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ABSTRACT 

Optimization of Nonlinear system parameters faces various challenges in the research 

community due to uncertainty and correlated parameters. In this research, key term separation 

method is used for mathematical modeling of IN-OE system and identification is accomplished 

by using evolutionary-based Evolutionary Mating Algorithm (EMA) and chaotic evolutionary 

mating algorithm (CEMA) in exploration process of EMA. The fitness function used to identify 

IN-OE system parameters implements mean-square error (MSE) between desired and estimated 

values. Simulations results demonstrate that EMA with a chaotic sinusoidal map (CEMA9) 

executes better results than the EMA, its other chaotic variants, as well as other recently 

introduced metaheuristics for diverse variations in the system model. MSE based analysis and 

results of statistical test illustrate the performance of CEMA9 for the identification of the IN-OE 

system. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Nonlinear systems are widely used in engineering applications as well as social, economic, 

physical and life sciences fields [1]. Nonlinear identification models represent the dynamics of 

nonlinear systems especially when linear models cannot depict the accurate system parameters 

[2]. Hammerstein and Weiner Models provide insight knowledge about the nonlinear systems 

dynamics [3]. Neural state space identification are used to represent deep learning based 

nonlinear state space models [4]. Nonlinear grey box models can also estimate the physical 

parameters of nonlinear systems [5]. Application of nonlinear systems are industry 4.0 [6], visual 

object tracking [7], mobile robot network [8], triangulation of GPS [9], civil engineering [10], 

smart grids [11], auxiliary model identification [12], and many other research applications. 

Figure 1.1 represents nonlinear system applications that are commonly used in engineering.  

Input Nonlinear output-error (IN-OE) is a block-oriented Hammerstein identification model of 

input nonlinear system. The parameters of IN-OE model are estimated by applying parameter 

identification techniques and metaheuristic algorithms.   
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Figure 1.1: Nonlinear System Applications 
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1.2 Problem Statement 

Optimization of IN-OE system induces an essential role in various domains of engineering 

problems. Traditional methods struggle in finding global optima due to various challenges such 

as complexity, scalability, convergence and robustness. These challenges makes identification of 

IN-OE system parameters is a difficult task which can be achieved by using metaheuristic 

algorithms. During brief literature review, it has been observed that complexity of the problem 

increases especially the dimensions of the problem by using the different optimization 

techniques. However metaheuristic algorithms still not applied on the IN-OE model. Moreover, 

the optimal parameters of metaheuristic algorithms vary for different problems. This research 

explores the identification of IN-OE system parameters through metaheuristic algorithm which is 

very useful in designing the controller of nonlinear systems. 

1.3 Contributions 

The major contributions of this research work are:  

 Enhanced variants of the EMA namely CEMA1, CEMA2, CEMA3, CEMA4, CEMA5, 

CEMA6, CEMA7, CEMA8, CEMA9, and CEMA10 are proposed by incorporating ten 

chaotic maps for engineering optimization problems. 

 The evaluation of CEMA1, CEMA2, CEMA3, CEMA4, CEMA5, CEMA6, CEMA7, 

CEMA8, CEMA9, and CEMA10 is done on mathematical functions having both uni and 

multimodal features.  

 The robustness of CEMA1, CEMA2, CEMA3, CEMA4, CEMA5, CEMA6, CEMA7, 

CEMA8, CEMA9, CEMA10, is also assessed for IN-OE model against COA, EMA, 

HHO, and PSO indicating its realism in real-world applications. 

1.4 Thesis Organization 

Chapter 1 presents an overview, problem statement and objectives of research. Chapter 2 covers 

the literature review of harmonics estimation and mathematical model of parameter estimation of 

power system harmonics. Chapter 3 describes the proposed methodology based on DE and 

MLADE. Chapter 4 discusses the results and stimulations. Chapter 5 presents the conclusion and 

future work of research. 
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CHAPTER 2  

LITERATURE REVIEW 

This chapter presents the literature review of IN-OE model parameters optimization by using 

metaheuristic optimization algorithms.  

2.1     IN-OE Model 

Hammerstein and Weiner models are block oriented system identification models used to find 

out the solution of linear and nonlinear systems. Both models have same elements but integrated 

in reverse order. The nonlinear system selected for this research proposal is based on 

Hammerstein model known as nonlinear input output-error (IN-OE) system. It comprises of two 

main subsystems i.e. static nonlinear subsystem and the other one is linear dynamical subsystem 

[13]. Keeping in view the features of linear dynamic subsystem, IN-OE system can be classified 

as output-error and equation-error systems. Output error models are frequently used in the field 

of stochastic process specifically for the identification of nonlinear system parameters [14].  

2.2     Identification Methods 

Several identification techniques have been proposed in literature for IN-OE model parameters. 

Especially over-parameterization [15], multi-innovative identification [16], key-term separation 

[17], hierarchical identification [18], and auxiliary model [19] are more prominent techniques 

applying on nonlinear system applications. 

The over-parameterization techniques can be applied on complex nonlinear systems in order to 

re-evaluate the system variables so that output behaves linearly. Furthermore optimization 

algorithms can be used to find out the best values of system key parameters. This technique has 

also been used with other methods to find the nonlinear system parameters. F. Ding and X. 

Zhang applied this technique in 2021 to identify the IN-OE system parameters. L. Xu and H. Ma 

proposed the hierarchical identification algorithm to identify the nonlinear IN-OE systems with 

high dimensions and complex structures in 2021. Feng Ding applied the key-term separation 

method on IN-OE model which helps to avoid excessive calculation required in over 

parameterization technique. Recently gradient iterative method and least square iterative 
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technique were proposed for the identification of IN-OE system parameters. Table 2.1 represents 

the limitations of iterative methods and techniques applied on IN-OE model 

Table 2.1:  Identification methods of IN-OE 

Title 
Algorithm Used/Tuning 

Methods 
Limitations 

Year of 

Publication 

Nonlinear IN-OE system 

using key term separation 

method[9] 

Gradient based iterative 

method & least square method 

Problem in finding global 

minima especially with noise 

induction 

2021 

Nonlinear IN-OE system 

using auxiliary model [10] 

AM-GI, O-AM-LSI & AM-

MIGI algorithms 

Complexity increases with 

increase in no of iterations and 

leads to increase 

computational cost 

2021 

Nonlinear IN-OE system 

using over 

parameterization method 

[11] 

O-AM-HLSI  & O-AM-HGI  

algorithms 

 

Overfitting problem and slow 

convergence 
2023 

 

2.3     Metaheuristic Optimization Algorithms 

Metaheuristic optimization algorithms are also very effective to estimate the IN-OE system 

parameters. These algorithms are very useful to solve complex computational problems 

efficiently through optimization of system key parameters [20]. A lot of researchers proposed 

new metaheuristic algorithms to solve real world problems [21]. Optimal solution in energy 

sectors especially in the field of smart grids was proposed using harmony search metaheuristic 

algorithm [22]. In medical field, classification of heart related disease were also identified 

through combination of different metaheuristic algorithms [23]. In control system problems, 

metaheuristic algorithms provides optimal solution to control the attitude and altitude of 

unmanned aerial vehicle [24]. Metaheuristic algorithms also provide optimal solution in the 

networks of wireless sensors [25]. They are applied for estimation of harmonics in power 

systems [26]. Metaheuristic algorithms can be categorized as evolutionary process based 

algorithms [27], physics based algorithms [28], human inspired algorithms [29] and swarm 

intelligence algorithms [30]. Figure 2.1 represents the categories of metaheuristic algorithms. 
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Figure 2.1: Categories of Metaheuristic Algorithms 

Evolutionary Algorithms relies on Darwinian Theory. This class of metaheuristic algorithms 

includes Quantum based avian navigation optimizer algorithm [31], Strength Pareto 

Evolutionary Algorithm 2 [32], Genetic Algorithm [33], and Directional Permutation Differential 

Evolution Algorithm [34] and Learner Performance based Behavior algorithm [35]. Quantum 

based avian navigation optimizer algorithm (QANA) was proposed in 2021. This algorithm 

explores the idea of precise navigation of migratory birds while travelling to long-distance aerial 

paths. This approach divides the population into multiple groups in order to find out best 

parameters. This algorithm is effectively applied on partial landscape analysis. Another 

evolutionary strategy algorithm named as Strength Pareto Evolutionary Algorithm was proposed 

in 2023. SPEA is an improved version of Pareto Archived Evolutionary Strategy. SPEA2 

improves local search ability to get effective results. It is successfully implemented in UAV 

cargo delivery services. Genetic Algorithm (GA) was proposed in 1992. GA has the ability to 

solve the real world problems of any engineering field. Based on fitness function GA arrange 

tournaments to develop new population for finding the optimal solution. In 2021, a new 

metaheuristic algorithm Directional Permutation Differential (DPDE) Algorithm was proposed 

by Shangce Gao to find out the solution of Photovoltaic Generation System. In this algorithm, 

strong global exploration ability helps to estimate the system parameters and avoiding from local 

optima. A Learner Performance based Behavior algorithm (LPB) was proposed in 2021. LBP is 

based on accepting graduate students in different departments at university and defining the 
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procedures to improve the study level of students through GPA in different stages. The 

parameters used in LBP are crossover and mutation. This algorithm is successfully implemented 

on travelling salesman problem. 

Metaheuristic algorithms based on physics laws are also developed in literature such as colliding 

body optimization [36], vortex search algorithm [37], matter search optimization algorithm [38] , 

electromagnetic field optimization algorithm [39], and ray optimization Algorithm [40].  

Colliding Body Optimization was established in 2019. It works on colliding bodies’ principle in 

which collision of two bodies in one direction is acceptable. Two groups are developed from 

population one from best side and the other group from middle. The first group is stationary 

while the middle group is moving towards the best solution. New mass and velocity values are 

obtained after the collision process. Then termination conditions are checked. It is successfully 

applied on systems composed of continuous variables as well as discrete variables. Vortex 

Search (VS) Algorithm was proposed in 2015. Its working principle is formulated on vortex-like 

occurrence in non-rotational incompressible fluids. It is effective in training of feed forward 

neural networks. The State of Matter Search optimization algorithm was proposed in 2013. The 

basic idea used in SMS algorithm is dependency of best solution upon the states of matter. It is 

successfully implemented in template matching optimization problems. Electromagnetic Field 

Optimization Algorithm was proposed in 2015. It is formulated on attraction and repulsion forces 

of electromagnet. It is successfully implemented on optimal coordination of directional over 

current relays. Ray Optimization Algorithm (RO) is established on Snell’s Law of refraction. 

The direction of light changes when passes through different medium. The best solution depends 

upon ray scattering, ray movement and ray convergence parameters. It is successfully applied on 

truss structures design. 

Metaheuristic Algorithms are also Swarm Intelligence (SI) based in which behavior of species 

i.e. birds, fish, ants, is used to provide optimal solution such as bacterial foraging algorithm [41],  

salp swarm algorithm [42], particle swarm optimization [43], ant colony optimization [44], 

synergistic swarm optimization algorithm [45] and Imperialist Competitive Algorithm [46]. 

