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Preface

Synovial �uid (SF) plays a crucial role in joint lubrication, reducing cartilage friction for

smooth movement. It is located near the synovial membrane (SM), which consists of collagens,

proteins, and proteoglycans key components in�uencing SF viscosity. The selectively permeable

SM allows the absorption and secretion of SF, regulating water balance to prevent joint swelling

(e¤usion) or inadequate lubrication, which may lead to joint damage. Several studies have

examined SF �ow characteristics. Yin et al. [1] highlighted the complexity of SF as a �ltrate of

interstitial �uids. Lai et al. [2] noted that SF �ow depends on shear stress and deformation rate,

but no single �uid model accurately describes its rheology. Ouerfelli et al. [3] emphasized the

role of hyaluronic acid (HA) in joint lubrication, where SF behaves as a non-Newtonian �uid,

shifting to Newtonian behavior after hyaluronidase treatment in osteoarthritis. Singh et al. [4]

explored SF for arthritis treatment, while Hasnain et al. [5] modeled SF as a power-law �uid

incorporating permeability and magnetic �eld e¤ects. Maqbool et al. [6, 7] analyzed SF �ow

through permeable conduits using the Linear Phan-Thien-Tanner (LPTT) model and found

that periodic �ltration in�uences pressure and velocity distribution. The viscosity of SF is

determined by HA concentration, and its long-chain molecules can be modeled as a polar �uid.

Rumanian et al. [8-9] used the couple-stress �uid model to study the hydrodynamic lubrication,

noting the presence of couple stresses in �uids with large molecular structures. Previous studies

[10-15] analyzed couple-stress e¤ects in various �ow conditions but did not consider SF as a

couple-stress �uid.

The geometry of a �ow system plays a key role in determining �uid behavior, tube-like

geometries with circular cross-sections o¤er clear advantages by promoting smooth, uniform

�ow, minimizing friction, and maintaining laminar conditions. In comparison, slit or rectangular

channels often produce higher shear stress at the edges, leading to �ow separation, turbulence,

and increased resistance. The symmetry and smooth surface of tubes reduce boundary e¤ects

and allow more balanced pressure distribution, resulting in lower energy losses and improved

�ow performance. Several studies have highlighted the bene�ts of tube-like geometries in �uid

�ow analysis. Pozrikidis et al. [16] developed an integral equation method speci�cally for

studying Stokes �ow in tubular structures. Shankar et al. [17] examined the stability of �ow

in both tubes and channels. Subsequent research by Siddiqui et al. [18-19], Maiti et al. [20],
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Jeong J.T. et al. [21], and Farooq et al. [22] explored biological �uid �ow through tubes and

consistently demonstrated superior performance compared to �ow in rectangular channels. Most

recently, Hakligor et al. [23] investigated wake patterns behind permeable circular cylinders,

showing that porosity signi�cantly in�uences vortex behavior in tube-like geometries, crucial

for optimizing �uid transport designs. Keeping in view the past study the present thesis is

presented in following manner.

Chapter one describe the preliminaries, chapter two is the review work of siddiqui et al. [19],

he has considered the bi-directional synovial �uid (Newtonian �uid) �ow across the tube and

discussed the �ux and pressure of the �uid with in a tube. Chapter three is extended for the

couple stress �uid �ow with in a tube geometry and rheology of synovial �uid is analyzed by

the couple stress �uid model with in a tube and near its boundary using the periodic �ltration

near the boundary.
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Chapter 1

Fundamental Concepts

This chapter covers the fundamental concepts and de�nitions of �uid mechanics.

1.0.1 Fluid

A �uid is any substance that deforms under shearing forces and encompasses liquids, gases, and

plasma.

1.0.2 Fluid Mechanics

Fluid mechanics is the study of behavior and motion of �uids, focusing on the forces acting on

them and their properties such as pressure and �ow.

1.1 Types of Flow

Flow can be classi�ed on the basis of �ow structure.

1.1.1 Laminar vs Turbulent Flow

Laminar �ow refers to a pattern of �uid �ow where all �uid particles follow a certain path and

move smoothly without crossing each other. On the other hand, turbulent �ow is distinguished

by �uid particles that do not follow a speci�c path.
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1.1.2 Steady vs Unsteady Flow

In steady �ow, �uid properties such as velocity, pressure and density do not depend on time

during �ow, while in unsteady �uid �ow properties changes with respect to time.

1.1.3 Compressible vs Incompressible Flow

Compressible �ow encounters a remarkable change in density with varying pressure, tempera-

ture, and space variables. On contrary incompressible �ow have a density that does not change

with respect to space variables, pressure and temperature.

1.1.4 Creeping vs Non-Creeping Flow

In creeping �ow frictional forces are outweighed by viscous force, such �ows occur when �uid

move very slowly or when it �ows through very small channels. Whereas, non-creeping �ow

describes the �ow behavior where inertial forces are dominant compared to viscous forces such

�ows occur at higher Reynolds numbers.

1.2 Types of Fluid

Fluid �ow can be observed by di¤erent types of �uids, each with their own unique characteristics

and behavior. These are classi�ed as Newtonian and Non-Newtonian �uids.

1.2.1 Newtonian vs Non-Newtonian Fluid

A Newtonian �uid is that which exhibits a linear relationship between shear stress and velocity

gradient whereas, non-Newtonian �uid do not adhere this relationship. Mathematically, shear

stress and deformation rate are related by the following relation:

� rz = �
; (1.1)

where � is the coe¢cient of viscosity, 
 is the rate of strain, and � rz is the shear stress.

Whereas for non-Newtonian �uid shear stress and deformation rate are related by the fol-

lowing non-linear relation:
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� rz = � (
)n�1 : (1.2)

where 
 is the shear rate across adjacent �uid layers , n is the �ow behavior index, and �

represent the apparent viscosity that indicates the �uid�s resistance to �ow under particular

conditions. Di¤erent non-Newtonian �uids models are power law model, viscoelastic model,

Casson model and couple stress �uid model.

Couple Stress Fluid Model

It is a type of non-Newtonian �uid that undergoes additional internal forces to the particle�s

interaction with each other. Examples of couple stress �uids includes synovial �uid in knee and

hip joints, blood �ow in capillaries and arteries and lubricants in �uid machines.

1.3 Synovial �uid

Synovial �uid is a biological �uid having non-Newtonian nature because its viscosity varies

due to stress and strain. It is present in synovial joints and work as a lubricants and reduces.

Friction between cartilage during movements. To model the synovial �uid �ow, the concepts of

�uid �ow, rheology, lubrication theory and biomechanics are required.

1.3.1 Types of Synovial �uid

The synovial �uid are classi�ed as normal and in�ammatory synovial �uid according to viscosity.

