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Preface

Synovial fluid (SF) plays a crucial role in joint lubrication, reducing cartilage friction for
smooth movement. It is located near the synovial membrane (SM), which consists of collagens,
proteins, and proteoglycans key components influencing SF viscosity. The selectively permeable
SM allows the absorption and secretion of SF, regulating water balance to prevent joint swelling
(effusion) or inadequate lubrication, which may lead to joint damage. Several studies have
examined SF flow characteristics. Yin et al. [1] highlighted the complexity of SF as a filtrate of
interstitial fluids. Lai et al. [2] noted that SF flow depends on shear stress and deformation rate,
but no single fluid model accurately describes its rheology. Ouerfelli et al. [3] emphasized the
role of hyaluronic acid (HA) in joint lubrication, where SF behaves as a non-Newtonian fluid,
shifting to Newtonian behavior after hyaluronidase treatment in osteoarthritis. Singh et al. [4]
explored SF for arthritis treatment, while Hasnain et al. [5] modeled SF as a power-law fluid
incorporating permeability and magnetic field effects. Magbool et al. [6, 7] analyzed SF flow
through permeable conduits using the Linear Phan-Thien-Tanner (LPTT) model and found
that periodic filtration influences pressure and velocity distribution. The viscosity of SF is
determined by HA concentration, and its long-chain molecules can be modeled as a polar fluid.
Rumanian et al. [8-9] used the couple-stress fluid model to study the hydrodynamic lubrication,
noting the presence of couple stresses in fluids with large molecular structures. Previous studies
[10-15] analyzed couple-stress effects in various flow conditions but did not consider SF as a
couple-stress fluid.

The geometry of a flow system plays a key role in determining fluid behavior, tube-like
geometries with circular cross-sections offer clear advantages by promoting smooth, uniform
flow, minimizing friction, and maintaining laminar conditions. In comparison, slit or rectangular
channels often produce higher shear stress at the edges, leading to flow separation, turbulence,
and increased resistance. The symmetry and smooth surface of tubes reduce boundary effects
and allow more balanced pressure distribution, resulting in lower energy losses and improved
flow performance. Several studies have highlighted the benefits of tube-like geometries in fluid
flow analysis. Pozrikidis et al. [16] developed an integral equation method specifically for
studying Stokes flow in tubular structures. Shankar et al. [17] examined the stability of flow

in both tubes and channels. Subsequent research by Siddiqui et al. [18-19], Maiti et al. [20],



Jeong J.T. et al. [21], and Farooq et al. [22] explored biological fluid flow through tubes and
consistently demonstrated superior performance compared to flow in rectangular channels. Most
recently, Hakligor et al. [23] investigated wake patterns behind permeable circular cylinders,
showing that porosity significantly influences vortex behavior in tube-like geometries, crucial
for optimizing fluid transport designs. Keeping in view the past study the present thesis is
presented in following manner.

Chapter one describe the preliminaries, chapter two is the review work of siddiqui et al. [19],
he has considered the bi-directional synovial fluid (Newtonian fluid) flow across the tube and
discussed the flux and pressure of the fluid with in a tube. Chapter three is extended for the
couple stress fluid flow with in a tube geometry and rheology of synovial fluid is analyzed by
the couple stress fluid model with in a tube and near its boundary using the periodic filtration

near the boundary.



Chapter 1

Fundamental Concepts

This chapter covers the fundamental concepts and definitions of fluid mechanics.

1.0.1 Fluid

A fluid is any substance that deforms under shearing forces and encompasses liquids, gases, and

plasma.

1.0.2 Fluid Mechanics

Fluid mechanics is the study of behavior and motion of fluids, focusing on the forces acting on

them and their properties such as pressure and flow.
1.1 Types of Flow
Flow can be classified on the basis of flow structure.

1.1.1 Laminar vs Turbulent Flow

Laminar flow refers to a pattern of fluid flow where all fluid particles follow a certain path and
move smoothly without crossing each other. On the other hand, turbulent flow is distinguished

by fluid particles that do not follow a specific path.



1.1.2 Steady vs Unsteady Flow

In steady flow, fluid properties such as velocity, pressure and density do not depend on time

during flow, while in unsteady fluid flow properties changes with respect to time.

1.1.3 Compressible vs Incompressible Flow

Compressible flow encounters a remarkable change in density with varying pressure, tempera-
ture, and space variables. On contrary incompressible flow have a density that does not change

with respect to space variables, pressure and temperature.

1.1.4 Creeping vs Non-Creeping Flow

In creeping flow frictional forces are outweighed by viscous force, such flows occur when fluid
move very slowly or when it flows through very small channels. Whereas, non-creeping flow
describes the flow behavior where inertial forces are dominant compared to viscous forces such

flows occur at higher Reynolds numbers.

1.2 Types of Fluid

Fluid flow can be observed by different types of fluids, each with their own unique characteristics

and behavior. These are classified as Newtonian and Non-Newtonian fluids.

1.2.1 Newtonian vs Non-Newtonian Fluid

A Newtonian fluid is that which exhibits a linear relationship between shear stress and velocity
gradient whereas, non-Newtonian fluid do not adhere this relationship. Mathematically, shear

stress and deformation rate are related by the following relation:

Trz = W7, (11)

where p is the coefficient of viscosity, v is the rate of strain, and 7, is the shear stress.
Whereas for non-Newtonian fluid shear stress and deformation rate are related by the fol-

lowing non-linear relation:



Trz =1 (V)n_l . (1.2)

where ~y is the shear rate across adjacent fluid layers , n is the flow behavior index, and 7
represent the apparent viscosity that indicates the fluid’s resistance to flow under particular
conditions. Different non-Newtonian fluids models are power law model, viscoelastic model,

Casson model and couple stress fluid model.

Couple Stress Fluid Model

It is a type of non-Newtonian fluid that undergoes additional internal forces to the particle’s
interaction with each other. Examples of couple stress fluids includes synovial fluid in knee and

hip joints, blood flow in capillaries and arteries and lubricants in fluid machines.

