METRIC-ORIENTED QUALITY MODEL

FOR
ARCHITECTURE TRADEOFF ANALYSIS
METHOD
T M b
<

Asif Javed
Abdul Hafeez

Supervised By

Prof. Dr. Khalid Rashid

Department of Computer Science
Faculty of Applied Sciences
International Islamic University Islamabad
2006

In the Name of ALLAH

The Most Merciful
The Most Beneficent

INTERNATIONAL ISLAMIC UNIVERSITY ISLAMABAD
DEPARTMENT OF COMPUTER SCIENCE

Dated:
FINAL APPROVAL

It is certified that we have read the research thesis submitted by Mr. Asif Javed,
registration no. 56-FAS/MSSE({F04 and Mr. Abdul Hafeez, registration
no. 65-FAS/MSSE/F04 and it is our judgment that this thesis is of sufficient standard to
warrant its acceptance by International Islamic University Islamabad for the

Master of Science (MS) in Software Engineering.

External Examiner /)\
Dr. Naveed Ikram /\I\ﬁ
Assistant Professor, /

Muhammad Ali Jinnah University,

Jinnah Avenue Blue Area,
Islamabad.

Shon2
Internal Examiner /

Prof. Dr. Sikandar Hayat Khiyal,
Head,

Department of Computer Science
International Islamic University,
Islamabad-Pakistan

Supervisor \ (5
Prof. Dr. Khalid Rashid - @"J‘\ Q—g@

Dean,

Faculty of Applied Sciences,
International Islamic University,
Islamabad-Pakistan

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method Dissertation

4
Dissertation
Submitted as Partial Fulfillment
of Requirements for the Award of The Degree of
MS in Software Engineering

[

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method

Dedication

To
The Holiest man ever born,
Prophet Muhammad (Peace Be Upon Him)
&
Our Dear Parents & Family
Who are an embodiment of diligence and honesty,
Without their prayers and support

This dream could have never come true

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method Declaration

DECLARATION

We hereby declare that this research neither as a whole nor as a part thereof has been

copied out from any source. It is further declared that we have conducted this research
and proposed an improved modification to software architecture evaluation method, case
study and accompanied thesis on the basis of our personal efforts, under the sincere

guidance of our supervisor. If any artifact of this research is proved to be copied out from

P

any source or found to be reproduction of someone else, we shall stand by the

} consequences.
{
|

Asif Javed
’ FAS/MSSE/F04
|
1

j AbYul Hafeez
' 65-FAS/MSSE/F04

[EVEPURERI W

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method Acknowledgements

ACKNOWLEDGEMENTS

Countless gratitude to the Almighty Allah, who is Omnipotent and He, who blessed us
with the ability to read and write. He blessed us with a chance and choice, health and

courage to achieve this goal.

We would like to pay special regards to our parents. Without their support and prayers we
could have never completed this research work. We also want to thank Dr. Hafiz Farooq
Ahmad who blessed us with the guidelines for proving our research idea. We owe a debt
of gratitude to Prof. Dr. Len Bass, professor at Software Engineering Institute, Carnegie
Mellon University USA, for encouraging us in our research work and providing the
research material which helped us to prove our work. Let us not forget the prayers of our
brothers, sisters and beloved friends. They all always helped us in our down times and
boosted our morals. We would like to pay them the very special thanks for their best
wishes, encouragement and support in not only this research but throughout our lives

without that we would have not been able to achieve anything worthwhile.

We would like to pay special thanks to our supervisor Prof. Dr. Khalid Rahsid, Dean,
Faculty of Applied Sciences for his timely guidance, encouragement and personal interest
to maintain the quality of work apart from his duties throughout the research. Thanks to
Dr. Sikandar Hayat Khiyal, Head, Department of Computer Science and Dr. Sy. Afaq
Hussain, Head, Department of Telecommunication & Computer Engineering,
Mr. Muhammad Amir Aman and Mr. Muhammad Sulayman, Lecturers of Software
Engineering, International Islamic University Islamabad without their proper guidance we

could have never achieved this milestone.

We would also like to mention the support of International Islamic University Islamabad
who generously provided us R&D Funds for the international conference held at Berlin,
Germany. We also owe a great deal to all the respected colleagues who extended their

help whatsoever we needed.

Asif Javed
Abdul Hafeez

PR S

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method Project in Brief

PROJECT IN BRIEF
Project Title:
Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method
Objectives:
¢ An Improved modification to software architecture evaluation method.
e Application of the proposed model on a case study.
e To discover and explore the benefits with implication of this proposed
idea.
Undertaken By:
Asif Javed
56-FAS/MSSE/F04
Abdul Hafeez
65-FAS/MSSE/F04
Supervised By:
Prof. Dr. Khalid Rashid
Dean,
Faculty of Applied Sciences,
International Islamic University Islamabad
Started On:
September 2005
Completed On:
August 2006

Research Area:
Software Engineering, Software Architecture,
Software Architecture Evaluation, Software Quality and
Software Metrics

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method Abstract

ABSTRACT

It has been realized by the software engineering communities that software architecture
serves as an important artifact in producing quality software products. Architecture
Tradeoff Analysis Method (ATAM) proposed by Software Engineering Institute (SEI) is
considered to be a well-known methodology for evaluating software architectures.
Current research observes a lack of proper guidelines and a well-defined approach in
generation of quality attributes utility tree. This lack of standard has limited the
usefulness of this method. We proposed a quality model based on ISO 9126-1 quality
model. We support architecture evaluation using Goal Question Metric (GQM) approach
to answer the questions raised by the stakeholders to fulfill business drivers in the light of
ISO 9126-1 quality model. We also applied the method to a Case study BattleField
Control System (BCS) and performed the architecture evaluation by presenting results to

overcome the existing problem.

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method Table of Contents

TABLE OF CONTENTS
Ch. No. Contents Page No.
L 11 (016 L (o5 T « D PP 2
1.1 Back@round..........ccouiuiiiiiiii e 3
1.1.1 System Software Architecturecoveviiiiiiiiiiiiiiiiininennn 3
1.1.2 Software Architecture Evaluation.................ccceoeviiiviiiinninenee 4
1.2 Software Architecture as a Research Areacoooiiiiiivniiiinnnnn. 6
1.3 Research Agenda..........ccocvuiveiiiiiii i i e e 6
| T B 0 o) 1< A PPN 7
1.3.2 0 APProach......c..cuiuiuiiiniiiieieeie et 7
1.4 Validation of the Research...............ccooiiiiiiiiiii e, 7
1.4.1 Battlefield Control System (BCS) — Case Study........c..ccoevcevvvneninnne 8
1.5 Overview Of Thesis.......cocouiiiiiiiii e 8
1.6 LUErature SUIVEY......ooeiuiiiiitit ettt ettt 9
1.6.1 Software Qualityccoeviiieiiiiiiiiii e 9
1.6.2 Software Quality Models............coooiiiiiiiiiiiii e 11
1.6.2.1 McCall’s Modelcoeiniiiiiiiiiiiiiiii e 11
1.6.2.2 Boehm’s Model........c.couveveiinniiiiiiniiniiiniiciieaaannnes 12
L.6.23ISOMEC 9126 .unveniieii i eiee e e e eneaaane 13
1.6.3 Architecture Tradeoff Analysis Method (ATAM)......c..cccvvenenn.n 14
1.6.4 Goal Question Metric Approach.............cooveiiiiiiiiiiiiiiennnnn 20
2 Problem Definition.ocouvuiniriiiii i e 23
2.1 HYPOtESIS. ... oeeeieeetieeeeeteeteeee e e e e e e e e e e e n e e e e 23
2.2 Problem SCOPE «..uennieiiiie e e 24
2.3 Problem Statementcooiviiiiiiii i e 25
2.4 Significance of the Researchcoooviiiiiiiiiiiiiii e 26
3 Proposed SOIUION.oieiiii e 28
3.1 Conceptual Model with respect to ATAM ... 31
3.2 Conceptual Model with respect to GQM approachc..ccooeieenene. .33
4 Application of MoQaMo toaCase Study...........ccooovviiiiiiiiiiii 37
4.1 Driving Architectural Requirements............ccccoeveiniieiiiniin i 37
4.2 High-Level Architectural VIEWScooiiiiiiiiiiiiiiiiiiiiii e 38
4.3 Architectural Evaluationcooiiiiiiiiiiiiiii i, 40

4.4 Comparison and Resultsccoeovvimiiiiiiiniiiiiiiee e ieeeeeee 41

e A o At

— .,

e, A, B aun o -

[QUUEEEPE I SO

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method Table of Contents

I 04 1o) L3 Lo o TP 48
I N o Tl S 1 1 T £ T 48
References & Bibliography......c.ocvuviiiiiiiiiiii e 51

Appendix A- Research Paper

Chapter 1

INTRODUCTION

Chapter | Introduction

1 Introduction

Architecture usually focuses on a set of business and technical decisions. There are many
influences at work in its design, and the realization of these influences is subject to
change according to the environment in which the architecture is required to perform. An
architect designing a system for which the low budget is allocated and short deadline is
specified will opt to take one set of decisions; the same architect, designing a similar
system in which the deadlines can be easily satisfied, will make different choices. Even
with the same requirements, hardware, support software, and human resources available,
an architect designing a system today is likely to design a different system that might

have been designed five years ago.

The purpose of architecture evaluation of software systems is to analyze the architecture
in order to identify potential risks and verify that quality requirements have been
addressed in the design. Architécture Tradeoff Analysis Method (ATAM) focuses on
understanding the consequences of architecture decisions with respect to quality attribute
requirements of the system [1]. Quality is one of the major issues [2]. This has been the
oldest practice in the software industry to predict the quality of a software product from
higher-level design [3]. Currently software architecture is considered to deal with
software quality. It has been realized by the software engineering community that
software architecture serves as an important artifact in producing quality software
products [4]. The Architecture Tradeoff Analysis Method (ATAM) defines the attribute
utility tree to provide a top down mechanism for directly and efficiently interpreting the
business drivers of the system into concrete quality attribute scenarios [1]. Non-
functional requirements, like performance, maintainability and reliability are represented
as architectural drivers. The utility tree is formed from the combination of these
architectural drivers. These quality requirements are refined into relevant attributes in
order to get a prioritized list of scenarios that serves as a plan for the remaining

architecture evaluation process.

ATAM uses one level of quality characteristics. However there is not any specific
guideline to define the utility tree. Expression of quality view and the reason for one level
of refinement is ambiguous [S5]. Attributes defined in the utility tree are measured in

terms of stimuli, parameters and responses. After having a utility tree, we see that there is

Chapter 1 Introduction

a lack of coordination among quality characteristics, their refined attributes and resulting

scenarios which also attempt to specify measures to attributes.

The purpose of this research is to propose Metric-Oriented Quality Model (MoQaMo)
based on the ISO 9126-1 [6] framework. MoQaMo utilizes the Goal Question Metric
(GQM) approach to support software architecture evaluation by answering the
quantifiable questions raised by the stakeholders to fulfill business drivers (goals) over
the ISO 9126 framework. The work attempts to replace the utility tree used in
Architecture Tradeoff Analysis Method (ATAM) with the MoQaMo model. MoQaMo
guides the architecture evaluation process by clearly emphasizing the major quality
characteristics. This helps to identify quantifiable questions and a relevant set of metrics

derived in order to fulfill the goals.

Architectural tactics and patterns in particular explain the known properties to the
systems in which they are used. Hence, design choices that is to say, architecture are
analyzable. Given architecture, we can deduce things about the system, even if it has not

been built yet.

1.1 Background

It is better to have a right perception about the meaning of software architecture before
going into the details of architectural evaluation. Different people have taken different
meanings from software architecture. We will mention a few definitions of software
architecture prevailing in the software engineering community. There has been a wide
spread growth in the industry in the methods for software architecture evaluation. The
major purpose of any architectural evaluation methodology is to assess the candidate
architecture whether it fits according to the business and technical requirements of the

organization or not?

1.1.1 System Software Architecture

We see various schools of thought regarding the concepts of system software
architecture. Software Engineering Institute (SEI), Carnegie Mellon University has
played a tremendous role in the evolution of the field of software engineering. The

researchers have given lot of attention to the research work on software architecture at the

Y I o YL I o VS LV 1Y Jr SIS Y Y DS AL VT + o e Y » o I AR W 2y 1 F) -

Chapter 1 Introduction

Software Engineering Institute (SEI), Carnegie Mellon University. SEI has been

considered as a valuable source of knowledge in software engineering field.

We mention the definition for software architecture proposed by the software engineering
Institute. The Software Engineering Institute (SEI) defines what software architecture is.

This definition comprises of what constitutes software architecture.

“The software architecture of a program or computing system is the structure or structures of
the system, which comprises software elements, the externally visible properties of those
elements, and the relationships among them. [7] *

Software architecture forms the backbone for building successful software-intensive
systems [8]. Architecture largely permits or precludes a system's quality attributes such as
performance or reliability. Architecture represents a capitalized investment, an abstract
reusable model that can be transferred from one system to the next. Architecture
represents a common vehicle for communication among system's stakeholders, and is the
arena in which conflicting goals and requirements are mediated. The right architecture is

the linchpin for software project success. The wrong one is a recipe for disaster.

1.1.2 Software Architecture Evaluation

An organization should analyze software or system architecture, because it is a cost-
effective way of mitigating the substantial risks associated with this highly important
artifact [9]. Architectures are the blueprints for a system, and the carriers of the system's

quality attributes.

It is always cost-effective to evaluate software quality as early as possible in the life
cycle. If problems are found early, they are easier to correct a change to a requirement
specification, or design is all that is necessary. Software quality cannot be appended late
in a project, but must be inherent from the beginning, built in by design. It is in the
project's best interest for prospective candidate designs to be evaluated (and rejected, if

necessary) during the design phase.

However, architecture evaluation can be carried out at many points during a system's life
cycle. If the architecture is still embryonic, we can evaluate those decisions that have
already been made or are being considered. We can choose among architectural

alternatives. If the architecture is finished, or nearly so, we can validate it before the

AMotvir £ 350mntord HDrsalite Anadsl s Awrnhitonttivno Terndantd Awmadiiase Vsl T

Chapter 1 Introduction

project commits to lengthy and expensive development. It also makes sense to evaluate
the architecture of a legacy system that is undergoing modification, porting, integration
with other systems, or other significant upgrades. Finally, architecture evaluation makes
an excellent discovery vehicle: Development projects often need to understand how an

inherited system meets (or whether it meets) its quality attributes requirements.

Quality in architecture is reported by the organizations that practice architecture
evaluation as a standard part of their software development life cycle. As development
organizations learn to anticipate the questions that will be asked, the issues that will be
raised, and the documentation that will be required for evaluations, they naturally pre-
position themselves to maximize their performance on the evaluation. Architecture
evaluations result in better architectures not only after the fact but before the fact as well.

Over time, an organization develops a culture that promotes good architectural design.

Most complex software systems are required to be modifiable and must exhibit high
performance. They may also need to be secure, interoperable, portable, and reliable. For
any particular system, what precisely do these quality attributes - modifiability, security,
performance, reliability - mean? Can a system be analyzed to determine these desired
qualities? How soon can such an analysis occur? How do we know if software

architecture for a system is suitable without having to build the system first?

Experience has shown that the quality attributes of large software systems live principally
in the system's software architecture. In such systems the achievement of qualities
attributes depends more on the overall software architecture than on code-level practices
such as language choice, detailed design, algorithms, data structures, testing, and so forth.
It is therefore a critical risk mitigation measure to try to determine, before a system is

built, whether it will satisfy its desired qualities.

