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Abstract 

Magnetic Resonance Imaging (MRI) is a non-invasive but slow imaging modality for 

studying different anatomical and functional aspects of human body. However, it is 

difficult for a patient to remain motionless during the slow MR acquisition process. The 

subject motion is one of the main hurdles in MRI due to the fact that the respiratory motion 

is faster compared to acquisition process resulting in ghosted and blurry recovered images. 

Cardiac and abdominal MR imaging is mostly affected by respiratory motion. In this thesis, 

compressive sensing (CS) based new approaches are developed to tackle the respiratory 

motion in cardiac and abdominal MRI examination. 

The cost function used by CS based MR recovery algorithms include 𝑙1-norm penalty to 

exploit the transformed domain sparsity of the acquired MR data. The initial part of 

dissertation presents a comparison of surrogate functions used to approximate the l1-norm 

penalty. The experimental work shows that the hyperbolic tangent based function 

outperforms its competing function in the recovery of static MR images for different 

acceleration rates and various Gaussian noise levels. Based on these findings, an iterative 

thresholding algorithm utilizing hyperbolic tangent based 𝑙1-norm approximation is 

developed to recover free breathing dynamic MR images from sub-sampled k-space data. 

A block matching algorithm, known as Adaptive Rood Pattern Search (ARPS) is then used 

to estimate and correct respiratory motion among the recovered images.  

In the next part, an adaptive thresholding parameter utilizing the MR data statistics is 

derived and used in wavelet domain shrinkage to recover both static and dynamic MR 

images. A novel iterative shrinkage thresholding (IST) algorithm based on the derived 
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adaptive parameter is also proposed. Results show that the MR recovery using adaptive 

threshold is more effective in the presence of motion as compared to fixed threshold value. 

The final part presents the reduction of motion artifacts in the recovery of under-sampled 

abdominal and liver dynamic contrast enhanced (DCE) MR images using data binning and 

low-rank plus sparse (L+S) decomposition. In the data binning, radial k-space data is 

acquired continuously using golden-angle radial sampling pattern and grouped into various 

motion states or bins. The respiratory signal for binning is extracted directly from radially 

acquired k-space data. A compressed sensing (CS)-based L+S matrix decomposition model 

is then used to reconstruct good quality DCE MR images. The proposed techniques are 

validated using simulated and clinical MRI data.  
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Chapter 1  

Introduction 

Magnetic resonance imaging (MRI) is a non-invasive and non-ionizing medical imaging 

technique to provide human diagnostic images. Provision of multi-planar and high contrast 

images with excellent tissue resolution makes MRI a better choice than X-rays and 

computed tomography (CT). However, MRI is a slow imaging technique resulting in 

lengthy examination time as compared to other imaging modalities. In the claustrophobic 

environment of MR scanner, for a patient or even for a healthy volunteer, it is difficult to 

remain stationary during MRI examination. Long scanning time makes MRI sensitive to 

motion and requires a compromise between spatial and temporal resolution in dynamic MR 

imaging. 

In Cardiac MRI, a single slice of heart at different cardiac phases is repeatedly imaged 

through many cardiac cycles. To generate a good quality CINE i.e. a short movie of all 

cardiac phases of a single slice, data acquired from all cardiac cycles must be combined. 

However, in the presence of breathing motion, this combination produces blur and ghosting 

effects because data acquired for a specific cardiac phase during a heart cycle at distinct 

respiratory position produces data inconsistency. 

Dynamic contrast enhancement (DCE) MRI provides a measurement of T1 changes in 

tissues over time after the intravenous bolus of contrast agent (CA) which produces strong 

intensity variations over time. The DCE technique relies on the monitoring of images 
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during uptake and wash out of contrast agent. The complete process of DCE-MRI (uptake 

and washout of CA) takes several minutes and it is difficult for a patient to remain still 

during the scan process. In free breathing, the data acquired at distinct respiratory states 

produce inter-frame misalignment and the resulted recovered images are contaminated 

with motion artifacts. The continuous CA intensity change is another challenge along with 

respiratory motion in free breathing DCE MRI. To generate MR images with a reasonable 

accuracy, intensity variation and respiratory motion must be distinguished and separated 

from each other before applying any image reconstruction method. 

Since its invention, MRI has substantially improved in acquisition speed and image quality. 

To speed up the imaging process, faster data collection was implemented by improved 

hardware, faster pulse sequences and efficient sampling trajectories. Currently, basic 

physical and physiological constraints limit the faster data collection. Due to this limit, 

researchers worked out methods that produce images with good quality from reduced 

amount of sampled data. One method is a parallel imaging with multiple receiver coils that 

provide complementary information about the imaging object [1]. Compressive sensing [2, 

3] is another technique used in recent past to speed up the MR data acquisition process. It 

recovers the MR images from less number of acquired samples using inherent redundancy 

or sparsity of MR data [4-6]. Sampling below the Nyquist rate introduces random noise 

like artifacts in the recovered images. These artifacts become more severe if the accelerated 

scanning process performed in the presence of different body motions including 

involuntary movements, cardiac and respiratory motion, gastrointestinal peristalsis, vessel 

pulsation, and blood and CSF flow. These motions are normally observed during the 

imaging of brain, heart, abdominal and liver etc.  Application of CS to the biomedical MR 
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imaging in the presence of different types of motions require extra steps in the recovery 

algorithms. The recovered image quality can be improved by incorporating some prior 

information related to the dynamics of the underlying data. Moreover, better results can be 

obtained by using some adaptive parameters that changes their values according to the 

dynamics of imaging parts.  

Algorithms that tackle respiratory motion by incorporating motion related priors with 

adaptive parameters in the reconstruction process for cardiac CINE and abdominal DCE 

MRI are presented only in this thesis.  

1.1 Dissertation contribution 

The primary objective of this thesis is to tackle respiratory motion in cardiac CINE and 

abdominal DCE MR imaging. Motion based efficient reconstruction algorithms are 

developed to produce images with reasonable accuracy. The proposed recovery algorithms 

are based on the iterative shrinkage methods that are well suited for large dimensional 

signals. These algorithms accomplish sparse MR image recovery by solving 𝑙1 − 𝑙2 norm 

mixed optimization problem. The proposed methods have been analyzed using recovered 

images qualitatively and in terms of different assessment parameters such as Peak signal 

to noise ratio (PSNR), Structural similarity index measurement (SSIM), correlation and 

sharpness index (SI). Contributions of this dissertation can be summarized as follows  

1. The 𝑙1-norm is not differentiable everywhere. Initially in this thesis, two 

continuous surrogate functions that approximate the 𝑙1-norm penalty are 

compared, and it is concluded that due to better approximation at the origin, 
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multi-parameter hyperbolic tangent function is better for static and dynamic MR 

images as compared to other function normally used in the literature.  

2. A novel framework for the recovery of highly under sampled free breathing 

cardiac MR images. A two-step approach is adopted for the reconstruction of 

dynamic MR images. In the first step, free breathing cardiac phases without 

motion estimation are recovered from under-sampled k-space data. Next, inter-

frame motion between the reconstructed cardiac phases is calculated using ARPS 

to improve the image estimates iteratively. Multi-parameter hyperbolic tangent 

function as an approximation of the 𝑙1-norm penalty is used in the gradient 

descent algorithm to recover dynamic MR images. The adjustable parameters of 

the 𝑙1-norm approximation provide an extra benefit, as it can be adjusted to reflect 

the changing statistics of dynamic MR images.  

3. During the solution of 𝑙1 − 𝑙2 norm mixed optimization problem, there is a 

tradeoff parameter that defines the share of 𝑙1 and 𝑙2 norms in the solution. This 

parameter is normally fixed valued and selected empirically. The next 

contribution in this dissertation is the development of new iterative shrinkage 

thresholding algorithm and the derivation of an adaptive threshold parameter 

using MAP estimator. The statistics of under-sampling noise and MR image in 

the wavelet domain is used to make the parameter adaptive. The proposed 

algorithm adaptively updates the threshold value, used in shrinkage function, for 

the estimation of MR images. Results show that the MR recovery using adaptive 

threshold is more effective in the presence of motion as compared to fixed 

threshold value. 
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4. Respiratory motion in abdominal and liver DCE MRI is dealt in the next section 

of the thesis. To distinguish intensity changes from respiratory motion in DCE 

MRI, data binning process is used as a preprocessing method for CS based L+S 

decomposition method. For data binning, motion detection and extraction of a 

breathing signal is performed by exploiting the self-navigation property of golden 

angle radial sampling. A CS-based L+S decomposition algorithm is then used for 

each bin to recover images free from motion and under-sampling artifacts. As 

compared to the CS-based conventional L+S (CL+S) decomposition method, the 

pre-processed L+S method provides improved results in a free breathing 

environment for abdominal and liver DCE MRI.  

Different quality assessment parameters like algorithm convergence rate, peak PSNR, 

SSIM and image SI are used for the comparison of proposed techniques with other 

methods. For simulated data magnetic resonance extended Cardiac-Torso (MRXCAT), 

simulation software for cardiac cine MRI, is used to generate breath held and free breathing 

cardiac cine MRI data. The real MRI data for brain and heart is taken from St. Mary’s 

Hospital London and University of Southern California, Los Angeles, USA respectively. 

The DCE MRI data for liver and abdominal is taken from Center for Advanced Imaging 

Innovation and Research (CAI2R), Department of Radiology, New York University School 

of Medicine, New York, USA. 

1.2 Thesis organization 

This dissertation has been organized as follows 

Chapter 2 describes the physics involved in MRI and mechanism for generating MR signal 

(k-space data). The reconstruction of MR images from acquired data is also introduced and 
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discussed as inverse problem. Advanced MR recovery methods related to this dissertation 

are described followed by the introduction of DCE MRI.  

Chapter 3 introduces the problem of motion in MRI. It presents a brief description of 

cardiac CINE and abdominal DCE MR imaging in the presence of respiratory motion 

followed by current techniques used to deal with the respiratory motion.  

Chapter 4 presents initially a comparison of surrogate functions, used in CS-based 

optimization problem. The best-chosen surrogate function is then used in the newly 

proposed method for dynamic MR imaging in the presence of respiratory motion. The 

results for simulated and in-vivo data along with discussion is presented at the end of 

chapter. 

In chapter 5, an adaptive regularization parameter based on MAP estimator is derived. It is 

followed by a new iterative algorithm based on adaptive parameter for static and dynamic 

MR images.  

Chapter 6 discusses a new methodology for the reconstruction of accelerated DEC MR 

images in the presence of respiratory motion. Improved results for real MR data sets, by 

combining L+S matrix decomposition and data binning, are given at the end of chapter 

Chapter 7 provides the concluding remarks about the current research followed by some 

future directions of research.
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Chapter 2  

MRI: Data Acquisition and Reconstruction 

This chapter discusses the MRI data acquisition and reconstruction process. The basic 

physics and imaging principles for MRI modality are generally introduced with the focus 

upon the information related to this thesis. It also describes the reconstruction as inverse 

problem and some recent advance methods for MR images recovery. Details regarding 

MRI basics can be found in [7-9]. 

2.1 Data acquisition in MRI 

MRI is a non-invasive imaging modality. Its scanner uses magnetic fields and radio 

frequencies to generate the images of body organs. Nuclear Magnetic Resonance (NMR) 

is the basic physical phenomena used in MRI. It exploits the atom’s basic property of 

intrinsic angular momentum also called spin. This momentum generates magnetic field 

(magnetic moment) in atomic nuclei with odd number of protons or neutrons. The most 

important atom with only one proton is hydrogen due its large existence in human body 

water and lipids. MRI exploits the magnetic moment of hydrogen atom for generating 

images. In MRI examination process, three types of magnetic fields involved in imaging 

are: 

1. Static magnetic field 𝑩𝟎: In the absence of external magnetic field i.e. 𝐵0, the 

random orientation of the hydrogen atom produces zero magnetic moment. However, the 
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spin of hydrogen nuclei (protons) will align with externally applied static magnetic 

field 𝐵0. The alignment will be either up (parallel) or down (antiparallel) with respect to 𝐵0. 

The antiparallel state has slightly greater energy as compared to parallel state and very less 

protons adopt antiparallel state. The exact ratio of parallel and antiparallel protons depends 

upon the strength of applied magnetic field and temperature[10] and can be found by 

Boltzmann statistics.  This difference in alignment will produce a net magnetic moment 𝑋0, 

having the same direction as 𝐵0, and is called longitudinal magnetic field. The concept is 

shown in Fig. 2-1. The external field 𝐵0, measured in units of Tesla (T), is extremely 

uniform and strong normally 1.5 T or 3.0 T, 50000 times stronger than earth’s field. 

 

Fig. 2-1 Hydrogen atoms magnetic moment a) Without application of external field b) 

with application of external field 

2. Radio frequency excitation magnetic field 𝑩𝟏: The net number of proton spins in up 

and down state is normally very small, and hence generate very small magnetic field 𝑋0 of 

the order of micro Tesla.  To generate a strong and measurable field from aligned protons, 

another external magnetic field 𝐵1 is applied for a short time. The frequency of 𝐵1 is 
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normally in the range of radio frequency (RF) and its duration is very brief. It is called RF 

pulse. The application of 𝐵1 (RF pulse) tilts the magnetization vector by an angle alpha 

towards the plane perpendicular to𝑋0. The flip angle alpha (𝛼) depends upon the strength 

and pulse duration of 𝐵1. The idea is shown in Fig. 2-2. 

 

Fig. 2-2 Effect of RF pulse on magnetization vector 𝑋0 

The aligned protons precess around the axis of 𝐵0 due to these RF pulses. The precession 

frequency of proton will be same as the RF signal and is called Larmor frequency and its 

value is approximately 63.9 Mhz for 1.5T MRI machine. The magnetization vector has two 

components 𝑋𝑧, the longitudinal component, and 𝑋𝑥𝑦 transverse component. At the 

removal of RF pulse, the magnetization vector component 𝑋𝑧 and 𝑋𝑥𝑦 experiences an 

exponential decay with time 𝑇1 and 𝑇2 respectively. These relaxation times depend upon 

the structure and composition of body tissues. The decaying magnetic components result 

in decreasing signal strength over time. This phenomenon, known as free induction decay 

(FID), produces voltages in the RF receiving coils and used for MR imaging. 
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3. Spatially varying magnetic field gradient: The RF coils receive electromagnetic 

signal, containing the information about the local tissues, without the spatial source of the 

signal. In MRI, the process of connecting generated signal to its spatial location is known 

as spatial encoding. Three gradient coils generating magnetic gradient 𝐺 with linearly 

varying magnitude in 𝑥, 𝑦 and 𝑧 (𝐺𝑥, 𝐺𝑦, 𝐺𝑧) direction are used for spatial encoding. 

Variation in gradient components i.e. 𝐺𝑥 , 𝐺𝑦 and 𝐺𝑧 enables MR scanners to produce 

images in sagittal, cornel and axial directions respectively. The interaction between these 

fields is normally depicted by a timing diagram, called pulse sequence diagram. Three 

types of spatial gradients known as slice selection 𝐺𝑧, phase encoding 𝐺𝑦 and frequency 

encoding 𝐺𝑥 are used in pulse sequence of MRI and shown in Fig. 2-3 

 

Fig. 2-3 Timing diagram used in spatial encoding for different gradients. 

The spatial encoding starts with the slice selection. It involves the selection of a sub volume 

(slice) from a three-dimensional object by setting the gradient magnitude, transmitting RF 

pulse frequency and bandwidth. Different slice locations and widths can be achieved by 

changing these parameters.  After the selection of a slice with some specific thickness, the 
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applied signal will be localized to that slice. Now the scanner records the two-dimensional 

distribution of magnetization. Spins at different special location with different precession 

rate can be achieved by varying additional gradients along the selected slab, so that 

individual contributions of protons can be measured. 