Bacterial Foraging Algorithm was published in 2007. It is articulated on coli bacteria foraging 

behavior. The chemotactic reflexes of bacteria provide the optimal solution of real world 

problems. It is successfully implemented in solar PV parameters optimization problem. Salp 
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Swarm Algorithm (SSA) is also used to solve optimization problems. This algorithm uses 

swarming behavior of salps when routing and hunting in oceans. It is successfully implemented 

in marine propeller design parameter optimization. PSO was proposed in 1995. It is based on the 

movement of birds. The speed and velocities of the birds are decided to find the solution. It is 

successfully implemented in portfolio optimization problem. ACO was established in 1992. It 

relies on the collective behavior of ants to find out the solution. It is successfully used in image 

detection problems. Synergistic Swarm Optimization Algorithm (SSOA) integrates swarm 

intelligence with synergistic cooperation in order to search the efficient optimal solution. 

Imperialist Competitive Algorithm (ICA) was proposed in 2002. ICA is based on imperialist 

concept in which each agent or colony tries to make empire by capturing the small colonies. The 

competition among empires finds out the best solution of the problem. It is successfully applied 

on optimal design problem of skeletal structures. 

Several human-inspired algorithms are also established to solve optimization problems such as 

stock exchange trading optimization [47], ideology algorithm [48], league championship 

algorithm [49], tug of war optimization [50], and interior search algorithm [51]. They are 

formulated on the human behaviors and interactions. Stock exchange trading optimization 

(SETO) algorithm is formulated on traders’ behavior when prices fluctuate in stock market. It is 

successfully implemented in global optimization problem. Ideology Algorithm (IA) is based on 

behavior of political party’s individuals who tries to improve their ranking and position in party. 

It is successfully applied in unconstraint optimization problems. League Championship 

Algorithm (LCA) was offered in 2014 used for optimization problems. In this algorithm artificial 

teams are developed to play championship. Progress of each team and players performance are 

analyzed to find out best solution of optimization problem. Tug of war optimization (TWO) was 

developed in 2021. The working principle of this is taken from the game tug of war. Each 

candidate is treated as a team participated in a rope pulling competitions. Team performance is 

determined by pulling force exerted on each other. TWO algorithm is very useful in multimodal 

and non-convex function. Interior search algorithm (ISA) was proposed in 2014. The working 

principle is based on interior decoration and design. Systematic methodology is used to create 

space for interior design and decoration strategy that fulfils customer satisfaction. The customer 

satisfaction is directly proportional to the solution quality. ISA shows satisfactory results on 
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optimal welded beam design problem. Table 2.2 represents the advantages and limitations of 

recently proposed metaheuristic algorithms. 

Table 2.2: Advantages and limitations of recently proposed Metaheuristic Algorithms 

Algorithms Advantages Limitations 
Proposed 

Year 

LPB 

 

Avoid local optima in computation 

problems 

slow converge for complex problems 2021 

SPEA2 
Very efficient in local search to find 

dominant solution in each iteration 

Not good for problems having objectives 

more than 5 
2023 

GA 

they can solve problems from various 

domains, from engineering and 

medicine to finance and logistics 

slow due to their structural complexity 1992 

DPDE Strong global exploration ability computationally expensive 2021 

CBO Independent from internal parameters low accuracy 2019 

VS Fast execution 
Created number of local minimum 

points 
2015 

SMS 
better performance in global 

optimization problems 
Not suitable for complex problems 2013 

EFO 
Better approach to avoid the local 

optimal point and find global optimal 

Limited to constrained optimization 

problems 
2015 

RO Require few parameters to tune poor local search ability 2012 

BFO 
effectively applied to solve real world 

continuous optimization problem 
Convergence is very slow. 2002 

ICA 
Effective in solving large-scale 

scheduling problems 

the empires are fixed until they are 

swapped for colonies and transformed 

into them 

2007 

PSO computationally efficient Not efficient for large datasets 1995 
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ACO 
good performance in solving discrete 

problems 
Convergence speed for large data sets 1992 

ABC 
Does not require external parameters 

like crossover ratio and mutation ratio 

Not able to handle population diversity 

and slow global convergence 
2005 

SETO Very simple to implement 
gradually convergence towards optimal 

point 
2021 

IA few parameters to adjust 
Very less research work done on this 

algorithm 
2017 

LCA solve scheduling  problem easily Limited to scheduling problems 2019 

TWO 
Show good results on non-convex 

functions 

Less research done on complex 

problems 
2016 

ISA Require tuning of only one parameter slow convergence speed 2014 

 

2.4     Evolutionary Mating Algorithm 

Evolutionary Mating Algorithm (EMA) was proposed in 2023 [52]. It is based on Hardy 

Weinberg equilibrium principle to produce new offspring. Environmental factor like predator is 

also included in this algorithm. The main advantage of EMA comparing with other evolutionary 

algorithms is the capability of fast searching because it divides the whole population into two 

groups. EMA evaluates the performance of produced offspring and compare with performance of 

parents. If the performance of produced offspring is better than parents then it is directly replaced 

with its parents and controls the population expansion. The evaluation procedure of EMA is 

directly used without defining sorting process which makes EMA evaluation process faster than 

other optimization algorithms. The computational complexity of EMA is low because only two 

parameters crossover probability and predator probability need to be identified. EMA has been 

successfully tested on unimodal, multimodal and composite benchmark functions. EMA 

efficiently approaches global optima solution by avoiding local optima in multimodal and 

composite benchmark functions. The initialization process of EMA comprises of population 

generation in the form of two matrices. The selection of search agents in the matrices is based on 

sexual identity i e. male or female. The mating process is defined by using Hardy’s principle, in 

which search agents are selected randomly from both matrices to produce one or more than one 
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new offspring. The performance of new offspring is evaluated with its parents also and will be 

replaced if performance parameters of new offspring is better than its parent. The predetermine 

values to identify the crossover probability and predator probability are obtained from tuning of 

EMA parameters.  EMA is very efficient to solve constraint optimization problems. It is applied 

on various areas such as optimization of pneumatic servo systems [53], battery charge estimation 

of electric vehicles [54], management of energy in smart buildings [55], solar power generation 

[56], and energy management systems [57]. However it is still not applied in the system 

identification problem to find out the optimal parameters of IN-OE model. This research work 

explores the diversity of EMA by applying on IN-OE model and identify accurate parameters 

using key term separation technique.   

2.5     Chaos Theory 

Chaos theory is a scientific approach to solve the complex system problems. According to this 

theory, dynamical systems are highly dependent on its initial conditions, consist of primary 

patterns (known as chaotic maps) and follow deterministic laws under specific time scale which 

depends upon the system dynamics. The theory explains that how a small change in the initial 

conditions can produce uncertainty in the dynamical system. This theory also deals with non-

linear dynamics that illustrate the expected results in high-dimensional systems. It predicts the 

system response in the short term without repeating themselves, and exhibits necessary 

qualitative effects by introducing small changes within the process. The chaos theory enhances 

the performance of metaheuristic algorithms by avoiding the local optima and  improves 

convergence speed.  Applications of Chaos theory exist in several engineering fields such as 

chaotic generator in communication system [58], image encryption [59], internet of things [60], 

and random bit generators [61]. By applying chaotic maps in several metaheuristic algorithms, 

convergence and efficiency of the system are enhanced in search space such as chaotic 

Archimedes optimization algorithm [62], chaotic PSO [63], bird swarm optimization algorithm 

with chaotic mapping [64], chaotic young double slit experiment optimizer [65], and chaotic 

marine predator algorithm [66]. In this research work, chaotic variants of EMA are developed to 

identify the optimal parameters of IN-OE model. The comparison of EMA chaotic variants with 

EMA and other metaheuristic algorithms are also performed to evaluate the performance. The 

description of chaotic maps is given in Table 2.3. 
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Table 2.3: Chaotic Maps 

Map No. Map Name Map Equation 

CEMA1 Chebyshev map [67] 1
1 cos( cos ( ))rrx r x

   

CEMA2 Circle map [68] 1
0.5mod( 0.2 ( ) sin(2 ),1)
2r rrx x x

x
     

CEMA3 Gauss/mouse map [69] 1 1
1, 0

mod( ,1)
r

r

r

x

x
x otherwise






  

CEMA4 Iterative map [70] 1
0.7sin( )r

r

xx
x   

CEMA5 Logistic map [71] 1 4 (1 )r rrx x x    

CEMA6 Piecewise map [72] 1

, 0 0.4
0.4

0.4 , 0.4 0.5
0.1

0.6 , 0.5 0.6
0.1
1 , 0.6 1

0.4

r
r

r
r

r
r

r

r
r

x x

x x
x

x x

x x















 

  


  

  

 

CEMA7 Sine map [73] 1 sin(2 )rrx x   

CEMA8 Singer map [74] 2 3 4
1 1.07(7.8 23.31 28.75 13.30 )r r r rrx x x x x      

CEMA9 Sinusoidal map [75] 2
1 2.3 sin(2 )r rrx x x   

CEMA10 Tent map [76] 
,

1

0.70.7
10(1 ), 0.73

r r

r r
r

x x

x x
x 



 







  

 

Conventional methods used to identify IN-OE model parameters primarily focus on local 

exploration and have limitations to handle local minima. This will affect the accurate 

identification of IN-OE model parameters in terms of solution quality and robustness. On the 

other hand, metaheuristic algorithms are specifically designed to explore the search spaces by 

using stochastic methods inspired with natural phenomena (evolution, swarm intelligence, 
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physics laws and human based) that are strongly capable to escape from local minima and find 

better global solution. It can be seen from literature review that Evolutionary Mating Algorithm 

(EMA) is not applied for the identification of IN-OE model parameters. The motivation of this 

research is to explore the EMA metaheuristic algorithm for the accurate identification of IN-OE 

model parameters. The objective of this research to also investigate the EMA thoroughly and 

propose improvements to get better results for IN-OE identification problem. Finally compare 

the results of EMA with other metaheuristic algorithms. 
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CHAPTER 3 

Methodology 

In this chapter mathematical models of IN-OE, EMA and chaotic EMA are presented. Pseudo 

code and flow charts of EMA and Chaotic EMA are also discussed. 

3.1     Mathematical Model of IN-OE 

Consider the input nonlinear system represented in Figure. 3.1.  

Static 
Nonlinear 
subsystem

Dynamic 
Linear 

subsystem 
‘LTI’

r w x y

   d

 

Figure 3.1: IN-OE System Model 

 

Where ‘r’ is the input of static nonlinear block, 

 ‘w’ is the output of nonlinear subsystem,  

‘x’ is the output of linear time invariant system, 

‘d’ is disturbance or noise induce in the system  

and ‘y’ is the output of IN-OE model. The output of IN-OE model is given by: 

( ) ( ) ( ),y x d     (3.1) 

The output eq. of linear subsystem is given by 

( ) ( ),Cx w
D

   (3.2) 

Where C and D are the polynomials with q-1 operator and represented as follows: 
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1 2

1 2
-nc ,1 ... cnC c q c q c q 

      (3.3) 

1 2

1 2

-n
,1 ... d

dnD d q d q d q 
      (3.4) 

( )w  belongs to real number ( )r  along with set of known basis functions ( ( ))k rf   with 

parameters k , therefore output of nonlinear system is represented as 

1
1 21 2( ) ( ( )) ( ( )) ( ( )) ( ( )) ... ( ( )),

m

k
k

mk mw f r f r f r f r f r         


       (3.5) 

It is seen from the above equations that output of nonlinear system is in series combination with 

the transfer function of the LTI subsystem. So for any non-zero value of  k  gives identifiable 

relation between input and output of IN-OE model. 

