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Abstract

Blind image deconvolution is a very challenging and important research field. It has been
proven to be useful in many application areas such as medical imaging, astronomical imaging
and remote sensing. Several methods have been used for single channel framework, but in this
thesis Multichannel blind deconvolution problem has been proposed when the original image
is assumed to be sparse and limited knowledge of the point spread function is available. The
sparse nature of image has leaded us to consider the case of Magnetic Resonance Force
Microscopy (MRFM), hence PSF of MRFM machine is used in this project. An alternating
minimization algorithm is used for the purpose of restoring the original image. The proposed

approach has successfully restored the original image and system’s PSF.
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CHAPTER 1

INTRODUCTION

Blind image deconvolution is an important and difficult task in image processing. The
goal of blind deconvolution is to restore the original image that has been degraded by
system and atmospheric noise. Most restoration techniques assume that the system
response is already known, but in case of blind image deconvolution, the system

response is not known apriori hence it increases the difficulty of restoration task.

1.1 Problem Statement

Multichannel techniques are utilized in the cases where we need to store the multiple
images of the same sample. Each image of the sample is acquired through imaging
machine and is passed through a channel. The channel contains its Point Spread
Function (PSF), when acquired image passes through a channel this leads to
convolution between PSF and the acquired image, this results in blurring of the image.
Each channel is also prone to atmospheric noise, which is usually regarded as additive

Gaussian noise with zero mean. Hence the image acquisition process results in a



blurred and noisy image of the sample and we get a degraded version of the input

image.

The application where multichannel image acquisition is applied includes
astronomical imaging, satellite imaging and most important of all in the microscopic
imaging [1]. This has lead us to focus towards the relatively new imaging technology
which is considered as a non-destructive method through which 3-Dimensional
images of sub surface properties of a broad range of materials could be obtained with
atomic resolution. Image acquisition at atomic level introduces a feature known as
sparseness [2]. At such a high resolution most of the image would be comprised of

empty space and only a few pixel locations will be containing atoms.

The thesis proposes a multichannel blind image deconvolution method which uses
Altematihg Minimization Algorithm. The results are subjected to spafseness and

smoothness constraints.
1.2  OQOutline of Thesis

Chapter 2 provides an overview of the Magnetic Resonance Force Microscopy
(MRFM) machine which is used as a tool for imaging molecular data. Its comparison
with other existing techniques is carried out. Design and basic operating principle of

MRFM machine and construction of the Point Spread Function are discussed.

Chapter 3 explains the image restoration problem using blind image deconvolution,
image formation model is discussed. Review of existing approaches is presented for

the problem of single channel and multichannel blind image deconvolution.



Chapter 4 describes the working of Alternating Minimization Algorithm for the
purpose of blind image deconvolution, assumptions and imposed constraints are
explained. A proposed method has been presented in order to extend the use of A.M

Algorithm for multichannel blind image deconvolution problem.

Chapter 5 contains the results obtained by simulating the proposed method, error
graphs have been generated, and convergence issues of the algorithm have been
discussed. Evaluation of the algorithm has been conducted on the basis of MSE,

NMSE, SNR and ISNR under controlled environment.

Chapter 6 contains the conclusion and future directions.



CHAPTER 2

MAGNETIC RESONANCE FORCE MICROSCOPY

In the early 1990’s, the invention and initial demonstration of Magnetic Resonance
Force Microscopy (MRFM) initiated a series of mechanical approaches in order to
detect magnetic resonance. MRFM is considered as a non-destructive method through
which 3-Dimensional images of sub surface properties of a broad range of materials
could be obtained with atomic resolution. MRFM differs from the existing
technologies in both image resolution and operating principle, which we will discuss

in this chapter.
2.1 MRFM difference with existing approaches

All these advancements in medical imaging capabilities have brought revolution in the
field of medical diagnostics. “This would have not been possible without the use of
sophisticated imaging algorithms which were used during the image acquisition and
observing the areas of interest. Some of these techniques are discussed below, along

with their positive as well as negative features.
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2.1.1 Electron microscopes

An electronic microscope uses high intensity particle beam of electrons in order to
illuminate the specimen, which results‘ in a highly magnified image. Electro-magnetic
and electrostatic lenses are used in this microscope for the formation of image by
controlling the beam in such a way that the beam can be focused at a specific plane in
accordance with the sample. Since this technique uses the wavelength of an electron,

hence the achievable resolution is up to 2 million times.

The disadvantages of using this technique for imaging are that high intensity electron
beams disrupts the fragile molecules in delicate biological structures, in order to
operate they also require highly stable high voltage supplies and stable currents for

each electromagnetic lens.
2.1.2 X-ray crystallography

This imaging technique uses a method of determining the arrangements of atoms
within a crystal, a beam of X-rays strikes on a crystal and scatters into many different
directions. By using the intensities and angles of these diffracted beams, they
crystallographer produces a 3-Dimensional image of the electron density inside the

crystal.

This technique has been used excessively in the field of bio-medical engineering for
analyzing the structures of various proteins. The main challenge for the
crystallographers remains to coax the biological molecules in such a way that they
form ordered solids which are amenable to X-ray analysis. Majority of the proteins

are not suitable to be analyzed by X-ray crystallography is because they are not



capable to form crystals; hence many important protein topologies are poorly suited to

X-ray analysis.
2.1.3 Nuclear Magnetic Resonance

NMR spectroscopy is a technique which exploits the magnetic properties of the
nuclei. It is used to obtain physical, chemical as well as structural information of the
molecules. Despite other approaches, as described above, Nuclear Magnetic

Resonance is also used for the analysis of proteins.

It uses sophisticated and complex techniques for manipulating the spin behavior, but it
applies restrictions on the protein samples which need to be studied. It requires
expressible proteins which are soluble in milli-molar concentrations but it does not

scale to large molecules or their combinations.
2.1.4 Atomic Force Microscopy

The atomic fofce microscope (AFM) is a very high resolution microscope which
belongs to the class of scanning probe microscopy. Its demonstrated resolution
approaches to fractions of a nanometer (10%). AFM is an advanced type of Scanning
Tunneling Microscope (STM) and is mostly used for measuring and imaging a sample

in nano scale resolution.