Normal Synovial �uid

In healthy human synovial �uid has high viscosity due to the composition of hyaluronic acid,

lubricating protein and water. The shear thinning and pseudoplastic �uids can be considered

as normal synovial �uid because it has pronounced shear thinning and viscoelasting behavior.

The normal synovial �uid provides excellent joint lubrication because it is rich in hyaluronic

acid and lubricating proteins.
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In�ammatory Synovial �uid

In diseased condition in�ammatory synovial �uid can be observed with low viscosity and less

shear thinning property. The in�ammatory synovial �uid as diluted hyaluronic acid with weak

elasticity due to dilution. The in�ammatory synovial �uid can be model using the Newtonian

�uid model. In�ammatory synovial �uid can cause joints pain, sti¤ness of joints and swelling

near the joints, also during movement such type of �uid causes pain and discomfort.

1.4 Fluid models and Synovial �uid

The synovial �uid are modeled on the basis of normal and in�ammatory conditions, the most

common model for normal synovial �uid are viscoelastic and shear thinning �uid. Its compli-

cated rheological behavior includes time dependent stress relaxation and decreasing viscosity

with increasing shear rate which is simulated by Maxwell �uid model,Oldroyd-B �uid model,

Power law model, Second grade �uid model and Couple stress �uid model.

1.5 Synovial �uid as a Couple Stress Fluid

The microstructural and viscoelastic properties of synovial �uid, which are not well captured

by traditional Newtonian or generalized Newtonian models, can be included by modeling it as

a couple stress �uid. This model accounts micro-rotational e¤ects in �uid and couple stresses

resulting from the presence of long-chain hyaluronic acid and other micromolecules within the

�uid. These elements provide extra resistance to deformation, which is crucial for lubricating

cartilage surfaces, especially in small joint spaces or in low shear situations. Furthermore,

couple stress theory o¤ers a more precise description of �uid behavior in narrow or curved

joint geometries such as those found in the knee, hip, or �ngers where microscale interactions

signi�cantly in�uence �ow dynamics.

1.6 Permeability in Synovial membrane

The synovial membrane�s permeability is the capacity of the membrane to permit the passage of

gases, nutrients, waste products, and compounds. Maintaining the composition of synovial �uid,
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which lubricates and nourishes cartilage, is especially crucial for maintaining joint homeostasis.

1.7 Flow Geometry and its Types

External �ow

Fluid �ow around a body immersed in the �uid, where the boundary layer is free to develop in

one direction. Examples include �ow over a �at plate, around a cylinder, sphere, or airfoil.

Internal �ow

Fluid �ow that is completely con�ned within solid boundaries, such as �ow through pipes,

between parallel plates (duet �ow), within annular spaces, or inside cavities.

1.7.1 Permeable vs Non-Permeable Cavity

A permeable cavity refers to a structure that allows the passage of �uid (liquids or gases)

through its walls. Similar to a permeable cylinder, the material of the cavity has a porous

structure that enables the movements of substances through it. Whereas, a non-permeable

cavity is a type of cavity that prevents the passage of �uid through its walls. Some common

example of non-permeable cavities are metal pipe, plastic syringes, and duets that are used for

the transportation of substances without leakage.

1.7.2 Reabsorption and its Types

Constant Reabsorption

In constant reabsorption, a �xed percentage or amount of a substance is reabsorbed, regardless

of its concentration in the �ltrate. This process is not in�uenced by changes in concentration

or volume and tends to be stable, steady mechanism. Mathematically velocity at the boundary

is represented as follows:

V (R; z) = V0: (1.3)
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Linear Reabsorption

In linear reabsorption, the rate of reabsorption increases proportionally with the concentration

or volume of the substance in the �ltrate. This means that as the amount of a substance in the

�ltrate rises, the reabsorption rate also increases, often in direct proportion. Mathematically

velocity at the boundary is described as follows:

V (R; z) = V0 + V1z: (1.4)

Periodic Reabsorption

In periodic reabsorption, the rate of reabsorption occurs in intervals or cycles with respect

to the concentration or volume of the substance in the �ltrate. This means that even as the

amount of a substance in the �ltrate rises, the reabsorption happens at speci�c times or phases.

Mathematically velocity at the boundary is described as follows:

V (R; z) = V0 cos (�z) ; (1.5)

V (R; z) = V0 sin (�z) : (1.6)

1.8 Type of Boundary Conditions

There exist three primary types of boundary conditions.

1.8.1 Dirichlet Boundary Conditions

This boundary conditions speci�es the value of unknown instead of its derivative at the bound-

ary. The non-slip conditions indicates that the �uid�s velocity at the boundary is equal to the

velocity of the surface. For a stationary surface, this mean the �uid�s velocity at the boundary

is zero.

u (x; t) = g (x; t) on @
: (1.7)
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1.8.2 Neuman Boundary Condition

Neuman boundary condition is a type of boundary condition that speci�es the derivative of the

solution function at the domain�s boundary. In �uid mechanics , a slip boundary condition sets

the tangential velocity gradient at the boundary, when �uid doesn�t cling to the surface.

@u

@n
(x; t) = h (x; t) on @
: (1.8)

1.8.3 Convective Boundary Condition

A convective boundary condition, or mixed boundary condition, is a combination of �xed value

and �ux that de�nes both the value of a function and it�s derivative at the boundary.

�k
@u

@n
= h (u� u1) on @
: (1.9)

1.9 Basic Laws of Fluid Mechanics

1.9.1 Law of Conservation of Mass

Mass conservation law describes that mass cannot be created or destroyed within a system, and

is expressed through the continuity equation in �uid dynamics. Mathematically, it is de�ned

as follows:
@�

@t
+r (�v) = 0; (1.10)

in cylindrical coordinates, above equation can be written as follows:

@�

@t
+
1

r

@

@r
(r�vr) +

1

r

@

@�
(r�v�) +

@

@z
(�vz) = 0; (1.11)

where t is the time, � is the density, vr; v� and vz are the radial, azimuthal and axial component

of velocity respectively.

For incompressible �ow, density is constant and above equation becomes

1

r

@

@r
(rvr) +

1

r

@

@�
(rv�) +

@

@z
(vz) = 0: (1.12)
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1.9.2 Law of Conservation of Momentum

This law states that the total amount of momentum remains unchanged within system, but it

can only be altered under the e¤ect of forces. Mathematically, it can be de�ned as follows:

�

�
dv

dt
� f

�
+rp =r� ; (1.13)

where v is the velocity vector, t is the time,p denotes the hydrostatic pressure, � represents the

Cauchy stress tensor, and f ,and denotes the body forces.

