce uncertainty in the dynamical system. This theory also deals with non-
linear dynamics that illustrate the expected results in high-dimensional systems. It predicts the
system response in the short term without repeating themselves, and exhibits necessary
qualitative effects by introducing small changes within the process. The chaos theory enhances
the performance of metaheuristic algorithms by avoiding the local optima and improves
convergence speed. Applications of Chaos theory exist in several engineering fields such as
chaotic generator in communication system [58], image encryption [59], internet of things [60],
and random bit generators [61]. By applying chaotic maps in several metaheuristic algorithms,
convergence and efficiency of the system are enhanced in search space such as chaotic
Archimedes optimization algorithm [62], chaotic PSO [63], bird swarm optimization algorithm
with chaotic mapping [64], chaotic young double slit experiment optimizer [65], and chaotic
marine predator algorithm [66]. In this research work, chaotic variants of EMA are developed to
identify the optimal parameters of IN-OE model. The comparison of EMA chaotic variants with
EMA and other metaheuristic algorithms are also performed to evaluate the performance. The

description of chaotic maps is given in Table 2.3.
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Table 2.3: Chaotic Maps

Map No. Map Name Map Equation
CEMAI Chebyshev map [67] x,,, =cos(rcos'(x,))
. 0.5, .
CEMA2 Circle map [68] x,,, =mod(x, +0.2— (2—) sin(2zx,),1)
X
CEMA3 Gauss/mouse map [69] X, = L :10 otherwise
mod(x,,l)
. 0.7x
CEMA4 Iterative map [70] X, = sin( )
CEMAS5 Logistic map [71] X, =4x,(1-x,)
Y 0<x <0.4
0.4
x,—0.4
rO—l,O4 < X, < 0.5
CEMAG6 Piecewise map [72] X, = 0.6 ’
O—X
——F,0.5<x,<0.6
0.1
1-x,
,06<x, <1
0.4
CEMA7 Sine map [73] X, =sin(2zx,)
CEMAS Singer map [74] x.,,=1.07(7.8x, +23.31x7 +28.75x) —13.30x")
CEMA9 Sinusoidal map [75] x,,, =2.3x;sin(27x,)
CEMA10 T [76] X o7 <07
ent map =
r+l %(1—)@), x%,20.7

Conventional methods used to identify IN-OE model parameters primarily focus on local
exploration and have limitations to handle local minima. This will affect the accurate
identification of IN-OE model parameters in terms of solution quality and robustness. On the
other hand, metaheuristic algorithms are specifically designed to explore the search spaces by

using stochastic methods inspired with natural phenomena (evolution, swarm intelligence,
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physics laws and human based) that are strongly capable to escape from local minima and find
better global solution. It can be seen from literature review that Evolutionary Mating Algorithm
(EMA) is not applied for the identification of IN-OE model parameters. The motivation of this
research is to explore the EMA metaheuristic algorithm for the accurate identification of IN-OE
model parameters. The objective of this research to also investigate the EMA thoroughly and
propose improvements to get better results for IN-OE identification problem. Finally compare

the results of EMA with other metaheuristic algorithms.
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CHAPTER 3

Methodology

In this chapter mathematical models of IN-OE, EMA and chaotic EMA are presented. Pseudo
code and flow charts of EMA and Chaotic EMA are also discussed.

3.1 Mathematical Model of IN-OE

Consider the input nonlinear system represented in Figure. 3.1.

d
. Dynamic
Static y.
r : wo Linear
—  Nonlinear >
subsystem
subsystem LTI

Figure 3.1: IN-OE System Model

Where ‘7’ is the input of static nonlinear block,
‘w’ is the output of nonlinear subsystem,
‘x’ is the output of linear time invariant system,
‘d’ is disturbance or noise induce in the system
and ‘y’ is the output of IN-OE model. The output of IN-OE model is given by:

y(z) = x(r)+d(7), (3.1)
The output eq. of linear subsystem is given by

x(r)= %w(‘r), (3.2)

Where C and D are the polynomials with ¢/ operator and represented as follows:
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C:1+clq_l +czq_2+...+cncq_nc, (3.3)
D=l+dyq +d2q72+...+dndq-nd, (3.4)
w(7)belongs to real numberr(7)along with set of known basis functions f k(i’ (7)) with

parameters 'Bk’ therefore output of nonlinear system is represented as

)= f(r(7) = kf_:ﬂkfk (@) =BAC@)+ B L@+t By i (1(D)), (3.5)

It is seen from the above equations that output of nonlinear system is in series combination with
the transfer function of the LTI subsystem. So for any non-zero value of ﬁk gives identifiable

relation between input and output of IN-OE model.

By applying key term separation methodology, IN-OE system is defined as

v=[cT,dT,pT1T e R¥, (3.6)
@) =[4" @), @), (@] e R, (3.7)
W)= %T(T)v +W(7), (3.8)

Equation (8) represents the identification model obtained from key term separation method,

where v represents the parameter vector needs to be identified and it includes all system
parameters. ﬂ2 denotes the information vector and it corresponds nonlinear subsystem

relationship with LTI dynamic subsystem.

3.2 Mathematical Model of EMA

In EMA, male and female candidates used in solution are represented as follows:

a .. a
Ap=| = o (3.9)
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a .. Cln
—+1 —+1
2
A, =] + .
5 1 d (3.10)
an an

Hmates = Hmating_ratio + [*Hmates(t) _*Hmatgs(k)]9 (3-1 1)
H pates = 1+ [Var(A,Q*) - VaI’(A;’* )1, (3.12)
Hardy—Weinberg principle will be applied to get new offspring, the
o 0.*X£’*+r.aj€,* for H, ... 20 G13)
child 0.*X},*+r.anT%* for H, .. <0 '
o =randn(l,d), (3.14)
where
r=(l-o), (3.15)
new offspring is represented as follows:
T+ _ T best _ P 3.16
Ay =04, + 47 x(1-U),i=12,..,d (3.16)
U=rand(1,d)<Wr (3.17)
Therefore,
T+ _ b .
At =rand(l,d).* A7, for s <€[0,1] (3.18)

It is noted that only two parameters are required to tune crossover probability ‘Wr’ and predator
probability‘s’. The pseudo code of EMA is shown below where as its flowchart is shown in

Figure 3.2.

Algorithm 1: EMA

Initialization population matrices A, and A 5 by using equations (3.9) and (3.10)

Set W, and s values
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Evaluate the fitness of each candidate

Choose the best candidate A,beSt

while (P<maximum iteration)

for (n=1 until half of population)
Calculate F1,,,,; using equations (3.11) and (3.12)

Create the new offspring using expressions (3.13) and (3.14)
New offspring with the effect of best solution so far using equations (3.16) and (3.17)
Boundary Check
Calculate fitness of new offspring
Compare the fitness with father, mother and current best solution
If better then replace and update in father/mother pools and current best sol.
Else die
If r<pre-set value [probability of encountering the predator]
Compute solution by applying equation (3.18)
Analyze the new candidate fitness

If better then replace and update in current best

Else die
end
end
end
P=P+1
end

Return AibeSt
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Initialization
(Am, Af, P, Wr and s)

A

Calculate the finess of population
and Store best Ai

While

\

(P<max iteration)

For

|

(n=half population either
from Am or A

Calculate Hmates & new
offspring

A

Create new off spring with effect
of best Aiand Wr

A

Evaluate & compare fitness with

mother, father and current best

solution

If better fitness

Replace it in mother father and
current best solution

If s<pre-set
value

Generate new solution & Evaluate
the fitness of new solution

If better fitness

Replace and udate in best Ai

Figure 3.2: EMA Flow Chart
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3.3 Mathematical model of Chaotic EMA

In this article, ten improved variants of the EMA were proposed by incorporating ten eminent
chaotic maps in its exploration mechanism. The mathematical model of chaotic variants of EMA
for the initialization of population and evaluation of candidate’s fitness is same as mentioned in
eq. (3.9) to eq. (3.17). The exploration process of chaotic variants of EMA are described as
follows:

ATH = (1,d).* AP, for s <e[0,1] (3.19)

Therefore C, for chaotic variants of EMA are describes as follow:

CEMAL: C, = cos(icos™'(x,)) (3.20)
0.5, .
CEMA2: €, =mod(x, +0.2 - (F2)sin(27x,).1) (3.21)
X
1Lx;=0 .
CEMA3: C,=4 7", otherwise (3.22)
mod(x;,1)
. 0.7
CEMA4: C, = sin(—>) (3.23)
CEMAS: C,=4x,(1-x,) (3.24)
X 0<x,<0.4
0.4
x,.;o.4 ,04<x,<0.5
CEMAG6: C, = 0.6 B (3.25)
2% 0.5<x <0.6
0.1
1=% 6<x <1
0.4
CEMAT: C, =sin(2rx;) (3.26)
CEMAS C, =1.07(7.8x, +23.31x2 + 28.75x> —13.30x") (3.27)
CEMA: C, =2.3x?sin(27x;) (3.28)
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ob x<0.7
CEMAI0: Cs =110 (3.29)
?(1_3@‘)’ x;>0.7

1

The pseudo code of chaotic EMA is shown below where as its flowchart is shown in Figure 3.3.