The AFM consists of a micro-scale cantilever with a sharp tip at its end, which is used
to scan the sample surface. When the tip gets closer to the surface of the sample,
deflections is caused in the cantilever because of the magnetic field on the tip and the
magnetic field of the sample. This deflection is measured with the help of a laser light

pointing at the surface of cantilever, when cantilever is deflected by magnetic fields,
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this laser beam is reflected from the surface in to light detectors which are capable of
recording any minute deflection. This principle can provided higher resolution as
compare to which we have already achieved by using other techniques, and it has

been shown to give atomic resolution in high vacuum environment [3].

AFM has many advantages over the electron microscope. The electron microscope
needed an ideal vacuum environment for effective operation whereas AFM can work
perfectly well inside liquid environment, which makes the study of biological macro-

molecules possible.

The disadvantage of AFM is that if the tip is not selected correctly for the deflection
measurement then it can lead to image artifacts. AFM also scans the images slowly as
compare to electron microscope. Due to nature of AFM experiment, it is limited to

surface imaging only.
2.1.5 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is another medical imaging technique which is
mostly used in radiology in order to visualize the internal structure of the body and
provides us the three dimensional Imaging capability. It provides much greater
contrast between the different soft tissues of the body than any other existing
technique. Because of this property it is extensively used for diagnosing infections in
the brain, spinal cord and joints, as well as for visualizing tumors, torn ligaments and
shoulder injuries. MRI is currently limited to dimensions greater than tens or even
hundreds of micrometers due to poor senmsitivity of the inductive technique of

magnetic resonance detection [4].



Till now the applications and limitations of all the major imaging techniques have
been discussed which are being used for high resolution viewing of atoms and
molecular structures. The MRFM detects atomic and sub-atomic forces mechanically,
whereas MRI detects small electrical signals. MRFM is a novel scanned probe
instrument that has combined the key features of Atomic Force Microscopy (AFM),
i.e. its high resolution imaging capability and high sensitivity, with the 3-Dimensional
imaging capabilities of Magnetic Resonance Imaging (MRI) [5]. MRFM offers the
possibility of shrinking the sample size into sub-micrometer level, with the clear
possibility of achieving atomic scale resolution. It is likely that the MRFM will
ultimately match the resolution achievable in scanning probe microscopes such as

electron microscopes and atomic force microscopes.
2.2 The Features of MRFM

Microscopic MRFM studies will be helpful in providing us the knowledge about the
physics of magnetic and other materials. The salient feature of an atomic level
imaging system is its sparse nature. At such a high resolution most of the image

would be empty space, and only a few spatial locations would contain the molecules.
2.2.1 MRFM Experiment

Strong field gradients are used in MRFM in order to create such environment in
which NMR pulse can be interpreted. The fundamental feature of an MRFM
experiment is the mechanical microscopic cantilever. This is like holding two bar
magnets and feeling the polar forces without actually touching them together. At a
few atto-newtons (10™'®) the force exerted by an electron spin on an MRFM cantilever
1s a million times weaker than the forces encountered in an atomic force microscopy

-8-



[6]. The spin’s magnetic orientation flips back and forth as the cantilever vibrates. The

flipping of the spin causes a detectable change in the cantilever’s vibration frequency.

The detailed experiment model has been shown in figure 2.1, which shows the sample
container where sample is to be placed, Fiber optic inferometer is used to detect any
minute displacement occurred in cantilever’s position. Tip of the cantilever contains
tiny particles of ferro magnet, which helps in producing deflection and increases the
sensitivity of the MRFM tip. RF coil is used to achieve resonance frequency of the

sample, such that it creates enough force to cause a deflection of the cantilever.

Fiber Optic Inferometer

Laser Beam

Cantilever

Tip of Cantilever

il
Sample Container RE Col

Figure 2. 1: Configuration of single spin MRFM Experiment

The results of MRFM mostly improve with sharper and smaller cantilevers. Hence it
directly relates to the sensitivity measure in the signal to noise ratio (SNR), but design
tradeoffs emerge at the standard quantum limit. A stiffer cantilever, for example,

offers better control over noise but requires a stronger signal to move it. Likewise,

9.



softer, lighter cantilevers are capable of sensitive detection but ate buffeted by the

process and measurement noise.

Current experiments are conducted in a vacuum of around 10 torr. As the cantilever
scans over the surface of the sample, recording the MRFM signal, the distribution of
spins of the sample can be reconstructed. The IBM researchers detected the signal of a

single electron spin using interrupted OSCAR protocol.
2.2.2 Point Spread Function

The signal processing involved in measuring the PSF of the MRFM machine has been
derived in [7] based on the parameters given in [8]. The PSF is considered to base
upon the parameters like external magnetic field, magnetic field of the resonance slice
and cantilever tip movément. In Table 2.1 a list of parameters is given which forms

the PSF.

Table 2.2: Parameters used for MRFM's PSF

Description Name Value
External magnetic field’s amplitude Bext 2x10°G

B in the resonant slice Bres 2.24x10°G
Radius of tip when modeled as sphere Ry 2nm

Distance from tip to sample d 2nm
Cantilever tip movement m 5.70x 10" emu
Peak cantilever swing Xpk 0.033nm
Maximum magnetic field gradient Grmnax 610 G/nm

The original PSF has been shown in [7], whereas certain idealized form of MRFM’s

PSF has been used in [9] [10]. The idealized 2-Dimension PSF form which is being

-10-



used in the thesis is given in figure 2.1, in which it is assumed that the cantilever used

in MRFM experiment is an ideal cylindrical spindle.

Figure 2.2: MRFM Point Spread Function

The point spread function of MRFM, shown in figure 2.2 will be used for simulations.
The properties and features of this point spread function are discussed in detail under
topic 3.1.1. In this thesis with the help of Alternating Minimization algorithm not only
the original sent image will be retrieved out of multiple observations but also its point

spread function will be reconstructed.

-11-



CHAPTER 3

BLIND IMAGE DECONVOLUTION

The image deconvolution has been widely studied in the literature due to its
importancé in many application fields such as astronomy, microscopy, medical
imaging and distant imaging. The problem of image deconvolution is the process of
recovering the original image from a single or multiple degraded observations. The
approaches which can be used for the purpose of deconvolution depend not only on

the image degradation model but also on the degraded observation of the input image.

Observation Model

gx,y)

fx.y)

Figure 3.1: Linear space invariant image degradation model



A linear degradation model is commonly employed in many applications. In this
model, the observed image is a result of convolution betweenloriginal image and a
point spread function (PSF) in the presence of additive white Gaussian noise. In order
to retrieve the original image out of the blurred and noisy observation the estimation
of blur filter is required in the classical image deconvolution techniques. However, in
many practical situations, the PSF is either partially known or completely unknown.
Therefore, the PSF needs to be estimated from the degraded image observation and

such methods are known as blind image deconvolution methods.