The Software Engineering Institute (SEI) has developed several methods for analyzing
system and software architecture Active Reviews for Intermediate Designs (ARID), the
Architecture Tradeoff Analysis Method (ATAM), and the Cost-Benefit Analysis Method
(CBAM). These techniques can be used in combination to obtain early and continuous
benefits. ARID can be used to evaluate early designs or portions of designs for their
viability in satisfying stakeholder concerns. Once the software architecture is more fully

developed, the ATAM can be used to reveal how well the architecture satisfies particular

AAntrin Yt ed £ virvlitne AAAAAT e Awndattnrntsres Tootdrdd Aveudeenta M&al _ 1 -

Chapter 1 Introduction

quality attribute requirements and the risks, sensitivities, and tradeoffs involved in
satisfying those requirements. The CBAM guides system engineers and other
stakeholders to determine the economic tradeoffs associated with the architectural

decisions that result in the system's qualities.

1.2 Software Architecture as a Research Area

We observe an enormous amount of research work in the field of software architecture
during the last decade. This area has emerged as the principled study of the overall
structure of software systems, especially the relations among subsystems and
components. From its roots in qualitative descriptions of useful system organizations,
software architecture has matured to encompass broad explorations of notations, tools,
and analysis techniques. Whereas initially the research area interpreted software practice,

it now offers concrete guidance for complex software design and development.

We can understand the evolution and prospects of software architecture research by
examining the research paradigms used to establish its results. These are, for the most
part, the paradigms of software engineering. We advance our fundamental understanding
by posing research questions of several kinds and applying appropriate research
techniques, which differ from one type of problem to another, yield correspondingly
different kinds of results, and require different methods of validation. Unfortunately,
these paradigms are not recognized explicitly and are often not carried out correctly;
indeed not all are consistently accepted as valid. This retrospective on a decade-plus of
software architecture research examines the maturation of the software architecture
research area by tracing the types of research questions and techniques used at various
stages. We will see how early qualitative results set the stage for later precision,
formality, and automation and how results build up over time. This generates advice to

the field and projections about future impact. [10]

1.3 Research Agenda

A lot of research work exists in the area of software architecture evaluation and a large
number of contributions from Software Engineering Institute (SEI) at Carnegie Mellon
University, USA in this area. SEI should be called as an eminent leader in this research
domain. Many software architecture analysis methods have been developed by SEI that

has opened up many interesting areas for research. Turning the pages of recent SEI

) O SR o Y IF V.Y LV W S D Y Y e VT . T Y, . e D W 2 s) ’

Chapter 1 Introduction

reports and Software Architecture conferences reveals a wealth of research directed
towards architecture analysis. Architectural Tradeoff Analysis Method (ATAM) is one of
the methodologies proposed by SEI. Our work focuses on this particular method and
offers an improved modification by providing a quality model based on a well defined
standard. We propose a quality model for this architecture evaluation method in this

thesis.

1.3.1 Objectives

We focus on the following objectives:

- An improved modification to Architecture Tradeoff Analysis Method (ATAM)
- Guidelines for generating utility tree

- Comparison between classic ATAM and the proposed MoQaMo for ATAM.

1.3.2 Approach

The selection of appropriate research methodology is an important decision in a research
project. Software engineering as a field offers many competing research paradigms and
methodologies. The methodology employed in this thesis is to develop a new method for
analysis or evaluation research paradigm. Software engineering research answers
questions about methods of development or analysis, about details of designing or
evaluating a particular instance, about generalizations over whole classes of systems or
techniques, or about exploratory issues concerning existence or feasibility. Methods of
analysis or evaluation help software engineers and architects to answer and to set their

priorities and decisions in selecting a particular product or service.

1.4 Validation of the Research

To prove MoQaMo model, we selected case study BattleField Control System (BCS).
This case study was applied by Software Engineering Institute (SEI) to a method for
software architecture evaluation; Architecture Tradeoff Analysis Method [ATAM]. We
find this case study as an authentic source of information and fits very much in the
validation of our research work. The approach to apply case study was similar to that of

SEl, Carnegie Mellon University.

1.4.1 Case Study: BattleField Control System (BCS)

AAntrvrr rrnintnd £ i v) by AL AAAT £nse Avendaiimntasmn Toasdandd Anteand VA2 2 -

Chapter 1 Introduction

This system was proposed for army battalions to control the movement, strategy, and
operations of troops in real time in the battlefield. We divided case study into two phases.
In phase 1, we presented the ATAM basic steps along with customer business case. The
business case reflected information about the mission and its requirements. The
requirements state that the system supports a commander who commands a set of soldiers
and their equipment, including different kinds of weapons and sensors. The system need
to interface with numerous other systems. Phase 2 consisted of executing architecture
evaluation process by following MoQaMo model (replacing the utility tree in traditional
ATAM), collecting architectural approach information, exploring stakeholders’ questions
for every scenarios and then satisfying these questions by subjective and objective

metrics.

1.5 Overview of Thesis

This section provides an overview of this research thesis as follows:

Chapter 2 mainly describes the Problem Definition. Research Questions are identified

which makes the focus of the research clearer to find answers.

Chapter 3 discusses the newly devised improved modification to Architecture Tradeoff
Analysis Method (ATAM). An example is also described so as to clearly elaborate the

proposed idea.

Chapter 4 describes the application of MoQaMo model to a case study, BattleField
Control System (BCS). A set of risks, tradeoff points and sensitivity points are identified

after the evaluation of software architecture for BCS.

Chapter 5 concludes the thesis by summarizing the main findings and benefits of this

model.

AAntrirn Diostord HDasnlitns AAndnd £ave Avendiitnrntarsers Teoomdamdd Aewelaerndn Ma_21 _ ¥

Chapter 1 Introduction

1.6 Literature Survey

This section discusses literature survey i.e. Software Quality, Software quality models,
Architecture Tradeoff Analysis Method (ATAM) and Goal Question Metric approach.

1.6.1 Software Quality

Everyone agrees that software quality is the most important element in software
development because high quality could reduce the cost of maintenance, test and
software reusing. Quality has different meanings for customers, users, management,
marketing, developers, testers, quality engineers, maintainers, and support personnel.
Many institutes and organizations have their own definitions of quality and their own
quality characteristics. The software industry is growing up daily and “it is rather
surprising that more serious and definitive work has not been done to date in the area of
-evaluating software quality” [11]. Moreover, Kitchenham (1989) notes that “quality is
hard to define, impossible to measure, easy to recognize” [12,13]. Also, Gilles states that
quality is “transparent when presented, but easily recognized in its absence” [14,15].
Furthermore, Kan (2000) explains that “Quality is not a single idea, but rather a
multidimensional concept. The dimensions of quality include the entity of interest, the
viewpoint on that entity, and quality attributes of that entity” [16]. Some organizations try
to develop standard definitions for quality. Some Definitions of international and

standard organizations are [17]:

» ISO 9126: “Software quality characteristic is a set of attributes of a software product
by which its quality is described and evaluated”.

* German Industry Standard DIN 55350 Part 11: “Quality comprises all
characteristics and significant features of a product or an activity which relate to the
satisfying of given requirements™.

* ANSI Standard (ANSI/ASQC A3/1978): “Quality is the totality of features and
characteristics of a product or a service that bears on its ability to satisfy the given

needs”.

ISO/IEC 9126-1 defines a quality model as a framework which explains the relationship
between different approaches to quality" [18]. A quality model decomposes in

hierarchical elements. An approach to quality is to decompose quality in Factors, Sub-

LW TR TS Y IV Y 2 B N T . . T 2 o~ o 7 . mos .¥

Chapter 1 Introduction

factors, and criteria. Evaluation of a program begins with measuring each quality criteria
with numerical value from metrics. Then, each quality sub-factor is assessed using their
criteria. Finally, numerical values are assigned to quality characteristics from their quality

sub-factors. Figure 1.1 presents a meta-model of the relationships among quality model
elements.

Quality Model
Quality Factor |« Quality Factor
%

Y N B

g %eo'é E»@b“ E

g P & 2

2 R sé;

. 2

4
Quality Criteria k; Quality Factor
Measured

l

System

Figure 1.1: Relationship among Quality model Components

Chapter 1

Introduction

1.6.2 Software Quality Models

Several quality models have been defined by different people and organizations. In the

following, we summarize briefly some of
the most standard and well known quality

models.

1.6.2.1 McCall’s Model (1977)

McCall’s model (See Figure 1.2) for
software quality combines eleven criteria
around product operations, product
revisions, and product transitions. The main
idea behind McCall’s model is to assess the
relationships among external quality factors
and product quality criteria. McCall’s Model
is used in the United States for very large
projects in the military, space, and public
domain. It was developed in 1976-7 by the
US Air- force Electronic System Decision
(ESD), the Rome Air Development Center
(RADC), and General Electric (GE), with
the aim of improving the quality of software

products [17].

One of the major contributions of the
McCall model is the relationship created
between quality characteristics and metrics,
although there has been criticism that not all

metrics are objective. One aspect not

Traceability |

Completeness |

Correctness

Consistency |

Accuracy |

Relaibaility

lr Error tolerance J

Execution efﬁciencﬂ

Efficiency

Storage Efficiency |

Access Control J

Integrity Access Audit I
Operability |

Hsabalty Training |
Communicativenes}

Simplicity |

Conciseness |

Instrumentation l

Flexibility

Self-descriptivenesy

Expandability |

Portability

Generality |

Modularity |

Software System independeb

Interpretability

Machine independence I

Communication Commonelij)

Data Commonality|

Figure 1.2: McCall’s Quality Model

considered directly by this model was the functionality of the software product [19].

The layers of quality model in McCall are defined as [20]:

* Factors. » Criteria. » Metrics.

Chapter 1 Introduction

1.6.2.2 Boehm’s Model (1978)

Boehm added some characteristics to McCall’s model with emphasis on the
maintainability of software product. Also, this model includes considerations involved in
the evaluation of a software product‘ with respect to the utility of the program, The
Boehm model is similar to the McCall model in that it represents a hierarchical structure
of characteristics, each of which contributes to total quality. Boehm’s notion includes
user’s needs, as McCall’s does; however, it also adds the hardware yield characteristics

not encountered in the McCall model” [19].

However, Boehm’s model (See Figure 1.3) contains only a diagram without any
suggestion about measuring quality characteristics. The layers of quality model in Boehm
are defined as [20]:

* High-level characteristics.

* Primitive characteristics.

Device independence

]

Portabity Self-Containedness |

Accuracy]

Reliability Completeness |

Robustness |

General Utility Asis utility Efficiency Consistency |
Accountability |

Human Engineering Device Efficency |

Accessibility |

Testability Communicativeness |

Maintainability Seff Descriptiveness |
- Understandability Structuredness |
Conciseness |

Modifiability Legiity |

Augmentability |

Figure 1.3: Boehm’s Quality Model

Chapter 1 Introduction

1.6.2.3 ISO/IEC 9126 (1991)

With the need for the software industry to standardize the evaluation of software products
using quality models, the ISO (International Organization for Standardization) proposed a
standard which specifies six areas of importance for software evaluation and, for each

area, specifications that attempt to make the six areas measurable.

One of the advantages of the ISO 9126 model (See Figure 1.4) is that it identifies the
internal characteristics and external quality characteristics of a software product.
However, at the same time it has the disadvantage of not showing very clearly how these

aspects can be measured [19].

Suitability

Accuracy

Interoperability

Functionality

Maturity

Fault tolerance

|
|
|
Security |
|
|
|

Reliability Recoverability

Understandability J

Learnability J

Usability

Operability |

Time behavior |

Efficiency Resource behavior |

Analyzability

Changability

Maintainability Stability

Adaptability

Portability

Installbility

Conformance

AN AN N IN INS

|
|
|
Testability |
|
|
|
|

Replaceabifity

Figure 1.4: ISO/IEC 9126 Quality Model

[

cnm lmen s

Chapter | Introduction

1.6.3 Architecture Tradeoff Analysis Method (ATAM)

The ATAM is an analysis method organized around the idea that architectural styles are
the main determiners of architectural quality attributes. The method focuses on the
identification of business goals which lead to quality attribute goals. Based upon the
quality attribute goals, we use the ATAM to analyze how architectural styles aid in the

achievement of these goals.
Purpose

The purpose of the ATAM is to assess the consequences of architectural decision
alternatives in light of quality attributes. The method ensures that the right questions are

asked early to discover

- risks: alternatives that might create future problems in some quality attribute
- sensitivity points: alternatives for which a slight change makes a significant
difference in a quality attribute

- tradeoffs: decisions affecting more than one quality attribute

The ATAM is intended to analyze architecture with respect to its quality attributes, not its
functional correctness. It involves a wide group of stakehoiders (including managers,
developers, maintainers, testers, end users, and customers) in an effort to surface the
relevant stakeholders’ quality goals for the system. It is a method for mitigating
architecture risks, a means of detecting areas of potential risks within the architecture of a
complex software intensive system, and not a precise mathematical analysis. As such, the
ATAM can be done early in the software development life cycle, and it can be done

inexpensively and quickly.

It does not need to produce detailed analysis of any measurable quality attribute of a
system (such as latency or mean time to failure) to be successful, but it instead identifies
trends where some architectural parameter is correlated with a measurable quality

attribute of interest.

Chapter 1 Introduction

Steps

The ATAM process consists of nine steps, as is briefly presented. Sometimes there must
be dynamic modifications to the order of steps to accommodate the availability of
personnel or architectural information. Although the steps are numbered, suggesting
linearity, this is not a strict waterfall process. There will be times when an analyst will
return briefly to an earlier step, or will jump forward to a later step, or will iterate among
steps, as the need dictates. The importance of the steps is to clearly delineate the activities
involved in ATAM along with the outputs of these activities. Figure 1.5 shows steps of
ATAM in four phases.

PHASE |
Scenario &
Reguirements
Gathering

PHASE WV
Tradeofts

Analysas

PHASE Il PHASE 1l
Modei Bullding Architectural Views
& Analyses & Scenario Realization

Figure 1.5: Steps of the Architecture Tradeoff Analysis Method

Step 1 - Present the ATAM

In this step the evaluation team lead presents the ATAM to the assembled stakeholders to
explain the process that everyone will be following, allows time to answer questions, and
sets the context and expectations for the remainder of the activities. It is important that
everyone knows what information will be collected, how it will be scrutinized, and to

whom it will be reported. In particular, the presentation will describe

Chapter 1 Introduction

- ATAM steps in brief

- Techniques that will be used for elicitation and analysis: utility tree generation,
architectural approach-based elicitation/analysis, and scenario
brainstorming/mapping.

- Outputs from the evaluation: the scenarios elicited and prioritized, the questions
used to understand/evaluate the architecture, a “utility tree”, describing and
prioritizing the driving architectural requirements, set of identified architectural
approaches and styles, set of risks and non-risks discovered, set of sensitivity

points and tradeoffs discovered.
Step 2 - Present Business Drivers

The system to be evaluated needs to be understood by all participants in the evaluation. In
this step the project manager presents a system overview from a business perspective.
The system itself must be presented, initially at a high level of abstraction, typically

describing its

most important functional requirements

- technical, managerial, economic, or political constraints
- business goals and context

- major stakeholders

- architectural drivers (major quality attribute goals that shape the architecture)
Step 3 - Present Architecture

The architecture will be presented by the lead architect (or architecture team) at an
appropriate level of detail. What is an appropriate level? This depends on several factors:
how much information has been decided upon and documented? How much time is
available? How much risk the system faces? This is an important step, as the amount of
architectural information available and documented will directly affect the analysis that is
possible and the quality of this analysis. Frequently the evaluation team will need to
specify additional architectural information that is required to be collected and

documented before a more substantial analysis is possible.