Radial component of Eq.(1:13) is given below:

�

�
@vr

@t
+ vr

@vr

@r
+ v�

�
1

r

@vr

@�
�
v�

r

�
+ vz

@vr

@z

�
+
@�

@r

= ��

�
1

r

@

@r
(r� rr) +

1

r

@� �r

@�
+
@� zr

@z
�
� ��

r

�
+ �fr: (1.14)

Azimuthal component takes the following form:

�

�
@v�

@t
+ vr

@v�

@r
+ v�

�
1

r

@v�

@�
+
vr

r

�
+ vz

@v�

@z

�
+
1

r

@�

@�

= ��

�
1

r2
@

@r

�
r2� r�

�
+
1

r

@� ��

@�
+
@� z�

@z
+
� �r � � r�

r

�
+ �f�: (1.15)

Axial component of Eq.(1:13) takes the following form:

�

�
@vz

@t
+ vr

@vz

@r
+ v�

�
1

r

@vz

@�

�
+ vz

@vr

@z

�
+
@�

@z

= ��

�
1

r

@

@r
(r� rz) +

1

r

@� �z

@�
+
@� zz

@z

�
+ �fz: (1.16)

where p is the pressure, � is the dynamic viscosity, fr; f�; and fz are the body forces in radial

, azimuthal, and axial directions respectively.

1.10 Series solution method

The power series method is a powerful analytical technique used to obtain exact or approximate

solutions to di¤erential equations by expressing the unknown function as an in�nite series. It
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is particularly e¤ective for linear di¤erential equations with variable coe¢cients.

Assume the following sixth-order di¤erential equation:

y(6) = F
�
r; y; y

0

; y
00

; y
000

; y(4); y(5)
�
: (1.17)

We assume a power series solution of the form:

y (r) =
1X

n=0

anr
n; (1.18)

compute all required derivatives up to the sixth order:

y
0

(r) =
1X

n=1

annr
n
� 1; y

00

(r) =
1X

n=2

ann (n� 1) r
n�2; :::

y
(6)

(r) =

1X

n=6

ann (n� 1) ::: (n� 5) r
n�6: (1.19)

Substitute these expressions into Eq:(1:17). After substitution, group terms by powers of rn.and

set the coe¢cient of each power to zero. This yields a recurrence relation between the coef-

�cients an; an�1; an�2; :::. Using this recurrence relation along with initial or known values

(e.g. a0; a1; :::) ; all coe¢cients can be determined. After computing the coe¢cients, the solu-

tion takes the form of a power series:

y (r) = a0 + a1r + a2r
2 + a3r

3 + :::. (1.20)

Thus, the sixth-order di¤erential equation is solved using a power series representation.
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Chapter 2

Mathematical study of synovial �uid

using a Newtonian �uid model

2.1 Introduction

This chapter is a review work of Siddiqui et. al. [19] ; who presented the steady, incompressible,

two-dimensional �ow of a Newtonian �uid through a permeable tube of �nite length L and

radius R. The �uid reabsorption at the permeable wall is considered to be a periodic function

of axial length and mathematical model represents the bi-harmonic equation which is solved

using a no-slip boundary condition. Expressions for velocity pro�le, stream function, pressure

distribution and shear stress at the wall are calculated by series solution method. The variation

in shear stress, velocity pro�le, stream function and pressure distribution are analyzed through

graphical representations.

2.2 Mathematical Formulation

Consider a two-dimensional axisymmetric stokes �ow through a tube of radius R and length L,

as illustrated in Fig. 2.1.
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Fig. 2.1: Geometry of the �ow

The symmetric nature of the �ow along the centerline suggests the following velocity pro�le:

v = (vr (r; z) ; 0; vz (r; z)) ; (2.1)

where vr (r; z) and vz (r; z) are the radial and axial velocity components, respectively.

To observe the �ow properties, like velocity, pressure, and shear stress, following laws of

�uid mechanics are used.

r:v = 0; (2.2)

�

�
@

@t
+ (v:r)

�
v +rp = ��r2

v; (2.3)

where v is the velocity vector, p is the hydrostatic pressure of the �uid, � is the �uid density,

� is the viscosity coe¢cient of Newtonian �uid. To �nd r2v, we used the vector identity

r
2v=r� (r�v) and its expression is given as follows:

r
2v=

�
�
@

@z

�
@vr

@z
�
@vz

@r

�
; 0;
1

r

@

@r

�
r

�
@vr

@z
�
@vz

@r

���
: (2.4)
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Since the aim is to analyze creeping �ow, the inertial term can be disregarded.

The component form of Eq. (2:2)� (2:3) for axisymmetric, incompressible Stokes �ow takes

the following form:

1

r

@

@r
(rvr) +

@

@z
(vz) = 0; (2.5)

@p

@r
= �

�
@

@z

�
@vr

@z
�
@vz

@r

��
; (2.6)

@p

@z
= ��

�
1

r

@

@r

�
r

�
@vr

@z
�
@vz

@r

���
; (2.7)

and shear stress for axisymmetric �ow is mentioned as follows:

� rz = �

�
@vr

@z
�
@vz

@r

�
: (2.8)

The axisymmetric �ow at the center of the tube meets the following boundary conditions:

vr = 0;
@vz

@r
= 0; at r = 0: (2.9)

The periodic reabsorption rate and no-slip conditions at the permeable wall of the tube satisfy

the following boundary conditions:

vr =

�
V0 sin�z

V0 cos�z
at r = R;

vz = 0; at r = R:

The �uid enters into the system with a linear �ow rate and ful�lls the above mentioned boundary

conditions at the entry region z = 0

Q0 = 2�

RZ

0

rvz (r; 0) dr; at z = 0:

The set of Eqs. (2:6) � (2:7) represent the linear partial di¤erential equation in which three

unknown vr; vz and p are involved. We will cross di¤erentiate Eqs. (2:6) � (2:7) to eliminate

the pressure gradient in the following form:
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�

�
@

@z

�
@

@z

�
@vr

@z
�
@vz

@r

��
�

@

@r

�
1

r

@

@r

�
r

�
@vr

@z
�
@vz

@r

����
= 0: (2.10)

To reduce the number of unknowns, following relation of stream function will be used.

vr =
1

r

@ 

@z
; vz = �

1

r

@ 

@r
: (2.11)

Inserting above form of stream function in Eq. (2:10), one can get the following form of equation:

�

�
r
2

�
1

r
E2 

�
�
1

r2

�
1

r
E2 

��
= 0; (2.12)

where

r
2 =

�
@2

@r2
+
1

r

@

@r
+

@2

@z2

�
; (2.13)

and

E2 =

�
@2

@r2
�
1

r

@

@r
+

@2

@z2

�
: (2.14)

