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Preface

In recent decades, the ice-cover in the polar region has atEacted more and more attention in

the fietd of ocean engineaing and polar engineering in view of their practical imrortance

and theoretical investigations. One of the most imPortant problems in this field would

appear to be the accurate measil[ement of the characteristics of nonlinear hydroelastic

waves traveling beneath a floating ice sheet. And such waves may have been generated in

the ice cover itself by the win4 or may have originated by a moving load on the ice sheets'

The nonlinear hydroelastic waves propagating beneath floating ice sheet on an inviscid fluid

of finite depth were first investigated analytically by A.G. Greenhill[l]

The equation that governs the motion of nonlinear hydroelastic waves in incompressible

fluid under an elastic sheet is nonlinear hydroelastic wave equation. The propagation of

waves of finite amplitude on the surPace of an ocean under ice, regarding the ice sheet as an

elastic shell. And when we studied it is assumed throughout that there are no frictional

forces between the sheet and the fluid beneath. Hydroelastic waves are the waves

propagating on sheets of fluid of finite depth that are bounded by elastic plates' The fluid

motion is assumed to be both inviscid and inotational. Two elastic plates sandwich a layer

of moving fluid and deform according to the dynamic pressure exerted by the fluid' A

comprehensive summary on mathematical method and modeling for the problem can be

found in some review articles such as Squire et al pl. Motivated by the above facts the aim

of the present dissertation is to find the series solution of nonlinear hydroelastic waves

equation in a fluid of finite depth. The dissertation is stnrctured as follows:

Chapterslisintoductoryandprovidereaderthebasicterminologyandequationsoffluid

flow. The rezults of Ping wang [3,4] are reproduced with full mathematical details in

chapter 2 and Chapter 3. In these chapters we investigate the motion of nonlinear

hydroelastic waves under an ice sheet lying over ar incomPressible inviscid fluid of finite

uniform depth by the regular perturbation and Homotopy analysis method (IIAM)'

Graphical results are presented in order to see the that how Young's modulus of the plate

increases, the wave elevation becomes lower, and the increasing thickness of the plate

flattens the crest and sharpens the trough of the wave profile'The results obtained here

demonsfiate that Young's modulus and the thickness of the sheet have imFortant effects on

the energy and the profile of nonlinear hydroelastic waves under an ice sheet floating on a

fluid of finite dePth.
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Chapter L

Preliminaries

This chapter includes some basic definitions and governing equations relevant to the material

presented in the subsequent chaptero and idea of Ilomotopy analysis method is presented for

the better rrnderstanding of readers'

1.1 Fluid

Fluid is a substance or material that deforms or flou's continoruly when shear stress applied to

it, no matter how small the stress may be, fluids include liquids and gases' For example water'

milk and blood.

L.2 Fluid mechanics

Fluid mechanics is a well knoqrtr branch of continuum mechanics' It is usually deals with the

behavior of fluids.in the states of rest and motion and its sfiects on bounda'ries is }nown as fluid

mechanics. Fluid mechanics has mainly tbree types'

Fluid statics: It is the study of fluids at rest'

Fluid kinematics: The study of fluids which are in motion'

Fluiddynamics:Thestudyoftheefiectofforceonthefluidmotion'whichdealswiththe

properties of stationary and moviug fluids'
tt



L.3 Fluid dynamics

Fluid dyna,mics is a sub discipline of fluid mechanics that deals with fluid flow, the natural

science of fluids (liquids and gases ) in motion. It has several sub disciplines itself those are

Aerodyua,mics: (the study of air and other gass in motion)

Hydrodyna,rnics: (the study of tiquids in motion).

l.S.L Hydrod5rnarnics

It is the study of liquids in motion. Specifically, it looks at the ways difierent forces a,fiect the

movement of liquids. A series of equations explain how the conserrration laws of mass' energ:r'

and momentum apply to liquids, parbicularly those that a,re not compressed.

1.3.2 Nonlinear hydroelastic waves

One of the most important problems in this field would appear to be the accurate measurement

of the cha,racteristics of nonlinear hydroelstic waves traveling beneath a floati.g ice sheet. And

such waves may have been generated in the ice cover itseU by the wind, or may have originated

by a moving load on the ice sheets. The nonlinear hydroelastic waves propagatrng beneath

floating ice sheet on an inviscid fluid of ffnite depth were first investigated analytically by A.G.

Greenhill [1].

1.3.3 Nonlinear hydroelastic waves equation

The equation that govern the motion of nonlinear hydroelastic waves in incompressible fluid

under an elastic sheet is called nonlinear hydroelastic wave equation.

L.4 Characteristics of fluid

L.4.1 Pressure

The a,mount of force per unit area is knourn as pressure. If P is the pressure theu mathematicaly

it can be written as

p: L. (1.1).-A,



1.4.2 l)@tlty

'lhr ruc-prr rdt 16}6m dttc fuld b tffitr n daaity of thrt fluid. It Ldmoted bv p ad

nrtheortiorb'ut m qtu it n
EB

Ie-{O

1.4.S fimg*ry

ltloodtyLffid rr tbe mcrureof ruidamdrfluid to bdtrt dofoilmod by escteroal stres$

ileitb;j bf efi rt1rc It i. urudly tah r tfridoars q tuistas to flfi". It is dooted

hf r *dd&d ar
,ttr frettP:ffiiim,

rfim6 ts tB tbo fimln l$/LTl.

llLt *hmattc vLcoltt,

tinmrtic Yittodity i..t i€d rr thc r$io of rbmtr*c viloo.Ey to dcruity ld h givu as

, = t, (1.4)
P

tiatust of ritl.rrU" vLodty ir *rF/r er gtob (St) rnd tbo daadm of l&cuati'c

l,tumdw h pc?-r].

1.4J D:rnmlc viroo@

*bfotutc vb6dty gj dyaroi: y|crity b I rere of ths iuteroal ndrtrnm. Dlmmic (ab

*futl) vi*eity h thc tsDgrgti1l fucce pc rdt e,rer nqtdmd to Ett re horimtrl phm

*gi.rr+et to the dh66 rt usit r!&ociff rfu Erinttimd e unit rlirtrrcs isirt by the fluid.

Iiltilt it cro bc rdtta g
F=Wt (1.5)

Th! dyruic vhod6ty urib itr SI q/st@ *t Htlm' t lqlnu, i'e',

lPr.s=lIlb/at:lhglmt.

P-
{a!t

E-'
(1.2)

(1.5)
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In CGS strstem it can be descirbed es gf crns, d,yne sf crnz or Poi,se$t), i'e',

lPoi,se - d'ynesf onz - g/crns : L/LIPs : Lf l1Nsf m2'

1.4.6 Shear stress

A shear stress is defined as the component of stress coplanar with a material cross section.

1.5 flpes of fluids

Fluids are iexit in six main types which can be e,:<pressed as following

1.5.1 Ideal fluid

The fluid with zero viscosity (p : 0), is generally considered as an ideal fluid and the motion

of it is called as ideal or inviscid. In an ideal flow, there is uo existence of shear force beacause

of vanishing viscosity, i.e.
du

' : Ffr = 0' as P: o' (1'6)

1.5.2 R€al fluids

Those fluids which posssess some viscosiy @* 0), io known as real fluids. Since by new'ton,s

lavr of viscosrty, we have

ra,: p#t, (1.7)

where rra is the shear stress on a fluid surface iu the c direction at a distance g from the

origin, p is the viscosity of fluid *d # is the rate of deformation'

1.5.3 Newtonian fluid

Newtonian fluid is the fluid which have linea,r relation between shear stress and rate of strair.