1.3 Synovial fluid

Synovial fluid is a biological fluid having non-Newtonian nature because its viscosity varies
due to stress and strain. It is present in synovial joints and work as a lubricants and reduces.
Friction between cartilage during movements. To model the synovial fluid flow, the concepts of

fluid flow, rheology, lubrication theory and biomechanics are required.

1.3.1 Types of Synovial fluid

The synovial fluid are classified as normal and inflammatory synovial fluid according to viscosity.

Normal Synovial fluid

In healthy human synovial fluid has high viscosity due to the composition of hyaluronic acid,
lubricating protein and water. The shear thinning and pseudoplastic fluids can be considered
as normal synovial fluid because it has pronounced shear thinning and viscoelasting behavior.
The normal synovial fluid provides excellent joint lubrication because it is rich in hyaluronic

acid and lubricating proteins.



Inflammatory Synovial fluid

In diseased condition inflammatory synovial fluid can be observed with low viscosity and less
shear thinning property. The inflammatory synovial fluid as diluted hyaluronic acid with weak
elasticity due to dilution. The inflammatory synovial fluid can be model using the Newtonian
fluid model. Inflammatory synovial fluid can cause joints pain, stiffness of joints and swelling

near the joints, also during movement such type of fluid causes pain and discomfort.

1.4 Fluid models and Synovial fluid

The synovial fluid are modeled on the basis of normal and inflammatory conditions, the most
common model for normal synovial fluid are viscoelastic and shear thinning fluid. Its compli-
cated rheological behavior includes time dependent stress relaxation and decreasing viscosity
with increasing shear rate which is simulated by Maxwell fluid model,Oldroyd-B fluid model,

Power law model, Second grade fluid model and Couple stress fluid model.

1.5 Synovial fluid as a Couple Stress Fluid

The microstructural and viscoelastic properties of synovial fluid, which are not well captured
by traditional Newtonian or generalized Newtonian models, can be included by modeling it as
a couple stress fluid. This model accounts micro-rotational effects in fluid and couple stresses
resulting from the presence of long-chain hyaluronic acid and other micromolecules within the
fluid. These elements provide extra resistance to deformation, which is crucial for lubricating
cartilage surfaces, especially in small joint spaces or in low shear situations. Furthermore,
couple stress theory offers a more precise description of fluid behavior in narrow or curved
joint geometries such as those found in the knee, hip, or fingers where microscale interactions

significantly influence flow dynamics.

1.6 Permeability in Synovial membrane

The synovial membrane’s permeability is the capacity of the membrane to permit the passage of

gases, nutrients, waste products, and compounds. Maintaining the composition of synovial fluid,



which lubricates and nourishes cartilage, is especially crucial for maintaining joint homeostasis.

1.7 Flow Geometry and its Types

External flow

Fluid flow around a body immersed in the fluid, where the boundary layer is free to develop in

one direction. Examples include flow over a flat plate, around a cylinder, sphere, or airfoil.

Internal flow

Fluid flow that is completely confined within solid boundaries, such as flow through pipes,

between parallel plates (duet flow), within annular spaces, or inside cavities.

1.7.1 Permeable vs Non-Permeable Cavity

A permeable cavity refers to a structure that allows the passage of fluid (liquids or gases)
through its walls. Similar to a permeable cylinder, the material of the cavity has a porous
structure that enables the movements of substances through it. Whereas, a non-permeable
cavity is a type of cavity that prevents the passage of fluid through its walls. Some common
example of non-permeable cavities are metal pipe, plastic syringes, and duets that are used for

the transportation of substances without leakage.

1.7.2 Reabsorption and its Types
Constant Reabsorption

In constant reabsorption, a fixed percentage or amount of a substance is reabsorbed, regardless
of its concentration in the filtrate. This process is not influenced by changes in concentration
or volume and tends to be stable, steady mechanism. Mathematically velocity at the boundary

is represented as follows:

V(R,z)=V. (1.3)



Linear Reabsorption

In linear reabsorption, the rate of reabsorption increases proportionally with the concentration
or volume of the substance in the filtrate. This means that as the amount of a substance in the
filtrate rises, the reabsorption rate also increases, often in direct proportion. Mathematically

velocity at the boundary is described as follows:

V(R,z) =Vo+ V12 (1.4)

Periodic Reabsorption

In periodic reabsorption, the rate of reabsorption occurs in intervals or cycles with respect
to the concentration or volume of the substance in the filtrate. This means that even as the
amount of a substance in the filtrate rises, the reabsorption happens at specific times or phases.

Mathematically velocity at the boundary is described as follows:
V (R, z) = Vpcos(az), (1.5)

V (R,z) = Vpsin (az). (1.6)

1.8 Type of Boundary Conditions
There exist three primary types of boundary conditions.

1.8.1 Dirichlet Boundary Conditions

This boundary conditions specifies the value of unknown instead of its derivative at the bound-
ary. The non-slip conditions indicates that the fluid’s velocity at the boundary is equal to the
velocity of the surface. For a stationary surface, this mean the fluid’s velocity at the boundary

is zero.

u(x,t) =g(xz,t) on ON. (1.7)

10



1.8.2 Neuman Boundary Condition

Neuman boundary condition is a type of boundary condition that specifies the derivative of the
solution function at the domain’s boundary. In fluid mechanics , a slip boundary condition sets
the tangential velocity gradient at the boundary, when fluid doesn’t cling to the surface.

ou

n (x,t) =h(xz,t) on ON. (1.8)

1.8.3 Convective Boundary Condition

A convective boundary condition, or mixed boundary condition, is a combination of fixed value
and flux that defines both the value of a function and it’s derivative at the boundary.
ou

—k% =h(u—ux) on 0. (1.9)

1.9 Basic Laws of Fluid Mechanics

1.9.1 Law of Conservation of Mass

Mass conservation law describes that mass cannot be created or destroyed within a system, and
is expressed through the continuity equation in fluid dynamics. Mathematically, it is defined
as follows:

dp

n + V (pv) =0, (1.10)

in cylindrical coordinates, above equation can be written as follows:

10 0
- + ;7 (Tp’UT) + ;% (7'/)7)9) + & (pvz) =0, (111)

where ¢ is the time, p is the density, v,, v9 and v, are the radial, azimuthal and axial component
of velocity respectively.