Algorithm 2: CEMA

Initialization population matrices 4, and A 5 by using equations (3.9) and (3.10)
Set W, and s values

Evaluate the fitness of each candidate

Choose the best candidate A,-bm

while (P<maximum iteration)

for (n=1 until half of population)
Calculate H mates using equations (3.11) and (3.12)

Create the new offspring using expressions (3.13) and (3.14)

New offspring with the effect of best solution so far using equations (3.16) and (3.17)
Boundary Check

Calculate fitness of new offspring

Compare the fitness with father, mother and current best solution

If better then replace and update in father/mother pools and current best sol.

Else die

If CS <pre-set value [probability of encountering the predator] equations (3.19) to

(3.29)
Compute solution by applying equation (3.18)
Analyze the new candidate fitness
If better then replace and update in current best
Else die
end

end
end
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P=P+1

end

Return AibeSt

S Initialization
S (Am, Af, P, Wr and s)

If better fitness

A

Calculate the finess of population

and Store best Ai Replace it in mother father and

current best solution

While If Cs<pre-set

Yy

(P<max iteration) value

Generate new solution & Evaluate
the fitness of new solution

For
(n=half population either
from Am or A

4

If better fitness

Calculate Hmates & new
offspring

A

Replace and udate in best Ai

Create new off spring with effect
of best Aiand Wr

‘ (e

Evaluate & compare fitness with
mother, father and current best
solution

Figure 3.3: Chaotic EMA Flow Chart
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CHAPTER 4

In this chapter, simulation results of EMA, Chaotic variants of EMA and other metaheuristic

algorithms (COA, HHO and PSO) for mathematical functions and IN-OE model are presented.

Simulations and Analysis

4.1 Mathematical Functions

Tables 4.1-4.22 shows the analysis of mathematical functions at Population (Pop) =60, iterations

=3000 for 50 independent runs in respect of STD, best fitness, worst fitness and average fitness.

Table 4.1 represents the results of EMA and its chaotic variants on unimodal mathematical
function FUN _I. It is observed from Table 4.1 that EMA shows better performance in terms of

average fitness, best fitness and worst fitness while all algorithms have zero STD on unimodal

mathematical function FUN 1.

Table 4.1: Analysis of Proposed methodology on FUN I function

FUN_I

Methods A Fitness B Fitness W Fitness STD

EMA 1.02E-289 2.86E-308 4.13E-288 0
CEMAL 8.66E-214 2.04E-231 2.62E-212 0
CEMA2 4.51E-192 5.63E-208 1.89E-190 0
CEMA3 1.07E-291 0.00E+00 5.34E-290 0
CEMA4 3.87E-205 5.69E-221 1.88E-203 0
CEMAS 4.13E-210 1.20E-226 2.06E-208 0
CEMAG6 1.68E-185 7.01E-208 8.40E-184 0
CEMA?7 1.46E-223 8.92E-253 5.25E-222 0
CEMAS 6.53E-172 8.52E-187 3.26E-170 0
CEMAO9 1.07E-138 9.71E-146 4.63E-137 0
CEMAI10 6.38E-186 7.56E-200 2.40E-184 0
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Table 4.2 represents the results of EMA and its chaotic variants on unimodal mathematical
function FUN_II. It is observed from Table 4.2 that CEMA3 shows better performance in terms
of average fitness, best fitness and worst fitness while CEMA7 shows better results in respect of

STD on unimodal mathematical function FUN _II.

Table 4.2: Analysis of Proposed methodology on FUN _II function

FUN_II

Methods A Fitness B Fitness W Fitness STD

EMA 1.54E-188 1.73E-198 4.49E-187 0.00E+00
CEMAL1 1.31E-150 6.41E-165 2.98E-149 5.13E-150
CEMA2 1.33E-134 1.85E-141 3.66E-133 6.05E-134
CEMA3 5.47E-199 1.59E-254 2.73E-197 0.00E+00
CEMAA4 3.34E-144 5.04E-165 1.44E-142 2.04E-143
CEMAS 3.95E-147 7.42E-168 1.32E-145 2.01E-146
CEMAG6 5.51E-133 6.19E-143 1.17E-131 2.32E-132
CEMA?7 3.58E-153 2.78E-169 9.16E-152 1.70E-152
CEMAS 3.26E-118 1.66E-127 1.62E-116 2.30E-117
CEMA9 2.16E-92 3.98E-95 3.47E-91 5.68E-92
CEMAI10 7.68E-131 2.86E-145 1.42E-129 2.62E-130

Table 4.3 represents the results of EMA and its chaotic variants on unimodal mathematical
function FUN III. It is observed from Table 4.3 that CEMA3 shows better performance on
unimodal mathematical function FUN_III in terms of STD, average fitness, best fitness and

worst fitness.

Table 4.2: Analysis of Proposed methodology on FUN _II function

FUN_III
Methods A Fitness B Fitness W Fitness STD
EMA 2.06E-125 1.46E-143 1.01E-123 1.42E-124
CEMALI 8.55E-72 4.50E-94 4.10E-70 5.79E-71
CEMA2 7.51E-55 6.79E-68 2.36E-53 3.55E-54
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CEMA3 2.18E-133 1.35E-178 1.09E-131 1.54E-132
CEMA4 6.19E-64 1.67E-80 2.91E-62 4.12E-63
CEMA5S 1.96E-70 3.15E-89 9.13E-69 1.29E-69
CEMAG6 2.48E-57 2.28E-75 4.90E-56 9.85E-57
CEMA7 7.55E-78 2.07E-101 3.38E-76 4.78E-77
CEMAS 2.36E-43 3.01E-57 1.05E-41 1.49E-42
CEMA9 1.41E-30 4.12E-36 2.56E-29 4.88E-30
CEMAL10 6.43E-56 5.04E-72 1.69E-54 2.74E-55

Table 4.4 represents the results of EMA and its chaotic variants on unimodal mathematical
function FUN_IV. It is observed from Table 4.4 that EMA shows better performance in terms of
STD, average fitness and worst fitness while CEMA3 shows better results in respect of best

fitness on unimodal mathematical function FUN IV.

Table 4.3: Analysis of Proposed methodology on FUN IV function

FUN_IV

Methods A Fitness B Fitness W Fitness STD

EMA 1.30E-98 1.11E-105 3.90E-97 6.10E-98
CEMAL 1.28E-60 2.64E-68 2.76E-59 4.21E-60
CEMA2 2.83E-49 1.58E-54 5.84E-48 9.65E-49
CEMA3 4.14E-97 1.03E-138 8.07E-96 1.36E-96
CEMAA4 1.44E-54 7.40E-64 6.28E-53 8.90E-54
CEMAS 1.12E-58 6.15E-66 4.68E-57 6.61E-58
CEMAG6 1.43E-49 1.59E-56 2.56E-48 4.67E-49
CEMA?7 2.75E-62 2.00E-69 1.18E-60 1.67E-61
CEMAS 1.97E-41 6.92E-46 6.50E-40 9.26E-41
CEMA9 1.35E-29 1.62E-34 4.24E-28 6.11E-29
CEMAI10 5.07E-48 1.20E-54 2.13E-46 3.02E-47
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Table 4.5 represents the results of EMA and its chaotic variants on unimodal mathematical
function FUN_V. It is observed from Table 4.5 that EMA shows better performance in terms of
STD, average fitness and worst fitness while CEMAS8 shows better results in respect of best

fitness on unimodal mathematical function FUN V.

Table 4.4: Analysis of Proposed methodology on FUN _V function

FUN_V

Methods A Fitness B Fitness W Fitness STD

EMA 4.37E-01 3.45E-01 5.07E-01 3.76E-02
CEMAL 2.22E+00 2.76E-01 8.63E+01 1.21E+01
CEMA2 5.15E-01 3.51E-01 4.08E+00 5.17E-01
CEMA3 4.41E-01 3.66E-01 5.43E-01 4.26E-02
CEMAA4 4.45E-01 3.60E-01 5.80E-01 4.48E-02
CEMAS 4.38E-01 2.88E-01 5.43E-01 5.46E-02
CEMAG6 6.21E-01 2.41E-01 5.47E+00 8.65E-01
CEMA?7 5.04E-01 3.67E-01 3.17E+00 3.87E-01
CEMAS 6.27E-01 1.04E-03 4.25E+00 7.94E-01
CEMAS9 1.77E+00 3.03E-03 9.76E+00 2.39E+00
CEMAI10 6.55E-01 1.61E-01 5.89E+00 8.53E-01

Table 4.6 represents the results of EMA and its chaotic variants on unimodal mathematical
function FUN_VI. It is observed from Table 4.6 that all algorithms have zero STD, average

fitness, best fitness and worst fitness on unimodal mathematical function FUN_VI.