After performing further calculations in Eq.(2:12) ; we can get the fourth order linear homoge-

neous PDE in the following form:

E4 ( ) = 0: (2.15)

The boundary condition in term of the stream function are expressed as follows:

@

@r

�
�
1

r

@ 

@r

�
= 0;

1

r

@ 

@z
= 0 at r = 0; (2.16)

�
1

r

@ 

@r
= 0;

1

r

@ 

@z
=

�
V0 sin�z

V0 cos�z
at r = R;

Q0

2�
=  (0; 0)�  (R; 0) at z = 0:

2.3 Non-dimensional Quantities

For non-dimensional analysis following quantities are de�ned:

r
0

=
r

R
; z

0

=
z

R
; vr0 =

vr

V1
; vz0 =

vz

V1
; Q

0

0 =
Q0

V1R2
; (2.17)
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V
0

0 =
V0

V1
; p

0

=
p

�V1R
;  

0

=
 

V1R2
:

The dimensionless form of Eq. (2:15)� (2:16) takes the following form:

E4 ( ) = 0; (2.18)

@

@r

�
�
1

r

@ 

@r

�
= 0,

1

r

@ 

@z
= 0 at r = 0; (2.19)

�
1

r

@ 

@r
= 0,

1

r

@ 

@z
=

�
V0 sin�z

V0 cos�z
at r = 1;

Q0

2�
=  (0; 0)�  (R; 0) at z = 0:

2.4 Solution of the Problem

To solve the linear fourth order PDE, we will assume an inverse method and the exact solution

of Eq.(2:18) can be obtained by de�ning the following stream function  (r; z)

 (r; z) = (cos�z)F (r) +G (r) :

Similarly, when the reabsorption of the wall is cosine function Eq.(2:18) can be solved by using

the following stream function  (r; z) :

 (r; z) = (sin�z)F (r) +G (r) ; (2.21)

where F (r) and G (r) are functions that are unknown.

Using above solution in Eq. (2:15) ; one can get the following systems of ODE�s:

L41F (r) = 0; (2.22)

E41G (r) = 0; (2.23)

where

L21 =

�
d2

dr2
�
1

r

d

dr
� �2

�
; (2.24)
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and

E21 =

�
d2

dr2
�
1

r

d

dr

�
: (2.25)

The associated boundary conditions are as follows:

F = 0;
d

dr

�
1

r

dF

dr

�
= 0; at r = 0; (2.26)

1

r

dF

dr
= 0; F =

�V0

�
at r = 1;

G = 0;
d

dr

�
1

r

dG

dr

�
= 0; at r = 0; (2.27)

d

dr

�
1

r

dG

dr

�
= 0; at r = 1;

G (R)�G (0) =
�Q0

2�
� (F (R)� F (0)) ; at z = 0:

The solution of Eq.(2:22) can be represented as follow as mentioned in Ref. [19]

�
d2

dr2
�
1

r

d

dr
� �2

�2
F (r) = 0; (2.28)

F (r) = r (c1I1 (�r) + c2K1 (�r) + r (c3I2 (�r) + c4K2 (�r))) ; (2.29)

where I1 and I2 represent modi�ed Bessel function of �rst kind, K1 and K2 are modi�ed bessel

function of second kind. For bounded solution B.c�s (2.26) implies c2 = c4 = 0 leading to the

following �nite solution:

F (r) = r (c1I1 (�r) + rc3I2 (�r)) : (2.30)

Now with the help of remaining boundary conditions, �nd the values of c1 and c3; which can

be listed in appendix. The �nal solution of F (r) becomes:

F (r) =
r (�I1 (�) I1 (�r) + rI0 (�) I2 (�r))V0
��I20 (�) + 2I0 (�) I1 (�) + �I

2
1 (�)

: (2.31)

To �nd the solution of G (r) ; solve the following equation:

�
d2

dr2
�
1

r

d

dr

�2
G (r) = 0; (2.32)
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where �
d2

dr2
�
1

r

d

dr

�
= r

d

dr

�
1

r

d

dr

�
; (2.33)

Integrate both side of Eq.(2:32) one can get the following solution

G (r) = b1
r4

16
+ b2

r2

2

�
ln r �

1

2

�
+ b3

r2

2
+ b4; (2.34)

Boundary condition at r = 0 suggest b2 = 0; b3 = 0:

Now Eq.(2:34) reduce into following follow

G (r) = b1
r4

16
+ b3

r2

2
; (2.35)

remaining boundary conditions will get the following form of solution

G (r) =
r2
�
2� r2

�
(2�v0 � �Q0)

2��
: (2.36)

After substituting F (r) and G (r) into Eq.(2:20). The stream function for the case of sinusoidal

reabsorption takes the following form

 (r; z) =
r (�I1 (�) I1 (�r) + rI0 (�) I2 (�r))V0 cos (�z)

��I20 (�) + 2I0 (�) I1 (�) + �I
2
1 (�)

+ (2.37)

r2
�
2� r2

�
(2�v0 � �Q0)

2��
:

Using above stream function in Eq.(2:11), one can get the following velocity components:

vr =
�� (�I1 (�) I1 (�r) + rI0 (�) I2 (�r))V0 sin (�z)

��I20 (�) + 2I0 (�) I1 (�) + �I
2
1 (�)

; (2.38)

vz =
� (�I1 (�) I0 (�r) + rI0 (�) I1 (�r))V0 cos (�z)

�I20 (�)� 2I0 (�) I1 (�)� �I
2
1 (�)

+ (2.39)

2 (�1 + r) (1 + r) (2�v0 � �Q0)

��
:
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In a similar manner, substitute the solution F (r) and G (r) into Eq.(2:21) : The stream function

corresponding to the cosine function can be determined and is given as follows:

 (r; z) =
r (�I1 (�) I1 (�r) + rI0 (�) I2 (�r))V0 sin (�z)

��I20 (�) + 2I0 (�) I1 (�) + �I
2
1 (�)

+ (2.40)

r2
�
2� r2

�
(2�v0 � �Q0)

2��
:

The velocity components can be derived using the above stream function in Eq.(2:11)

vr =
� (�I1 (�) I1 (�r) + rI0 (�) I2 (�r))V0 cos (�z)

��I20 (�) + 2I0 (�) I1 (�) + �I
2
1 (�)

; (2.41)

vz =
� (�I1 (�) I0 (�r) + rI0 (�) I1 (�r))V0 sin (�z)

�I20 (�)� 2I0 (�) I1 (�)� �I
2
1 (�)

+ (2.42)

2
�
r2 � 1

�
(2�v0 � �Q0)

��
:

2.5 Results and Discussion

To observe how emerging parameters e¤ect the �uid �ow, we have presented the graphical

results in this section. The in�uence of periodic reabsorption velocity V0 sin (�z) and �ux Q0

is represented by radial and axial velocity, pressure distribution and shear stress at the wall.