In the phase encoding process, a constant gradient 𝐺𝑦 in 𝑦 direction is applied for a brief 

period. It will change the precession frequency linearly in the selected slab. On the removal 

of 𝐺𝑦, the Larmour frequency returns to a fixed value, producing different phases to the 

spatial locations of signal along 𝑦 axis. Number of phase encoding levels directly affects 

the spatial resolution of MR images. Similarly in the frequency encoding process, a 

constant gradient 𝐺𝑥 in 𝑥 direction will change the Larmour frequency along 𝑥 axis linearly. 

This process will create a linear relationship between frequency and special location of 

signal along this direction. 

2.2 Image reconstruction 

This section shows how to obtain magnetic resonance based image of the human organ 

from the data acquired during an MR examination. The process of MR imaging from k-

space data is not a straight forward operation. For generating final image, samples obtained 

after the application of RF pulses are sorted in a raw matrix known as k-space. To fill up 

the k-space, the pulse sequence discussed above is repeated after every TR (repetition time) 

seconds. Each point with unique phase and frequency in k-space belongs to a specific 

special location in the selected slice. The MR signal acquired using spatial encoding can 

be represented as Fourier transform of magnetization 

𝑆(𝒌) =  ∫ 𝑋0(𝒓)𝑒𝑥𝑝 (−2𝜋𝑖𝒌. 𝒓)𝑑𝒓 = ℱ{𝑆(𝒌)}                        (2.1) 
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Where the magnetization 𝑋0(𝒓) represents the spatial domain image, and 𝒌 is a vector 

position in the Fourier domain of the 𝑋0(𝒓). This (2.1) shows that the MR scanners give a 

Fourier encoded images. Hence the image can be reconstructed by taking inverse Fourier 

transform 𝑋0(𝒓) = ℱ−1{𝑆(𝒌)}, which is normally done with fast Fourier transform (FFT) 

[11]. Fig. 2-4 shows the k-space and the original MR image of human brain obtained at St. 

Mary’s Hospital London using 1.5 Tesla GE HDxt scanner with an eight-channel head coil 

and a gradient echo sequence with the following specifications: TR/TE=55/10 msec, FOV 

=20 cm, bandwidth=31.25 KHz, slice thickness= 3 mm, flip angle= 90°, matrix 

size=256×256. 

 

Fig. 2-4 k-space and MR image 

However, to implement (2.1) we need infinite number of k-space samples which is 

practically not feasible. To perform the MR scan in a reasonable time, finite and discrete 

number of k-space samples must be acquired. The discrete version of (2.1) can be obtained 

using Dirac comb function as follows. 

𝑆(𝒌𝑛) = 𝑆(𝒌)III(k) = S(𝐤) ∑ 𝛿+∞
𝑛=−∞ (𝐤 − n𝚫𝒌)   (2.2) 
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Where 𝚫k represents the distance between the samples. Using the convolution theorem, the 

reconstructed image can be represented as follows:  

𝑋0(𝒓𝒏) =
1

∆𝑘
∑ 𝑋0(𝒓 −

𝑛

∆𝑘
)+∞

𝑛=−∞         (2.3) 

It can be seen from (2.3) that the MR image can be reconstructed from limited number of 

samples with a scaling and periodicity factor of 
1

∆𝑘
. For the MR image, field of view (FOV) 

depends upon the spacing between the samples i.e. ∆𝑘. Doubling the distance between 

uniform k-space samples will cause the replicas of image to overlap with each other. This 

effect is called aliasing and will decrease the FOV to half of the original [12]. Effect of 

under sampling is shown in Fig. 2-5 

2.3 MRI data recovery as inverse problem 

MR image recovery problem can be formulated as a linear inverse problem. using the 

quadrature rule, the discrete version of integral given in (2.1), defined for a FOV ranging 

from −rmax  to +rmax , can be written in finite sum form[13]: 

∫ 𝑋0(𝑟)exp (−2𝜋𝑖𝐤. 𝐫)d𝐫 ≈ ∑ 𝑋0(𝐫𝑗)𝑛
𝑗=1

+𝑟𝑚𝑎𝑥

−𝑟𝑚𝑎𝑥
exp (−2𝜋𝑖𝐤. 𝐫𝒋)∆𝐫        (2.4) 

The (2.4) represents a system of linear equations given by  

𝐲 = 𝐅𝐱       (2.5) 

where 𝐲 is the k-space data acquired during MR examination, 𝐅 is the Fourier operator and 

𝐱 corresponds the image to be recovered. (2.5) shows that the MR image can be 

reconstructed by inverting the system of linear equation. It is like to solve a linear problem 

of the type 𝐛 =  𝐀𝐱, where 𝐀 is equivalent to the known Fourier operator, vector 𝐛 is same 
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as k-space acquired data and it is also known and unknown vector 𝐱  belongs to the 

recovered image. 

 

Fig. 2-5 Aliasing effect of uniform under sampling 

The invertibility of a system is said to be well-posed if it satisfies Hadamard conditions 

which are the existence, uniqueness and stability of the solution. Existence of the solution 

is a rare problem in MR recovery due to operator consistency. However, MR image 

recovery from limited number of samples (underdetermined system of equations) does not 

fulfill the uniqueness or stability condition. Hence the perfect recovery from discrete 

samples of k-space is not possible. However, for some appropriate conditions and using 

some prior information, an approximate version of original image with very minute 

differences can be generated. Use of prior information to cater non-uniqueness and 

instability is called the regularization process. 
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2.3.1 Inverse problem solution 

The previous discussion shows that, the MR image can be reconstructed by solving the 

system of linear equations given in (2.5). Practically, the unknown image 𝐱 canbe found 

by minimization of the residual energy that is: 

𝑓(𝐱) = 𝑚𝑖𝑛𝐱‖𝐅𝐱 − 𝐲‖2
2       (2.6) 

Where (𝐅𝐱 –  𝐲) is the residual or error term.  

The minimum of 𝑓(𝐱), found by setting its derivative to zero i.e. ∇𝑓(𝐱) = 0, can be given 

as:  

𝐱 = (𝐅𝐇𝐅)−𝟏𝐅𝐇𝐲       (2.7) 

Where H shows the conjugate transpose. Finding (𝐅𝐇𝐅)−𝟏 is not always computationally 

easy; however using iterative methods provides fast solutions. Gradient decent method is 

simple iterative method but conjugate gradient(CG)[14] another iterative method, provides 

more efficient solution to the above problem.  

2.3.2 Inverse problem stability 

Different strategies are available to improve the stability of an invertible linear system. One 

approach is preconditioning. Another approach for stabilization is to use regularization 

term, based on prior information. For example, Tikhonov regularization is normally used 

for noise suppression and can be given as  

𝑓(𝐱) = 𝑚𝑖𝑛𝐱‖𝐅𝐱 − 𝐲‖2
2 +  𝜆‖𝐱‖2

2     (2.8) 

Where λ is a Lagrange multiplier that controls the balance between the error energy term 

|| 𝐅𝐱 −  𝐲||𝟐 and the regularization term || 𝐱||𝟐.  The close form solution to this problem 

can be given as: 

𝐱 = (𝐅𝐇𝐅 +  𝛌𝐈)−𝟏𝐅H𝐲            (2.9) 
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Sparsity regularization, an alternative stability method, minimizes the number of non-zero 

elements in either image domain or in some transform domain. To implement this 

regularization, the assumption is that the image can be represented by small number of 

non-zero values i.e. image must be compressible. Optimization problem, formulated with 

sparsity regularization, can be given as follows: 

𝑓(𝐱) = 𝑚𝑖𝑛𝐱‖𝐅𝐱 − 𝐲‖2
2 +  𝜆‖𝚿𝐱‖0    (2.10) 

Where Ψ operator transforms the MR image into sparse domain and ||. ||0 (𝑙0-norm) is the 

pseudo-norm that measures the sparsity of image. Due to combinatorial nature, 

implementation of 𝑙0-norm is computationally intractable i.e. NP-hard. In the most 

practical situations, compressively sampled MR images can be recovered effectively using 

𝑙1-norm instead of 𝑙0-norm [15, 16]. The minimization problem with 𝑙1-norm can be given 

as:  

𝑓(𝐱) = 𝑚𝑖𝑛𝐱‖𝐅𝐱 − 𝐲‖2
2 +  𝜆‖𝚿𝐱‖1    (2.11) 

Like 𝑙0-norm, 𝑙1-norm also promotes sparsity in the solution [17]. By computing the 

derivative and setting it equal to zero gives the following solution: 

(2𝐅𝐇𝐅𝐱 + 𝛌𝚿𝐇𝐖𝚿)𝐱 = 2𝐅𝐇𝐲     (2.12) 

The 𝑙1-norm is a discontinuous function and its derivative at the origin does not exist. 

Defining |𝑥| =  √𝑥𝐻𝑥 +  𝜇 then the diagonal matrix W has elements: 

𝑤𝑖 =  √(𝚿𝐱)𝑖
𝐻(𝚿𝐱)𝑖 + 𝜇 
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where 0 < 𝜇 ⋘ 1 and i denotes the diagonal index. (2.12) corresponds to a nonlinear 

system, since W depends on x. Nonlinear optimization problems can be solved with 

alternative methods like projection onto convex sets (POCS) [18, 19] or the nonlinear 

Conjugate Gradient [20], for instance. 

2.4 Advance reconstruction methods 

This section discusses some advanced MR image recovery methods like parallel imaging 

and compressed sensing reconstructions. 

2.4.1 Parallel imaging 

Parallel Imaging is commonly used in clinical MRI. Currently it is implemented with an 

acceleration factor ranging from 2 to 4 times. As discussed in section 2.1, to avoid aliasing, 

at least two times more samples of k-space date are required to generate an alias-free image. 

Larger ∆𝑘  will make the operator 𝐀 under determined and alias-free image reconstruction 

will be impossible. This situation is like the accelerated acquisition in which every other 

line of k-space is acquired, and for a fixed FOV, the reconstructed image will not be alias-

free. These under sampling artifacts can be removed by adding some additional equations 

to the linear system. 

MR scanner uses multiple receiving coils to receive the MR signal from different body 

organs. Parallel imaging uses the spatial information of these receiving coils to reconstruct 

the alias free images. MR Signal equation (2.1) with coils spatial sensitivity can be given 

as 

𝑆𝑗(𝐤) = ∫ 𝐶𝑗(𝐫)𝑋0(𝐫)exp (−2𝜋𝑖𝐤. 𝐫) 𝑑𝐫 = 𝓕[𝑪𝒋(𝐫)𝑿𝟎(𝐫)]   (2.13) 
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where 𝐶𝑗(𝐫) represents the complex sensitivity map for jth coil. The corresponding linear 

system in matrix form is: 

𝐲 = 𝐀𝐅𝐂𝐱       (2.14) 

Where 𝐀 is a logical matrix that under samples the k-space data, i.e. the sampling pattern, 

𝐅 is the Fourier operator and 𝐂 is a diagonal matrix with the coil sensitivity map. (2.14) 

represent the famous formulation of SENSitivity Encoding (SENSE) reconstruction [1, 

21]. The inversion of encoding matrix denoted by 𝐄 =  𝐀𝐅𝐂 is an easy task for Cartesian 

sampling pattern. However, for complex sampling patterns, iterative methods for inversion 

will be required.  

In parallel imaging, the sensitivity maps are normally estimated during MR examination. 

calibration scan [1] for estimating sensitivity maps is one approach.  Another way is to 

estimate the sensitivity maps from the central part of k-space data itself [22, 23].The above 

discussion about parallel image in from SENSE point of view. Other common approaches 

for parallel imaging are SMASH [24],GRAPPA [25] and SPIRiT [26] which uses the 

information of multiple coils enforce the same information in a different way. In the recent 

past a famous method has been introduced, based on prior information of MR image 

structure, and is known as compressed sensing. 

2.4.2 Compressed sensing 

Compressed sensing or sampling (CS) [3, 27] is a method that speed up the MR 

examination process by exploiting the prior information about the MR data. Under some 

certain conditions, CS can violate the Nyquist criterion and can recover the MR images 

from under sampled k-space data [2, 27]. The idea of reconstruction is closely related to 
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the denoising of sparse images [16], where the images can be recovered with a reasonable 

accuracy. To implement CS, three basic requirements are: sparsity of image in pixel or in 

some transform domain, random under sampling scheme and some nonlinear recovery 

technique [4, 6, 27]. The random under sampling converts the CS recovery problem to 

denoising because this type of sampling generates the noise like artifacts instead of 

aliasing. Noise-like artifacts can be generated with any sampling pattern which samples the 

central part of k-space heavily as compared to the rest of k-space region. This type of 

sampling is called variable density random under sampling (VDRU) [4]. Fig. 2-6 shows 

different sampling patterns and their corresponding recovered images. It can be seen in this 

figure that various sampling patterns produce different effects in reconstructed images.  

Image reconstruction using 𝑙1-norm constraint is equivalent to the denoising operation. CS 

recovery with 𝑙1-norm regularization can be written as: 

𝒙̂ = 𝑚𝑖𝑛𝐱‖𝐅𝐱 − 𝐲‖2
2 +  𝜆‖𝚿𝐱‖1                           (2.15) 

Where Ψ transforms the image into some sparse domain. It may be an identity matrix for 

sparse images in pixel domain like angiograms. Other famous sparsifying transform are 

wavelet, discrete cosine and temporal Fourier transform [28-30]. Recently different 

dictionaries [31, 32] have also been used to transform the MR image into some domain 

where the image can be represented with small number of coefficients. 

2.5 Dynamic contrast enhanced (DCE) MRI 

MRI examination provides images with enough contrasts, so the healthy and unhealthy 

tissues can be differentiated easily. However, some tissues characteristics are not         



 

 

 20   

 

 

Fig. 2-6 Different (schematic) sampling patterns in k-space produce different effects 

in the reconstructed images. Cartesian under sampling produced image replicas, 

structured angular under sampling presents more incoherent” streaking” artifacts, 
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random under sampling produces incoherent aliasing with ”cloud-like” artifacts, 

variable density random undersampling (VDRU) produces noise-like aliasing. 

Adapted from[4] 

 

refelected by the tissue relaxation coefficients e.g. tumors manifest excessive formation of 

blood vessels (vascularization) due to their uncontrolled growth. The vessel walls may be 

upset in case of malignant tumors and necrotic tissues and causes an escape of vessel 

contents in the neighboring tissues. Effects of this leakage can be observed with a help of 

some chemical, called contrast agent (CA), which changes the value of relaxation 

coefficients of blood and vessels. The concentration of contrast agent, injected as bolus, 

varies with time and causes a decrease or increase in signal intensity. Hence the differential 

diagnostic and tumor staging can be detected using the uptake rate of contrast agent. 

Two methods are in used for contrast enhanced perfusion. One is dynamic susceptibility 

contrast (DSC) MRI[33] and other is dynamic contrast enhancement (DCE) MRI [34]. 

Both techniques use gadolinium (Gd) as a CA. In DSC high concentration of CA is used 

and mostly utilized for brain perfusion in neuro imaging. DCE MRI enables the 

measurement of T1 changes in tissues over time after the intravenous bolus of CA. It is 

mostly used as a bio marker in oncology and for the diagnosis of different diseases [35, 

36]. The DCE technique relies on the monitoring of images during uptake and wash out of 

the low concentration of contrast agent (CA). The relationship of pixel intensities and CA 

concentration is acquired over time. A pharmacokinetic model based on pixel intensities, 

CA concentration and time variation is used to generate kinetic parameter values that may 

be correlated with the characteristics of tissues [37]. 
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2.6 Robust principle component analysis (RPCA) 

Robust principle component analysis (RPCA) or L+S matrix decomposition is an improved 

version of classical principle component analysis (PCA). It decomposes the given matrix 

into low-rank matrix L, containing small non-singular values, and sparse matrix S having 

few non-zero entries. The decomposition can only be possible if both L and S matrices are 

incoherent[38, 39]. The main objective of RPCA is to reconstruct L and S matrices from 

excessively corrupted and sub-sampled data M. RPCA has been successfully applied in 

video surveillance, facial recognition and dynamic medical imaging. In these applications, 

slowly changing back-ground is modeled by L matrix and the fore-ground changes are 

modeled by S matrix. Solution of the following problem gives L+S matrix decomposition. 