It can also be defined as rrFluid which holds Newton,s law of viscosityn is called Newtonian

fluid. Mathematicatly it can be described as

du,"a-Fdr,

7

(1.8)



where r* is the shea.r stress, p is the viscosity of the fluid, a is the direction of the flow and

g is perpendicula,r to the flow. Water, gasoline, air and glecrine exhibits Newtonian behavior.

1.5.4 Non-Newtonian fluid

Non-newtonian fluids are thos fluids in which shear stress is directly but non linearly propor-

tional to the rate of deformation. It can also be stated as rtFluid which obey power law modelrr.

Mathematically it can be represented as

(1.e)

or

r,s:Ttf *) , (1'10)''\du)'

where , : (#)" ' i" ,h" viscosity which is the function of deformation. Exa.mples of Non-

Newtonian fluids.are toothpaste, blood, ketchup, paint, drilting muds and biological fluids'

1.5.5 Compressible fluids

Compressible fluids are those in which fluid density changes with the ehange in pressure or

temperatrue. In general, all gasses are treated as compre$ible fluids'

L.5.6 IncomPressible fluids

Incompressible fluids are those in which fluid density remains independent of the pressure or

temperature.

1.6 Tlpes of flow

1.6.1 SteadY flow

Steady flow is defined as the type of flow in which fluid characteristics like velocity, pres-

sure,densit5r etc at a point do not change with respect to time'

"*: Q#)" , n+t
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L.6.2 Unsteady flow

If at any point in the fluid, the conditions change with respect to time, the flow is }nown as

unsteady.

1.6.3 Uniform flow

Uniform flow can be defined as if the velocity of the fluid has the same magnitude and direction

at every point in the fluid.

1.6.4 Non-uniform flour

If the velocity of the fluid does not have the sa'me magnitude and direction at every point in

the fluid is catled as non-uniform flow.

1.6.5 Laminar flow or Stream flow

La,minar flow is defind as when fluid flows in parallel layers such that there is no disruption'

In laminar flow, the velocity of the fluid at each point does not change in magnitude as well as

in direction. Exa,mples include flou, of air over an aircraft wing.

1.6.6 Ttrrbulent flow

It is a flow in which fluid undergoes irregular fluctuations as compared to laminar flow' In

turbulent flow, the velocity of fluid at each point continuously changes both in magnitude and

direction. Exa.rnples are flow over a gotf ball and smoke rising from cigeratte.

1.6.7 Compressible flow

compressible flow is that flow in which the density of the fluid changes during the flow and

viscosity of the fluid incteases with temperature. All gases are compressible fluids'

L.6.8 Incompressible flow

The flow in which the density of the fluid does not change during the flow and viscosity of fluid

decteases with temperature is }ooum as incomprssible flos'' All liquids are incompresible

_l



fluids.

L.6.9 Rotational flow

Flovr of a fluid in which the curl of the fluid velocity is not zero, so that each minute particle

of fluid rotates about its own axis. AIso known as rotational motion. Mathematically it can be

desribed as

Y xV 10, (1.11)

1.6.10 Irrotational flow

Flow of a fluid in which the curl of the fluid velocity is zero is laovrn as irrotational flow of the

fluid.

Mathematically it can be desribed as

V x V:0, (1.12)

1.6.11 Vorticity

In simple words, vorticity is the rotation of the fluid. The rate of rotation of fluid can be

e>rpressed various ways.

Mathematicaly

w:Y xV, (1.13)

1,.7 Basic Governing equations

In this section the general form of equations governing the florr of a fluid are presented in usual

notations, These include

L.7.L The general problem of wave motion

The problem which we have to solve, in all studies of waves on irrotational and incompressible

flows, whether stud.ies of propagating waves or standing waves or cousidering aspects of prop

agation, diftaction, reflectiou or refraction is to solve Laplace equation. Then the governing

L0



equations for a velocity potential Q(n,zrt) can be written as

y2d : #. # :0, (-h < z < ((x,t)), (1.14)

where e@rfl is wave surface elevation.

1.7.2 The continuitY equation:

Continuity equation is the mathematical erpression for lan, of conservation of mass and math-

ematically it is described as

ff * *,1rt; :0,

where V is the velocity field. ff density 'y'' remoi''" constant with respect to time and space

then for incompressible flow, we have

divV:0. (1.16)

L.8 Boundary Conditions

L.8.1 Kinematic bor-rndar5r condition

If a fluid particle is adjacent to a boundary then we 6ustr impos€ a condition which links the

velocity of the boundary to that of the particle on the un known surface z : e(r,t)' This is

lnown as the kinematic boundary condition'which is

0e .00ae 0Q _n
0t' 0s0t 0z

(1.17)

L.8.2 Dlmamic boundarSr condition

The dyna,mic boundary condition at the free surface is that the pressure equals the exterior

athmospheric pressure: p = patm(const). on 2: ((art), so the dyna'mic boundary condition

becomes

(1.18)

(1.15)

v

ffi *'uv'o *T *e( : o.

11
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1.9 Homotopy

A homotopy between two continuous functions .f and g from a topological space X to a tope

logicalspaceYisdefinedtobeacoutinuousfunctionH:Xx[0,1] --+Yfromtheproduct

of the space X with the unit interval [0, 1] to Y such that, if s e X then .E[(c,O) : /(c) and

H(o,l): s@).

1.9.1 Homotopy analysis method (HAM)

It is a general analytical approach for obteining approximate series solutions to nonlinear

diserential Equation. Based on the homotopy analysis method (EAM) which has been suc-

cessfully applied to solve many t5pes of problems The homotopy analysis method (HAM) was

first descibed by Liao [5] in his PhD rlissertation in 1992. For a given nonlinear difierential

equation.

lV["(r)] :0,zeg. (1.1e)

where iV is a nonlinear operator and z(c) is a unknoum function, tiao [7] constructed a one-

para,meter fa,mily of equations in the embedding para,meter g € [0,1], called the zeroth-order

deformation equation

(1- q)I[(c; q) -u"(n)l+cN[(c;s)]:0, r €A,q € [0,1]. (1.20)

where Z is an auxiliary linear operator and zg(c) is an initial guess.In theory, the homotopy

prwides 1s much larger freedom to choose both of the auxiliary linear operator .L and the

intial guess At g:0 andg: l, we have(o;O) : us(a) and (o;1) : u(c), respectively.So, as

the embedrling para,meterg € [0,1]increases from0 to 1, the solution (c;q) of the zeroth-order

deformation equations varies (or deforms) from the initial guess zs(c) to the exact solution

u(z) of the original uonlinear differential equationtY[u(r)] : O.

Since (o; q) is also dependent upon the embedding parameter q € [0, 1], *" can expand it

into the Maclaurin series with respect to

d@;d : q(t) +Du"(t)s".

L2

(1.21)



calbd thehmotopy-Meclaurin slGs. fdos th.t re have Etr€ooly Lrtp freedon to chooce

eb rpffi1ay &.rq6*or & rd th. i!fitid grr uo(a). ertuuiqg tbrt, the auxiliary liu-

c opndor f, md thc tuittd gtr tr6(c) s! D Fop€Gty ctm thlt thc abom hmtoW-

Irraauru mic omrrtqe rt q = l, rr hr*l thc p'cathd nmtow-sdia oludm

{c) :.otr) + Eu'(c). (1.22)

wH*fitrd.ietodiDalGqErffm's[ds]l=0,!!p[ot'Edbvrjrr'[19'20]inclDm8l
f,ro,u"(a) ir garud by the ocdled htfr{dr'defcnntion Gqlle;6@

e[u"(o] - x*rr-r{r}l : -d.-1(c).

ihxs l cqua,b to I rtbco * I2 but ruootrarris' Ed

,(o,*,..)-0, r€r.