Table 4.5: Analysis of Proposed methodology on FUN_VI function

FUN_VI
Methods A Fitness B Fitness W Fitness STD
EMA 0 0 0 0
CEMALI 0 0 0 0
CEMA2 0 0 0 0
CEMA3 0 0 0 0
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CEMA4 0 0 0 0
CEMAS5 0 0 0 0
CEMAG6 0 0 0 0
CEMA7 0 0 0 0
CEMAS 0 0 0 0
CEMA9 0 0 0 0
CEMAI10 0 0 0 0

Table 4.7 represents the results of EMA and its chaotic variants on unimodal mathematical
function FUN_VII. It is observed from Table 4.7 that CEMA9 shows better performance in
terms of average fitness, CEMA?2 shows better results in terms of best fitness and worst fitness.

While, CEMA7 shows better results in respect of STD on unimodal mathematical function

FUN_VIL.

Table 4.6: Analysis of Proposed methodology on FUN_VII function

FUN_VII

Methods A Fitness B Fitness W Fitness STD

EMA 1.35E-05 6.54E-07 5.93E-05 1.20E-05
CEMALI 1.29E-05 3.57E-07 4.63E-05 1.12E-05
CEMA2 1.10E-05 3.49E-08 4.23E-05 1.17E-05
CEMA3 1.29E-05 1.26E-07 6.09E-05 1.26E-05
CEMAA4 1.15E-05 1.61E-07 7.13E-05 1.39E-05
CEMAS 1.49E-05 1.00E-07 9.30E-05 1.82E-05
CEMAG6 1.13E-05 4.87E-08 5.11E-05 1.02E-05
CEMA7 1.12E-05 7.57E-08 4.64E-05 9.90E-06
CEMAS 1.40E-05 6.63E-07 5.47E-05 1.25E-05
CEMA9 1.08E-05 7.38E-08 6.51E-05 1.32E-05
CEMAI10 1.40E-05 2.12E-07 9.00E-05 1.61E-05
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Table 4.8 represents the results of EMA and its chaotic variants on multimodal mathematical
function FUN_VIIL It is observed from Table 4.8 that EMA shows better performance in terms
of average fitness. EMA, CEMA1, CEMA2, CEMA3, CEMA4 and CEMAS shows better results
in terms of best fitness. While, EMA shows better results in respect of STD and worst fitness on

multimodal mathematical function FUN_VIII.

Table 4.7: Analysis of Proposed methodology on FUN_VIII function

FUN_VIII

Methods A Fitness B Fitness W Fitness STD

EMA -3.62E+03 -4.19E+03 -3.00E+03 2.69E+02
CEMAL -3.55E+03 -4.19E+03 -2.52E+03 3.46E+02
CEMA2 -3.63E+03 -4.19E+03 -2.88E+03 3.15E+02
CEMA3 -3.54E+03 -4.19E+03 -2.76E+03 3.22E+02
CEMAA4 -3.57E+03 -4.19E+03 -2.76E+03 3.21E+02
CEMAS -3.49E+03 -4.07E+03 -2.76E+03 3.18E+02
CEMAG6 -3.45E+03 -4.07E+03 -2.76E+03 2.82E+02
CEMA7 -3.54E+03 -4.07E+03 -2.64E+03 3.57E+02
CEMAS -3.53E+03 -4.19E+03 -2.52E+03 3.36E+02
CEMA9 -3.57E+03 -4.07E+03 -2.88E+03 2.83E+02
CEMAL10 -3.54E+03 -3.95E+03 -2.88E+03 2.98E+02

Table 4.9 represents the results of EMA and its chaotic variants on multimodal mathematical
function FUN IX. It is observed from Table 4.9 that CEMA2 shows better performance in terms
of average fitness. CEMA1 shows better results in terms of best fitness. CEMA3, CEMA4,
CEMAS and CEMA7 show better results in respect of worst fitness while CEMA10 shows better

performance on multimodal mathematical function FUN _IX in terms of STD.

Table 4.8: Analysis of Proposed methodology on FUN _IX function

FUN_IX
Methods A Fitness B Fitness W Fitness STD
EMA 1.79E-01 0.00E+00 8.95E+00 1.27E+00
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CEMAL 8.95E-01 -4.19E+03 1.09E+01 2.79E+00
CEMA2 9.95E-02 0.00E+00 4.97E+00 7.04E-01
CEMA3 0 0 0 0
CEMA4 0 0 0 0
CEMAS5 0 0 0 0
CEMAG6 4.58E-01 0.00E+00 9.95E+00 1.88E+00
CEMA7 0 0 0 0
CEMASZ 8.76E-01 0.00E+00 9.95E+00 2.47E+00
CEMA9 6.21E+00 9.95E-01 1.19E+01 2.55E+00
CEMA10 1.99E-01 0.00E+00 4.97E+00 9.85E-01

Table 4.10 represents the results of EMA and its chaotic variants on multimodal mathematical
function FUN_X. It is observed from Table 4.10 that all algorithms show almost similar results
on multimodal mathematical function FUN X in terms of STD, average fitness, best fitness and

worst fitness.

Table 4.9: Analysis of Proposed methodology on FUN X function

FUN_X

Methods A Fitness B Fitness W Fitness STD

EMA 8.88E-16 8.88E-16 8.88E-16 0
CEMAL1 8.88E-16 8.88E-16 8.88E-16 0
CEMA2 8.88E-16 8.88E-16 8.88E-16 0
CEMA3 8.88E-16 8.88E-16 8.88E-16 0
CEMAA4 8.88E-16 8.88E-16 8.88E-16 0
CEMAS 8.88E-16 8.88E-16 8.88E-16 0
CEMAG6 8.88E-16 8.88E-16 8.88E-16 0
CEMA7 8.88E-16 8.88E-16 8.88E-16 0
CEMAS 8.88E-16 8.88E-16 8.88E-16 0
CEMA9 4.16E-15 8.88E-16 4.44E-15 0
CEMAI10 8.88E-16 8.88E-16 8.88E-16 0
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Table 4.11 represents the results of EMA and its chaotic variants on multimodal mathematical
function FUN_XI. It is observed from Table 4.11 that EMA shows better performance in terms
of average fitness. All algorithms show similar results in terms of best fitness. CEMA4 shows
better results in respect of worst fitness while CEMA3 shows better performance on multimodal

mathematical function FUN_XI in terms of STD.

Table 4.10: Analysis of Proposed methodology on FUN_XI function

FUN_XI

Methods A Fitness B Fitness W Fitness STD

EMA 9.85E-03 0 1.01E-01 2.38E-02
CEMAL 1.86E-02 0 1.11E-01 3.37E-02
CEMA2 3.23E-02 0 1.11E-01 3.96E-02
CEMA3 5.51E-03 0 9.10E-02 1.95E-02
CEMAA4 8.02E-03 0 7.87E-02 2.11E-02
CEMAS 1.83E-02 0 1.65E-01 4.01E-02
CEMAG6 2.21E-02 0 1.60E-01 3.57E-02
CEMA7 1.66E-02 0 1.35E-01 3.24E-02
CEMAS 2.30E-02 0 1.99E-01 4.23E-02
CEMAO9 6.30E-02 0 1.45E-01 3.39E-02
CEMAL10 4.87E-02 0 1.72E-01 4.47E-02

Table 4.12 represents the results of EMA and its chaotic variants on multimodal mathematical
function FUN_XII. It is observed from Table 4.12 that all algorithms show almost similar results

in terms of STD, best fitness, average fitness and worst fitness.

Table 4.11: Analysis of Proposed methodology on FUN_XII function

FUN_XII
Methods A Fitness B Fitness W Fitness STD
EMA 4.71E-32 4.71E-32 4.71E-32 1.66E-47
CEMAL 4.71E-32 4.71E-32 4.71E-32 1.66E-47
CEMA2 6.22E-03 4.71E-32 3.11E-01 4.40E-02
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CEMA3 4.71E-32 4.71E-32 4.71E-32 1.66E-47
CEMA4 1.24E-02 4.71E-32 3.11E-01 6.16E-02
CEMAS5 4.71E-32 4.71E-32 4.71E-32 1.66E-47
CEMAG6 4.71E-32 4.71E-32 4.71E-32 1.66E-47
CEMA7 4.71E-32 4.71E-32 4.71E-32 1.66E-47
CEMAS 4.71E-32 4.71E-32 4.71E-32 1.66E-47
CEMA9 6.22E-03 4.71E-32 3.11E-01 4.40E-02
CEMA10 4.71E-32 4.71E-32 4.71E-32 1.66E-47

Table 4.13 represents the results of EMA and its chaotic variants on multimodal mathematical
function FUN_XIII. It is observed from Table 4.13 that EMA, CEMAS and CEMA9 show better
performance in terms of STD and average fitness. All algorithms show similar results on

multimodal mathematical function FUN_XIII in terms of best fitness and worst fitness.

