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Preface

In recent decades, the ice-cover in the polar region has attracted more and more attention in
the ficld of ocean engineering and polar engineering in view of their practical importance
and theoretical investigations. One of the most important problems in this field would
appear to be the accurate measurement of the characteristics of nonlinear hydroeclastic
waves traveling beneath a floating ice sheet. And such waves may have been generated in
the ice cover itself by the wind, or may have originated by a moving load on the ice sheets.
The nonlinear hydroclastic waves propagating beneath floating ice sheet on an inviscid fluid
of finite depth were first investigated analytically by A.G. Greenhill[1]

The equation that governs the motion of nonlinear hydroelastic waves in incompressible
fluid under an elastic sheet is nonlinear hydroelastic wave equation. The propagation of
waves of finite amplitude on the surface of an ocean under ice, regarding the ice sheet as an
elastic shell. And when we studied it is assumed throughout that there are no frictional
forces between the sheet and the fluid beneath. Hydroclastic waves are the waves
propagating on sheets of fluid of finite depth that are bounded by clastic plates. The fluid
motion is assumed to be both inviscid and itrotational. Two elastic plates sandwich a layer
of moving fluid and deform according to the dynamic pressure exerted by the fluid. A
comprehensive summary on mathematical method and modeling for the problem can be
found in some review articles such as Squire et al [2]. Motivated by the above facts the aim
of the present dissertation is to find the series solution of nonlinear hydroclastic waves
equation in 2 fluid of finite depth. The dissertation is structured as follows:

Chapters 1 is introductory and provide reader the basic terminology and equations of fluid
flow. The results of Ping Wang [3,4] are reproduced with full mathematical details in
chapter 2 and Chapter 3. In these chapters we investigate the motion of nonlinear
hydroelastic waves under an ice sheet lying over an incompressible inviscid fluid of finite
uniform depth by the regular perturbation and Homotopy analysis method (HAM).
Graphical results arc presented in order to see the that how Young's modulus of the plate
increases, the wave elevation becomes lower, and the increasing thickness of the plate
flattens the crest and sharpens the trough of the wave profile. The resulis obtained here
demonstrate that Young's modulus and the thickness of the sheet have important effects on
the ¢nergy and the profile of nonlinear hydroelastic waves under an ice sheet floating on a
fluid of finite depth.
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Chapter 1

Preliminaries

This chapter inclades some basic definitions and governing equations relevent to the material
presented in the subsequent chapters and idea of Homotopy analysis method is presented for
the better understonding of readers.

1.1 Fluid

Fluid is a substance or material that deforms or flows continously when shear stress applied to
it, no matter how small the stress may be, fluids include liquids and gases. For example water,
milk and blood.

1.2 Fluid mechanics

Fluid mechanics is a well Imown branch of continuum mechanics. It is usually deals with the
behavior of fluids.in the states of rest and motion and its gffects on boundaries is known as fluid
mechanics. Fluid mechanics has mainly three types.

Fluid statics: It is the study of fluids at rest.

Fluid kinematics: The study of fluids which are in motion.

Fluid dynamics: The study of the effect of forces on the fluid motion. which deals with the
properties of stationary and moving fluids.




1.3 Fluid dynamics

Fluid dynamics is a sub discipline of fluid mechanics that deals with fluid flow, the natural
science of fluids (liquids and gases ) in motion. It has several sub disciplines itself thoge are
Aerodynamics: (the study of air and other gases in motion)
Hydrodynamics: (the study of liquids in motion).

1.3.1 Hydrodynamics

It is the study of liquids in motion. Specifically, it looks at the ways different forces affect the
movement of liquids. A series of equations explain how the conservation laws of mass, energy,

and momentum apply to liquids, particularly those that are not compressed.

1.3.2 Nonlinear hydroelastic waves

One of the most important problems in this field would appear to be the accurate measurement
of the characteristics of nonlinear hydroelstic waves traveling beneath a floating ice sheet. And
such waves may have been generated in the ice cover itself by the wind, or may have originated
by a moving load on the ice sheets. The nonlinear hydroelastic waves propagating beneath
floating ice sheet on an inviscid fluid of finite depth were first investigated analytically by A.G.
Greenhill [1).

1.3.3 Nonlinear hydroelastic waves equation

The equation that govern the motion of nonlinear hydroelastic waves in incompressible fluid
under an elastic sheet is called nonlinear hydroelastic wave equation.

1.4 Characteristics of fluid

1.4.1 Pressure

The amount of force per unit ares is known as pressure. If P is the pressure then mathematicaly
it can be written as

P=- (1.1)

Bl

an




1.4.2 Density
e mass per it woluine of the Suid is known as density of that fluid. It is denoted by p and
roathematicaly we can expross it as

m
pﬁgfﬂt (1.2)

1.4.3 Viecoshy
Viscosity ia defined as the messure of resistancs of s fluid to baing deformed by external stresses

* o either by shear stzessos [t is usually taken as “thickness or resistance to flow”. It is denoted

by s snd defined s
_____shear stress
K= Cate of shear strain’

where i has the dimension {M/LT].

1.3)

144 XKinematic viscosity

iinematic viscosity is stated as the ratio of absolute viscosity to density and is given as

¥= (14)

»ie

Tho thits of kineosatic viscoaity is m%/s or Stoke (St) and the dimenaion of kinematic

| viscoslty Is {L°T].

1.4.5 Dynamic viscosity

Absciute viscosity or dynamic visoosity is a maasure of the internal resistance. Dynamic (ab-
M)vhcoﬁtyhthetmguﬁhlhmpuuﬂtmmﬂmdwmmhommtdphu
ﬁ&mwmmummmm.uﬂtmmwmnﬁd.
Mathainitioslly, it can be writton as

(1.5)

-—T
£= Sefdy
The dynasoic viecsity units in SI system ere Na/m? ot kg/ms, ie.,

1Pas = 1Ns/m? = Lkg/ms.




In CGS system it can be descirbed as g/ems, dyne sfem?® or Poise(p), ie.,
1Poise = dynes/em? = g/ems = 1/10Ps = 1/10Ns/m?.

1.4.6 Shear stress

A shear stress is defined as the component of stress coplaner with a material cross section.

1.5 Types of fluids

Fluids are iexit in six main types which can be expressed as following

1.5.1 Ideal fluid

The fluid with zero viscosity (¢ = 0), is generslly considered as an ideal fluid and the motion
of it is called as ideal or inviscid. In an ideal flow, there is no existence of shear force beacause
of vanishing viscosity, i.e.

7=P%=0- as p=0, (1.6)

1.5.2 Real fluids

Those fluids which posssess some viscosity (i # 0), in known as real fluids. Since by newton,s

law of viscosity, we have

di

'rv: = “Eyr, (1.7)
where 7. is the shear stress on a fluid surface in the z direction at a distance y from the

origin, 4 is the viscosity of fluid and £ is the rate of deformation.

1.5.3 Newtonian fluid

Newtonian fuid is the fiuid which have linear relation between shear stress and rate of strain.
It can also be defined as "Fluid which holds Newton,s law of viscosity" is called Newtonian
fluid. Mathematically it can be described as

d
Tay = B, (1)

7
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where T4y is the shear stress, p is the viscosity of the fluid, z is the direction of the flow and
y is perpendicular to the flow. Water, gasoline, air end glecrine exhibits Newtonian behavior,

1.5.4 Non-Newtonian fluid

Non-newtonian fluids are thos fiuids in which sheer stress is directly but non linearly propor-
tional to the rate of deformation. It can also be stated as "Fluid which obey power law model".
Mathematically it can be represented 2s

ro=(uge) + n#d a9)
) o= (%), a0

-1
where 71 = (‘fz;—‘)n is the viscosity which is the function of deformation. Examples of Non-
Newtonian fluids.are toothpaste, blood, ketchup, paint, drilling muds and biological fluids.