For incompressible flow, density is constant and above equation becomes

10

"2 o)+ %f (rug) + 5= (0:) = 0. (1.12)

11



1.9.2 Law of Conservation of Momentum

This law states that the total amount of momentum remains unchanged within system, but it
can only be altered under the effect of forces. Mathematically, it can be defined as follows:

dv
<dt_f) +Vp=Vr, (1.13)

where v is the velocity vector, t is the time,p denotes the hydrostatic pressure, T represents the
Cauchy stress tensor, and f,and denotes the body forces.

Radial component of Eq.(1.13) is given below:

8vr+ vy L 1avr v n % +@
ot " ar T\v o0 T ) T8z ) T or

_ 10 107¢, OT2r Too
- _lu’ <7"671 (TTTT‘) + r 80 + 82 - r > +pf7‘ (114)

Azimuthal component takes the following form:

%+ Ovg L 18119+ N Ovg +18;)
at  ar T\ o0 "o, ) T roe

1 _
OTes  OT.p L Tor . Tr6'> +ofe. (1.15)

= - ig (7“27' )_,_, +
H r2 Or 0 r 00 0z

Axial component of Eq.(1.13) takes the following form:

v, v, 10v, Oy op
p + U+ Vg +v + 42

ot or r 00 0z 0z

B 10 1019, O
=—n <rar<”rz>+ so0 o ) ot (1.16)

where p is the pressure, p is the dynamic viscosity, f, fp, and f, are the body forces in radial

, azimuthal, and axial directions respectively.

1.10 Series solution method

The power series method is a powerful analytical technique used to obtain exact or approximate

solutions to differential equations by expressing the unknown function as an infinite series. It

12



is particularly effective for linear differential equations with variable coefficients.

Assume the following sixth-order differential equation:

y© =F <r,y,y'7y”,y'"7y(4), y(5)) : (1.17)

We assume a power series solution of the form:
[e.e]
y(r)=> anr", (1.18)
n=0

compute all required derivatives up to the sixth order:

y (r) = Zannr -1, y” (r) = Zann (n—1)r"=2, ..
n=1 n=2
y(6) (r)y = Z ann (n —1)...(n —5)r"5. (1.19)
n=>6

Substitute these expressions into Eq.(1.17). After substitution, group terms by powers of r".and
set the coefficient of each power to zero. This yields a recurrence relation between the coef-
ficients an, Gn—1, Gn_2,.... Using this recurrence relation along with initial or known values
(e.g. ag,ai,...), all coefficients can be determined. After computing the coefficients, the solu-

tion takes the form of a power series:
y(r) = ao+a17“+a2r2+a3r3+ (1.20)

Thus, the sixth-order differential equation is solved using a power series representation.

13



Chapter 2

Mathematical study of synovial fluid

using a Newtonian fluid model

2.1 Introduction

This chapter is a review work of Siddiqui et. al. [19], who presented the steady, incompressible,
two-dimensional flow of a Newtonian fluid through a permeable tube of finite length L and
radius R. The fluid reabsorption at the permeable wall is considered to be a periodic function
of axial length and mathematical model represents the bi-harmonic equation which is solved
using a no-slip boundary condition. Expressions for velocity profile, stream function, pressure
distribution and shear stress at the wall are calculated by series solution method. The variation
in shear stress, velocity profile, stream function and pressure distribution are analyzed through

graphical representations.

2.2 Mathematical Formulation

Consider a two-dimensional axisymmetric stokes flow through a tube of radius R and length L,

as illustrated in Fig. 2.1.

14
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Fig. 2.1: Geometry of the flow

The symmetric nature of the flow along the centerline suggests the following velocity profile:

v = (vr(r,2),0,v, (1, 2)), (2.1)

where v, (1, z) and v, (r, z) are the radial and axial velocity components, respectively.
To observe the flow properties, like velocity, pressure, and shear stress, following laws of

fluid mechanics are used.
V.v=0, (2.2)
9 2
pl ==+ WV.V)|)v+Vp=—nuVsv, (2.3)

ot

where v is the velocity vector, p is the hydrostatic pressure of the fluid, p is the fluid density,
v is the viscosity coefficient of Newtonian fluid. To find V2v, we used the vector identity

V2v= Vx (VxvV) and its expression is given as follows:

0 (Ov, Ov 10 ov,  Ov
2 _ = T _ z - T _ z
VV_( 62(82 Br)’o’rﬁr (r<8z 8T)>>' (24)

15




Since the aim is to analyze creeping flow, the inertial term can be disregarded.
The component form of Eq. (2.2) — (2.3) for axisymmetric, incompressible Stokes flow takes

the following form:

10 0

ror (rvp) + Ee (v:) =0, (2.5)
op 0 (0v, Ov,
87"_#<8z<82_87“>>’ (2.6)

op 10 v, Ov,
9= W <a <<a - a))) 27

and shear stress for axisymmetric flow is mentioned as follows:

ov,  Ov,
= — . 2.
TTZ lu’ < 82 8T ) ( 8)
The axisymmetric flow at the center of the tube meets the following boundary conditions:
UT:(),%Q;Z:Q at r=0. (2.9)

The periodic reabsorption rate and no-slip conditions at the permeable wall of the tube satisfy

the following boundary conditions:

Vosin az
vT:{ 0 at r =R,

Vo cos az
v, =0, at r=R.

The fluid enters into the system with a linear flow rate and fulfills the above mentioned boundary

conditions at the entry region z =0

R
Qo = 277/er (r,0)dr, at z=0.
0

The set of Egs. (2.6) — (2.7) represent the linear partial differential equation in which three
unknown v,,v, and p are involved. We will cross differentiate Eqs. (2.6) — (2.7) to eliminate

the pressure gradient in the following form:

16



0 (0 (Ov Ov, 0 (10 v,  0Ov, B
“(az (a(a - 67’>>_67’<r87’<r<8z - ar»))—o- (2.10)
To reduce the number of unknowns, following relation of stream function will be used.