Table 4.12: Analysis of Proposed methodology on FUN_XIII function

FUN_XIII

Methods A Fitness B Fitness W Fitness STD

EMA 1.32E-03 1.35E-32 1.10E-02 3.61E-03
CEMAL 2.64E-03 1.35E-32 1.10E-02 4.74E-03
CEMA2 2.20E-03 1.35E-32 1.10E-02 4.44E-03
CEMA3 1.76E-03 1.35E-32 1.10E-02 4.07E-03
CEMA4 2.20E-03 1.35E-32 1.10E-02 4.44E-03
CEMAS 4.58E-03 1.35E-32 9.74E-02 1.42E-02
CEMAG6 2.20E-03 1.35E-32 1.10E-02 4.44E-03
CEMA7 1.98E-03 1.35E-32 1.10E-02 4.26E-03
CEMAS 1.32E-03 1.35E-32 1.10E-02 3.61E-03
CEMA9 1.32E-03 1.35E-32 1.10E-02 3.61E-03
CEMAL10 1.98E-03 1.35E-32 1.10E-02 4.26E-03
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Table 4.14 represents the results of EMA and its chaotic variants on multimodal mathematical
function FUN_XIV. It is observed from Table 4.14 that CEMA3 shows better performance in
terms of average fitness. All algorithms show similar results on multimodal mathematical
function FUN_XIV in terms of best fitness and worst fitness. CEMA1 shows better performance
in terms of STD.

Table 4.13: Analysis of Proposed methodology on FUN_XIV function

FUN_XIV

Methods A Fitness B Fitness W Fitness STD

EMA 1.59E+00 9.98E-01 1.08E+01 1.78E+00
CEMAL 1.24E+00 9.98E-01 5.93E+00 7.87E-01
CEMA2 1.63E+00 9.98E-01 1.08E+01 1.78E+00
CEMA3 1.23E+00 9.98E-01 5.93E+00 9.88E-01
CEMAA4 1.55E+00 9.98E-01 1.17E+01 1.79E+00
CEMAS 1.69E+00 9.98E-01 1.08E+01 1.79E+00
CEMAG6 1.28E+00 9.98E-01 5.93E+00 8.24E-01
CEMA7 1.49E+00 9.98E-01 5.93E+00 1.37E+00
CEMAS 1.61E+00 9.98E-01 1.27E+01 1.95E+00
CEMA9 1.55E+00 9.98E-01 1.08E+01 1.80E+00
CEMAI10 1.59E+00 9.98E-01 7.87E+00 1.52E+00

Table 4.15 represents the results of EMA and its chaotic variants on multimodal mathematical
function FUN_ XV. It is observed from Table 4.15 that CEMA2 shows better performance in
terms of average fitness and STD. All algorithms show similar results on multimodal

mathematical function FUN_ XYV in terms of best fitness and worst fitness.

Table 4.14: Analysis of Proposed methodology on FUN_ XV function

FUN_XV

Methods A Fitness B Fitness W Fitness STD
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EMA 9.10E-04 3.07E-04 2.04E-02 2.83E-03
CEMAL 1.29E-03 3.07E-04 2.04E-02 3.95E-03
CEMA2 3.81E-04 3.07E-04 1.22E-03 2.51E-04
CEMA3 7.82E-04 3.07E-04 2.04E-02 2.84E-03
CEMA4 9.47E-04 3.07E-04 2.04E-02 2.83E-03
CEMAS 4.91E-04 3.07E-04 1.22E-03 3.70E-04
CEMAG6 1.15E-03 3.07E-04 2.04E-02 3.97E-03
CEMA7 8.75E-04 3.07E-04 2.04E-02 2.84E-03
CEMAS 9.28E-04 3.07E-04 2.04E-02 2.83E-03
CEMA9 9.28E-04 3.07E-04 2.04E-02 2.83E-03

CEMAL10 1.58E-03 3.07E-04 2.04E-02 4.80E-03

Table 4.16 represents the results of EMA and its chaotic variants on multimodal mathematical
function FUN_XVI. It is observed from Table 4.16 that all algorithms show similar results on
multimodal mathematical function FUN XVI in terms of average fitness, best fitness and worst

fitness. While all chaotic variants of EMA show better performance in terms of STD.

Table 4.15: Analysis of Proposed methodology on FUN_XVI function

FUN_XVI

Methods A Fitness B Fitness W Fitness STD

EMA -1.03E+00 -1.03E+00 -1.03E+00 2.12E-11
CEMAL -1.03E+00 -1.03E+00 -1.03E+00 3.46E-16
CEMA2 -1.03E+00 -1.03E+00 -1.03E+00 3.33E-16
CEMA3 -1.03E+00 -1.03E+00 -1.03E+00 3.63E-16
CEMAA4 -1.03E+00 -1.03E+00 -1.03E+00 3.33E-16
CEMAS -1.03E+00 -1.03E+00 -1.03E+00 3.31E-16
CEMAG6 -1.03E+00 -1.03E+00 -1.03E+00 3.33E-16
CEMA7 -1.03E+00 -1.03E+00 -1.03E+00 3.42E-16
CEMAS -1.03E+00 -1.03E+00 -1.03E+00 3.37E-16
CEMA9 -1.03E+00 -1.03E+00 -1.03E+00 3.59E-16
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CEMAI10 -1.03E+00 -1.03E+00 -1.03E+00 3.46E-16

Table 4.17 represents the results of EMA and its chaotic variants on multimodal mathematical
function FUN_XVII. It is observed from Table 4.17 that all algorithms show similar results on

multimodal mathematical function FUN XVII in terms of average fitness, best fitness and worst

fitness. While, CEMAS shows better performance in terms of STD.

Table 4.16: Analysis of Proposed methodology on FUN_XVII function

FUN_XVII

Methods A Fitness B Fitness W Fitness STD

EMA 3.00E+00 3.00E+00 3.00E+00 2.66E-15
CEMAL1 3.00E+00 3.00E+00 3.00E+00 1.06E-10
CEMA2 3.00E+00 3.00E+00 3.00E+00 7.23E-15
CEMA3 3.00E+00 3.00E+00 3.00E+00 2.67E-15
CEMAA4 3.00E+00 3.00E+00 3.00E+00 3.28E-15
CEMAS 3.00E+00 3.00E+00 3.00E+00 3.72E-15
CEMAG6 3.54E+00 3.00E+00 3.00E+01 3.82E+00
CEMA7 3.00E+00 3.00E+00 3.00E+00 2.53E-15
CEMAS 3.00E+00 3.00E+00 3.00E+00 2.22E-15
CEMA9 4.62E+00 3.00E+00 3.00E+01 6.48E+00
CEMAI10 3.00E+00 3.00E+00 3.00E+00 2.86E-15

Table 4.18 represents the results of EMA and its chaotic variants on multimodal mathematical
function FUN_XVIIIL. It is observed from Table 4.18 that all algorithms show similar results on

multimodal mathematical function FUN XVIII in terms of STD, average fitness, best fitness and

worst fitness.

Table 4.17: Analysis of Proposed methodology on FUN XVIII function

FUN_XVIII
Methods A Fitness B Fitness W Fitness STD
EMA -3.86E+00 -3.86E+00 -3.86E+00 3.14E-15
CEMAL -3.86E+00 -3.86E+00 -3.86E+00 3.14E-15
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CEMA2 -3.86E+00 -3.86E+00 -3.86E+00 3.14E-15
CEMA3 -3.86E+00 -3.86E+00 -3.86E+00 3.14E-15
CEMA4 -3.86E+00 -3.86E+00 -3.86E+00 3.14E-15
CEMAS -3.86E+00 -3.86E+00 -3.86E+00 3.14E-15
CEMAG6 -3.86E+00 -3.86E+00 -3.86E+00 3.14E-15
CEMA7 -3.86E+00 -3.86E+00 -3.86E+00 3.14E-15
CEMAS -3.86E+00 -3.86E+00 -3.86E+00 3.14E-15
CEMA9 -3.86E+00 -3.86E+00 -3.86E+00 3.14E-15
CEMAI10 -3.86E+00 -3.86E+00 -3.86E+00 3.14E-15

Table 4.19 represents the results of EMA and its chaotic variants on multimodal mathematical
function FUN_ XIX. It is observed from Table 4.19 that all algorithms show almost similar
results on multimodal mathematical function FUN XIX in terms of average fitness, best fitness
and worst fitness. While CEMA9 performs better results on multimodal mathematical function

FUN_XIX in terms of STD.