Classical image restoration seeks an estimate of the true imaging assuming the blur is
known, where as blind image restoration handles much more difficult yet realistic
problem, where the degradation is unknown [11]. In general, the degradation is
nonlinear and spatially varying process. However, for most of the work, it is assumed
that the observed image is the output of a Linear Spatially Invariant (LSI) system to
which noise is added. If the Point Spread Function is not known apriori then the

problem becomes a Blind Deconvolution (BD) problem.

3.1 Mathematical Formulation

In digital image processing, the general discrete model for a linear degradation caused

by blurring and additive noise is given by

g(e,y)=h(x,y)*f(x,y)+n(x,y) G

Where f(x,y) represents an original M xN image, and g(x,y)is the degraded
image which has been acquired by the imaging system. In the above equation n(x,y)

represents an additive noise introduced by the system, and is taken as zero mean,

-13-



Gaussian distributed white noise. This results to the following expression for the

degrading system.

g, )= > hx~k,y ~D)f (k,1)+n(x,y) @

M
k=1 [=1
Where * indicates two dimensional convolution, f(x,y) is of size M xN , h(x,y)

is a matrix of size J xK , and g(x,y) is therefore of size (M +J -1)x(N +K -1),

similarly n(x,y) is also of size (M +J —1)x(N +K -1).

Since the space variant degradations results into very complex solutions, we have
used the shift invariant model so that linear techniques can be applied on them. This

above mentioned model formation can also be represented in Matrix-vector form.

g =Hf +n (3.3)

H is a Block Toeplitz with Toeplitz Blocks (BTTB) matrix and can be approximated
by a Block Circulant with Circulant Blocks (BCCB) matrix. Since BCCB matrices
can be diagonalized using the 2-D Discrete Fourier Transform (DFT) [12], this allows

us to work on it in frequency domain.

Here the vectors g, f and n represent the observed image, the original image, and
the observation noise. Lexicographically by stacking the rows of each image into a
vector, the f becomes vector of size MN x1, the blurring matrix H becomes matrix

of size (/+M —1)(K +N —1)xMN , and the noise n becomes a vector of length
J+M -1)(K +N -1)x1, similarly the observation vector g is of length

(J+M -1)(K +N —1)x1. The H matrix is defined as,

-14-



'[Hl] 0 1

HO|[H,] . [H] (3.5)

0 ]

In order to understand the structure in better way, the entire model given in equation

3.3 can also be redefined for a single row of observation g as,

g =[H ], (3.6)

The equation 3.6 can also be written in element wise form as,

gD [ r(@,1) o 1 £ab
g(1,2) : : £{1,2)
: =|h(L,K) . AQD ; G-
gLK+N)) | 0  h(LK)\fLK+N)

Now this illustration shall help us in order to understand that how does it work for the

entire image formation,

g | [H] - 0 ]A
8> E R : 1,

=\[H,] . [H]] - (3.8)
81m L 0 [H,]_ fM

After performing this operation we will get a vector ‘g’ of size
(/+M -1)x(K +N -1). Blind deconvolution problem refers to finding estimates
f (x) and h(x) for f(x) and h(x) based on g(x) and any available prior
knowledge about f(x), h(x) and n(x).

-15-



3.1.1 Properties of H

1)

2)

3)

We know that generally blurred observation occurs as a result of the convolution

between the original image ‘f (x,y )’ and the point spread function ‘k(x,y)’, in
such a situation, f(x,y) and h(x,y) are matrices of dimension M xN and

J xK respectively. But when we transform this convolution matrices problem
into a matrix-vector form, we get the transformed ‘f ’ and ‘H’ of dimensions

MN x1 and (J +M —-1}(K +N —1)xMN respectively [13]. Structure of matrix

H can be seen in equation (3.5).

The results produced from convolving ‘h(x,y)*f(x,y)’ are same as that of

multiplication of ‘Hf °, when H describes a convolution its Toeplitz and if it is zero

padded in an appropriate way, it results in a Circulant matrix.

Since the linear operator H acting on vector ‘f ’ is considered to be the
convolution operator, by the commutative property of convolution, it may also be

written as Hf = Fh . It means that equation (3.3) can also be written as
g= Fh+n (39)

In order to prove this equality we need to transform the vector ‘f ’ into a
Circulant matrix F the way it was done before with H, which can be seen in

equation (4.5).

F is assumed to be a Circulant matrix and hence diagonalizable by the DFT

matrix [14], which is denoted by D. Thus we write

-16-



F = Ddiag (D" f)D”
H = Ddiag (D" h)D”
A = Ddiag (D" 5)D” (3.10)

Here diag(x) represents a diagonal matrix whose entries are the elements of x. This

treatment is amenable to analysis and yields computational savings, as matrix
multiplication becomes convolution, which may be efficiently implemented via the

FFT [15].

3.2 Review of Blind Deconvolution Techniques

Observing the Image formulation model, the difference of restored image and original

image can be represented by the following cost function,

J(f)=|Hr - g (.11)

Here a brief introduction has been given to the techniques which are being used for

the process of Blind Image Deconvolution.

3.2.1 Inverse filter

In the inverse filter, the objective function mentioned in equation (3.11) needs to be

dealt with. While analyzing the objective function it can be observed that such f

should be found which minimizes the norm of the difference of the restored estimated

image Hf and the observed image g [16]. In order to minimize this cost function

-17-



partial derivate of the equation (3.11) should be taken w.r.t. image f and then setting

the equation equal to zero, equation (3.11) results in,

V) _ o ol (o-
” 0=-2H"(g- Hf ) (3.12)

And then solving for that f that satisfies the minimum of objective function, the

equation results in,

f=(H"H) H'g (3.13)
Hence the inverse filter will become,

Inverse filter = (HTH)-1 H'g (3.14)

The problem with this method is that if our point spread function H is singular then
H"H will also result in singular and hence their inverse cannot be calculated. This

way the technique will not remain applicable.