_lov o, _ 1% (2.11)

Vp = ——— v, = )
"r9z 7 r or

Inserting above form of stream function in Eq. (2.10), one can get the following form of equation:

L <V2 <iE2¢> - %2 <iE2¢>> =0, (2.12)

0? 10 0?
2 _ - —
vi= (81"2 + ror + 3z2> ’ (2.13)

where

and
0?2 10 0?2
B = (aﬂ‘rar%za)' (2.14)

After performing further calculations in Eq.(2.12), we can get the fourth order linear homoge-

neous PDE in the following form:

E* () = 0. (2.15)

The boundary condition in term of the stream function are expressed as follows:

0 1oyY\ 10y _
5 <_T8r) = 0, ;% =0 at r = 07 (216)
10y 10y  [Vosinaz B
ror =0, rdz {Vocosaz ot =4k,
Qo _
o =1 (0,0) — ¢ (R,0) at z=0.

2.3 Non-dimensional Quantities

For non-dimensional analysis following quantities are defined:

!
T =

r ’ z Ur Ve ! 0
rog_E Ve oy Qo 2.17
RETR YT w Y Ty YTy (2.17)

17



’ % ’ p ’ w
Vg=-2p=—L_ ¢ = .
0 V17p leRaw V1R2

The dimensionless form of Eq. (2.15) — (2.16) takes the following form:

E* (¢) =0, (2.18)
o ( 104\ 19y -
or <_7‘3r> =0, ;@—0 at 7 =0, (2.19)
_}371#_0 }871#_ Vo sin oz . _
ror ' rdz | Vpcosaz at =54
@:?ﬂ(o»o)—w(R,O) at z = 0.
2

2.4 Solution of the Problem

To solve the linear fourth order PDE, we will assume an inverse method and the exact solution

of Eq.(2.18) can be obtained by defining the following stream function 1 (r, z)

Y (r,z) = (cosaz) F (r) + G (r).

Similarly, when the reabsorption of the wall is cosine function Eq.(2.18) can be solved by using

the following stream function 1 (7, z) .

Y (r,z) = (sinaz) F (r) + G(r), (2.21)

where F'(r) and G (r) are functions that are unknown.

Using above solution in Eq. (2.15), one can get the following systems of ODE’s:

LiF (r) =0, (2.22)
EiG (r) =0, (2.23)
where
2 14
B=—=--—-0a2 2.24
1 <d7°2 rdr @ ) ’ ( )

18



and

& 1d
E=|-——--—). 2.2
! (dr2 r dr) (2:25)
The associated boundary conditions are as follows:
d (1dF
F=0, o <rdr> =0, at r=0, (2.26)
1 _
tdr =0, F=—— at r=1,
r dr «
d (1dG
G = 07 dr (T(jl’r) = 07 at r= O, (227)
d (1dGy ¢ =1
dar\rar )" TTo
—Qo _

9 2
<(j7“2 — %d%l" - a2> F(r)=0, (2.28)
F(r)=r(cili(ar)+ K (ar) +r(cslz (ar) + ca Ko (ar))) , (2.29)

where I1 and I represent modified Bessel function of first kind, K7 and K5 are modified bessel
function of second kind. For bounded solution B.c’s (2.26) implies ca = ¢4 = 0 leading to the

following finite solution:

F(r)y=r(al(ar)+resly (ar)). (2.30)

Now with the help of remaining boundary conditions, find the values of ¢; and c3, which can

be listed in appendix. The final solution of F' (r) becomes:

_r(=h(a) i (ar)+rly (o) Iz (ar)) Vo
F ) = ) 1 20 () I () + a2 (@) (231)

To find the solution of G (r), solve the following equation:

2 14\’
(dr? - m») G (r) =0, (2:32)
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where
& 1d d (1d
BN ey 2.
<dr2 rdr) Td’r <7’dr>’ (2.33)

Integrate both side of Eq.(2.32) one can get the following solution

4 2 1 2
G(r):bl%—i-bz% <lnr—2> +53%+b47 (2.34)

Boundary condition at r = 0 suggest ba = 0,b3 = 0.

Now Eq.(2.34) reduce into following follow

4 2

U b3%, (2.35)

G(r)=0b 16

remaining boundary conditions will get the following form of solution

a (7“) _ 2 (2 — 7"2)2(7?;(110 — Oon)‘ (2.36)

After substituting F' (r) and G (r) into Eq.(2.20). The stream function for the case of sinusoidal

reabsorption takes the following form

r(—=I (a) I1 (ar) + rly (@) I3 (ar)) Vg cos (az)
—al? (a) + 21y () I (o) + ol? (a)
r2 (2 - 7°2) (2mvo — aQo)

¥ (r,2)

(2.37)

2T
Using above stream function in Eq.(2.11), one can get the following velocity components:

—a (=1 (a) I (ar) + 1l (o) I2 (ar)) V sin (az)
—ald (o) + 21y () I1 (o) + al? (a) ’

(2.38)

Vp =

a(=I (a) Iy (ar) + rly (a) I (ar)) Vo cos (az)
alg (o) — 21y (o) I (o) — al? (@)
2(=147r)(1+7) (2100 — aQo)

(2.39)

Uy

yiye’
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In a similar manner, substitute the solution F' (r) and G (r) into Eq.(2.21) . The stream function

corresponding to the cosine function can be determined and is given as follows:

r (=1 () I1 (ar) + rly (a) I3 (ar)) Vp sin (az)
—al (o) + 2o (o) I (@) + al? (@)
r2 (2 — 7‘2) (2w — aQo)

Y (r, z) (2.40)

21
The velocity components can be derived using the above stream function in Eq.(2.11)

_ o (=11 (@) I1 (ar) + rly () Iz (ar)) Vi cos (az)
—al? (a) + 21y () I1 (o) + al? (a) ’

(2.41)

a(—1I (a) Iy (ar) + rly (o) I (ar)) Vo sin (az)
alg (o) — 21y (o) I (o) — al? ()
2 (7'2 — 1) (27TUO — Oth)

(2.42)

[ye’

2.5 Results and Discussion

To observe how emerging parameters effect the fluid flow, we have presented the graphical
results in this section. The influence of periodic reabsorption velocity Vjsin (az) and flux Qg

is represented by radial and axial velocity, pressure distribution and shear stress at the wall.