Table 4.18: Analysis of Proposed methodology on FUN_XIX function

FXIX

Methods A Fitness B Fitness W Fitness STD

EMA -3.26E+00 -3.32E+00 -3.20E+00 6.01E-02
CEMAL -3.25E+00 -3.32E+00 -3.14E+00 6.06E-02
CEMA2 -3.25E+00 -3.32E+00 -3.20E+00 5.84E-02
CEMA3 -3.25E+00 -3.32E+00 -3.20E+00 5.89E-02
CEMAA4 -3.26E+00 -3.32E+00 -3.20E+00 6.01E-02
CEMAS -3.25E+00 -3.32E+00 -3.14E+00 6.16E-02
CEMAG6 -3.26E+00 -3.32E+00 -3.20E+00 5.99E-02
CEMA7 -3.25E+00 -3.32E+00 -3.14E+00 6.11E-02
CEMAS -3.26E+00 -3.32E+00 -3.20E+00 6.00E-02
CEMA9 -3.25E+00 -3.32E+00 -3.20E+00 5.77E-02
CEMAI10 -3.24E+00 -3.32E+00 -3.14E+00 6.33E-02
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Table 4.20 represents the results of EMA and its chaotic variants on multimodal mathematical
function FUN XX. It is observed from Table 4.20 that all chaotic variants show better results on

multimodal mathematical function FUN XX in terms of STD, average fitness, best fitness and

worst fitness.

Table 4.19: Analysis of Proposed methodology on FUN XX function

FUN_XX

Methods A Fitness B Fitness W Fitness STD

EMA -5.60E+00 -1.02E+01 -2.63E+00 2.92E+00
CEMAL -6.38E+00 -1.02E+01 -2.63E+00 3.01E+00
CEMA2 -6.23E+00 -1.02E+01 -2.63E+00 3.13E+00
CEMA3 -5.96E+00 -1.02E+01 -2.63E+00 2.66E+00
CEMAA4 -6.39E+00 -1.02E+01 -2.63E+00 3.36E+00
CEMAS -6.55E+00 -1.02E+01 -2.63E+00 3.23E+00
CEMAG6 -5.79E+00 -1.02E+01 -2.63E+00 3.06E+00
CEMA7 -5.65E+00 -1.02E+01 -2.63E+00 3.14E+00
CEMAS -6.55E+00 -1.02E+01 -2.63E+00 3.58E+00
CEMA9 -5.60E+00 -1.02E+01 -2.63E+00 3.41E+00
CEMAI10 -5.73E+00 -1.02E+01 -2.63E+00 3.10E+00

Table 4.21 represents the results of EMA and its chaotic variants on multimodal mathematical
function FUN XXI. It is observed from Table 4.21 that CEMAI1 shows better results on
multimodal mathematical function FUN XXI in terms of average fitness. While, all other
algorithms show similar results on multimodal mathematical function FUN XXI in terms of

STD, best fitness and worst fitness.

Table 4.20: Analysis of Proposed methodology on FUN_XXI function

FUN_XXI
Methods A Fitness B Fitness W Fitness STD
EMA -6.53E+00 -1.04E+01 -2.75E+00 3.42E+00
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CEMAL -7.06E+00 -1.04E+01 -2.75E+00 3.33E+00
CEMA2 -6.20E+00 -1.04E+01 -2.75E+00 3.42E+00
CEMA3 -6.04E+00 -1.04E+01 -2.75E+00 3.12E+00
CEMA4 -6.87E+00 -1.04E+01 -2.75E+00 3.37E+00
CEMAS5 -6.85E+00 -1.04E+01 -1.84E+00 3.39E+00
CEMAG6 -6.86E+00 -1.04E+01 -1.84E+00 3.50E+00
CEMA7 -6.48E+00 -1.04E+01 -2.75E+00 3.21E+00
CEMAR -6.74E+00 -1.04E+01 -1.84E+00 3.50E+00
CEMA9 -6.59E+00 -1.04E+01 -2.75E+00 3.36E+00
CEMA10 -5.90E+00 -1.04E+01 -1.84E+00 3.49E+00

Table 4.22 represents the results of EMA and its chaotic variants on multimodal mathematical
function FUN_XXII. It is observed from Table 4.22 that CEMA7 shows better results on
multimodal mathematical function FUN XXII in terms of average fitness. While, all other
algorithms show similar results on multimodal mathematical function FUN_ XXII in terms of

STD, best fitness and worst fitness.

Table 4.21: Analysis of Proposed methodology on FUN XXII function

FUN_XXII

Methods A Fitness B Fitness W Fitness STD

EMA -6.90E+00 -1.05E+01 -2.42E+00 3.48E+00
CEMAL -6.81E+00 -1.05E+01 -2.42E+00 3.43E+00
CEMA2 -6.80E+00 -1.05E+01 -2.42E+00 3.57E+00
CEMA3 -7.22E+00 -1.05E+01 -2.43E+00 3.43E+00
CEMAA4 -7.06E+00 -1.05E+01 -2.42E+00 3.46E+00
CEMAS -7.77E+00 -1.05E+01 -2.43E+00 3.48E+00
CEMAG6 -6.68E+00 -1.05E+01 -2.42E+00 3.42E+00
CEMA7 -6.39E+00 -1.05E+01 -2.42E+00 3.25E+00
CEMAS -7.26E+00 -1.05E+01 -2.43E+00 3.39E+00
CEMA9 -7.29E+00 -1.05E+01 -2.42E+00 3.62E+00
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CEMAI10 -6.80E+00 -1.05E+01 -2.42E+00 3.43E+00

After detail analysis of EMA and its chaotic variants upon unimodal and multimodal
mathematical functions, it can be seen from tables 4.1-4.22 that the proposed variants of EMA
performs better than EMA for functions FUN II, FUN III, FUN VII, FUN IX, FUN XI,
FUN XIV, FUN XV, FUN XVI, FUN XVII, FUN XIX, FUN XX, FUN XXI and
FUN_XXII. EMA performs better in functions FUN I, FUN IV, FUN V and FUN_VIII than
other EMA variants while performance of EMA and its chaotic variants have similar

performance in functions FUN_ VI, FUN X, FUN XII, FUN XIII and FUN_ XVIII.

The convergence plots of EMA, CEMA1, CEMA2, CEMA3, CEMA4, CEMAS, CEMAG,
CEMA7, CEMAS, CEMA9 and CEMA10 are presenting in figures 4.1(a-e) to 4.5(a-b).

Figure 4.1(a-e) describes the convergence plots of FUN I, FUN II, FUN III, FUN IV and
FUN V functions. It is observed that CEMA3 shows better convergence than all other
algorithms in FUN I, FUN II, FUN III and FUN IV mathematical functions. While CEMA4

shows better convergence in FUN_V mathematical function.
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Figure 4.1: Analysis on FUN_I, FUN II, FUN III, FUN IV and FUN V
Figure 4.2(a-e) shows the convergence of FUN VI, FUN VII, FUN VIII, FUN IX and FUN X
functions. It is observed that CEMAS shows better convergence than all other algorithms in
FUN_ VI mathematical function. CEMA7 shows better convergence than all other algorithms in
FUN_VII and FUN_X mathematical functions. CEMA4 shows better convergence than all other
algorithms in FUN_VIII mathematical function. While CEMA3 shows better convergence in
FUN_IX mathematical function.
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Figure 4.1: Analysis on FUN VI, FUN_VII, FUN_ VIII, FUN IX and FUN X
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Figure 4.3 (a-e) shows the convergence of FUN XI, FUN XII, FUN XIII, FUN XIV and
FUN_XV. It is observed that CEMA3 shows better convergence than all other algorithms in
FUN_XI, FUN_ XII and FUN_XIII mathematical functions. CEMA9 shows better convergence
than all other algorithms in FUN_XIV mathematical function. While CEMA6 shows better

convergence in FUN XV mathematical function.
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Figure 4.2: Analysis on FUN_XI, FUN_XII, FUN_ XIII, FUN XIV and FUN XV
Figure 4.4 (a-e) shows the convergence of FUN_XVI, FUN XVII, FUN_ XVIII, FUN_ XIX and
FUN_ XX. It is observed that CEMAS shows better convergence than all other algorithms in
FUN_ XVI and FUN_XVII mathematical functions. CEMA7 shows better convergence than all
other algorithms in FUN XVIII mathematical function. CEMAG6 shows better convergence than
all other algorithms in FUN_XIX mathematical function. While CEMAS shows better

convergence in FUN_ XX mathematical function.
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Figure 4.3: Analysis on FUN_XVI, FUN_XVIL, FUN_XVIII, FUN XIX and FUN_ XX
Figure 4.5 (a-b) demonstrates the convergence plots for FUN_ XXI and FUN XXII functions. It
is observed that CEMA10 shows better convergence than all other algorithms in FUN XXI
mathematical function. While CEMA4 shows better convergence in FUN XXII mathematical

function.
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After detail analysis of EMA and its chaotic variants upon unimodal and multimodal

mathematical functions, it is seen from figures (4.1-4.5) that the chaotic variants of EMA show

superior performance than EMA for mathematical functions in terms of convergence.

4.2 Parameter tuning of EMA on INOE Model

The tuning of Crossover probability and Predator probability parameters for EMA is being
performed at population size (Pop) =50, iterations =3000 for independent 50 runs. It is seen form

the Table 4.23 that best results are obtained when parameter values of both crossover probability

and predator probability = 0.8.

