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Preface

The boundary layer from near stagnation point has several applications in
engineering and technological processes and attracted many investigations during the past
few decades. The pioneering work on the steady two-dimensional stagnation point flow
was first initiated by Hiemenz [1], and obtained an exact similarity solution of the
governing Nevier-Stokes equation. Eckert [2] extended the work of [1] by considering
the heat transfer analysis and presented an exact similarity solution for the thermal field.
Ramachandran et al. [3] investigated the steady laminar mixed convection near a
stagnation point flow around vertical plate by considering both cases of an arbitrary wall
temperature and arbitrary surface heat flux variations. The problem in [1] is extended to
discuss the different aspects of mixed convection flow near a stagnation point by many
researchers [4-13], recently Ishak et al. [14] have studied the dual solutions in mixed
convection flow near a stagnation point on a vertical porous plate. They have solved the
system of nonlinear ordinary differential equation numerically using Keller-Box method

[16]. Having in mind all the studies above the present dissertation is arranged as follow.

Chapter 1 includes some basic definitions and prerequisites [15] for the
convenience and better understanding of the reader. The contents of the chapter 2 are
based on the work of Ishak et al. [14]. All the results are reproduced with intensive care.
In this chapter, Ishak et al. [14] obtained the solution of the governing nonlinear
differential equation by using Keller-Box method. It is solved here in this chapter with
the same method and also with shooting method [17]. It is found that shooting method
also works very well for this problem too. In chapter 3, the work of Ishak et al. {14} is
generalized in two different dimensions, one by introducing the Magnetohydrodynamic
effects and secondly with the effects of thermal radiations. The obtained nonlinear
differential equation is solved by using shooting method only. It is important to note that
the dual solutions in the presence of magnetic field and thermal radiation are found. The

influence of the magnetic and thermal radiation parameters are analyzed through graphs.
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Chapter 1

Preliminaries

In this chapter, some basic definitions [16} related to fluid flow, heat transfer analysis and

continuity equation are introduced for the better understanding of the readers. Shooting method

with Runge-Kutta 4th order integrator [17] for the general second order boundary value problem

(as an example) is elaborated in detail.

1.1 Fluid

A substance sustain no fixed shape and deforms easily due to external pressure is called fluid.

1.2 Flow

A phenomenon of continuous deformation under the action of applied forces is called flow.

1.3 Fluid mechanics

"A branch of engineering and physics in which we study the prozperties of fluid in both Test or

in motion is called fluid mechanics.
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1.4 Properties of fluid

1.4.1 Density

‘Density is mass per unit volume. In the case ‘of fluid, we can define the density as the hmit

of this ratio, when a measuring volume V tends to zero. Therefore the mathematical form of

density at a point is

p=lim (%) : (1.1)

V-0

1.4.2 Pressure

Pressure p is the magnitude of the normal force F' per unit area acting on a surface S. The

mathematical form of pressure at a point is

p=lim (%) . (1.2)

.1.4.3 Temperature

Temperature-is a measure of the average heat or thermal énergy of the particles in a substance.
Since it is an average measurement, it does not depend on the number of particles in an object.
In that sense it does not depend on the size of it. For ezample, the temperature of a small cup

of boiling water is the same as the temperature of a large pot of boiling water.

1.4.4 Viscosity

During the motion of the fluid, viscosity of the fluid plays an important role. Viscosity is infect

the resistance of fluid particles against the direction of motion, it can be expressed as

Shear stress

Viscosity= -
Y rate of shear strain’

_ Tyz o
o= u/dy (1.3)
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1.4.5 Kinematic viscosity
The Kinematic viscosity is the ratio of dynamic viscosity to density. It is denoted by v and is
defined as

7

5 . . (1:4)
1.4.6 Specific heat
If the pressure is kept constant during the process, then the relation between change in tem-
perature and heat, can be define by simple relation

Q = me AT, (L.5)

here ¢, is the specific-heat coefficient used in a constant-pressure process. If the fluid is not
changing its volume during the process, then ¢, is used for the specific heat in this constant-

volume process

Q = me,AT. )

The ratio between these two specific-heat coefficients is denoted by

’Y:

oI
ks

1.5 Classification of fluid

1.5.1 Ideal fluid

A fluid having zero or negligible viscosity is called ideal fluid. The occurrence of such fluid in

real world is rare.