2.6 E¤ect of Re-absorption rate V0:

The variation in radial velocity for di¤erent values of re-absorption parameter V0 is shown in

Fig. 2:2 (a). At the axis of the tube, the radial �ow remains stationary, but it increases near the

boundary due to nutrient re-absorption. This increase is more signi�cant when the re-absorption

follows a cosine pro�le compared to a sine pro�le Fig. 2:2 (b) illustrates the e¤ect of V0 on

axial velocity. It is observed that axial �ow increases as the re-absorption rate increases near

the synovial membrane. The enhancement of axial �ow is notably greater when the nutrient

re-absorption follows a cosine distribution.Fig. 2.2(c) demonstrates that the pressure within

the synovial �uid is in�uenced by the nutrient re-absorption rate. As V0 increases, the internal
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pressure in the synovial joint also rises. The pressure build-up is more pronounced with a

cosine-type re-absorption, and the pressure gradient becomes steeper compared to the sine-

type re-absorption Fig. 2.2(d) highlights the impact of nutrient re-absorption rate V0 on wall

shear stress. Higher re-absorption rates lead to increased shear forces near the synovium. The

simulation indicates that when nutrient re-absorption follows a cosine pro�le, the shear forces

are signi�cantly stronger compared to those resulting from a sine-type re-absorption pro�le.

2.6.1 E¤ect of Periodicity Parameter �:

The in�uence of the periodicity parameter � on both radial and axial velocities for sine and

cosine types of re-absorption rates is shown in Fig.2:3 (a�b). In both cases, an increase in � leads

to a reduction in �ow along the radial and axial directions. However, this deceleration is more

signi�cant for the cosine-type re-absorption compared to the sine-type. The decline in both

axial and radial velocities is more pronounced when the nutrient re-absorption follows a cosine

pattern Fig. 2:3 (c) demonstrates that an increase in the periodicity parameter results in greater

load requirements for joint lubrication under both sine and cosine re-absorption conditions. The

increased �ow resistance makes the �uid more viscous, thereby requiring higher pressure for

e¤ective joint lubrication. This pressure buildup is more dominant in the case of cosine-type

re-absorption than the sine-type. Lastly, Fig. 2:3 (d) illustrates the variation in wall shear

stress with respect to the periodicity parameter �. It shows that lower values of � demand

higher shear stress along the synovium. Furthermore, the shear forces are notably stronger

when the nutrient re-absorption follows a cosine pro�le compared to a sine pro�le.

2.6.2 E¤ect of Initial Flow Rate Q0:

The impact of the �ow rate Q0 on axial velocity is illustrated in Fig.2:4 (a) for both sine

and cosine re-absorption rate of nutrients. In the case of cosine re-absorption, the axial �ow

decreases, whereas for sine re-absorption, an increase in �ow rate leads to an enhancement in

axial velocity. Fig. 2:4 (b) shows that an increase in �ow rate reduces the load required for joint

lubrication in both sine and cosine re-absorption scenarios. However, the pressure generated

within the joint is more pronounced for the cosine type of re-absorption compared to the sine

type. Lastly, Fig. 2:4(c) presents the variation in wall shear stress with respect to the �ow

22



rate Q0. It reveals that the �uid exerts higher shear stress along the synovium under sine

re-absorption, while lower shear stress is observed for cosine re-absorption.

2.6.3 E¤ect of Axial position on Velocities:

Fig. 2:5 (a�b) illustrates the e¤ect of axial position on both radial and axial velocities for cosine

and sine types of nutrient re-absorption. In both cases, an increase in axial position results in

a reduction in �ow along both the radial and axial directions.

(a) (b)

(c) (d)

Fig. 2:2a (a-d): In�uence of reabsorption parameter V0 on (a) radial velocity (b) axial

velocity (c) pressure distribution, and (d) wall shear stress.
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(a) (b)

(c) (d)

Fig.2:3a (a-d): In�uence of periodicity parameter � on (a) radial velocity , (b) axial velocity,

(c) pressure distribution, and (d) wall shear stress.

(a) (b)
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(c)

Fig. 2:4a (a-c): In�uence of initial �ow rate Q0 on (a) axial velocity, (b) pressure distribu-

tion, and (c) wall shear stress.

(a) (b)

Fig.2:5a (a-b): Variation in axial and radial velocity at entry, middle and exit region of the

tube.

2.7 Conclusion

This study o¤ers a comprehensive understanding of shear forces and load distribution in synovial

�uid �ow using a Newtonian �uid model. The analysis focuses on the slow movement of synovial

�uid through the synovium, considering both sine and cosine types of nutrient re-absorption

rates. It examines how these re-absorption patterns in�uence the �ow behavior, shear stress,
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and load within a knee joint �lled with synovial �uid.

A mathematical model is developed based on the rheological properties of the �uid, governed

by classical �uid mechanics principles. The simulations are carried out using Mathematica

software. The results indicate that axial �ow within the tube is more pronounced when nutrients

are reabsorbed at a cosine-type rate compared to a sine-type rate. Similarly, radial �ow is also

enhanced under the cosine re-absorption condition. Furthermore, both load and shear stress

within the synovial �uid increase signi�cantly when the nutrient re-absorption follows a cosine

pattern rather than a sine one.

This research contributes valuable insights for evaluating the �ow characteristics and load-

bearing capacity of synovial �uid in arti�cial knee joints.
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Chapter 3

Mathematical study of Synovial

Fluid through a Knee Joint using a

couple stress �uid model

3.1 Introduction

This chapter extends the work of siddiqui presented in previous chapter, for an incompressible,

two-dimensional, steady, creeping �ow of couple stress �uid through a permeable tube of �nite

length L and radius R. The �uid reabsorption assumed to be periodic at the permeable wall of

the tube, and no-slip boundary condition are used to solve the bi-harmonic equation. Expres-

sions for velocity pro�le, stream function, pressure distribution and shear stress at the wall are

calculated by series solution method. The variation in shear stress, velocity pro�le and pressure

distribution is observed by graphs.

3.2 Mathematical Formulation

Consider two-dimensional axisymmetric �ow of couple stress �uid through a tube of radius R

and length L which is shown in Fig. 3.1. The two-dimensional creeping �ow suggests that the

z-axis along the length of the tube and the r-axis along its radial direction.
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Fig.3.1: Geometry of the �ow

The symmetric �ow along the center line (z � axis) of the tube suggests the following velocity

pro�le:

v = (vr (r; z) ; 0; vz (r; z)) ; (3.1)

where vr (r; z) and vz (r; z) are the radial and axial velocity components, respectively.