Table 4.23: EMA Parameter tuning for IN-OE model

Parameter

A Fitness

STD
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Crossover=0.2,predator=0.2 1.896E+02 4.761E+01
Crossover=0.2,predator=0.5 1.348E+02 1.527E+03
Crossover=0.2,predator=0.8 1.924E+02 2.430E+03
Crossover=0.5,predator=0.2 2.743E+01 7.021E+00
Crossover=0.5,predator=0.5 4.622E+01 8.639E+00
Crossover=0.5,predator=0.8 3.866E+01 1.048E+01
Crossover=0.8,predator=0.2 1.249E+01 8.313E+02
Crossover=0.8,predator=0.5 9.473E+00 2.216E+03
Crossover=0.8,predator=0.8 1.800E-03 4.436E+01
Crossover=0.9,predator=0.2 5.000E-03 5.180E+00
Crossover=0.9,predator=0.5 5.600E-03 6.709E+00
Crossover=0.9,predator=0.8 6.300E-03 5.572E+03

Crossover=1,predator=0.2 2.020E-02 1.747E+02

Crossover=1,predator=0.5 1.890E-02 4.854E+03

Crossover=1,predator=0.8 1.830E-02 9.329E+00

The convergence and statistical plots of tuned parameters of EMA on IN-OE model are
presenting in figures 4.6(a-b). It is observed from figures that best results for EMA tuned

parameters i.e. crossover probability and predator probability are 0.8 value for IN-OE model.
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(a) Convergence Plot
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Figure 4.6: Convergence and Statistical plots of EMA Tuning

4.3 Analysis on IN-OE Model

The analysis of EMA and its chaotic variants is executed on mathematical functions having both
unimodal and multimodal features. These variants are applied further for the identification of IN-
OE model for multiple variations of iteration, noises and populations. The IN-OE model

parameters are taken from [76] as given in (4.1)-(4.3)

C(q)=1+0.84¢7"+0.31q7, (4.1)
D(q)=1-0.57g"+0.86¢2, (4.2)

W(T) = —1.50w(z) — 2.60w>(7) +3.20w (1), (43)

The parameter vector vis given in (4.4)

v=[cl,c2,d1,d2, 81,52, 83]" =[0.84,0.31,-0.57,0.86,-1.50,-2.60,3.20]"  (4.4)
Er(7) = Yaer (T) = Yest (7), (4.5)
Tables 4.24-4.29 represent the analysis for parameter vector estimated by EMA, CEMAI,
CEMA2, CEMA3, CEMA4, CEMAS, CEMA6, CEMA7, CEMAS, CEMA9, CEMA10, COA,
HHO and PSO at maximum iteration P=3000 and Pop =18, 50 and noise levels E(7)=1.91E-03,

1.91E-02 and 1.91E-01 respectively.
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Table 4.24 represents the analysis for parameter vector estimated by EMA, CEMA1, CEMA2,
CEMA3, CEMA4, CEMAS, CEMA6, CEMA7, CEMAS, CEMA9, CEMA10, COA, HHO and
PSO at maximum iteration P=3000 and Pop =18 and noise level E(7)=1.91E-03. It can be seen

that CEMAS shows better results in terms of best fitness. While CEMA10 estimated weights are
very close to true weights of the IN-OE model.

Table 4.24: Analysis of IN-OE at 1.91E-03 noise level and population size =18

Methods | B Fitness Estimated Weights
EMA 2.89E-04 0.837 0.308 -0.571 0.862 -1.676 -2.877 3.087
CEMAL 5.20E-04 0.842 0.311 -0.572 0.860 -1.230 -2.185 3.362
CEMA2 7.14E-05 0.838 0.309 -0.572 0.862 -1.514 -2.615 3.194
CEMA3 1.80E-04 0.840 0.310 -0.572 0.861 -1.350 -2.369 3.289
CEMAA4 7.36E-04 0.840 0.310 -0.574 0.862 -1.197 -2.126 3.385
CEMAS 6.66E-05 0.839 0.309 -0.571 0.861 -1.568 -2.720 3.147
CEMAG6 4.36E-05 0.839 0.309 -0.572 0.861 -1.515 -2.646 3.173
CEMA7 1.81E-05 0.839 0.309 -0.572 0.861 -1.482 -2.576 3.206
CEMAS 1.47E-05 0.839 0.309 -0.571 0.861 -1.513 -2.617 3.193
CEMAO9 1.17E-04 0.839 0.309 -0.570 0.861 -1.614 -2.779 3.128
CEMAI10 | 4.20E-05 0.840 0.310 -0.572 0.861 -1.435 -2.500 3.238
COA 2.90E+01 1.483 0.633 -0.963 -0.682 1.323 0.455 1.960
HHO 1.46E-02 0.838 0.310 -0.568 0.877 -0.998 -1.215 3.901
PSO 4.63E-02 0.834 0.305 -0.612 0.891 -1.156 -3.206 2.574
True Weights 0.840 0.310 -0.570 0.860 -1.500 -2.600 3.200

Table 4.25 represents the analysis for parameter vector estimated by EMA, CEMAI1, CEMA?2,
CEMA3, CEMA4, CEMAS, CEMA6, CEMA7, CEMAS, CEMAY9, CEMA10, COA, HHO and
PSO at maximum iteration P=3000 and Pop =50 and noise level E(7)=1.91E-03. It can be seen

that CEMAS and CEMA10 show better results in terms of best fitness. It is also noted that
CEMAS and CEMA10 estimated weights are very close to true weights of the IN-OE model.
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Table 4.25: Analysis of IN-OE at 1.91E-03 noise level and population size = 50

Methods | B Fitness Weights
EMA 1.94E-06 0.840 0.310 -0.570 0.860 -1.492 -2.586 3.206
CEMAI1 | 2.11E-06 0.840 0.310 -0.570 0.860 -1.505 -2.603 3.199
CEMA2 | 1.84E-06 0.840 0.310 -0.570 0.860 -1.501 -2.598 3.201
CEMA3 | 2.24E-06 0.840 0.310 -0.570 0.860 -1.506 -2.605 3.199
CEMA4 | 6.70E-06 0.840 0.310 -0.570 0.860 -1.471 -2.555 3.217
CEMAS | 1.76E-06 0.840 0.310 -0.570 0.860 -1.498 -2.594 3.203
CEMAG6 | 1.80E-06 0.840 0.310 -0.570 0.860 -1.495 -2.589 3.205
CEMA7 | 2.40E-06 0.840 0.310 -0.570 0.860 -1.488 -2.580 3.208
CEMAS | 2.05E-06 0.840 0.310 -0.570 0.860 -1.504 -2.603 3.200
CEMA9 | 1.92E-06 0.840 0.310 -0.570 0.860 -1.492 -2.586 3.206
CEMAI10 | 1.76E-06 0.840 0.310 -0.570 0.860 -1.498 -2.594 3.203
COA 1.12E+01 0.840 0.235 -1.403 1.001 1.288 -1.455 1.036
HHO 4.77E-02 0.826 0.300 -0.629 0.922 -0.016 -0.272 4.000
PSO 4.15E-01 0.717 0.236 -0.693 1.065 -2.820 -2.295 3.744
True Weights 0.840 0.310 -0.570 0.860 -1.500 -2.600 3.200

Table 4.26 represents the analysis for parameter vector estimated by EMA, CEMA1, CEMA2,
CEMA3, CEMA4, CEMAS, CEMA6, CEMA7, CEMAS8, CEMA9, CEMA10, COA, HHO and
PSO at maximum iteration P=3000 and Pop =18 and noise level E(7)=1.91E-02. It can be seen

that CEMA3 shows better results in terms of best fitness. It is also noted that CEMA3 estimated

weights are very close to true weights of the IN-OE model.