In this presentation the architecture should cover:

-

Chapter 1 Introduction

- Technical constraints such as an OS, hardware, or middleware prescribed for
use

- Other systems with which the system must interact

- Architectural approaches used to meet quality attribute requirements.

- At this time the evaluation team begins its initial probing of architectural

approaches.
Step 4 - Identify Architectural Approaches

The ATAM focuses on analyzing architecture by understanding its architectural
approaches. In this step they are identified by the architect, and captured by the analysis
team, but are not analyzed. We concentrate on identifying architectural approaches and
architectural styles because these represent the architecture’s means of addressing the
highest priority quality attributes; that is, the means of ensuring that the critical
requirements are met in a predictable. These architectural approaches define the
important structures of the system and describe the ways in which the system can grow,

respond to changes, withstand attacks, integrate with other systems, and so forth.
Step 5 - Generate Quality Attribute Utility Tree

In this step the evaluation team works with the architecture team, manager, and customer
representatives to identify, prioritize, and refine the system’s most important quality
attribute goals, this is a crucial step in that it guides the remainder of the analysis.
Analysis, even at the level of software architecture, is not inherently bound in scope. We
need a means of focusing the attention of all the stakeholders on the aspects of the
architecture that are most critical to the system’s success. We do this by building a utility
tree. The output of the utility tree generation process is a prioritization of specific quality
attribute requirements, realized as scenarios. This prioritized list provides a guide for the
remainder of the ATAM. It tells the ATAM team where to spend its limited time, and in
particular where to probe for architectural approaches and their consequent risks,
sensitivity points, and tradeoffs. Additionally, the utility tree serves to concretize the
quality attribute requirements, forcing the evaluation team and the customer to define

their “Utility” requirements precisely.

Chapter | Introduction

Step 6 - Analyze Architectural Approaches

Once the scope of the evaluation has been set by the utility tree elicitation, the evaluation
team can then probe for the architectural approaches that realize the important quality
attributes. This is done with an eye to documenting these architectural decisions and

identifying their risks, sensitivity points, and tradeoffs.
Step 7 - Brainstorm and Prioritize Scenarios

Scenarios are the motor that drives the testing phase of the ATAM. Generating a set of
scenarios has proven to be a great facilitator of discussion and brainstorming, when

greater numbers of stakeholders are gathered to participate in the ATAM
Step 8 - Analyze Architectural Approaches

After the scenarios have been collected and so analyzed, the architect then begins the
process of mapping the highest ranked scenarios onto whatever architectural descriptions
have been presented. Ideally this activity will be dominated by the architect’s mapping of
scenarios onto previously discussed architectural approaches. In fact the whole point of
the hiatus between the two phases is to ensure that this is the case. If this is not the case
then either the architect has no approach- or style-based (and hence no architecture-wide)
solution for the stimulus that the scenario represents, or the approach exists but was not

revealed by any activities up until this point.
Step 9 - Present Results

Finally, the collected information from the ATAM needs to be summarized and presented
back to the stakeholders. This presentation typically takes the form of a verbal report
accompanied by slides but might, in addition, be accompanied by a more complete
written report delivered subsequent to the ATAM. In this presentation we recapitulate the
steps of the ATAM and all the information collected in the steps of the method including:
the business context, driving requirements, constraints, and the architecture. Most

important, however, is the set of ATAM outputs:

- the architectural approaches/styles documented

- the set of scenarios and their prioritization

e vl e

Chapter 1 Introduction

- the set of attribute-based questions
- the utility tree

- the risks discovered

- the non-risks documented

- the sensitivity points and tradeoff points found

ATAM Strengths and Weaknesses
According to Mugurel et al [21], the strengths of the ATAM are:

- Stakeholders understand more clearly the architecture.
- Improved software architecture documentation. In some cases the architecture
documentation must be recreated.

- Enhanced communication among the stakeholders.

The remarks of ATAM are:

- Requires detailed technical knowledge

- Doesn’t look easy to me.

The problem with scenario based approach is that it will have scenarios haven’t
considered. What do we do about these? Will this in fact create risk by itself? Consider a
software team done a good software architecture evaluation process, and it is perfect.
Two months down the track, a scenario became an important one that hadn't been
considered before, what happens next? Same old story, re-do the architecture again,
maybe. It can be argued that evaluation process is to minimize the risk, event though the
risk is always there. However, the point is that the fundamental problem of scenario

based evaluation method is that it will have scenario haven't considered.

ATAM seems shifting the focus of analysis towards estimating risks and uncertainty
associated with the system's requirement, architectural decisions and strategies a great

step forward.

The ATAM is general, so that it can apply to all application system. At the same time,
because it is general, we found that event it is not too difficult to apply, but some

information might be missing in some problem domain.

Chapter 1 Introduction

1.6.4 The Goal Question Metric Approach

The Goal Question Metric (GQM) approach is based upon the assumption that for an
organization to measure in a purposeful way it must first specify the goals for itself and
its projects, then it must trace those goals to the data that are intended to define those
goals operationally, and finally provide a framework for interpreting the data with respect
to the stated goals. Thus it is important to make clear, at least in general terms, what
informational needs the organization has, so that these needs for information can be
quantified whenever possible, and the quantified information can be analyzed whether or
not the goals are achieved. The Conceptual Model for GQM approach is presented in
Figure 1.6

The approach was originally defined for evaluating defects for a set of projects in the
NASA Goddard Space Flight Center environment. The application involved a set of case
study experiments [22] and was expanded to include various types of experimental
approaches [23)]. Although the approach was originally used to define and evaluate goals
for a particular project in a particular environment, its use has been expanded to a larger
context. It is used as the goal setting step in an evolutionary quality improvement
paradigm tailored for a software development organization, the Quality Improvement
Paradigm, within an organizational framework, the Experience Factory, dedicated to
build software competencies and supplying them to projects. The result of the application
of the Goal Question Metric approach application is the specification of a measurement
system targeting a particular set of issues and a set of rules for the interpretation of the

measurement data. The resulting measurement model has three levels:

1. Conceptual level (GOAL): A goal is defined for an object, for a variety of reasons,
with respect to various models of quality, from various points of view, relative to a

particular environment. Objects of measurement are

- Products: Artifacts, deliverables and documents that are produced during the
system life cycle; e.g., specifications, designs, programs, test suites.

- Processes: Software related activities normally associated with time; e.g.,

- specifying, designing, testing, interviewing,.

- Resources: Items used by processes in order to produce their outputs; e.g.,

personnel, hardware, software, office space.

Chapter 1 Introduction

2. Operational level (QUESTION): A set of questions is used to characterize the way the
assessment/achievement of a specific goal is going to be performed based on some
characterizing model. Questions try to characterize the object of measurement (product,
process, resource) with respect to a selected quality issue and to determine its quality

from the selected viewpoint.

3. Quantitative level (METRIC): A set of data is associated with every question in order to

answer it in a quantitative way. The data can be

Objective: If they depend only on the object that is being measured and not on the
viewpoint from which they are taken; e.g., number of versions of a document, staff hours

spent on a task, size of a program

Subjective: If they depend on both the object that is being measured and the viewpoint

from which they are taken; e.g., readability of a text, level of user satisfaction.

Conceptual Level

Measurement goals involve
products, processes and / or Goal 1 Goal 2
resources

Operational Level

Questions Try to characterize the
object to measurement in the context | Question Question] Questior] Questiol Question
of quality issue from a particular
viewpoint,

Quantitative Level

Associated with every questions is
a set of data , either subjective or
objective that helps provides a Metric Metric Metric Metric Metric Metric
quantitative answer

Figure 1.6: The GQM Paradigm

Chapter 2

PROBLEM DEFINITION

Chapter 2 Problem Definition

2 Problem Definition

The study addresses an important problem identified in the Architecture Tradeoff Analysis
Method (ATAM). It attempts to specify the problem Statement, specific object and
approached used for solving the problem. Architecture Tradeoff Analysis Method is
defined in order to assess the effect of architecture decisions in the light of Quality attribute
requirements. ATAM does not give any path to approach a well-defined structure of quality

attributes. We shall try to answer the questions given below:

- Defining a quality attribute utility tree proved to be difficult, time consuming and
tedious task.
- Lack of clear guidelines of how to build up such a tree hindered and slowed down

the discussion.

2.1 Hypothesis

The primary measure of success of a software system is the degree to which it meets the
purpose for which it was intended. It is said that Software Architecture is a key business
asset for an organization and architecture is key practice for that organization. This is
because architectures are complex and involved many design tradeoffs (ATAM). There are
a number of inherent difficulties in this process. Architectural analysis involves the
participation of many stakeholders that may include developers, customers, users,
architects and project Managers. The output of utility tree generation process is a long list
of scenarios that, must realize the quality attributes. It has been clearly stated in research
area that output from utility tree serves as a foundation for the remaining part of
Architecture Tradeoff Analysis Method. Therefore, lack of guidelines for generating a
utility tree could result in the ambiguous and uncertain result. It is important to have a very
sound framework (a long list of scenarios along with response measures) to arrive at right
architectural decisions in the light of quality attributes. The quality of software architecture
may be more realistic if the architecture analysis is supported with a well-defined software

measurement approach.

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 23

Chapter 2 Problem Definition

Software metrics may help to draw the real picture of software architecture by defining
functional and non-functional requirements in terms of scenarios. High involvement of
stakeholders in an architectural analysis, which is explicitly based on, standardized
procedures and approaches may definitely results in getting the right set of architectural

decisions.

2.2 Problem Scope

Architecture Tradeoff Analysis Method (ATAM) is considered to be a well-known
architectural evaluation approach. When evaluating an architecture using ATAM, The goal
is to understand the consequences decisions with respect to the quality attributes
requirements of the systems. The ATAM is intended for analysis of architecture with

respect to its quality attributes.

Generation of quality attribute utility Tree is an important step in ATAM as it helps to
guide the architecture evaluation process. Utility tree provides a top-down mechanism for
directly and efficiently translating the business drivers of a system into concrete quality
attribute scenarios. We identified a problem in the utility tree structure. In classic ATAM,
the utility tree has been defined upon the concept of quality attribute characterization. With
quality attribute characterization, every quality attribute is realized in terms of external
stimuli, architectural decision and response measure. Lack of proper guidelines resulted in
identifying the right set of external stimuli, architectural decisions and response measures.
Architectural evaluation team experienced difficulty in deriving scenarios which is the
ultimate out of the utility tree. If quality attribute characterization is the principle logic to
establish the framework for utility tree generation, then we propose a quality model. The
quality model provides us with the set of guidelines for the achievement of detailed and
unambiguous scenarios. Every scenario is supported with its response measure. These

measurements help to realize quality attributes.

In ATAM, the evaluation approach is supported by the scenarios based analysis. Each
quality characteristics is refined into its corresponding sub- characteristics and then a
scenario gives the definition and measure for those specific quality sub-characteristics. This

measurement approach focuses to measure specific quality characteristics from one

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 24

Chapter 2 Problem Definition

possible perspective. We also observed that metric assignment to the quality characteristics

is not based on a well define approach.

2.3 Problem Statement

“ATAM uses one level of quality characteristics. However there is not any specific
guideline to define the utility tree. An expression of quality view and the reason for one
level of refinement is ambiguous. Attributes defined in the utility tree are measured in
terms of stimuli, parameters and responses. After having a utility tree, we see that there is a
lack of coordination among quality characteristics; their refined attributes and resulting
scenarios which also attempt to specify measures to attributes. According to AVG case
study, it is found difficult to come up with a quality attribute utility tree. Furthermore it
preparation is time consuming and tedious. Without clear guidelines, there occur obstacles
in building up such a tree. A quality model is proposed that takes the support of software
metrics to clearly identify the architectural decisions and their consequences in the light of

quality attribute requirements.”

This problem statement provides a base line for that research. The proposed quality model

will provide a comprehensive solution to remedy of the mentioned problem.

We used Goal Question Metric (GQM) approach to specify the measures for quality
attributes. The measures can be subjective as well as objective. We do not get the measures
from ISO quality model because in that case we will skip the exploration of scenarios. We
prefer to use GQM approach as it would give us the measures that could serve as the
response measures for the new explored scenarios. This way, we are attempting to
strengthen the quality attribute characterization process which serves as the basic concept
of utility tree creation. Metrics help to arrive at the right architectural decisions because
metrics are derived from the questions raised by the stakeholders. GQM approach requires
the involvement of stakeholders in architecture evaluation process. Thus the model sticks to
the basic philosophy of ATAM and helps to carry out architecture analysis while keeping

participant’s interest in focus.

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 25

Chapter 2 Problem Definition

2.4 Significance of the Research

This research attempts to offer an improvement to an existing architecture evaluation
model ATAM. This model would make it more realistic to arrive at right architectural
decisions. This model is based on a well-defined software quality standard ISO 9126.
Therefore it paves the way to carryout architecture analysis that assists in getting a quality
software product. The standard model encourages software professionals to follow a
standard quality model, which is clearly defined and elaborated. Architecture evaluation
carried out by one team would be fully understandable to another team if both teams follow
MoQaMo model. In research area, we do not see any such model that offers an improved

modification to a famous model ATAM.

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 26

Chapter 3

PROPOSED SOLUTION

U —

Chapter 3 Proposed Solution

3 Proposed Solution

Proposed Metric-Oriented Quality Model (MoQaMo) is based on the ISO 9126-1 standard.
The model is designed with a view to support evaluation of architecture using ATAM. The
model guides in the process of architecture evaluation. We do not attempt to replace the
architecture tradeoff analysis method (ATAM) but we proposed a modification to this
method. For any evaluation process, it is necessary to have well-defined evaluation criteria.
Evaluation criteria helps to identify what characteristics of the target (architecture to be
evaluated) are of interest for evaluation purposes [24]. One of the steps in ATAM is the

generation of the quality attribute utility tree. This utility tree serves as evaluation criteria

~ for discovering architectural risks associated with architectural approaches. The utility tree

in ATAM is elicited by focusing on the business drivers. Business drivers represent the
goals that have to be achieved. In practice, we see that major quality characteristics like
performance, maintainability, portability, etc. are captured as business drivers and put in
the utility tree to define evaluation criteria. We also observe that these major characteristics
are refined into sub-characteristics without any guiding principle. The definition of quality
attributes is only supported through scenarios only, which are gathered from stakeholders.
The quality attributes get different definitions each time they are applied within ATAM.
Due to varying interpretations of these quality attribute requirements, the usefulness of

ATAM becomes limited within the software industry. It is seen that the same quality

. attribute names vary from evaluation to evaluation. One organization’s “maintainability” is

another organization’s “changeability”. Reliability and availability are often interchanged
[7]. It proved to be difficult, time-consuming and disappointing to come up with a utility
tree. A lack of clear and concrete guidelines hindered the generation of a quality attribute
utility tree [25]. As a result, communication among stakeholders, which is a crucial activity
of ATAM, was badly affected.