1.5.2 Real fluid

A fluid having viscosity is known as real fluid. It is denoted by u. It is also known as viscous
fluid. Real fluid is further divided into two categories.
(i) Newtonian fluid

(il) Non-Newtonian fluid
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Newtonian fluids

The most common fluids such as water air and gasoline are Newtonian under normal condition.

The Newtonian fluids foflow the Newton Law of viscosity. If the fluid is Newtonian then
Ty:c X d—y. ‘ ) . . (1-8)

The constant of proportionality in Eq. (1.8) is the absolute viscosity p. Thus the Newton Law

of viscosity is given for one dimensional flow by

du
Tyz = ud_y . (19)

Non-Newtonian fluid

The fluid in which the shear stress is not directly proportional to the deformation rate are non-
Newtonian. Such fluids are further classified as having time—independent or time-dependent
behavior. The non-Newtonian fluid follows the power law model. The power law model for one
dimensional flow is . .
Tw=k(j—';) o (n#£1) T (1.10)
where n is called the flow behavior index and the coefficient k£ being consistency index. It can

also be written as

dul® ! du du
—k S 1.11
Tyzx dy dy 7 dy’ ( )
when the term n =k g—;‘ " referred to as apparent viscosity.

1.6 Types of flow

1.6.1 Incompressible flow

Flow in which variation of density is neghglble is called mcompress1ble flow. Flow of liquid is

;normal]y treated as incompressible flow.
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1.6.2 Compressible flow

If the variation of density within flow is considerable then the flow is called compressible. The

most common example of compressible flow is the flow of gases.

1.6.3 Internal ﬂdw

.Flow completely bounded by solid surfaces, orin a pipe is called internal flow.

1.6.4 Extérnal flow

The flow of a fluid over a surface such as a plate, a wire, or a pipe is called external flow.

1.6.5 Steady flow
Fluid flow in which the properties of fluid in the domain are constant with respect to time is

called steady flow. Mathematically, it can be written as

on ,
5 =0 (1.12)

where 7 represents the fluid property that may be velocity, density, pressure etc.

1.6.6 Unsteady flow

-If the properties of the flow change with respect to time, then such a flow is called unsteady

flow. Mathematically it can be represented as
on
— . 1.1
5 7 0 (1.13)

1.6.7 Laminar flow

A flow in which the fluid particles move in smooth parallel layers is called laminar flow, as

shown in figure below
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1.6.8 Turbulent flow

Turbulent flow is one in which the fluid particles rapidly mix with each other and not have

.specific path, as shown in figure below

N s S
DD
~— . -)\E__J__ j_) b
I TN T
~2 __J - J

1.7 Heat transfer mechanism

1.7.1 Conduction

The transfer of heat from one part of system to another part by inter collisions of interconnected

molecules is conduction. This phenomenon occurs in solids.

'1.7.2 Convection

Convection is the way in which the heat is transferred by the motion of heated molecules of the

system. It usually occurs in liquids and gases.

1.7.3 Radiation

The way in which the heat is transferred by the electromagnetic waves and it does not required

any medium to access the target, is known as radiation.



1.8 Types of convection

1.8.1 Free or natural convection

Natural convection is the type of heat transport in which fluid motion does not required any

external agent or source to transfer its heat, it occurs only due to the difference in temperature

from place to place.

1.8.2 Forced convection

‘If the heat transfer occurs only due to an external agent or source then this type of heat

transport is called force convection.

1.8.3 Mixed convection

If the heat transfer is due to both forced and natural convection, this phenomenon is called

mixed convection.

1.9 Pathlines, Streak lines, and Streamlines

1.9.1 Pathlines

A curve describing the trajectory of a fluid element is called a pathline or a particle path.

1.9.2 Streak lines

In many cases of experimental flow visualization, particles (e.g. dye or smoke) are introduced

into the flow at a fixed point in space. The line connecting all of these particles is called a

streak line.