Table 4.26: Analysis of IN-OE at 1.91E-02 noise level and population size =18

Methods Best FF Estimated Weights

EMA 2.58E-04 0.839 0.310 -0.571 0.862 -1.575 -2.690 3.170
CEMAL1 3.41E-04 0.841 0.311 -0.572 0.862 -1.327 -2.301 3.324
CEMA2 | 2.61E-04 0.838 0.308 -0.575 0.864 -1.459 -2.514 3.235
CEMA3 1.87E-04 0.839 0.310 -0.572 0.862 -1.508 -2.585 3.211
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CEMA4 3.33E-04 0.838 0.308 -0.576 0.865 -1.389 -2.409 3.275
CEMA5 4.85E-04 0.838 0.309 -0.571 0.863 -1.676 -2.846 3.108
CEMAG6 5.65E-04 0.835 0.307 -0.578 0.867 -1.451 -2.507 3.234
CEMA7 | 2.84E-04 0.837 0.308 -0.574 0.864 -1.543 -2.650 3.180
CEMAS 2.66E-04 0.840 0.310 -0.573 0.862 -1.362 -2.361 3.299
CEMAY9 | 2.38E-04 0.840 0.310 -0.573 0.863 -1.385 -2.396 3.284
CEMAI10 | 3.13E-04 0.838 0.309 -0.572 0.863 -1.602 -2.733 3.152
COA 1.56E+01 0.712 0.348 -2.275 2.996 2.652 0.174 0.979
HHO 1.28E-01 0.824 0.308 -0.651 0.955 -1.308 -3.221 2.522
PSO 1.54E+00 0.704 0.233 -0.776 1.378 -2.787 -2.145 3.293
True Weights 0.840 0.310 -0.570 0.860 -1.500 -2.600 3.200

Table 4.27 represents the analysis for parameter vector estimated by EMA, CEMA1, CEMA2,
CEMA3, CEMA4, CEMAS, CEMA6, CEMA7, CEMAS, CEMAY9, CEMA10, COA, HHO and
PSO at maximum iteration P=3000 and Pop =50 and noise level E(7)=1.91E-02. It can be seen

that CEMA7 shows better results in terms of best fitness. It is also noted that CEMA7 estimated

weights are very close to true weights of the IN-OE model.

Table 4.27: Analysis of IN-OE at 1.91E-02 noise level and population size =50

Methods Best FF Estimated Weights

EMA 1.76E-04 0.840 0.310 -0.572 0.862 -1.466 -2.521 3.236
CEMALI 1.80E-04 0.840 0.310 -0.572 0.862 -1.448 -2.494 3.247
CEMA2 | 1.78E-04 0.839 0.310 -0.572 0.862 -1.490 -2.559 3.221
CEMA3 | 1.76E-04 0.840 0.310 -0.572 0.862 -1.465 -2.519 3.237
CEMA4 | 1.76E-04 0.840 0.310 -0.572 0.862 -1.468 -2.524 3.235
CEMAS | 1.76E-04 0.840 0.310 -0.572 0.862 -1.464 -2.518 3.237
CEMAG6 | 1.77E-04 0.840 0.310 -0.572 0.862 -1.460 -2.512 3.240
CEMA7 | 1.75E-04 0.840 0.310 -0.572 0.862 -1.472 -2.531 3.232
CEMAS | 1.76E-04 0.840 0.310 -0.572 0.862 -1.467 -2.523 3.236
CEMAY9 | 1.76E-04 0.840 0.310 -0.572 0.862 -1.477 -2.538 3.229
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CEMAI10 | 1.77E-04 0.840 0.310 -0.572 0.862 -1.456 -2.508 3.241
COA 4.31E+00 0.421 0.044 -1.568 1.400 1.937 -1.274 1.985
HHO 4.79E-02 0.813 0.288 -0.650 0.909 0.132 -0.578 3.775
PSO 2.63E-01 0.888 0.338 -0.648 0.892 1.217 -0.509 3.190

True Weights 0.840 0.310 -0.570 0.860 -1.500 -2.600 3.200

Table 4.28 represents the analysis for parameter vector estimated by EMA, CEMA1, CEMA2,
CEMA3, CEMA4, CEMAS, CEMA6, CEMA7, CEMAS, CEMAY9, CEMA10, COA, HHO and
PSO at maximum iteration P=3000 and Pop =18 and noise level E(7)=1.91E-01. It can be seen

that CEMA7 shows better results in terms of best fitness. While, CEMA4 estimated weights are

very close to true weights of the IN-OE model.

Table 4.28: Analysis of INOE at 1.91E-01 noise level and population size =18

Methods | Best FF Estimated Weights
EMA 1.75E-02 0.836 0.309 -0.588 0.880 -1.265 -1.971 3.499
CEMAL 1.80E-02 0.832 0.307 -0.591 0.884 -1.442 -2.243 3.389
CEMA2 | 1.78E-02 0.837 0.310 -0.590 0.880 -1.031 -1.612 3.638
CEMA3 | 1.76E-02 0.835 0.309 -0.591 0.881 -1.159 -1.815 3.556
CEMA4 | 1.78E-02 0.837 0.310 -0.590 0.880 -1.027 -1.608 3.641
CEMAS | 1.76E-02 0.835 0.309 -0.588 0.880 -1.313 -2.045 3.469
CEMAG6 | 1.76E-02 0.836 0.309 -0.590 0.881 -1.172 -1.833 3.550
CEMA7 | 1.75E-02 0.835 0.309 -0.590 0.881 -1.230 -1.931 3.510
CEMAS | 1.76E-02 0.835 0.308 -0.592 0.882 -1.157 -1.824 3.548
CEMA9 | 1.79E-02 0.834 0.308 -0.589 0.881 -1.430 -2.232 3.394
CEMAI10 | 1.76E-02 0.835 0.309 -0.588 0.880 -1.316 -2.055 3.465
COA 6.46E+00 0.819 0.272 -1.227 1.693 -0.718 0.478 3.076
HHO 2.14E-01 0.788 0.274 -0.755 1.003 1.466 0.781 3.963
PSO 6.55E-01 0.879 0.357 -0.619 1.069 -1.454 -1.850 3.223
True Weights 0.840 0.310 -0.570 0.860 -1.500 -2.600 3.200
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Table 4.29 represents the analysis for parameter vector estimated by EMA, CEMAI1, CEMA2,
CEMA3, CEMA4, CEMAS, CEMA6, CEMA7, CEMAS, CEMAY9, CEMA10, COA, HHO and
PSO at maximum iteration P=3000 and Pop =50 and noise level E(7)=1.91E-01. It can be seen

that EMA and its chaotic variants show better results in terms of best fitness. While, CEMAS5

estimated weights are very close to true weights of the IN-OE model.

Table 4.29: Analysis of INOE at 1.91E-01 noise level and population size =50

Methods | Best FF Estimated Weights
EMA 1.75E-02 0.836 0.309 -0.589 0.880 -1.220 -1.906 3.523
CEMAL 1.75E-02 0.836 0.309 -0.589 0.880 -1.219 -1.905 3.523
CEMA2 | 1.75E-02 0.836 0.309 -0.589 0.880 -1.217 -1.902 3.524
CEMA3 | 1.75E-02 0.836 0.309 -0.589 0.880 -1.227 -1.916 3.519
CEMA4 | 1.75E-02 0.836 0.309 -0.589 0.880 -1.232 -1.924 3.516
CEMAS | 1.75E-02 0.836 0.309 -0.589 0.880 -1.239 -1.934 3.513
CEMAG6 | 1.75E-02 0.836 0.309 -0.589 0.880 -1.191 -1.861 3.541
CEMA7 | 1.75E-02 0.836 0.309 -0.589 0.880 -1.225 -1.914 3.520
CEMAS | 1.75E-02 0.836 0.309 -0.589 0.880 -1.238 -1.934 3.512
CEMAY9 | 1.75E-02 0.836 0.309 -0.589 0.880 -1.226 -1.915 3.519
CEMAI10 | 1.75E-02 0.836 0.309 -0.589 0.880 -1.205 -1.884 3.531
COA 1.17E+01 0.861 0.288 -1.306 1.915 0.798 -0.076 1.580
HHO 1.16E-01 0.808 0.288 -0.677 0.922 -0.996 -3.290 2.396
PSO 5.85E-01 0.876 0.321 -0.695 0.793 2.382 -1.687 2.143
True Weights 0.840 0.310 -0.570 0.860 -1.500 -2.600 3.200

After detailed analysis of EMA, its chaotic variants and other metaheuristic algorithms on IN-OE
model with different noise levels and population size, it is seen from Tables 4.24-4.29 that
chaotic variants of EMA achieves the lowest best fitness (B Fitness) and most accurate

parameters for all variants than EMA, COA, HHO and PSO.
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The statistical analysis of EMA, its chaotic variants and other metaheuristic algorithms are
performed for the identification of IN-OE model parameters. Figure 4.7(a-c) and Figure 4.8(a-c)
present the statistical parameter vector analysis of the IN-OE model for EMA, CEMALI,
CEMA2, CEMA3, CEMA4, CEMAS, CEMA6, CEMA7, CEMAS, CEMA9, CEMA10, COA,
HHO and PSO at maximum iteration P =3000, Pop =18, 50 and noise levels E(7)=1.91E-03,

1.91E-02 and 1.91E-01 respectively. It is seen from Figure 4.7(a-c) and Figure 4.8(a-c) that chaotic
variants of EMA estimate parameter more accurately than EMA, COA, HHO and PSO for all

twenty executions.
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The convergence analysis of EMA, its chaotic variants and other metaheuristic algorithms are
performed for the identification of IN-OE model parameters. Figure 4.9(a-c) and Figure 4.10(a-
c) represent the convergence analysis of the IN-OE model for EMA, CEMAl, CEMA2,
CEMA3, CEMA4, CEMAS, CEMA6, CEMA7, CEMAS, CEMAY9, CEMA10, COA, HHO and
PSO for three levels of E(7) respectively. It is observed from Figure 4.9(a-c) and Figure 4.10(a-

c) that higher level of E(7) affects the fitness. Moreover it is observed from Figure 4.9(a-c) and

Figure 4.10(a-c) that CEMA9 performs better than EMA, CEMA1, CEMA2, CEMA3, CEMA4,
CEMAS, CEMA6, CEMA7, CEMAS, CEMA10, COA, HHO and PSO.