By applying key term separation methodology, IN-OE system is defined as 

,[ , , ] sc d R       (3.6) 

2( ) [ ( ), ( ), ( )] ,c d
sf R            (3.7) 

2( ) ( ) ( ),y v       (3.8) 

Equation (8) represents the identification model obtained from key term separation method, 

where v represents the parameter vector needs to be identified and it includes all system 

parameters. 2  denotes the information vector and it corresponds nonlinear subsystem 

relationship with LTI dynamic subsystem. 

3.2     Mathematical Model of EMA 

In EMA, male and female candidates used in solution are represented as follows: 

1
1 1

1
/2 /2

,

d

d
n n

m

a a
A

a a

 
 
 
 
 




  



 (3.9) 
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1
1 1

2 2

1
,

d
n n

d
n n

f

a a

A
a a

 
 
 
 
 
 
 
 





  



 (3.10) 

_ ( ) ( )[* * ],mates mating ratio mates t mates kH H H H    (3.11) 

, ,1 [var( ) var( )],T T
m fmatesH A A     (3.12) 

Hardy–Weinberg principle will be applied to get new offspring, the 

,
, ,

,,

. . 0

. . 0
T
child

T Tm matesf
T Tm matesf

A
o X r a for H
o X r a for H

 



 
   
  

  

  
 (3.13) 

(1, ),o randn d  (3.14) 

where 

(1 ),r o   (3.15) 

new offspring is represented as follows:  

1 . . (1 ), 1,2,...,T T best
ichild childiA AU A U i d       (3.16) 

(1, )U rand d Wr   

Therefore, 

(3.17) 

1 ,(1, ) [0,1].T best
ichild srand dA forA    (3.18) 

It is noted that only two parameters are required to tune crossover probability ‘Wr’ and predator 

probability‘s’. The pseudo code of EMA is shown below where as its flowchart is shown in 

Figure 3.2. 

 

 

Algorithm 1: EMA 

Initialization population matrices mA  and fA  by using equations (3.9) and (3.10) 

Set rW  and s  values 
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Evaluate the fitness of each candidate 

Choose the best candidate best
iA  

while (P<maximum iteration) 

      for (n=1 until half of population) 

          Calculate matesH  using equations (3.11) and (3.12) 

          Create the new offspring using expressions (3.13) and (3.14) 

          New offspring with the effect of best solution so far using equations (3.16) and (3.17) 

          Boundary Check 

          Calculate fitness of new offspring 

          Compare the fitness with father, mother and current best solution 

          If better then replace and update in father/mother pools and current best sol. 

          Else die 

                    If r<pre-set value [probability of encountering the predator] 

                   Compute solution by applying equation (3.18) 

                   Analyze the new candidate fitness 

                    If better then replace and update in current best 

                    Else die 

                    end 

       end 

   end  

  P=P+1 

end  

Return best
iA  
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Initialization
(Am, Af, P, Wr and s)

Calculate the finess of population 
and Store best Ai 

While 
(P<max iteration)

Create new off spring with effect 
of best Ai and Wr

End While
(Store best Ai)

Start

End For

Calculate Hmates & new 
offspring

Generate new solution & Evaluate 
the fitness of new solution

P=P+1

If s<pre-set
value

If better fitness

If better fitness

Replace it in mother father and 
current best solution

Alive

Die

Alive

Die

Alive

Die

Replace and udate in best Ai

Evaluate & compare fitness with 
mother, father and current best 

solution

n=n+1

For 
(n=half population either 

from Am or Af)

 

Figure 3.2: EMA Flow Chart 
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3.3     Mathematical model of Chaotic EMA 

In this article, ten improved variants of the EMA were proposed by incorporating ten eminent 

chaotic maps in its exploration mechanism. The mathematical model of chaotic variants of EMA 

for the initialization of population and evaluation of candidate’s fitness is same as mentioned in 

eq. (3.9) to eq. (3.17). The exploration process of chaotic variants of EMA are described as 

follows: 

1 ,(1, ) [0,1].s
T best

ichild sC dA forA    (3.19) 

Therefore sC  for chaotic variants of EMA are describes  as follow:  

CEMA1: 1cos( cos ( ))s iC i x                (3.20) 

CEMA2: 
0.5mod( 0.2 ( ) sin(2 ),1)
2s i iC x x

x
                  (3.21) 

CEMA3: 1
1, 0

mod( ,1)
s

i

i

x

x
C otherwise






                (3.22) 

CEMA4: 
0.7sin( )s

i

xC
x

                (3.23) 

CEMA5: 4 (1 )s i iC x x                 (3.24) 

CEMA6: 

, 0 0.4
0.4
0.4 , 0.4 0.5

0.1
0.6 , 0.5 0.6

0.1
1 , 0.6 1
0.4

i
i

i
i

s
i

i

i
i

x x

x x
C

x x

x x













 

  


  

  

               (3.25) 

CEMA7: sin(2 )s iC x                (3.26) 

CEMA8 2 3 41.07(7.8 23.31 28.75 13.30 )s i i i iC x x x x                   (3.27) 

CEMA: 22.3 sin(2 )s i iC x x                (3.28) 
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CEMA10: 
, 0.70.7

10(1 ), 0.73

i
i

i i
s

x x

x x
C



 







                (3.29) 

The pseudo code of chaotic EMA is shown below where as its flowchart is shown in Figure 3.3. 

Algorithm 2: CEMA 

Initialization population matrices mA  and fA  by using equations (3.9) and (3.10) 

Set rW  and s  values 

Evaluate the fitness of each candidate 

Choose the best candidate best
iA  

while (P<maximum iteration) 

      for (n=1 until half of population) 

          Calculate matesH  using equations (3.11) and (3.12) 

          Create the new offspring using expressions (3.13) and (3.14) 

          New offspring with the effect of best solution so far using equations (3.16) and (3.17) 

          Boundary Check 

          Calculate fitness of new offspring 

          Compare the fitness with father, mother and current best solution 

          If better then replace and update in father/mother pools and current best sol. 

          Else die 

                    If sC <pre-set value [probability of encountering the predator] equations (3.19) to 

(3.29) 

                   Compute solution by applying equation (3.18) 

                   Analyze the new candidate fitness 

                    If better then replace and update in current best 

                    Else die 

                    end 

       end 

   end  
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  P=P+1 

end  

Return best
iA  

 

Initialization
(Am, Af, P, Wr and s)

Calculate the finess of population 
and Store best Ai 

While 
(P<max iteration)

Create new off spring with effect 
of best Ai and Wr

End While
(Store best Ai)

Start

End For

Calculate Hmates & new 
offspring

Generate new solution & Evaluate 
the fitness of new solution

P=P+1

If Cs<pre-set
value

If better fitness

If better fitness

Replace it in mother father and 
current best solution

Alive

Die

Alive

Die

Alive

Die

Replace and udate in best Ai

Evaluate & compare fitness with 
mother, father and current best 

solution

n=n+1

For 
(n=half population either 

from Am or Af)

 Figure 3.3: Chaotic EMA Flow Chart 
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CHAPTER 4 

Simulations and Analysis 

In this chapter, simulation results of EMA, Chaotic variants of EMA and other metaheuristic 

algorithms (COA, HHO and PSO) for mathematical functions and IN-OE model are presented. 

4.1     Mathematical Functions 

Tables 4.1-4.22 shows the analysis of mathematical functions at Population (Pop) =60, iterations 

=3000 for 50 independent runs in respect of STD, best fitness, worst fitness and average fitness.  

Table 4.1 represents the results of EMA and its chaotic variants on unimodal mathematical 

function FUN_I. It is observed from Table 4.1 that EMA shows better performance in terms of 

average fitness, best fitness and worst fitness while all algorithms have zero STD on unimodal 

mathematical function FUN_I. 

Table 4.1: Analysis of Proposed methodology on FUN_I function 

FUN_I 

Methods A Fitness B Fitness W Fitness STD 

EMA 1.02E-289 2.86E-308 4.13E-288 0 

CEMA1 8.66E-214 2.04E-231 2.62E-212 0 

CEMA2 4.51E-192 5.63E-208 1.89E-190 0 

CEMA3 1.07E-291 0.00E+00 5.34E-290 0 

CEMA4 3.87E-205 5.69E-221 1.88E-203 0 

CEMA5 4.13E-210 1.20E-226 2.06E-208 0 

CEMA6 1.68E-185 7.01E-208 8.40E-184 0 

CEMA7 1.46E-223 8.92E-253 5.25E-222 0 

CEMA8 6.53E-172 8.52E-187 3.26E-170 0 

CEMA9 1.07E-138 9.71E-146 4.63E-137 0 

CEMA10 6.38E-186 7.56E-200 2.40E-184 0 
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Table 4.2 represents the results of EMA and its chaotic variants on unimodal mathematical 

function FUN_II. It is observed from Table 4.2 that CEMA3 shows better performance in terms 

of average fitness, best fitness and worst fitness while CEMA7 shows better results in respect of 

STD on unimodal mathematical function FUN_II. 

Table 4.2: Analysis of Proposed methodology on FUN_II function 

FUN_II 

Methods A Fitness B Fitness W Fitness STD 

EMA 1.54E-188 1.73E-198 4.49E-187 0.00E+00 

CEMA1 1.31E-150 6.41E-165 2.98E-149 5.13E-150 

CEMA2 1.33E-134 1.85E-141 3.66E-133 6.05E-134 

CEMA3 5.47E-199 1.59E-254 2.73E-197 0.00E+00 

CEMA4 3.34E-144 5.04E-165 1.44E-142 2.04E-143 

CEMA5 3.95E-147 7.42E-168 1.32E-145 2.01E-146 

CEMA6 5.51E-133 6.19E-143 1.17E-131 2.32E-132 

CEMA7 3.58E-153 2.78E-169 9.16E-152 1.70E-152 

CEMA8 3.26E-118 1.66E-127 1.62E-116 2.30E-117 

CEMA9 2.16E-92 3.98E-95 3.47E-91 5.68E-92 

CEMA10 7.68E-131 2.86E-145 1.42E-129 2.62E-130 

 

Table 4.3 represents the results of EMA and its chaotic variants on unimodal mathematical 

function FUN_III. It is observed from Table 4.3 that CEMA3 shows better performance on 

unimodal mathematical function FUN_III in terms of STD, average fitness, best fitness and 

worst fitness. 

Table 4.2: Analysis of Proposed methodology on FUN_II function 

FUN_III 

Methods A Fitness B Fitness W Fitness STD 

EMA 2.06E-125 1.46E-143 1.01E-123 1.42E-124 

CEMA1 8.55E-72 4.50E-94 4.10E-70 5.79E-71 

CEMA2 7.51E-55 6.79E-68 2.36E-53 3.55E-54 
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CEMA3 2.18E-133 1.35E-178 1.09E-131 1.54E-132 

CEMA4 6.19E-64 1.67E-80 2.91E-62 4.12E-63 

CEMA5 1.96E-70 3.15E-89 9.13E-69 1.29E-69 

CEMA6 2.48E-57 2.28E-75 4.90E-56 9.85E-57 

CEMA7 7.55E-78 2.07E-101 3.38E-76 4.78E-77 

CEMA8 2.36E-43 3.01E-57 1.05E-41 1.49E-42 

CEMA9 1.41E-30 4.12E-36 2.56E-29 4.88E-30 

CEMA10 6.43E-56 5.04E-72 1.69E-54 2.74E-55 

 

Table 4.4 represents the results of EMA and its chaotic variants on unimodal mathematical 

function FUN_IV. It is observed from Table 4.4 that EMA shows better performance in terms of 

STD, average fitness and worst fitness while CEMA3 shows better results in respect of best 

fitness on unimodal mathematical function FUN_IV. 