1.9.3 Streamlines

Another set of curves can be obtained (at a given time) by lines that are parallel to the local

velocity vector. Mathematically describe as
V x dl =0, (1.14)

10
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V is velocity vector and dl is streamline element.

1.10 Law of conservation of mass (continuity equation)

The rate of increase of mass in region W is equals to the rate at which mass is crossing the

boundary 8W in the inward direction, i.e.

d
— | pdV = —/ pu.ndA, : (1.15)
dt Jw oW

This is the integral form of law of conservation of mass. Where W be a fixed subregion of

‘region D, OW denote the boundary of W, n denote the unit outward normal defined at points

of OW and let dA denote the area element on §W. The volume flow rate across OW per unit
area is u - n and the mass flow rate per unit area is pu - n. By the divergence theorem Eq.

(1.15) can be written as
/ [@ + div (pu)] dv =0, (1.16)
w Ot

and the above equation is equivalent to

dp . _
e + div (pu) = 0. (1.17)

The Eq. (1.17) is the differential form of law of conservation of mass, also known as continuity

equation. If p is constant then the continuity Eq. (1.17) reduced to

V-u=0. (1.18)

1.11 The momentum equation

The equation of motion in vector form is

A%
— =divT+ pb 1.19

1
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where b is the body force per unit mass and T is the Cauchy stress tensor given by

Tez Tzy Tzz

(1.20)

Tya: Tyy Tyz 3

Tzx Tzy Tzz

where 7z, 7y, and 7., are the normal stresses and 7y, 7;: and 7, are the shear stresses.

1.12 Fourth-order Runge—Kutta method

Let us consider, the general equation of second order initial value problem as

d2y dy - o
subject to initial conditions
d;
y(z0) = a, ﬁ(:{:g) =b. _(1.22)

In order to solve the above problem, it is required to convert the second order initial value
problem to the system of two first order initial value problems by introducing new dependent

variable z as

dy
E =z=g(zx,y,2),
& (:.2) (1.23)
d‘i = f(:r)ya z):
and the initial conditions Eq. (1.22) become
y(zo) = a, z(zg) =0. (1.249)

Now the solution of the system of two first order ordinary differential equations Eq. (1.23)
subjected to initial conditions Eq. (1.24) can be computed explicitly by the formula {17]

1
Yn+l = Yn + E(kl -+ 2/&:2 + 2k3 + k4), (1.25)
1
Znyl = 2n + é(ll + 2l + 2l3 + 14), (1.26)
12
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where

kl = hg(xnyynrzn)7

=h f(In) Yns Zn)s
( 2,yn+%,zn+%
lz—hf(m +h g+t Y
k3—hg(mn zayn'}'}—cgzuzn‘l'
l3=h'f($n gyyn+ 2:~n+lz
ks =h g(zn+h,yn + k3,20 + {3
l4—hf(xn+h yn+k3;zn+13

7

’ (1.27)

?

[y

\_../\.._,/\_/v
~

7

N~ =
.

Where n is number of steps and h is uniform step size.

1.13 Shooting method

The simplest two-point boundary value problem is a second-order differential equation with one

condition specified at £ = a and another one at z = b. Let us take in general
y' = flz.yy),  yla) =« yb) =8 (1.28)

In shooting method [17], it required to convert the given boundary value problem into the initial

value problem. Boundary value problem (1.28) is reduced to an initial value problem as

¥ = f(z,0.9), wa)=a, ¥()=ud, (1.29)

"Here u{) is 'the"missing initial condition needs to be determined, that could be done b‘y assummg

the value of u{? as an initial guess by u{®) = s. In this stage, our problem is to calculate the

solution of initial value problem Eq. (1.29) from z = a to z = b. The value of y(b) is known

at this stage, if it is to § which is our boundary condition y(b) = §, then it is ok. Otherwise

we have to readjust the value of s and calculate the solution again. Mathematically instead of

playing with initial guesses of u{?), Newton-Raphson formula, is used for this purpose as follows
L0+ — g YO =8

dy(b)
dz

13



Chapter 2

Dual solutions in mixed convection

flow near a stagnation point on a

vertical porous plate : L

2.1 Introduction

In this chapter, we revised the study of steady stagnation flow toward a vertical porous plate
by Anuar Ishak et al. [14]. The governing system of partial differential equations is converted
to system of ordinary differential equations which are then solved numerically by well-known
shooting technique [17] (for two unknown initial conditions) with fourth order Runge-Kutta
integration scheme and secondly by a finite-difference scheme namely the Keller-Box method

{16]. The emerging features of the flow and heat transfer analysis for different ranges/values

against pertinent parameters are analyzed and discussed. Both assisting and opposing flows

are considered and it is similarly observed in the literature for opposing flow.