1.5.5 Compressible fluids

Compressible fluids are those in which fluid density changes with the change in pressure or
temperature. In general, all gasses are treated as compressible fluids.

1.5.6 Incompressible fluids

Incompressible fluids are those in which fluid density remains independent of the pressure or
temperature.
1.6 Types of flow

1.6.1 Steady flow

Steady flow is defined as the type of flow in which fluid characteristics like velocity, pres-

sure,density etc at & point do not change with respect to time.




1.6.2 Unsteady flow

If ot any point in the fluid, the conditions change with respect to time, the flow is known as
unsteady.

1.6.3 Uniform flow

Uniform flow can be defined as if the velocity of the fluid has the same magnitude and direction
at every point in the fluid.

1.6.4 Non-uniform flow

If the velocity of the fluid does not have the same magnitude and direction at every poiot in
the fluid is called as non-uniform Aow.

1.6.5 Laminar flow or Stream flow

Laminar flow is defined as when fluid flows in parallel Jayers such that there is no disruption.
In laminar flow, the velocity of the fluid at each point does not change in magnitude es well as
in direction. Examples include flow of air over an aircraft wing.

1.6.6 Turbulent flow

It is & flow in which fluid undergoes irreguler fluctuations as compared to laminar flow, In
turbulent flow, the velocity of fluid at each point continuously changes both in magnitude and
direction. Examples are flow over a golf ball and smoke rising from cigeratte.

1.6.7 Compressible flow

Compressible flow is that flow in which the density of the fluid changes during the flow and

viscosity of the fluid increases with temperature. All gases are compressible fluids.

1.6.8 Incompressible flow

The flow in which the density of the fluid does not change during the flow and viscosity of fluid

decreases with temperature is known as incompressible flow. All liquids are incompressible




fluids.

1.6.9 Rotational flow

Flow of a fiuid in which the curl of the fluid velocity is not zero, so that each minute particle
of fluid rotates about its own axis. Also lmown as rotational motion. Mathematically it can be

desribed as
VxV#0, (1.11)

1.6.10 Irotational flow

Flow of a fluid in which the curl of the fluid velocity is zero is known as irrotational flow of the
fAuid.
Mathematically it can be desribed as

VxV=0, (1.12)

1.6.11 Vorticity

In simple words, vorticity is the rotation of the fluid. The rate of rotation of fuid can be
expressed various ways.
Mathematicaly
w=VxV, (1.13)

1.7 Basic Governing equations

In this section the general form of equations governing the flow of & fluid axe presented in usual

notations, These include

1.7.1 The general problem of wave motion

The problem which we have to solve, in ll studies of waves on irrotational and incompressible
flows, whether studies of propagating waves or standing waves or considering aspects of prop-

agation, diffraction, reflection or refraction is to solve Laplace equation. Then the governing

10




equations for a velocity potential ¢(z, z,t) can be written 63

a%& i)

2
Vet &

=0,(-h < z <{(z, 1)), (1.14)
where {(x,t} is wave surface elevation.

1.7.2 The continuity equation:

Continuity equation is the mathematical expression for law of conservation of mass and math-
ematically it is described as

%% +div(pV) =0, (1.15)

where V is the velocity field. If density “p” remains constant with respect to time and space

then for incompressible flow, we have
divV =0, (1.16)

1.8 Boundary Conditions

1.8.1 Kinematic boundary condition

If o fluid particle is adjacent to a boundary then we must impose a condition which links the
velocity of the boundary to that of the particle on the un known surface z = {(z,t), This is
known as the kinematic boundary condition.which is

oed 9 _,, (1.17)

1.8.2 Dynamic boundary condition

The dynamic boundary condition at the free surface is that the pressure equals the exterior
athmospheric pressure: p = patm(const). on z = {(z, t), so the dynamic boundary condition

becomes

9%

2
5t v¢+ +9C 0. (1.18)

11




1.9 Homotopy

A homotopy between two continuous functions f and g from a topological space X to & topo-
logical space Y is defined to be a continmous function H : X x [0,1] — Y from the product
of the space X with the unit interval [0,1] to Y such that, if z € X then H(x,0) = f() and
H(z,1) = g{z).

1.9.1 Homotopy analysis method (FLAM)

It is a general analytical approach for obtaining approximate series solutions to nonlinear
dimerential Equation. Based on the homotopy analysis method (HAM) which has been suc-
cessfully applied to solve many types of problems The hometopy analysis method (RAM) was
first described by Ligo [5] in his PhD dissertation in 1992. For a given nonlineer differential

equation.

Nju(z)] = 0, zeq. (1.19)

where N is a nonlinear operator and u(z) is a unknown function, Liao {7] constructed a one-
parameter family of equations in the embedding parameter g € [0, 1}, called the zeroth-order

deformation equation

(1 - Q)L|(z;9) — vo(@)] + ¢N[(z;9)] =0,z € g € [0, 1]. (1.20)

where L is an auxiliary linear operator and ugp{z) is an initial guess.In theory, the homotopy
provides us much larger freedom to choose both of the auxiliary linear operator L and the
intial guess At ¢ = 0 andg = 1, we have(s; 0) = uo(z) and (z;1) = u(z), respectively.So, as
the embedding parameterq € [0, 1]increases from0 to 1, the solution (z;g) of the zeroth-order
deformation equations varies (or deforms) from the initial guess wup(z) to the exact solution
(z) of the originel nonlinear differentiel equationN[u(z)] = 0.

Since (z;g) is also dependent upon the embedding parameter g € [0,1], we can expand it
into the Meclaurin series with respect to

P(z:9) = uo(z) + L un(z)q". (1.21)

12




called the homotopy-Maclaurin series. Note that we have extremely large freedom to choose
shie sandiisry Hueer operator L and the initial guess ug(z). Assuming that, the auxiliary lin-
oar operator L and the initial guess ug(z) are so propezly chosen that the above homotopy-
Maclaurin series converges at § = 1, we have the so-called hamotopy-series solution

8(z) = wa{z) + L valz). (1.22)
which satizhes the original equation N[u{z)] = 0, as proved by Liso [19,20] in general

Thete, un(z) is governed by the so-called high-order deformation equation

Lizn(x) = Xa¥u-1(2)] = —8a-1(2). (1.23)
whtire y, equals to | when k > 2 but zero otherwise, and
Sa(z) = -:;.Q'%’fi) (1.24)

Thnhigh-mdm‘deﬁormaﬁmmﬁon{l.m)hdwmﬁmrwiththnhwnbummthe
ﬂwwﬁ,tmhw'wdw,-hnguwmmmhnmmmL

L - poperly.
.
:

1.6.3 Homwtopy perturbation method (HPM)

Conaider the following nonlinear differentisl squstion

L)) + N({r)) =0r . (1.25)

“with the boundary condition

B (s, 2 .,.) =0, rel. (1.28)

MLhuMm,Nksmw,rhmmdmmBha
boundary operstar, and £ denctes differeniial slong the normal drawn cutwards from Q.
Bymoiﬂl’li,ahmﬁuwﬁnm(l.lz)ilmtmcuduﬂbw:

1




’

|

H(v,p) = L() — L(vp) + p[L{v0) + N(v)] = 0.