Table 4.3: Analysis of Proposed methodology on FUN_IV function 

FUN_IV 

Methods A Fitness B Fitness W Fitness STD 

EMA 1.30E-98 1.11E-105 3.90E-97 6.10E-98 

CEMA1 1.28E-60 2.64E-68 2.76E-59 4.21E-60 

CEMA2 2.83E-49 1.58E-54 5.84E-48 9.65E-49 

CEMA3 4.14E-97 1.03E-138 8.07E-96 1.36E-96 

CEMA4 1.44E-54 7.40E-64 6.28E-53 8.90E-54 

CEMA5 1.12E-58 6.15E-66 4.68E-57 6.61E-58 

CEMA6 1.43E-49 1.59E-56 2.56E-48 4.67E-49 

CEMA7 2.75E-62 2.00E-69 1.18E-60 1.67E-61 

CEMA8 1.97E-41 6.92E-46 6.50E-40 9.26E-41 

CEMA9 1.35E-29 1.62E-34 4.24E-28 6.11E-29 

CEMA10 5.07E-48 1.20E-54 2.13E-46 3.02E-47 
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Table 4.5 represents the results of EMA and its chaotic variants on unimodal mathematical 

function FUN_V. It is observed from Table 4.5 that EMA shows better performance in terms of 

STD, average fitness and worst fitness while CEMA8 shows better results in respect of best 

fitness on unimodal mathematical function FUN_V. 

Table 4.4: Analysis of Proposed methodology on FUN_V function 

FUN_V 

Methods A Fitness B Fitness W Fitness STD 

EMA 4.37E-01 3.45E-01 5.07E-01 3.76E-02 

CEMA1 2.22E+00 2.76E-01 8.63E+01 1.21E+01 

CEMA2 5.15E-01 3.51E-01 4.08E+00 5.17E-01 

CEMA3 4.41E-01 3.66E-01 5.43E-01 4.26E-02 

CEMA4 4.45E-01 3.60E-01 5.80E-01 4.48E-02 

CEMA5 4.38E-01 2.88E-01 5.43E-01 5.46E-02 

CEMA6 6.21E-01 2.41E-01 5.47E+00 8.65E-01 

CEMA7 5.04E-01 3.67E-01 3.17E+00 3.87E-01 

CEMA8 6.27E-01 1.04E-03 4.25E+00 7.94E-01 

CEMA9 1.77E+00 3.03E-03 9.76E+00 2.39E+00 

CEMA10 6.55E-01 1.61E-01 5.89E+00 8.53E-01 

 

Table 4.6 represents the results of EMA and its chaotic variants on unimodal mathematical 

function FUN_VI. It is observed from Table 4.6 that all algorithms have zero STD, average 

fitness, best fitness and worst fitness on unimodal mathematical function FUN_VI. 

Table 4.5: Analysis of Proposed methodology on FUN_VI function 

FUN_VI 

Methods A Fitness B Fitness W Fitness STD 

EMA 0 0 0 0 

CEMA1 0 0 0 0 

CEMA2 0 0 0 0 

CEMA3 0 0 0 0 
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CEMA4 0 0 0 0 

CEMA5 0 0 0 0 

CEMA6 0 0 0 0 

CEMA7 0 0 0 0 

CEMA8 0 0 0 0 

CEMA9 0 0 0 0 

CEMA10 0 0 0 0 

 

Table 4.7 represents the results of EMA and its chaotic variants on unimodal mathematical 

function FUN_VII. It is observed from Table 4.7 that CEMA9 shows better performance in 

terms of average fitness, CEMA2 shows better results in terms of best fitness and worst fitness. 

While, CEMA7 shows better results in respect of STD on unimodal mathematical function 

FUN_VII. 

Table 4.6: Analysis of Proposed methodology on FUN_VII function 

FUN_VII 

Methods A Fitness B Fitness W Fitness STD 

EMA 1.35E-05 6.54E-07 5.93E-05 1.20E-05 

CEMA1 1.29E-05 3.57E-07 4.63E-05 1.12E-05 

CEMA2 1.10E-05 3.49E-08 4.23E-05 1.17E-05 

CEMA3 1.29E-05 1.26E-07 6.09E-05 1.26E-05 

CEMA4 1.15E-05 1.61E-07 7.13E-05 1.39E-05 

CEMA5 1.49E-05 1.00E-07 9.30E-05 1.82E-05 

CEMA6 1.13E-05 4.87E-08 5.11E-05 1.02E-05 

CEMA7 1.12E-05 7.57E-08 4.64E-05 9.90E-06 

CEMA8 1.40E-05 6.63E-07 5.47E-05 1.25E-05 

CEMA9 1.08E-05 7.38E-08 6.51E-05 1.32E-05 

CEMA10 1.40E-05 2.12E-07 9.00E-05 1.61E-05 
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Table 4.8 represents the results of EMA and its chaotic variants on multimodal mathematical 

function FUN_VIII. It is observed from Table 4.8 that EMA shows better performance in terms 

of average fitness. EMA, CEMA1, CEMA2, CEMA3, CEMA4 and CEMA8 shows better results 

in terms of best fitness. While, EMA shows better results in respect of STD and worst fitness on 

multimodal mathematical function FUN_VIII. 

Table 4.7: Analysis of Proposed methodology on FUN_VIII function 

FUN_VIII 

Methods A Fitness B Fitness W Fitness STD 

EMA -3.62E+03 -4.19E+03 -3.00E+03 2.69E+02 

CEMA1 -3.55E+03 -4.19E+03 -2.52E+03 3.46E+02 

CEMA2 -3.63E+03 -4.19E+03 -2.88E+03 3.15E+02 

CEMA3 -3.54E+03 -4.19E+03 -2.76E+03 3.22E+02 

CEMA4 -3.57E+03 -4.19E+03 -2.76E+03 3.21E+02 

CEMA5 -3.49E+03 -4.07E+03 -2.76E+03 3.18E+02 

CEMA6 -3.45E+03 -4.07E+03 -2.76E+03 2.82E+02 

CEMA7 -3.54E+03 -4.07E+03 -2.64E+03 3.57E+02 

CEMA8 -3.53E+03 -4.19E+03 -2.52E+03 3.36E+02 

CEMA9 -3.57E+03 -4.07E+03 -2.88E+03 2.83E+02 

CEMA10 -3.54E+03 -3.95E+03 -2.88E+03 2.98E+02 

 

Table 4.9 represents the results of EMA and its chaotic variants on multimodal mathematical 

function FUN_IX. It is observed from Table 4.9 that CEMA2 shows better performance in terms 

of average fitness. CEMA1 shows better results in terms of best fitness. CEMA3, CEMA4, 

CEMA5 and CEMA7 show better results in respect of worst fitness while CEMA10 shows better 

performance on multimodal mathematical function FUN_IX in terms of STD. 

Table 4.8: Analysis of Proposed methodology on FUN_IX function 

FUN_IX 

Methods A Fitness B Fitness W Fitness STD 

EMA 1.79E-01 0.00E+00 8.95E+00 1.27E+00 
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CEMA1 8.95E-01 -4.19E+03 1.09E+01 2.79E+00 

CEMA2 9.95E-02 0.00E+00 4.97E+00 7.04E-01 

CEMA3 0 0 0 0 

CEMA4 0 0 0 0 

CEMA5 0 0 0 0 

CEMA6 4.58E-01 0.00E+00 9.95E+00 1.88E+00 

CEMA7 0 0 0 0 

CEMA8 8.76E-01 0.00E+00 9.95E+00 2.47E+00 

CEMA9 6.21E+00 9.95E-01 1.19E+01 2.55E+00 

CEMA10 1.99E-01 0.00E+00 4.97E+00 9.85E-01 

 

Table 4.10 represents the results of EMA and its chaotic variants on multimodal mathematical 

function FUN_X. It is observed from Table 4.10 that all algorithms show almost similar results 

on multimodal mathematical function FUN_X in terms of STD, average fitness, best fitness and 

worst fitness. 

Table 4.9: Analysis of Proposed methodology on FUN_X function 

FUN_X 

Methods A Fitness B Fitness W Fitness STD 

EMA 8.88E-16 8.88E-16 8.88E-16 0 

CEMA1 8.88E-16 8.88E-16 8.88E-16 0 

CEMA2 8.88E-16 8.88E-16 8.88E-16 0 

CEMA3 8.88E-16 8.88E-16 8.88E-16 0 

CEMA4 8.88E-16 8.88E-16 8.88E-16 0 

CEMA5 8.88E-16 8.88E-16 8.88E-16 0 

CEMA6 8.88E-16 8.88E-16 8.88E-16 0 

CEMA7 8.88E-16 8.88E-16 8.88E-16 0 

CEMA8 8.88E-16 8.88E-16 8.88E-16 0 

CEMA9 4.16E-15 8.88E-16 4.44E-15 0 

CEMA10 8.88E-16 8.88E-16 8.88E-16 0 
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Table 4.11 represents the results of EMA and its chaotic variants on multimodal mathematical 

function FUN_XI. It is observed from Table 4.11 that EMA shows better performance in terms 

of average fitness. All algorithms show similar results in terms of best fitness. CEMA4 shows 

better results in respect of worst fitness while CEMA3 shows better performance on multimodal 

mathematical function FUN_XI in terms of STD. 

Table 4.10: Analysis of Proposed methodology on FUN_XI function 

FUN_XI 

Methods A Fitness B Fitness W Fitness STD 

EMA 9.85E-03 0 1.01E-01 2.38E-02 

CEMA1 1.86E-02 0 1.11E-01 3.37E-02 

CEMA2 3.23E-02 0 1.11E-01 3.96E-02 

CEMA3 5.51E-03 0 9.10E-02 1.95E-02 

CEMA4 8.02E-03 0 7.87E-02 2.11E-02 

CEMA5 1.83E-02 0 1.65E-01 4.01E-02 

CEMA6 2.21E-02 0 1.60E-01 3.57E-02 

CEMA7 1.66E-02 0 1.35E-01 3.24E-02 

CEMA8 2.30E-02 0 1.99E-01 4.23E-02 

CEMA9 6.30E-02 0 1.45E-01 3.39E-02 

CEMA10 4.87E-02 0 1.72E-01 4.47E-02 

 

Table 4.12 represents the results of EMA and its chaotic variants on multimodal mathematical 

function FUN_XII. It is observed from Table 4.12 that all algorithms show almost similar results 

in terms of STD, best fitness, average fitness and worst fitness. 

Table 4.11: Analysis of Proposed methodology on FUN_XII function 

FUN_XII 

Methods A Fitness B Fitness W Fitness STD 

EMA 4.71E-32 4.71E-32 4.71E-32 1.66E-47 

CEMA1 4.71E-32 4.71E-32 4.71E-32 1.66E-47 

CEMA2 6.22E-03 4.71E-32 3.11E-01 4.40E-02 
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CEMA3 4.71E-32 4.71E-32 4.71E-32 1.66E-47 

CEMA4 1.24E-02 4.71E-32 3.11E-01 6.16E-02 

CEMA5 4.71E-32 4.71E-32 4.71E-32 1.66E-47 

CEMA6 4.71E-32 4.71E-32 4.71E-32 1.66E-47 

CEMA7 4.71E-32 4.71E-32 4.71E-32 1.66E-47 

CEMA8 4.71E-32 4.71E-32 4.71E-32 1.66E-47 

CEMA9 6.22E-03 4.71E-32 3.11E-01 4.40E-02 

CEMA10 4.71E-32 4.71E-32 4.71E-32 1.66E-47 

 

Table 4.13 represents the results of EMA and its chaotic variants on multimodal mathematical 

function FUN_XIII. It is observed from Table 4.13 that EMA, CEMA8 and CEMA9 show better 

performance in terms of STD and average fitness. All algorithms show similar results on 

multimodal mathematical function FUN_XIII in terms of best fitness and worst fitness. 