2.2 Mathematical formulation

Let us consider the flow of a viscous, incompressible fluid normal to vertical plate as a laminar
two dimensional stagnation flow, as shown in Fig. 2.1. It is assumed that the vertical plate is

heated with temperature T3,(z), and the free stream velocity U(z) and T;,(z) vary linearly with

14



distance x with the stagnation point. Under these assumptions, the steady laminar boundary

.

1 layer equations governing the flow are

Buoyancy opposing v
region

Fig. 2.1. Physical model and coordinate system

%
ou  Ov
3z + 5y 0, (2.1)
ou Ou &u  1dp
2
WIE LT 0T (2.3)

3 oy T oy

subject to the boundary conditions

u o= 0 v =V, T=Ty(z)=Te+bzr. aty=0,

u — U(z)=ar, T - Tw as y — 00. (2.4)

Where a and b are constants, V,, is the uniform surface mass flux, where V,, < 0 represents the
suction and where V,, > 0 represents the injection, T, represents ambient temperature. The

last term on the right hand side of Eq. (2.2) represented with” + ” and” — " signs is due to the

15
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influence of thermal buoyancy force on the flow field pertaining to the buoyancy assisting and
opposing flow regions respectively. Fig. 1 illustrates the flow field for a vertical, heated surface

with the upper and lower half of the flow field being assisted and opposed by the buoyancy

‘force respectively. By employing the Bernoulli 'equ'ation in the free stream Eq. (22) becomes

dU  1ldp
E —_ _;E' (2.5)
Eliminating dp,/dz from Eq. (2.2) and Eq. (2.5) gives
Ou Ju u dUu
L AL fad T - To). :
u8$+v8y uayz-i-deigB( Two) (2.6)
The introduced similarity variables are
U\z
1 .
n= (E) Yy, = (UV:L‘)if(T)), 9(’7) = (T —Too)/ (Tw — Tw): (27)

‘where 1 is the stream function defined as u = O,/ 9y and v = —-0v,/Oz s0 as to sﬁtigfy

identically Eq. (2.1} . After using Eq. (2.7), we get the following ordinary differential equations:

" ff 11— 00=0, (2.8)
ia” +f0 - f9=0 2.9)
Pr - - (2-

where prime denotes the derivative with respect to , Pr = £ is the Prandtl number and

A = £+Gr;/Re2 is the mixed convection parameter where + sign has the same meanings as in
Eq. (2.2). Where in the above expression Gry = gB(Ty — Too)x° /v? and Re, = Uz /v are local
Grashof and local Reynolds number respectively. A > 0 corresponds to the assisting flow and

if A < 0 corresponds to opposing flow when A = 0, the flow is lacking in buoydncy force, it is

for pure forced convection flow. The boundary conditions from Eq. (2.4) now become =

f0) = fo. £(0) =0, 6(0) =1,
f/(oo) — 1, 8(c0) — 0. (2.10)

16
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Where fp = f(0) = —(V—(‘:)“l/;? is a constant with fy > 0 is for mass suction and fy < 0 is for mass
injection, while fop = 0 means impermeable plate. It is worth mentioning that when fy = 0, Eqgs.
(2.8 — 2.10) reduce to those formed by Ramachandran et al. 3], for the case of aii arbitrary

surface temperature with n = 1 in their paper. The physical quantities of interest are skin

‘friction coefficient Cr and the local nusselt number Nu;, which are defined as 7 E

-
Cr=—2-. 1 (2.11)
I Im, :
TGw ;
Nu,= —————. .
U = 7] (2.12)