(1.13)

r3(r):*+H"'r. (1.%)

Thc higb-dEdcr dsfiorostinn qurtion (f.$) h elrap linorr with thG lrnown term oo tbe

tiGht-h1ail rtdo, thtuafrrc is e1jy to rclw, r lory 1p 96 chooc tbe umti11'y linmr qerator 'L

'ssFt&-
:

1.e$ t$m'tofy pertrrbdon Edfiad''$IPtd)

Coodd;r tha folbdng nmlhcr aftreatltrq$ton

D(("))+Iv(dr)=0re$. (1.26)

Itrh t&rhoudarv cmdttfun

r

(1.a)

rt6e Lr-1.e&Aofeatc, flLlnoffirrqra$a, f il tbe UoUarryof domrin 0,ll is a

Uoluarry opctE, Ed t d.mtt dfrr*Ll rlons thG ffiotl dtrIf,r antrnrds from O'

By m-r of E}tI, a hooo@y fo cgsm (1.12) b cou*ructcd r follws:

ll



;

H(o,p) : L(u) - L(ao) + plL(od + N(u)l : s. 
O.2T)

P€[0,1],reO.

where p € [0,1] is an embedding parameter called homotopy para,meter, and us is an hitial

approximation for the solution of equation (1.12) which satisfies the boundary condition given

in equation (1.13). Obviously, when p:0 and P: 1 it holds

II(o,0) = L(a) -.L(os) : g. (1.28)

H(u,t): L(a)+ N(u): g' (1'29)

when p iucreases from zero to one, the trivial problem in equation. (1.15) is continuously

deformed to the problem iu equation (1.16). The changing process of p from zero to unity is

just that of u from uo to u.

According to HPM, trfus s6[ed.ling para,meter p can be used as a small para,meter.Expanding

u in a porver series with respect to the para,meter p we obtain

,t) : ,uo + pq + p2a2* psre + .... (1'30)

setting p: 1 in the above series results in the solution of equation (1.12) as

s : lirn11 : uo * u1 * tlz* ua * ....
p+1

which is the essence of IIPM.

1.9.3 Optimal homotopy perturbation method (OHPM)

To explain the main idea of oHPM. Substituting o from equation. (1.17) into N(u) and then

e>rpanding lY in a power series with respect to the para'meter p' we obtein

(1.31)

L4



/V(o) : rY(u) lpo +# lpa P + ....

: rv(uo) * (ry#) lp+ P+....

: N(uo) + ffi1,:,,0 ar P* .."

We construct a new homotopy for equation (1.12) as follou's:

(1.32)

(1.33)

(1.35)

(1.36)f

H(r,p): t'(a) - L(ud +p@(ro) * Ks(r,Cs)lv(os))

+o(x1r,ciffi,=*rr) +... : Q.

where K,t(r,Ct) fot 'i, :0,1,... is an aru<itiary firnction, md G is a vector of unlmourn

constants. By equating the coefficients of the Ealne powers of p in equation (1'20)' we obtain

po z L(us) - Z(us) :9. (1.34)

pr : L(u) + Z(us) + Ko(r, Cs) N(?,s) : Q.

p2, L(tn) * K1(r, cfryl"ass u1 : o.

and so on. The functions KhrKtr...are not unique and can be chosen as the sa'me form of

nonlinear operator N. The constant c; that appeaxs in the function Ki(r,Ci) can be optimally

determined by minimizing the following residual firnctional

, : 
Iu @@d + N(av))z dr. (1.37)

where a and b are two rnlues depending on the given problem, and u1u; is the Mth-order

approximate solution, which can be written as

u : u1o; * ulzy * ... + a(M). (1.38)

once the para,meter G is }:oown, the solution of nonlinear differential equation in equation

(1.12) subject to the boundary conditiou given in equation (1.13) can be immediately deter-

mined.



1.g.4 Optimal homotopy as5rmptotic method (OHAM)

We apply OHAM to the following difierential equatiou

A(u(a))+g(c):0, s€ft'

where w is real uumber and the corresponding bolndary conditions are:

u (''#'"'):o'
where A is a general differential operator, g(r) i" a lnos'n analytical function,

unknovm function. equation (1.26) can therefore be written as follon's:

L (u(o))+ g (r) + N (u (r)) : o.

Construct a homotopy u: $(t,p): ft x [0,1] -' S which satisfies

p = o =+ H(0@,0),0) : L(0@,0))t g(s) : o'

p: t + H(0@,1), 1) : n$)lA($(a, 1)) + g(c)l : 0'

We choose auxiliary function H(il b the form

H(p):pDt*pDz*....

(1.41)

H(6@,p),p) : (1 - p)lL(d@,p)) + g(r)l + H (p)

lA(Q@,p) + g(s))l :0, P € [0, U.

a (o@,d,oo1-d) : o'

II(p) i" a nonzero aru<iliary firnction for p f 0, H(0) : 0, 6(t'p) is an unloown firnction

ard p varies from 0 to l. The solution Q@,p) varies from /(c,0) : ,o(r) to the solution

6@,L):u(a)equation(r.29)iscalledoptimalhomotopyequation.Clearlswehave

(1.3e)

(1.40)

u(r) is an

(1.42)

(1.43)

(L.M)

(1.45)

(1.46)

1.6



where Dt, Dz,...are constants which can be determined latter. Expanding $(',p,Dr) i" Taylor's

series about p, we obtain

6(r,p,Di):uo (s) + ir*,r, Dr* Dz* "'Dx)ph'

^t (u1 (o)) : DrNo ('o (')), 
' ('r, #) : O

L(u1,@\ - uh-r(r)) : Dklvs (uo (c))

**qo 
[r* 

,(c)+N3-1 (_o,T.l,];_,,,, )]

lc:l

Nowzubstitufingequation(1.34)intoequations.(1.29)&(1.30)andthenequatingthe

coefficient of like posrers of p, we obtained the solutions of zeroth order, first order and second

order problems. It has been observed that the convergence of series (1'34) depends upon the

anxiliary constants Dt,Dz,..., we obtain the governing equation of u's(c), grven by equation

(1.29), and the governing eguation of u3(o) i' e,

(7.M)

(1.48)

(1.4e)

k:2r3r... (1.50)

N (Q@,p,Di)): No('o(')) * Diu-((ta'ur' "''un))p*' i:l'2'"' (1'51)

m)l

where .tV-(us(c), ur(r),...,u-(c)) is obtained bv e:rpanding N(d(''p'D') in series with

respect to the spledding parameter p arrd, s(t,p, Di) is given in equation (1'31)' It should be

emphasized that z6 for Ic 2 0 are goverued by the liaear equations (1.29), (1'32) & (1'M) with

the linear bound,ary couditions that come from original problem, which can be easily solved'

The convergence of the series in equation (1.31) depends upon the auxiliary constants

Dt, D2,.... If it is convergent al' p = 1, we get

u Q*'#'"'):o'
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u(a, D): to (c) * D"* (', Di)'
k>1

The solution of equation (1.26) can be determined approrimately in the form

,(m) (a, Di) :zo (c) + itr (r, Dt), i : 1,2,...,ffi.
ls=1

substituting equation (1.38) into equation (1.26), yields the following residual

(1.52)

(1.53)

(1.56)

g'

R(t,D;) : t,(ut*t (r,D,)) + s@)+r (ut-l (',Dc)), i:1,2,",ffi' (1'54)

U.R(c, D;) :0 then u@) (a,D;) happens to be the exact solution' Generally such case will

not arise for nonlinear problems, but we g2s minimize the functional

J (Di: 
I"u 

*'(x,Di)d,t. (1.55)

identffied from the followiug
The nnknown constants D6 (i : Lr2r "'na) can be optimally

conditions

0J0J0J^
M:M:...:M:u.