2.6 Effect of Re-absorption rate 1/

The variation in radial velocity for different values of re-absorption parameter Vg is shown in
Fig. 2.2 (a). At the axis of the tube, the radial flow remains stationary, but it increases near the
boundary due to nutrient re-absorption. This increase is more significant when the re-absorption
follows a cosine profile compared to a sine profile Fig. 2.2 (b) illustrates the effect of Vj on
axial velocity. It is observed that axial flow increases as the re-absorption rate increases near
the synovial membrane. The enhancement of axial flow is notably greater when the nutrient
re-absorption follows a cosine distribution.Fig. 2.2(c) demonstrates that the pressure within

the synovial fluid is influenced by the nutrient re-absorption rate. As Vj increases, the internal
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pressure in the synovial joint also rises. The pressure build-up is more pronounced with a
cosine-type re-absorption, and the pressure gradient becomes steeper compared to the sine-
type re-absorption Fig. 2.2(d) highlights the impact of nutrient re-absorption rate Vy on wall
shear stress. Higher re-absorption rates lead to increased shear forces near the synovium. The
simulation indicates that when nutrient re-absorption follows a cosine profile, the shear forces

are significantly stronger compared to those resulting from a sine-type re-absorption profile.

2.6.1 Effect of Periodicity Parameter a:

The influence of the periodicity parameter o on both radial and axial velocities for sine and
cosine types of re-absorption rates is shown in Fig.2.3 (a-b). In both cases, an increase in « leads
to a reduction in flow along the radial and axial directions. However, this deceleration is more
significant for the cosine-type re-absorption compared to the sine-type. The decline in both
axial and radial velocities is more pronounced when the nutrient re-absorption follows a cosine
pattern Fig. 2.3 (c) demonstrates that an increase in the periodicity parameter results in greater
load requirements for joint lubrication under both sine and cosine re-absorption conditions. The
increased flow resistance makes the fluid more viscous, thereby requiring higher pressure for
effective joint lubrication. This pressure buildup is more dominant in the case of cosine-type
re-absorption than the sine-type. Lastly, Fig. 2.3 (d) illustrates the variation in wall shear
stress with respect to the periodicity parameter a. It shows that lower values of o demand
higher shear stress along the synovium. Furthermore, the shear forces are notably stronger

when the nutrient re-absorption follows a cosine profile compared to a sine profile.

2.6.2 Effect of Initial Flow Rate ()q:

The impact of the flow rate Qo on axial velocity is illustrated in Fig.2.4 (a) for both sine
and cosine re-absorption rate of nutrients. In the case of cosine re-absorption, the axial flow
decreases, whereas for sine re-absorption, an increase in flow rate leads to an enhancement in
axial velocity. Fig. 2.4 (b) shows that an increase in flow rate reduces the load required for joint
lubrication in both sine and cosine re-absorption scenarios. However, the pressure generated
within the joint is more pronounced for the cosine type of re-absorption compared to the sine

type. Lastly, Fig. 2.4(c) presents the variation in wall shear stress with respect to the flow
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rate QQo. It reveals that the fluid exerts higher shear stress along the synovium under sine

re-absorption, while lower shear stress is observed for cosine re-absorption.

2.6.3 Effect of Axial position on Velocities:

Fig. 2.5 (a—b) illustrates the effect of axial position on both radial and axial velocities for cosine
and sine types of nutrient re-absorption. In both cases, an increase in axial position results in

a reduction in flow along both the radial and axial directions.

Fig. 2.2a (a-d): Influence of reabsorption parameter Vj on (a) radial velocity (b) axial

velocity (c) pressure distribution, and (d) wall shear stress.
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Fig.2.3a (a~d): Influence of periodicity parameter o on (a) radial velocity , (b) axial velocity,

(c) pressure distribution, and (d) wall shear stress.
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Fig. 2.4a (a-c): Influence of initial flow rate Qo on (a) axial velocity, (b) pressure distribu-

tion, and (c) wall shear stress.
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Fig.2.5a (a-b): Variation in axial and radial velocity at entry, middle and exit region of the

tube.

2.7 Conclusion

This study offers a comprehensive understanding of shear forces and load distribution in synovial
fluid flow using a Newtonian fluid model. The analysis focuses on the slow movement of synovial
fluid through the synovium, considering both sine and cosine types of nutrient re-absorption

rates. It examines how these re-absorption patterns influence the flow behavior, shear stress,
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and load within a knee joint filled with synovial fluid.

A mathematical model is developed based on the rheological properties of the fluid, governed
by classical fluid mechanics principles. The simulations are carried out using Mathematica
software. The results indicate that axial flow within the tube is more pronounced when nutrients
are reabsorbed at a cosine-type rate compared to a sine-type rate. Similarly, radial flow is also
enhanced under the cosine re-absorption condition. Furthermore, both load and shear stress
within the synovial fluid increase significantly when the nutrient re-absorption follows a cosine
pattern rather than a sine one.

This research contributes valuable insights for evaluating the flow characteristics and load-

bearing capacity of synovial fluid in artificial knee joints.
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Chapter 3

Mathematical study of Synovial
Fluid through a Knee Joint using a

couple stress fluid model

3.1 Introduction

This chapter extends the work of siddiqui presented in previous chapter, for an incompressible,
two-dimensional, steady, creeping flow of couple stress fluid through a permeable tube of finite
length L and radius R. The fluid reabsorption assumed to be periodic at the permeable wall of
the tube, and no-slip boundary condition are used to solve the bi-harmonic equation. Expres-
sions for velocity profile, stream function, pressure distribution and shear stress at the wall are
calculated by series solution method. The variation in shear stress, velocity profile and pressure

distribution is observed by graphs.