The two-dimensional, incompressible, creeping �ow of couple stress �uid satisfy the following

law of �uid mechanics

r:v = 0; (3.2)

�

�
@

@t
+ (r:v)

�
v +rp = ��r2v � �r4v, (3.3)

where v is the velocity, p is the hydrostatic pressure of the �uid, � is the density, � is the

coe¢cient of Newtonian �uid and � is the coe¢cient of couple stress �uid. The value of r2v is

given in Eq.(2:4) and to �nd r4v, we use the vector identity r2
�
r
2v
�
= r4v.

r
4v=

0

@0;
1

r

@

@z

0

@r

0

@
@
@r

�
1
r
@
@r

�
r
�
@vr
@z
�

@vz
@r

���

+ @2

@z2

�
@vr
@z
�

@vz
@r

�

1

A

1

A ; 0

1

A : (3.4)
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The component form of Eq. (3:2)� (3:3) for axisymmetric, incompressible �ow of couple stress

�uid takes the following form:
1

r

@

@r
(rvr) +

@

@z
(vz) = 0; (3.5)

@p

@r
= �

�
@


@z

�
� �

�
1

r

@

@z
r

�
�



r2
+
1

r

@


@r
+
@2


@r2
+
@2


@z2

��
; (3.6)

@p

@z
= ��

�
1

r

@

@r
(r
)

�
+ �

�
1

r

@

@r
r

�
�



r2
+
1

r

@


@r
+
@2


@r2
+
@2


@z2

��
; (3.7)

and shear stress for axisymmetric �ow is given as follows:

� rz = � (
 )� �

�
�



r2
+
1

r

@


@r
+
@2


@r2
+
@2


@z2

�
; (3.8)

where


 =
@vr

@z
�
@vz

@r
: (3.9)

The axisymmetric �ow at the center of the tube meets the following boundary conditions:

vr = 0;
@vz

@r
= 0; at r = 0; (3.10)

The periodic reabsorption rate and non-slip condition at the permeable wall of the tube satisfy

the following boundary conditions:

vz = 0; vr =

�
V0 sin�z

V0 cos�z
at r = R;

The absence of couple stress due to irrotational motion of �uid particles at the wall of the tube

is described by the following boundary conditions:


 = 0; at r = R:

The couple stress �uid enters into the system with a contact �ow rate and adhere the boundary
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conditions listed below at the entry region z = 0:

Q0 = 2�

RZ

0

rvz (r; 0) dr; at z = 0:

Di¤erentiating Eq. (3:6) w.r.t z and Eq. (3:7) w.r.t r to eliminate the pressure gradient, one

can get the following form of equations:

@2p

@r@z
= �

�
@2


@z2

�
� �

@

@z

��
1

r

@

@z
r

�
�



r2
+
1

r

@


@r
+
@2


@r2
+
@2


@z2

���
; (3.11)

@2p

@r@z
= ��

@

@r

��
1

r

@

@r
(r
)

��
+ �

@

@r

��
1

r

@

@r
r

�
�



r2
+
1

r

@


@r
+
@2


@r2
+
@2


@z2

���
: (3.12)

Subtracting Eqs. (3:11)� (3:12) ; yields the following equation:

�

�
r
2
�




r2

�
� �

��
r
4
�

r
2


r2

�
�
1

r2

�
r
2
�




r2

��
= 0; (3.13)

where

r
2 =

�
@2

@r2
+
1

r

@

@r
+

@2

@z2

�
: (3.14)

Eq. (3:13) is the �fth order partial di¤erential equation (PED) in two variables, which can be

reduced into one variable by the following stream function:

vr =
1

r

@ 

@z
; vz = �

1

r

@ 

@r
: (3.15)

Vorticity function 
 in term of stream function takes the following form:


 =
1

r
E2 ; (3.16)

where

E2 =

�
@2

@r2
�
1

r

@

@r
+

@2

@z2

�
: (3.17)

Eq. (3:13) in term of above stream function takes the following form:

�E6 � �E4 = 0; (3.18)
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where

E6 = E2
�
E2
�
E2
��
; E4 = E2

�
E2
�
; (3.19)

and boundary conditions expressed in term of the stream function are provided below:

1

r

@ 

@z
= 0;

@

@r

�
�
1

r

@ 

@r

�
= 0 at r = 0; (3.20)

�
1

r

@ 

@r
= 0;

1

r
E2 = 0;

1

r

@ 

@z
=

�
V0 sin�z

V0 cos�z
at r = R;

Q0

2�
=  (0; 0)�  (R; 0) at z = 0:

3.2.1 Non-dimensional Quantities

The following parameters are de�ned for non-dimensional analysis:

r
0

=
r

R
; z

0

=
z

R
; vr0 =

vr

V1
; vz0 =

vz

V1
; Q

0

0 =
Q0

V1R2
;

V
0

0 =
V0

V1
; p

0

=
p

�V1R
; 


0

=

R

V1
;  

0

=
 

V1R2
; �2 =

R2�

�
: (3.21)

Eq. (3:22) takes the following form after using above non-dimensional quantities:

E6 � �2E4 = 0; (3.22)

where

�2 =
R2�

�
; (3.23)

and dimensionless form of boundary conditions will take the following form:

@

@r

�
�
1

r

@ 

@r

�
= 0;

1

r

@ 

@z
= 0 at r = 0; (3.24)

�
1

r

@ 

@r
= 0;

1

r
E2 = 0;

1

r

@ 

@z
=

�
V0 sin�z

V0 cos�z
at r = 1;

Q0

2�
=  (0; 0)�  (R; 0) at z = 0;
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3.3 Solution of the Problem

When the reabsorption of the tube wall is expressed as a sine function of the axial distance, the

exact solution of Eq.(3:22) can be determined by de�ning the following stream function  (r; z)

 (r; z) = (cos�z)F (r) +G (r) : (3.25)

Similarly, when reabsorption of the wall follows a consine function of axial position, Eq.(3:22)

can be solved exactly using the stream function  (r; z) :

 (r; z) = (sin�z)F (r) +G (r) : (3.26)

After using above function in Eq.(3:22) and (3:24) ; one can get the following systems of BVP�s:

L61F (r)� �
2L41F (r) = 0; (3.27)

where

L21 =

�
d2

dr2
�
1

r

d

dr
� �2

�
; (3.28)

and associated boundary conditions are

F = 0;
d

dr

�
1

r

dF

dr

�
= 0; at r = 0; (3.29)

F =
�V0

�
;

1

r

dF

dr
= 0;