Table 4.12: Analysis of Proposed methodology on FUN_XIII function 

FUN_XIII 

Methods A Fitness B Fitness W Fitness STD 

EMA 1.32E-03 1.35E-32 1.10E-02 3.61E-03 

CEMA1 2.64E-03 1.35E-32 1.10E-02 4.74E-03 

CEMA2 2.20E-03 1.35E-32 1.10E-02 4.44E-03 

CEMA3 1.76E-03 1.35E-32 1.10E-02 4.07E-03 

CEMA4 2.20E-03 1.35E-32 1.10E-02 4.44E-03 

CEMA5 4.58E-03 1.35E-32 9.74E-02 1.42E-02 

CEMA6 2.20E-03 1.35E-32 1.10E-02 4.44E-03 

CEMA7 1.98E-03 1.35E-32 1.10E-02 4.26E-03 

CEMA8 1.32E-03 1.35E-32 1.10E-02 3.61E-03 

CEMA9 1.32E-03 1.35E-32 1.10E-02 3.61E-03 

CEMA10 1.98E-03 1.35E-32 1.10E-02 4.26E-03 
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Table 4.14 represents the results of EMA and its chaotic variants on multimodal mathematical 

function FUN_XIV. It is observed from Table 4.14 that CEMA3 shows better performance in 

terms of average fitness. All algorithms show similar results on multimodal mathematical 

function FUN_XIV in terms of best fitness and worst fitness. CEMA1 shows better performance 

in terms of STD. 

Table 4.13: Analysis of Proposed methodology on FUN_XIV function 

FUN_XIV 

Methods A Fitness B Fitness W Fitness STD 

EMA 1.59E+00 9.98E-01 1.08E+01 1.78E+00 

CEMA1 1.24E+00 9.98E-01 5.93E+00 7.87E-01 

CEMA2 1.63E+00 9.98E-01 1.08E+01 1.78E+00 

CEMA3 1.23E+00 9.98E-01 5.93E+00 9.88E-01 

CEMA4 1.55E+00 9.98E-01 1.17E+01 1.79E+00 

CEMA5 1.69E+00 9.98E-01 1.08E+01 1.79E+00 

CEMA6 1.28E+00 9.98E-01 5.93E+00 8.24E-01 

CEMA7 1.49E+00 9.98E-01 5.93E+00 1.37E+00 

CEMA8 1.61E+00 9.98E-01 1.27E+01 1.95E+00 

CEMA9 1.55E+00 9.98E-01 1.08E+01 1.80E+00 

CEMA10 1.59E+00 9.98E-01 7.87E+00 1.52E+00 

 

Table 4.15 represents the results of EMA and its chaotic variants on multimodal mathematical 

function FUN_XV. It is observed from Table 4.15 that CEMA2 shows better performance in 

terms of average fitness and STD. All algorithms show similar results on multimodal 

mathematical function FUN_XV in terms of best fitness and worst fitness.  

 

Table 4.14: Analysis of Proposed methodology on FUN_XV function 

FUN_XV 

Methods A Fitness B Fitness W Fitness STD 
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EMA 9.10E-04 3.07E-04 2.04E-02 2.83E-03 

CEMA1 1.29E-03 3.07E-04 2.04E-02 3.95E-03 

CEMA2 3.81E-04 3.07E-04 1.22E-03 2.51E-04 

CEMA3 7.82E-04 3.07E-04 2.04E-02 2.84E-03 

CEMA4 9.47E-04 3.07E-04 2.04E-02 2.83E-03 

CEMA5 4.91E-04 3.07E-04 1.22E-03 3.70E-04 

CEMA6 1.15E-03 3.07E-04 2.04E-02 3.97E-03 

CEMA7 8.75E-04 3.07E-04 2.04E-02 2.84E-03 

CEMA8 9.28E-04 3.07E-04 2.04E-02 2.83E-03 

CEMA9 9.28E-04 3.07E-04 2.04E-02 2.83E-03 

CEMA10 1.58E-03 3.07E-04 2.04E-02 4.80E-03 

 

Table 4.16 represents the results of EMA and its chaotic variants on multimodal mathematical 

function FUN_XVI. It is observed from Table 4.16 that all algorithms show similar results on 

multimodal mathematical function FUN_XVI in terms of average fitness, best fitness and worst 

fitness. While all chaotic variants of EMA show better performance in terms of STD. 

Table 4.15: Analysis of Proposed methodology on FUN_XVI function 

FUN_XVI 

Methods A Fitness B Fitness W Fitness STD 

EMA -1.03E+00 -1.03E+00 -1.03E+00 2.12E-11 

CEMA1 -1.03E+00 -1.03E+00 -1.03E+00 3.46E-16 

CEMA2 -1.03E+00 -1.03E+00 -1.03E+00 3.33E-16 

CEMA3 -1.03E+00 -1.03E+00 -1.03E+00 3.63E-16 

CEMA4 -1.03E+00 -1.03E+00 -1.03E+00 3.33E-16 

CEMA5 -1.03E+00 -1.03E+00 -1.03E+00 3.31E-16 

CEMA6 -1.03E+00 -1.03E+00 -1.03E+00 3.33E-16 

CEMA7 -1.03E+00 -1.03E+00 -1.03E+00 3.42E-16 

CEMA8 -1.03E+00 -1.03E+00 -1.03E+00 3.37E-16 

CEMA9 -1.03E+00 -1.03E+00 -1.03E+00 3.59E-16 
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CEMA10 -1.03E+00 -1.03E+00 -1.03E+00 3.46E-16 

Table 4.17 represents the results of EMA and its chaotic variants on multimodal mathematical 

function FUN_XVII. It is observed from Table 4.17 that all algorithms show similar results on 

multimodal mathematical function FUN_XVII in terms of average fitness, best fitness and worst 

fitness. While, CEMA8 shows better performance in terms of STD. 

Table 4.16: Analysis of Proposed methodology on FUN_XVII function 

FUN_XVII 

Methods A Fitness B Fitness W Fitness STD 

EMA 3.00E+00 3.00E+00 3.00E+00 2.66E-15 

CEMA1 3.00E+00 3.00E+00 3.00E+00 1.06E-10 

CEMA2 3.00E+00 3.00E+00 3.00E+00 7.23E-15 

CEMA3 3.00E+00 3.00E+00 3.00E+00 2.67E-15 

CEMA4 3.00E+00 3.00E+00 3.00E+00 3.28E-15 

CEMA5 3.00E+00 3.00E+00 3.00E+00 3.72E-15 

CEMA6 3.54E+00 3.00E+00 3.00E+01 3.82E+00 

CEMA7 3.00E+00 3.00E+00 3.00E+00 2.53E-15 

CEMA8 3.00E+00 3.00E+00 3.00E+00 2.22E-15 

CEMA9 4.62E+00 3.00E+00 3.00E+01 6.48E+00 

CEMA10 3.00E+00 3.00E+00 3.00E+00 2.86E-15 

 

Table 4.18 represents the results of EMA and its chaotic variants on multimodal mathematical 

function FUN_XVIII. It is observed from Table 4.18 that all algorithms show similar results on 

multimodal mathematical function FUN_XVIII in terms of STD, average fitness, best fitness and 

worst fitness. 

Table 4.17: Analysis of Proposed methodology on FUN_XVIII function 

FUN_XVIII 

Methods A Fitness B Fitness W Fitness STD 

EMA -3.86E+00 -3.86E+00 -3.86E+00 3.14E-15 

CEMA1 -3.86E+00 -3.86E+00 -3.86E+00 3.14E-15 
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CEMA2 -3.86E+00 -3.86E+00 -3.86E+00 3.14E-15 

CEMA3 -3.86E+00 -3.86E+00 -3.86E+00 3.14E-15 

CEMA4 -3.86E+00 -3.86E+00 -3.86E+00 3.14E-15 

CEMA5 -3.86E+00 -3.86E+00 -3.86E+00 3.14E-15 

CEMA6 -3.86E+00 -3.86E+00 -3.86E+00 3.14E-15 

CEMA7 -3.86E+00 -3.86E+00 -3.86E+00 3.14E-15 

CEMA8 -3.86E+00 -3.86E+00 -3.86E+00 3.14E-15 

CEMA9 -3.86E+00 -3.86E+00 -3.86E+00 3.14E-15 

CEMA10 -3.86E+00 -3.86E+00 -3.86E+00 3.14E-15 

 

Table 4.19 represents the results of EMA and its chaotic variants on multimodal mathematical 

function FUN_XIX. It is observed from Table 4.19 that all algorithms show almost similar 

results on multimodal mathematical function FUN_XIX in terms of average fitness, best fitness 

and worst fitness. While CEMA9 performs better results on multimodal mathematical function 

FUN_XIX in terms of STD. 

Table 4.18: Analysis of Proposed methodology on FUN_XIX function 

FXIX 

Methods A Fitness B Fitness W Fitness STD 

EMA -3.26E+00 -3.32E+00 -3.20E+00 6.01E-02 

CEMA1 -3.25E+00 -3.32E+00 -3.14E+00 6.06E-02 

CEMA2 -3.25E+00 -3.32E+00 -3.20E+00 5.84E-02 

CEMA3 -3.25E+00 -3.32E+00 -3.20E+00 5.89E-02 

CEMA4 -3.26E+00 -3.32E+00 -3.20E+00 6.01E-02 

CEMA5 -3.25E+00 -3.32E+00 -3.14E+00 6.16E-02 

CEMA6 -3.26E+00 -3.32E+00 -3.20E+00 5.99E-02 

CEMA7 -3.25E+00 -3.32E+00 -3.14E+00 6.11E-02 

CEMA8 -3.26E+00 -3.32E+00 -3.20E+00 6.00E-02 

CEMA9 -3.25E+00 -3.32E+00 -3.20E+00 5.77E-02 

CEMA10 -3.24E+00 -3.32E+00 -3.14E+00 6.33E-02 
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Table 4.20 represents the results of EMA and its chaotic variants on multimodal mathematical 

function FUN_XX. It is observed from Table 4.20 that all chaotic variants show better results on 

multimodal mathematical function FUN_XX in terms of STD, average fitness, best fitness and 

worst fitness. 

Table 4.19: Analysis of Proposed methodology on FUN_XX function 

FUN_XX 

Methods A Fitness B Fitness W Fitness STD 

EMA -5.60E+00 -1.02E+01 -2.63E+00 2.92E+00 

CEMA1 -6.38E+00 -1.02E+01 -2.63E+00 3.01E+00 

CEMA2 -6.23E+00 -1.02E+01 -2.63E+00 3.13E+00 

CEMA3 -5.96E+00 -1.02E+01 -2.63E+00 2.66E+00 

CEMA4 -6.39E+00 -1.02E+01 -2.63E+00 3.36E+00 

CEMA5 -6.55E+00 -1.02E+01 -2.63E+00 3.23E+00 

CEMA6 -5.79E+00 -1.02E+01 -2.63E+00 3.06E+00 

CEMA7 -5.65E+00 -1.02E+01 -2.63E+00 3.14E+00 

CEMA8 -6.55E+00 -1.02E+01 -2.63E+00 3.58E+00 

CEMA9 -5.60E+00 -1.02E+01 -2.63E+00 3.41E+00 

CEMA10 -5.73E+00 -1.02E+01 -2.63E+00 3.10E+00 

 

Table 4.21 represents the results of EMA and its chaotic variants on multimodal mathematical 

function FUN_XXI. It is observed from Table 4.21 that CEMA1 shows better results on 

multimodal mathematical function FUN_XXI in terms of average fitness. While, all other 

algorithms show similar results on multimodal mathematical function FUN_XXI in terms of  

STD, best fitness and worst fitness.  