(1.27)
pe (01, re

where p € [, 1] is an embedding parameter called homotopy parameter, and vp is an initial
approximation for the solution of equation (1.12) which satisfies the boundary condition given
in equation (1.13). Obviously, when p =0 and p =1 it holds

H(,0) = L{v) — L{wp) = 0. (1.28)

H{»,1) = L{v) + N(v) =0. (1.29)

When p increases from zero to one, the trivial problem in equation. (1.15) is continnously
deformed to the problem in equation (1.16). The changing process of p from zero to unity is
just that of v from vy to v.

According to HPM, the embedding parameter p can be used asa small parameter.Expanding
v in a power series with respect to the parameter p we obtain

v = vy +pv1 + Pn + P v + oo (1.30)

Setting p = 1 in the above series results in the solution of equation {1.12) as
p=limv=vp+n ++vt.. (1.31)
p—1
which is the essence of HPM.

1.9.3 Optimal homotopy perturbation method (OHPM)

To explain the main idea of OHPM. Substituting v from equation. (1.17) into N(v) and then
expending N in a power series with respect to the parameter p, we obtain

14




N) = N(v} |p=0 + 252 lho p+.-
= N{uo) + (g%(,ﬂ%) lp=0 P+ oe ' (1.32)
= N(v) + i3 P+ -

We construct a new homotopy for equation (1.12) as follows:

H(v,p) = L(v) — L{w) + p(L{w0} + Ko(r, Co}N{w))
+p (Ka(r, O B2 1) + .. = 0.
where K;(r,C;) for ¢ = 0,1,... is an awdliary function, and C; is a vector of unknown
constants. By equating the coefficients of the same powers of p in equation (1.20), we obtain

(1.33)

P : L(w) — Liw) = 0. (1.34)
p' : L(vy) + L(wo) + Kolr, Co) N(vo)=0. (1.35)
2 Liw) + Kalr, cl)a—‘zv(-‘ﬂhm 0 =0. (1.36)

and so on. The functions Ko, K7,...are not unique and can be chosen as the same form of
nonlinear operator N. The constant C; that appears in the function K;(r, C;) ean be optimally
determined by minimizing the following residual functional

3
I= f (L{var) + N(va))2 dr. (1.37)

where a and b are two values depending on the given problem, and vy is the Mth-order

approximate solution, which can be written as

v =y + ¥z + -+ (1.38)

Once the parameter C; is known, the solution of monlinear differential equation in equation
(1.12) subject to the boundary condition given in equation (1.13) can be immediately deter-

mined.
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1.9.4 Optimal homotopy asymptotic method (OHAM)

We apply OHAM to the following differential equation

Au(z) +9(x) =0, TR (1.39)

where R is real number and the corresponding boundary conditions are:

Ju
B (u, t ) =0. (1.40)
where A is 2 general differential operator, g() is a known analytical function, w({z) is an
unknown function. equation (1.28) can therefore be written as follows:
L(u(z)+9(2) + N(u@) =0. (L41)

Construct a homotopy u = ¢(z,p) : R x [0,1] — R which satisfies

H(é(z,p),p) = (1 - p)[L(#(z,0)) + 9(z)] + H (p)
[A(é(z,p) + (=) =0, PE[0,1].

(1.42)

8 (¢t 222 =0 (149

H (p) is a nonzero auxiliary function for p # 0, H(0) =0, #(z,p) is an unknown function
and p varies from 0 to 1. The solution ¢(z,p) varies from ¢(z, 0) = up(x)} to the solution
#(z,1) = u(z) equation (1.29) is called optimal homotopy equation, Clearly, we have

p=0= H(#(2,0),0) = L(#(z,0)) + g(z) = 0. (1.44)

p=1= H(¢(z,1),1) = H(1) {A(¢(z, 1)) + 9(=)] = 0. (1.45)

We choose auxiliary function H(p) in the form

H(p) =pD1 +pD:2 + ... (1.46)
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where Dy, Dy, ...are constants which can be determined latter. Expanding ¢(z, p, D) in Taylor’s
series about p, we obtain

#(2,p, Di) = to (z) + I_u (z, D1+ D2 + -..Dx) 7~ (1.47)
=1

Now substituting equation (1.34) into equations. (1.29) & (1.30) and then equating the
coefficient of like powers of p, we obtained the solutions of zeroth order, first order and second
order problems. It has been observed that the convergence of series (1.34) depends upon the
awxliary constants Dy, Dy, ..., we obtain the governing equation of up(x), given by equation
(1.29), and the governing equation of ur(z) i. ¢,

L (@) = DiMo (w0 (2)), B (m, %) -0, (1.48)

L (12 (%) — tpe—1 (2)) = DiNo (uo (%))
= 1.49
+k-;;D i [If"'k—l (=) + N ( uo (), )} . (1.49)

ug () - W1 (7)

Corresponding boundary conditions are

B ('u;,, %’i, ) —0, k=23,.. (1.50)
N (#(z, p, D3)) = No(up (2)) + Y Nm (w0, 83, s 8m)) P™ 1= 1,2, (1.51)
mzl

where Nim(uo(z), 11(Z), .. ., Um(Z)) is obtained by expanding N(¢(x,p, D:)) in series with
respect to the embedding parameter p and ¢(z,p, D;) is given in equation (1.31). It should be
emphasized that ug for & > 0 are governed by the linear equations (1.29), (1.32) & (1.34) with
the linear boundary conditions that come from original problem, which can be easily solved.

The convergence of the series in equation {1.31) depends upon the guxiliary constants
Dy, Dy, .... If it is convergent at p=1, we get
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w(z,D;) = wo {z) + E“" (=, D). (1.52)
k=1

The solution of equation (1.26) cen be determined approximately in the form

u™ (3, D;) = ug (z) + Z ug (T, D5), i=1,2,...,m. (1.53)
k=1

Substituting equation (1.38) into equation {1.26), yields the following residual
R(x,D;)=L (u(*"l (=, D.-)) +9(z)+ N (u('“) (z, D;)) ,i=1,2,..,m (1.54)
¥ R(z, D;) = 0 then «™ (z, D;) happens to be the exact solution. Generally such case will
ot arise for nonlinear problems, but we can minimize the functional
b
J(Ds) = [ R (z, D;) dz. {1.55)
a

The unknown constants D; (i = 1,2,...m) can be optimally identified from the following
conditions

oJ a8J &J
30, = 8D; ="~ bm (1.56)

With these constsnts known, the approximate solution (of order m) in equation (1.38)
is well-determined. The constants D; can be determined in another forms, for example, if
ki € (a,b),i = 1,2, ... m and substituting k; ioto equation {1.39), we obtain the equation

R(k1, D;) = R (ke, D) = ... = R(kms D)=0,i=12,..m. (1.57)

1.10 Genetic algorithm and Nelder mead method(GA & NM).

Genetic Algorithm is an optimization tool based on Darwinian evolution which has been devel-
oped in 1976, but its utilization in heat transfer problems is not been tested. In fact Genetic
Algorithm plays an important role when multiple parameters are involved. The main procedure
is inspired by the Darwinian theory of evolution “The survival of the fittest.” The Genetic Algo-
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rithm js & random search technique. Major advantage of Genetic algorithm is thet the demand
abont computer memory for nonlinear problems is minimum, Genetic Algorithm will be helpful
for future even to get minimum and maximum solutions to satisfy inequality relationships as
well. There are five main decision points in the procedure given below:

(1) Encoding technique (chromosome structure)

(a) Mechanism to encode solution

(2) Evaluation function (emvironment)

(2} Fitness function

(8) Selection procedure {creation)

(4) Generating chromosome diversity (evolution)

(a) Crossover, mutation

(5) Parameter settings (practice and art)

(a) Termination condition

(b) (Random) initialization of population

There are several techmiques for optimization like analytical approach, downhill simplex
method, gradient descent, Newton's method and so on. Moreover, the Nelder Mead method is
direct search simplex algorithm published in 1865 and is one of the most widely used methods
for nonlinear unconstrained optimization. The Nelder-Mead method minimizes a nonlinear
function of n real varisbles without taking apy derivative. The function is evaluated at each
point of the simplex structure formed by (n+1) points and the vertex with highest value is
replaced by a new point with a lower value. It continues until the minimum value of function
{8 achieved. Furthermore, in topological approach the non-zero suxiliary parameter which can
adjust and control the convergence of the series solutions.[6,11]. The Genetic Algorithm and
NelderMeadmethodisusedinocrdartoﬁndtheoptimumvalueofco.Alsoitminimizet.he
residual square error €7, .‘Which shows its validity and great potential to solve the nonlinear
problems in science and engineering [25]. In the forthcoming section we used this method to
illustrate the significance of optimal convergence contril parameter co on the velocity potential
and wave deflection.
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Chapter 2

Series solution of nonlinear
hydroelastic waves equation in a

thin elastic plate floating on a fluid

2.1 Introduction

The aim of this chapteristormrisitthewurkofPingWangandLUDongQiang {3). In this
chapter behaviour of the prog-emivewavesisdiscuasedwithHAMAcunvergenthomotopy
series solution for the nonlinear hydroelastic waves is calculated with the help of least squared
residual. Also the dynamic effects of plate such as Young’s modulus, thickness and density are
studied.

2.2 Mathametical formulation

Let us assume an infinite plabeﬂoatingonaninﬁnitelydeepmterhnvingthicknmdwhich
produces nonlinear hydroelastic waves. Cartesian coordinates OX Z are usually selected 8o that
the plate spread out to the infinity along z—awis and z—azis and z = 0 shows the uninterrupted
plate water boundary. It is supposed that there is no cavitation between water and plate .And
z = ((z,t) is the deflection of plate. It is assumed fluid is inviscid , incompressible and
irrotational. $(z, 7, t) is velocity potential which satisfies the Laplace equation.
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g:: ng =0,(z £ {(=,¢)). (2.1)

At deep water the boundary condition is

% =0,(z = —oo}. (2.2)

By the supposition that any fluid particle which is in betwaen elastic plate and water surface
will remain on it.On the unknown plate water interface z = {{(z,t) the kinematic boundary
condition is

—— - — T

8t + frdx Bz

and dynamic boundary condition is

o B¢ 94 2.3)

%‘:i+ |v¢|3+ +9¢ =0, (2.4)

where p.(z,t),p and g are plate water interface pressure ,fuid density and gravitational
acceleration Tespectively.By the Kirchhoff beam theory For constant thickness d and uniform
mass density p, of the plate the relationship between plate deflection {(z,t) and pressure P, %)
in view of Kirchhoff (Euler Bernoulli) beam theory is

¢

2 rmZE+o) (25)

=D—

where me = ped , D = m By substituting equation (2.5) into equation (2.4) gives
the full form of dynemic boundary condition as

‘% |v¢|+ ¢+ - [gﬁm(iﬁ g)] 0. (2.6)

By the concept of traveling wave method an independent variable transformation is intro-
duced as

X =k — wt. @7
where k is wave number and w is angular frequency of incident wave.Now velocity potential
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function (%, z,£) = ¢(X, z) and the hydroelastic wave profile {(z, t) = {(X) are used.For sim-
plificationn by putting all equations into dimensionless form following dimensionless quantities
are used

2
zr = k=, 2* =kt =t(gk)%, & =kd, o= k ¢_1_.
(gk)>
kD kE
' k= D=, E'=—.
¢ & (gk)} (p9) (09)
. Pe . »_ kme
= Pe pr e 2.8
Pe P m, e ( )

In the succeeding formulae the asterisks denoting dimensionless quantities will be replaced.
Then the dimensionless equations for the velocity potential are

&y B¢

54+ 2802 c). 2.9)
g": 8, (z = —0). (2.10)

In view of (2.7) on z = ((X), (2.3) and (2.6) are transformed into

d¢  Opdf _a¢
ot XX 8 @11)
a¢ di¢ d%¢
—Uaj: +f+C+ [Dk4 T4 + M. (Wz—"—'m{.g + 1)] =0. (2‘12)
respectively where

I= 3 [(f-ﬁf) + (-'3—5) ] . (2.13)
A portial combination of equations. (2.11) and (2.12) gives the boundary conditions on

z = ¢(X) as follows

¢ 0o _ 8f B¢ 3 B¢ Gl _
W axE+ gz~ Vax ~WDaxs T TH T oK dX (219
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The velocity potential ¢{X,z) and the plate deflection {(X) are derived by equations (2.9),
(2.10), (2.12), and (2.14) in form of Series solutions for (X, z) and {(X) will be derived based
on the HAM in the subsequent section.

2.3 Analytic approach based on the homotopy analysis method

2.3.1 Zeroth-order deformation equations

In view of the homotopy analysis method first of all let us assume a set of base functions
and solution expressions as it seems impossible to presume the expression forms for unknown
potential function and plate deflection. By physical background of progressive gravity wave
elevation on free surface, ¢ (X) can be written &s

<00
¢(X)=)_ B;cos(iX). (2.15)
i=0

with a set of base functions {cos(iX),i > 0} where i is an unknown coefficient. Since it is
supposed that there is no gap between the bottom surface of thin elastic plate and top surface
of the fluid layer. In view of linear wave theory solutions to the Laplace equation (2.9) can be
derived by the separation of variables method. Therefore the plate deflection {(X) can also be
expressed in the form as equation (2.15). Since the solution expression of the potential function

is,

“+o0
(X, z) = y_ aiexp(kz)sin (iX). (2.16)

=1
In view of the solution expression {2.16) and the boundary condition (2.10) with a set of base
functions {ezp(kz)sin(iX),i > 0}, where oi is an unknown coefficient. The initial approximation
for potential function is given by.
o (X, 2} = ap, exp(2) sin{X). (2.17)

where ap, is an unknown coefficient. since

23



ColX) = 0. (2.18)

In view of [9] the initial approximation for {(X) to simplify the subsequent solution proce-
dure. Although the initial guess y(X) is zero. Based on the nonlinear boundary condition for
equations (2.12) and (2.14), two nonlinear operators Ny and N are defined

2% (X, zq)  80(X,zq)  OF LpEnXa)

N [@(X,z9),7(X:9)] = et 5 wig " s
&% (X;q) 8% (X, zq)on(X;q)
—3 1q4) s &5 3

N in(X;q),2(X,z0)l = —wa—‘};%’{"—@ +F+ Di’%ﬁ) #m[wza%%;"q_) +1). (2.20)

where

F= -;- [(%)2 + (%)2] . (2.213)

Here an auxiliary linear differential operator £, is chosen and g € [0,1] is the embedding
parameter in the HAM. Here nonlinear operator Nj holds a linear operator of ®(X, z;q) as
given below.