Where the skin friction 7,, and heat transfer from the plate g,, are given by

du oT
Tw = L (a—y)yzo and @, = —k (6—y)y=0 - (2.13)

with u and k being the dynamic viscosity and thermal conductivity respectively. After using

sz

the similarity variables Eq. (2.7), we get

%CfRe},/Q = f"(0), Nuy/Rel/? = —¢'(0). (2.14)

2.3 Numerical solution of the boundary value problem

Since the boundary value problem Egs. (2.8 — 2.10) is non-linear, so it is impossible to find
its analytical exact solution. Now we use Numerical scheme shooting method with Runge-
Kutta fourth order integrator and implicit finite difference scheme (Keller-Box) to construct its

solution. For both used scheme we need to convert modeled system of boundary value problem

17



to the first order initial value system as follows

f=u,
=1y,
[ =ys,
Yy = —yiys — 1+ (1)* — dua, ¢ el
8§ =y,
¢ =ys,
and  y5 = (yoys — 4195)Pr,

with initial conditions

y1(0) = fo, ¥2(0) =0, y3(0) = uy,
¥a(0) = 1, ys5(0) = ua. _ (2.16)

Where u; and ug are two unknown missing conditions. The missing conditions can be found
‘in such a vw,;ay that solution satisfy the boundary conditions (2.10). We construct the s;oiutfon
both with ‘the help of implicit finite difference scheme [16] and shooting method [17] up to
the accuracy of 1075, It is observed that, since Eq. (2.8) and (2.9) carry coupled nonlinear
ordinary differential equations, missing initial conditions and the value of infinity are highly
dependent on the physical parameters X, Pr and fo. It is assured that the solution obtained
by both scheme are highly accurate with each other and the value of missing initial conditions

are calculated with great care.

18
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2.4 Results and discussion

2.4.1 Tables

Table 1: Values of f”(0) for different values of Pr when A =1 and fp = 0.

Pr Ramachandran Hassanien Lok Result by {14]
"~ et al. [3 et al. [12] et al. [13] Upper branch  Lower branch” -

0.7 1.7063 1.70632 1.7064 1.7063 1.2387
1 - — — 1.6754 1.1332
7 1.5179 - 1.5180 1.5179 0.5824
10 - 1.49284 - 1.4928 0.4928
20 1.4485 - 1.4486 1.4485 0.3436
40 1.4101 - 1.4102 1.4101 0.2111
50 - 1.40686 - 1.3989 0.1720
60 1.3903 - 1.3903 1.3903 0.1413
80 1.3774 - 1.3773 1.3774 ' 0.0947
100 1.3680 1.38471 1.3677 1.3680 0.0601

19
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Table 2: Values of —#'(0) for different values of Pr when A =1 and f = 0.

Pr

0.7
1
7

10

20
40

30
60

80
100

Ramachandran Hassanien Lok Result by [14]
etal. [3]  etal [12] etal [13] Upper branch Lower branch

0.7641 0.76406 0.7641 0.7641 1.0226

— - - 0.8708 1.1691
1.7224 - 1.7226 1.7224 2.2192

- 194461 - 1.9446 2.4940-
2.4576 - 2.4577 2.4576 3.1646
3.1011 - 3.1023 3.1011 3.1080

- 3.34882 - 3.3415 4.4976
3.5514 - 3.5560 3.5514 4.8572
3.9095 - 3.9195 3.9095 5.5166
4.2116 4.23372 4.2289 4.2116 6.1230

Table 3: The coordinates of the bifurcation points (A, f/(0)) and (Ac, —6'(0)) as shown in Figs.

2.2-2.5.

Pr fo (A, £7(0) (A, —8'(0))

1 —05 (-1.6049,-0.1681) (—1.6049,0.1935)
0 (-2.3618,—0.4036) (—2.3618,0.4002)
0.5 (-3.6629,-0.8251) (—3.6629,0.6935)

10 0 (—4.0363,-0.4186) (-4.0363,0.9457)
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2.4.2 Graphical representation

9
?s
3 fo;-o.s, 0,05
= .
S
S~
upper branch
--------- lower branch
03 2 4 6 8
n
Fig. 2.2: Effects on velocity profiles for different values of fo when Pr = 1 and A = —1 (opposing flow) .
S
A upper branch
4 T lower branch
-
] L |
‘\E_ =-0.5,0,0.5
@ fo =-0.5,0,0.5
0.5F
% s 8
Fig. 2.3: Effects on temperature profiles for different values of fo when Pr = 1 and A =
—1 (opposing flow).
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Fig. 2.5: Effects on temperature profiles for different values of fy when Pr = 1 and A =

1 (assisting flow) .