MoQaMo Model is proposed with a view to bring an improved modification in ATAM. We
attempt to replace the utility tree by the proposed model. MoQaMo is based on the ISO
9126 standard. This model incorporates all the major six characteristics and their respective

sub-characteristics. These quality characteristics define the scope of evaluation criteria,

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 28

JPSF S]

Chapter 3 Proposed Solution

which support the architecture evaluation team in an organized and systematic manner. The
quality attributes are taken from the ISO 9126-1 quality model because these describe the

high-level characteristics in a more relevant way and guide to achieve the quality of a

~ software product within a well-defined scope. High-level quality characteristics can be

represented as architectural drivers. High-level quality characteristics are refined into their
corresponding sub-characteristics. Sub-characteristics for each major quality charactcristic
explain its meaning and purpose. Measures are derived for these sub-characteristics. It is
clear that the purpose of ATAM is to evaluate the consequences of architectural decisions
in the light of architectural drivers. We consider these architectural drivers as architcctural
goals. If the quality factor which is serving as architectural or business driver is not found
in the ISO quality model, then we recommend utilizing Goal Question Metric approach.
GQM methodology treats the quality factor as a goal and helps us to produce relevant
scenarios along with the response measures. We prefer to use the measures for these quality

characteristics obtained from the GQM method rather than ISO quality model. ISO quality

" model gives us the opportunity to derive measures for internal quality characteristics. But

doing so would avoid us in getting scenarios which is very important output of utility tree
process. In both the cases whether the required quality factor is found in ISO 9126 model

or not, we prefer GQM method in getting to the scenarios.

'

O~ We support our proposition by giving a few justifications for employing the ISO quality
O~
S~ model and GQM method:

Justifications

ISO 9126 Quality Model:

1- ISO 9126 is an international standard for the evaluation of software.

2- ISO 9126 Part one, referred to as ISO 9126-1 is an extension of previous work done
by McCall (1977), Boehm (1978), FURPS and others in defining a set of software

quality characteristics.

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 29

— e

Chapter 3 , Proposed Solution

3.

The fundamental objective of this standard is to address some of the well known
human biases that can adversely affect the delivery and perception of a software
development project.

In ATAM, we evaluate software architecture on the basis of quality characteristics.
ISO model serves to be the best tool because it gives a complete quality model.

ISO 9126 model is product-oriented, focusing the product external quality
characteristics that must be accomplished when the product is in operation.
However, the internal characteristics, which influence the external ones are taken
into account. These internal characteristics arise during the development process
and can be used to evaluate the architecture, which is a sub-product of the

development process.

Goal Question Metric Approach

1-

Goal Question Metric approach is used for the transformation of quality factors into
the scenarios.

With GQM, users are not restricted to the predefined meaning of quality
characteristics specified in ISO 9126 quality model. Rather, they can generate
scenarios from GQM approach.

Stakeholders can derive meaning to the quality attributes according to their
requirements and context.

If there does not exist the quality attribute in the pool of quality attributes provided
in ISO 9126 quality model, then the stakeholders can take advantage of the GQM
approach. Stakeholders may pick quality attributes from ISO quality model
according to the business driver and apply the GQM approach 1o describe it in

detail.

- To equip our model with the ability to define appropriate metrics, the Goal Question Metric

(GQM) approach [26] has been applied. This approach is based on the assumption that

organization must specify the goals for itself and its projects, then it must trace those goals

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 30

Chapter 3 Proposed Solution

- operationally and finally provide a framework for interpreting the data with respect to the

stated goals.

We identify business goals that need to be achieved in the desired software product. These
goals usually refer to functional and non-functional requirements of software. The goals are
defined under the light of ISO quality model. That is, high level quality characteristics help
us to define and document the goals in a clear context. Once we have a set of well-defined
goals for software. We then, start exploration of scenarios. Stakeholders of the software
system are prompted to raise questions in order to achieve the goals. Questions raised are
answerable and metrics are derived to answer questions. The answers take the form of
subject and objective metrics. The more the relevant questions are raised, the more the
~ chance are to achieve goals. Scenarios are elicited to explore the system. These scenarios
help to identify those questions which pave the way for achievement of goals. The goals
are defined by focusing on high-level quality characteristics and their refined sub-
characteristics. Thus quality of the product is achieved by identifying goals on the basis of
software quality dimensions. Metrics are devised to answer these questions. Thus metrics
are assigned indirectly to internal quality attributes. Questions are always raised by tracing
sub-characteristics. MoQaMo model develops close coordination among high level quality
characteristics, sub-characteristics, questions, scenarios and metrics. Thc sub-
characteristics serve as the goals if the quality factors exist in ISO 9126 quality modcl. If
they do not exist then high level characteristics will be become the goals and would results
_ in refined sub-characteristics as well as scenarios. This coordination highly supports the
architecture evaluation process. MoQaMo model involves the participation of stakeholders
in this process and provides the opportunity to take correct architectural decisions while

keeping focus on stakeholders’ interest towards the system.

3.1 Conceptnal Model with respect to ATAM

From the conceptual model as shown in Fig. 3.1 we see that business drivers are trcated as
goals. The architecture evaluation process is exercised to attain these goals. The high-level

quality attributes follow the structure provided by the ISO 9126 standard.

 Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 31

Chapter 3 Proposed Solution

define Identify

Business Quality N "
V Drivers Attributes Scenarios
Analysis !
_J Software .| Architectural | Architectural /
Architecture Approaches Decisions

Impacts Sensitivity Point

. 1

r i

4

oo+t |
Risk Themes distifled into--~—- Risks -
U |

Figure 3.1: MoQaMo Conceptual Model with respect to ATAM

~ The well-defined structure of the ISO 9126-1 quality model motivates to use quality
characteristics in the MoQaMo model. These quality characteristics in ISO 9126 are
structured with a view to ensure quality of software products. The sub-characteristics
(internal quality attributes) help to identify quantifiable questions, which are asked in order
to fulfill goals (high-level quality characteristics). The application of the MoQaMo Model
appreciates the involvement of stakeholders in the architecture evaluation process.
Questions are raised by the stakeholders in order to observe whether architcctural
approaches address quality attributes in question or not. In ATAM, we see that quality
attributes are defined and covered up by the elicitation of scenarios, that is, scenarios define
the context of quality attributes according to the evaluating system. These scenarios pave
the way for quantifiable questions to be asked according to relevant sub-characteristics.
~ Once all the relevant questions are defined for a particular goal, metrics have to be
specified in order to answer the quantifiable questions. Each question can be answered with
a single or multiple metrics. After having a collection of metrics, we can start analyzing the
architecture with the candidate architectural approaches and can assess the consequences of
architectural decisions. This particular suite of metrics helps to take justifiable architectural

decisions. The analysis which is a core process in ATAM gets improved due to high

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 52

Chapter 3 Proposed Solution

involvement of stakeholders, a well-defined evaluation criteria and availability of
appropriate set of metrics. The same metrics can be used in order to answer diffcrent

questions for the same goal.

3.2 Conceptual Model with respect to GQM approach

We also propose another conceptual model [Fig. 3.2] for MoQaMo with respect to the
GQM approach that shows its different components and the interaction among them.
- Quality characteristics are refined into sub-characteristics. The set of Sub-characteristics
provide the field where relevant scenarios can be defined. Scenarios and sub-characteristics
help to define scope of questions which are to be raised by the system’s stakeholders.
Stakeholders play an important role in the execution of ATAM. Stakeholders use to ask
questions about system working from the dimensions they expect the system to work. The
end-user of software system is always interested to have a software which is easy to learn
and easy to use. So he would be raising questions by taking ‘“usability” quality
characteristic into consideration. The questions are always asked with a view to achicve a
business driver and architecture driver (goal of the system). Stakeholders are expected to
answer question by providing answers in the form of subjective and objective metrics. If
system’s architecture is designed in such a manner where it fulfills business goals using

MoQaMo model, then we claim to say that stakeholders would be satisfied with system’s

l Characteristics , |

.

Refined into

operation.

j b
1 Sub-Characteristics Define Scope of‘—>1 Questions ‘

o Tf

J] |

! Scenario }——*——SUpport I Answer
1
Ellicit _
] L Metric
i i i ———————Raise
Stakeholders Assign

Figure 3.2: MoQaMo Conceptual Model with respect to GQM approach

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method

(V8]
[V}

Chapter 3

Proposed Solution

The process of setting goals is critical to the successful application of the MoQaMo model.

A goal should be expressible with four dimensions; (i) Issue, (ii) Objects, (iii) Purpose, (1v)

Viewpoints. The Measurement Goal Template (MGT) is helpful in the operationalization

of quality goals. It also addresses the characteristics that are to be included in an evaluation.

MGT [Table 3.1] makes the MoQaMo model more flexible by adjusting it according to the

context of a particular software project [27].

Issue

~(Quality Focus)

LNo ‘ Dimensions ‘Deﬁnition
1

Which characteristics of the object are taken into
consideration?

Object

What is the artifact to be evaluated?

Why is the object analyzed?

2
3 Purpose
4

Viewpoint

Who will evaluate?

Table 3.1: Measurement Goal Template (MGT)

" Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method

Chapter 3 . Proposed Solution

In order to provide an example of the application of the MoQaMo model. let’s assume we
want to improve the performance of the altitude monitoring device of an airplane. The
resulting goal will specify the purpose (improve), an object (altitude monitoring device),
' the viewpoint (aeronautical engineer) and a quality issue (efficiency). The MoQaMo Model

is presented in Table 3.2.

, e ~4-Improve the efficiency of aiﬁtude monitoring device
Ghatacterislic/Gonl o _from an aeronautical engineer’s viewpoint.

Sub-Characteristics Time Behavior

| Time Behavior

The device should return information within specified time.
J

How much time does the device take to send information to the screen?

0.25 ms

What is the response time of the device in calculating the altitude?

0.5ms

What is the frequency of information production?

20 times / minutes

Once in every 3 sec.

Table 3.2: The MoQaMo Model for altitude monitoring device

First we identify the business driver and that is to increase the efficiency of altitude
monitoring device in an airplane. This business driver is translated into a quality
characteristic of the system. Here we have an “Efficiency” quality characteristic with its
refined sub-characteristic “time behavior” and “resource behavior”. We only take “time
behavior” sub-characteristic only and ask stakeholders of the system to raise relevant
- questions. The questions are raised under the scope of a particular scenario. The questions
are always asked in the context of a well defined scenario. Stakeholders are encouraged to
raise only those questions which can help in achieving a goal. Quality sub-characteristics
(in our case time behavior) restrict the definition of scenarios. Scenarios are selected.

defined, and analyzed under the scope of internal quality attributes.

(9]
wn

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method

-

Chapter 4

APPLICATION OF
MoQAMO
TO A CASE STUDY

. Chapter 4 Application of MoQaMo to a Case Study

4 Application of MoQaMo Model to a Case Study

We have selected the case study for which the Software Engineering Institute (SEI) has
carried out architecture evaluation using ATAM. The details of the case study can be found
at the SEI’s technical report [1]. We have applied the MoQaMo model to a BattleField
Control System (BCS). This system is designed with an aim to support army battalions in
controlling the movement, strategy and operation of troops in real-time BattleField. We
focus on two major quality requirements (Efficiency and Reliability) in the system. We
~ carry out evaluation by selecting different architectural approaches. Questions with metrics

as their answers were identified from the stakeholders’ perspective.

4.1Driving Architectural Requirements

A commander commands a set of soldiers and their equipments, including different kinds
of weapons and sensors. External systems need to be interfaced with the BCS system in
order to capture its commands and intelligence information. The commander communicates
with all the soldiers on a real-time basis. The system is considered to be working if there is
a working commander along with a number of soldiers. The failure of the system depends
upon the life of the commander. The commander fights the battle according to mission plan
and utilizes its available resources during the battle. A radio modem with 9600-baud speed
* supports the communication between the commander and the soldiers. There 1s a need for
extreme level of robustness and a number of performance goals should be considered. The
system 1is also subject to frequent modifications. The evaluation of this system requires
careful consideration of different architectural approaches, quality requirements of the

system, stakeholders’ expectations in the form of documented questions and scenarios.

4.2High-Level Architectural Views

We give a few high-level architectural views of the BCS to flesh out our understanding
about its working structure. We are not going to present detailed architectural
documentation of the system. From hardware view shown in Figure 4.1, we observe that

the commander is central to the system. In fact, the commander node acts as a server and

fulfils the clients (soldiers) requests. Inter-node communication between the clients and the

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 37

Chapter 4 Application of MoQaMu 1o u Cuse Study

server is only through encrypted messages sent via a radio modem. The soldier with shaded

box represents a backup soldier. A Backup soldier takes the responsibility of the
 commander in case of death of commander. Thus a backup soldier needs to be updated
frequently with all the information that commander possess during the battle, so that a

backup soldier should be smart enough to replace the position of commander.

Command and
Control System

Soldier

#‘ Commander l,,
¥ « 3 -

Figure 4.1: System view of BCS

The module decomposition view shown in Figure 4.2 identifies major components of the
system. This view may include many more modules but for better understanding, we have
mentioned only a few. The module decomposition view consists of Decision Support
System (DSS), Communication Manager (Comm. Mgr) and Battle Controller
(B.Controller).

Decision Support System: This part of the system facilitates the provision ot intelligent
information to other components like Battle Controllér (B.C) and Communication Manager
(Com.Mgr). The commander uses intelligent information during the battle. For example,
. the commander should know which weapon to use at which time and which soldier need to
be moved forward and which soldiers need to be kept in defense. Decision support system
has a knowledge base which contains ail the mission plans, weapon information, soldiers’

profiles and other relevant system information.

Communication Manager: This is responsible for streamlining and floating all information
among different parts of the system. Radio modem is the device used to transfer
information within soldiers and commander. Com.Mgr encrypts, decrypts, moves, formats

and distributes information within the system. The battle requires a quick transfer of

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 38

Chapter 4 Application of MoQaMo to a Case Study

messages (data with different size and structure) among software system. Thus to achieve
efficiency quality perspective of the system, it is necessary to understand the complete

working structure of communication manager.

Battle Controller: Battle Controller (B.Controller) helps to provide coordination among all

- the components of the system. The commander needs to move soldiers within battlefield

according to mission plan and battle strategy. B.Controller also facilitates in managing the

switching position of backup soldiers to commander position.

Figure 4.3 shows a module layered view. In this view, the BCS application layer is using

the services of its lower layers. The BCS Application Programming Interface (API) layer is

developed over .Net framework and provides a programmable interface to the layer above

it.
1

BCS Application —‘

BattleField Control System ‘
BCS API

Dss Com. Mgr

B.Controller .Net
» Sub-System R ’ X —$ v Xis allowed to use Y \
Figure 4.2: Module decomposition view Figure 4.3: Module Layered View

Architectural approaches are considered with respect to modifiability, availability, and
performance. To achieve availability, a backup commander approach was described.
Availability and performance of the system are found to be a high priority of the
stakeholders. The MoQaMo model attempts to organize the architectural evaluation process

by eliciting information for desired quality characteristics through high involvement of

~ stakeholders. This organized and efficient structure helps an evaluation team to realize

those architectural approaches and architectural decisions that cater for the desired quality
characteristics (quality goals). The MoQaMo model serves as a guideline and well-defined

structure to evaluate software architectures using ATAM.

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 39

Chapter 4. ' Application of MoQaMo to a Case Study

4.3 Architectural Evaluation

From the case study, we observed that the stakeholders were highly interested in system
availability, modifiability and performance. In order to achieve availability, an architcctural
approach was needed to be employed which could sustain the existence of the commander
in the battlefield. We will only consider availability and performance of the system in
evaluating architecture. We observe that system availability is primarily affected by the
failure rate of the commander, the repair rate of the commander (the time required for the
backup to become commander) and the repair rate of the backup (the time required for the
+ soldier to become a backup). The shaded soldier node indicates the backup. According to
the existing architecture, availability of the system is assured by provoking the backup
soldier node to mirror the commander’s state through acknowledged communication (state

messages) with commander. Upon failure of the commander, the backup takes over as the

new commander.

To achieve high availability (a high level of readiness), an alternative architecture proposed
that the multiple soldier nodes could be put to monitor the commander-to-backup
communication. The backup soldiers could be acknowledged backups (requesting resends
of missed packets) or could be passive backups (silent receiver packets) or a mixture of
these concepts. In the case where packets are not acknowledged, the state of the backup
~ database would increasingly drift from that of the commander. If one of these backups is
called upon to become the commander, it would need to engage in some negotiation (with

the external systems and/or the other Soldier nodes) to complete its database.