𝑚𝑖𝑛‖𝑳‖∗ +  𝜆‖𝑺‖1         𝑠. 𝑡.   𝕄 = 𝑳 + 𝑺                            (2.16) 

where 𝑺 represents sparse matrix, 𝑳 is the low rank matrix and 𝕄 is the Casorati 

matrix.‖𝐿‖∗ is the nuclear norm, ‖𝑺‖1 is the l1-norm , and λ is a balancing parameter that 

defines the share of the l1-norm relative to the nuclear norm. 

2.8 Performance assessment parameters 

The quality of recovered medical images is assessed using standard assessment parameters 

like PSNR, correlation, sharpness index and SSIM. The PSNR and MSE of the results is 

calculated using following equations 

PSNR in dB =10Log10(𝑀𝐴𝑋𝑐)2/𝑀𝑆𝐸                                 (2.17) 
 

MSE = 
1

𝑧 ×𝑧
∑ ∑ (𝑃𝑖𝑗 −  𝑅𝑖𝑗)2𝑍−1

𝑗=0
𝑍−1
𝑖=0                                    (2.18) 

Where MAXc is a maximum pixel value of the current image having dimensions of 𝑍 × 𝑍, 

𝑃𝑖𝑗 and 𝑅𝑖𝑗 are pixels being compared with current and reference images. 
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Sharpness index (SI), a measuring parameter based on image sharpness is given as [40] 

𝑆𝐼(𝑥) = −𝑙𝑜𝑔𝜙 (
𝕞−𝑇𝑉(𝑥)

𝑣
)                                           (2.19) 

Where 𝕞 = 𝔼[(𝑇𝑉(𝑥))] is the expected value of the total variation of the recovered 

image 𝐼, 𝑣 = 𝕍[(𝑇𝑉(𝑥))] is the corresponding variance, and φ is the normal distribution 

tail as given in[40]. 

Structural similarity index measurement (SSIM) measure the similarity between two 

images 𝑥 and 𝑥̂. Its maximum value is 1 showing that both images are completely similar 

and it is calculated using following relationship. 

𝑆𝑆𝐼𝑀(𝑥, 𝑥̂) =  
(2Ω𝑥Ω𝑥̂+𝐶1)(2𝜎𝑥𝑥̂ +𝐶2)

(Ω𝑥
2+ Ω𝑥̂

2+𝐶1)(𝜎𝑥
2+𝑥𝑥̂

2+𝐶2)
                                    (2.20) 

Where 𝐶1and 𝐶2 are constants that depends on the dynamic range of the images. Ω𝑥 and 

Ω𝑥̂ shows the mean values while  𝜎𝑥
2 and 𝜎𝑥̂

2 denote the variances of the original and 

reconstructed image respectively. 𝜎𝑥𝑥̂ is the covariance between of original and recovered 

image. 

2.7 Summary 

In this chapter the MRI data acquisition and MR image generation process is discussed. 

The basic physics of MRI is presented with the observation that the MR scanner records 

the Fourier encoded signals. Image recovery is performed by solving linear system of 

equations. Fast imaging techniques like parallel imaging and compressed sensing along 

with DCE MRI and RPCA is discussed at the end of chapter. 
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Chapter 3  

Problems of Respiratory Motion in Dynamic MRI 

Non-invasive imaging modality, MRI, produces high resolution anatomical details of 

different human organs. The examination process to acquire the MRI data takes several 

minutes and it is difficult for a person under the test to remain stationary. Different types 

of patient motions like bulk motion, respiratory motion, cardiac movement and blood flow 

produces artifact in the final reconstructed MR image. In this chapter we will discuss the 

effects of respiratory motion only and specifically for the abdominal and cardiac MR 

imaging. This chapter also serves as literature review, discusses different solutions to 

mitigate the motion effects in the MR images.  

3.1 Cardiac CINE imaging 

Cardiovascular magnetic resonance (CMR) has slow development due to its dynamic 

nature and effects of subject motions. However due to development of fast algorithms and 

advancement in hardware, CMR has now widely used in different application like Valvular 

heart disease, Congenital heart disease, Myocardial ischemia, Myocardial Infarction, 

Cardiomyopathy etc. In these applications of CMR, the major source of blurring and 

ghosting is cardiac and respiratory induced motion. These motions are discussed with 

details in next sections. 
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3.1.1 Cardiac induced motion 

The human heart, responsible for blood taking and pumping, is composed of four 

chambers: the left and right atrium and left and right ventricle.  The artia size is smaller as 

compared to ventricle and act as a receiving chamber of blood through blood receiving 

veins. The ventricles are larger and stronger pumping chamber that pump out the blood to 

the human body. Blood pumping function is a periodic process with compression (systolic) 

and expansion (diastolic) phases. The systolic phase lasts approximately 400ms and 

diastolic phase remains for a time ranging from 200 to 800ms [41]. Detail discussion of 

cardiac induced motion is given in [42-44]. Strong longitudinal and rotational components 

along with scaling have been observed in the reconstructed images. Osamet. al [45] 

presents the study of cardiac induced coronary motion for breath hold condition and 

showed the anterior posterior (AP) motion, foot-head (FH) motion and left-right (LR) 

motion. The motion amplitude in the right coronary artery (RCA) is typically twice the 

amplitude in the left coronary artery (LCA). 

3.1.2 Dealing with cardiac induced motion 

Electrocardiogram (ECG), a method to observe the cardiac electrical activity, is used to fix 

the cardiac-induced motion. ECG signal provides different functional and structural 

information of the heart. From cardiac induced motion point of view, ECG records the 

main events of cardiac activity which includes P-wave, QRS complex, T-wave. P-wave 

represents the atrial systole, QRS complex represents start of ventricle systole and T wave 

shows the rest of ventral systole. The approximately smooth section after T-wave 

represents diastolic phase. This portion is normally taken for data acquisition because the 
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heart is relatively less motion for long period of time. ECG signal with cardiac activities is 

shown in Fig. 3-1. 

 

Fig. 3-1 ECG wave form of the cardiac cycle 

Cardiac triggering is one method to deal cardiac-induced motion. Periodic motion of heart 

allows splitting the data acquisition in multiple heart cycles. The subset of data is acquired 

in a specific window of time less than 100 ms and is applied in the diastolic phase due to 

the minimal heart motion. The time from R wave to the start of data acquisition is known 

as trigger delay and it is patient dependent [46]. A major limitation of this technique is the 

variation in heart beating frequency [47]. Cardiac gating is another method to resolve 

cardiac induced motion. In this technique, the continuously acquired cardiac phases are 

labeled with the help of ECG signal and grouped retrospectively to generate CINE image 

of heart [48].  

Fig. 3-2 depicts a comparison between cardiac triggering and gating. a) shows that the 

motion effects are very less after the mid of diastole i.e. after 750ms. b) Cardiac phases are 

acquired continuously and numbered according to its heart phase. These techniques are 

very useful to deal with the cardiac induced motion. However, residual motion effects can 

be observed even after the use of gating and triggering due to some motion during diastole 

phase. Cardiac induced motion effects in diastole phase mainly depends upon the size of 

acquisition window [13]. It can be suppressed using smaller acquisition window and 

periodic nature of heart cycle and hence rarely corrected. 
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Fig. 3-2 A comparison between cardiac triggering and gating. 

3.1.3 Respiratory induced Motion 

Motion due to respiration and its effects on the heart has been studied from a long time.  

The early studies, conducted using X rays modality, showed the FH cardiac motion was 

approximately half of the diaphragmatic motion [49]. After many years, same effects of 

respiratory motion on heart in FH direction was observed for MRI and [50] showed that 

FH cardiac motion is 0.6 of the diaphragmatic motion in MRI. For free breathing 

conditions, Non- rigid components of motion have been observed in the recent studies in 

FH, AP and LR [51, 52]. Respiratory motion is more challenging as compared to cardiac 

motion. The reason is its unpredictable periodic behavior and unavailability of simple 

models to describe its complex nature and magnitude. 
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3.2 Abdominal DCE MR imaging 

In 1980, the first abdominal MRI examination was performed to diagnose the liver 

abnormality. Currently the abdominal MRI produces the images of high quality for liver, 

biliary system, adrenal glands, kidneys, bowel and all related vascular system. Now a day, 

MRI is preferable imaging modality in clinical routine to image the liver [53]. The contrast 

in MR images are based on T1 and T2 relaxation coefficients which can be varied by 

injecting a CA as in the case of DCE MRI. The pre and post contrast images are used to 

indicate the presence of lesions by detecting the dark and bright areas in the MR image. 

DCE MRI consists of three phases: pre-contrast phase, arterial phase and post-contrast 

phase. Current clinical routine is to perform the whole process in breath held condition. 

Initially the images are taken without CA injection i.e. pre-contrast scan. This phase is 

followed by CA injection. Waiting for a predefined delay of approximately 15 to 20 

seconds after CA injection, the arterial phase images are acquired [54]. In the last phase, 

after short delay the post contrast images are acquired. The Fig. 3-3shows different phases 

of Liver DCE MRI. 

 

(a)                                 (b)                                (c) 

Fig. 3-3 DCE MRI liver phases. Representing a) pre-contrast b) arterial and c) post 

contrast. 
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3.2.1 Abdominal respiratory motion 

The complete process of DCE-MRI (uptake and wash out of CA) takes several minutes 

and it is difficult for a patient to remain still during the scan process. Like other 

applications of MRI, different types of motion including respiratory motion, heart beat 

etc. affects DCE-MRI also. The k-space lines obtained in distinct respiratory motion states 

produce inter-frame misalignment and the resulted recovered images are blurry and 

ghosted [55, 56]. The motion effects are greatly depends upon patient’s location[57], 

breathing depth and varies between different subjects[58]. Respiratory motion is caused by 

contraction of the diaphragm and expansion of rib cage muscles [59]. During normal 

breathing, FH motion of the diaphragm has been reported to be in the range of 10-30 mm 

[60, 61], with AP and LR motion approximately 5 and 6 times smaller, respectively [62]. 

Motion in the lung away from rigid structures has been measured to be approximately 12 

mm in FH, with approximately 2 mm in both LR and AP[63] . Left and right kidney 

presented average motions of 11 and 13 mm in FH (respectively),4.4 and 6.1 mm in AP, 

1.7 and 1.4 mm in LR according to the study in [64]. The same study also evaluated spleen 

and liver motion: 13 and13 mm (respectively) in FH, 5.0 and 5.2 in AP, 2.5 and 2.1 in LR.  

3.3 Literature review 

The most common solution to respiratory motion artifacts is the acquisition of data in 

multiple breath held conditions. [65, 66] discusses the cardiac MR imaging and [67] 

discusses liver DCE MR imaging with breath hold condition. However, breath hold is not 

possible in all case especially for aged and pediatric patients. Moreover, it is difficult to 

acquire the multiple breath hold data at the same respiratory state and it leads to registration 
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problems [68]. This method also suffers from a typical blood signal due to compromise of 

normal physiology[69]. 

Respiratory gating is another technique to reduce respiratory motion effects in free 

breathing condition i.e. without breath holding [70, 71]. The data is acquired at some 

specific respiratory state (normally end expiration) using a 5mm or small gating window 

to reduce the motion effects. The disadvantage of respiratory gating is the decrease in scan 

efficiency. The scan time may increase from 30% to 50% in this technique [72]. 

Respiratory gating technique depends upon the respiratory motion state, normally observed 

through some external monitoring device like respiratory bellows [70] or extracted from 

MR data using navigators [72, 73]. Real time MRI [74, 75] has been used for cardiac CINE 

imaging under free breathing condition but with a compromise on spatial and temporal 

resolution. Radial sampling, less sensitive to the motion, can be used in free breathing at 

the expense of increase scan time and mathematical complexity[76, 77]. The major 

advantage of radial sampling is the extraction of navigator signal using the repeatedly 

sampled k-space center[78]. Navigator signals are used for the estimation of motion in MR 

images. Image navigator is a recent method to estimate the motion from the real time low 

resolution images of heart [79, 80]. 

Respiratory motion correction is another way to handle the motion effects in the acquired 

data. In this technique the data is acquired in the presence of motion and motion artifacts 

are then removed from the reconstructed images using motion estimation and correction 

methods. CS with different sparsifying transform has been successfully combined with 

various motion correction techniques to reduce the motion artifacts [81, 82]. Image 

registration methods for rigid and non-rigid body motion have been applied for cardiac 
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perfusion imaging, cardiac cine[83, 84] and abdominal DCE MRI analysis [85]. These 

methods exploit the high acceleration rate capability of compressed sensing for the 

recovery of dynamic MRI.  

Otazo et. al. [83] proposed one dimensional translational respiratory motion correction. 

Usman et. al. [84] introduced a reconstruction scheme for dynamic cardiac MRI by 

incorporating general motion framework directly into CS reconstruction. Their method 

uses data binning and intensity based non-rigid registration algorithm for estimating 

respiratory motions. Ahmed et. al. [84] proposed a CS based motion correction in the free 

breathing environment with multiple constraints. This method uses demon based 

registration to estimate the motion between reference and other respiratory states. 

Inter-frame motion estimation and compensation for time varying features of images has 

been used in video compression standards [86, 87]. These standards are based on different 

block matching algorithms [88] for motion estimation and compensation. Similar to video 

compression, dynamic MR images can be predicted by exploiting temporal redundancies 

between the images. Asif et al. proposed an algorithm, MASTeR [89] for the breath held 

condition, based on inter-frame motion to recover different cardiac MR images. MASTeR 

uses motion adaptive transform that models temporal sparsity using inter-frame motion 

estimation. k-t FOCUSS [89] also uses inter-frame motion estimation and compensation 

with a fixed reference frame during the image recovery process for breath held cardiac cine 

MRI. 

In DCE MRI, the contrast agent produces strong intensity variations over time. This 

intensity change is another challenge along with respiratory motion in free breathing DCE 

MRI. To generate a good quality MR image, intensity variation and respiratory motion 
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must be distinguished from each other before using registration based methods 

or CS based L+S decomposition method. L+S decomposition (also known as the robust 

principle component analysis) is a recently used technique for CS-based dynamic MRI. It 

represents the dynamic MR images as a superposition of a slowly varying background 

component and a rapidly changing foreground dynamic component [90]. Gao et al. [91] 

proposed a combined approach of CS and L+S decomposition for the recovery of 

retrospectively sub-sampled cardiac cine data and a series of diffusion-weighted images. 

Otazo et.al [90] applied L+S decomposition to recover accelerated dynamic cardiac 

perfusion and free breathing DCE MR images. They recovered the final images by 

combining CS and L+S decomposition without any pre-processing step for respiratory 

motion. 

3.4 Summary 

In this chapter we discuss the respiratory motion effects in cardiac and DCE MR imaging. 

The previously proposed solutions like breath hold, cardiac gating and motion estimation 

and correction to mitigate respiratory motion effects in cardiac imaging are discussed. 

Combination of CS and L+S decomposition to mitigate the respiratory motion in DCE MRI 

is also discussed at the end of chapter.  
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Chapter 4  

Recovery of Compressively Sampled Free Breathing 

Dynamic MR Images Using L1-Norm Approximation 

The medical advantages of MRI were observed since its beginning in 1971. Currently, MRI 

provides clinical information of all human organs with the main limitation of long 

examination time that result in motion during scanning process. Motion during MR 

scanning is the major source of artifacts in the recovered images. Removal of these artifacts 

from acquired MR data set is an evolving area with a great potential for new research fields. 