3.2.2 Constrained Least Square Filter

In order to make the filter more effective, rather than just doing inversions, such
constrained least squares filter is needed to be developed in which the constraint
provides additional control over the restoration process [17]. For this purpose we

minimize the objective function J(f) with subject to a constraint on image ‘f ’ that
the image can only take ‘ p ’> number of non-zero values. This way the cost function

will have to be minimized, keeping in view the applied constraint and the cost

function will become of the form,



J(f)=min |Bf - g suchthat |f | < p (3.15)

J() =07 -g[f + 4[|, (3.16)

In order to minimize this cost function, partially derivate should be applied on the

image ‘f ’.

27J=0=2HT(Hf-g)+2/1(f) (3.17)

H'g =H'Hf +Af
H'g =(H'H+AL)f (3.18)
Now solving for the f that provides the minimum of the objective function yields

f =[@H+)" |Hg (3.19)
Constrained Least Square Filter = l:(HTH+/1I)‘1 ]H T (3.20)

The Lagrangian ¢ A’ must be adjusted such that the constraint can be satisfied. This is

mostly done in an iterative manner.

3.2.3 Parametric Wiener Filter

The wiener filter is considered optimum keeping in view the mean square error. This
filter is designed by minimizing the mean square error between the restored image and

the original image.

J() =@y ey | +|ar-gff @3.21)
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Now in order to minimize the cost function the partial derivative will be applied,

which results in

Solving the equation for the estimated f ,
f =[H'H + oj0. [ Hg (3.23)
Hence the Wiener filter becomes,
Wiener filter =[H'H + @@, | H (3.24)

where @, =E(ff ")and ®,, =E(nn") represents the covariance matrices of

original image f and the noise n respectively. Wiener filter is derived optimally but
its success depends on how accurate are the estimates of original image and noise

matrices. In practical situations, one is provided with degraded observation g and it
is needed to approximate @, out of ®,, . The variance of the noise is assumed to be

known and is also assumed that noise » is uncorrelated with the original image f .

If current objective function is replaced with the one which was used for
“Constrained Least Squares filter” and carrying all the derivations on it, then

“Parametric Wiener Filter” can be defined as,

Parametric Wiener Filter =[H'H + @@}, | H' (3.25)
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3.2.4 Iterative Blind Deconvolution Algorithm

This method is one of the most popular methods which are being utilized for the

deconvolution purpose. Other than the main features, non-negativity and finite

support, its approach is similar to Wiener filter’s constraints in order to estimate the

original image and Point Spread Function in Fourier domain. The fundamental

structure of the algorithm is shown in Fig 3.2.

Fi (u :v) ﬁi (u,v)
Apply Fourier
Constraints
y
IFFT FFT
y
1ix) h(x,y)
Apply Blur Apply Blur
Constraints Constraints
A
=i+l )
fi=0(xay) hi(x,y)
TACRD) Initial Estimate
FFT IFFT
A
. Apply Fourier
' Constraints
Fi (u,v) Hi(u,v)

Figure 3.2: Iterative blind deconvolution algorithm model
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The initial estimate is denoted by f,_ (x,y ), the PSF estimate by h: (x,y), and the
linearly degraded image by g(x,y). F,(u,v) and H,(u,v) represents the Fast

Fourier Transform (FFT) of f;(x,y) and A, (x,y) respectively, whereas their sub

script ‘i’ denotes the iteration number.

After the initialization for the image, the algorithm keeps on alternating between the
image and the Fourier domains meanwhile enforcing the constraints. The constraints
are applied on the basis of information available regarding the original image as well

as the PSF.

The algorithm starts working with given estimate of the original image f (x,y) i.e.
f:=0(x, y), on taking its FFT and imposing the Fourier constraint we are able to
extract H, (u,v) out of ﬁi (u,v) which can also be seen through equation (3.22).
Now the inverse FFT of H,(u,v) is taken, which results in A, ();,' ,y) and after
imposing the blur constraint on the PSF estimated h: (x,y) is achieved. When FFT
is applied on it then I:I,. (u,v) is achieved. On applying the Fourier constraints on
I:I,- (,v), the F, (,v ) is produced, also explained in equation (3.23) and if Inverse

FFT is applied on it, then it is transformed back into the time domaini.e. f,(x,y).

The image f(x,y) and PSF h(x,y) are both assumed to be non-negative with
finite known support. In order to implement these constraints, the pixels within the
region of support having negative values and nonzero pixels outside the region of

support are replaced with the zero valued pixels [18]. In the Fourier domain



constraint, the PSF is estimated by using the FFT of estimated PSF and the degraded

blurred and noisy observation. Hence at the nth iteration we have

G, (u,v)

H (uv)= - > -
F, (uy )] +a/ |H,,_1 u,v )|

(3.26)

G(u,v )I:If,_l(u V)

F, @)= 2 2
0, )| +a/[F, @)

(3.27)

The ‘a’ alpha denotes the energy of noise, it should be chosen carefully for good
restoration. This method is majorly used because of low complexity. The major
disadvantage of the method is its lack of reliability and the restoration is sensitive to

the initial image estimate.

3.2.5 Bayesian Method

The Bayesian methodology has been widely used for the Blind Image Deconvolution
problem [16]. The algorithms which are based on Bayes Law differentiate from other
algorithms since these algorithms include the prior knowledge about the original

image f in the form of a prior probability distribution over images.

In order to deal with the problem of image deconvolution in algorithms, which
comprises of Bayes Law, the first thing which is required, is to evaluate the

probability density function of original image f i.e. p(f).

Here it is assumed that the probability density function p(f) carries high probability

to such solutions which matches with the prior knowledge. The prior knowledge has

been assumed about the original image and the prior distribution is also constructed

23.



independent of the blurred and noisy observation g . The Bayes Law comprises of the
conditional probability density relationship

p(f/ g)=—p—(%{;)§’—(f—) (3.28)

Now in order to maximize the probability p(f / g) the right hand side of the
equation will have to be maximized. On the RHS p(g) cannot be maximize since its

probability if received degraded observation and hence its value is fixed. Similarly the
probability of original image i.e. p(f) also cannot be maximized, so p(g /f) will

have to be maximized [19].

3.2.6 Maximum Likelihood (MLL) Methods

The application of the method of Maximum Likelihood approximation in the problem

of image deconvolution comprises of the random properties of observed image g,

which are already known [20]. If the Point Spread Function (PSF) is already known,
then the probability density function p(g /f) is only a function of original image f ,

hence our deconvolution problem shrinks up to the estimation of the unknown

parameters of the original image f .