2.4.3 Discussion

The coupled ordinary differential equations Eq. (2.8) and (2.9) subject to the boundary con-
ditions Eq. (2.10) are solved numerically using the shooting scheme with fourth order Runge-

Kutta method as an integrator to solve the initial value problem and secondly by using an
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implicit finite difference scheme known as Keller-Box method as described in the book of Ce-
beci and Bradshaw [16]. In order to validate the results, Tables 1—-3 of {14] are reproduced
exactly. Tables 1 and 2 are constructed to compare the values of skin friction coeflicient f”(0)
and local nusselt number —&'(0) with the results available in the paper of Ramachandran et al.
[3], Hassanien and Gorla [12], Devi et al. [6] and Lok et al. [8, 13]. It is seen that the results
reproduced are in good a'gTeement. It is observed through Figs. 2.2—2.5 (doted line) that the
dual solutions exist for both the opposing and assisting flows. The coordinates of bifurcation
points, where the lower branch solution and upper branch solution coincide with each other are
shown in Table 3. It is observed that for A > A, there is no solution. It is required to find the

solution for this range, complete Nevier-Stokes equations needs to be solved. Figs. 2.2 and 2.3

llustrate the effects of velocity and temperature profiles when A = —1 (for the opposing flow)

and Figur'e.s 2.4 and 2.5 are for A = 1 (for the assisting flow}. In all of the figures, the solid and
dashed lines are for the upper branch and lower branch solutions respectively. For A = —1 (see
Fig. 2.2). The velocity profiles for the upper branch solution increases especially near the wall,
while they are decreasing for the lower branch solution for all values of fo considered for figure.
1t is to be remembered that fi > 0 represent suction and fy < 0 represent injection. However,
for the assisting flow when A > 0, the velocity increases near the wall for both upper branch
and lower solution as shown in Fig. 2.4. It is interesting to note that reversed flow occurs as
J(0) < 0 for A =1 and XA = —1 for the lower branch solutions. Fig. 2.3 shows the effects of
different value of fo on temperature profile. It is seen that the temperature decreases near the

wall when fy take its values from negative to positive. It is interesting that temperature profile

'remain positive for both upper and lower branch solution as compared to Fig. 2.5 where, for

lower branch solution, the temperature profile become negative which has no physical meaning

at all.
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Chapter 3

MHD and Mixed convection flow

near a stagnation point over a

vertical porous plate with thermal

radiation ._

3.1 Introduction

In this chapter we study the effect of magnetohydrodynamics (MHD) and thermal radiation
effect on a mixed convection flow near a stagnation poinf on a vertical porous plate. We

introduce MHD and thermal radiation in the problem which have been studied in last chapter.

'The governing partial differential equations are converted to ordinary differential equation with

the same similarity variables introduced in chapter 2 given by [14], which are then solved by
well-known shooting technique (for two unknown initial conditions) with fourth order Runge-
Kutta integration scheme. The solution is obtained for different values of pertinent parameters
involved in the problem. It is observed the dual solution exist even in the presence of MHD
and thermal radiation effects. Ranges of the parameters, for which the dual solution exist are

calculated and drawn very carefully.
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3.2 Mathematical formulation

We consider steady two dimensional and incompressible electrically conducting fluid past over
a porous vertical plate. A constant magnetic field of strength By is applied perpendicular to
the plate. The induced magnetic field is neglected due to the assumption of small magnetic
Reynold number. Under these assumptions, the continuity equation, law of conservation of

momentum and energy equation are given as

du Ov
oz oy =" (31
ou  Ou 0% _dU o Bju
“aa oy Vo Ve T TR ©2)
2
O, oT _ kPT 1 dg (33

tvg— =55 - —F3
0z Oy pep Oyt poy, Oy
subject to the same boundary conditions as define in previous chapter Eq. (2.4) Here o is the
electrical conductivity of the fluid and ¢, is the radiative heat flux. The radiative heat flux ¢,

is defined as Y
: 4* OT

&= 3 oy (3.4)
where o* and k* are the Stefan-Boltzmann constant and the Rosseland mean absorption coef-
ficient respectively. We assume that the temperature differences within flow is such that the
term T* may be expressed as a linear function of temperature. Hence, expanding T* by Taylor
series about T (the fluid temperature in the free stream) and neglecting higher-order terms,
we get