3.2 Mathematical Formulation

Consider two-dimensional axisymmetric flow of couple stress fluid through a tube of radius R
and length L which is shown in Fig. 3.1. The two-dimensional creeping flow suggests that the

z-axis along the length of the tube and the r-axis along its radial direction.
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Fig.3.1: Geometry of the flow

The symmetric flow along the center line (z — axis) of the tube suggests the following velocity

profile:
v = (vr(r,2),0,v, (1, 2)), (3.1)

where v, (1, 2) and v, (r, z) are the radial and axial velocity components, respectively.
The two-dimensional, incompressible, creeping flow of couple stress fluid satisfy the following
law of fluid mechanics
V.v =0, (3.2)

d
p <8t - (V.v)> v+ Vp=—uV3iv — Vi, (3.3)

where v is the velocity, p is the hydrostatic pressure of the fluid, p is the density, p is the
coefficient of Newtonian fluid and € is the coefficient of couple stress fluid. The value of V?v is

given in Eq.(2.4) and to find Vv, we use the vector identity V> (V2v) = Viv.

0 (10 v, _ Ov,
V4V: 0, iaaz r or (r 3(;2 (TB(U?Z 81};91” ))) 7 (34)
+@ ( 0z ~ or )
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The component form of Eq. (3.2) — (3.3) for axisymmetric, incompressible flow of couple stress

fluid takes the following form:

10 0
;( o)+ £ (02) =0, (3.5)
ap Q109 90 920
ar—“< ) o ( = Taﬁarﬁw))’ (3.6)
Op 10 10 Q 109 9%Q 020
s~ ‘“<a<’"9>> 5<raﬁ<‘r2+raﬁaﬂ+w>>’ (3.7)

and shear stress for axisymmetric flow is given as follows:

Q 100 0%°Q 09%Q
Trz—M(Q)—f(—"‘rar"’a +8z2> (3.8)
where
ov, Ov,
=% o (3.9)

The axisymmetric flow at the center of the tube meets the following boundary conditions:

9
v =0, % —0, at =0, (3.10)

The periodic reabsorption rate and non-slip condition at the permeable wall of the tube satisfy

the following boundary conditions:

Vosin az
v,=0, v = at r =R,
Vo cos az

The absence of couple stress due to irrotational motion of fluid particles at the wall of the tube

is described by the following boundary conditions:
Q=0, at r=R.

The couple stress fluid enters into the system with a contact flow rate and adhere the boundary
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conditions listed below at the entry region z = 0.

R
Qo = 27r/7'vz (r,0)dr, at 2 =0.
0

Differentiating Eq. (3.6) w.r.t z and Eq. (3.7) w.r.t r to eliminate the pressure gradient, one

can get the following form of equations:

Fp _ (02 .0 ((10 _Q+laﬂ+@+@ (3.11)
Ordz B 022 0z r(‘?zr r2  rdr  Or:  9z2 ’ '

82p 0 10 0 10 Q 109  9%2Q  92%Q
aro: ~ "ar <<a <’“9)>> & <<a (‘7«2 o Tt a2>)> - (312

Subtracting Egs. (3.11) — (3.12), yields the following equation:

0 V20 1 Q
2 4 2
u(v Q—T2>—§(<V Q- — )—ﬂ <V Q—r2>):0, (3.13)
where
92 10 0?
2
Vi <8T2 + ror + 8z2> ' (3.14)

Eq. (3.13) is the fifth order partial differential equation (PED) in two variables, which can be

reduced into one variable by the following stream function:

10y 10y
UT*;&’ 'Uz——;a (315)
Vorticity function 2 in term of stream function takes the following form:
Lo
Q= . E“, (3.16)
where
2 10 0?
FP=|—--—"5+-—]. 1
(87"2 ror + 822> (3.17)
Eq. (3.13) in term of above stream function takes the following form:
EES) — pE*y) = 0, (3.18)
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where

B = B (22 ().

E* = E* (E?), (3.19)
and boundary conditions expressed in term of the stream function are provided below
10y 0 109
Bl — =222 ) = t r= 2
r 0z 0 87‘( 1“87“) 0 at r=0, (3.20)
109 1 5 10y Vo sin az
———=0, -FE¢%=0 -—/—= =R
r Or oo v T or oz Vo cos az ar ’
Qo ¥ (0,0) — ¢ (R,0) at z=0.
27
3.2.1 Non-dimensional Quantities
The following parameters are defined for non-dimensional analysis:
N R o
™R "W W Y VRY
’ ‘/0 ’ P ’ QR ' 1/1 2 R2M
Vo = — =—— O =— =—— = —. 3.21
0 V17p /LVlR’ Vlﬂ/f Vlea 5 ( )
Eq. (3.22) takes the following form after using above non-dimensional quantities:
ES) — N2E% =0, (3.22)
where
R2
A2 = T“ (3.23)

and dimensionless form of boundary conditions will take the following form

o ( 10¢ 109 -
a<‘a> O e =0 A=

(3.24)

_laj:o’ 1E21ﬁ=0, 1%_{%811’1&2
r Or r

= = at 7
r 0z

1
Vi cos az ’
0.0~ (RO) at =0,

Y

31



3.3 Solution of the Problem

When the reabsorption of the tube wall is expressed as a sine function of the axial distance, the

exact solution of Eq.(3.22) can be determined by defining the following stream function v (r, z)

Y (r,z) = (cosaz) F (r) + G (r). (3.25)

Similarly, when reabsorption of the wall follows a consine function of axial position, Eq.(3.22)

can be solved exactly using the stream function v (7, z) .