10 T T T T T EM.A

w | CEMA1
CEMAZ

1’ CEMAZ

. —_— CEMA4

\ CEMAS

10’ S — CEMAG

: — CEMAT

CEMAS

CEMA9
CEMA10

COA

HHO

500 1000 1500 2000 2500 3000 — [ ()
lterations

(a) 1.91E-03

Fitness

52



Fitness

Fitness

10 T T T T T Ema
CEMA
CEMAZ
CEMAZ
0 1 — CEMAA
CEMAS
CEMAG
CEMAF
CEMAS
CEMAD
CEMAID
COA

HHO

500 1000 1500 2000 2500 3000 — S
lterations

(b) 1.91E-02
b ' ' ' ' EmA
3 CEMA1
CEMAZ
CEMA3
CEmMA4
CEMAS
CEMAG
CEMA7F
CEMAS
CEMA9
CEMAI1D
COoA
HHO
PSO

[y
=,
o

Fitness

500 1000 1500 2000 2500 3000
lterations

(¢) 1.91E-01
Figure 4.9: Convergence analysis of EMA and other metaheuristic algorithms at Pop=18

10 T T T T T EMA
CEmMA
CEmMAZ
CEMAI
CEMAA
CEMAS
CEMAG
CEMATF
CEMAS
CEMAS
CEMA1TD
COn
HHO

500 1000 1500 2000 2500 3000 — )
Iterations

(a) 1.91E-03 (b) 1.91E-02

53



10 T T T T T EhA,
CEMA1
o F 1 —_— CEMAZ
: E\ CEMAZ
10 1 ——— CEMA4
CEMAS
vy 1 — CEMAG
—— CEMATF
CEMAS
CEMAD
CEMATN
COA

HHO

500 1000 1500 2000 2500 3000 — )
lterations

(c)

Fitness

EhlA

10’ 3 CEMA1
CEMAZ
CEMA3I
CEMAA
CEMAS
CEMAG
CEMATF
CEMAS
CEMA9
CEMA1D
COAn

. . HHO

500 1000 1500 2000 2500 3000 —
lterations

(d) 1.91E-01
Figure 4.10: Convergence analysis of EMA and other metaheuristic algorithms at Pop=50
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The performance of EMA, CEMAI1, CEMA2, CEMA3, CEMA4, CEMAS, CEMA6, CEMAY7,
CEMAS, CEMA9, CEMA10, COA, HHO and PSO for the identification of IN-OE model at
maximum iteration P =3000 and Pop =18, 50 respectively are presented in terms of different
noise levels E(7). Figures 4.11(a-c) to 4.14(a-c), 4.15(a-b), 4.16(a-c) to 4.19(a-c) and 4.20(a-b).
It is perceived from the above mentioned figures that for all OM’s the fitness increases with an

increase in £(7). However, chaotic variants of EMA achieve lowest fitness than EMA, COA,

HHO and PSO for all variations.
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Figure 4.13: Analysis of CEMA6, CEMA7 and CEMAS for Pop=18

3

10° 10
10°
10’
10’
o oy
w n 1]
2 A 2 10
= 10 =
10°
10°
1["1 I I I I L 1']5 I 'l I 'l L
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
[terations [terations
(a) CEMA9 (b) CEMAI0
1|]1.3
) | 91E 03
o
o
=
£ | 91E 02
e | 91 E
1|]1.B 1
500 1000 1500 2000 2500 3000
lterations
(a) COA
Figure 4.14: Analysis of CEMA9, CEMA10 and COA for Pop=18
w 1 I]d
4
10 1
3
2
10
B 1 @
£ 2 qqf
i ' 1 &
——————
0
10§
10’
Kl
10 [ 1
1']2 I I 'l I 'l 1']0 I I I 'l 'l
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
[terations lterations

57



Fitness

Fitness

(b) HHO (c) PSO

e  91E 03
e | 91E 02
e 1 91E 01
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Figure 4.19: Analysis of CEMA9, CEMA10 and COA for Pop=50
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Figure 4.20: Analysis of HHO and PSO for Pop=50
Table 4.30 shows the performance of EMA, CEMA1, CEMA2, CEMA3, CEMA4, CEMAS,
CEMAG6, CEMA7, CEMAS, CEMAY9, CEMA10, COA, HHO and PSO in terms of average
execution time and related standard deviation (STD) for E(7)=1.91E-03. It is observed from

Table 4.30 that CEMAS attain better results in terms of average execution time while

maintaining lower fitness at pop = 18 and 50. It is also noted that CEMAT1 shows better results

in terms of STD at pop = 18.

Table 4.30: Statistical Analysis of EMA and other Metaheuristics

Methods Population Avg. Time STD
18 6.47E+00 1.15E-01
EMA
50 1.76E+01 3.16E-01
18 6.16E+00 9.77E-02
CEMAL
50 1.66E+01 3.05E-01
18 6.70E+00 1.18E-01
CEMA2
50 1.83E+01 3.46E-01
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18 7.13E+00 1.18E-01
CEMA3
50 1.94E+01 3.36E-01
18 6.35E+00 1.16E-01
CEMA4
50 1.72E+01 2.69E-01
18 6.14E+00 1.15E-01
CEMAS5
50 1.66E+01 2.81E-01
18 6.46E+00 1.05E-01
CEMAG6
50 1.76E+01 2.91E-01
18 6.25E+00 1.01E-01
CEMA7
50 1.70E+01 2.89E-01
18 5.81E+00 1.19E-01
CEMAS
50 1.58E+01 2.45E-01
18 5.87E+00 1.05E-01
CEMA9
50 1.59E+01 2.68E-01
18 6.45E+00 1.03E-01
CEMA10
50 1.74E+01 2.87E-01
18 1.74E+01 2.53E-01
COA
50 4.73E+01 5.25E-01
18 1.70E+01 3.44E-01
HHO
50 4.67E+01 5.96E-01
18 7.05E+00 1.09E-01
PSO
50 1.92E+00 3.69E-01

Table 4.31 presents the performance of EMA, CEMA1, CEMA2, CEMA3, CEMA4, CEMAS,
CEMAG6, CEMA7, CEMAS, CEMA9, CEMA10, COA, HHO and PSO for Friedman rank test
analysis. It is observed from Table 4.31 that CEM A9 has highest rank than all other methods.
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Table 4.31: Statistical Analysis using Friedman rank test

Methods Rank sum Rank
EMA 111.5 11
CEMAL1 80.5 5
CEMA2 97.5 9
CEMA3 73.5 4
CEMA4 87.5 6
CEMAS 72.5 3
CEMAG6 96.5 8
CEMA7 90 7
CEMAS 98.5 10
CEMA9 48.5 1
CEMAI10 60 2
PSO 253 13
COA 275 14
HHO 133 12

The evaluation of EMA, CEMA1, CEMA2, CEMA3, CEMA4, CEMAS5, CEMA6, CEMA7,
CEMAS, CEMA9, CEMA10, COA, HHO and PSO for INOE model parameters is deliberated
on the disturbance levels E(7)=[1.91E-03, 1.91E-02, 1.91E-01].

Detailed statistical, convergence, complexity and Freidman ranksum test show that chaotic
variants of EMA achieves best performance against evolutionary mating algorithm (EMA) [52],
coati optimization algorithm (COA) [55], Harris hawks optimization (HHO) [56], and particle
swarm optimization (PSO) [41].
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CHAPTER 5

Conclusion and Future Work

In this chapter, results of EMA and chaotic variants of EMA on IN-OE model will be concluded.

Also a way forward for researchers will be proposed to optimize the parameters in system

1dentification field.

5.1 Conclusion

The conclusion of this research after presenting considerable simulation results in previous

chapter are given as follows:

The evolutionary-based, EMA algorithm is proposed for identification of an IN-OE
system, represented with key term separation technique.

The chaotic EMA is established by assimilating the chaos theory with the conventional
EMA exploration process.

The simulations results show that EMA with a chaotic sinusoidal map (CEMAY) executes
better results than CEMA1 to CEMAS, CEMA10, standard EMA, as well as recent
metaheuristics based on PSO, COA and HHO for identification of IN-OE system.

5.2 Future Work

This research can be considered as encouraging step to identify the IN-OE model
parameters by using metaheuristic optimization algorithms.

The proposed methodology can further be investigated in other engineering fields such as
system identification of wiener Hammerstein models with colored noise based on hybrid
signals [77].

Hybrid model approach can also be designed by integrating chaotic variants of EMA with
other metaheuristic algorithms to optimize the system parameters of Hammerstein and

wiener models in system identification field.
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