T =413 7T - 3T (3.5)

In view of Eq. (3.4) and (3.5), the Eq. (3.3) reduces to

*3 21
T ( 160T)6‘T (3.6)

ua +va—y =l|la+ —3pcpk* B_yz
Where o = k/pc,, is the thermal diffusivity. From the above equation, it is seen that the effect

of radiation is to enhance the thermal diffusivity. If we take N, = %— as the radiation
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parameter, Eq. (3.6) becomes

Yoz Oy ko Oy’ g o (3,7)

where &y = %. After introducing the same similarity variables Eq. (2.7) define in chapter

2, Egs. (3.2) and (3.7) reduced to the form

fm + ff" _ fl2 _ sz’ +1+ XM =0, (3-8)

P P — ¢+ {0 — f'8 =0, (3.9)

where kg, the thermal radiation and M, the magnetic field. It is important to mentions here
that for kp = 1, thermal radiation effects are not considered. Where A = +Gr;/Re? is the

mixed convection parameter and Gry = gB(Ty — Teo)23/v? and Re, = Uz /v are Grashof and

‘Reynolds numbers respectively. The solution of the above coupled equations Egs. (3.8) and

(3.9) are highly dependent on A, due to its property that it is responsible for the coupling of
these two noﬁhnear differential equations. In this chapter too, A > 0 and A <0 corres'"ffond to
the assisting and opposing flows respectively and A = 0 means no convection. The boundary
conditions for Egs. (3.8) and (3.9) remain same as given in Eq. (2.10). In this chapter, the
solution of the boundary value problem Eqgs. (3.8) and (3.9) subject to the boundary conditions

(2.10) has only been carried out by using shooting method.

3.3 Results and discussion

The variation in skin-friction coefficient f”(0) and the local Nusselt number —§'(0) against A,
for different values of fo (fo=0, fo = 0.5 and fop = —0.5) and for Prandtl number Pr =1,

‘magnetic field M = 0.5 and radiation parameter N, = 0.7 are presented in Figs. 3. 1 and 3 2.

While the comparison of results between Pr = 1 and Pr = 10 for fo = 0 (impermeable wall)
and for magnetic field M = 0.5 and radiation parameter N, = 0.7 are presented in Figs. 3.3
and 3.4.
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M=0.5Nr=0.7 ]

Fig. 3.1: Effects of skin friction coefficient f”(0) as a function of X for the different values of
fo when Pr=1, M =0.5 and N, =0.7

2.3

.......... M=0,lo=1
2 M=0.5 Nr=07

fo=-0.5005

1.5t
It

- 8'0)

0.5F ™

Fig. 3.2 Effects of local nusselt number —6'(0) as a function of X for the different values of fo
when Pr=1, M =0.5 and N, =0.7.
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Fig. 3.3: Effects of skin friction coefficient f*(0) as a function of A for Pr = 1 and Pr = 10 when

f0=0, M:0-5 and NT=O.7.

gb =0
2.
S ]
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2F
s M=, o =1
M=0.5, Nr 0.7
o L .
-4 2 4

'Fig. 3.4: Effects of local nusselt number —6(0) as a function of A for Pr = 1 and Pr = 10-when

fo=0, M =05 and N, = 0.7.
Figs. 3.5 and 3.6 show the velocity and temperature profile for A = 1, while for A = —1,

velocity and temperature profiles are shown in Figs. 3.7 and 3.8 for Prandtl number, Pr = 1
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magnetic field, M = 0.1 and radiation parameter, N, = 0.7.

VAR,

Fig. 3.5: Effects on velocity profiles for different value of fo when Pr = 1 and A = —1(opposing
ﬂow), Nr =0.7 and M = 0.1 with fy > 0 for suction and fy < 0 for injection.