Table 4.20: Analysis of Proposed methodology on FUN_XXI function 

FUN_XXI 

Methods A Fitness B Fitness W Fitness STD 

EMA -6.53E+00 -1.04E+01 -2.75E+00 3.42E+00 
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CEMA1 -7.06E+00 -1.04E+01 -2.75E+00 3.33E+00 

CEMA2 -6.20E+00 -1.04E+01 -2.75E+00 3.42E+00 

CEMA3 -6.04E+00 -1.04E+01 -2.75E+00 3.12E+00 

CEMA4 -6.87E+00 -1.04E+01 -2.75E+00 3.37E+00 

CEMA5 -6.85E+00 -1.04E+01 -1.84E+00 3.39E+00 

CEMA6 -6.86E+00 -1.04E+01 -1.84E+00 3.50E+00 

CEMA7 -6.48E+00 -1.04E+01 -2.75E+00 3.21E+00 

CEMA8 -6.74E+00 -1.04E+01 -1.84E+00 3.50E+00 

CEMA9 -6.59E+00 -1.04E+01 -2.75E+00 3.36E+00 

CEMA10 -5.90E+00 -1.04E+01 -1.84E+00 3.49E+00 

 

Table 4.22 represents the results of EMA and its chaotic variants on multimodal mathematical 

function FUN_XXII. It is observed from Table 4.22 that CEMA7 shows better results on 

multimodal mathematical function FUN_XXII in terms of average fitness. While, all other 

algorithms show similar results on multimodal mathematical function FUN_XXII in terms of  

STD, best fitness and worst fitness. 

Table 4.21: Analysis of Proposed methodology on FUN_XXII function 

FUN_XXII 

Methods A Fitness B Fitness W Fitness STD 

EMA -6.90E+00 -1.05E+01 -2.42E+00 3.48E+00 

CEMA1 -6.81E+00 -1.05E+01 -2.42E+00 3.43E+00 

CEMA2 -6.80E+00 -1.05E+01 -2.42E+00 3.57E+00 

CEMA3 -7.22E+00 -1.05E+01 -2.43E+00 3.43E+00 

CEMA4 -7.06E+00 -1.05E+01 -2.42E+00 3.46E+00 

CEMA5 -7.77E+00 -1.05E+01 -2.43E+00 3.48E+00 

CEMA6 -6.68E+00 -1.05E+01 -2.42E+00 3.42E+00 

CEMA7 -6.39E+00 -1.05E+01 -2.42E+00 3.25E+00 

CEMA8 -7.26E+00 -1.05E+01 -2.43E+00 3.39E+00 

CEMA9 -7.29E+00 -1.05E+01 -2.42E+00 3.62E+00 
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CEMA10 -6.80E+00 -1.05E+01 -2.42E+00 3.43E+00 

After detail analysis of EMA and its chaotic variants upon unimodal and multimodal 

mathematical functions, it can be seen from tables 4.1-4.22 that the proposed variants of EMA 

performs better than EMA for functions FUN_II, FUN_III, FUN_VII, FUN_IX, FUN_XI, 

FUN_XIV, FUN_XV, FUN_XVI, FUN_XVII, FUN_XIX, FUN_XX, FUN_XXI and 

FUN_XXII. EMA performs better in functions FUN_I, FUN_IV, FUN_V and FUN_VIII than 

other EMA variants while performance of EMA and its chaotic variants have similar 

performance in functions FUN_VI, FUN_X, FUN_XII, FUN_XIII and FUN_XVIII. 

The convergence plots of EMA, CEMA1, CEMA2, CEMA3, CEMA4, CEMA5, CEMA6, 

CEMA7, CEMA8, CEMA9 and CEMA10 are presenting in figures 4.1(a-e) to 4.5(a-b).  

Figure 4.1(a-e) describes the convergence plots of FUN_I, FUN_II, FUN_III, FUN_IV and 

FUN_V functions. It is observed that CEMA3 shows better convergence than all other 

algorithms in FUN_I, FUN_II, FUN_III and FUN_IV mathematical functions. While CEMA4 

shows better convergence in FUN_V mathematical function. 

  

(a) FUN_I (b) FUN_II 
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(c) FUN_III (d) FUN_IV 

  

(e) FUN_V  
 

Figure 4.1: Analysis on FUN_I, FUN_II, FUN_III, FUN_IV and FUN_V 

Figure 4.2(a-e) shows the convergence of FUN_VI, FUN_VII, FUN_VIII, FUN_IX and FUN_X 

functions. It is observed that CEMA5 shows better convergence than all other algorithms in 

FUN_VI mathematical function. CEMA7 shows better convergence than all other algorithms in 

FUN_VII and FUN_X mathematical functions. CEMA4 shows better convergence than all other 

algorithms in FUN_VIII mathematical function. While CEMA3 shows better convergence in 

FUN_IX mathematical function. 
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(a) FUN_VI (b) FUN_VII 

  

(c) FUN_VIII (d) FUN_IX 

  

(e) FUN_X  
 

Figure 4.1: Analysis on FUN_VI, FUN_VII, FUN_VIII, FUN_IX and FUN_X 
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Figure 4.3 (a-e) shows the convergence of FUN_XI, FUN_XII, FUN_XIII, FUN_XIV and 

FUN_XV. It is observed that CEMA3 shows better convergence than all other algorithms in 

FUN_XI, FUN_XII and FUN_XIII mathematical functions. CEMA9 shows better convergence 

than all other algorithms in FUN_XIV mathematical function. While CEMA6 shows better 

convergence in FUN_XV mathematical function. 

  

(a) FUN_XI (b) FUN_XII 

  

(c) FUN_XIII (d) FUN_XIV 
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(e) FUN_XV  
Figure 4.2: Analysis on FUN_XI, FUN_XII, FUN_XIII, FUN_XIV and FUN_XV 

Figure 4.4 (a-e) shows the convergence of FUN_XVI, FUN_XVII, FUN_XVIII, FUN_XIX and 

FUN_XX. It is observed that CEMA5 shows better convergence than all other algorithms in 

FUN_XVI and FUN_XVII mathematical functions. CEMA7 shows better convergence than all 

other algorithms in FUN_XVIII mathematical function. CEMA6 shows better convergence than 

all other algorithms in FUN_XIX mathematical function. While CEMA8 shows better 

convergence in FUN_XX mathematical function. 

 

  

(a) FUN_XVI (b) FUN_XVII 
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(c) FUN_XVIII (d) FUN_XIX 

  

(e) FUN_XX  
Figure 4.3: Analysis on FUN_XVI, FUN_XVII, FUN_XVIII, FUN_XIX and FUN_XX 

Figure 4.5 (a-b) demonstrates the convergence plots for FUN_XXI and FUN_XXII functions. It 

is observed that CEMA10 shows better convergence than all other algorithms in FUN_XXI 

mathematical function. While CEMA4 shows better convergence in FUN_XXII mathematical 

function. 
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(a) FUN_XXI (b) FUN_XXII 

 

 

Figure 4.4: Analysis on FUN_XXI and FUN_XXII 

After detail analysis of EMA and its chaotic variants upon unimodal and multimodal 

mathematical functions, it is seen from figures (4.1-4.5) that the chaotic variants of EMA show 

superior performance than EMA for mathematical functions in terms of convergence. 

4.2    Parameter tuning of EMA on INOE Model 

The tuning of Crossover probability and Predator probability parameters for EMA is being 

performed at population size (Pop) =50, iterations =3000 for independent 50 runs. It is seen form 

the Table 4.23 that best results are obtained when parameter values of both crossover probability 

and predator probability = 0.8. 

Table 4.23: EMA Parameter tuning for IN-OE model 

Parameter A Fitness STD 
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Crossover=0.2,predator=0.2 1.896E+02 4.761E+01 

Crossover=0.2,predator=0.5 1.348E+02 1.527E+03 

Crossover=0.2,predator=0.8 1.924E+02 2.430E+03 

Crossover=0.5,predator=0.2 2.743E+01 7.021E+00 

Crossover=0.5,predator=0.5 4.622E+01 8.639E+00 

Crossover=0.5,predator=0.8 3.866E+01 1.048E+01 

Crossover=0.8,predator=0.2 1.249E+01 8.313E+02 

Crossover=0.8,predator=0.5 9.473E+00 2.216E+03 

Crossover=0.8,predator=0.8 1.800E-03 4.436E+01 

Crossover=0.9,predator=0.2 5.000E-03 5.180E+00 

Crossover=0.9,predator=0.5 5.600E-03 6.709E+00 

Crossover=0.9,predator=0.8 6.300E-03 5.572E+03 

Crossover=1,predator=0.2 2.020E-02 1.747E+02 

Crossover=1,predator=0.5 1.890E-02 4.854E+03 

Crossover=1,predator=0.8 1.830E-02 9.329E+00 

 

The convergence and statistical plots of tuned parameters of EMA on IN-OE model are 

presenting in figures 4.6(a-b). It is observed from figures that best results for EMA tuned 

parameters i.e. crossover probability and predator probability are 0.8 value for IN-OE model. 
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(a) Convergence Plot  

 
 

(b) Statistical Plot  
Figure 4.6: Convergence and Statistical plots of EMA Tuning 

 

4.3     Analysis on IN-OE Model 

The analysis of EMA and its chaotic variants is executed on mathematical functions having both 

unimodal and multimodal features. These variants are applied further for the identification of IN-

OE model for multiple variations of iteration, noises and populations. The IN-OE model 

parameters are taken from  [76] as given in (4.1)-(4.3) 

1 2 ,( ) 1 0.84 0.31C q q q     (4.1) 

1 2 ,( ) 1 0.57 0.86D q q q     (4.2) 

2 3( ) 1.50 ( ) 2.60 ( ) 3.20 ( ),w w w w   


     (4.3) 

The parameter vector v is given in (4.4) 

[ 1, 2, 1, 2, 1, 2, 3] [0.84,0.31, 0.57,0.86, 1.50, 2.60,3.20]T Tv c c d d         (4.4) 

( ) ( ),( ) act esty yEr      (4.5) 

Tables 4.24-4.29 represent the analysis for parameter vector estimated by EMA, CEMA1, 

CEMA2, CEMA3, CEMA4, CEMA5, CEMA6, CEMA7, CEMA8, CEMA9, CEMA10, COA, 

HHO and PSO at maximum iteration P=3000 and Pop =18, 50 and noise levels ( )E  =1.91E-03, 

1.91E-02 and 1.91E-01 respectively. 
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Table 4.24 represents the analysis for parameter vector estimated by EMA, CEMA1, CEMA2, 

CEMA3, CEMA4, CEMA5, CEMA6, CEMA7, CEMA8, CEMA9, CEMA10, COA, HHO and 

PSO at maximum iteration P=3000 and Pop =18 and noise level ( )E  =1.91E-03. It can be seen 

that CEMA8 shows better results in terms of best fitness. While CEMA10 estimated weights are 

very close to true weights of the IN-OE model. 