With these constants Inouta, the approximate solution (of order rn) h equation (1'38)

is well-determined. The constants Di ca\ be determined in another forms' for example' if

k6e(a,b),i_!,2,...mandsubstitutingkiintoequatiou(1.39),weobtnintheequation

R(tq, D,i) : R(kz, Dr): .'' : R(t'^, D;) :0' 'i' : l'2' ""rn' (1.57)

L.10 Genetic algorithm and Nelder mead' method(GA & NM)'

Genetic Algorithm is an optimization tool based on Darwinian evolution which has been devel-

oped in 1976, but its utilization in heat transfer problems is not been tested' [n fact Genetic

Algorithm plays an important role when multiple para,meters are involved' The main procedure

k inspired by the Darwinian theory of evolution uThe survival of the fittest'" The Geuetic Algo-
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rithm is a ra,ndom seargh techrique. Major advantage of Genetic algorithm is that the dentqnd

about computer memory for uonlinear problems is minimrrm. Genetic Algorithm will be helpfirl

for future even to get nlinimrrm and ma:rimum solutions to satisfy inequality relationships as

well. There are five main decision points in the procedue given belos':

(1) Eucodirg technique (chrommome stnrcture)

(a) Mechanism to eucode solutiou

(2) Erraluation functiou (environment)

(a) Fitness function

(3) Selation procedure (eeation)

(4) Generating chromosome diversity (evolutiou)

(a) Crcsorer, mutation

(5) Para,meter settingt furactice and art)

(a) Termination condition

(b) (Randon) initielization of population

Ihere are seneral tecbniques for optimization like analytical approach, dou'nhill simplor

method, gfadient descent, Nemrton's method and so on. Moreorrer, the Nelder Mead method is

direct search girnploc algorithm published in 1966 and is oue of the most widely used methods

for nonlinear uaconstrained optimization The Nelder-Mead method tninimizss a nonlinear

function of n real variables without takiry any derivative. The firnction is evaluated at ear'h

point of the oimFlex structure formed bv (u+1) points and the vertex with highest value is

replaced by a new point with a lower ralue. It continues until the rninimrrm value of firnction

is achieved. F\rrthermore, in topological approach the non-zero aruriliary para'meter which can

adjust and control the convergence of the serie solutions.[6,11]. The Genetic Algorithm and

Nelden Mead method is usd in orde,r to find the optimum value of co .AIso it minimize the

residual square error efl .Which shows its validity and great potential to solve the nonlinear

problems ia science and ensineeri8g [25]. I" the forthcomiug section we used this met'hod to

illustrate the significance of optimal convergence contril para,meter co on the velocity pote'ntial

and warrc deflection

_3,
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Chapter 2

Series solution of nonlinear

hydroelastic waves equation in a

thin elastic plate floating on a fluid

2.L Introduction

f[s qilm of this chapter is to rwisit the work of Piug wang and LU Dong Qiang [3]' In this

chapter behaviour of the progressive w6ves is discussed with EAM' A couvergent homotopy

series solution for the uonlinear hydroelastic waves is calculated with the hetp of least squared

residual. Also the dyna,mic efiects of plate suc;h as Young's modulus, thiclness and density are

studied.

2.2 Mathametical formulation

Let us assume sn inffnite p}ate floating otr a,r infinitely deep water havins thidrtrBs d which

produces nonliaear hydroelastic waves. Cartesian coordinates OXZ arcusually selected so that

the plate spread out f6 ffug inffniw along a-ocis and z-aai's and' z :0 shoq'B the unintemrpted

plate water boundary. It is snrpposed thst there is no cavitation between water and plate 'And

2 : ((n,t) is the deflection of plete. It is assuEed fluid is im'kcid , incompressible and

irrotational.6(p,z,t)is velocity potential whic,h satisfies the Laplace equation'

v



* **:0,(21((c,t)).0r2 ' 022

At deep water the boundary conditiou is

P : o,(z = -o). @.2)
0z

By the supposition that any fluid particle which is in between elastic plate and water surface

will remain on it.on the unknown plate water iuterface 2 : ((a,t) the kinematic boundary

condition is
a< . 0a 0< 00 

- n (2.3)

at* o"o,

and dyoa,mic boundarY condition is

X.rLvdt2+ef;+n<:0.

(2.1)

(2.4)

where p"(g,t),Pand g are plate water interface Pressrrre,fluid density and gravitational

acceleration respectively.By the Kirchhofi bea,m theory .For constant thidmess d and uniform

mass density p" of the plate the relationship between plate deflection ((c' t) and pressure p'(n't)

in view of Kircbhoff (Euler Bernoulli) beam theory is

o": D#+*.tffi+s). (2.5)

where mu -- p"d , D = dT:Ffl. By substituting equation (2.5) into equation (2'4) gives

the full form of dyna,mic bor:ndary condition as

X.|vdr2+ se +!V#**.(#*r)] :o (2'6)

By the concept of traveling wave method an indepeudent variable transformation is intre

duced as

X:ka-ut- (2.7)

where k is wave number and r,.r is angular frequency of incideut wave'Now velocity potential



function $(r,z,t): d(X,z) and the hydroelastic wave profile e@,0: ((X) a're used'For sim-

plfficationn by putting all equations into dimensionless form following dimensionless quantities

are used

fr'

(*

p;

kr, z' : kz,t' :t(gk)i, t : kd, 6* :

ke, u.:#",D-:#, "': #.
7,*.":ry.

k20

W,

In the succeeding formulae the asterisks denoting dimensionless quantities will be replaced'

Then the dimensionless equations for the velocity potential are

(2.8)

(2.10)

(2.11)

(2.12)

o2o , azo -ax-l-+#:o'(z1((x))'

ff:o'(z: -m)'

Iu view of. (2.7) ort z: C(X), (2'3) and (2'6) are transformed into

de .00d,(, 0Q-n-'fr* oxax

-"#+/+ e +lon^ffi**.Q'#+r)] :0.

respectively where

t:"[(*)'.(#)'] (213)

A partial combination of equations. (2.11) and (2.12) gives the boundary conditions on

z : e(X) as follou,s

,' #, * H - "H -,r# -,'*.# - ## : o'

22
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The velocity potential 0(x,z) and the plate deflection ((x) are derived by equations (2'9),

(2.10), (z.Lz),and (2.14) in form of series solutions for 9(x,z) and ((x) *in be derived based

on the HAM in the subsequent section-

2.3 Analytic approach based on the homotopy analysis method

2.3.1 Zeroth-order deformation equations

In view of the homotopy analysis method first of all Iet us as'sume a set of base functions

and solution o<pressions as it seems impossible to presume the expression forms for unloou'n

potential function and plate deflection. By physical backgror:nd of progressive gravity wave

elevation on free surface, ( (X) can be written as

+@
( (x) : ! 0r cos (dX) .

i=()

with a set of base functions {cos(ix),i > 0} where pri is an unlnown coefficient' since it is

supposed that there is no gap between the bottom surface of thin elastic plate and top surface

of the fluid layer. In view of liuear wave theory solutions to the Laplace equation (2'9) can be

derived by the separation of variables method. Therefore the plate deflection ((x) can also be

e:<pressed in the form as equation (2.15). since the solution e>rpression of the potential function

is.

(2.15)

(2.16)

(2.17)

+@

0 (X, z) : ! ar exn(kz) sin (iX)'
EI

In view of the solution expression (2.16) and the boundary condition (2'10) with a set of base

functions {erp(kz)sin(ix),i ) 0}, where ai is an unloown coefficient'The initial approrimation

for potential function is given by.