It is clear to say that the availability of the system increases as the number of backups is
increased, because the system can survive multiple failures of individual nodes without

failing its mission.

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 40

Chapter 4 Application of MoQaMo to a Case Study

4.4 Comparison and Results
" Classic ATAM:

In classic ATAM, information on the architectural approaches with respect to modifiability,
availability and performance scenarios was elicited. The system was loosely organized
around the notion of clients and servers. This dictated both the hardware architecture and
the process architecture and affected the system’s performance characteristics. In addition

to this style

- For availability, a backup commander approach was described

- For modifiability, standard subsystem organizational patterns were described

- For performance, and an independent communicating components approach was described.

The stakeholders in this ATAM were most interested in modifiability and performance.
Upon probing, however, they admitted that availability was also of great importance to
them. Based upon stated concerns and elicitation, a utility tree was created. As part of
elicitation process fhey ensured that each of the scenarios in the utility tree had a spccific

stimulus and response associated with it.

Evaluation team requested specific additional architectural information to address the gaps
in the documentation produced by the contractor. These requests were in the form of

questions such as:

What is the structure of the message-handling software (i.e., how is the functionality is broken down in

terms of modules, functions, APIs, layers, etc.)?

What facilities exist in the software architecture (if any) for self-testing and monitoring of software

components?

- What facilities exist in the software architecture (if any) for redundancy, liveness monitoring,
failover, and how data consistency is maintained (so that one component can take over from another

and be sure that it is in a consistent state with the failed component)?

- What is the process and/or task view of the system, including mapping of these processes/lasks to

hardware and the communication mechanisms between them?

- What functional dependencies exist among the software components (often called a “uses” view)?

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 4]

Chapter 4 Application of MoQaMo to a Case Study

- What data is kept in the database (which was mentioned by one of your stakeholders), how big is it,

how much does it change, and who reads/writes it?

- What is the anticipated frequency and volume of data being transmitted among the system

components?

(H,H)
. X Ballistics kernel computation
— Performance _l: Response time < 1sec (HM)

Inter-node message transfer

New msg format < 1 p.m. (M,H)
Change from JVM to EJVI
Utility —— Modifiability New msgdatatype<1pw.

Changeweb Ul <2 pw

HW failure MTTR < 5 mm.—EHM

Failure of commander node

Diskless aperation
_ Availability pe

Survive single network faillure

Figure 4.4 ATAM Utility tree

The utility tree shown in Figure 4.4 above contains utility as the root node. This is an
expression of the overall “goodness” of the system. Typically the quality attributes of
performance, modifiability, security, and availability are the high-level nodes
immediately _under utility, although different stakeholder groups may add their own
quality attributes or may use different names for the same ideas (for example, some
stakeholders prefer to speak of maintainability). Under each of these quality factors are
specific sub-factors. For example, performance is broken down into “data latency” and
“transaction throughput”. This is a step toward refining the attribute goals to be
concrete enough for prioritization. Notice how these sub-factors are related to the
attribute characterizations. Latency and throughput are two of the types of response
measures noted in the attribute characterization. Data latency is then further refincd into
“Minimize storage latency on customer database” and “Deliver video in real-time.”
Throughput might be refined into “Maximize average throughput to the authentication

server.”

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 42

Chapter 4 Application of MoQaMo to a Case Study

Further work on these scenarios would, in fact, make these architectural response goals

even more specific, €.g., “Storage latency on customer database no more than 10 ms. on

average.”

The output of utility tree generation provides a prioritized list of scenarios that serves as

a plan for the remainder of the ATAM. It tells the ATAM team where to spend its

(relatively limited) time, and in particular where to probe for architectural approaches

and risks. The utility tree guides the evaluators to look at the architectural approaches

involved with satisfying the high priority scenarios at the leaves of the utility tree.

Additionally, the utility tree serves to concretize the quality attribute requirements,

forcing the evaluation team and the customer to define their “XYZ-ility” requirements

very precisely.

Our Proposition

On the basis of the stated requirements, we attempt to generate utility tree by following

a set of guidelines. We employ ISO 9126 quality model and GQM approach in order to

achieve quality attribute characterization.

Guidelines:

Search for the quality attribute in the ISO 9126 framework.
Pick up the sub-characteristics for that quality attribute.
Declare each sub-characteristic as a goal according to the GQM approach.

Raise a question against each sub-characteristic such that its answer can realize the achievement of

that goal.

Provide answer to the question in the form of well-defined measures. Measures should serve as

response measures in the characterization of sub-characteristics.

In case, quality attribute, that needs to be characterized, is not found in ISO 9126 framework then

declare quality factor as a goal and raise questions in order to realize the goal.

Organize the quality factor with its elicited information in the form of a hierarchy. The leaf node

should be scenario.

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 43

Chapter 4 Application of MoQaMo to a Case Study

Using the BCS case study, we observe that Performance and Availability take high
importance in the architecture evaluation. So we follow the proposed guidelines in

order to generate ATAM utility tree.

Performance Quality Attribute

In order to characterize Performance Quality attribute, we refer to ISO 9126 quality
model. There we find Efficiency quality attribute with its refined sub-characteristics i.e.

Response Behavior and Resource Behavior.

We declare response behavior as a goal and we will raise the questions against this
quality attribute. Derived metrics would justify the answers to the raised questions.
From the sub-characteristic in the form of goal, its relevant questions and metrics

would help us to get the set of well defined scenarios.

From IS0 9126 Quality Model

Response Behavior

Efficiency

Resource Behavior

' Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 44

Chapter 4 : Application of MoQaMo to a Case Study

Response Behavior represents the architectural stimulus. We need to accommodate the
change in architecture according to this stimulus. So achievement of sub-characteristic

response behavior motivates us to declare it as a goal.

GOG' « Improve the Response behavior of the system from evaluation team’s viewpoint.

Question: What is the communication speed between the commander and the soldiers?
Answer: 9600 baud (9600 bits/sec) or 9.6 kbits / sec

Question: How much time is required to download mission plans?
Answer: 280 kbits / 9.6 kbits/sec = 29.17 sec

Question: How much time does it take to make updates to environmental database?
Answer: 280 kbits / 9.6 kbits/sec = 29.17 sec

_ Question: How much time 1s required to acquire issued orders (for 24 soldiers)?
Answer: 24 soldiers * (18 kbits / 9.6 kbits/sec) = 45 sec

Question: What is the time needed to acquire information about the inventories (for 24
soldiers)?
Answer: 24 soldiers * (42 kbits / 9.6 kbits/sec) = 105.0 sec

Question: How much time is required for a soldier to become a backup (in casc of 24
soldiers)?
Answer: It takes 216.05 sec for a soldier to become a backup

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 45

Chapter 4 Application of MoQaMo to a Case Study

From the above discussion about efficiency quality factor’s sub-characteristic Response

Behavior by applying the GQM approach, we derive scenarios that would serve as the

leaf nodes of the utility tree.

Scenarios

I- Communication speed between the commander and the soldiers should not drop below 9.6 kbits/sec.
2- Timeis required to download mission plans should be reduce to 15 sec.

3- Time that makes updates to environmental database is 6.88 sec.

4- Time required to acquire issued orders (for 24 soldiers) should not exceed more than 30 sec.

5- Time needed to acquire information about the inventories (for 24 soldiers) is 105.0 sec.

6- Time required for a soldier to become a backup (in case of 24 soldiers) should be minimized to 150

secC.

Utility tree generation:

r— Communication speed between the commander and

Efficiency —— Response the soldiers should not drop below 9.6 kbits/sec

Behavior

—— Time is required to download mission plans

Utility should be reduce to 15 sec.

Time that makes updates to environmental
database is 6.88 sec.

L Time required to acquire issued orders (for
24 soldiers) should not exceed more than 30

—— Time needed to acquire information about
inventories (for 24 soldiers) is 105 sec

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 46

Chapter S

CONCLUSION

Chapter 5 Results and Conclusion

5 Conclusion

Adapting the architecture in earlier steps of development is recommended but its
evaluation is more important. The MoQaMo model supports the quantifiable evaluation
of software architecture by giving measures to the refined quality attributes. The Goal
Question Metric approach assists in defining the subjective as well as objective metrics
with a high involvement of stakeholders of the system. The model does not restrict itself
only to measurement specification but is flexible enough to be applied to any
attributed-based architecture analysis method. The proposed model focuses on the
analysis phase of the ATAM and guides all the remaining evaluation process. Another
important aspect that will be explored in the near future is the definition of metrics for
architectural approaches. This would make it possible to map appropriate architectural

approaches to meet quality attributes in an architecture evaluation process.

The architectures of substantial software-intensive systems are large and complex. They
involve many stakeholders, each of whom has their own agenda. These architectures are
frequently incompletely thought out or only partially documented. A method for
architecture evaluation has to consider and overcome all of these daunting challenges.
MoQaMo model is formed by following a set of guidelines to generate utility tree. Well-

defined utility tree lays out the foundation for evaluating architecture.

5.1 Benefits

We present the following benefits that were realized after the application of MoQaMo

model. These are enlisted below:

- Architecture Evaluation Method (ATAM) will be based on a Quality model.

- A clear exploration of user’s requirements in different contexts helps to approach
right software architecture.

- Architecture Evaluation process following MoQaMo model is easily understood,
manipulated and applied in different teams as well as different organizations.

~ The model allows producing objective and subjective metrics.

- A huge number of scenarios can be generated for each and every quality attribute.

- On the basis of well-defined utility tree, we can approach to a detailed level of

quality attribute characterization of quality characteristics on Architecture

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 48

Chapter 5 Results and Conclusion

Tradeoff Analysis Method (ATAM) following MoQaMo model gives the right set
of architectural decisions and hence resulting in quality product.

- Quality of a software product can be assured at a very early stage of software
development life cycle.

- New requirements are identified in the form of scenarios.

- Important quality requirements are identified and analyzed.

- The method provided the stakeholders with a chance to give a critical look at the
system. It validated some architectural decisions and raised questions about

others.

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 49

REFERENCES & BIBLIOGRAPHY

References & Bibliography

References & Bibliography
[1] Klein, M., Clements, P. and Kazman, R., "ATAM: Method for Architecture Evaluation”,
August 2000, TECHNICAL REPORT, CMU/SEI-2000-TR-004, ESC-TR-2000-004

[2] K. Khosravi, Y. Gu’'eh’eneuc: On Issues with Software Quality Models. 19th
European Conference on Object-Oriented Programming SECC. 2005

[31 1. Bosch: Design and Use of Software Architecture. Harlow. 2000

[4] L. Dobrica, E. Niemela: A Survey on Software Architecture Analysis Methods. IEEE
Transactions On Software Engineering. 2002

[5]1 F. Losavio, L. Chirinos, N. Lévy, A. Ramdane-Cherif: Quality Characteristics for
Software Architecture. Journal Of Object Technology. 2003

[6] ISO/IEC FCD 9126-1.2: Information Technology — Software Product Quality. Part 1:
Quality Model, draft. 1998

[7] Bass, Len; Clements, Paul; & Kazman, Rick. Software Architecture in Practice, Second
Edition, Boston, MA: Addison-Wesley, 2003

[8] http://www.sei.cmu.edu/architecture/
[9] http://www.sei.cmu.edw/architecture/ata_eval.html

[10] Mary Shaw, The coming-of-age of software architecture research, International
Conference on Software Engineering, Proceedings of the 23rd International Conference on
Software Engineering, Toronto, Ontario, Canada , Page: 656, Year of Publication: 2001, ISBN
~ ISSN:0270-5257 , 0-7695-1050-7

[11] James M. Bieman and Byung-Kyoo Kang. Measuring design-level cohesion. Number 2,
pages 111{124, Feb 1998. :

[12] Barbara Kitchenham and Shari Lawrence P°eeger. Software quality: The elusive
target. 1EEE Software, pages 12{21, 1996.

(13] Jan Tretmans and Peter Achten. Quality of information systems, 2003.

[14] Alan Gillies. Software Quality: Theory and Management. International Thomson
Publishing, 1992

[15] W.). Salamon and D. R. Wallace. Quality characteristics and metrics for reusable
software (preliminary report). Technical report, National Institute of Standards and
Technology, may 1994.

[16] Stephan H. Kan. Metrics and Models in Software Quality Engineering. Addison-
Wesley publishing Company, 2000.

{17] Donald Firesmith. A hard look at quality management software. OPEN Process
Framework (OPF), April 2004.

[18] ISO. Iso/iec 14598-1. International Standard, Information technology software
product evaluation(2nd), 1999

[19] Sassan Pejhan, Alexandros Eleftheriadis, and Dimitris Anastassiou. Distributed
multicast address management in the global internet. IEEE Journal of Selected Areas in
Communications, 13(8):1445-1456, 1995

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 51

References & Bibliography

[20] Lionel C. Briand, John W. Daly, and 3JAurgen K. WAust. A uni ed framework for
coupling measurement in object-oriented systems. 1EEE Transactions on Software
Engineering, 25(1):91{121, January/February 1999

[21] Mugurel T. Ionita, Dieter K. Hammer, Henk Obbink, “Scenario-Based Software
ArchitectureEvaluation Methods: An

Overview” ,http://www.win.tue.nl/oas/architecting/aimes/papers/Scenario-
Based%20SWA% 20Evaluation%20Methods.pdf

[22] R. Basili, D. M. Weiss, "A Methodology for Collecting Valid Software Engineering
Data,” 1EEE Transactions on Software Engineering, vol. SE-10,

[23] V.R. Basili, R.W. Selby, "Data Collection and Analysis in Software Research and
Management,” Proceedings of the American Statistical Association and Biomeasure Society,
Joint Statistical Meetings, Philadelphia, PA, August 1984

[24] L. Marta. An Evaluation Theory Perspective of the Architecture Tradeoff Analysis
Method (ATAM). Pittsburgh. 2000

[25] N. Boucke, T. Holvoet, T. Lefever, R. Sempels, K. Schelfthout, D. Weyns, T. Wielemans:
AVG case study Applying the Architecture Tradeoff Analysis Method (ATAM) to an
industrial multi-agent system Application. SEI Software Architecture Technology
User Network (SATURN) Workshop. 2006

[26] V.. Basili, Caldiera, Gianluigi, .Rombach, H. Dieter: The Goal Question Metric
Approach Encyclopedia of SoftwareEngineering. 1994

[27] A. Trendowicz , T. Punter, Quality modeling for software Product Lines. Darmstadt.
2003 '

[28] Klein, M. & Kazman, R. Attribute-Based Architectural Styles (CMU/SEI-99-TR-022,
ADA371802). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University,1999.WWW. URL: <http://www.sei.cmu.edu/publications/documents/
99.reports/99tr022/99tr022abstract. htm!>

[29] Iannino, A. “Software Reliability Theory.” Encyclopedia of Software Engineering, New
York, NY: Wiley, May 1994, 1237-1253

[30] Kazman, R.; Abowd, G.; Bass, L.; & Webb, M. "SAAM: A Method for Analyzing the
Properties of Software Architectures,” 81-90. Proceedings of the 16th International
Conference on Software Engineering. Sorrento, Italy, May 1994. ‘

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 52

Appendix A

RESEARCH PAPER

Appendix A Research Paper

Appendix A. Publication

Our research publication “Metric-Oriented Quality Model for Architecture Tradeoff
Analysis Method” has been published in the 9th International Conference on Quality
Engineering in Software Technology (CONQUEST'2006), Berlin Germany, Sep 27-29,
2006. This research paper proposes a modification to Architecture Tradeoff Analysis
Method (ATAM), one of the famous architecture evaluation method defined by the
Software Engineering Institute (SEI), Carnegie Mellon University.