Table 4.24: Analysis of IN-OE at 1.91E-03 noise level and population size =18 

Methods B Fitness Estimated Weights 

EMA 2.89E-04 0.837 0.308 -0.571 0.862 -1.676 -2.877 3.087 

CEMA1 5.20E-04 0.842 0.311 -0.572 0.860 -1.230 -2.185 3.362 

CEMA2 7.14E-05 0.838 0.309 -0.572 0.862 -1.514 -2.615 3.194 

CEMA3 1.80E-04 0.840 0.310 -0.572 0.861 -1.350 -2.369 3.289 

CEMA4 7.36E-04 0.840 0.310 -0.574 0.862 -1.197 -2.126 3.385 

CEMA5 6.66E-05 0.839 0.309 -0.571 0.861 -1.568 -2.720 3.147 

CEMA6 4.36E-05 0.839 0.309 -0.572 0.861 -1.515 -2.646 3.173 

CEMA7 1.81E-05 0.839 0.309 -0.572 0.861 -1.482 -2.576 3.206 

CEMA8 1.47E-05 0.839 0.309 -0.571 0.861 -1.513 -2.617 3.193 

CEMA9 1.17E-04 0.839 0.309 -0.570 0.861 -1.614 -2.779 3.128 

CEMA10 4.20E-05 0.840 0.310 -0.572 0.861 -1.435 -2.500 3.238 

COA 2.90E+01 1.483 0.633 -0.963 -0.682 1.323 0.455 1.960 

HHO 1.46E-02 0.838 0.310 -0.568 0.877 -0.998 -1.215 3.901 

PSO 4.63E-02 0.834 0.305 -0.612 0.891 -1.156 -3.206 2.574 

True Weights 0.840 0.310 -0.570 0.860 -1.500 -2.600 3.200 

 

Table 4.25 represents the analysis for parameter vector estimated by EMA, CEMA1, CEMA2, 

CEMA3, CEMA4, CEMA5, CEMA6, CEMA7, CEMA8, CEMA9, CEMA10, COA, HHO and 

PSO at maximum iteration P=3000 and Pop =50 and noise level ( )E  =1.91E-03. It can be seen 

that CEMA5 and CEMA10 show better results in terms of best fitness. It is also noted that 

CEMA5 and CEMA10 estimated weights are very close to true weights of the IN-OE model. 
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Table 4.25: Analysis of IN-OE at 1.91E-03 noise level and population size = 50 

Methods B Fitness Weights 

EMA 1.94E-06 0.840 0.310 -0.570 0.860 -1.492 -2.586 3.206 

CEMA1 2.11E-06 0.840 0.310 -0.570 0.860 -1.505 -2.603 3.199 

CEMA2 1.84E-06 0.840 0.310 -0.570 0.860 -1.501 -2.598 3.201 

CEMA3 2.24E-06 0.840 0.310 -0.570 0.860 -1.506 -2.605 3.199 

CEMA4 6.70E-06 0.840 0.310 -0.570 0.860 -1.471 -2.555 3.217 

CEMA5 1.76E-06 0.840 0.310 -0.570 0.860 -1.498 -2.594 3.203 

CEMA6 1.80E-06 0.840 0.310 -0.570 0.860 -1.495 -2.589 3.205 

CEMA7 2.40E-06 0.840 0.310 -0.570 0.860 -1.488 -2.580 3.208 

CEMA8 2.05E-06 0.840 0.310 -0.570 0.860 -1.504 -2.603 3.200 

CEMA9 1.92E-06 0.840 0.310 -0.570 0.860 -1.492 -2.586 3.206 

CEMA10 1.76E-06 0.840 0.310 -0.570 0.860 -1.498 -2.594 3.203 

COA 1.12E+01 0.840 0.235 -1.403 1.001 1.288 -1.455 1.036 

HHO 4.77E-02 0.826 0.300 -0.629 0.922 -0.016 -0.272 4.000 

PSO 4.15E-01 0.717 0.236 -0.693 1.065 -2.820 -2.295 3.744 

True Weights 0.840 0.310 -0.570 0.860 -1.500 -2.600 3.200 

 

Table 4.26 represents the analysis for parameter vector estimated by EMA, CEMA1, CEMA2, 

CEMA3, CEMA4, CEMA5, CEMA6, CEMA7, CEMA8, CEMA9, CEMA10, COA, HHO and 

PSO at maximum iteration P=3000 and Pop =18 and noise level ( )E  =1.91E-02. It can be seen 

that CEMA3 shows better results in terms of best fitness. It is also noted that CEMA3 estimated 

weights are very close to true weights of the IN-OE model. 

Table 4.26: Analysis of IN-OE at 1.91E-02 noise level and population size =18 

Methods Best FF Estimated Weights 

EMA 2.58E-04 0.839 0.310 -0.571 0.862 -1.575 -2.690 3.170 

CEMA1 3.41E-04 0.841 0.311 -0.572 0.862 -1.327 -2.301 3.324 

CEMA2 2.61E-04 0.838 0.308 -0.575 0.864 -1.459 -2.514 3.235 

CEMA3 1.87E-04 0.839 0.310 -0.572 0.862 -1.508 -2.585 3.211 
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CEMA4 3.33E-04 0.838 0.308 -0.576 0.865 -1.389 -2.409 3.275 

CEMA5 4.85E-04 0.838 0.309 -0.571 0.863 -1.676 -2.846 3.108 

CEMA6 5.65E-04 0.835 0.307 -0.578 0.867 -1.451 -2.507 3.234 

CEMA7 2.84E-04 0.837 0.308 -0.574 0.864 -1.543 -2.650 3.180 

CEMA8 2.66E-04 0.840 0.310 -0.573 0.862 -1.362 -2.361 3.299 

CEMA9 2.38E-04 0.840 0.310 -0.573 0.863 -1.385 -2.396 3.284 

CEMA10 3.13E-04 0.838 0.309 -0.572 0.863 -1.602 -2.733 3.152 

COA 1.56E+01 0.712 0.348 -2.275 2.996 2.652 0.174 0.979 

HHO 1.28E-01 0.824 0.308 -0.651 0.955 -1.308 -3.221 2.522 

PSO 1.54E+00 0.704 0.233 -0.776 1.378 -2.787 -2.145 3.293 

True Weights 0.840 0.310 -0.570 0.860 -1.500 -2.600 3.200 

 

Table 4.27 represents the analysis for parameter vector estimated by EMA, CEMA1, CEMA2, 

CEMA3, CEMA4, CEMA5, CEMA6, CEMA7, CEMA8, CEMA9, CEMA10, COA, HHO and 

PSO at maximum iteration P=3000 and Pop =50 and noise level ( )E  =1.91E-02. It can be seen 

that CEMA7 shows better results in terms of best fitness. It is also noted that CEMA7 estimated 

weights are very close to true weights of the IN-OE model. 

Table 4.27: Analysis of IN-OE at 1.91E-02 noise level and population size =50 

Methods Best FF Estimated Weights 

EMA 1.76E-04 0.840 0.310 -0.572 0.862 -1.466 -2.521 3.236 

CEMA1 1.80E-04 0.840 0.310 -0.572 0.862 -1.448 -2.494 3.247 

CEMA2 1.78E-04 0.839 0.310 -0.572 0.862 -1.490 -2.559 3.221 

CEMA3 1.76E-04 0.840 0.310 -0.572 0.862 -1.465 -2.519 3.237 

CEMA4 1.76E-04 0.840 0.310 -0.572 0.862 -1.468 -2.524 3.235 

CEMA5 1.76E-04 0.840 0.310 -0.572 0.862 -1.464 -2.518 3.237 

CEMA6 1.77E-04 0.840 0.310 -0.572 0.862 -1.460 -2.512 3.240 

CEMA7 1.75E-04 0.840 0.310 -0.572 0.862 -1.472 -2.531 3.232 

CEMA8 1.76E-04 0.840 0.310 -0.572 0.862 -1.467 -2.523 3.236 

CEMA9 1.76E-04 0.840 0.310 -0.572 0.862 -1.477 -2.538 3.229 
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CEMA10 1.77E-04 0.840 0.310 -0.572 0.862 -1.456 -2.508 3.241 

COA 4.31E+00 0.421 0.044 -1.568 1.400 1.937 -1.274 1.985 

HHO 4.79E-02 0.813 0.288 -0.650 0.909 0.132 -0.578 3.775 

PSO 2.63E-01 0.888 0.338 -0.648 0.892 1.217 -0.509 3.190 

True Weights 0.840 0.310 -0.570 0.860 -1.500 -2.600 3.200 

 

Table 4.28 represents the analysis for parameter vector estimated by EMA, CEMA1, CEMA2, 

CEMA3, CEMA4, CEMA5, CEMA6, CEMA7, CEMA8, CEMA9, CEMA10, COA, HHO and 

PSO at maximum iteration P=3000 and Pop =18 and noise level ( )E  =1.91E-01. It can be seen 

that CEMA7 shows better results in terms of best fitness. While, CEMA4 estimated weights are 

very close to true weights of the IN-OE model. 

Table 4.28: Analysis of INOE at 1.91E-01 noise level and population size =18 

Methods Best FF Estimated Weights 

EMA 1.75E-02 0.836 0.309 -0.588 0.880 -1.265 -1.971 3.499 

CEMA1 1.80E-02 0.832 0.307 -0.591 0.884 -1.442 -2.243 3.389 

CEMA2 1.78E-02 0.837 0.310 -0.590 0.880 -1.031 -1.612 3.638 

CEMA3 1.76E-02 0.835 0.309 -0.591 0.881 -1.159 -1.815 3.556 

CEMA4 1.78E-02 0.837 0.310 -0.590 0.880 -1.027 -1.608 3.641 

CEMA5 1.76E-02 0.835 0.309 -0.588 0.880 -1.313 -2.045 3.469 

CEMA6 1.76E-02 0.836 0.309 -0.590 0.881 -1.172 -1.833 3.550 

CEMA7 1.75E-02 0.835 0.309 -0.590 0.881 -1.230 -1.931 3.510 

CEMA8 1.76E-02 0.835 0.308 -0.592 0.882 -1.157 -1.824 3.548 

CEMA9 1.79E-02 0.834 0.308 -0.589 0.881 -1.430 -2.232 3.394 

CEMA10 1.76E-02 0.835 0.309 -0.588 0.880 -1.316 -2.055 3.465 

COA 6.46E+00 0.819 0.272 -1.227 1.693 -0.718 0.478 3.076 

HHO 2.14E-01 0.788 0.274 -0.755 1.003 1.466 0.781 3.963 

PSO 6.55E-01 0.879 0.357 -0.619 1.069 -1.454 -1.850 3.223 

True Weights 0.840 0.310 -0.570 0.860 -1.500 -2.600 3.200 
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Table 4.29 represents the analysis for parameter vector estimated by EMA, CEMA1, CEMA2, 

CEMA3, CEMA4, CEMA5, CEMA6, CEMA7, CEMA8, CEMA9, CEMA10, COA, HHO and 

PSO at maximum iteration P=3000 and Pop =50 and noise level ( )E  =1.91E-01. It can be seen 

that EMA and its chaotic variants show better results in terms of best fitness. While, CEMA5 

estimated weights are very close to true weights of the IN-OE model. 