The Maximum Likelihood estimate is the original image f which will most probably
produces the observed blurred and noisy image g . In order to avoid mathematical

complexities it is preferable to use log-likelihood function, the Maximum likelihood

solution is found by solving the equation,

MLL Estimate=max p(g/ f)
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3.2.6.1 Maximum Likelihood with Gaussian PDF Noise

Since it has already been discussed that the probability p(g/ f) is needed to be

maximized, if the added noise if of Gaussian PDF then the equation will become,

2
e __'H{|| ] (3.29)

r(g /f)=—ﬁa—2—exp( -

Here ‘o’ denotes the variance of the noise, since p(f) is a constant therefore in

order to maximize p(f / g) is needed to be minimized.

_lle-Br[f

o (3.30)

The denominator part is a constant and will not play any role in minimization the
equation, hence the minimization of equation can be achieved using iterative
techniques such as steepest descent method. The solution is found by iteratively

updating the equation,
[ ="+ N (g-Hf ") (3.31)

Where H' denotes the transpose of PSF, f " represents the current desired estimate of

n+l

original image and f"" represents the updated estimate of original image. This
method is usually refer to as ‘Landweber iteration’ [21], furthermore certain
conditions like de-noising or non negativity can also be applied on each iteration, and

when the stopping criterion is met then iterations can be stopped.
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3.2.6.2 Maximum Likelihood with Poisson PDF Noise

This case is different from the previous discussed Gaussian case, since the noise

which is being added is of Poisson distribution. Similarly the probability p(g /f) will
also not remain same rather it will become

H(x9y)f(x ’y)g (x 9y)exp{_H(x 9y)f(x 9y)}

3.32
g(x,y)! (332

r@E/f)=]]

Since the probability of p(g /f) is needed to be maximized, hence partial derivate is

applied on the equation (3.30) by original imagei.e.f (x,y)

Olnpig(x,y)If(x,¥)} _, (3.33)
o .y) |

Upon solving the equation and assuming the PSF is normalized to unity, the equation

results in,

[ g(x,y)

H (x, 'A=1 3.34
H(x,y)f(x,y)] (). (339

Multiplying both sides by f (x,y ), the equation becomes

[ e e
£Gx,p) [H(x,yy(x,y)]ﬂ .y (5,9) (3.35)

By applying the Picard iteration [22] on equation (3.33), it becomes

n+l _ g(",y) T n
f (x,y)—[H(x’y)f"(x,y)}H G,y ¥ (x,y) (3.36)
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Where ‘n’ denotes the iteration number and H' denotes the transpose of the PSF. This
is commonly known as ‘Richardson-Lucy algorithm’ [20]. The Richardson-Lucy
algorithm is mostly used in astronomical problems, since it preserves the total
intensity and the solution is always positive. This algorithm is constrained but non-

regularized and hence provided that the initial estimate for the image f{0) is non-

negative then f{n) will remain non negative.

3.2.7 Maximum a Posteriori (MAP) Method

M.A.P method utilizes the regularization approach [23]. This can be achieved by
using an appropriate prior probability density function p(f). This p(f) can be
considered as a constraint function which prevents the undesired features of the
solution, in accordance with the general observation of the original image f . The
maximization of the constrained likelihood can be seen as the maximization of the

posteriori probability.

f =argminp(g /f)p(f) (3.37)

Now the case of Maximizing a Posteriori Probability will be considered when the
added noise is of Poisson probability density function. The PDF of original image ‘ f ’

can be written as,

A(xsy)f(xay)exp{'A (xay)}
S, )!

pN=]] (3.38)

Using the derivation, the Maximum a Posteriori solution results in,



L .

f(x,y)=A(x,y)exp{|:H(ng()x)}J8 y)-l]HT(x,y)} (3.39)

Now estimating A(x,y)=f"(x,y) and using the Picard iteration, the equation

becomes,

f"“(x,y)=f"(x,y)exp{[H(xgy(’)‘f’ny(l y)-l]HT(x,y)} (3.40)

3.3 Multichannel Blind Image Deconvolution

Up till so far the Blind Image Deconvolution problem has been discussed, when the
acquired image passes through a channel and white Gaussian noise is being added in
it, this kind of restoration is known as Single Channel Blind Image Deconvolution. In
some applications the image acquiring system is able to give multiple observations of
the original image. Hence several blurred versions of the same original image are

received which are being observed through different acquisition channels.

In electron microscopy, multiple images are acquired of the same sample by altering
the focus of the system during a single experiment. In remote sensing systems, the
same scene can be acquired on different time slots through the atmosphere by using
the sensor diversity, such channel can be modeled as a time-variant channel. While in
other applications, for example, Tele-surveillance, multiple images are acquired in
order to deal with the possible degradations in a better way, which may get produced

because of de-focusing, atmospheric noise or degradation due to motion [24] [25].



145948

When these channels are frequency bands, such problem is referred as multi-spectral
images, if the same scene is captured at different time slots, they are known as image
sequences. If different observations of the same image are acquired by using different
channels then we can treat this scenario as multichannel representation and restoring
the original image through these multiple degraded observations without knowing the

channel response is known as Multichannel Blind Image Deconvolution.

3.3.1 Mathematical Formulation

Now the model will not remain a simple linear model, rather we will have to consider
the Single Input Multiple Output scenario (SIMO), where a single image is captured
by a same source (MRFM) at different instants of time or at different focus, at the end
multiple copies of same image will be received passing through different channels
which causes varying noise levels and varying system response functions. Such

problem can be mathematically represented as,

g (x,y)=h(x,y)*f (x,y)+n,(x,y)

Mz

gi(x9y)zz h,( 'kay 'l)f(k:'l)_'-ni(x:y) (3.41)

~—
Il

1

Let J be the number of channels &, (u,v ), i =1,2......J each of size M xN , hence by

stacking the J vectors g, into a single vector we get,

9(x,y)=lg] (x,y).8] (x,3 hrrvereucc. g5 G, )"

h(x,y)=[h(x,y),h,(x,y) e .hj(x,y)]T



FE, ) =I[F QDL Q2)cif GN)L D) (M ,N)]

n(x,y)=[n(x,y)n,(x,y) . n,(x,y)]T (3.42)

It denotes the output images, point spread functions, input image and additive white

Gaussian noise respectively.