Qo (X, z) : o,o,texP(z) sin (X)'

where oo,r is an unloov[r coefficient' since
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(o(X): o' (2.18)

In view of [9] the initial approrination for ((x) to simplify the subsequent solution proce-

dure. Although the idtial sness co(x) is zero. Based on the nonlinear boundary condition for

equations (2.12) and (2.L4), two nonlinear operators Nr and N2 are defined

05rt(X;q)-w

Nz [r, (x;Q),o (x, ziq)l : -r}a V:z;q) + F + rW - *.p'W9+ U' (2'20)

where

(2.1e)

(2.21)

=

F=i[(r)'.(#)']
Here an arxiliary linear difierential openatotl/,r is chosen and g € [0, U i" the embedding

para.meter in the HAM. Ilere nonlinear operator lY1 holds a linear operator of O(X' ziq) as

given below.

zrlo(x, zis)l:,'ryP*nW' Q'22)

In view of [6,7] the angular frequency based on the linear wave theory is approximately

equal to one. i.e

uxL (2.23)

By the simplification of equation (2.22), the aruriliary linear operator ta'kes the form as
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Llla (x, zi c)l : ry9 + 
N (i'''; q) 

. (2.24)

Now the linear operator for the wave function ?(X; C) in the nonlinea,r operator N2, another

anxiliary linear operator is as follows where 41[0] : g

Lzlrr (x ; nll : ffi . W + rt(x t q). (2.25)

where 42[0] : a.

Now for the zeroth order deformation equation the equations (2.9), (2.10), (2'12),and (2'14)'

ta,kes the form as

v

ry.ry:0,(z<rr(x;c)).
oa({,2;q) :0,(z: -m).oz

+@

e (X, z; q) : 0o (X, z) * D d*(X, z') q^.
m=l

+@

q(X;z): (o (X) + t e^(X,z\q*.
tn=l

(2.26)

(2.2t)

(2.30)

(2.31)

(r-q)81[A(X, zi(t)-60(X,z\l:qcsN1[O(X, ziQ),rt (X;q)] '(z:'t (X;s))' (2'28)

(r - q')Ezh(X;q) - (o(X)l = Qq;NzhV;q)'iD(X' zis)1'Q : q(X;q))' (2'29)

By the help of Taylor series for Q(X, z;q) '*d 
q(X;q) at q :0' the exact solutions 6(X' z)

and((x)frominitialappro:<imation@g(X,z)andCo(x)andfromequations(2.28)and(2.29)

can be found.



€

{O*(x,z),e^(x)} : *#{o(x, ziu),4(x;c)} at q:0 (2'32)

Ass,rming that cs is right chosen in the series of equations (2.30) and (2.31) converges at

e: l, since by formal homotopy series solutions

+@

a (Xi z): o (X; z,r) : 6o(X,z) + t 0*(X, z) . (2.33)

rn:l

+-
( (x) : ,, (x; 1) : (o (X) + t C- (x) . @.u)

ttt=l

And for the nth order approrimation

+n

o(x,z):ho(x,r)+E d*(x,z). (2.35)

rtr-l

+6
( (x) : (o (x) + D <*6). (2'36)

m=l

2.g.2 Deformation equations of high order

Here PDEs for the unloown firnctions o,*(x,z) and c-(x) are calculated from the zeroth

order deformation equations. Substituting (2.30) and (2.31) into (2.26) and (2'27), and then

equating likeposrers of the embedding parameter g'

EO^(x,21 , 026*P:0, (z < o).T-- (2.37)

(2.38)

where m?l
By putting the suitable series into boundary conditions (2.28) and (2'29), two linear BCs

axe as follows on z:0

l4,(6*)l,a: coAt_r + x*S*-r -s,. (2.3e)



EzG): coAl-r * r* (W.%t+ (--,) . (2.40)

(2.41)

where

d

sm-r-E:rw*-,t*-r-Li)
i4

s^:T]t%*l*-ii)

Al-r : -,k'fr' .i$rk$ *ene^-v,.) + (--r * offi * *."fu
and

Afn-r :,' fu +v ** htkfu *, -%o>' ofu - 
" 
*k - A*+*

for

fo'm s t*-: 
l1'' m> 1

we introduce an additional equation for the wave height If

et(*n) - h(*n): H:2a' Q'42)

Here nz and n a,re evien and odd integers respectively and o is the dimensionless a.mplitude

of the plate deflection c(x). A" it is clear that equations (2.28) and (2.29) hold on the unl'mourn

bonndary firuction z : rl(x;q) while equations (2.39) and (2.40) hold ott z : 0'Hence the

equations (2.37) to (2.42) can' be solved'
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2.3.3 Approximation and iteration of solutions

By applying the inverse linear operator J2 on equation (2.40) (t(X) can be calculated as follows:

(r(x) : f,tzao^* 
coofi,r) - ucocto,tcos(X)' (2.43)

Here as,1 is still unlmowa which can be determined by equation (2.42) Now by the inverse

linear operator Jr in equation (2.39), Lr(x, z) can eo'*ily be derived. since

-ao0.1 : 
-.' uc4

h (x, z) : o'r:-orP(z) sin(x)'

(2.44)

(2.45)

As c1,1 is still unlooyrn which can be calculated with the help of (2.46) bv eliminating the

secular term siz(x). N* with the aid of first order approximations equations (2'39) and (2'40)

takes the form as

ez({ f,) :

ol,l :

bz(x,z) :

az + a2co + 2dow24 + 2douzci - 2o,wcooll * (a * .,co * Daco - do,,"o - u",oo\r)cos(X)

au(D -,lptz)

-{'ry exp(zz)sin(zx) + .,z,torp(z) sin(x). (2.4s)

Now for higher order unknown functions o^(x,z) and e*6) by following this approach

inffnite order solutions can be obtained .It is also valuable to point out that these solutions will

keep the convergence control para,meter c6'

2.3.4 Optimal convergence control parameter

Ilere two residual squa,re errors of Bcs (2.28) and (2.29) are defined, s'ssslding to Liao [7]

because optimal value of para,meter cg is required'
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,h: #*,* l6(x,'),((x)l at' x:ttx12 '

,L: f-fi*rla(x,z),c(x)l at x:tdx12.

For X : #, M is the number of the discrete points.

Since total residual squa,re error will be.

(2.47)

(2.48)

q
$
N

el^-- efr+ efl. (2.4e)

For generality # :0 the optimal convergence control para,meter cs by the minimrrm of

the squared residual efr is obtained.

2.4 Results and analYsis

In figures 1 and 2 the effects of Young's modulus -E of the plate on the wave elevation ((X)

under a floating elastic plate are studied.which shows the change in C(X) for different values of

E : 12822.7, 12822.8,and L2822.9.

As it is clear from figures 1 and 2 that the nonlinear hydroelastic response of the waves

becomes flatter at the crest and steeper at the trough due to the Iarger value of Young's

modulus.E.

And in figures 3 and 4 the effects of plate thicloess d on the several displacements ((X)

under a floating elastic plate are studied.which shows the change h C(X) for difierent values

of d.It is observed that by increasing d from 0.005 to 0.02 the nonlinear hydroelastic tesponse

of the waves becomes flatter at the crest a,nd steeper at the trough due to increase in plate

thiclness d .