Table 4.29: Analysis of INOE at 1.91E-01 noise level and population size =50 

Methods Best FF Estimated Weights 

EMA 1.75E-02 0.836 0.309 -0.589 0.880 -1.220 -1.906 3.523 

CEMA1 1.75E-02 0.836 0.309 -0.589 0.880 -1.219 -1.905 3.523 

CEMA2 1.75E-02 0.836 0.309 -0.589 0.880 -1.217 -1.902 3.524 

CEMA3 1.75E-02 0.836 0.309 -0.589 0.880 -1.227 -1.916 3.519 

CEMA4 1.75E-02 0.836 0.309 -0.589 0.880 -1.232 -1.924 3.516 

CEMA5 1.75E-02 0.836 0.309 -0.589 0.880 -1.239 -1.934 3.513 

CEMA6 1.75E-02 0.836 0.309 -0.589 0.880 -1.191 -1.861 3.541 

CEMA7 1.75E-02 0.836 0.309 -0.589 0.880 -1.225 -1.914 3.520 

CEMA8 1.75E-02 0.836 0.309 -0.589 0.880 -1.238 -1.934 3.512 

CEMA9 1.75E-02 0.836 0.309 -0.589 0.880 -1.226 -1.915 3.519 

CEMA10 1.75E-02 0.836 0.309 -0.589 0.880 -1.205 -1.884 3.531 

COA 1.17E+01 0.861 0.288 -1.306 1.915 0.798 -0.076 1.580 

HHO 1.16E-01 0.808 0.288 -0.677 0.922 -0.996 -3.290 2.396 

PSO 5.85E-01 0.876 0.321 -0.695 0.793 2.382 -1.687 2.143 

True Weights 0.840 0.310 -0.570 0.860 -1.500 -2.600 3.200 

 

After detailed analysis of EMA, its chaotic variants and other metaheuristic algorithms on IN-OE 

model with different noise levels and population size, it is seen from Tables 4.24-4.29 that 

chaotic variants of EMA achieves the lowest best fitness (B Fitness) and most accurate 

parameters for all variants than EMA, COA, HHO and PSO. 
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The statistical analysis of EMA, its chaotic variants and other metaheuristic algorithms are 

performed for the identification of IN-OE model parameters. Figure 4.7(a-c) and Figure 4.8(a-c) 

present the statistical parameter vector analysis of the IN-OE model for EMA, CEMA1, 

CEMA2, CEMA3, CEMA4, CEMA5, CEMA6, CEMA7, CEMA8, CEMA9, CEMA10, COA, 

HHO and PSO at maximum iteration P =3000, Pop =18, 50 and noise levels ( )E  =1.91E-03, 

1.91E-02 and 1.91E-01 respectively. It is seen from Figure 4.7(a-c) and Figure 4.8(a-c) that chaotic 

variants of EMA estimate parameter more accurately than EMA, COA, HHO and PSO for all 

twenty executions. 

 

  
(a) 1.91E-03  

  
(b) 1.91E-02  
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(c) 1.91E-01  

Figure 4.7: Statistical analysis of EMA and other metaheuristic algorithms at Pop=18 

 

  
(a) 1.91E-03  

  
(b) 1.91E-02  
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(c) 1.91E-01  

Figure 4.8: Statistical analysis of EMA and other metaheuristic algorithms at Pop=50 

The convergence analysis of EMA, its chaotic variants and other metaheuristic algorithms are 

performed for the identification of IN-OE model parameters. Figure 4.9(a-c) and Figure 4.10(a-

c) represent the convergence analysis of the IN-OE model for EMA, CEMA1, CEMA2, 

CEMA3, CEMA4, CEMA5, CEMA6, CEMA7, CEMA8, CEMA9, CEMA10, COA, HHO and 

PSO for three levels of ( )E   respectively. It is observed from Figure 4.9(a-c) and Figure 4.10(a-

c) that higher level of ( )E   affects the fitness. Moreover it is observed from Figure 4.9(a-c) and 

Figure 4.10(a-c) that CEMA9 performs better than EMA, CEMA1, CEMA2, CEMA3, CEMA4, 

CEMA5, CEMA6, CEMA7, CEMA8, CEMA10, COA, HHO and PSO. 
 

  
(a) 1.91E-03  
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(b) 1.91E-02  

  
(c) 1.91E-01  

Figure 4.9: Convergence analysis of EMA and other metaheuristic algorithms at Pop=18 

 

  
(a) 1.91E-03 (b) 1.91E-02 
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(c)   

  
(d) 1.91E-01  

Figure 4.10: Convergence analysis of EMA and other metaheuristic algorithms at Pop=50 

 

The performance of EMA, CEMA1, CEMA2, CEMA3, CEMA4, CEMA5, CEMA6, CEMA7, 

CEMA8, CEMA9, CEMA10, COA, HHO and PSO for the identification of IN-OE model at 

maximum iteration P =3000 and Pop =18, 50 respectively are presented in terms of different 

noise levels ( )E  . Figures 4.11(a-c) to 4.14(a-c), 4.15(a-b), 4.16(a-c) to 4.19(a-c) and 4.20(a-b). 

It is perceived from the above mentioned figures that for all OM’s the fitness increases with an 

increase in ( )E  . However, chaotic variants of EMA achieve lowest fitness than EMA, COA, 

HHO and PSO for all variations.  
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(a) EMA (b) CEMA1 

 

 

(c) CEMA2  

Figure 4.11: Analysis of EMA, CEMA1 and CEMA2 for Pop =18 
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(a) CEMA3 (b) CEMA4 

 

 

(c) CEMA5  

Figure 4.12: Analysis of CEMA3, CEMA4 and CEMA5 for Pop =18 

  

(a) CEMA6 (b) CEMA7 

 

 

(c) CEMA8  
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Figure 4.13: Analysis of CEMA6, CEMA7 and CEMA8 for Pop=18 

  

(a) CEMA9 (b) CEMA10 

 

 

(a) COA  

Figure 4.14: Analysis of CEMA9, CEMA10 and COA for Pop=18 
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(b) HHO (c) PSO 

 

 

Figure 4.15: Analysis of HHO and PSO for Pop=18 

 

  

(a) EMA (b) CEMA1 

 

 

(c) CEMA2  Figure 4.16: Analysis of EMA, CEMA1 and CEMA2 for Pop=50 
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(a) CEMA3 (b) CEMA4 

 

 

(c) CEMA5  

Figure 4.17: Analysis of CEMA3, CEMA4 and CEMA5 for Pop=50 

  

(a) CEMA6 (b) CEMA7 
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(c) CEMA8  

Figure 4.18: Analysis of CEMA6, CEMA7 and CEMA8 for Pop=50 

  

(a) CEMA9 (b) CEMA10 

 

 

(c) COA  
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Figure 4.19: Analysis of CEMA9, CEMA10 and COA for Pop=50 

  

(a) HHO (b) PSO 

 

 

Figure 4.20: Analysis of HHO and PSO for Pop=50 

Table 4.30 shows the performance of EMA, CEMA1, CEMA2, CEMA3, CEMA4, CEMA5, 

CEMA6, CEMA7, CEMA8, CEMA9, CEMA10, COA, HHO and PSO in terms of average 

execution time and related standard deviation (STD) for ( )E  =1.91E-03. It is observed from 

Table 4.30 that CEMA8 attain better results in terms of average execution time while 

maintaining lower fitness at pop = 18 and 50.  It is also noted that CEMA1 shows better results 

in terms of STD at pop = 18. 

Table 4.30: Statistical Analysis of EMA and other Metaheuristics 

Methods Population Avg. Time STD 

EMA 
18 6.47E+00 1.15E-01 

50 1.76E+01 3.16E-01 

CEMA1 
18 6.16E+00 9.77E-02 

50 1.66E+01 3.05E-01 

CEMA2 
18 6.70E+00 1.18E-01 

50 1.83E+01 3.46E-01 
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CEMA3 
18 7.13E+00 1.18E-01 

50 1.94E+01 3.36E-01 

CEMA4 
18 6.35E+00 1.16E-01 

50 1.72E+01 2.69E-01 

CEMA5 
18 6.14E+00 1.15E-01 

50 1.66E+01 2.81E-01 

CEMA6 
18 6.46E+00 1.05E-01 

50 1.76E+01 2.91E-01 

CEMA7 
18 6.25E+00 1.01E-01 

50 1.70E+01 2.89E-01 

CEMA8 
18 5.81E+00 1.19E-01 

50 1.58E+01 2.45E-01 

CEMA9 
18 5.87E+00 1.05E-01 

50 1.59E+01 2.68E-01 

CEMA10 
18 6.45E+00 1.03E-01 

50 1.74E+01 2.87E-01 

COA 
18 1.74E+01 2.53E-01 

50 4.73E+01 5.25E-01 

HHO 
18 1.70E+01 3.44E-01 

50 4.67E+01 5.96E-01 

PSO 
18 7.05E+00 1.09E-01 

50 1.92E+00 3.69E-01 

 

Table 4.31 presents the performance of EMA, CEMA1, CEMA2, CEMA3, CEMA4, CEMA5, 

CEMA6, CEMA7, CEMA8, CEMA9, CEMA10, COA, HHO and PSO for Friedman rank test 

analysis. It is observed from Table 4.31 that CEMA9 has highest rank than all other methods. 
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Table 4.31: Statistical Analysis using Friedman rank test 

Methods Rank sum Rank 

EMA 111.5 11 

CEMA1 80.5 5 

CEMA2 97.5 9 

CEMA3 73.5 4 

CEMA4 87.5 6 

CEMA5 72.5 3 

CEMA6 96.5 8 

CEMA7 90 7 

CEMA8 98.5 10 

CEMA9 48.5 1 

CEMA10 60 2 

PSO 253 13 

COA 275 14 

HHO 133 12 
 

The evaluation of EMA, CEMA1, CEMA2, CEMA3, CEMA4, CEMA5, CEMA6, CEMA7, 

CEMA8, CEMA9, CEMA10, COA, HHO and PSO for INOE model parameters is deliberated 

on the disturbance levels ( )E  =[1.91E-03, 1.91E-02, 1.91E-01]. 

Detailed statistical, convergence, complexity and Freidman ranksum test show that chaotic 

variants of EMA achieves best performance against evolutionary mating algorithm (EMA) [52],  

coati optimization algorithm (COA) [55], Harris hawks optimization (HHO) [56], and particle 

swarm optimization (PSO) [41].  
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CHAPTER 5 

Conclusion and Future Work 

In this chapter, results of EMA and chaotic variants of EMA on IN-OE model will be concluded. 

Also a way forward for researchers will be proposed to optimize the parameters in system 

identification field. 

5.1 Conclusion 

The conclusion of this research after presenting considerable simulation results in previous 

chapter are given as follows: 

 The evolutionary-based, EMA algorithm is proposed for identification of an IN-OE 

system, represented with key term separation technique. 

 The chaotic EMA is established by assimilating the chaos theory with the conventional 

EMA exploration process. 

 The simulations results show that EMA with a chaotic sinusoidal map (CEMA9) executes 

better results than CEMA1 to CEMA8, CEMA10, standard EMA, as well as recent 

metaheuristics based on PSO, COA and HHO for identification of IN-OE system. 

5.2 Future Work 

 This research can be considered as encouraging step to identify the IN-OE model 

parameters by using metaheuristic optimization algorithms. 

 The proposed methodology can further be investigated in other engineering fields such as 

system identification of wiener Hammerstein models with colored noise based on hybrid 

signals [77]. 

 Hybrid model approach can also be designed by integrating chaotic variants of EMA with 

other metaheuristic algorithms to optimize the system parameters of Hammerstein and 

wiener models in system identification field. 
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