As discussed in previous chapter, different motion correction schemes have been proposed 

to remove or reduce the motion artifacts. The reconstruction of MR images can be further 

improved by investigating different algorithmic and functional aspects of these schemes. 

In this chapter, we aim to focus on a new algorithm and functional approximation of penalty 

terms for motion estimation and correction, which gives better results as compared to 

existing schemes. 

4.1 Introduction 

The first section provides a comparison of surrogate functions, used to approximation the 

𝑙1-norm penalty in the optimization problem.  Convergence rate of nonlinear conjugate 

gradient algorithm with backtracking line search is investigated for the two surrogate 

functions. Structural similarity index (SSIM) for different acceleration rates, Gaussian 

noise levels in MR images and root mean square error (RMSE) for recovered MR images 
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is calculated. Simulation results for hyperbolic tangent function, used as a surrogate 

function for 𝑙1-norm, show improved convergence rate, low RMSE and better SSIM. The 

parameters are evaluated for different sampling factors as well as for various Gaussian 

noise levels. 

In the second section a novel framework is proposed for the recovery of cardiac MR images 

in the presence of free breathing motion. To recover motion free dynamic MR images, a 

step wise methodology is adopted. Compressively sampled MR images are recovered 

initially by solving an optimization problem using gradient descent algorithm. The 𝑙1-norm 

based regularizer, used in optimization problem, is approximated by a hyperbolic tangent 

function. ARPS algorithm is then exploited to estimate and correct respiratory motion 

among the recovered images. The framework is tested for free breathing simulated and in-

vivo 2D cardiac cine MRI data. Simulation results show improved SSIM, peak signal to 

noise ratio (PSNR) and mean square error (MSE) with different acceleration factors for 

proposed method as compared to CS-free breathing without motion estimation and 

correction (MEMC). Experimental results also provide a comparison between k-t FOCUSS 

with MEMC, another recovery technique for dynamic MR images, and the proposed 

method. 

4.2 Surrogate functions for 𝒍𝟏-norm penalty 

To use the efficient algorithms based on gradient of cost function for getting optimum 

solution, 𝑙1-norm needs to be continuous everywhere. In literature, this type of problem is 

normally solved by approximating the discontinuous function. Reference [92] uses 

Gaussian function and sigmoid function for smooth approximation of 𝑙0-norm. Jawad et. 
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al [93] and Lustig et. al [4] used continuous surrogate functions, given in (4.1) and (4.2), 

as an approximation for absolute value in 𝑙1-norm to solve non-differentiability problem.   

|𝑥|1 ≈ 𝛽𝑥 tanh(𝛾𝑥)                                                    (4.1) 

|𝑥|1 ≈ √𝑥∗𝑥 +  μ                                                      (4.2) 

Where 𝑥∗ represents the conjugate of x and β, γ and 𝜇 are the variable parameters for better 

approximation. Comparison is based on algorithm convergence time, SSIM and RMSE for 

under-sampled MR images. Multi-parameter surrogate function, hyperbolic tangent given 

in (4.1), performs better and is more robust for noise compared to the function given in 

(4.2). Nonlinear conjugate algorithm with back tracking line search given in [4] is used 

with both approximations to solve 𝑙1-minimization problem. 

4.2.1 Surrogate functions comparison 

A surrogate function used as an approximation should satisfy two conditions [94] 

1. Function 𝑓(𝑥) must be smooth and continuous to calculate the gradient of cost 

function. 

2. Function 𝑓(𝑥) must be bounded between 0 and 1 for the normalized values of x. 

Magnified view of the approximation quality comparison, defined in (4.1) and (4.2) at the 

origin, is shown in Fig. 4-1. This part of figure is taken from combined graph drawn for 

the interval [-1, 1]. Other parameter values are set as follows: γ=20, β=1 and µ = 1x10-6. It 

can be observed that both approximations are close to l1-norm but tangent hyperbolic 

function is exactly zero at the origin for given value of γ while other function has a 

minimum value approaches to µ not to zero. Hence the minimum value for approximation 
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is violated by the function given in (4.2) and hyperbolic tangent function has a better 

approximation for l1-norm. 

 

Fig. 4-1Comparison of magnified view at origin for two approximate surrogate functions 

and |x|. 

4.2.2 Simulation setup and results 

To compare both function, a volunteer brain image data set with nonlinear conjugate 

algorithm discussed in [4] is used for all simulations. Variable density function is used to 

under sample the data and 39 % k-space samples are used in the MR images recovery 

process. Original brain image and sampling pattern used in [4] is shown in Fig. 4-2. To 

sparsify the MR images, Daubechies-4(db4) wavelet is used as sparsifying transform.  

4.2.3 Convergence rate comparison for MR images. 

In first simulation, we compare the convergence rate of algorithm for both functions. The 

parameter values for algorithm and approximate function are chosen as follows: λ=0.005, 

γ=4 and µ= 1x10-15 
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Fig. 4-2 Original brain image and corresponding sampling pattern 

 Fig. 4-3 show that algorithm with hyperbolic tangent function converges fast and to low 

RMSE value as compared to other function. These results are obtained by varying γ values 

to produce fast convergence along with optimum values of RMSE. 

 

Fig. 4-3 Convergence comparison for both surrogate functions in terms of RMSE 

4.2.4 Performance comparison for surrogate functions in the presence of 

noise 

In this experiment MR images, corrupted by different level of zero mean Gaussian noise, 

are recovered. Recovery process is performed using both surrogate function. SSIM is used 
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as a comparison measure. The parameter values for algorithm and approximate function 

are chosen similar as in simulation 1. Fig. 4-4 shows the SSIM versus noise variance for 

each surrogate function. It can be seen that for all noise variances hyperbolic tangent 

function outperforms the function in (4.2) 

 

Fig. 4-4 Robustness comparison for surrogate functions against Gaussian noise 

4.2.5 Performance comparison for surrogate functions for different 

acceleration rates 

In third simulation, performance of both surrogate functions is compared for different 

acceleration rates. Fig. 4-5 represents the better recovery for hyperbolic tangent function 

at all acceleration rates in terms of SSIM. This improved result is intuitive since there is a 

strong connection between under-sampling and Gaussian noise denoising [4].  Under-

sampling introduces a noise with Gaussian noise properties. As mentioned above,   

hyperbolic tangent function outperform in Gaussian noise, so it is better for different under-

sampling factors also as compared to function in (4.2).  
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Fig. 4-5 Performance comparison of surrogate functions for acceleration rates of 2.5, 3 

and 3.5 

4.3 Free breathing cardiac MR images recovery using Hyperbolic 

Tangent function 

In this section a novel framework is proposed for the recovery of highly under sampled 

free breathing cardiac MR images. The proposed technique is divided into two steps. The 

first step recovers cardiac images by solving an optimization problem using gradient 

descent algorithm. The penalty term in the cost function is approximated by the tangent 

hyperbolic function. The second step estimates and correct the respiratory motion using 

ARPS algorithm. Use of hyperbolic tangent function along with motion compensated 

residual in the cost function improves the final results.  

4.3.1Free breathing imaging model and CS 

Free breathing down sampled k-spaced data corrupted by motion states d=1, 2, 3 …. D for 

cardiac phase n =1, 2, 3…..N is mathematically given as  

𝒚𝑛 =  ∑ 𝑨𝑑,𝑛
𝐷
𝑑=1 𝑭𝒙𝑑,𝑛  =    ∑ 𝚽𝐷

𝑑=1 𝒙𝑑,𝑛                                  (4.3) 



 

 

 40   

 

Where xd,n is a two dimensional complex MR image vector of length T representing a 

cardiac phase n at respiratory state d. F is a Fourier operator that transform an image to k-

space. 𝑨𝒅 is a random variable density under sampling mask, different for all respiratory 

states and 𝚽 = 𝑨𝑭 is a sensing matrix. 𝒚𝑛 is a combined k-space measurement vector of 

length 𝐶 for nth cardiac phase acquired for all respiratory positions. A single cardiac phase 

𝑛 at respiratory state d in a specific heart cycle can be given as 

𝒚𝑑,𝑛 = 𝑨𝑑,𝑛𝑭𝒙𝑑,𝑛  =  𝚽𝒙𝑑,𝑛                                          (4.4) 

The reduction or acceleration factor for MR images is given by 𝑅 = 𝑇/𝐶. By increasing 𝑅, 

the system in (4.3) becomes highly underdetermined. As discussed in chapter 2, 

compressed sensing solves such under-determined system of equations effectively to 

recover MR images.  

4.3.2 Smooth 𝒍𝟏-norm approximation 

CS algorithms recover sparse signals or images by solving the l1-norm regularized 

optimization problem such as given in (2.15) and gradient descent algorithm for solving 

the optimization problem with wavelet based penalty term. Non-differentiability of the l1-

norm at origin excludes the usage of mostly optimization approaches for the solution. As 

discussed in section 4.1, two approximation functions have been used in literature given 

by (4.1) and (4.2).  

The results discussed in section 4.1 depicts that the function in (4.2) provides better results 

since it approximates the absolute value more accurately and provides extra flexibility of 

adjusting the slope at the origin with the proper selection of 𝛾 and makes it more suitable 

for dynamic images. The proposed iterative algorithm uses the following approximation 
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for the 𝑙1-norm penalty 

‖𝒙‖1 ≈ ∑ 𝑥𝑖 tanh(𝛾𝑥𝑖)𝑇
𝑖=1 =  ∑ 𝛼𝑇

𝑖=1 (𝑥𝑖)                                 (4.5) 

Where 𝛼(𝑥𝑖) = 𝑥𝑖𝑡𝑎𝑛ℎ(𝛾𝑥𝑖). The update equation for the algorithm, derived using the 

steepest descent method for a sparse vector 𝒙 ∈ ℝ𝑻is: 

                𝒙𝒊+𝟏 = 𝒙𝒊 − 𝜂∇𝑓(𝒙𝒊)                                                 (4.6) 

Where 𝜂 is positive valued step size, and -∇ is the gradient operator that differentiates the 

cost function 𝑓(𝒙) at ith iteration. During each iteration, shrinkage given in (4.7) is applied 

in the wavelet domain after (4.6) to reconstruct the MR images. 

𝑇𝜆(𝑥) = max{|𝑥| − 𝜆, 0} . 𝑠𝑔𝑛(𝑥)                                        (4.7) 

Where λ is a threshold parameter. By incorporating the approximation‖𝒙‖1 ≈ ∑ 𝛼𝑇
𝑖=1 (𝑥𝑖), 

the cost function can be written as 

𝑓(𝒙) =
𝟏

𝟐
‖𝚽𝒙 − 𝐲‖𝟐

𝟐 + 𝜆 ∑ 𝛼(𝑥𝑖)𝑇
𝑖=1                                      (4.8) 

The gradient of the cost function is easy to compute: 

∇𝑓(𝒙) = 𝚽𝑻(𝚽𝒙 − 𝐲) + 𝜆 ∑ 𝛼′(𝑥𝑖)𝑇
𝑖=1                                  (4.9) 

with  

                                         𝛼′(𝑥𝑖) = 𝑡𝑎𝑛ℎ(𝛾𝑥𝑖) +   𝑥𝑖𝛾(1 − 𝑡𝑎𝑛ℎ2(𝛾𝑥𝑖))                       (4.10) 

4.3.3 Respiratory motion based dynamical system 

Two main problems with free breathing cardiac MRI are:  

1. Blurring artifacts are generated by the combination of k-space samples for the same 

cardiac phases at different respiratory states.  
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2. The combination of k-space data in free breathing decreases the sparsity level.  

Inter-frame motion is used to estimate the respiratory states between the same cardiac 

phases. Video standards MPEG, H.264 [86, 87] have successfully exploited inter-frame 

motion for compression. In the dynamic MRI images, pixels are not significantly displaced 

in the neighboring frames. Pixel locations can be predicted using inter-frame motion 

estimation. Temporal redundancy among the frames is advantageous for the prediction of 

pixel locations. Let 𝒙𝑑,𝑛 and 𝒙𝑑,𝑛+1  are images having nth cardiac phases at respiratory 

states d and d+1 respectively. The pixel values of 𝒙𝑑 at location (𝑎, 𝑏) is closest to the 

pixel values at (𝑎 + 𝛥𝑎, 𝑏 +  𝛥𝑏)in 𝒙𝑑+1. The displacement of all pixels in 𝒙𝑑,𝑛 from 

(𝑎, 𝑏) to (𝑎 + 𝛥𝑎, 𝑏 + 𝛥𝑏) in 𝒙𝑑+1,𝑛is represented by motion vectors (𝛥𝑎, 𝛥𝑏). According 

to [3], cardiac phase 𝒙𝑑,𝑛 at dth respiratory state can be generated from the cardiac phase 

𝒙𝑑+1,𝑛at (d+1)th respiratory state by the following equation 

           𝒙𝑑,𝑛 =  𝑴𝑑+1,𝑛𝒙𝑑+1,𝑛 + 𝒎𝑑,𝑛                                     (4.11) 

Where 𝑴𝒅+𝟏,𝒏is a backward transformation that uses information about the physical 

changes between two data sets of the same cardiac phases. The motion compensated 

residual 𝒎𝑑,𝑛is computed by taking the difference between predicted and compensated 

image. Using the transformation 𝑴𝒅+𝟏,𝒏, a motion dependent linear system can be written 

by combining (4.3) and (4.11) as follows 

𝒚𝑛 =  ∑ 𝑨𝑑,𝑛
𝐷
𝑑=1 𝑭𝒙𝑑,𝑛                                                (4.12) 

𝒎𝒅,𝒏 =  𝑴𝒅+𝟏,𝒏𝒙𝒅+𝟏,𝒏 −  𝒙𝒅,𝒏                                       (4.13) 
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To recover the cardiac phases 𝒙𝑑,𝑛, we solve (4.12 and 4.13) by exploiting sparse structure 

in 𝒎𝑑,𝑛,  and 𝒙𝑑,𝑛. The process of complete high-resolution image generation is shown in 

Fig. 4-6.  

 

Fig. 4-6 A presentation of initial CS recovery and CS-MEMC recovery steps of the 

proposed method. 

For simplicity, only two heart phases with different respiratory states are shown with six 

heart beats and 𝑁 cardiac phases. Low resolution P and I frames are generated by primarily 

CS. Using ARPS block matching algorithm; motion is estimated and corrected to produce 
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a motion corrected image. The CS-free breathing MEMC image is generated by combining 

a low-resolution P frame and motion corrected image. The data is acquired in segmented 

fashion because MRI is a slow imaging modality. During the data scanning process, limited 

k-space samples are recorded at each heart phase in all cardiac cycles. To simulate this 

condition, each cardiac phase at different respiratory states is multiplied with different 

sampling matrix 𝑨𝑑,𝑛 

4.4 Cardiac image recovery 

A two-step approach is adopted to recover motion free cardiac phases.  

4.4.1Initial CS reconstruction 

In 1st step, images with motion effects are reconstructed from under sampled k-space data 

independently. For the recovery of dynamic cardiac images, the iterative algorithm of Fig. 

4-7 optimizes the cost function given in (4.9) with the approximation given in (4.5). 

Wavelet based soft threshold is used for the recovery of the Nth cardiac phase for each 

respiratory state. Doubeaches-4 (db4) wavelet is used to exploit the transformed domain 

sparsity. 