The copy of the research paper is taken from the conference proceedings and is provided

in this appendix.

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method A4-1

teme

ASQF e.V. (ed.)
Arbeitskreis Software-Qualitdt und -Fortbildung e.V.

Software Quality
in Service-Oriented
Architectures

Proceedings of the CONQUEST 2006

9th International Conference on
Quality Engineering in Software Technology -

Berlin 2006

| |-._] dpunkt.verlag

Nationalbibliografie;
Ib.de> abrufbar.

emarks or registered
sbook in editorial fashion
ny trade name, is intended

duced or utilized in any
ay any information storage
ner. '

Foreword

Dagmar Wéhri,

Parliamentary State Secretary in the German Ministry of
Economics and Technology,

Conference Patron:

With a 6.8 % share of the global ICT market in 2005, Germany was the world’s
third largest country market after the United States (28 %) and Japan (14.7 %),
and by far the largest in Europe. The ICT sector has developed into our most
important industrial branch, accounting for sales of 134 billion Euros in 2005
and a 6.2 % share of gross domestic product. It is growing significantly more
rapidly than the economy as a whole and thus turning into a driving force for
economic performance in the Federal Republic. :

Employment figures in the ICT branch have also expanded - by some 4,000
jobs to a total of 750,000. Nearly every tenth job in Germany is now found in the
provider and user sides of the ICT business. This increase is particularly the result
of the prospering fields of IT services and software. At a good 5 %, software is
now the fastest growing market segment. Figures for individuals beginning to
study informatics have unfortunately been declining for some years now. All sides
must therefore do more for education and training in this field to make sure that
German ICT companies remain competitive.

Under the lead management of the Federal Ministry of Economics and Tech-
nology, the German government will develop a new Action Program (iD2010 -
Information Society Germany 2010) by the end of summer 2006. This will help
further improve framework conditions for innovation, growth, and employment,

ASQF eV.

Wetterkreuz 19a

D-91058 Erlangen

Fon: +49 (0)9131-91910-0
Fax: +49 (0)9131-91910-10
E-Mail: info@asqf.de
www.asqf.de

Copy-Editor: Julia Neumann, Dunedin, NZ

Producer: Birgit Bauerlein

Cover Design: Helmut Kraus, www.exclam.de

Printer: Koninkliijke Wahrmann B.V,, Zutphen, Netherland

Bibliografische Inforrnation Der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet iiber <http://dnb.ddb.de> abrufbar.

ISBN 3-89864-432-4

1st Edition

Copyright © 2006 dpunkt.verlag GmbH
Ringstrae 19 b

69115 Heidelberg

Germany

All product names and services identified thiroughout this book are trademarks or registered
trademarks of their respective companies. They are used throughout this book in editorial fashion
only and for the benefit of such companies. No such uses, or the use of any trace name, is intended
to convey endorsement or other affiliation with the book.

No part of the material protected by this copyright notice may be reproduced or utilized in any
form, electronic or mechanical, including photocopying, recording, or bay any information storage
and retrieval system, without written permission from the copyright owner.

543210

ix
Contents
Verification of SOA Orchestration 1
P. M. Heck
Metric-Oriented Quality Model (MoQaMo)
for Architecture Tradeoff Analysis Method (ATAM) 17
A. Javed - A. Hafeez - K. Rashid - H. Farooq Ahmad
Automated Software Testing in Service-Oriented Architecture 37
T. Kovacheva
Towards SOA-based approaches for IT Quality Assurance 45
A. Farooq - R. Braungarten - M. Kunz - A. Schmietendorf - R. R. Dumke
Why Software Project Management is so Challenging 55
P.A. McQuaid
Key Success Factors for Project Management Excellence
Case Study of Implementing Level 3 .
of the Project Management Maturity Model (PMMM) 63
E. Siegeris - N. Feuring
Experiences with offshore projects within the software development process 77
A. Schmietendorf
Statistical Process Control for Software Development 89
T. Fehimann
Testing your Regression Testing:
A Case Study on Quality Control of Test Cases at UC4 Software GmbH 103

B. Burger - A. Hammerschmid

Contents

Moderating for Success
M.vander Zwan

TRex - An Open-Source Tool for Quality Assurance of TTCN-3 Test Suites
B. Zeiss - H. Neukirchen - J. Grabowski - D. Evans - P. Baker

Requirements Analysis using Unified Modeling Language
R. Schénwald

Model Transformers for Test Generation from System Models
M. Busch - R. Chaparadza - Z. R. Dai - A. Hoffmann - L. Lacmene - T. Ngwangwen -
G. C. Ndem - H. Ogawa - D. Serbanescu - I. Schieferdecker - J. Zander-Nowicka

Quality Assurance by XMI - Catalyst of a new Age!?
Automated Model Reviews ensure Quality

in the early Phase of Software Development

M. Scholze

Functional Size and Reuse Evaluation in ERP Requirements Engineering
M. Daneva

A Software Development Environment for
Ground Segment Operation Software
F. C. Cuadrado - E. Gomez - F. Delhaise

A Mapping between the cami® approach and ISO/IEC 15504
with respect to Quality and Efficiency of

Requirements Engineering in the Automotive Sector

C. Salazar Dorn

Web Service Quality Descriptions for Web Service Consumers
J. Riickert - B. Paech

Securing Web Services
R. Groenboom

SOA is not enough
A. Loffler - T. Loffler

Optimizing the Contribution of Testing to Project Success
N. Malotaux :

NetQGate - Tool Support for Quality Gate Processes
T. Flohr

m

117

129

135

151

161

181

193

203

215

229

243

. 261

P. M. Heck

A
21
?

f [ling Petri Nets, In D. Mari-
> hiations of Petri Nets to Co-
£ yrida Intemational Univer-
g

)4WS business collabora-
&% |! 5th International Confer-
N" ne 3182 of Lecturc Notes
. r-Verlag, Berlin.

2" international confer-
5K, 2004. ACM Press.

17

Metric-Oriented Quality Model (MoQaMo)
for Architecture Tradeoff Analysis Method (ATAM)

A. Javed, A. Hafeez, K. Rashid, H. Farooq Ahmad

International Islamic University Islamabad

Abstract

It has been realized by the software engineering communijties that software
architecture serves as an important artifact in producing quality software
products. Architecture Tradeoff Analysis Method (ATAM) proposed by the
Software Engineering Institute (SEI) is considered to be a well-known
methodology for evaluating software architectures. Current research observes a
lack of proper guidelines and of a well-defined approach in the generation of a
quality attributes utility tree. This lack of standards has limited the usefulness of
this method. We proposed a quality model based on the 1SO 9126-1 quality
model. We support architecture evaluation using the Goal Question Metric
(GOM) approach to answer the questions raised by the stakeholders to fulfill
business drivers in the light of the ISO 9126-1 quality model. We have also
applied the method to the case study BattleField Control System (BCS) and
performed the architecture evaluation by presenting results to overcome the
existing problem.

1 Introduction

The purpose of architecture evaluation of software systems is to analyze the architecture
in order to identify potential risks and verify that quality requirements have been
addressed in the design. Architecture Tradeoff Analysis Method (ATAM) focuses on
understanding the consequences of architecture decisions with respect to quality
attribute requirements of the system [Kaz(00]. Quality is one¢ of the major issues
[KhoO05]. This has been the oldest practice in the software industry to predict the quality
of a software product from higher-level design [Bos00]. Currently software architecture
is considered to deal with software quality. It has been realized by the software
engineering community that software architecture serves as an important artifact in
producing quality software products [Dob02]. The Architecture Tradeoff Analysis
Method (ATAM) defines the attribute utility tree to provide a top down mechanism for
directly and efficiently interpreting the business drivers of the system into concrete
quality attribute scenarios [Kaz00]. Non-functional requirements, like performance,

)

18 A. Javed - A, Hafeez - K. Rashid - H. Farooq Ahmad

maintainability and reliability are represented as architectural drivers. The utility tree is
formed from the combination of these architectural drivers. These quality requirements
are refined into relevant attributes in order to get a prioritized list of scenarios that
serves as a plan for the remaining architecture evaluation process.

ATAM uses one level of quality characteristics. However there is not any specific
guideline to define the utility tree. Expression of quality view and the reason for one
level of refinement is ambiguous [Los03]. Attributes defined in the utility tree are
measured in terms of stimuli, parameters and responses. After having a utility tree, we
see that there is a lack of coordination among quality characteristics, their refined
attributes and resulting scenarios which also attempt to specify measure to attributes.

The purpose of this research is to propose Metric-oriented Quality Model
(MoQaMo) based on the 1SO 9126-1 [ISO01][1SO98] framework. MaQaMo utilizes the
Goal Question Metric (GQM) approach to support software architecture evaluation by
answering the quantifiable questions raised by the stakeholders to fulfill business
drivers (goals) over the ISO 9126-1 framework. Our work attempts to replace the utility
tree used in Architecture Trade off Aualysis Method (ATAM) with the MoQaMo
model. MoQaMo guides the architecture evaluation process by clearly emphasizing the
major quality characteristics. This helps to identify quantifiable questions and a relevant
set of metrics derived in order to fulfill the goals.

The remaining part of the paper is as follows. Section 2 discusses different quality
models and identifies their weak aspects. The ISO 9126-1 quality model is elaborated
with a view as how it supports our wotk. Section 3 explains the proposed MoQaMo
model and gives an overview of the application of the model. Section 4 describes the
MoQaMo model using a case study BattleField Control System (BCS) taken from SEI’s
technical report [Kaz(00]. Finally, conclusion and directions for future work are
presented in Section 5.

2 Related Work

2.1 Quality Models

A quality model represents an interaction between a set of characteristics and sub-
characteristics. This relationship serves as a foundation for specifying quality
requirements to assess quality [Kho05]. Despite the growth in software industry, it is
surprising that no scrious attention is paid to the arca of cvaluating sofiware quality
[KhoO4]. Quality is hard to define, impossible to measure and easy to recognize
[Bar96]. KAN [Kan03] states “Quality is not a single idea, but rather a
multidimensional concept™. Furthermore the 1SO 9126-1 quality model [ISO01]
explains that software quality characteristics are a combination of attributes of a
software product and that these attributes determine its quality. All these definitions
provide different views on quality. In order to arrive at the best definition, quality

] H H. Farooq Ahmad

i
2l The utlllty tree is
: Jiality requirements
Il of scenarios that

is not any specific
khe reason for one
h1e utility tree are
ig a utility tree, we
Gristics, their refined
psure to attributes.

hted Quality Model
MoQaMo utilizes the

itectute evaluation by |

s to fulfill business
s to replace the utility
) with the MoQaMo
early emphasizing the
‘estions and a relevant

1sses different quality
y model is elaborated
e proposed MoQaMo
2ction 4 describes the
iCS) taken from SEI's
for future work are

raracteristics and sub-
o specifying quality
software industry. it is
iating software quality
nd easy to recognize
| idea, but rather a
aality model [ISO01]
ion “of attributes of a
¢, All these definitions

hest” definition, quality

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 19

models are required that link measures of software artifacts with external, high-level
quality characteristics [Bar96].

A major part of McCall’s model [Mcc77] is the creation of a relatlonshlp between
quality characteristics and metrics. However, there has been a criticism on metrics
estimation. McCall’s model attempted to give objective metrics, whereas software
metrics are objective as well as subjective, and subjective measuremgnt of quality
comes from human estimation [KhoO5].

Bochm's model [Boe78] is an extension ot McCall’s model mth an emphasis on
maintainability of a soflware product. Bochm’s modcl docs not give any suggestions
about measuring the quality characteristics, so we observe an absence of coordination
among metrics, sub-characteristics and super characteristics.

The drawback found in the FURPS model is that it does not take software product
portability into consideration [Mar02].

ISO (international Organization for Standardization) proposed a standard which
provides a framework for organizations to define the quality model for a software
product [ISO98]. The motivation behind the provisions of this model is to standardize
the evaluation of software products. The 1SO 9126 model identifies the internal and
external quality characteristics of a software product. The downside of this model is the
question how these aspects can be measured [Mar02].

2.2 1S0O 9126-1 Quality Model

The ISO 9126-1 quality model defines a set of characteristics of a product or service
that have the tendency to satisfy stated or implied needs. It suggests a set of six major
quality characteristics, which serves to describe and evaluate the quality of software
into sub-characteristics, until the attribute or measurable properties are achieved
[ISO01]. The ISO 9126-1 quality model provides the devclopment tcam with a
consistent terminology and structure. Fig. 1 shows the relations among the elements of
the 1SO 9126-1 quality model. The high-level characteristics are refined into sub-
characteristics.

Attribute 1

" by
,' Attribute 2 '————»’ Metric l

Refined into

Sub-characternstic 1

Sub-characteristic 2

Sub-characteristic n '

Fig. 1: Relations among quality model elements

Characteristic

Refined into Attribute n

e s ¢ g T i AT NI VNI SRR

20 A. Javed - A. Hafeez - K. Rashid - H. Farooq Ahmad

The definition of high-level quality characteristics of the ISO 9126-1 standard is given
in Tab. 1.

Tab. 1: 1SO 9126-1 Generic Quality Model

- Characteristics Description

capability of the software product to provide functions which
meet stated and implied needs when the software |s used
under specified conditions (what the software does to fulfill
needs) : : '

Functionality

capability of the software product to maintain its level of

’ Reliability performance under the stated conditions for a stated period of
" : time :
Usabilit capability of the software product to be easy to use whegn used
) _ y under specified conditions (the effort needed for use)
1 capability of the software product to provide appropriate
Efficiency performance, relative to the amount of resources used, under

the stated conditions

{
A}
I capability of the software product to provide appropriate
Maintainability performance, relative to the amount of resources used, under
the stated conditions

This describes the capability of the software product to be
I Portability transferred from one environment to another. The environment
may include organizational, hardware or software environment.

2.3 Architecture Tradeoff Analysis Method (ATAM)

The purpose of the Architecture Tradeoff Analysis Method (ATAM) is to assess the
consequences of architectural decisions in the light of quality attribute requirements
|Kaz 00]. The method locuses on the identification of business drivers that lcad to
quality attribute goals. ATAM helps to analyze how architectural styles support the
achievement of these quality attribute goals.

‘) Quality attribute utility tree gencration is an important step in ATAM because it
‘ guides the remainder of the analysis. However, it is observed that there is no guideline
‘) for how to arrive at the utility tree. The quality attributes defined in the utility tree do

not show their meanings due to their undefined hierarchical structure. That is, it does
not indicate the real meaning of a particular quality attribute in the required context.
The stakeholders can take many interpretations from these quality attributes defined in
the utility tree which could result in an ambiguous architecture evaluation. Furthermore,
we sce that the placement of quality attributes in the utility tree is not based on a well

et en g PR

i
§ i
8 |Rashid - H. Fdrooq Ahmad
£l .

3 1

26-1 standard is given

Kl

!
!
k

functions which
3 software is used
tware does to fplﬁll

ntain its level of
s for 4 stated period of

easy to use when used
reded for use)

wvide appropriate
‘esources used, under

wide appropriate
resources used, under

!

\m

ware product to be
wther. The environment
¥ software environment.

¥)

d (ATAM) is to assess the
wlity” attribute requirements
usiness drivers that lead to
titectural styles support the
itstep in ATAM because it
ted that there is no guideline
defined in the utility tree do
il structure. That is, it does
?ute in the required context.
quality attributes defined in
ure evaluation. Furthermore,
tree is not based on a well

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 21

defined standard [Los03]. According to the case study [BouOGj, it is found difficult to
come up with a quality attribute utility tree. Its preparation is time-consuming and
tedious. Without clear guidclines, obstacles will occur when building up such a tree.