�
d2F

dr2
�
1

r

dF

dr
� �2F

�
= 0; at r = 1;

The second BVP takes the following form:

E61G (r)� �
2E41G (r) = 0; (3.30)

where

E21 =

�
d2

dr2
�
1

r

d

dr

�
; (3.31)
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and boundary conditions for above system is given as follows:

G = 0;
d

dr

�
1

r

dG

dr

�
= 0; at r = 0; (3.32)

d

dr

�
1

r

dG

dr

�
= 0;

1

r

dG

dr
= 0; at r = 1;

G (R)�G (0) =
�Q0

2�
� (F (R)� F (0)) ; at z = 0:

The solution of Eq.(3:27) can be represented as follows

�
d2

dr2
�
1

r

d

dr
� �2

�2�
d2

dr2
�
1

r

d

dr
�

�
�2 + �2

��
F (r) = 0; (3.33)

Let

W1 =

�
d2

dr2
�
1

r

d

dr
�

�
�2 + �2

��
F (r) : (3.34)

The Eq.(3:33) become �
d2

dr2
�
1

r

d

dr
� �2

�2
W1 = 0; (3.35)

which is called modi�ed bessel equation, The solution of Eq.(3:34) is

W1 = r (c1I1 (�r) + c2K1 (�r) + r (c3I2 (�r) + c4K2 (�r))) : (3.36)

where I1 and I2 represent modi�ed Bessel function of �rst kind, K1 and K2 are modi�ed bessel

function of second kind. For bounded solution choose c2 = c4 = 0; leading to the following

�nite solution:

W1 = r (c1I1 (�r) + rc3I2 (�r)) : (3.37)

The Eq.(3:35) become

�
d2

dr2
�
1

r

d

dr
�

�
�2 + �2

��
F (r) = r (c1I1 (�r) + rc3I2 (�r)) : (3.38)

The Eq.(3:38) is non-homogenous ordinary equation, the solution of Eq.(3:38) become

F (r) = rc5I1

�
r
p
�2 + �2

�
+ rAI1 (�r) +

�
B + r2C

�
I2 (�r) : (3.39)

33



Using the remaining boundary conditions, we determine the values of A;B and c5 which are

listed in the appendix.

To �nd the solution of G (r) ; solve the following equation:

�
d2

dr2
�
1

r

d

dr

�2�
d2

dr2
�
1

r

d

dr
� �2

�
G (r) = 0; (3.40)

where
d2

dr2
�
1

r

d

dr
= r

d

dr

�
1

r

d

dr

�
: (3.41)

Integrating both side of Eq.(3:40) one can get following form:

�
d2

dr2
�
1

r

d

dr
� �2

�
G (r) = b1

r4

16
+ b2

r2

2

�
ln r �

1

2

�
+ b3

r2

2
+ b4: (3.42)

To satisfy the boundary conditions at r = 0 we must have b2 = 0; b3 = 0; therefore, we obtain

�
d2

dr2
�
1

r

d

dr
� �2

�
G (r) = b1

r4

16
+ b3

r2

2
: (3.43)

The solution of Eq.(3:43) become

G (r) = rb5I1 (�r)�
�
D + Er2

�
r2: (3.44)

The values of C;D and b5 are found using the remaining boundary conditions and are docu-

mented in the appendix.

Incorporating the solution of F (r) and G (r) into Eq.(3:25) : The stream function for the

case of sinusoidal reabsorption takes the following form.

 (r; z) = V0 (cos�z)
�
rc5I1

�
r
p
�2 + �2

�
+ (rA) I1 (�r) +

�
B + r2C

�
I2 (�r)

�

+rb5I1 (�r)�
�
D + Er2

�
r2: (3.45)

Using above stream function in Eq.(3:15), one can get the following velocity components:

vr =
��V0 sin (�z)

�
rc5I1

�
r
p
�2 + �2

�
+ (rA) I1 (�r) +

�
B + r2C

�
I2 (�r)

�

r
; (3.46)
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vz = �

V0 cos (�z)

0

@
r�
�
2B �Ar2�

�
I0 (r�)� c5r

3�
p
�2 + �2I0

�
r
p
�2 + �2

�

�

�
4B + r2

�
B + Cr2

�
�2
�
I1 (�r)

1

A

r3�
+

2D + 4Er2 � b5�I0 (�r) : (3.47)

In a similar manner, substitute the solution F (r) and G (r) into Eq.(3:26). The stream function

corresponding to the cosine function can be determined and is give as follows:

 (r; z) = V0 (sin�z)
�
rc5I1

�
r
p
�2 + �2

�
+ (Ar +B) I1 (�r)

�

+rb5I1 (�r)�
�
D + Er2

�
r2: (3.48)

Substituting the above stream function into Eq.(3:15) yields the following velocity components.

vr =
V0� cos (�z)

�
rc5I1

�
r
p
�2 + �2

�
++(rA) I1 (�r) +

�
B + r2C

�
I2 (�r)

�

r
; (3.49)

vz = �

V0 sin (�z)

0

@
r�
�
2B �Ar2�

�
I0 (r�)� c5r

3�
p
�2 + �2I0

�
r
p
�2 + �2

�

�

�
4B + r2

�
B + Cr2

�
�2
�
I1 (�r)

1

A

r3�
+

2D + 4Er2 � b5�I0 (�r) : (3.50)

With the help of Eq. (3:6) � (3:7) ; one can get the expression for pressure distribution and

similarly, by substituting the values for the derived velocity components in Eq.(3:9) ; we can

�nd out the value for shear stress at the wall of the tube.

3.4 Result and Discussion

To observe how emerging parameters e¤ect the �uid �ow, we have presented the graphical

results in this section. The in�uence of periodic reabsorption velocity V0 sin (�z) and couple

stress parameter � is represented by radial and axial velocity, pressure distribution and shear

stress at the wall.
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3.4.1 E¤ect of Reabsorption Parameter V0:

The variation in radial velocity for di¤erent values of re-absorption parameter V0 is depicted in

Fig. 3:2 (a). At the axis of the tube, the radial �ow remains stationary, while �ow rises due

to re-absorption near the boundary. It is also noticed that rising e¤ect is more pronounced for

cosine type of the re-absorption as compared with sine re-absorption. Fig.3:2(b) demonstrates

the in�uence of re-absorption rate V0 on axial velocity it shows that �ow in axial direction

rises when the re-absorption rate surges near the synovial membrane. The �ow along the

axial direction of tube is signi�cantly stronger when re-absorption rate of the nutrients is cosine

type. Fig. 3:2(c) illustrates that load in the synovial �uid is e¤ected by re-absorption rate of the

nutrients and indicating that pressure produced in synovial �uid surges as the re-absorption rate

of nutrients become high in the synovial joint. It is also noticed that internal pressure in synovial

�uid is more prominent when the nutrients have cosine type of re-absorption rate whereas the

change in pressure gradient becomes steeper compared to sine type of re-absorption rate. Fig.