Y (r,z) = (sinaz) F (r) + G(r). (3.26)

After using above function in Eq.(3.22) and (3.24) , one can get the following systems of BVP’s:

LSF (r) — NLIF (r) =0, (3.27)
where
2 1d
2 _ _1% 2 3.28
L (dr2 rar % ) ’ (3.28)

and associated boundary conditions are

d (1dF
_ 1dry _ _ 2
F=0, = (T dr) 0, at r=0, (3.29)
-V 1dF d’F 1dF 9
F=_"0 227 _ er 2 2F) =0 at r=1
o rdr <dr2 rdr ) T ’

The second BVP takes the following form:

ESG (r) — M E{G (r) = 0, (3.30)
where
? 1d
2
=(-—--—= 31
Ei (dr2 rdr) ’ (3.31)
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and boundary conditions for above system is given as follows:

d (1dG
G—O, % (’r’d’r) —0, at 7’—0,

4 (ldG\ _ 1dG_, o _
dr\rdr )"0 rar o TTH
G(R)—G(O):_TQO—(F(R)—F(O)), at 7 = 0.

s

The solution of Eq.(3.27) can be represented as follows

2 1d N[ 14 s s
_— = — — _— = — — F =
<dr2 rdr ) <d7"2 (a +A )> (r) =0,

Let

2 1d 5 19
Y F(r).
W, (dTQ L o +)\)> ")

The Eq.(3.33) become

2 1d L\
<dr2_rdr_a> W1=0,

which is called modified bessel equation, The solution of Eq.(3.34) is

Wi =r(cily (ar) + oKy (ar) + 7 (c3ls (ar) + c4 Ky (ar))) .

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

where I1 and I represent modified Bessel function of first kind, K7 and K5 are modified bessel

function of second kind. For bounded solution choose ca = ¢4 = 0; leading to the following

finite solution:

Wi =r(c1li (ar) + resla (ar)).

The Eq.(3.35) become

< @ 1d (o? + )\2)> F(r)=r(cily (ar) +reslz (ar)).

dr2  rdr

The Eq.(3.38) is non-homogenous ordinary equation, the solution of Eq.(3.38) become

F(r)=rch (T\/m) +rAlL (ar) + (B +12C) Iy (ar) .
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Using the remaining boundary conditions, we determine the values of A, B and c5 which are
listed in the appendix.
To find the solution of G (7), solve the following equation:

2 1d\’/d 1d
R Y - - 3.40
<d7‘2 rdr) <dr2 rdr A > G(r)=0, ( )

2 1d d (1d
A A 41
dr?2  rdr Tdr (r dr) (341)

Integrating both side of Eq.(3.40) one can get following form:

where

2 1d 9 ré r? 1 r?
- _ -2 _ = b — —|Inr—= — . 42
(er - )\>G(r) b116—|—b22 (nr 2>+bg2+b4 (3.42)

To satisfy the boundary conditions at r = 0 we must have by = 0, bg = 0; therefore, we obtain

2 1d r r?
— ——— = \? =by— + b3—. 4
(dr2 rdr )G(r) 6 77 (3:43)
The solution of Eq.(3.43) become
G (r) =rbsIy (\r) — (D + Er?) r?. (3.44)

The values of C, D and b5 are found using the remaining boundary conditions and are docu-
mented in the appendix.
Incorporating the solution of F' (r) and G (r) into Eq.(3.25). The stream function for the

case of sinusoidal reabsorption takes the following form.

V(r,z) = Vy(cosaz) (7“051'1 (r\/ a? + )\2> + (rA) I (ar) + (B +1%C) I (ar))

+rbsI1 (Ar) — (D + Er?) r*. (3.45)

Using above stream function in Eq.(3.15), one can get the following velocity components:

B —aVpsin (az) (’I“C5Il (T\/W) + (rA) I (ar) + (B +1%C) I (a?“)) (3.46)
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ra (2B — Arfa) Iy (ra) — csr3ay/a? + N2, (7"\/(12 + )\2)

— (4B+r? (B4 Cr?) o?) I (ar)
vy = — +
ra

2D + 4Er? — bs\o (M) . (3.47)

Vo cos (az)

In a similar manner, substitute the solution F' (r) and G (r) into Eq.(3.26). The stream function

corresponding to the cosine function can be determined and is give as follows:

Y(r,z) = Vy(sinaz) <TC5I1 (7“\/ a? + >\2) +(Ar+B) 1, (ar))
+rbsly (M) — (D + BEr?) 2. (3.48)

Substituting the above stream function into Eq.(3.15) yields the following velocity components.

B Voo cos (az) (TC511 (T\/W) ++ (rA) I (ar) + (B + r%C) I (Oé?“)) (3.49)

ra (2B — Arfa) Iy (ra) — csr3ay/a? + N2, <r\/a2 + )\2>

— (4B +7* (B +Cr?) o?) I (ar)
v, = — +
ra

2D + 4Er? — bs Ao (\r) . (3.50)

Vo sin (az)

With the help of Eq. (3.6) — (3.7), one can get the expression for pressure distribution and
similarly, by substituting the values for the derived velocity components in Eq.(3.9), we can

find out the value for shear stress at the wall of the tube.

3.4 Result and Discussion

To observe how emerging parameters effect the fluid flow, we have presented the graphical
results in this section. The influence of periodic reabsorption velocity Vjsin (az) and couple
stress parameter X is represented by radial and axial velocity, pressure distribution and shear

stress at the wall.
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3.4.1 Effect of Reabsorption Parameter V/}:

The variation in radial velocity for different values of re-absorption parameter 1} is depicted in
Fig. 3.2 (a). At the axis of the tube, the radial flow remains stationary, while flow rises due
to re-absorption near the boundary. It is also noticed that rising effect is more pronounced for
cosine type of the re-absorption as compared with sine re-absorption. Fig.3.2(b) demonstrates
the influence of re-absorption rate V4 on axial velocity it shows that flow in axial direction
rises when the re-absorption rate surges near the synovial membrane. The flow along the
axial direction of tube is significantly stronger when re-absorption rate of the nutrients is cosine
type. Fig. 3.2(c) illustrates that load in the synovial fluid is effected by re-absorption rate of the
nutrients and indicating that pressure produced in synovial fluid surges as the re-absorption rate
of nutrients become high in the synovial joint. It is also noticed that internal pressure in synovial
fluid is more prominent when the nutrients have cosine type of re-absorption rate whereas the
change in pressure gradient becomes steeper compared to sine type of re-absorption rate. Fig.
3.2(d) highlights the impact of re-absorption rate Vj of nutrients on wall shear stress and causes
to increase the shearing force near the synovium due to re-absorption rates of nutrients. This
simulation indicates if nutrient re-absorption rate has cosine type of reabsorption, then the

shearing forces become dominant as compare with sine type of re-absorption rate.