3 MoQaMo: The Proposed Model

Our proposed Metric-Oriented Quality Model (MoQaMo) is based on the 1SO 9126-1
standard. The model is designed with a view to support evaluation of architecture using
ATAM. For any evaluation process, it is necessary to have ‘well-defined evaluation
criteria. Evaluation criteria helps to identify what characteristi¢cs of the target
(architecture to be evaluated) are of interest for evaluation pu"rposes‘ [Mar00]. One of
the steps in ATAM is the generation of the quality attribute utility treg. This utility tree
serves as evaluation criteria for discovering architectural: risks associated with
architectural approaches. The utility tree in ATAM is elicited by focusing on the
business drivers. Business drivers represent the goals that have to be achieved. In
practice, we see that major quality characteristics like performance, maintainability,
portability, etc. are captured as business drivers and put in the utility tree to define
evaluation criteria. We also observe that these major characteristics are refined into sub-
characteristics without any guiding principle. The definition of quality attributes is only
supported through scenarios, which are gathered from stakeholders. The quality
attributes get different definitions each time they are applied within ATAM. Due to
varying interpretations of these quality attribute requirements, the usefulness of ATAM
becomes limited within the software industry. It is seen that the same quality attribute
names vary from evaluation to evaluation. One organization’s “maintainability” is
another organization’s “changeability”. Reliability and availability are often
interchanged [Bas03]. It proved to be difficult, time-consuming and disappointing to
come up with a utility tree. A lack of clear and concrete guidelines hindered the
generation of a quality attribute utility tree [Bou06]. As a result, communication among
stakeholders, which is a crucial activity of ATAM, was badly aftected.

MoQaMo Model is proposed with a view to bring an improved modification in
ATAM. We attempt to replace the utility tree by the proposed model. MoQaMo is based
on the ISO 9126-1 standard. This model incorporated all the major six characteristics
and their respective sub-characteristics. These quality characteristics define the scope of
evaluation criteria, which support the architecture evaluation team in an organized and
systematic manner. The quality attributes are taken from the ISO 9126-1 quality model
because these describe the high-level characteristics in a more relevant way and guide
to achieve the quality of a software product within a well-defined scope. High-level
quality characteristics can be represented as architectural drivers. It is clear that the
purpose of ATAM is to evaluate the consequences of architectural decisions in the light
of architectural drivers. We consider these architectural drivers as architectural goals.

22 A. Javed - A. Hafeez - K. Rashid - H. Faroog Ahmad

To equip our model with the ability to define appropriate metrics, the Goal Question
Metric (GQM) approach [Bas94] has been applied. This approach is based on the
assumption that organization must specify the goals for itself and its projects, then it
must trace those goals operationally and finally providc a framework for interpreting
the data with respect to the stated goals.

elall) ﬂ :

A

fulfil Questions (¢-answer

S,
Lo,
e

govod

define Identify

R el Scanar
Analysis
Rl e el =
[Tradeoffs }4—
Risk Themes [¢——distilled inlu—m

Fig. 2: MoQaMo Conceptual Model with respect to ATAM

From the conceptual modcl as shown in Fig. 2 we see that business drivers arc treated
as goals. The architecture evaluation process is exercised to attain these goals. The
high-level quality attributes follow the structurc provided by the 1ISO 9126-1 standard.
The well-defined structure of the 1SO 9126-1 quality model motivates to use quality
characteristics in the MoQaMo model. These quality characteristics in 1SO 9126-1 are
structured with a view to ensure quality of software products. The sub-characteristics
(attributes) help to identify quantifiable questions, which are asked in order to fulfill
goals (high level quality characteristics). The application of the MoQaMo Model
appreciates the involvement of stakeholders in the architecture evaluation process.
Questions are raised by the stakeholders in order to observe whether architectural
approaches address quality attributes in question or not. In ATAM, we see that quality
attributes are defined and covered up by the elicitation of scenarios, that is, scenarios
define the context of quality attributes according to the evaluating system. These
scenarios pave the way for quantifiable questions to be asked according to relevant sub-
characteristics. Once all the relevant questions are defined for a particular goal, metrics

-k

ashid - H. Farooq Ahmad

nd its projects, then it
rework for interpreting

business drivers are treated
1 to attain these goals. The
sy the 1SO 9126-1 standard.
del motivates to use quality
icteristics in ISO 9126-1 are
ucts. The sub-characteristics
are asked in order to fulfill
m of the MoQaMo Model
itecture evaluation process.
serve whether architectural

1 ATAM, we see that quality

“scenarios, that is, scenarios
e evaluating system. These

ed according to relevant sub-
for 5 particular goal, metrics

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 23

have to be specified in order to answer the quantifiable questions. Each-question can be
answered with a single or multiple metrics. After having a collection of metrics, we can
start analyzing the architecture with the candidate architectural approaches and can
assess the consequences of architectural decisions. This particular suite of metrics helps
to take justifiable architectural decisions. The analysis which is a core process in
ATAM gets improved due to high involvement of stakeholders, a well-defined
evaluation criteria and availability of appropriate set of metrics. The same metrics can
be used in order to answer different questions for the same goal. We also give another
conceptual model [Fig. 3] for MoQaMo with respect to the GQM approach that shows
its different components.and the interaction among them.

Goal

Characteristics

Refined into

Sub-Characteristics

Define Scope of —p Questions

X i
Cover up
l

Scenario Support Answer

f |

Ellicit

J Metric
i i i [————Raise

Stakeholders Assign

Fig. 3: MoQaMo Conceptual Model with respect to GQM approach

The process of setting goals is critical to the successful application of the MoQaMo
model. A goal should be expressible with four dimensions; (i) Issue, (ii) Objects, (iii)
Purpose, (iv) Viewpoints. The Measurement Goal Template (MGT) is helpful in the
operationalization of quality goals. It also addresses the characteristics that are to be
included in an evaluation. MGT, shown in Tab. 2, makes the MoQaMo model more
flexible by adjusting it according to the context of a particular software project [Tre03].

-

24

A. Javed - A. Hafeez - K. Rashid - H. Farooq Ahmad

Tab. 2: Measuremen: Goal Template (MGT)
No Dimensions | Definition
i Issue Whic?h ch'uractcristics of the object arc taken into
(Quality Focus) consideration?
2 Object What is the artifact to be evaluated?
3 Purpose Why is the object analyzed?
4 Viewpoint Who will evaluate?

In order to give an example of the application of the MoQaMo model, let’s suppose we
want to improve the performance of the altitude monitoring device of an airplane. The
resulting goal will specify the purpose (improve), an object (altitude monitoring
device), the viewpoint (aeronautical engineer) and a quality issue (efficiency). The
MoQaMo Model is shewn in Tab. 3.

Tab. 3: ' The MoQaMo Model for altitude monitoring device

Characteristic/Goal

Improve the efficiency of altitude monitoring device
from an aeronautical engineer’s viewpoint.

Sub-Characteristics Time Behavior

M-3a
M-3b

Time Behavior

o e ", d 7o ir 1,

How much time does the device take to send information to the screen?

0.25 ms

What is the response time of the device in calculating the altitude?

0.5ms

What is the frequency of information production?

20 times / minutes

Once in every 3 sec.

—— e - -

0 | B
j

H
b §i

1 {

Lshid - H. Faroog Ahmad

vmodel, let’s suppose we
evice of an airplane. The
ect (altitude monitoring
v issue (efficiency). The

monitoring device
diewpoint.

mation to the screen?

fling the altitude?
—_

t
!
|

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 25

4 Application of MoQaMo Model to a Case Study

We have selected the case study for which the Software Engineering Institute (SEI) has
carricd out architecturc cvaluation using ATAM. The details of the case study can be
found at the SED’s technical report [Kaz00). We have applied thc MoQaMo model to a
BattleField Control System (BCS). This systein is designed with an aim to support army
battalions in controlling the moverent, strategy and operation of troops in real-time
BattleField.

4.1 Driving Architectural Requirements

There is a commander who commands a set of soldiers and their equipments, including
many different kinds of weapons and sensors. External systems need to be interfaced
with the BCS system in order to capture its commands and intelligence information.
The commander communicates with all the soldiers on a real-time basis. The system is
considered to be working if there is a working commander along with a number of
soldiers. The failure of the system depends upon the life of the commander. The
commander fights the battle according to mission plan and utilizes its available
resources during the battle. A radio modem with 9600-baud speed supports the
communication between the commander and the soldiers. There is a need for extreme
level of robustncss and a number of performance goals should be considered. The
system is also subject to frequent modifications. :

4.2 High-Level Architectural Views

We give a few high-level architectural views of the BCS to flesh out our understanding
about its working structure. We are not going to present detailed architectural
documentation of the system. From hardware view shown in Fig. 4, we observe that the
commander is central to the system. In fact, the commander node acts as a server and
fulfils the clients (soldiers) requests. Inter-node communication between the clients and
the server is only through encrypted messages sent via a radio modem,