3:2(d) highlights the impact of re-absorption rate V0 of nutrients on wall shear stress and causes

to increase the shearing force near the synovium due to re-absorption rates of nutrients. This

simulation indicates if nutrient re-absorption rate has cosine type of reabsorption, then the

shearing forces become dominant as compare with sine type of re-absorption rate.

3.4.2 E¤ect of Couple-Stress Parameter �:

The impact of the couple-stress parameter � on radial and axial velocity is illustrated in Fig.

3:3(a-b) for both cosine and sine type re-absorption rate of nutrients. In both scenarios �ow

along the radial and axial direction retarded due to surge in couple stress viscosity parameter

� the surge in viscosity causes to increase in resistive forces that opposes �uid motion along

and across the tube. The increase in frictional forces make the trouble for the synovial �uid

�ow therefore the moderate viscosity of couple stress is good for the lubrication of joint. Also,

decay in axial �ow is more pronounced for cosine re-absorption rate of nutrients as compared

to sine re-absorption rate. Fig. 3:3(c) shows that rise in �uid viscosity leads to more load

for the lubrication of joint for both sine and cosine re-absorption rate. The high resistance in

�uid �ow makes the �ow thick that requires the more pressure to lubricate the joint for both

cosine and sine re-absorption rate. The pressure is more dominant for cosine re-absorption as
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compared with sine re-absorption. Lastly, Fig. 3:3(d) display the variation in wall shear stress

against the couple stress �uid parameter �, it shows that the �uid requires more stress along

the synovium when the micro-rotation decreases and its ratio with viscosity increases. This

behavior is attributed due to the in�uence of viscous forces in synovial �uid. It is also noticed

that when the re-absorption rate of the nutrients is cosine the shearing forces are larger as

compared with the sine re-absorption rate of nutrients.

3.4.3 E¤ect of Periodicity Parameter �:

The impact of the periodicity parameter � on radial and axial velocity is illustrated in Fig.

3:4(a-b) for both sine and cosine type of re-absorption rate. In both scenarios �ow along the

radial and axial direction retarded due to surge in periodicity parameter for the case of cosine

but the radial and axial �ow in case of sine type of reabsorption. Also, decay in axial and radial

�ow is more pronounced for cosine type of re-absorption rate of nutrients as compared to sine

type of re-absorption rate. Fig. 3:4(c) shows that rise in periodicity leads to more load for the

lubrication of joint for both cosine and sine type of re-absorption rate. The high resistance in

the �uid �ow makes the �ow thick that requires the more pressure to lubricate the joint for

both sine and cosine type of re-absorption rate. The pressure is more dominant for cosine type

of re-absorption as compared with sine type of re-absorption. Lastly, Fig. 3:4 (d) display the

variation in wall shear stress against the periodicity parameter � it shows that the �uid requires

more stress along the synovium when the periodicity decreases. It is also noticed that when

the re-absorption rate of the nutrients is cosine the shearing forces are larger as compared with

the sine type of re-absorption rate of nutrients.

3.4.4 E¤ect of Initial Flow Rate Q0

The impact of the �ow rate Q0 on axial velocity is illustrated in Fig. 3:5(a) for both sine and

cosine re-absorption rate of nutrients. In case of cosine reabsorption the �ow along the axial

direction retarded but for the case of sine reabsorption the �ow rate causes to rise in axial �ow.

Fig.3:5(b) shows that rise in �ow are leads to less load for the lubrication of joint for both sine

and cosine re-absorption rate. The pressure is more dominant for cosine type of re-absorption

as compared with sine re-absorption. Lastly, Fig. 3:5(c) display the variation in wall shear
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stress against the �ow rate Q0, it shows that the �uid requires more stress along the synovium

for the case of sine reabsorption but less for the case of cosine reabsorption.

3.4.5 E¤ect of Axial Position on velocities:

The impact of the axial position on radial and axial velocity is illustrated in Fig. 3:6(a-b) for

both cosine and sine type of re-absorption rate of nutrients. In both scenarios �ow along the

radial and axial direction retarded due to surge in axial position.

(a) (b)

(c) (d)

Fig. 3:2a (a-d): In�uence of reabsorption parameter V0 on (a) radial velocity , (b) axail

velocity, (c) pressure distribution, and (d) wall shear stress.
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(a) (b)

(c) (d)

Fig. 3:3a (a-d): In�uence of couple stress parameter � on (a) radial velocity , (b) axail

velocity, (c) pressure distribution, and (d) wall shear stress.

(a) (b)
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(c) (d)

Fig. 3:4a (a-d): In�uence of periodic reabsorption parameter � on (a) radial velocity , (b)

axail velocity, (c) pressure distribution, and (d) wall shear stress.

(a) (b)

(c)
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Fig. 3:5a(a-c): In�uence of Volumetric �ow rate Q0 on (a) axial velocity, (b) pressure

distribution, and (c) wall shear stress.

(a) (b)

Fig. 3:6a (a-b): Variation in axial and radial at entry, middle and exit region of the tube.

3.5 Conclusion

In this research a mathematical model is described by a �nite-length permeable tube �lled with

couple-stress �uid (synovial �uid) and rheological properties of the �uid are observed by the

laws of �uid mechanics which are simulated by the software Mathematica. The outcomes of the

study reveal that �ow along the tube become fast when the nutrients from the synovial �uid

reabsorb at cosine type of rate as compared with sine type of rate whereas the �ow across the

tube become fast when the re-absorption rate of nutrients is cosine as compared with sine rate.

Load and shear stress within the synovial �uid become high when the nutrients in synovial �uid

reabsorb with cosine rate as compared with sine rate. The radial and axial velocity components,

pressure variation, and shear stress show similar trends in both Newtonian and couple stress

�uids. However, the couple stress �uid shows greater amplitude in all these quantities due to the

presence of microstructural e¤ects. This indicates that the couple stress parameter enhances

the magnitude of velocity, pressure, and stress without changing the overall pattern of their

distribution.
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3.6 Appendix

A =
�4c1�

�2 + 4�2
� +

12�c3�
�2 + 4�2

� �
�2 + �2

� ;

B =

 
�8c1

�
�
�2 + 4�2

� +
24c3�

�2 + 4�2
� �
�2 + �2

�

!

;

C =
�2c3

�2 + �2
;

D =

�
�2b3 + b1

2�4

�
r2;

E =
b1r

4

16�2
:
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