262¢é%z;q) + ga@ (X,%9) .

T [8 (X, 5i0)] =v 5 (2:22)

In view of [6,7) the angular frequency based on the linear wave theory is approximately
equal to one, ie

w1l (2.23)

By the simplification of equation (2.22), the auxiliary linear operator takes the form as



aZQ (X: Z; QJ

e (X,zq)
[ ¢ )

0z
Now the linear operator for the wave funetion (X ; g) in the nonlinear operator Na, another

(2.24)

Li[2(X,z9) = +

auxiliary linear operator is as follows where £,[0] =0

i) = Lm0 F0Ka) ;) (225

where £2[0] = 0.
Now for the zeroth order deformation equation the equations (2.9), (2.10), (2.12),and (2.14),
takes the form as

822 (X,z9)

324"&3;,22; ? t-—aZ 0,(z < n{X;9))}- (2.26)
83%@ =0,(z = ~). @2.27)

(1 - q) £1 [@ (X, 2,0) — do (X, 2)} = g0 [ (X, 2:0) 9 (X;),(z=n(X;q)). {228)

(1= q) L2 19 (X; ) = Co (X)] = Nz [n (X 0) , & (X, 2:9)] Az=n(X;9)). (2.29)

By the help of Taylor series for (X, zq) and p(X :q) at ¢ =0, the exact solutions X, z)
and {(X) from initial approximation do{X, 2) and (g(X) and from equations (2.28) and (2.29)
can be found.

+o0
B(X,z4) = (X, 2) + ), b (X, D)™ (2.30)
m=1
+e0
2(X;2) = o (X)+ Y Cm (X, 2) g™ (2.31)
m=1
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{m (X,2),{m (X)) = g {#(X,29),n1(X;q)} at g=0 (2.32)

Assuming that cp is right chosen in the series of equations (2.30) and (2.31) converges at

g = 1, since by formal homotopy series solutions

00
B (X;z) = B(X;2,1) = ¢ (X, 2) + ) b (X, 3). (2.33)
m=1
el
CX) =0(X;1) =4 (X) + Y ¢m(X). (2.34)
m=1

And for the nth order approximation

+n
o(X,2) = ¢ (X, 2) + E Pm (X, 2). (2.35)
m=1
+o0
¢(X) = C(X)+ Y $m (X). (2.36)
m=1

2.3.2 Deformation equations of high order

Here PDEs for the unknown functions ¢,.(X,z) and {,(X) are calculated from the zeroth
order deformation equations. Substituting (2.30) and (2.31) into (2.28) and (2.27), and then
equating likepowers of the embedding parameter g.

P (X, 2) Ppm(X,2) -
et = 0,(z<0). (2.37)
e (2.38)

wherem > 1
By putting the suitable series into boundary conditions (2.28) and (2.29), two linear BCs

are as followson z =10

1£1 (6 )lug = 0AL_; + XemSm—1 = B (2.39)
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dz
2 o) = 0853+ (g2 + 3B 4 ) (2.40
where
m2 dﬂ’pm— X
Spm-1 = Eﬁ (—'d—x';'i + Ym-1-48)
! ig
Sn="E (st + 2mid
Ao Pm1n = — i 2@
Afn_1= ’f;;{l']' E(j? (pdxl +‘i’n‘Pm—l-n)+Cm—1+D dCJY4l+‘m'¢w chzl
and

& m—n = Pm—n & m d® m_ o= Pn Bm—n
A?’;l—l =t d;?+¢m E( So +¢“d‘|_° ) wD ¢ Wame dis "B‘:ﬁ: dcdx

for

0mg<l

we introduce an additional equation for the wave height H

(1 (mw) = {1 {ma) =H =20 (2.42)

Here m and 7 are even and odd integers respectively and ¢ is the dimensionless amplitude
of the plate deflection (). As it is clear that equations (2.28) and (2.29) hold on the unlmown
boundary function z = 5(X;g) while equations (2.39) and (2.40) hold on z = 0.Hence the
equations (2.37) to (2.42) can be solved.
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2.3.3 Approximation and iteration of solutions

By applying the inverse linear operator £2 on equation (2.40) ¢, (X} can be calculated as follows:

€1(X) = 52dpen + coa,,) - weno, cos(X). (243)

Here a; is still unimown which can be determined by equation (2.42) Now by the inverse
linear operator £ in equation (2.39), ¢,(X, 2) can easily be derived. Since

apy = %. (2.44)
é; (X, 2) = ay,1 exp(z) sin{X). (2.45)

As a, is still unknown which can be calculated with the help of (2.46) by eliminating the
secular term sin{X). Now with the aid of first order approximations equations (2.39) and (2.40)
takes the form as

2 do -
C(X) = o? + ooy + 2ow + Yoy — Baucoons (& + aco + Dacy — dapu’cn — wepay,1) cos(X)

2w?cp
aw(D — dpw?)
R
az - 3&!.00:1 1 . s
$2({X,2) = _T axp(22) sin(2X) + ag,1 exp(z) sin{X). (2.46)

Now for higher order unknown functions ¢p,(X, z) and {,(X) by following this approach
infinite order solutions can be obtained .It is also valuable to point out that these solutions will
keep the convergence control parameter co.

2.3.4 Optimal convergence control parameter

Here two residual square errors of BCs (2.28) and (2.29) are defined, according to Liao [7]
because optimal value of parameter ¢ is required.
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M
= Ty o (P [6(X,2), € (0] ot X = éAX)R. (2.47)
=M
c_ 1 3 A Y2
5m“i‘_'__M§(N2 [¢(X,2),{ (X)] at X =<iAX)". (2.48)

For X = £, M is the number of the discrete points.
Since total residusl square error will be.

el = ¢f, + el (2.49)

For generality % — [ the optimal convergence control parameter co by the minimum of
the squared residual Z, is obtained.

2.4 Results and analysis

In figures 1 and 2 the effects of Young’s modulus E of the plate on the wave elevation {(X)
under & floating elastic plate are studied.which shows the change in ¢ {X) for different values of
E = 12822.7,12822.8,and 12822.9.

As it is clear from figures 1 and 2 that the nonlinear hydroelastic response of the waves
becomes flatter ot the crest and steeper st the trough due to the larger value of Young’s
modulus E .

And in figures 3 and 4 the effects of plate thickness d on the several displacements ((X)
under a floating elastic plate are studied.which shows the change in ¢(X) for different values
of d.Tt iz observed that by increasing d from 0.005 to 0.02 the nonlinear hydroelastic response
of the waves becomes flatter at the crest and steeper at the trough due to increase in plate
thickness d .

These figures indicates that the results are very similar to the theory of nonlinear hydroelas-
tic waves beneath a floating ice sheet. Which further shows the validity of results.
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X
Figure 2.1 Change of the plate deflection ((X) near the crest against X for different values
of Young’s modulus of the plate E. Solid line, no plate condition, dashed line, B = 12822.7,
dashdotted line, E = 12822.8, dashdot dotted line, E = 12822.9.