3.4.2 Effect of Couple-Stress Parameter \:

The impact of the couple-stress parameter A on radial and axial velocity is illustrated in Fig.
3.3(a-b) for both cosine and sine type re-absorption rate of nutrients. In both scenarios flow
along the radial and axial direction retarded due to surge in couple stress viscosity parameter
A the surge in viscosity causes to increase in resistive forces that opposes fluid motion along
and across the tube. The increase in frictional forces make the trouble for the synovial fluid
flow therefore the moderate viscosity of couple stress is good for the lubrication of joint. Also,
decay in axial flow is more pronounced for cosine re-absorption rate of nutrients as compared
to sine re-absorption rate. Fig. 3.3(c) shows that rise in fluid viscosity leads to more load
for the lubrication of joint for both sine and cosine re-absorption rate. The high resistance in
fluid flow makes the flow thick that requires the more pressure to lubricate the joint for both

cosine and sine re-absorption rate. The pressure is more dominant for cosine re-absorption as
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compared with sine re-absorption. Lastly, Fig. 3.3(d) display the variation in wall shear stress
against the couple stress fluid parameter A, it shows that the fluid requires more stress along
the synovium when the micro-rotation decreases and its ratio with viscosity increases. This
behavior is attributed due to the influence of viscous forces in synovial fluid. It is also noticed
that when the re-absorption rate of the nutrients is cosine the shearing forces are larger as

compared with the sine re-absorption rate of nutrients.

3.4.3 Effect of Periodicity Parameter a:

The impact of the periodicity parameter o on radial and axial velocity is illustrated in Fig.
3.4(a-b) for both sine and cosine type of re-absorption rate. In both scenarios flow along the
radial and axial direction retarded due to surge in periodicity parameter for the case of cosine
but the radial and axial flow in case of sine type of reabsorption. Also, decay in axial and radial
flow is more pronounced for cosine type of re-absorption rate of nutrients as compared to sine
type of re-absorption rate. Fig. 3.4(c) shows that rise in periodicity leads to more load for the
lubrication of joint for both cosine and sine type of re-absorption rate. The high resistance in
the fluid flow makes the flow thick that requires the more pressure to lubricate the joint for
both sine and cosine type of re-absorption rate. The pressure is more dominant for cosine type
of re-absorption as compared with sine type of re-absorption. Lastly, Fig. 3.4 (d) display the
variation in wall shear stress against the periodicity parameter « it shows that the fluid requires
more stress along the synovium when the periodicity decreases. It is also noticed that when
the re-absorption rate of the nutrients is cosine the shearing forces are larger as compared with

the sine type of re-absorption rate of nutrients.

3.4.4 Effect of Initial Flow Rate ()

The impact of the flow rate Qo on axial velocity is illustrated in Fig. 3.5(a) for both sine and
cosine re-absorption rate of nutrients. In case of cosine reabsorption the flow along the axial
direction retarded but for the case of sine reabsorption the flow rate causes to rise in axial flow.
Fig.3.5(b) shows that rise in flow are leads to less load for the lubrication of joint for both sine
and cosine re-absorption rate. The pressure is more dominant for cosine type of re-absorption

as compared with sine re-absorption. Lastly, Fig. 3.5(c) display the variation in wall shear
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stress against the flow rate (g, it shows that the fluid requires more stress along the synovium

for the case of sine reabsorption but less for the case of cosine reabsorption.

3.4.5 Effect of Axial Position on velocities:

The impact of the axial position on radial and axial velocity is illustrated in Fig. 3.6(a-b) for
both cosine and sine type of re-absorption rate of nutrients. In both scenarios flow along the

radial and axial direction retarded due to surge in axial position.
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Fig. 3.2a (a-d): Influence of reabsorption parameter Vp on (a) radial velocity , (b) axail

velocity, (c) pressure distribution, and (d) wall shear stress.
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Fig. 3.3a (a-d): Influence of couple stress parameter A on (a) radial velocity , (b) axail

velocity, (c) pressure distribution, and (d) wall shear stress.
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Fig. 3.4a (a-d): Influence of periodic reabsorption parameter o on (a) radial velocity , (b)

axail velocity, (c) pressure distribution, and (d) wall shear stress.
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Fig. 3.5a(a-c): Influence of Volumetric flow rate Q)9 on (a) axial velocity, (b) pressure

distribution, and (c) wall shear stress.
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Fig. 3.6a (a-b): Variation in axial and radial at entry, middle and exit region of the tube.

3.5 Conclusion

In this research a mathematical model is described by a finite-length permeable tube filled with
couple-stress fluid (synovial fluid) and rheological properties of the fluid are observed by the
laws of fluid mechanics which are simulated by the software Mathematica. The outcomes of the
study reveal that flow along the tube become fast when the nutrients from the synovial fluid
reabsorb at cosine type of rate as compared with sine type of rate whereas the flow across the
tube become fast when the re-absorption rate of nutrients is cosine as compared with sine rate.
Load and shear stress within the synovial fluid become high when the nutrients in synovial fluid
reabsorb with cosine rate as compared with sine rate. The radial and axial velocity components,
pressure variation, and shear stress show similar trends in both Newtonian and couple stress
fluids. However, the couple stress fluid shows greater amplitude in all these quantities due to the
presence of microstructural effects. This indicates that the couple stress parameter enhances
the magnitude of velocity, pressure, and stress without changing the overall pattern of their

distribution.
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