3.3.2 Methods for MCBID

Many different approaches have been utilized to solve the multichannel blind
deconvolution problem; here we will discuss some of them. The Eigen Vector based
Algorithm for Multichannel blind deconvolution (EVAM) has been proposed for the
deconvolution of an unknown, Gaussian stationary or from two or more unknown
channels a non stationary signal is observed. This algorithm is based on Eigen value
decomposition of a sample correlation matrix [26]. Multichannel problem has been
discussed in which original image is restored out of multiple degraded observations.
Results show that both the filters and the image can be determined from degraded
observations after applying some assumptions [27]. The Mutually References
Equalizers (MRE) method is extended for the case when there is noise in a
multichannel framework. Use of regularization procedures has helped in
reconstruction of PSF [28]. An alternating minimization procedure is presented which
is based on maximum a posteriori estimation with a prior distribution of blurs which
are derived from the multichannel framework, whereas a priori distribution of original
images is defined by the total variation (TV) semi norm [29]. A novel deterministic

framework is applied that allows the image to be non-stationary and have unknown



distribution. The result shows successful blind identification of the blur, blind
restoration of original image and also the blind order determination [30]. An
algorithm is proposed for direct multichannel blind image restoration considering the
case when the noise can be ignored; original images are successfully restored [31].
The general state space approach for the blind deconvolution problem is modified in
order to reduce the additional delays; the objective is achieved with the help of

balanced parameterization of the discrete-time system [32].
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CHAPTER 4

MULTICHANNEL BLIND IMAGE DECONVOLUTION
FOR SPARSE MOLECULAR IMAGING

This chapter introduces the proposed method for restoring the original sparse
molecular image out of multiple degraded images acquired through using different
channels. It has been discussed in chapter 2 that, the image acquired by using MRFM
technique is sparse in nature. Atomic level imaging has sparsity as its salient feature,
since only a few spatial locations would be occupied by atoms while most of the
image would be empty space. In addition, a smoothing penalty has been used on

allowable PSF’s to improve the reconstruction.

4.1 Problem definition

Earlier the single channel blind image deconvolution case was Adiscussed, in which the
image was acquired through a single channel, AWG noise was being added in it and

in the end a blurred and noisy image was observed. By using the blind deconvolution

methods we aim to retrieve the original image out of this blurred and noisy
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observation, this was regarded as a linear problem, as can be seen by the equation

G.1).

Now the problem is not that simple, now multiple images of the same sample are
passing through different channels, each having different PSF and different amount of
noise is being added in each observation [33]. In such a situation, original image will

have to be deconvoluted out of multiple blurred and noisy observations and will have

to select only one estimated f . This problem can be further explained with the help

of figure 4.1.
v g, (x,) fiGx,y)
. ____» [
g,(x,y) JACRY
»| OBSERVATION |———p| ALTERNAT- ] RESTORAT- n
fx.y) ING ION f(x,y)
) MODEL MINIMIZAT- A ;
g,(x,y) ION fi(x,y) MODEL
» e A —p
. MODEL
gJ(x9y] .f[(x,y)
i ’____' —

Figure 4.1: Multiplechannel Blind Image Deconvolution Model

4.2 Multichannel Blind Image Deconvolution Model

Observing the figure 4.1, it can be observed that whole Multichannel Blind Image
Deconvolution problem can be categorized in to three parts i.e. Observation model,
Alternating Minimization model and the last one is Restoration model. The working

and the importance of each individual block is discussed below.
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4.2.1 Observation Model

The problem of Multichannel Blind Image Deconvolution has been explained here in

a better way. The image of the sample is represented by f (x,y ), this image passes
through ‘J° channels, which have PSF’s A, (x,y) and noise n,(x,y ), which causes

degradation effects on the original image [34]. After passing though these channels

the original image is degraded into blurred and noisy observations which are denoted

as g,(x,y).

gi(xsy)=hi(xay)*f(x:y)+ni(x:y) 42)

Let J be the number of channels &, (x,y ), i =1,2......J each of size M xN , details of

g(x,y),h(x,y),f(x,y) and n(x,y)vectors has already been discussed in the

equation 3.40.

The figure 4.2 explains the working of the observation model, the way it receives the

original image f(x,y), pass it through degradation process, mixes AWG noise and
produces blurred and noisy observations g(x,y), which are sent to the Alternating

Minimization model in order the restore the original information out of these noisy

and blurred observations.
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Figure 4.2: Internal structure of Observation Model
As discussed earlier, the above mentioned problem can also be represented in Matrix-
Vector form, which can be seen from equation (3.3). Now the vectors g, f andn

doesn’t contain a single vector, rather they carry multiple vectors. This equation can

be written in expanded form as,

(8,,9)) [BoG)]  (nx,y)

g,(x,y) H(2)(x Y) n,(x,y)

g&;(x,y) Hp) (x,7) ny(x,y)
= . )+ . “4.4)

gJ(‘x9y) ' H(J)(‘xhy)J nJ(x sY)

With H=[H[ H],......H]], H, is the PSF matrix associated to &, [35]. In order to

view the structure of H, let’s take any arbitrary H, matrix, its internal structure is

shown below.



(H] - 0

H, =[H,] [H] (4.5)

[0 - [

In order to observe the internal structure of each Toeplitz block, let [H ] be a

Toeplitz block taken from Block Toeplitz matrix H, then [H, ] can be defined as,

[ h(g,1) 0 ]
[H,]=|\n@.K) . k@) (4.6)
0 h(g,K)]

It can be observed that a Toeplitz block [H, ] is associated to A, . In this way h(x,y)

constitute the whole BTTB matrix.

4.2.3 Alternating Minimization Model

After receiving the degraded observations of original image, original image
information has to be retrieved out of these blurred and noisy observations. For the
purpose of deconvolution different algorithms have been discussed in chapter 3, but
before we use any of it, problem statement and the assumptions have to be constructed

which are needed to be applied on deconvolution problem. -

Initially, a restoration approach will be developed for a single channel, and then it will
generalize it for ‘/ Channels. For the problem of restoring the original image out of

blurred and noisy observation the model defined in equation (4.2) is consider
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When the PSF ¢ H’ performs convolution, its structure is of a Toeplitz matrix, and if it
is zero padded, ‘H’ structure will represent a circulant matrix, and hence
diagonalizable by the Discrete Fourier Transform (DFT) matrix. Let ‘n’ a additive
Gaussian noise vector with zero mean, then the maximum likelihood estimator of f is

the minimizer of the cost function
J(f)=|nf - g|f (4.9)
1/p
Lesso Estimator: normA (”A"p) l<p <o 4.10)

An assumption is made that the matrix ‘H’ is partially known, i.e. H, =H, +¢€A,,

'