=L N0 M=00, A=

. o =0.50,0.5

Fig. 3.6: Effects on temperature profiles for different values of fo when Pr = 1 and A =

T - BT

- 1(opposing flow), Nr = 0.7 and M = 0.1 with fo-> 0 for suction and fo < 0 for injection.
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Fig. 3.7: Effects on velocity profiles for different values of fo when Pr =1 and A = 1(assisting

flow), Nr = 0.7 and M = 0.1 with fp > 0 for suction and fy < 0 for injection.

Y Y T
l—H-=l, Nr=0.7,M=0.1, A=1 l!

A\ b =-0.5,0, 0.5

05k

Fig. 3.8: Effects on temperature profiles for different values of fo when Pr = 1 and A =
—1(assisting flow), Nr = 0.7 and M = 0.1 with fu > 0 for suction and fp < 0 for injection.
The effects of the buoyancy parameter A for fo = —0.5 {injection), fo = 0 (impermeable

.wall) and fo =.0.5 (suction) on the skin friction coefficient f” (0) and the local nusselt number
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—8'(0) are shown in Figures 3.1 and 3.2 respectively, Figures 3.3 and 3.4 show the effects of the
comparison of the results between Pr = 1, and Pr = 10 on the skin friction coefficient f” (0)
and the local nusselt number —6'(0) respectively. It is important to note that dashed lines
represent results when the magnetic parameter (M) and the radiation parameter (Nr) are kept
absent and solid hnes represent the data, when M = 0.5 and Nr = 0.7. These figures infer the
existence of the dual solution for the assisting flow (A > 0) and opposing flow (A < 0) that have
already been represented by Ramachandran et al. [3], Devi et al. [6] and Lok et al. [8, 13]. It is

worth mentioning here that, in the presence of magnetic fleld and radiation effects, there exist

'dual solution too. For A > 0, there is a favorable pressure gradient due to the buoyancy forces,

where the results in flow being accelerated for this range of the parameters and consequently
there is a large skin friction coefficient than in the non-buoyant case (A = 0). For A < 0, there
is a critical value of A.. There exist dual sclution when A > A, and a saddle-node bifurcation
when X = A, and no solution when A < A.. For A = )., the boundary layer separate from the
surface. Therefore, it is not possible to get the solution for A < A, by the using the boundary
layer approximation. To obtain the solution for A < A, the complete Navier-Stokes equations
has to be solved. It can easily be observed from Fig. 3.1 that the range of pa.ramet‘;r A for
which the dual solution exist become reduced with the presence the magnetic field M. As the
value of A, is almost near to —3.6 when M = 0, and now it reduces to near —2.2 for fo = 0.5

when M = 0.5, similarly for fy = 0, for impermeable case, A; reduces from near —2.3 to —1.8

‘and for fo = —0.5, A reduces from —1.6 to—1.5. Similarly observation is made from Flg 3.2.

It is observed from Figs. 3.1 and 3.3 that the lower branch solution has a lower value of f”(0)
for a given A than the upper branch solution, even when the magnetic Held is present. It is
noticed that the boundary layer thickriess reduces, when the magnetic field is applied, and is
valid for all values of fy and Pr. These figures also show that the magnitude of the critical value
|A¢| increases as the injection or suction parameter fo as well as prandtl number Pr is increased
in the presence of magnetic field and radiation effects too. Figs. 3.2 and 3.4 are drawn to
show the effects of local nusselt number —6’(0) due to A for different values of fp and Pr. For
M=0,k = %I,!—%Z =1land M #£0, kg = % # 1, represents dashed lines and solid lines
respectively. These figures suggest that as soon A — 0~ or A — 0%, the value of —§'(0) for

lower branch solution becomes unbounded. It is also observed that the value of I—H’ (0)] , local
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nusselt number minimizes when the magnetic field and the radiation effects are applied. Figs.
3.5 to 3.8 are drawn to show the influences of these pertinent parameters fo, A, M and kp in
the velocity and temperature profiles. All these figures support the existence of dual solution

as shown in Figs. 3.1 to 3.4.
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