4.4.2Inter-frame motion estimation and correction (MEMC) 

In the 2nd step inter-frame motion estimation and correction is performed from a pair of CS 

recovered images, and divided into two sub steps 

a. Motion estimation: Exploit initially CS reconstructed images to estimate or refine 

inter-frame motion and the motion transformation 𝑴 as follows. Cardiac phase in the 1st 

R-R ECG interval is taken as a P frame (frame to be predicted) and cardiac phases in 

subsequent R-R intervals as an I frame (reference frame). The P and I frame is borrowed 
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terminology from video compression. To estimate the motion between the 2nd cardiac phase 

of the 1st and 4th R-R interval, for example, we take the 2nd cardiac phase of the 1st interval 

as a P frame and the 2nd cardiac phase at different respiratory state in the 4th R-R interval 

as an I frame. 

b. Motion correction: After finding motion vectors using ARPS block matching 

algorithm, we generate the corrected image from I frame and with the help of motion 

vectors. For the refinement of motion corrected image, solve the following optimization 

problem written for (4.12 and 4.13). 

min
𝒙

𝑓(𝒙𝒅,𝒏) ≔ ‖𝚽𝒙𝒅,𝒏 − 𝒚𝒅,𝒏‖
𝟐

𝟐
 + 𝜆‖𝒎𝒅,𝒏‖

1
                         (4.14) 

Where 𝒎𝑑,𝑛is given in (4.13) and its l1-norm approximation is 

‖𝒎𝒅,𝒏‖
1

= ∑ (𝑚𝑑,𝑛)𝒆 tanh(𝛾(𝑚𝑑,𝑛)𝒆)𝐸
𝑒=1                              (4.15) 

At the final step we generate the image of 2nd cardiac phase by combining P frame and 

motion corrected image to get an image with high temporal and spatial resolution. 

4.4.3 Proposed algorithm 

Steps involved in the reconstruction of MR motion corrected images are given in Fig. 4-7 

INPUTS 

𝒚𝑑,𝑛, 𝒚𝑑+1,𝑛 : k-space data 

𝑭: Fourier Operator 

𝜳 : Sparsifying transform operator 

  λ = 0.005, η = 0.9, Maxiter = 50 

OUTPUT 

𝑿𝑑,𝑛: Motion corrected final image 

INITIALIZATION 

𝒙̂𝑑,𝑛 =  𝑭−1𝒚𝑑,𝑛, 𝒙̂𝑑+1,𝑛 =  𝑭−1𝒚𝑑+1,𝑛 
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INITIAL CS BASED RECOVERY 

Step 1: For 𝑖 = 1: Maxiter 

Step 2: Update𝒙𝑑,𝑛
𝑖+1 = 𝒙𝑑,𝑛

𝑖 − 𝜂∇𝑓(𝒙̂𝑑,𝑛
𝑖 ) 

Step 3: Shrinkage:   𝒙̂𝑑,𝑛
𝒊+𝟏 = 𝜳−𝟏{𝑇𝜆(𝜳𝒙𝑑,𝑛

𝑖+1)}(Using (4.9)) 

Step 4: End (i) Return 𝒙𝑑,𝑛 

Repeat step 1 to 4 for recovery of 𝒙𝑑+1,𝑛 

MOTION ESTIMATION AND COMPENSATION 

Step 5: For j=1:Maxiter do 

If  j=1 

Step 6: Find motion compensated image𝒙̂𝑑,𝑛
𝒋

 for 𝒙𝑑,𝑛and 𝒙𝑑+1,𝑛 

 Else     

Step 7: Refine motion between  𝒙̂𝑑,𝑛 
𝒋

and 𝒙𝑑+1,𝑛 

End (Else) 

Step 8: Update  𝒙𝑑,𝑛
𝑗+1

= 𝒙̂𝑑,𝑛
𝑗

− 𝜂∇𝑓(𝒙̂𝑑,𝑛
𝑗

) 

Step 9: Shrinkage: 𝒙̂𝑑,𝑛
𝒋+𝟏

= 𝜳−𝟏{𝑇𝛽(𝜳𝒙𝑑,𝑛
𝑗+1

)}(Using (4.9)) 

 End (j) Return refined image 𝒙⃛𝑑,𝑛 

    Step 10: 𝑿𝑑,𝑛= 𝒙⃛𝑑,𝑛+ 𝒙𝑑,𝑛 

Fig. 4-7 Proposed algorithm 

 

4.4 Simulation and results 

The proposed method was tested on simulated data generated by the MRXCAT framework 

[95], and on fully sampled, free-breathing, cine MRI data. The recovered images for CS-

free breathing motion corrected was compared with CS-free breathing images and with 

CS-breath held images. All CS images were recovered in MATLAB (R2012a, MathWorks 

Inc., Natick, MA) using the proposed hyperbolic tangent based surrogate function to solve 

the non-differentiability problem of the l1-norm penalty. In the Gradient decent algorithm, 
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step size 𝜂 in an update equation was chosen empirically. Parameter values used in the 

algorithm are λ = 0.005, 𝜂 =  0.9 and 𝛾 ≥ 10. The same values for λ, η and 𝛾 were used 

for initial CS reconstruction and for the final inter-frame motion estimation and 

compensation. 

The Structural similarity index (SSIM) [96], peak signal to noise ratio (PSNR) and mean 

square error (MSE) given in chapter 2 was used for quantitative comparison between CS-

free breathing reconstruction with and without motion correction.  The ARPS block 

matching algorithm was used for inter-frame respiratory motion estimation between the 

reference image and the current image. Diastolic, middle of systolic and diastolic and 

systolic heart phases at different respiratory states were used for both simulated images and 

clinical data. 

The MRXCAT, a Matlab software for numerical simulation of cardiac MRI, is used for 

generating free breathing and breathe held images. For the MRXCAT, the following 

parameters were used: reconstruction matrix size: 256 × 256, 24 cardiac phases in the 

presence of respiratory motion, with an image resolution of 1×1×1 mm3, TE=1.5ms, 

TR=3ms and flip angle = 60o. In real free breathing cardiac cine MRI, fully sampled ECG-

gated data was acquired on a Philips 1.5 T scanner (b-SSFP). Reconstruction matrix size: 

256 × 256, 6 cardiac cycles with 24 cardiac phases in each cycle and an image resolution 

of 2.5×2.5×8 mm3 was used. 

For comparison of proposed method with k-t FOCUSS we used following data: a short-

axis MRI scan was acquired using a GE 1.5T twin speed scanner (R12M4) with a 5-element 

cardiac coil and a FIESTA/Fast CARD cine SSFP sequence. Scan parameters were selected 

as follows: TE: 2.0 ms, TR: 4.1 ms, flip angle: 45◦, FOV: 350 × 350 mm, slice thickness: 
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12 mm, 8 views per segment, 224 phase-encoding lines, 256 read-out samples, and 16 

temporal frames. To emulate the estimation of sensitivity maps from a pre scan, we 

acquired a separate scan (which we assume to be a pre scan) with identical scan parameters 

and estimated sensitivity maps as follows: Half of the (high frequency) k-space samples 

from each coil were removed from the pre scan via a smoothing filter followed by an 

inverse Fourier transform to obtain smoothed images for each coil. To estimate the 

sensitivity maps, we divided each smoothed coil image by the sum of squares of all coil 

images. 

The acquired data were retrospectively under-sampled for acceleration rates 𝑅 = 2 (50% 

samples), 3 (33% samples) and 8 (12.5% samples) using variable-density random under-

sampling method. Sampling masks for different acceleration rates are shown in Fig. 4-8. 

The sampling mask randomly selects more samples from the low frequencies of the k-space 

data and fewer samples from the high frequencies of the k-space data. 

 

(a)                        (b)       (c) 
 

Fig. 4-8 Variable density sampling patterns for different acceleration rates (R) a) 𝑅 = 3, 

b) 𝑅 =  4, c) 𝑅 = 8 

Fig. 4-9 provides a comparison of the CS-free breathing motion corrected (CS+MEMC), 

CS-free breathing (CS+no MEMC) and breath held  for the short axis MRI images 
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generated from the MRXCAT simulation software at the acceleration rate 2 and 8. Fig. 

4-9(a) illustrates frame 1, 5 and 12 out of 24 frames in a sequence, produced from fully 

sampled breath held k-spaced data. Most of the changes occur in the heart region, enclosed 

in the white box in (a), and is taken as a region of interest (ROI).    Fig. 4-9(b) shows the 

ROI, specifying left and right ventricles with endocardium and epicardium. Fig. 4-9(c) and 

(e) shows proposed method recovery (CS+MEMC) at the acceleration rates 2 and 8, 

respectively. Fig. 4-9 (d) and (f) represents the difference between breath held and 

estimated images for the proposed method. Fig. 4-9(g) and (i) show CS+no  

MEMC at the acceleration rates 2 and 8, respectively. Fig. 4-9 (h) and (j) represents the 

difference between breathe held and estimated images with CS+no MEMC. Images 

recovered by the proposed method shows significant improvement as compared to the 

image recovery without MEMC at both acceleration rates. Motion artifacts like ghosting 

and blurring can be seen in Fig. 4-9(g) and (i) pointed by the black arrows. The Proposed 

method eliminated ghosting and blurring effects and achieved high spatial and temporal 

accuracy as shown in Fig. 4-9(c) and (e). The elimination of motion artifacts provides sharp 

endocardium and epicardium borders. This sharpness is very important in the clinical 

interpretation of ventricular dynamics. The improved recovery of the proposed method is 

also evident from difference images. Fig. 4-10 presents the comparison of the proposed 

method and CS+no MEMC for the short axis MRI images at the acceleration rate 3 and 8. 

Fig. 4-10(a) illustrates complete data set of a diastolic, middle of diastolic and systolic and 

systolic frames in a sequence, produced from clinically observed fully sampled k-spaced 

data. 
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CS+MEMC     CS+no MEMC 

 

 

 

 

 

Fig. 4-9 Comparison of recovered images with and without respiratory motion estimation 

for simulated data: frames 1, 5 and 12 (left to right).a) Gold standard images from full k-

space breath held data. b) Spatial region of interest (ROI). Left column: c) 

Reconstruction using the proposed technique (CS+MEMC) at 𝑅 = 2d) Difference 

between estimated image (c) and (b).e) Reconstruction using the proposed technique 

(CS+MEMC) at 𝑅 = 8. f) Difference between estimated image (e) and (b). Right 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 

(j) 

Right Ventricle 

Left Ventricle 

Epicardium 

Endocardium 
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column: g) Reconstruction with CS+no MEMC at 𝑅 =  2.h) Difference between 

estimated image (g) and (b).i) Reconstruction CS+no MEMC at 𝑅 =  8. j) Difference 

between estimated image (i) and (b). 

 

Fig. 4-10(b) shows the ROI, enclosed in rectangular box in (a), representing left, right 

ventricle and epicardium and endocardium. Fig. 4-10(c) and (e) shows the proposed 

method recovery at acceleration rates 3 and 8, respectively. The results of CS-free 

breathing without MEMC at acceleration rates 3 and 8 are illustrated in Fig. 4-10(g) and 

(i) respectively. The systolic phase recovered by proposed method in (c) and (e) is very 

close and clear to fully sampled ROI in (b) as compared in (g) and (i) where the images are 

not only ghosted and blurred, the heart walls are also displaced from their true location. 

Sharpness of epicardium and endocardium is also prominently visible in images recovered 

through proposed method. Fig. 4-11 illustrates the comparison of the proposed method 

(CS+MEMC) and k-t FOCUSS with MEMC for the short axis MRI dataset at acceleration 

rate 4. Fig. 4-11(a) shows frames 1, 13, and 10 (from left to right) out of the 16 frames in 

the sequence, calculated from the fully sampled breath held k-space data. Using k-space 

tutorial [97], motion-corrupted images are generated from the short axis MRI dataset. Fig. 

4-11(b) present proposed technique reconstructions at acceleration rates 4. The results for 

k-t FOCUSS with MEMC at acceleration rates 4 is presented in Fig. 4-11(c). The proposed 

method reconstruction shows significant improvement and less random noise than k-t 

FOCUSS with MEMC reconstruction. Furthermore, k-t FOCUSS with MEMC 

reconstructions contain motion artifacts (visible with bright regions), while the proposed 

method reconstructions are much cleaner. 
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CS+MEMC    CS+no MEMC 

 

 

 

 

Fig. 4-10 Comparison of recovered images with and without respiratory motion 

estimation for clinical data: frames diastolic, middle of diastolic and systolic and systolic 

(left to right). a) Gold standard images from full k-space data. b) ROI. Left column: c) 

Reconstruction using the proposed technique (CS+MEMC) at 𝑅 = 3 d) Difference 

between estimated image (c) and (b). e) Reconstruction using the proposed technique 

(CS+MEMC) at 𝑅 = 8. f) Difference between estimated image (e) and (b) Right 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 

(j) 

Right Ventricle 

Left Ventricle 
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Endocardium 
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column: g) Reconstruction with CS+no MEMC at 𝑅 = 3. h) Difference between 

estimated image (g) and (b).i) Reconstruction CS+no MEMC at 𝑅 = 8. j) Difference 

between estimated image (i) and (b). 

 

 

 

 

Fig. 4-11 Comparison of recovered images in pixel domain for proposed method and k-t 

FOCUSS with MEMC data at a acceleration rate of 4.a) Fully sampled breath held k-

space data b) Recovered images with proposed method c) Reconstructed images for k-t 

FOCUSS with MEMC 

 

Table 4.1, Table 4.2, and Table 4.3 provides a comparison of the proposed method and k-

t FOCUSS for performance metrics such as SSIM, PSNR and MSE. The numerical values 

of metrics for selected frames 1, 10 and 13 show that the proposed method outperforms k-

t FOCUSS with MEMC. 

 

 

(a) 

(b) 

(c) 

Gold 

Standard 

Proposed 

Method 

k-t FOCUSS 
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Table 4.1 SSIM Comparison for proposed method and k-tFOCUSS with MEMC 

Technique Diastolic(Frame #1) Systolic (Frame #10) Middle(Frame #13) 

Proposed Method 0.7319 0.8687 0.8260 

k-t FOCUSS 0.7004 0.8368 0.7302 

 

Table 4.2 PSNR (db) Comparison for proposed method and k-t FOCUSS with MEMC 

Technique Diastolic(Frame #1) Systolic (Frame #10) Middle(Frame #13) 

Proposed Method 29.9443 34.2610 31.1526 

k-t FOCUSS 25.4316 32.3289 26.2374 

 

Table 4.3 MSE Comparison for proposed method and k-t FOCUSS with MEMC 

Technique Diastolic(Frame #1) Systolic (Frame #10) Middle(Frame #13) 

Proposed Method 0.001 3.7488e-4 7.6690e-4 

k-t FOCUSS 0.002 5.8494e-4 0.0024 

 

A plot for PSNR at different acceleration rates for CS-free breathing and CS-free breathing 

motion corrected is shown in Fig. 4-12. It is drawn for recovered images shown in Fig. 

4-10. Dashed lines denote PSNR over the ROI and the solid line shows over the entire 

image. The curves show that CS-free breathing motion corrected (proposed method) is far 

better than the CS-free breathing at all acceleration rates for both the full reconstruction 

and the reconstructions of ROI. Even at higher acceleration rate like 12, PSNR for ROI is 

4db better in CS-free breathing with MEMC as compared to CS-free breathing without 

MEMC. 

To show how the recovered images, with and without MEMC are similar to the fully 

sampled images, we used SSIM. A plot for SSIM at different acceleration rates for CS-free 

breathing and CS-free breathing motion corrected is shown in Fig. 4-13. The plot is drawn 

for clinical data of Fig. 4-10. Solid lines denote SSIM over the ROI and dashed line shows 
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over the entire image (Full image). The curves illustrate that the images recovered with the 

proposed method are more similar to a gold standard as compared to CS-free breathing 

without MEMC at all acceleration rates.  

 

Fig. 4-12 Performance comparison of PSNR at different acceleration rates for CS-free 

breathing (CS+no MEMC) and CS-free breathing motion corrected (CS+MEMC). 

Dashed lines depict PSNR over the full image and solid lines shows PSNR in the region 

of interest (ROI). 