Soldier
e

Command and] Soldier

Control System [$~.___ e
~~~~~~~~~~~ 4 y x

—a Y )
[ soldier
Soldier @

Fig. 4. System view of BCS



Ter I o T

“.

26 A. Javed - A. Hafeez - K. Rashid - H. Faroog Ahmad

The module decomposition view shown in Figure 5a. identifies the major components
of the system. This view may include man' more modules but for better understanding,
we have mentioned only a few. The module decomposition view consists of Decision
Support System (DSS), Communication Manager (Comm. Mgr) and Battle Controller
(B.Controller). Figure 3b shows a module layered view. In this view, the BCS
application layer is using the services »f its lower layers. The BCS Application
Programming Interface {(API) layer is developed over .Net framework and provides a
programmable interface to the layer above it.

BCS Application

BattleField Control System .
DSS Com. Mgr BCS AP
B.Controller .Net

Key [:_] Sys.em Ksy[:: Leyer

" Sub-System X—p ¥ Xisalowedtouse Y

Fig. 5a: Module decomposition view Fig. 5b: Module layered view

Architectural approaches are considered with respect to modifiability, availability, and
performance. To achieve availability, a backup commander approach was described.
Availability and performance of the system are found to be a high priority of the

_ stakcholders. The MoQaMo model attempts to organize the architectural evaluation

process by eliciting information for dcsired quality characteristics through high
involvement of stakeholders. This organized and efficient structure helps an evaluation
team to realize those architectural approaches and architectural decisions that cater for
the desired quality characteristics (quality goals). The MoQaMo model serves as a
guideline and well-defined structure to evaluate software architectures using ATAM.

4.3 Architectural Evaluation

From the case study, we observed that the stakeholders were highly interested in system
availability, modifiability and performance. In order to achieve availability, an
architectural approach was needed to be employed which could sustain the existence of
the commander in the battlefield. We will only consider availability and performance of
the system in evaluating architecture. We observe that system availability is primarily
affected by the failure rate of the commander, the repair rate of the commander (the
time rennired for the backun to become commander) and the repair rate of the backup



”N‘

', ishid - H. Farooq Ahmad
8

ie major components
“|better understanding,
| consists of Decision
nd Battle Controller
% his view, the BCS
e BCS Application
miework and provides a

4

€S Application

CS APl

Net

n
|
.

I Layer

P Y  Xisallowedtouse Y

Module layered view

fiability, availability, and
approach was described.
e a high priority of the
¢ architectural evaluation
racteristics- through high
fctu);g helps an evaluation
al decisions that cater for
aMo model serves as a
ﬁectures using ATAM.

!

t

highly interested in system
~achieve availability, an
Id sustain the existence of
lability and performance of
m availability is primarily

tte of the commander (the
¢ repair rate of the backup

!
]
4. -

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 27

(the time required for the soldier to become a backup). The shaded soldier node
indicates the backup. According to existing architecture, availability of the system is
assured by provoking the backup soldier node to mirror the commander’s state through
acknowledged communication (state mcessages) with commander. Upon failure of the
commander, the backup takes over as the new commander.

To achieve high availability (a high level of readiness), an alternative architecture
proposed that the multiple soldier nodes could be put to monitor the commander-to-
backup communication. The backup soldiers could be acknowledged backups
(requesting resends of missed packets) or could be passive backups (silent receiver
packets) or a mixture of these concepts. In the case where packets are not
acknowledged, the state of the backup database would increasingly drift from that of the
commander. If one of these backups is called upon to become the commander, it would
need to engage in some negotiation (with the external systems and/or the other Soldier
nodes) to complete its database.

It is clear to say that the availability of the system increases as the number of
backups is increased, because the system can survive muitiple failures of individual
nodes without failing its mission.

The MoQaMo model for reliability, shown in Tab. 4, documents the reliability
quality attribute in addition to scenarios and relevant questions that aim to achieve this
goal. The symbols used are S, Q, and M that represent Scenarios, Questions and Metrics
respectively. We know that reliability concerns to the successful working of the system,
therefore availability is used as a substitute to the recoverability sub-characteristic while
documenting the MoQaMo model.

Tab. 4.  MoQaMo Model for Reliability Quality Characteristic (Goal}

Increase the reliability of the system from an evaluation

Characteristic/Goal e
team’s viewpoint.

Sub-Characteristics Recoverability/Availability Maturity Fault-Tolerance
Availability
( 4 O (e o1l
Q What is the failure rate of the commander?

M-1 Unknown

QU What is the repair rate of the commander?

M-2 10 sec

Q What is the repair rate of the backup?

M-3a 5 min
M-3b 300 sec




roxdwit 1aya1ng
S uonewojuy
1D a3 A3ojou
11 Iapupy
) D] uewian
J0J219Y3 Isnw
zwiojur Apnis
IseJ 3Y31 mou
adsoad a1 jo
pue 1opraocad
{101 B 01 5qOf
wAodwy
13d >1wou0
ueyy £pides
% T'9 ¢t pue
ar suenodun
{3 1ey £q pue
»3s98ae] pays
% 89 T yim

28 A. Javed - A. Hafeez - K. Rashid + H. Farooq Ahmad

Increase the reliability of the system from an evaluation

Characteristic/Goal . R
team’s viewpoint.

Sub-Characteristics | Recoverability/Availability Maturity Fault-Tolerance

Availability
- s Fa;'ltgre af the commander ne.(H,HJ

i
} i

What is the number of backup soldiers in current battlefield?

24

What is the number of acknowledging backups and passive backups?

15 acknowledging backups and 9 passive backups

4 How is the failure of the commander detected?

The backup soldier has employed “Pull Heart Beat” mechanism to see the
health status of the commander.

Q<1 Which availability tactic is used to achieve availability?

M-7 “Fail Over Cluster Pattern”

Ba p doldie ee 0 he:s 0 /

Which approach is used for state synchronization between commander and

Q-8 ol
soldiers?
M-8 “Hot Standby” technique is used: the internal state of the commander is
immediately copied to backup soldier.
A Do the commander and the soldiers use shared storage device to maintain
their states?
M-9 No storage area network exists.

At the same time, performance of the system was also a considerable architectural
driver. The communication between the commander and the soldier was made via a
radio modem with 9600-baud speed. Due to this constraint, the performance model was
tfocused on capturing those architectural decisions that affected message sizes and
distributions. To turn a soldier node into a backup, the backup acquires information
about all missions, updates 1o the environmental database, issucd orders, current soldier
locations and status, and detailed inventories from the soldiers. The MoQaMo model for
cfficiency shown in Tab. 5 represents the efficiency quality attribute with a supporting
set of scenarios and questions.



- H. Farooq Ahmad

valuation

‘.E ult-Tolerance
}

T R

!
L backups?

-~

nism to see the

commander and

ymmander is

vice to maintain

lerabte architectural
ter was made via a
ormance model was
I message sizes and
:}cquires information
iders, current soldier
MoQaMo model for
te with a supporting

!

—
[

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method

29

Tab. &: MoQaMo Model for Efficiency Quality Characteristic (Goal}

Improve the efficiency of the system from evaluation

Characteristic/Goal e .
team’s viewpoint.

Sub-Characteristics Time Behavior Resource Behavior

Time Behavior

Ty N 1 : |
Turning a §qldier node into a ;backup (f_{,L)

B What is the communication speed between the commander
B and the soldiers?

9600 baud (9600 bits/sec) or 9.6 kbits / sec

BN What is the size of mission plans to be downloaded?

280 kbits

228 How much time is required to download mission plans?

280 kbits / 9.6 kbits/sec = 29.17 sec

What is the size of updates to environmental database to be made by the
backup soldier?

66 kbits

-How much time does it take to make updates to environmental database?

66 kbits / 9.6 kbits/sec = 6.88 sec

How much time is required to acquire issued orders
(for 24 soldiers)?

24 soldiers * (18 kbits / 9.6 kbits/sec) = 45 sec

How much time does it take to get the location and status of soldiers
(for 24 soldiers)?

24 soldiers * (12 kbits / 9.6 kbits/sec) = 30 sec

|l What is the time needed to acquire information about the inventories
(for 24 soldiers)?

24 soldiers * (42 kbits / 9.6 kbits/sec) = 105.0 sec

How much time is required for a soldier to become a backup
(in case of 24 soldiers)?

It takes 216.05 sec for a soldier to become a backup.




ASQF eV, .
Wetterkreuz 193
D-91058 Erlangei
Fon: +49 (0)9131,
Fax: +49 (0)9131-
E-Mail: info@asqf;
www.asqf.de |
[

'

Copy-Editor: Julia |
Producer: Birgit B3
Cover Design: Helr,
Printer: Koninkliijke

Bibliografische Info
Die Deutsche Biblic
detaillierte bibliogr,

ISBN 3-89864-432-4

1st Edition
Copyright © 2006 dy
Ringstrae 19 b
69115 Heidelberg
Germany

All product names ar
trademarks of their re
only and for the bene
to convey endorseme
No part of the materi;
form, electronic or me
and retrieval system,

543210

30 A. Javed - A. Hafeez - K. Rashid - H. Farooq Ahmad

Improve the efficiency of the system from evaluation

Characteristic/Goal o .
team’s viewpoint.

Resource Behavior

Sub-Characteristics Time Behavior

Time Behavior

b S—c{ a Thef ystem is 'required ? run wi{j: 35 soldiers.(L,H)

How much time is required to acquire issued orders
(for 35 soldiers)?

35 soldiers * (18 kbits / 9.6 kbits/sec) = 65.63 sec

How much time does it take to get the location and status of soldiers
(for 35 soldiers)?

35 soldiers * (12 kbits / 9.6 kbits/sec) = 43.75 sec

Q-19

What is the time needed to acquire information about the inventories

. _"A 1 N
= }Q 2 M (for 35 soldiers)?
35 soldiers * (42 kbits / 9.6 kbits / sec) = 153.12 sec
: How much time is required for a soldier to become a backup

Q22

$5

(in case of 35 soldiers)?
It takes 298.55 sec for a soldier to become a backup.

- Acknowledging and pdssive backups need periodic updates from the
* cottmander to give a high state of readiness. '

Q523 Can acknowledging and passive backups give a high state of readiness?

Yes, the acknowledging backups are more ready to assume the
M-23 responsibilities of the commander much more quickly. Passive backups
need to negotiate with other nodes for missed information.

From Scenario S-6, what is the average message size in every
1 (10 minutes/ per minute / per second)?

Q24

M-24a | 59,800 kbits every 10 minutes
M-24b | 99.67 bits / sec (1% of the system’s overall communication bandwidth)

Once the scope of the evaluation has been set by the MoQaMo model elicitation
process, we attempt to probe for the architectural approaches that realize the important
quality attributes. Architectural decisions are documented and their relevant risks,
sensitivity points, and tradeoffs are identified. We associate the highest priority quality
attribute requirements (as identified in the MoQaMo modzl) with the architectural
approaches to realize them. As shown in Tab. 6, we capture an architectural approach
for availability quality attribute and present architectural decisions as well as some

reasoning.



Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method

31

shid - H. Farooq Ahmad

evaluation

urce Behavior

PP QI PT K T E =T s s T TSI . 1 T MBI e

us of soldiers

—_—_—

‘e inventories

ickup

tate of readiness?

sume the
Passive backups
on.

in every

tion bandwidth)

aMo model elicitation
at realize the important
d their relevant risks,
highest priority quality
with the architectural
architectural approach
‘.sion:: as well as some

Tab. 6:  Architectural Approach description for Availability

High-level quality characteristic (goal): reliability
Quality attribute: recoverability/availability
Scenario S1 (failure of the commander node)

Stimulus: death of commander

Downtime: 10 sec (M2)

Number of acknowledging backups = 15 (M-5)
Number of passive backups = 9 (M-5)

Repair rate of the backup = 300 sec (M-3b)

Architectural decisions Risks z:;lnst:ivity ;;z;:te:ff
Failover cluster (M-7) S1

Pull Heart Beat (M-6) S2 T1
Ping/echo T2
Hot standby (M-8) S4

Transaction log R1

Backup network channel (M-10) R2

Acknowledging backups R3 56

Passive backups S7

Reasoning:

— The Pull Heart Beat mechanism requires the backup soldier ... (See S2, T1).

—~ According to ping/echo approach, the backup soldiers send a ping to the commander
at specific intervals of time and the ... (See T2).

— The shared communication channel between commander and soldiers is a major risk
... (See R2).

- Hot Standby technique gives the availability ... (See S4).

- The transaction logs mechanism, which requires the commander ... (See R1).
-~ A high number of acknowledging backups can negatively affect ... (See R3).
- Acknowledging and passive backups assuré availability ... (See S6, S7).

— Failover cluster pattern is aimed to achieve the availability. This involves ... (See S1).




o PEEREECTN S NS S50

wr 19Y1ray
O13BWIOJU]
0 ay1 43oj0u
N1 1apun)
101 uewIan
10321543 1snw
suio, ur Apnas
11SBJ O A0U
adsoad ays jo
pur 1apracid
'e303-¢ 01 syjol
wfojdwyg
12d >1wou09
ueyy Ajpidea

% T9 t pue
i uenodun
y3 1ey £q pue
» 3s981e] p1IYY

% 8°9 EYUX

32 A. Javed - A. Hafeez - K. Rashid - H. Farooq Ahmad

By having an appropriate set of metrics we can arrive at the right set of tradeoff points,
sensitivity points and risks. In Tab 6; &, R and T are mentioned as pointers to sensitivity
points, risks, tradeoff points respectively. The risks, sensitivity points and tradeoff
points are enlisted in Tab. 8.

We also provide reasoning for cfficiency quality characteristic. Tab. 7 presents
architectural decisions that were propesed in an architectural evaluation process.

Tab. 7: Architectural Approach description for Efficiency

High-level quality characteristic (goal): efficiency
Quality attribute: time behavior
Scenario S1 (turning a Soldier node into a backup)

Stimulus: Death of commander

Communication speed = 9600 baud (M-10)

Mission plan size = 280 kbits (M-11)

Time for soldier to become backup (in case of 24 soldier) = 216.05 sec (M-18)
Time for soldier to become backup (in case of 35 soldier) = 298.55 sec (M-22)
Time required to download mission plan (with Q15) =29.17 sec (M-12)

Time required to download mission plan (for 560 kbits mission size) =58.34 sec

Architectural decisions Risks Sepsitivity Tra‘deoff
points points

Hot standby (M-8) S8

Transaction log R4

Ping/echo T2

Communication channel . T4

Acknowledging backups (M-5) So

Passive backups (M-5) S10

Reasoning:

— Hot standby technigue involves a high communication ... (See S8).

- The transaction log mechanism though would tend to improve efficiency by reducing
message transmission ... (See R4).

- Ping/echo approach does not involve high communication overhead ... (See T2).
— Communication load was affected by various information exchanges ... (See T4).

— A high number cf acknowledging and passive backups could resuit in extreme
performance degradation and may resuit in a system breakdown ... (See §9, S10).




<ad

fs

. 589, S10).

... (See T2).

Farooq Ahmad

radeoff points,
*s to sensitivity
5 and tradeoff

ib. 7 presents
.ess.

8]

c

Tradeoff
noints

.cy by reducing

“e@ T4).

eme

Metric-Oriented Quality Model for Architecture Tradeoff Analysis Method 33

In Tab. 8, all the architectural decisicns are specified with their relevant candidate risks.
A clear picture of all the relevant items including metrics, risks, and scenarios offer a
better reasoning opportunity about architectural approaches. The risks, sensitivity points
and tradcoff points are specificd in Tab. 8.

The MoQaMo model does not climinate the importance of scenario prioritization
and brainstorming process. Instead, it supports the involvement of the stakeholders by
inclining them to raisc a sct of approach-specific and quality-attribute-specific
questions. These questions catalyze deeper analysis of architecture with respect to the
desired quality characteristics. The prioritized scenarios can then be put in a MoQaMo
model for exploration of architectural approaches.

Tab. 8:  List of risks, sensitivily and tradeoff points

The transaction log mechanism, which requires the commander t¢ update its
R1 status in its own database, is a risk if commander fails, as its status would
also be lost.

The shared communication channel between commander and soldiers is a

R2 N s
major risk in case of communication channel breakdown.

A high number of acknowledging backups can negatively affect availability
R3 due to high resource demands (high communication bandwidth could result
in system hang status)

The transaction log mechanism though would tend to improve efficiency by
R4 reducing message transmission within nodes but it is a risk if commander
fails, as its status would also be lost.

Failover cluster pattern is aimed to achieve the availability. This involves

st switching of a backup soldier to the commander.

S2 Pull HeartBeat mechanism requirés the backup soldiers to monitor the status
of the commander periodically.

S4 Hot standby technique gives the availability of commander’s state in real-
time manner.

s6 Acknowledging and passive backups assure availability as these support
multiple backups (switchover backups) to show a high state of readiness.

s7 Passive backups provide availability to the system by not capturing high
communication bandwidth.

S8 Hot standby technique involves a high communication overhead because
commander’s status is copied to backup soldiers in real-time.
A high number of acknowledging and passive backups could result in

S9 - .
extreme performance degradation and may result in system breakdown.

s10 Passive backups are not very resource demanding as compared to

acknowledging backups.




ASQF eV,
Wetterkreuz 19a
D-91058 Erlange
Fon: +49 (0)9131
Fax: +49 (0)9131-
E-Mail: info@asql
www.asqf.de

Copy-Editor: Julia
Producer: Birgit 8
Cover Design: He
Printer: Koninkliij!

Bibliografische In
Die Deutsche Bibl
detaillierte bibliog

I1SBN 3-89864-432

1st Edition
Copyright © 2006
Ringstrale 19 b
69115 Heidelberg
Germany

All product names
trademarks of thei
only and for the b
to convey endorse
No part of the mat
form, electronic or
and retrieval syste

543210

34 A. Javed - A. Hafeez - K. Rashid - H. Farooq Ahmad

T1 The Pull Heart Beat mechanism is a resource demanding approach.

According to the ping/echo approach, the backup soldiers send a ping to the
commander at specific intervals of time and the commander responds with

2
T an echo to confirm it exists. This approach does not consume bandwidth
cost.
T4 Communication load was affected by various information exchange
requirements and availability :
Conclusion

The MoQaMo model supports the quantifiable evaluation of software architecture by
giving measures to the refined quality attributes. The Goal Question Metric approach
assists in defining the subjective as well as objective metrics with a high involvement of
stakeholders of the system. The model does not restrict itself only to measurement
specification but is {lexible enough to be applied to any attributed-based architecture
analysis method. The proposed model focuses on the analysis phase of the ATAM and
guides all the remaining evaluation process.

Another important aspect that will be explored in the near future is the definition of
metrics for architectural approaches. This would make it possible to map appropriate
architectural approaches to meet quality attributes in an architecture evaluation process.

References

[Bar96] K. Barbara, P. Shari Lawrence: Soflware quality: The elusive target. IEEE Software. 1996.

[Bas03] L. Bass, P. Clements, R. Kazman, Softwarc Architecture in Practice. Addison Wesley. 2003

[Bas94]) V.. Basili, Caldiera, Gianluigi, Rombach, H. Dieter: The Goal Question Metric
Approach.Encyclopedia of Sofiware Engineering. 1994.

[Boe78] B. Boehm, J.. Brown, H.Kaspar, H.Lipow, M.. McLcod, M. Merritt: Characteristics of Software
Quality, North Holland. 1978

[Bos00] J. Bosch: Design and Use of Software Architecture. Harlow. 2000

[Bou06] N. Boucke, T. Holvoet, T. Lefever, R. Sempels, K. Schelfthout, D. Weyns, T. Wielemans: AVG case
study Applying the Architecture Tradeoff Analysis Method (ATAM) to an industrial multi-agent system
Application. SEI Software Architecture Technology User Network (SATURN) Workshop. 2006

[Dob02] L. Dobrica, E. Niemela: A Survey on Software Architecture Analysis Methods. IEEE Transactions
On Software Engineering. 2002

[1SO01] ISONEC 9126 Software engincering — Product quality Part]: Quality modcl, Intcrnational
Organization for Standardization, 2001.

[1SO98] ISO/IEC FCD 9126-1.2: Information Technology — Software Product Quality. Part 1: Quality Model,
drafl. 1998

[Kaz00] R. Kazman, M. Klein, P. Clcments: ATAM: Method for Architccture Evaluation. Pittsburgh. 2000

[Kan03] i1. KAN Stephen: Metries and Models in Software Quality Engincering. Pearson Education
Singapore. 2003

[Kho05] K. Khosravi, Y. Gu'ch’cncue: On Issues with Soltware Quality Modcls. 19th European Confercnee
on Object-Oriented Programming SECC. 2005



S

Rarooq Ahmad Metric-Oriented Quality Mode! for Architecture Tradeofl Analysis Method 35

[Kho04] K. Khosravi, Y. Guéhéneuc: A Quality Model for Design Patterns. University of Montreal. 2004

-———h‘—‘ [Los03} F. Losavio, L. Chirinos, N. Lévy, A. Ramdane-Cherif: Quality Characteristics for Software
g to the

o Architecture. Journal Of Object Technology. 2003
.Simth [Mar02] O. Maryoly, A.. Maria, R. Teresita: A systemic quality model for evaluating software products.
id .

Laboratorio de Investisacin en Sistemas de Informacin, 2002

[Mar00] L. Marta. An Evaluation Theory Perspective of the Architecture Tradeoff Analysis Method (ATAM).
Pittsburgh. 2000

[Mcc77] J.. McCall,, P.. Richards, G.. Walters: Fictors in Softwarce Quality. Nat'l Tech.Information Service.
1977 '

[Tre03] A. Trendowicz , T. Punter, Quality modeling for soliware Product Lines. Darmstadt. 2003

architecture by
Metric approach
“lvement of

to rieasurement
.~chitecture
\TAM and

efinition of
appropriate
raluation process.

ware. 1996.
Yesiey. 2003

sftware

-7

152 AVG case
i) MU... agent system
'« ‘kshop. 2006
ds. IEEE Transactions
"nternational

~,

_4ality Model,

ISLAMABAD.

~burgh. 2000
*tion

Conference