1

2

where represents the number of channels, and Zh(x, y)=1 where

. X,y
|A|, O |WA|<& and W is a smoothing matrix [41]. By replacing the value of H in

the equation (4.9), we get
J(f)=|H, +eA) - g| (4.11)

Since A is the part of H that is unknown, so in order to minimize the cost function,
dependence on unknown parameters is needed to be removed. By using minimax
criterion, that is, we look for the f which minimizes the maximum role of A, our

cost function becomes
J(f)= max ||(H0 +eA)f - g "2 suchthat "AIL, <¢ 4.12)

4.2.3.1 The sparse constraint

We have already explained that why the image is of sparse nature, so we have to

apply sparse constraint on the restoring algorithm. The sparsity is defined as:
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I, o il(fi #0) (4.13)

Suppose that we are given a matrix H and we need to minimize the following

objective function
Coll 2
min NHf - g” suchthat nf "o <c (4.14)

Where ‘c’ is any non-zero scalar number, this problem is combinatorial in nature,

with a total of Z(n) possible solutions, and can be shown to be NP-hard. This type
o\l

of problem can be solved employing convex relaxation to the problem. That is, if the -
I, constraint is replaced with /, constraint, and under certain conditions on H, each

formulation will result in same output. Therefore, we seek to minimize
N 2 .
min ”Hf - gn suchthat |f | <é (4.15)

Now the method of constrained least squares is required to express this constrained

problem as,

f= argn}inHItIf -g Ir +/IUf||1 (4.16)

In order to get the argument minimum, we need to apply partial derivative as:

af % )j Hf - ” tor Alf], =0 (4.17)

T/~ 0 Te _
—2(Hf -¢) (Hf-g)+,1§2ff-o
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e

HHf -H g +Af =0
H'Hf + Af =Hg

(A"A+AT)f =H'g

. HTg
(ﬁTﬁ +/7.I)
f=(E"A+1) H'g (4.18)

The solution of equation (4.18) can be also reached by using another approach as

well, which is known as an iterative thrésholding technique described in [36]. If we let
‘s’ be the largest singular value of H, the minimization can be achieved by

minimizing with respect to each f; , independently as

£, (n +1)=Dﬁ([f(n)+ﬁT(f—2- "f‘(n>j],) (4.19)

2

Here D,(x)=(x -sgn(x )—‘Z—)I (x|= g) is the soft thresholding operator and is used

for the purpose of denoising.
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4.2.3.2 The Smoothness Constraint

It has already been discussed that a smoothness penalty will be applied on allowable
PSFs. Thus we seek to maximize the following cost function, while utilizing the
constraints set out earlier, toward a minimax criterion. Hence objective function

becomes
d =arg max le +£Fo ||2 suchthat |Wéo ||2 <eg (4.20)

Here ‘e’ denotes the observation error vector i.e.e =Hf -g . By transforming the

problem into constrained least squares we can re-write the objective function as

d =arg min— le+eFa | +y|We ||2 4.21)

05 _oe+eFal’ pwal" _
o6 86 o6

02(e +£F3) (e+£Fd) N a2y (We) (We) _ 0
66 06 -

eF" (e +£F3)+yW' (W8)=0

eFe +£F'Fo + yW'Wé =0

A eF'e
6 = 2 T T
eFF +yW'W
d=¢ ( yW'W - ’FF" )'1 F'e (4.22)
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4.2.3.3 Alternating Minimization Algorithm

The basic alternating minimization algorithm has been very successful in the context
of solving optimization problems over two variables. The iterative nature and
simplicity of the algorithm has led to its application to many areas. AM algorithm is
used for quantitative image reconstruction for differential interference contrast (DIC)
microscopy, in which it computes a specimen’s complex transmittance function, both
magnitude and phase, from DIC images . Blind equalization has been performed by
using AM algorithm for the applications to mobile communications. AM algorithm is
used for X-ray computed tomography and it is used for dual energy X-ray CT. After

all the discussion we are now able to define the cost function as,
J(f,8)=|(H,+eA) - g | =|F(h, +£6)-g| such that |f | <¢ and |Wé | <&
This cost function can also be expressed in AM suitable form as;

JG m)=[BS -g[, + 2], + 7 W[ (4.23)

The alternating minimization algorithm minimizes the cost function J(f,k) by
iteratively solving the following sequence of optimization problems. If we are given

fes{ (x 5% ), we will solve
hi(x’y)'_'arg mhjn J(feswh),
Similarly if we are given A, (x ,y ) then we will solve

L(x,y)=argrr}inJ(f,hes,)
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Where f,, (x,y)and A, (x,y) denote the initial estimate of the original image and
the point spread function rgspectively, andh, (x,y), f;(x,y) are the updated values
based on the information provided by f,, (x,y) and h,,(x,y ). Generally we set the
initial estimate of the original image to the observed image, which is noisy and
blurred i.e. f,,(x,y)=g(x,y)where as PSF has been initialized with the smooth

approximation of the original unknown PSF.

The AM algorithm follows the following algorithm in order to solve the image and

PSF reconstruction problem.

1. We have to initialize f(0)to any suitable estimate, g(0)is initialized with
observation ‘g ’, and PSF H(0) is initialized with ‘H,’ which is a smooth

approximation of original PSF.

2. We need to update f (n), for this purpose we will have to solve the equation

f(n+)=arg rr}in ()Y -2 (n)||2 suchthat uf l,<p
The solution of this problem has already been explained in the equation (4.2.20)

3. Inorder to update ‘f> we also need to update ‘H’ and ‘ g °, which are given as

Hn+D) = T+2% () (yw'w-2f () () £ () |,

gOr+D)=[1+5F () (yw'w -5 () () £ T Je

4. When the stopping criterion is met, we get the output estimated f (x,y)’.



5. In order to restore H, this estimated ° f (x,y)’ is transformed into ‘F’, as

explained earlierr Now we have the <cost function as,
A A 2
o = argmin “Fh -g " +7|Wé ||2 , the solution to this is given by equation (4.22).

Matrix ‘A’ can be formed from & by following the equation (4.9). We will

calculate H;, =H, +¢£A,

In AM algorithm, the optimal estimates of f(x,y) and k(x,y) are obtained when

we terminate the iterations after certain stopping criteria is fulfilled, it can be the

number of iterations performed or if the error difference gets minimized i.e. the error

© norms uf,. -fii ||2 and "h,. -h,._1||2 becomes smaller than the predefined constant.