A plot for reconstruction mean square error (MSE) at different acceleration rates for CS-

free breathing and CS-free breathing motion corrected is illustrated in Fig. 4-14. The plot 

is drawn for clinical data of Fig. 4-10. Solid lines denote MSE over the ROI and dashed 

line shows over the entire image. The curves illustrate that images recovered with proposed 

method have smaller MSE in comparison with CS-free breathing without MEMC at all 

acceleration rates for both entire region and ROI. 
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Fig. 4-13 Performance comparison of SSIM at different acceleration rates for CS-free 

breathing without MEMC and CS-free breathing with MEMC. Dashed Lines depicts 

SSIM over the full image and solid lines shows SSIM in the region of interest (ROI). 

 

 

Fig. 4-14 Performance comparison of MSE at different acceleration rates for CS-free 

breathing and CS-free breathing motion corrected. Dashed Lines depicts MSE over the 

entire region and solid lines with MSE in the region of interest (ROI). 
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4.5 Summary 

First section of the chapter presented a comparison of surrogate functions used to 

approximate the absolute value function used in l1-norm. Simulation results show 

hyperbolic tangent function shows robustness in noisy environment and performs better 

for different acceleration rates since it yields improved image recovery in terms of SSIM. 

Fast convergence and lower RMSE is also observed for hyperbolic tangent function. 

Flexibility of varying parameters λ and γ is an extra facility to adjust the slop of function. 

The second section proposed a method for respiratory motion correction in ECG gated free 

breathing cardiac MRI. Inter-frame motion estimation was used to estimate the respiratory 

motion between the same cardiac phases, but at different respiratory states. The block 

matching algorithm was used for MEMC. A Gradient decent algorithm based on flexible 

l1-norm approximation was used for the recovery of MR images free from motion artifacts 

and close to the true MR images. Standard metrics like SSIM, PSNR and MSE at different 

acceleration rates were observed superior for the proposed method as compared to the 

results obtained without MEMC and k-t FOCUSS 
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Chapter 5  

Recovery of Compressively Sampled MR Images Using 

Motion Adaptive Wavelet Threshold 

 

Iterative shrinkage algorithms like Parallel Coordinate Descent (PCD) and Separable 

Surrogate Functional (SSF) use wavelet threshold with uniform and empirically selected 

threshold values to recover the sub-sampled MR images. This chapter discusses a new idea 

of adaptive threshold for the reconstruction of compressively sampled static and dynamic 

MR images. The derivation of parameter as well as an iterative shrinkage algorithm based 

on derived threshold is presented in details. The threshold parameter continuously changes 

its value based on the dynamics of the MR images to be recovered. The algorithm and the 

derived adaptive threshold is experimentally tested for static and dynamic MR images with 

varying acceleration rates and it has been shown that it outperforms the fixed threshold 

value algorithm. 

5.1 Introduction 

Transformed domain sparsity and Fourier encoded nature of MR imaging makes MRI a 

possible candidate for the application of CS theory [4]. Algorithm development for the CS 

recovery of sub-sampled MR images is an active area of research in the sparse signal 

processing community. Reconstruction of MR images based on a nonlinear conjugate 

gradient and Bregman iteration method is discussed in[4, 98]. However, these algorithms 

are not feasible for real images with higher dimensions. Iterative shrinkage threshold (IST) 
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and fast IST[99, 100], another group of algorithms, efficiently recover MR images from 

under-sampled k-space data by minimizing a cost function given in (2.15) with the 

thresholding step as a main ingredient. 

Use of threshold is a simple idea for denoising or equivalently for CS based reconstruction 

but selection of threshold parameter in algorithms is not an easy task. Different variants of 

IST [93, 101] use a fixed and uniform threshold values, selected empirically, in shrinkage 

step to recover MR images from wavelet coefficients. References [102-104] discuss image 

de noising using wavelet threshold and propose a spatially adaptive threshold value that is 

a function of noise and image statistics. Use of uniform threshold parameter does not 

provide the benefit of selecting important signal feature and rejecting noise coefficients 

simultaneously [103]. 

The IST algorithms [93, 105, 106] and the algorithm discussed in chapter 4 

considers 𝑆𝜆(𝒙), given in (4.7), with a fixed and empirically selected threshold parameter 

λ which is in appropriate for the following reasons: 

1. The wavelet domain coefficients of images are peaked at zero but do not follow 

exactly Laplacian distribution. 

2. Fixed λ is not appropriate for the images that are changing with time. 

3. In a CS recovery problem, fixed λ needs to be changed for different acceleration 

rates to get better recovery results. 

Flexible soft thresholding function[105], based on different adjustable parameters, solve 

the above problems up to some extent by changing the values of parameters. Another 

technique discussed in this chapter to solve the above mentioned problems in CS recovery 
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is to replace the fixed threshold value λ with an adaptive or data driven parameter that 

depends upon the statistics of wavelet coefficients.  

5.2 Adaptive threshold 

Exploiting the concept of denoising, based on adaptive wavelet thresholding [102, 103], 

the data driven threshold value 𝜆𝑎𝑑𝑎𝑝 is derived using maximum a posterior (MAP) 

estimator as follows. Let the observed signal, in wavelet domain, is given as 

𝒓 = 𝒛 + 𝒗                                                             (5.1) 

Where the random vectors 𝒓 = 𝚿𝐲 and 𝒛 = 𝚿𝐱 are the wavelet coefficients of the noisy 

observations and noise-free image respectively and𝒗 = 𝚿𝜺 with 𝜺 is independent and 

identically distributed N (0, 𝜎2) noise . Since 𝚿is orthogonal, 𝒗 is also Gaussian and 

normally distributed. The (MAP) estimator for the random vector 𝒛 is given by: 

𝒛̂ = argmax
𝒛

𝑝(𝒛|𝒓) 

Applying Baye’s rule and ignoring 𝑝(𝒓), the MAP estimator takes the form: 

𝒛̂ = argmax
𝒛

𝑝(𝒓|𝒛)𝑝𝒛(𝒛)                                            (5.2) 

Using simple mathematics starting with𝑝(𝒓|𝒛) = 𝑝𝒗(𝒓 − 𝒛) following expression is 

derived 

= argmax
𝐳

[−
‖𝒓−𝒛‖2

2

2𝜎𝑣
2 + 𝑔(𝒛)]                                           (5.3) 

where 𝑔(𝒛) = 𝑙𝑛 𝑝𝒛(𝒛). Maximum of the cost function in (5.3) is obtained by 

differentiating the argument of (9) w.r.t. 𝒛 and equating the result to zero that is 

(𝑟𝑖−𝑧̂𝑖)

𝜎𝑣
2 + 𝑔′(𝑧̂𝑖) = 0, 1 ≤ 𝑖 ≤ 𝑁                                      (5.4) 
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For a large class of natural and biomedical images, the wavelet domain coefficients are 

symmetrically distributed and are sharply peaked at the centre[107, 108]. In this paper we 

assume the distribution of transformed domain coefficients be Laplacian i.e. 

𝑝𝑧(𝑧𝑖) =
1

√2𝜎𝑧

𝑒
√2

𝜎
|𝑧𝑖|

 

gives 𝑔′(𝑧̂𝑖) = −
√2

𝜎𝑧
𝑠𝑔𝑛(𝑧̂𝑖). Solving (5.4) results in  

𝑟𝑖 = 𝑧̂𝑖 +
√2𝜎𝑣

2

𝜎𝑧
. 𝑠𝑔𝑛(𝑧̂𝑖)                                            (5.5) 

To find 𝑧̂𝑖, solve (5.5) for 𝑧̂𝑖 to get the nonlinear shrinkage: 

𝑧̂𝑖(𝑟) = 𝑆𝜆(𝑟) = max{|𝑟| − 𝜆, 0} . 𝑠𝑔𝑛(𝑟)                            (5.6) 

with λ, adaptive and data driven threshold, is given by the following relationship 

𝜆 =
√2𝜎𝑣

2

𝜎𝑧
   ≜ 𝜆𝑎𝑑𝑎𝑝                                                       (5.7) 

where 𝜎𝑧 is the standard deviation of an image in the wavelet domain, and 𝜎𝑣 is thestandard 

deviation of Gaussian like noise artifacts. The threshold parameter is data dependent and 

has an intuitive appeal. The normalized threshold parameter 
𝜆𝑎𝑑𝑎𝑝

𝜎𝑣
 has an inverse 

relationship with 𝜎𝑧 , the standarddeviation of 𝒛, and direct relationship with 𝜎𝑣 , the noise 

standard deviation. When
𝜎𝑣

𝜎𝑧
⁄ ≪ 1, the image features are much stronger than the noise, 

thus𝜆𝑎𝑑𝑎𝑝/𝜎𝑣 is chosen to be small to preservemost of the image features and remove some 

of the noise, and when
𝜎𝑣

𝜎𝑧
⁄ ≫ 1 , the noise dominates and the normalized threshold is 

chosen to be large to remove the noise. In this paper we used the shrinkage function in (5.6) 

for sparse signal recovery with the threshold parameter derived in (5.7). 
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5.3 CS-MRI and proposed algorithm 

Different techniques like parallel imaging[1], reduction in repetition time (TR) and non-

Cartesian sampling[4]with their own limitations have been used to reduce the MRI scan 

time. CS, an algorithmic reduced MR acquisition technique, exploits transformed domain 

sparsity for the recovery of under-sampled MR images. The sparsity of static and dynamic 

MR images can be observed as a sharp peak of coefficients in wavelet domain and is shown 

in Fig. 5-1 for brain and systolic heart phase. To recover a good quality image, CS 

technique requires: i) the image to be recovered has sparse structure in some transform 

domain ii) the under-sampling effect of k-space be incoherent in that transform domain iii) 

a nonlinear reconstruction procedure. In case of MRI, the CS reconstruction algorithm 

minimizes the following cost function, a modified version of (2.15) 

                                                      𝑓(𝒙) =
1

2
‖𝐅𝒖𝒙 − 𝒚‖𝟐

𝟐 + 𝜆‖𝒛‖1                                            (5.8) 

where 𝐅𝐮 denotes the partial Fourier transform, 𝒛 = 𝚿𝒙, and 𝒚 is the under-sampled k-

space data. 

In CS, there is a strong connection between under-sampling and additive Gaussian noise. 

Random under-sampling of Fourier encoded images introduces noise in the linear 

reconstructed images that can be modeled by the Gaussian distribution. The actual down 

sampling noise depends on a sampling mask used for the under-sampling of MR image. 

For the variable density under-sampling mask used in our simulation, noise histogram (in 

pixel domain) is shown in Fig. 5-2. The error is obtained as follow 

𝒆 = 𝒙 − 𝒙̂ 

𝒙̂ is the recovered or denoised image. 
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Fig. 5-1 Wavelet coefficients histograme for brain and systolic cardiac phase MR images. 

Iterative shrinkage threshold (IST) algorithms improve reconstructed image quality 

iteratively from under-sampled k-space data with fixed threshold value. To cater for the 

problems due to fixed threshold parameter, the threshold value during iteration must be 

adaptively updated to reconstruct the best image. The proposed adaptive threshold 

parameter 𝜆𝑎𝑑𝑎𝑝 can be used with any iterative shrinkage algorithm. In this article, 

however, we  take iterative algorithm presented in [93] with the complete description given 

in Fig. 5-3. Inverse Fourier-transformed values, obtained from zero-filled k-space data, are 

used to initialize the algorithm. To improve the quality of images, the algorithm iteratively 

computes the Gradient of the cost function and applies the shrinkage in wavelet domain. 
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Fig. 5-2 Histogram of Gaussian like noise 

Instead of using fixed and empirically selected threshold value, an adaptive threshold value 

derived in (5.7) is used in the algorithm. 

Input: Under sampled k-space data 𝐲 = 𝚽𝐱 ∈ 𝑅𝑀, parameters 𝜂,𝛾and 

λini, imax 

Output: Reconstructed image vector 𝒙̂ ∈ 𝑅𝑁 

Initialization: Select 𝒙𝑖𝑛𝑖 = 𝑭−𝟏(𝒚).where F-1 is inverse Fourier 

transform  

𝒙𝐢 = 𝒙𝐢𝐧𝐢 

If i=0 

λ=λini, otherwise λ=λadap 

Step-1 Find ∇𝑓(𝑥𝑙
𝑖)of  (4.8) using (4.9)  

Step-2 Compute 𝑥𝑙
𝑖+1using (4.6) 

Step-3 Compute wavelet coefficients of 𝒙𝒊𝒏𝒊 i.e 𝒛𝒊𝒏𝒊 = 𝚿𝒙𝒊𝒏𝒊 

Step-4 Compute wavelet coefficients of 𝒙𝒊+𝟏i.e 𝐳𝒊+𝟏 = 𝚿𝒙𝒊+𝟏 

Step-5 Compute the error 𝒆 =  𝒛𝒊𝒏𝒊 − 𝐳𝒊+𝟏 

Step-6 Compute noise power 𝜎𝑣
2 using error e 
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Fig. 5-3 Proposed algorithm 

The stopping criteria could be a fixed number of iteration and or some desired value of 

‖𝐅𝒖𝒙 − 𝒚‖𝟐
𝟐 

5.4 Simulation results and discussion 

The proposed algorithm and adaptive threshold value is tested for the recovery of a brain 

and cardiac MR data. In the first experiment, the proposed algorithm recovers a brain image 

data from partial Fourier coefficients (k-space data). The image is under-sampled by taking 

12.5% samples from complete k-space data using variable density sampling pattern. To 

sparsify the MR image, doubechies-4 (db4) wavelet is used. To keep the acquired k-space 

samples unchanged, during iteration, a data-consistency step is incorporated in the 

algorithm. The image recovery process is completed using 25iterations of the algorithm. 

The parameter values of η=0.9 and 𝛾= 50 are used and the adaptive threshold value is 

initially chosen as 0.023 and updated during each iteration. The fix threshold value of  λ= 

0.02, chosen for comparison, is same as taken in[93]. 

The Human brain image used in experiment acquired through 1.5 Tesla GE HDxt scanner 

with an eight-channel head coil and a gradient echo sequence at St. Mary’s Hospital 

London. Other specifications were: matrix size = 256 x 256, flip angle = 90o, slice thickness 

Step- 7 Compute 𝜎𝑧𝑖+1 using 𝐳𝒊+𝟏 

Step-8 Compute adaptive threshold i.e. 𝜆𝑎𝑑𝑎𝑝 =
𝜎𝑣

2

𝜎𝑧𝑖+1
⁄  

Step-9 (Soft Thresholding in wavelet domain): Estimate Solution 𝒙̂𝒊 

using 𝒙̂𝒊 = 𝚿−𝟏𝑆𝜆(𝐳𝒊+𝟏) where 𝑆𝜆(𝐳𝒊+𝟏) is given in (5.6) 

Step-10 (Repeat): For number of maximum iteration (imax) 

Output: Reconstructed 𝒙̂ = 𝒙̂𝒊 
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= 3mm, bandwidth = 31.25 KHz, Field of view (FOV) = 20 cm, TR/TE =55/10 msec. The 

variable density sampling mask used in all simulation with an acceleration factor of 8and 

an original head MRI is shown in Fig. 5-4. 

 

Fig. 5-4 Original head MRI with the variable density sampling pattern 

Fig. 5-5 presents a comparison of the reconstructed image quality between proposed 

algorithm with the adaptive threshold parameter and an algorithm with fixed threshold 

parameter. It is clear from five times amplified difference between original and recovered 

images that the proposed algorithm recovers an image with the superior quality as 

compared to fixed threshold value based algorithm. 