These figures indicates that the results axe very similar to the theory of nonlinear hydroelas-

tic waves beneath a floating ice sheet.Which further shoq's the validity of results'
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0s-0;0 -0.{ 0
x

d

Figure 2.1 Change of the plate deflection ((X) near the crest against X for different values

of young,s modulus of the plate E. Solid line, no plate condition, dashed line, E : L2822'7,

dashdotted line, .E : L2822.8, dashdot dotted line, 'E :12822'9'

Figure 2.2 Change of the plate deflection ((X) near the trough agsinst X Young's modulus

of the plate .8. Solid line, no plate condition, dashed line, .E : L2822.7, dash dotted line,

E : L2822.8, dashdot-dotted line, E : L2E22'9'

?s 3.2
x

-qfl
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s

Figure 2.3 Change of the plate deflection ((x) near the crest against x for difierent plate

thiclsneses d. solid line, no plate condition, dashed line, d: 0.005, dash dotted line, d : 0'01'

da.shdot-dotted line, d' : 0.02.

-007

-o0E

-o0e
\,J+

-o10

-0.11

-{t12

Figure 2.4 Change of the plate deflection c(x) near the trough against x for different plate

thiclmesses d. Solid line, no plate condition, dashed line, d:0.005, dashdotted line, d:0'01'

dashdot-dotted line, d' : 0.02-
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2.5 Conclusions

In this chapter nonlinea,r hydroelastic waves traveling ia a fhin elastic plate floating on a fluid

of finite depth is investigated analytically by the HAM. Mathematically. Both equations (2.19)

and (2.20) there are linear operators for ((X) and 6(X,z) As IIAM gives us with great option

for the auxiliary linea,r operators. So the aruciliary linear operators f,1 and' lz are chosen

geaf,eining the derivatives of @(X, z) and ((X) respectively.By these auxiliary linear operators

calculation of nonlinea.r hydroelastic wave propagation can be solved easily. Also influences of

the young's modulus E and plate thiclsness d on the plate deflection ((X) are investigated .The

plate deflections become lower as the Young's modulus E of the plate increases.The hydroelastic

responsie of the plate is greatly a.ffected by la,rge plate thiclness d. The results obtained here

demonstrate that the thicloess d of the plate and Young's modulus E of the incident wave have

major effects on the hydroelastic response of an ice sheet'

I

-
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Chapter 3

Series solution of nonlinear

hydroelastic waves equation in a

fluid of finite depth

3.1- Introduction

The purpose of this e,hapter is to revisit the work of Ping Wang and Zunshui Cheng [4]' In

this chapter the motion of nonlinear hydroelastic waves under an ice sheet lying over an in-

compressible inviscid fluid of finite depth is discussed by regular perturbatiou and Homotopy

analysis method.The nonlinear partial differential equations (3.1) to (3'5) are composed of the

Laplace equation taken as the main quation. The convergent homotopy series solutions for the

velocity potential and the wave srrface elevation are formally derived by means of IIAM under

the consideration of rninimizisg the squared residual.The effects of the water depth and two

irnportant physical para,meters including Young's modulus and the thic}ness of the ice sheet ou

the wave energy and its elevation are shourn graphically. Discussion and conclusions are made

in Sections 3.4 and 3.5 respectively.

?
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3.2 Mathametical formulation

Let us assume nonlinear hydroelastic waves traveling in an inffnite elastic plate of thidoess d

floating on a fluid of ffnite depth h and. A retangular coordinate OX Z is used, as the z - asi,s

points rrcrtically upward, while z : 0 denotes the undisturbed surface. By following Greenhill

model [1] It is assumed that the fluid is inviscid , iacompressible and irrotational.$(t,z,t) is

velocity potential whie.h satisfies the Laplace equation.

* ** :0, (-h s z s((c,r)).ooo oz"

The boundary condition is

H: o'(z: -.h)'

0e . abac
A+ o"o,

and dyna.rnic boundary condition is

ff nf,v'o*ff n ee :0.

(3.2)

(3.1)

(3.3)

(3.4)

(3.6)

By the supposition that any fluid particle which is in betwen elastic plate and water surface

will remain on it.On the unhoura plate water interface 2 : ((a,t\ the kinematic bouadary

condition is

*:0.oz

,.

where p.(s,t),p and g are plate water interface pressure,fluid density and gravitational

acceleration respectively.By the Kirchhoff bea,m theory .For constant thickness d and uniform

mass density p" of the plate the relationship betwwn plate deflection ((r, t) and pressure p'(o, f)

in view of Kirchhoff (Euler Bernoulli) bea,m theory is

p.: D#+*.|ffi + d. (3.5)

where nt": ped , D : de. By substitutiug equation (3.5) into equation (3.4) gives

the full form of dyna,mic boundary conditiou as

X.;w6f + sc +LP# * *. (#+ o)] : o
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By the concept of traveling wave method an independent rmriable transformation is intro

duced as

X:ka-ut. (3.7)

where Ic is wave mrmber and ru is angulax frequency of incident wave.Now velocity potential

function 6(*,r,t): S(X,z) and the hydroelasticwave profile e@,0: ((X) are used'Then

the gorerning equation and the bottom boundary condition for the velocity potential sls tlens-

formed by

(3.10)

(3.11)

k'#. #r: o, (-h 3 z1 ( (x)).

ff: o'(z : -h) '

In view of (3.?) olt z: ((X), (3.3) and (3.6) are transformed into

-"#*r'#f*-ff:0.

-"#+/+ se +LV*#+*.(,'#+e)] :0.

respectively, where

f :'il',,(#)' .(#)'l (312)

A partial combination of equations. (3.10) and (3.11) girrcs the boundary couditions on

z : ((X) as follows

,'# * nY - "# -7 @^# * *.,'ffi) - r'n#ffi : o' (3'13)

The velocity potential Q(X,r) and the wave surface elevation ((X) are derived by equations

(3.g), (3.9), (3.11), and (3.13) in form of series solutions for g(x,z) and c(x) ",ill 
be derived

in the subsequent section based by homotopy analysis method'

(3.8)

(3.e)

!1
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3.3 Analytic approach based on the homotopy analysis method

3.3.1 Solution expression and initial approximation'

First of all in homotopy analysis method, set of base firnctions and solutiou expression are

assumed.Which are used for rrnhrrrnrp solutions of the nonlinear hy&oelastic waves problem.

As it is very difficult to deuls with the e,rrpressiou forms for unloocm potential function and

plate deflection. Since in view of physical background of the pure water war/es, the progressive

warrc ele\Btion ( (X) can be wdtten as

+a
( (x) : EP""* (nx).

,7<)

(3.14)

c

By a set of base fimctions {cos(zX),r1 >: 0}, where 9n 8e un}oourn coefficients' In the

case of plate covered surface, sitrce it is asumed thet there is no space between bottom surface

of pl,ate and top surface of fluid layer.The updght displacemeut of plate is periodic in the

x direction-Therefore, it is clear thut ((x) can be orpressed in the above form (3.14)'In view

of linear wave theory, the solutions of the Laplacu equation (3'8) by the separation of variables

method can be found-Here kinematic, dynanic and boundary condition in finite water depth

are used to obtain these solutions. Since d(X,z\ becomes

a(x,,):E*ffisin(zx).
tr:I

(3.15)

Nor,r consider a set of base frmctions {cosh[nlc(z + h)]/ cosh(zkh) sin(rzX), z 2 0], where an atre

unloown coefficients. Ilere potential function $(X,z) defined bV (3'15) automatically satisfies

the governing equation (3.8) and the bottom boundary condition (3'9)' The equations (3'14)

and (3.15) are the solution oqnessions of. $(x,z) and ((x) repectively'whic'h is important in

homotopy analysis method. In view of eqrrations (3.9) and (3.15), the initial approdmation for

poteutial function is gven b'V

oo(x,r):oo,r99ffisi'(x). (3.16)
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where {rg,1is en unlmoutn coefficient, since

(o(X) : o' (3.17)

In view of [8,9] the initial approrimation for c(x) is zero. According to the equations (3'11)

and (3.13), two nonlinear operators lYr and N2 are defined in the zubsequent section for analytic

series solution.