Figure 2.2 Change of the plate deflection ({X) near the trough against X Young's modulus
of the plate E. Solid line, no plate condition, dashed line, E = 12822.7, dash dotted line,

E — 12822.8, dashdot-dotted line, E = 12822.9.
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Figure 2.3 Change of the plate deflection ((X } near the crest against X for different plate
thicknesses d, Solid line, no plate condition, dashed line, d = 0.005, dash dotted line, d = 0.01,
dﬂShd.Dt-dOtted “ﬂe, d = 0.020
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Figure 2.4 Change of the plate deflection ¢ (X) near the trough egainst X for different plate
thicknesses d. Solid line, no plate condition, dashed line, d = 0.005, dashdotted line, ¢ = 0.01,

dashdot-dotted line, d = 0.02.
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2.5 Conclusions

In this chapter nonlinear hydroelastic waves traveling in a thin elastic plate floating on a fluid
of finite depth is investigated analytically by the HAM. Mathematically. Both equations (2.19)
and {2.20) there are linear operators for {(X) and ¢(X, z) As HAM gives us with great option
for the awxdliary linear operators. So the auxiliary linear operators £ and £9 are chosen
containing the derivatives of (X, z) and {(X) respectively.By these auxiliary linear operators
calculation of nonlinear hydroelastic wave propagation can be solved easily. Also influences of
the Young's modulus E and plate thickness ¢ on the plate deflection ({X) are investigated .The
plate deflections become lower as the Young’s modulus E of the plate increases. The hydroelastic
response of the plate is greatly affected by large plate thickness d. The results obtained here
demonstrate that the thickness d of the plate and Young’s modulus E of the incident wave have

major effects on the hydroelastic response of an ice sheet.
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Chapter 3

Series solution of nonlinear
hydroelastic waves equation in a

fluid of finite depth

3.1 Introduction

The purpose of this chapter is to revisit the work of Ping Wang and Zunshui Cheng [4]. In
this chapter the motion of nonlinear hydroelastic waves under an ice sheet lying over an in-
compressible inviscid fluid of finite depth is discussed by regular perturbation and Homotopy
analysis method The nonlinear partial differential equations (3.1) to (3.5) are composed of the
Laplace equation teken as the main equation. The convergent homotopy series solutions for the
velocity potential and the wave surface elevation are formally derived by means of HAM under
the consideration of minimizing the squared residual The effects of the water depth and two
important physical parameters including Young’s modulus and the thickness of the ice sheet on
the wave energy and its elevation are shown graphically. Discussion and conclusions are made
in Sections 3.4 and 3.5 respectively.
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3.2 Mathametical formulation

Let us assume nonlinear hydroelastic waves traveling in an infinite elastic plate of thickness 4
floating on a fluid of finite depth k and. A rectanguler coordinate OX Z is used, as the z - axis
points vertically upward, while z = 0 denotes the undisturbed surface. By following Greenhill
model [1] It is assumed that the fluid is inviscid , incompressible and irrotational.¢(z, z,t) is

velocity potential which satisfies the Laplace equation.

a‘% &%
az 3—22 =0, (—h €2< C(I, t))' (3'1)
The boundary condition is
% — ﬂ, {z = -—h). (3‘2)

By the supposition that any fluid particle which is in between elastic plate and water surface

will remain on it.On the unknown plate water interface z = {(z,t) the kinematic boundary
condition is

% " 050z 82

and dynamic boundary condition is

‘% v2¢+ +g(=0 (3.4)

where pe(z,t), p 8nd g are plate water interface pressure ,fluid density and gravitational
acceleration respectively.By the Kirchhoff beam theory .For constant thickmess d and uniform
mass density p, of the plate the relationship between plate deflection {(=, t) and pressure pe(z, £)
in view of Kirchhoff (Euler Bernoulli) beam theory is

2
=0T 4TS +o) s5)

where m. = ped , D = (e;!_’ . By substituting equation (3.5) into equation (3.4) gives

the full form of dynamic boundary condition as

% Livarvoc+t [pZ8 +m. (5 +9)| 0 (36)
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By the concept of treveling wave method an independent variable transformation is intro-

duced as
X =kr-uwt (37)

where k is wave number and w is angular frequency of incident wave.Now velocity potential
function ¢(z, z,£) = ¢(X,2) and the hydroelastic wave profile {(z,t) = ¢(X} are used.Then
the governing equation and the bottom boundary condition for the velocity potential are trans-

formed by

e 2 B o nsascon. (38)
% =0,(z = —h). (39)

Tn view of (3.7) on z = {{X), (3.3) and (3.6} are transformed into

% 222 0p d. _ 9% _ (3.10)

—— —— = L),

dX X dX Oz

99 ¢ ¢
~wagtft o+ Dk‘dX“ +m, (u‘m +g)] =0. (3.11)
respectively, where 5
_1[af08\*, (8¢
= lkz (8—X) N (3;) ] . (312)

A partial combination of equations. (3.10) and (3.11) gives the boundary conditions on
z = ((X) as follows

e . 9 SO _w(pedd d5¢ 2 ¢ o¢ d¢

- 2 = 1

oxa *95; ~Vax (Dk 5t et dXS) Heaxax ~° (313)

The velocity potential ¢{X, z) and the wave surface elevation {(X) are derived by equations

(3.8), (3.9), (3.11), and (3.13) in form of Series solutions for ¢(X, %) and ¢(X) will be derived
in the subsequent section based by homotopy analysis method.
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3.3 Analytic approach based on the homotopy analysis method

3.3.1 Solution expression and initial approximation.

First of all in homotopy analysis method, set of base functions and solution expression are
assumed. Which are used for unknown solutions of the nonlinear hydroelastic waves problem.
Asitisverydiﬁculttodealswiththnexpreasionformsforunknownpotent.is.lfunctionu.nd
plate deflection, Sincehviewofphyaicalbmkgoundofthepuremtermm,thepmgmmive
wave elevation ¢ (X) can be written as

+00
((X) =3 B, cos(nX). (3.19)
a=0

By a set of base functions {cos(nX),n 2= 0}, where §,, are unlmnown coefficients. In the
case of plate covered surface, since it is assumed that there is no space between bottom surface
of plate and top surface of fluid layer.The upright displacement of plate is periodic in the
X direction. Therefore, it is clear that ¢(X) can be expressed in the above form (3.14).In view
of linear wave theory, the solutions of the Laplace equation (3.8) by the separation of veriables
method can be found.Here kinematic, dynamic and boundary condition in finite water depth
ave used to obtain these solutions. Since ¢ (X, #) becomes

400
(X, 2) = ;““m@mﬁ;hn sin (n.X) . (3.15)

Now consider a set of base functions {cosh[nk(z + h)]/ cash(nkh)sin(nX),n > 0}, where oy, are
unknown coefficients. Here potential function (X, 2) defined by (3.15) automatically satisfies
the governing equation (3.8) and the bottom boundary condition (3.9). The equations (3.14)
and (3.15) are the solution expressions of ¢(X, z) and {(X) respectively.Which is important in
homotopy analysis method. In view of equations (3.9) and (3.15), the initial approximation for
potential function is given by

cosh{k{z +4)] .

$o (X, 2) = a0, c0s (kR) sin{X). (3.16)
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where ap 1is an unknown coefficient, since

Go(X) =0. 8.17)

In view of [8,9] the initial approximation for ((X) is zero. According to the equations (3.11}
end (3.13), two nonlinear operators Ny and N, are defined in the subsequent section for analytic

series solution.