Fig. 5.6 provides a performance measurement plots for standard matrices of SSIM, PSNR 

and correlation of recovered brain MR images using proposed algorithm. A Similar under-

sampling pattern and initial zero filled (ZF) image is 
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(a) 

 

(b) 

Fig. 5-5 Comparison of brain MR images in term of amplified difference between 

original and recovered images. a) Recovered image and magnified difference for the 

proposed method. b) Recovered image and magnified difference for the algorithm with 

fixed value threshold. 

used for both algorithms to have better performance comparison. The improved PSNR 

for proposed algorithm in comparison with algorithm proposed in [93] is shown in  

Fig. 5-6(a). Improvement in SSIM and correlation can be seen in 
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Fig. 5-6 (b) and (c) for the proposed algorithm with the adaptive threshold outperforms 

the algorithm with fixed threshold value used in [93].  

 

(a) 

 

(b) 
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(c) 

Fig. 5-6 Performance comparison between proposed method and an algorithm with  

fixed threshold. a) PSNR based comparison b) Correlation based comparison c) SSIM 

based comparison. 

Decrease in λ value with the number of iteration is shown in Fig. 5-7. It can be seen from 

the figure that with the convergence of algorithm i.e. Improvement in MR image quality, 

the proposed algorithm suggests smaller values of λ which is intuitive. 

In the second experiment we demonstrate the recovery of dynamic cardiac MR images 

using the proposed algorithm with 𝜆𝑎𝑑𝑎𝑝 in shrinkage step. The Same cardiac cine data for 

volunteers taken from 1.5Tesla Philips scanneris used for testing as in [109]. 

The remaining parameters and sub-sampling mask required for algorithm are same as used 

for MR brain image. Variation in standard deviation of heart phases in a single cycle is 

shown in Fig. 5-8. This variation suggests the use of an adaptive threshold parameter during 
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the recovery process. Fig. 5-9 presents a reconstruction performance of proposed algorithm 

for three different heart phases at an acceleration rate of 8.  

 

Fig. 5-7 Reduction in proposed threshold parameter values versus the number of iteration 

 

Fig. 5-8 Variations in standard deviation of heart phases 
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To visualize the details of the improved recovered images of proposed algorithm over fixed 

threshold value, the magnified difference (x12) is shown for each cardiac phase. From Fig. 

5-9(b), (c) and (d), the adaptive threshold based algorithm has superior quality of recovery 

than fixed threshold based algorithm. The advantage of adaptive threshold value for 25 

heart phases can be seen in Fig. 5-10 which provides comparison of PSNR and correlations 

for proposed algorithm. For all 25heart phases, the PSNR and correlations of recovered 

heart phases is higher for adaptive threshold algorithm. The improvement value is due to 

the adaptive capability of threshold parameter for the changing dynamics of heart. 

Correlation is taken between recovered images and ground truth for both adaptive and fixes 

threshold parameters. 

Finally, the proposed algorithm is tested for the recovery of cardiac phases at different 

acceleration rates. Fig. 5-11 shows that the algorithm based on adaptive thresholding value 

outperforms as compared to the fixed values of threshold, taken as λ = 0.02 for brain image, 

at all acceleration rates.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

            For the adaptive threshold value            For  fix threshold value 

 

Fig. 5-9A comparison of the proposed and fixed value threshold based algorithms for the 

recovery of short axis cardiac MRI scan at the acceleration rate R=8.(a) Systolic, the 

middle of systolic and diastolic and diastolic phases (left to right).  Ground truth images 

from full k-space data. White boxes show region of interest (ROI) (b)(c)and(d) enlarged 

ROI. Left column: Reconstructed heart phases with difference images magnified by 12 

for proposed algorithm. Right column: Reconstructed heart phases with difference 

images magnified by 12 for the algorithm with fixed threshold value 
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(a) 

 
(b) 

Fig. 5-10 Performance comparison between the proposed algorithm with adaptive 

threshold value and an algorithm with fixed threshold for cardiac phases a) PSNR based 

comparison b= Correlation comparison 
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Fig. 5-11 PSNR at different acceleration rates for proposed and fixed value threshold 

algorithm 

5.5 Summary 

In this chapter, concept of image de noising in wavelet domain is extended to compress 

sensing. MAP estimation approach for de noising is used to derive an adaptive threshold 

parameter. The fixed threshold value, normally used in de noising as well as in IST for CS 

recovery, is made data driven and adaptively updated during recovery process. A soft 

threshold function based algorithm using adaptive threshold is proposed and tested for 

static and dynamic MR images. The adaptive threshold parameter adjusts its value 

according to the under-sampling artifacts and the changing dynamics of MR images. 

Simulation results validate that proposed algorithm with adaptive threshold perform better 

than fixed value threshold for different acceleration rates, and recovers the images with 

higher PSNR and correlation. 
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Chapter 6  

Data Binning and RPCA Based Motion Artifacts 

Reduction in Compressively Sampled DCE MR Images 

Respiratory motion produces ghosting and blurring artifacts in reconstructed MR images. 

Motion during scan process is more challenging in DCE MRI because motion effects and 

rapid intensity changes in contrast agent is difficult to distinguish from each other. In this 

chapter a new technique, based on data binning and robust principle component analysis 

(RPCA) or L+S matrix decomposition, is introduced to reduce the motion artifacts for DCE 

MRI. Under-sampled free breathing 3D liver and abdominal DEC MR data sets are used 

to validate the proposed technique.  The performance of the technique is compared with 

standard RPCA method. The results show improved MR images with data binning as pre-

processing step in free breathing scenario. 

6.1 Automatic motion detection and data binning: 

The basic strategy is to acquire DCE-MR images with respiratory motion and then 

reconstructs the images free from motion effects. To recover motion free images, acquired 

k-space samples must be grouped in such a way that each group (motion state) has very 

less respiratory motion. For grouping or binning of the data, two principle requirements 

are: a) reliable respiratory motion signal b) uniform coverage of k-space after data binning. 

Consecutive spokes  of the golden angle radial sampling with an angle of approximately 

111.25o,are used for data acquisition [110] . This sampling scheme samples the k-space 
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centre repeatedly that enables the extraction of respiratory motion state signals [111, 112] 

for data binning. It also provides consistent k-space coverage in all respiratory states with 

adequate randomness in sampling pattern for the application of compressed sensing. The 

3D DCE-MRI k-space data can be represented in matrix form as follows: 

𝒚𝑢 = 𝑭𝑛𝑢𝑪𝒙                                                      (6.1) 

Where 𝒙 is the 3D DCE image series to be recovered with (𝑥 − 𝑦 − 𝑧 − 𝑁𝑐) 

dimensions,𝑭𝑛𝑢 is the nonlinear fast Fourier transform operator (NUFFT), 𝑪 = [
𝑪𝟏

⋮
𝑪𝑁𝑐

] 

represents the coil sensitivity maps for 𝑁𝑐 number of coilsin 𝑥 − 𝑦 space and 𝒚𝑢 is the 

unsorted multicoil radially sampled k-space data with (𝑁𝑟 − 𝑁𝑠 − 𝑧 − 𝑁𝑐) dimensions. 𝑧 

represents the linear slice dimension, 𝑁𝑟 is the number samples along a spoke and 𝑁𝑠 is the 

number of spokes. 

A robust approach, for the detection of motion from k-space data, is to use projections 

along the slice dimension for 3D stack of star imaging [113]. In this approach, spokes for 

all slices along 𝑧 direction are acquired and then 1D Fourier transform is computed to 

obtain the projection profiles for central points(𝑥, 𝑦 = 0) and for all acquisition angles. 

Once the projection profile obtained for all coils, they are linked to form the following 

(𝑁𝑐 × 𝑁𝑟) − 𝑏𝑦 − 𝑁𝑠matrix: 

𝐴 = [

𝑈1

⋮
𝑈𝑁𝑐

] , 𝑤𝑖𝑡ℎ 𝑈𝛼 = [

𝑢𝛼(𝑎1, 𝑏1) … 𝑢𝛼(𝑎1, 𝑏𝑁𝑠
)

⋮ ⋱ ⋮
𝑢𝛼(𝑎𝑁𝑟

, 𝑏1) … 𝑢𝛼(𝑎𝑁𝑟
, 𝑏𝑁𝑠

)
]  𝑓𝑜𝑟 𝛼 = 1,2 … 𝑁𝑐           (6.2) 

As discussed in[112], PCA is used to estimate the motion signal from concatenated data 

matrix 𝐴 of all coils. PCA is accomplished by computing the right singular vectors of 𝐴, 

or equivalently the eigen-vectors of the covariance matrix 𝐶𝑜𝑣 = 𝐴𝑇𝐴. Principle 
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component with highest peak in the range of respiratory signal frequency 0.1Hz to 0.5Hz 

is selected to represents breathing signal. Based on the estimated respiratory signal, the 

radially acquired data is first divided into consecutive contrast enhancement phases and 

every phase was then further divided into multiple motion states having the same number 

of spokes. This binning process provides the data 𝒅 with dimension(𝑁𝑟 − 𝑁𝑠 − 𝑁𝑐𝑜𝑛𝑡 −

𝑁𝑅). Where 𝑁𝑐𝑜𝑛𝑡 shows the number of contrast phases and 𝑁𝑅represents number of 

respiratory states. The idea is shown in Fig. 6-1. 

Fig. 6-1 For liver DCE-MRI, extraction and binning of respiratory signal a) Extracted 
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respiratory signal from k-space data. The signal is divided among different contrast 

phases. b) Binning procedure for the sorted respiratory motion signal carried out in every 

contrast enhancement phase separately. Distinct radially sampled patterns (shown in 

different colors) are used for different respiratory states and same number of spokes is 

used for each respiratory state. 

Binning of radially sampled k-space date in different respiratory states clearly reduce the 

motion effects (can be observed by solid line in Fig. 6-2) but on the other hand introduces 

streaking artifacts (shown by white arrows). L+S decomposition in conjunction with 

compressed sensing is used to remove these under-sampling artifacts.  

 

Fig. 6-2 Contrast enhancement phases before and after binning. a) Motion is present 

along with streaking artifacts. The solid line clearly shows the misalignment of different 

contrast phases. b) Respiratory motion is resolved after binning and phases are aligned 
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with each other. It can be observed along the solid line. White arrows show streaking 

artifacts. 

 

6.2 L+S matrix decomposition: 

The L+S matrix decomposition of DCE MR images decomposes it into a low rank 

component, containing smooth and slow variations and a sparse component comprising 

fast and local intensity changes. A necessary condition for this decomposition is 

incoherence between L and S components. It means that L component should not be sparse 

and sparse component should not have low rank [38, 39]. 

For the implementation of L+S decomposition method, the sequence of DCE MR Images 

is placed in a matrix form such that each column represents one temporal frame. This 

matrix is called Casorati matrix. The L+S decomposition is performed by solving the 

following convex optimization problem: 

𝑚𝑖𝑛‖𝑳‖∗ +  𝜆‖𝑺‖1         𝑠. 𝑡.   𝕄 = 𝑳 + 𝑺                             (6.3) 

where 𝑺 represents sparse matrix, 𝑳 is the low rank matrix and 𝕄 is the Casorati 

matrix.‖𝐿‖∗is the nuclear norm (the sum of singular values of 𝑳), ‖𝑺‖1 is the l1-norm (the 

sum of absolute values of components of 𝑺), and λ is a balancing parameter that defines 

the share of the l1-norm relative to the nuclear norm. 

Fig. 6-3 shows the L+S decomposition of DCE MRI data set after binning, where 𝑳 

captures the smooth and slow varying correlated background between frames and 𝑺 

captures the contrast-enhancement changes. Two features can be observed in Fig. 6-3(b) 

and (c). The first one is, the 𝑺 component is sparser than 𝕄 component for both data sets. 

The separation of smooth changes from contrast enhancements provides gain in sparsity 
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and in principle permit higher acceleration rates [90]. The second one is, the 𝑺 component 

of the proposed method (Fig. 6-3b) is sparser than the S component for the data set without 

binning (Fig. 6-3 c). This increased sparsity is achieved by resolving the motion through 

the binning process. As a result, higher acceleration factors can be achieved with the 

proposed method.  

 

Fig. 6-3 L+S decomposition for DCE MRI with and without binning a) series of images 

along time. Decomposed components in y-t space b) for proposed method c) without 

binning. The 𝑺 component is sparser in b) as compared to the 𝑺 component in c). 

6.3 Under sampled MR images reconstruction 

The modified version of (6.3) for radially under-sampled liver DCE MR data set 𝒅 can be 

written as 

𝑚𝑖𝑛‖𝑳‖∗ +  𝜆‖𝝭𝑺‖1         𝑠. 𝑡.   𝓭 = 𝑬(𝑳 + 𝑺)                              (6.4) 

and the unconstrained version of equation (6.4) can be given as 

𝑚𝑖𝑛
1

2
‖𝑬(𝑳 + 𝑺) − 𝓭‖2

2 + 𝜆𝐿‖𝑳‖∗ + 𝜆𝑆‖𝝍𝑺‖1                           (6.5) 

Where 𝝍 is sparsity inducing transform applied to 𝑺, 𝓭 is the radially under-sampled data 

obtained after binning process as discussed above. 𝑬 is the multiple receiver coil encoding 

operator, which includes coil sensitivities 𝑪 and under-sampled non-uniform Fourier 
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transformation 𝑭𝑛𝑢(NUFFT) [114]. These factors are multiplied to get 𝑬, as described in 

SENSE algorithm[21]. The multi-coil reconstruction approach gives better performance 

due to the enforcement of joint multi-coil low rank and sparsity [83]. 𝜆𝐿 and 𝜆𝑆 is trade-off 

parameter and provides a balance between data consistency term and the other two terms 

(nuclear and l1 norm terms). The optimization problem in (6.5) is solved by combining 

singular value threshold, a method used for matrix completion [115], and iterative soft 

threshold used for sparse signal recovery [116]. The shrinkage or soft threshold is defined 

as  

𝑇𝜆𝑆
(𝑣) =

𝑣

|𝑣|
max(|𝑣| − λS, 0)                                           (6.6) 

For matrices, the soft threshold is applied to every entry. Next, we define the singular 

value threshold (SVT) by,  

𝑆𝑉𝑇𝜆𝐿
(𝑀) = 𝑈T𝛽(𝛴)𝑉𝐻                                            (6.7) 

where 𝑈Σ𝑉𝐻 is singular value decomposition of Casorati matrix 𝕄. Fig. 6-4 shows the 

proposed HL+S algorithm for the recovery of DCE MR Images. 

Inputs: 

𝒚𝑢: Multi coil radially sampled k-space data 

𝑬: Multicoil encoding operator 

𝝍: Sparsifying transform 

𝜆𝐿: Singular-value thresholding parameter 

𝜆𝑠: sparsity thresholding parameter 

Phase 1: Respiratory signal extraction 

Step 1: Find projection profiles using 1D Fourier transform along z-axis (slice 

dimension). 
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Step 2: Perform PCA for the matrix given in (6.2). 

Step 3:  Select the principle component to represent breathing signal 𝑅𝑔with highest peak 

in the range respiratory signal frequency  

Phase 2: Data Binning 

Step 4: Division of respiratory signal 𝑅𝑔 among contrast phases to generate sub 

respiratory signals 𝑅𝑔1, 𝑅𝑔2, … etc. as shown in Fig 6.1 (a) 

Step 5:  Sort 𝑅𝑔1, 𝑅𝑔2, …  for smooth transitions 

Step 6: Divide sorted 𝑅𝑔 in different respiratory states and assign equal number of spokes 

to each state as shown in Fig. 6-1(b) to generate data 𝒹. 