3.3.2 Continuous rmriation

The HAM depends on an initial approximation to the exact solution. since based on the

nonlinear boundary conditions (3.11) and (3.13), two nonlinear operators Nr and N2 are defined

asl

iv1[o(x, zie),rt (x;s)] : ,zyofi:;q) *nW-'#
-z(o*ffnu\f;o *,'*.ffi)

., 0Q(X,z;q)0'l(X;q)-tr-sTT' (3.18)

where

Nzh(x;d,a (x, z;q)! : -rflQ Vtz;q) + F + srt (x;q)

.iV*tW * *" (,,W.,)] (s 1e)

F:;[-,(#)'. (#)']

d

(3.20)

Ilere q € [0,1] is the embedding paraneter of the homotopy analysis method' As explained

by Liao, cheung and Tao et al [9,10], in homotopy analysis method the auxiliary linea'r operator

and the initial guess can be chosen by extremely large freedom' It is noted that both linear

terms of Q(x,z;s) and linear terms of.r1(x,q) are all contained in (3'18)'Now based on the



homotopy analysis method, by neglecting

Iinea,r operator of iD(X, zis\ b so properly

which iB obtained as given below.

the linear terms in equation (3.13) and auxiliary

chosen,by means of the solution o<pression (3'15),

(3.21)

If angllar frequency u.r is given so an appro:rimation can be chosen based on the linear wave

theory to simplify the subsequent resolution of the nonlinear PDEs as follows:

(3.22)

Since the aruriliary linear operator in (3'21) can be simplified as

c1 [a (x, ziq)l :sktanh(eh) W * nW (3.23)

Here .f1(0) :0.
since due to the weakly nonlinear effects there is a difference betweeu the actual frequency

ar and linear dispersion relatiou wg : \@ upto some extent'Results are compared

with those obtained by the perturbation method. In view of linear operator of the wave profile

function q(x;q)and the nonlinear operator N2, another aruriliary linear operator may be choseu

Lzh(x;q)l: ffo1x,ziq) , A'rt6g-
0x^

r--' 0x2
+q(X;q). (3.24)

Trla (x, zi q)l : rz8o E':; q) 
* nW'

d

Here J2(0) :0.
Now let cs be a nonzero oonvergetrae control para,meter. It is noted that both c0 and q in the

IIAM are arxiliary param.eters. Instead of the nonlinear PDEs (3'8), (3'9)' (3'11)' and (3'13)

the zeroth order deformation equations are constructed as

W.ryW= o, ((-h s z 34(x;q))). (3.25)

(3.26)
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(t - c) filA(X,ziq) - do(X,z)l: qcsNl [O(X, ziQ),1(-I. dl,(, : rt (X;s)) - (3.27)

(r -q) Lzlrt(X,ziq)-Co(X,z)l:qcnN2[O(X, zi1),rt (X;q)] ,(z:rt (X;s)). (3'28)

It is clear that two mapping functions Q(X, z;q) and 4(X; q) of the original problem vary from

initiat appro:rimation do(X,r) and (s(X) to the exact solutio* d(X,z) and ((X). Since in view

of equations (3.27) and (3.28) the Taylor series of firnctions Q(x, z;q) and q(x;q) at g : g ars

as follours
+@

Q (X, z;4) : Oo (X, z) + D 6*(X, r) q*.
m=l

+o
q(x;z): (o (X) + I (- (X,z)q*.

nel

(3.2e)

(3.30)

(3.32)

{O*(x,z'),e,o(x)} : *#{o (x, zie) ,e(x;q)} at s : 0. (3'31)

A6 it is assgmed that co is chosen so properly that the series in (3'29) and (3.30) converges

at g: l,since homotopy series solutions will be as

+o
A(X;z\ : Q(X;z,t): Qo(X,z) +Dd*(X,')'

nel
+@

c(x) : q(x;1) :(o(x)+ I(-(x).
rn:l

since at the nth order appro:rimations

+m

o(X,r) : do(X,r)+ t o*(X,z).
ttt-l

+o
( (x) : (o (x) + D c- (x). (3.33)

n:l



As shown later in the following section, the unlmovrn terms /*(X, z) and e^(X) are gov-

erned by the linear PDEs (3.34) to (3.36).

3.3.3 Deformation equations of high order

By putting the homotopy Maclaruin series (3,29) and (3.30) into equations (3.25) and (3.26) the

deformationequationsof highorderfortheunloovmfirnctions 6*(X,z) and e*6) a,rederived

directly from the deformation equations of zeroth order,and then equating the like powers of

gmSsdding para,meter q it follows that

(3.34)

where rn 2 l.Note that, o(x, z;q) at the urknoum surface z : q(x;g) may be o<pressed

in torms of the Taylor expansion at z:0 instead of z: q(X;q) since two linear boundary

conditions on z:0 are as follows

h(0) at z :0 : coA*-t * X*S*-t -s,..

LzG,*\= coAl-r * ** (W . %+ e--,) .

(3.35)

(3.36)

where

sm_!:trrW*.,t*-r-ilr)
i={)

s*:T]tffi*'t*-;,;)

Al-r : -,hoff' ."p*rkw *@,Q*-r-'") +(--r . +%.ry%
and
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L!*-r :,' fu + ov *-" hrk% *r^%, -iro^k -+k - u' n h
for

dPnde*-n
dx d,x

x*- [o,m(l (B.az)- 
\t,ra > 1'

It should be noted that (3.27) and (3.28) holds on the unloourn boundarv,z : q(x;q) while

(3.8b) and (8.36) hold o.l z :0. F\rrthermore, the originat uonlinea,r PDEs (3.1) to (3.5) are

transferred into an inffnite nunber of linear decoupled high order deformation equations (3.M)

to (3.36). Namely, gven d--r, e*-r,Q*and (- can be obtained easily by means of the inverse

operators of the rigbt hand sides of (3.35) and (3.36), respectively.The resulting expressions for

A* Md e* ue presented to the second order in the subsequent subsection.

3.3.4 First order and second order approximations'

(r (x) : f,l*n^ * cocr|,t* kzqaf;,rtarhz ('zk)] - ue.o,o,Tcos(x)

+fi\"o.rl,, - kzqo?o,rtanh2 (hk)] cos (2X) ' (3.38)

But now the coe,frcient os,1 in (3.16) is still unloourn. so an additional equation to relate

the solutions with the wave height is introduced'

erk m) - $(mn): 1. (3.3e)

Herc m and n are even and odd integers respectively and I{ is the wave height to the first

order based on the HAM.The solution of cs,1 can be determined by the relation (3.39) for the

wave height aud its vertical displacement. Now by usrng the inverse linear operator 'f, in (3'35),
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it is easy to get the solution of. Q1(X, z).

H
e0,1 : -ilq.

dl,x,z\ : or,r@lsin(x) * 
= -, -'P*! ff :Yo? 