332 (Continuous variation

The HAM depends on an initial approximation to the exact solution. Since based on the
nonlinear boundary conditions (3.11) and (3.13), two nonlinear operators N, end N3 are defined

as
. : F
M[8(X,24q).n0(X;9)] = w’azéé‘;’:'q) +§a¢(§;z 9 —w-g?
w480 (Xia) &9 (X;9)
2 (Dk4—5)?5_' Wme 5% )
2 aQ(X’th)aﬂ(X:Q)
K e—5x 5% (3.18)
Mol (0,2 (X 5g)] = w2 DL P (i)
&0 (X;9) 28 (X;9)
P[ DRt —axi me(w Xz +g)]. (3.19)
where

F=l [kﬂ (51‘})2 ; (%%)2] . (3:20)

Here g € [0,1] is the embedding parameter of the homotopy analysis method. As explained
by Liao, Cheung and Tao et al [9, 10], in homotopy analysis method the auxiliary linear operator
and the initial guess can be chosen by extremely large freedom. It is noted that both linear
terms of ®(X, z;q) and linear terms of 7(X,g) are all contained in (3.18).Now based on the
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homotopy analysis method, by neglecting the linear terms in equation (3.13) and awxliary
linear operator of ®(X, z;q) is so properly chosen,by means of the solution expression (3.15),
which is obtained as given below.

P3(X,zq)

0P (X, 2q)
ax2 )

Z1[® (X, 5] = o

+g (3.21)

If angular frequency w is given so an approximation can be chosen based on the linear wave
theory to simplify the subsequent resolution of the nonlinear PDEs as follows:

w = +/ gk tan (kk). (3.22)
Since the auxiliary linear operator in (3.21) can be simplified as
ol — 8% (X,29) 02(X,249)
£, ® (X, 2 )} = gk tanh (kh) BT +g 2 . (3.23)

Here £,(0) =0.

Since due to the weakly nonlinear effects there is a difference between the actual frequency
w and linear dispersion relation wg = \/gktanh(#h) upto some extent.Results are compared
with those obtained by the perturbation method. In view of linear operator of the wave profile
function 7(X; 4) and the nonlinear operator Ny, another auxiliary linear operator may be chosen
as

L) = 22050 KD g, 324

Here £2(0) = 0.
Now let ¢y be & nonzero convergence control parameter. It is noted that both ¢ and g in the
HAM are auxiliary parameters, Instead of the nonlinear PDEs {3.8), {3.9), (3.11), and (3.13)

the zeroth order deformation equations are constructed as

FeX5d, P2 ~o,((-h <z <) (3.25)
3‘1'_._._._(*;; %9) _g,(z = ~h). (3.26)
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(1—g) £1[®(X, 2;9) — $p (X, 2)] = g M1 [ (X, ,0) , 7 (X; ).z =0 (X;q)).  (327)

(1-gq) La[n (X, z:9) = Co (X, 2)] = g2 [B (X, z:q), 0 (X5 Q)]s (s = 2 (X;0)).  (3:28)

It is clear that two mapping functions ®(X, z; g) and (X ; g} of the original problem vary from
initial approximation ¢g(X, z) and {g(X) to the exact solutions ¢(X, z) and ¢(X). Since in view
of equations (3.27) and (3.28) the Taylor series of functions ®(X, z; ) and n(X: q) at ¢ =0 are
as follows

+o0
(X, zq)=Bo(X,2)+ Z P (X, 2} ™. (3.29)
m=1
450
n(X;2) = (o (X)+ 3 Cm (X, 2) g™ (3.30)
m=1
1 am
(4 (,2) G (X0} = i {B(X, 50) 1 (X5 0)} b g =0 (831

As it is assumed that cp is chosen so properly that the series in (3.29) and (3.30) converges
at ¢ = 1,since homotopy series solutions will be as

400
F(X;z) = ®(X;21)=¢(X,2)+ ) 6n(X,2).
m=1

+o00
21X 1) =G0+ Y {m(X). (3.32)
m=1

¢(X)

since at the nth order approximations

+
¢(X,Z) = %(X,z)+z¢m(x,z).
m=1
+o0
CX) = X))+ ¢nlX). (3.33)
m=l
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As shown later in the following section, the unlmown terms #,,(X, #) and {,(X) are gov-
erned by the linear PDEs (3.34) to (3.36).

3.3.3 Deformation equations of high order

By putting the homotopy Maclaurin series (3.29) and (3.30) into equations (3.25) and (3.26) the
deformation equations of high order for the unknown functions ¢,,, (X, z) and ¢, (X) are derived
directly from the deformation equetions of zeroth order,and then equating the like powers of
embedding parameter ¢ it follows that

d ¢m(Xiz) 0 i (X,Z) —
B+ —ga — = 0(-h<z<0).
Im (X,2) _ -
T 0, (2— h). (3.34)

where m > 1.Note that, ®(X, z;q) st the unknown surface z = 9(X;g) may be expressed
in terms of the Taylor expansion at z = 0 instead of z = n(X;q) since two linear boundary

conditions on z = 0 are as follows

L1 (dy) 2t 2=0= AT _; + XmSm-1 — [ (3.35)
— 4 d4cm—1 dsz—]_ 36
L2(¢m) = @By +Xm | 0 +—gxz Tim1)- (3.36)
where
m—2 d2¢m_ i
Sm-1 = Eo (—d'fgl—" + Yme1-id)

- m—l g2y .
=T (Im )

1, 17l dy, 01— | DA d4y g | e B
Av(n—l = _wd%_l'l'ﬁ E(%“TXL* +¢n¢m—1—n)+Cm—l+ P d;: . + P d;g !

and




¢ =P dz'?m _ d'Pn dz'lam—n 4 drpm—n W 4d5Cm w’ Me dacm 4 d!pﬂ dCm—n
Am—i dX? —v5 T9Pm—W E( +on ) pDk aX5 P X3 _k'2 Eﬂﬁ ax
for
o,m<1
Xm = {1:m o1 (3.37)

It should be noted that (3.27) and (3.28) holds on the unknown boundary,z = 7{X; ¢) while
(3.35) and (3.36) hold on z = 0. Furthermore, the original nonlinear PDEs (3.1) to (3.5) are
transferred into an infinite number of linear decoupled high order deformation equations (3.34)
to (3.36). Namely, given ¢, ;.(,.—1: O, and (,, can be obtained easily by means of the inverse
operators of the right hand sides of (3.35) and (3.36), respectively. The resulting expressions for
é,, and ¢, are presented to the second order in the subsequent subsection.

3.3.4 First order and second order approximations.
1
G(X) =  [4dgeo +enafy + kcpad  tanh? {kk)] — wegan, cos (X)
1
+i5 [coad ) — kPepaf, tanh® (k)] cos (2X). (3.38)

But now the coefficient agp,j in (3.16) is still unknown. 5o an additional equation to relate
the solutions with the wave height is introduced.

¢, (mm) — ¢, (mm) = H. (3.39)

Here m and n are even and odd integers respectively and H is the wave height to the first
order based on the HAM.The solution of ag,) can be determined by the relation (3.39) for the
wave height and its vertical displacement. Now by using the inverse linear operator £ in {3.35),
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it is easy to get the solution of ¢ {X, z).