Phase 3: Recovery of motion free DCE MR images 

Initialization 𝕄𝑜 = 𝑬∗𝓭, 𝑺𝑜 = 0 

Iteration (Repeat until not converged) 

Increment𝑖 by 1 

Step 7: Singular value soft threshold 

 Compute 𝐿𝑖 = 𝑆𝑉𝑇𝜆(𝕄𝑖−1 − 𝑆𝑖−1) using (6.7) 

Step 8: Shrinkage in sparsifying domain 

 Compute 𝑆𝑖 = 𝛹−1(Λ𝑠(𝛹(𝕄𝑖−1 − 𝐿𝑖−1))) using 𝑇𝜆𝑆
 given in (6.6) 

Step 9: Data consistency 

  𝕄𝑖 = 𝐿𝑖 + 𝑆𝑖 − 𝐸∗(𝐸(𝐿𝑖 + 𝑆𝑖) − 𝒹) 

Output 

𝑳, 𝑺 𝑎𝑛𝑑 𝕄 = 𝑳 + 𝑺 

Fig. 6-4 Proposed hybrid L+S (HLS) reconstruction algorithm for DCE MRI 
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6.4 Methods 

The performance of the proposed methodology was tested for under-sampled 3D liver and 

abdominal DCE-MRI with respiratory motion for a number of subjects. The Human 

imaging was performed after the approval from the institutional review board (IRB). 

Written informed consent was obtained from all subjects before imaging studies. Golden-

angle radial sampling, given in Fig. 6-5 with 111.25o angular increment between 

consecutive spokes [110], was used for data acquisition. MATLAB (Mathswork, Natik, 

MA) was used for image reconstruction. The multi coil encoding operator 𝑬 was 

implemented using NUFFT [114]because of radial sampling. Adaptive coil combination 

method discussed in [23] was used to generate coil sensitivity maps.  

 

Fig. 6-5 Radial sampling mask 
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The balancing parameters 𝜆𝑠 and 𝜆𝐿 were chosen empirically by comparing reconstructed 

images for different values. Results for both data sets were generated using the modified 

version of nonlinear conjugate algorithm [4]. The performance of the proposed method was 

assessed qualitatively as well as by sharpness index (SI) and SSIM given in chapter 2. 

6.4.1 Free breathing 3D abdominal DCE-MRI 

3D abdominal imaging was carried out on an entire-body of a volunteer using 3.0T scanner 

(Siemens AG, Erlangen, Germany), having standard 12-element body matrix coil. The 3D 

stack-of-stars (radial sampling for 𝑥, 𝑦 = 0 and Cartesian sampling for 𝑧) pulse sequence 

with golden-angle acquisition method was used to acquire data in transversal orientation. 

Intravenous injection of 10mL of gadopentetate dimeglumine (Gd-DTPA) (Magnevist; 

Bayer Healthcare, Leverkusen) was started at a time with the beginning of data acquisition. 

The process was completed by injecting 20mL saline for flushing purpose. Injection rate 

was 2mL/s for both contrast agent and saline. For a single scan, the imaging parameters for 

the volunteer were: repletion time TR/echo time TE= 3.52/1.41 ms, FOV = 360x360x240 

mm3, number of readout points in each spoke = 256, spatial resolution = 1.4x1.4x3 mm3, 

number of partitions = 80, with 60% slice resolution reduction and 6/8 partial Fourier 

applied to the slice dimension. A total of 600 spokes were continuously acquired in each 

partition, for a total scan time of 95 s 

6.4.2 Free breathing 3D liver DCE MRI 

3D liver DCE-MRI was performed at four volunteers on an entire-body 3.0T scanner 

(Siemens AG, Erlangen, Germany) fitted with the standard 12-element body matrix coil. 

The 3D stack-of-stars (radial sampling for 𝑥, 𝑦 = 0 and Cartesian sampling for 𝑧) pulse 

sequence with golden-angle acquisition method was used to acquire data in transversal 
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orientation. For each scan, a weight-based half-dose injection (0.1 mmol per kilogram of 

body weight) of Magnevist (Bayer Healthcare, Berlin, Germany) was performed 20s after 

the start of data acquisition, at a rate of 2mL/s. The imaging parameters were: repetition 

time (TR)/echo time (TE) = 3.6/1.6 ms, matrix size = 256x256x48, FOV= 350x350x240 

mm3, acquired voxel size=1.37x1.37x5.0 mm3, flip angle=12o. Eighty percent partial 

Fourier was applied to the slice dimension and a total of 1222 spokes were obtained for 

every partition, resulting in a total scan time of 190 s 

6.5 Results 

6.5.1 Free breathing 3D abdominal DCE-MRI 

Fig 6-6 provides a comparison between HL+S method and CL+S. (a) is the reference image 

representing four contrast phases for a volunteer data set. This single slice data corresponds 

to early contrast phase, aorta, portal vein and liver. Structural similarity is measured with 

respect to this reference image.  

Proposed technique presents improved reconstruction performance in all four phases as 

compared to L+S without binning, as pointed out by a better presentation of small 

structures that appear blurry in b)(white arrows). Vessels and tissue contrast improvement 

can also be observed in (c). 
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Fig. 6-6  Qualitative comparison: reference images a) HL+S images b) and CL+S images 

c) for abdominal DCE MRI. Improved vessels illustration and removal of blurring effects 

from contrast phases can be observed in c). 

Fig. 6-7 presents the similarity of images, recovered before and after binning, with respect 

to the reference image given in Fig. 6.6 (a). Higher similarity index can be observed for 

the proposed method. This higher value of SSIM is achieved due to the pre-processing step 

of binning which reduces the motion effects in recovered images. 
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Fig. 6-7 Structural similarity based performance comparison for different contrast phases. 

The sharpness comparison between conventional L+S method and proposed technique is 

given in Fig. 6-8. It is clear from the plot that proposed technique (HL+S) outperform the 

CL+S decomposition method. 

 

Fig. 6-8 Sharpness comparison of contrast phases recovered with and without binning. 

Higher sharpness index can be observed for the proposed method. 
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6.5.2 Free breathing liver DCE MRI: 

Fig. 6-9 shows different contrast enhancement phases recovered by the proposed method 

and conventional L+S decomposition method along with reference images in a). 

 

Fig. 6-9 Qualitative comparison: reference images a) HL+S images b) and CL+S images 

c) for liver DCE MRI. Without binning recovery suffered from respiratory motion 

blurring effects. In contrast, the proposed method enabled improved reconstruction of all 

phases, better capture of the arterial phases, higher vessel clarity and sharpness. 
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The pre-processing step improved the illustration of vessels and vessel-tissue contrast in 

the recovered images with the HL+S method as compared to the CL+S method. 

Comparison points are shown by White arrows in b) and c).  

Fig. 6-10 provides structural similarity index comparison and Fig. 6-11 presents a 

sharpness comparison between HL+S and CL+S method. For parameters, sharpness and 

SSIM, the proposed HL+S method performs better as compared to CL+S method. 

 

Fig. 6-10 Structural similarity based performance comparison for different contrast 

phases. 

6.6 Discussion 

Data binning provides a new method to deal respiratory motion in free-breathing DCE 

MRI. By sorting the data in similar motion state reduces most of the free breathing artifacts 

in recovered images. No interpolation errors are occurred in the proposed technique and 

provide a great advantage over the CS-based registration techniques [84, 117], which uses 

an image registration process in multiple respiratory states to correct motion. 
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Fig. 6-11 Sharpness comparison of contrast phases recovered with and without binning. 

Higher sharpness index can be observed for the proposed method. 

The number of motion states, to resolve the respiratory motion, is selected empirically. A 

trade-off must be adopted between visualization of breathing motion through binning and 

under-sampling artifacts. By increasing motion states, the number of radial spokes for each 

state will be reduced and hence increasing the under-sampling artifacts. On the other hand, 

we choose less number of motion states, the under-sampling artifacts will be reduced 

because more spokes are available for each state. But the motion is not resolved effectively 

in this case. Fig. 6-12 shows the effects of number of motion states on images recovered 

through conventional NUFFT without CS-based L+S decomposition method. Figure shows 

that respiratory motion is resolved better for 4 and 6 motion states as compared to 2 motion 

states, but the under-sampling artifacts for 2 motion states are very less in comparison with 

the other two states 
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Fig. 6-12 Comparison of a few different respiratory states. 2 motion states have less 

streaking artifacts as compared to 4 and 6 respiratory motion states. 

The golden angle radial under-sampling scheme for data binning increases the 

computational cost mainly due to the computation of NUFFT in forward and backward 

direction during each iteration. This problem can be resolved by parallel computational 

techniques. The reconstruction algorithm uses balancing parameter, 𝜆𝐿 and 𝜆𝑆, and are 

selected empirically from a range of values that gives the best image quality. The selection 

process for these parameters is lengthy for dynamic imaging method, but once found, 

similar parameter values can be used for data sets having same dynamic information. 

Automatic selection of regularization parameter as discussed in[118] is also applicable to 

L+S decomposition method. 𝜆𝐿 and 𝜆𝑆 parameters balance the contribution of the L and S 

components. Since we are interested in overall reconstruction not in 𝑳 or 𝑺 separately, the 

technique is less sensitive to the selection of balancing parameters. 

6.7 Summary: 

In this chapter, data binning as a pre-processing step to reduce motion effects with 

conventional L+S decomposition is presented. The pre-processing provides 𝑺 component 
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with greater sparsity which results in higher reconstruction performance. The separation of 

background and dynamic information, provided by L+S decomposition, is improved by 

proposed method without the need for motion correction. The recovered images have better 

sharpness, clarity and similarity with reference images as compared to conventional L+S 

decomposition method. 
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Chapter 7  

Conclusions and Future Work 

7.1 Conclusions 

In this dissertation, we have proposed different techniques to mitigate the motion artifacts 

in the reconstruction of compressively sampled MR images for cardiac cine and DCE MRI. 

The proposed methods are the combination of compressed sensing and motion artifacts 

reduction techniques. The algorithms used in CS are modified and updated in novel way. 

A comparison of surrogate functions used to approximate 𝑙1-norm is performed. It is 

concluded that the hyperbolic tangent based approximation is better as compared to 

previously used surrogate function in literature. We work out a new method for respiratory 

motion correction in ECG gated free breathing cardiac MRI. Inter-frame motion estimation 

was used to estimate the respiratory motion between the same cardiac phases, but at 

different respiratory states. The block matching algorithm was used for MEMC. A gradient 

decent algorithm based on flexible l1-norm approximation was used for the recovery of MR 

images free from motion artifacts and close to the true MR images. The images recovered 

with proposed method were improved as compared to the images recovered without 

MEMC and with kt-FOCUSS. 

The concept of image denoising in wavelet domain, extended to compress sensing, is 

discussed next. MAP estimation approach for denoising is used to derive an adaptive 

threshold parameter. The fixed threshold value normally exploited in denoising as well as 

in IST for CS recovery, is made data driven and adaptively updated during recovery 
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process. A soft thresholding function based algorithm using adaptive threshold is proposed 

and tested for static and dynamic MR images. The adaptive threshold parameter adjusts its 

value according to the under-sampling artifacts and the changing dynamics of MR images. 

Technique for motion artifacts reduction in free breathing DCE MRI is presented in the 

last of thesis. In this technique, data binning is used as a pre-processing step to reduce 

motion effects with conventional L+S decomposition. For binning, respiratory motion 

signal is extracted directly from radially sampled data. The pre-processing provides 𝑺 

component with greater sparsity which results in higher reconstruction performance. The 

separation of background and dynamic information, provided by L+S decomposition, is 

improved by proposed method without the need for motion correction. 

7.2 Future work 

Future directions for the research work presented in this dissertation are as follows 

1. More flexible and data dependent surrogate functions to approximate the 𝑙1-norm 

can be investigated that are robust not only for respiratory motion but for other 

body motions also. 

2. In chapter 4, the proposed method requires higher computations due to an iterative 

nature of the algorithm. To estimate motion corrected image, the algorithm needs 

to compute motion operators 𝑴 and refined image 𝒙 alternatively multiple times. 

The ARPS introduces interpolation error during the prediction process of motion 

corrected image. There is a need to investigate motion estimation schemes with 

reduced interpolation error during the process of motion estimation and correction. 

In the presented scheme, motion corrected images are produced from a fixed 

reference frame. In the Future, motion estimation can be done from adjacent 
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frames in both forward and backward direction and other CS recovery approaches 

can be used. Further research might be required to find its usage in 3D dynamic 

cardiac MRI. The proposed method will require modification for arrhythmic 

patients because heart rate variability is not considered in this work. Similar 

cardiac phases at different respiratory states are chosen visually from a sequence 

of cardiac MRI frames. Data binning might be used for selection of cardiac phases 

at different respiratory states.  

3. In chapter 5, we use exact Laplacian distribution for the derivation of adaptive 

threshold parameter but The wavelet domain coefficients of images peaked at zero  

do not follow exact Laplacian distribution. Some function or distribution that 

exactly models the coefficients will give better threshold adaptive parameter. 

4. In chapter 6, the golden angle radial under-sampling scheme for data binning 

increases the computational cost mainly due to the computation of NUFFT in 

forward and backward direction during each iteration. This problem can be 

resolved by parallel computational techniques. The reconstruction algorithm uses 

balancing parameter, 𝜆𝐿and 𝜆𝑆, andis selected empirically from a range of values 

that gives the best image quality. Theselection process for these parameters is 

lengthy for dynamic imaging method, and methods for automatic selection of 

regularization parameter can be investigated. 

5. A dynamic MRI reconstruction method from partial k-space measurements can be 

introduced that recovers and inherently separates the information in the dynamic 

scene. The reconstruction model can be based on a low-rank plus sparse 

decomposition prior, which can be related to robust principal component analysis. 
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An algorithm can be proposed to solve the convex optimization problem based on 

an alternating direction method of multipliers. The method can be validated with 

numerical phantom simulations and cardiac MRI data against state of the art 

dynamic MRI reconstruction methods. Results can suggest that using the proposed 

approach as a means of regularizing the inverse problem remains competitive with 

state of the art reconstruction techniques. Additionally, the decomposition induced 

by the reconstruction can be shown to help in the context of motion estimation in 

dynamic contrast enhanced MRI. 

6. Respiratory motion correction remains a challenge in coronary MRI and current 

techniques, such as navigator gating, suffer from sub-optimal scan efficiency and 

ease-of-use. To overcome these limitations, an image-based self-navigation 

technique can be proposed that uses “sub-images” and CS to obtain translational 

motion correction in 2D. The method can be preliminarily implemented as a 2D 

technique and tested for feasibility for targeted coronary imaging. 

7. A method that combines parallel imaging and CS  can be developed to enable faster and/or 

higher spatial resolution MRI and show its feasibility in a pediatric clinical setting. A 

pseudorandom k-space under sampling pattern can be incorporated into a 3D gradient-

echo sequence; aliasing then has an incoherent noise like pattern rather than the usual 

coherent fold-over wrapping pattern. This k-space-sampling pattern can be combined with 

a CS nonlinear reconstruction method that exploits the assumption of sparsity of medical 

images to permit reconstruction from under sampled k-space data and remove the noise 

like aliasing. Number of patients on the basis of gender and age can be selected who have 

been referred for cardiovascular, abdominal and knee MRI. Their problems can be scanned 

with this 3D gradient-echo sequence at high acceleration factors. Obtained k-space data 
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can be reconstructed with both a traditional parallel imaging algorithm and the nonlinear 

method. Both sets of images can be rated for image quality, radiologist preference and 

delineation of specific structures by at least two radiologists. Wilcoxon and symmetry tests 

can be performed to test the hypothesis that there is no significant difference in ratings for 

image quality, preference and delineation of specific structures. 

8. Practically, to get better additional diagnostic information and better image quality 

Positron Emission Tomography (PET) and MRI can be combined along with respiratory 

motion. In this PET-MR strategy, information from one imaging modalities will be help 

full in other modality.  

9. In this dissertation, the focus was to improve the quality of compressively sampled 

dynamic MR image in the presence of respiratory motion. However, the time 

required to get final results must be improved for practical application. For this 

propose, the stopping criteria must be selected carefully to avoid  

unnecessary iteration for the reconstruction of MR images. Computation time can 

also be reduced using optimized coding and parallel programming concepts along 

with GPU to make it feasible for clinical applications. 
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