(o,ul=,,r,

I6I@)--Eu\^i' - tagkuco[2tanh(rzk) - tanh (zhk)l

-ffifrI4xsin(2x).

d

(3.40)

Now the solution of. Q{Xrz) has one unlmos'n coefficient c1,1, which can be determined by

avoiding the seculax term sirz(X) b fiz(X,z). It is noted that all subsequent functions occur

recusively. Since in view of the linear equations (3.35) and (3.36) to continue with the first

orden approrirnations

Cz(/.) : 9z,o* gz;rn (X) + gz,z*s(zK) + lz3@B(3X) + gz,a"o'(4X)'

Qz(X,z):o,,,%fi#sin(x)*,,,Wsin(2x)*o,,,#sin(3x)
*or,o*'h.*fiff;|f sin (ax) * or,r95# sin (5x) . (3.41)

where o;; is the jth unhowo coefrcient of. $;(x,z) and 9.3ls the ith unlnown coefficient of

(r(X).h order to obtain higher order firnctions 4*(X, z) and' C*(X), the inffnite order solutions

for physical model can be acquired by continuing this approach'

3.3.5 Optimal connergence control paraneter'

As all model para^meters in appro<imate series solutions are fixed, sirce there is stiu an unhown

con/ergence coutrol para.meten cO whie,h is used to guamntee the comrergence of approximation

solutions. According to Liao [4, it is the convergence control para'meter cs that esseutially

differs the homotopy analysis method from all other analytic methods. And the optimal rralue

of 4 is determiued by the minimum of the total squared residual efi of our nonlinear problem,

defined as

el: ef + el- (3.42)
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where

aM
e{ : f,E(* lo(x,r),((x)l at x:iax)z.

1Mel : #!trur lt(x,r),((x)l at x:iax)2 ' (3.43)

Herc M is the mrmber of the discrete points aad' X : #-
For generalirt #: 0 the optimal convergence control para,meter cs by the minimrrm sf

the squared residual efl is oUtainea.

3.4 Solutions by Genetic algorithm and Nelder mead method.

As in Homotopy Analysis Method we need optimal convergence control para,meter to select the

values and confirm the convergeuce of the problem.Figures 3.1 to 3.4 shows the effects of plate

deflection ((X) at difierent number of terms used in series solution.For range of M the total

squared residual efl is found by us:ng equation (3.42) in view of (3.43).

Where i is the number of terms or iterations of the obtained solution.The total squared

residual ef,rand,optimal oonvergence control para,meter co is indicated in table 3.1.The analytical

solutions given in equations (3.35) and (3.36) are obtained by using Homotopy Analysis Method

and the s6[ed.ting para,meter is found using Genetic Algorithm and Nelder Mead method as

shown in Table 3.L.

Following are the para,meters used for Geuetic Algorithm'

Population: Population type: Double vector

Creation firnction: Uniform

Initiat population: 100

Initial Range: [0; 1]

gss.ling function: Rank

Selectiou function: Sto"hastic uniform.

Reproduction: Elite Count: 10

Crossover fraction: 0.8
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Mutation firnction: Uniform

Rate: 0.01

Crossover firnction: Arithmetic.

Migration: Direction: Both

Fhaction: 0.2

IntervaL 20

Hybrid function: None.

Stopping Criteria: Geueration: 100

Time limit: inf

Fitness limit: -in[

Tolerance: 10-6.

Table 3.1 comparison of homotopic series solution and optimal series solution using Genetic

Algorithm and Nelder Mead method.

Table 3.1 SigDify that by using the proposed hybrid scheme the time and obtained total

squared residual el canbe considerably reduced. We can introduce further g,[sdding para-

meters in these solutions to gnin more efficient reeults'

6-Uma-a sertes solutlon using Genetlc

aleorithm and Nelder mead method
Sertes soltltion Homoopy analYsls method

d E Iteration Time Range/value Residual

Error

Iteration fime Range/value Residual

Error

0.005 t2822-7 5 1.253 {.8 to -1.1 2.lxl0-t 2 0.0!13 {.8 to -1.1 5.2x10-3

0.01 12822.8 10 95.443 -0.7 to -1.2 4.lxl0-3 5 1.253 {.7 to -1.2 3.0x10{

0.02 12822.9 76 296.182

t.t23
109543

-1.3 to {.5 7.9x10{ 7 5.362 -1.3 to {.5 1.9x10{

2.5x10-t 2 0.11 4.8 to-1.1 1,19x10-l
0.001 lol 5 {.8 to -1.1

7.lxl0-3 5 1.X.23 {.7 to-1.2 l,5xl0{
0.005 ld 10 -0.7 to -t.z

l.6xlO-t 7 5.69 -1.3 to{.5 l.2xl0{
0.01 l0r0 16 3@.426 -1.3 to {.5
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3.5 Results and analYsis

In figures 1 and 2 the efiects of Young's modulus E of on the wave elevation ((X) under a floating

elastic plate are studied.which shows the change in c(x) for different values of. E :108,loe,and

1010.

As it is clear from figures 1 and 2 that the nonlinear hydroelastic response of the waves

becomes flatter at the crest and steeper at the trough due to the larger value of Young's

modulus E .It i8 clea,r that larger E reduces the plate deflection ((x).

Atrd in figures 3 and 4 the efiects of plate thiclness d on the several displacements ((x)

under a floatiag elastic plate are studied.which shows trfug chenge in c(x) for different values

of d.It is observed that by increasing d from 0.001 to 0.01. the nonlinea,r hydroelastic resporuie

of the waves becomes flatter at the crest and steeper at the trough due to increase in plate

thiclsness d .Particula,rly when the plate thiclmess is nearly equal to zero, the wave becomes

pure gravity wave as observed in [9]'

Let P.E. be the mean potential density per unit length iu the X-a)ds' In terms of the wave

surface elevation function, the enerry densiff can be written as

q2 61ax. (3.44)

These figures indicates that the results axe very similar to the theory of nonlinear hydroelas-

tic waves beneath a floating ice sheet. Also by Gernetic algorithm and Nelder mead method

results are compaxed as shown in Table 3'1'

Which furthen shows the validity of results'

1 f2"
P.E: @ JO
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Figure 3.1 Change of the plate deflection ((x) near the crest against x for different Young's

modulus of the plate E. Solid line .E : 108 dashed line E : 10e dashdot-dotted lioe 'E : 1010'

-o.(l L
2

x

Figure 3.2 Change of the plate deflection ((x) near the trough against x for difierent

young,s mod,l,s of the plate .E. Solid line .E : 108 dashed line 'E : 10e dashdot-dotted line

E: 1010.

E
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x

Figure 3.3 Change of the plate deflection ((x) near the crest against x for different plate

thiclmesses d .solid line d : 0.001, dashed line d = 0.005, dashdot-dotted line d: 0'01'

-{}.m L
2 L4 2.8 32

x

Figure 3.4 Change of the plate deflection ((x) near the trough agninst x for difierent plate

thiclnesses d .solid line d : 0.001, dashed line, d - 0.005, dashdot-dotted line d : 0'01'

e
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3.6 Conclusions

In this chapter the nonlinear hydroelastic waves propagating beneath a two dimensional infnite

elastic plate floating on a fluid of ffnite depth are investigated analpically by the IIAM'

From kinematic and dyna,mic boundary conditions at a constant velocity in a fluid of ffnite

depth the PDE',s in (3.20), (3.21) and (3.22) a,re obtained bv simple elimination of the time

dependent terms.

Here for a general case it should be noted that ,when traveling wave method is directly ap'

plied to transfer the temporal difierentiation into the spatial one in a fixed Cartesian coordinate

OXZ PDE'g are constructed. F\rrtherluore' the connergent homotopy series solutions for the

PDE's are derived by the HAM with the optimal conviergence control para',meter'

Also influences of the Young's modulus.E and thicloess d of the plate on the plate deflection

((x) are investigated. The plate deflections become lower by the increa'se in Young',s modulus

E of the plate.The plate thiclsness d greatly effects the hydroelasticity of the plate' The results

obtained here orpress that the hydroelasticity of ice sheet effected by the thidrness d of the

plate and Young,s modulus E of the incident wave.which is proved in the theory of nonlinear

hydroelastic waves beneath a floating ice sheet in a fluid of finite depth [10]'

,
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