H
" Qg
_ cosh [k (z +R)] . ~H? + H2K% tanh? (hK)
$i(X,2) = e o i (X) + qg e anh (k) — tanh (3hR)]

x%ﬁ-f'—nsﬁn@x). (3.40)

x01 =

Now the solution of ¢, (X, z) has one unknown coefficient a),3, which can be determined by
avoiding the secular term sin(X) in ¢o(X, z). It is noted that all subsequent functions occur
recursively. Since in view of the linear equations (3.35) and (3.36) to continue with the first
order approximations

C2(X) = Bag+ By 003(X)+ Ba2008(2X) 4 B3 gco8(3X) + Paqc08 (4X).

by (X2) = %,%}gﬂ sin (X) + aumhﬂz 2(: ;; AN in (2X) + az,amﬂ:k(: :’E; *:3 Bl
'!-02,4'——'—'—6081::‘5:‘2 i;;i J) sin (4X} + “MW sin (5X).

where a; j is the jth unknown coefficient of ¢;(X, z) and B, ; is the jth unknown coefficient of
¢;(X).In order to obtain higher order functions S (X, 2) and (,(X), the infinite order solutions
for physical model can be acquired by continuing this approach.

3.3.5 Optimal convergence control parameter.

As all model parameters in appraximate series solutions are fixed, since there is still an unknown
comvergence control parameter cg which is used to guarantee the convergence of approximation
solutions. According to Liso [7], it is the convergence control parameter co that essentially
differs the homotopy analysis method from all other analytic methods. And the optimal value
of ¢y is determined by the minimum of the total squared residual ¢Z, of our nonlinear problem,
defined as

el =€, +ef,. (3.42)
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(3.41)
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where

M
¢4 = 1+]M§{N‘ [6(X,2),¢ (X)) at X = iAX)%.
M
& = g 2 (Fls(%,2), (X)) ot X = iAX)P. (3.4

&

i=i

Here M is the number of the discrete points and X = 5.
For generality %‘-5* = 0 the optimal convergence control parameter ¢g by the minimum of
the squared residual €7, is obtained.

3.4 Solutions by Genetic algorithm and Nelder mead method.

As in Homotopy Analysis Method we need optimal convergence control parameter to select the
values and confirm the convergence of the problem.Figures 3.1 to 3.4 shows the effects of plate
deflection {(X) at different number of terms used in series solution For range of M the total
squared residual I, is found by using equation (3.42) in view of (3.43).

Where i is the number of terms or iterations of the obtained solution.The total squared
residual €, and optimal convergence control parameter cg is indicated in table 3.1.The analytical
solutions given in equations (3.35) and (3.36) are obtained by using Homotopy Analysis Method
and the embedding parameter is found using Genetic Algorithm and Nelder Mead method as
shown in Teble 3.1

Following are the parameters used for Genetic Algorithm.

Population: Population type: Double vector

Creation function: Uniform

Initial population: 100

Tnitial Range: {0; 1]

Scaling function: Rank

Selection function: Stochastic uniform.

Reproduction: Elite Count: 10

Crossover fraction: 0.8
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Mutation function: Uniform

Rate: 0.01

Crossover function: Arithmetic.

Migration: Direction: Both

Fraction: 0.2

Interval: 20

Hybrid function: None.

Stopping Criteria: Generation: 100

Time limit: inf

Fitness limit: -inf

Tolerance: 1075,

Table 3.1 Comparison of homotopic series solution and optimal series solution using Genetic
Algorithm and Nelder Mead method.

Saries solution Homotopy 2nalysis method Optimal series solution using Genetic
algorithm and Nelder mead method
d E {teration | Time Range/value | Residual | teration | Time Range/valuve | Residual
Error Ercor

0005 |12822.7 |5 1.263 |-08to-11 | 21x107 |2 0.093 | 0.8t0-0.1 | 52x1¢7°
001 128228 | 10 95443 |-0.7tw0-1.2 [ 41x107 |5 1.263 { 0.7t0-1.2 | 3 ox10™
poz | 12822316 296.182 | 13t0 05 | 70x10° |7 5.362 | -1.3t0 05 | 1.9x10°
0001 | 10" 5 1123 |-08t0-11 | 25%107" |2 0.11 |-0.8t0-11 | 119%10°
0.005 | 10° 10 100543 [ 0.7t0-1.2 | 7.1x107 |5 1123 | -0.7t0-1.2 | 1.5x10°
0.01 10% 16 309426 { -1.3t0-0S | 1.6x107° |? 5469 | -1.310-05 | 1.2x10°

Teble 3.1 Signify that by using the proposed hybrid scheme the time and obtained total
aquared residual eI, can be considerably reduced. We can introduce further embedding para-
meters in these solutions to gain more efficient results.
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3.5 Results and analysis

In figures 1 and 2 the effects of Young’s modulus E of on the wave elevation {(X) under a fioating
elastic plate are studied.which shows the change in {(X) for different values of E = 10%,10% and
1010,

As it is clear from figures 1 and 2 that the nonlinesr hydroelestic Tesponse of the waves
becomes flatter at the crest and steeper at the trough due to the larger value of Young's
modulus E It is clear that larger E reduces the plate deflection {(X ).

And in figures 3 and 4 the effects of plate thickness d on the several displacements {(X)
under a floating elastic plate are studied.which shows the change in {(X) for different velues
of &.It is observed that by incressing & from 0.001 to 0.01. the nonlinear hydroelastic response
of the waves becomes flatter at the crest and steeper at the trough due to increase in plate
thickness d .Particularly when the plate thickness is nearly equal to zero, the wave becomes
pure gravity wave as observed in [9].

Let P.E. be the mean potential density per unit length in the X-axis. In terms of the wave
surface elevation function, the energy density can be written as

i o
PE= 15 [0 (X)dX. (3.44)

These figures indicates that the results are very similar to the theory of nonlinear hydroelas-
tic waves benesth s floating ice sheet. Also by Genetic algorithm snd Nelder mead method
results are compared as shown in Table 3.1.

Which further shows the validity of results.
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Figure 3.1 Change of the plate deflection (X'} near the crest against X for different Young's
modulus of the plate E. Solid line E = 10° dashed line £ = 10? dashdot-dotted line E = 10,

,!#

Figure 3.2 Change of the plate deflection ¢(X) near the trough against X for different
Young’s modulus of the plate E. Solid line E = 108 deshed kine E = 10? dashdot-dotted line

E =109,
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'
Figure 3.3 Change of the plate deflection ¢(X) near the crest against X for different plate

thicknesses d .Solid line d = 0,001, dashed line d = 0.005, dashdot-dotted line d = 0.01.
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-0.08 :
2

Figure 3.4 Change of the plate deflection { (X) near the trough against X for different plate
thicknesses d .Solid line d = 0.001, dashed line, d = 0.005, dashdot-dotted line d = 0.01.
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3.6 Conclusions

In this chapter the nonlinear hydroelastic waves propagating beneath a two dimensional infinite
elastic plate floating on & fluid of finite depth are investigated analytically by the HAM.

From kinematic and dynamic boundary conditions at a constent velocity in a fluid of finite
depth the PDE’s in (3.20), (3.21) and (3.22) are obtained by simple elimination of the time
dependent terms,

Here for a general case it should be noted that ,when traveling wave method is directly ap-
plied to transfer the temporal differentiation into the spatial one in a fixed Cartesian coordinate
OXZ PDE’s are constructed. Furthermore, the convergent homotopy series solutions for the
PDE's are derived by the HAM with the optimal convergence control parameter.

Also influences of the Young’s medulus E and thicimess d of the plate on the plate deflection
¢(X) ere investigated. The plate deflections become lower by the increase in Young's modulus
E of the plate.The plate thickness d greatly effects the hydroelasticity of the plate. The results
obtained here express that the hydroelasticity of ice sheet effected by the thickness d of the
plate and Young’s modulus E of the incident wave.Which is proved in the theory of nonlinear
hydroelastic waves beneath a floating ice sheet in a fluid of finite depth [10].
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