In order to ensure the convergence of AM algorithm to suitable approximates, we can
set some useful constraints on the algorithm iterations, based on the information
which is already known, for example, we can set a constraint on the approximated

PSF and original image that they cannot contain any negative values.

Also to ensure the convergence we apply the constraint that the sum of the values of

the PSF will result in unity i.e.

D h(x,y)=1 (4.24)

Furthermore the constraints such as sparsity constraint and smoothness constraint

have been explained earlier.

The parameter of success for any algorithm is how efficient is it in both executable

time and convergence issues. Therefore, analysis of the convergence behavior for the
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AM algorithm is crucial for understanding which local minimizer leads to AM
convergence and how this minimizer depends on the initial guesses for original image

f(x,y) and PSF A(x,y). It has been proven in [37], that AM algorithm converges

to a local minimizer for any given initial guess and that it produces a very good

restored image after only a few AM iterations.

After all the processing performed in ALTERNATING MINIMIZATION MODEL,

we will get the estimated ‘f > and ‘H’ against each channel as its output. These

outputs are then sent to RESTORATION MODEL for further processing.

4.2.4 Restoration Model

The multiple restored images extracted from ‘J’ different degraded observations are
then placed in the Restoration Model. The purpose of Restoration Model is to provide

us a single image out of multiple restored images such that this image will be

considered as the final estimated f , which has been restored out of multiple degraded

observations.

The Alternating Minimization is robust to noise and from simulations and results we

have seen that the AM algorithm has successfully restored the images out of degraded

observations. This leads us to propose a way to select the final estimated f out of

multiple restored outputs provided by Alternating Minimization Model.

Since we do not have any prior information about the original image, hence we cannot

utilize the traditional ways to measure the error of the restored image. In order to
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select a single estimated f out of multiple estimated f ’s we will take average of all

other estimations.

Y :
fett- (4.25)

Where i=1,2.....J is the number of channels, f, ’s are the multiple restored images

provided by the Alternating Minimization block and J represents the total number of

channels. Hence in this way we will be able to select a single f out of multiple

restored images.
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CHAPTER 5

SIMULATIONS AND RESULTS

In this chapter the results originated by simulating the Alternating Minimization
algorithm for the purpose of restoring the original image out of degraded observations
will be discussed. The convergence issues of A.M algorithm and the effect of
denoising parameter in the convergence of the algorithm shall also be observed. A.M
algorithm shall be analyzed under controlled environment on the basis of evaluation
parameters, such as Mean Square error, Normalized MSE, Signal to Noise ration and
Improved S.N.R. The performance of proposed multichannel blind image

deconvolution shall also be observed.

5.1 Convergence of A.M algorithm

Here it has been shown the-wéy A .M algorithm restores the original image out of the
degraded observation. Since A.M algorithm is an iterative algorithm which updates its

parameters after each iteration by keeping in view the applied constraints. In order to

show step by step performance of A.M algorithm an input image has been distorted
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with additive white Gaussian noise of zero mean and SNR 40dB. The blurring effect
is caused by system’s PSF and the image gets distorted because of the additive noise.

Now in figure 5.1 the progress of A.M algorithm is shown after specific number of

iterations and at a fixed denoising parameter.

Bees=x8968 8 -

e

©® T w )

Figure 5.1 Degraded image and Blind image deconvolution images with denoising
parameter ‘£’ 0.0120 at different iterations using AM algorithm (a) Degraded observation
with noise SNR 40dB (b) Restored image at S iterations (c) Restored image at 20 iterations
(d) Restored image at 50 iterations (€) Restored image at 100 iterations (f) Restored image

at 200 iterations (g) Restored image at 300 iterations (h) Restored image at 500 iterations
(i) Restored image at 1000 iterations
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An error graph has also been plotted in order to observe the convergence rate of the
algorithm. The graph is plotted between error occurrence which can be determined
as a difference between original image and restored image, and the number of

iterations.

x10* Esvor graph (Dencising parumeter 3.0120, AWGN 404B)
T
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Number of Iterations

Figure 5.2 Error graph showing difference between original image f and restored image f

In this simulation the SNR of noise has been set as 40dB, the denoising parameter ‘&’
is set to 0.0120 and the program is run for 1000 iterations. In figure 5.1 the behavior
of A. M. algorithm is being shown in form of results at different iterations. The figure
5.1(a) shows the degraded observation, for the test purpose we know that this image is
blurred because of convolution noise and is distorted with additive Gaussian noise of
SNR 40dB. By observing these images it can be said that after 50 iterations, the
algorithm reconstructed the points of interest but there is still some unwanted noise at
the background. In figure 5.1(g) which shows result after 300 iterations, it can easily

be concluded that the image has been successfully restored with only a few pixels
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containing unwanted values. Similarly from figure 5.2, which shows us the error
graph of the restored image with the original image, it can be seen that after 400
iterations the error graph has reached at a stable state. The figure 5.1 (i), shows result
after 1000 iterations, other than points of interest some pixels still contains nonzero
values, these values can be ignored since they are of very small intensities when

compared to the points of interest.

5.2 Robustness of A.M Algorithm

Now the robustness of A.M algorithm shall be observed against additive white
Gaussian noise. This is performed by generating the degraded observations with the
help of noise having different intensities, by virtue of which it will distort the original
image in different ways depending upon its intensity. This will show us the behavior
of AM algorithm against diﬁ‘erent noise levels. The rolé of the denoising parameter *
&’ will also be observed by altering its values in the algorithm. Error graphs will be

plotted for different values of noise and denoising parameter ‘£’ with the help of

which any change in the convergence behavior of the algorithm can easily be noticed.

First of all the denoising parameter ‘£’ will be initialized as 0.0128, the number of

iterations to be performed are kept 1000 and the original image is degraded by noise
of SNR 30dB, 35 dB, 40dB, 45dB, 50dB and 60dB as shown in the figures 5.3 and
5.4. The restored images are also shown in these figures below their corresponding

degraded input.
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Figure 5.3 Degraded observations and restored images with noise SNR 30dB,35dB and 40dB
(a) Degraded observation with noise of SNR 30dB (b) Degraded observation with noise of
SNR 35dB (c) Degraded observation with noise of SNR 40 dB (d, e, f) Restored images out
of observations (a), (b) and (c) respectively.

In the figure 5.3, additive white Gaussian noise is shown with three intensity levels;
figure 5.3(a) represents the observation with noise of SNR 30dB. It can be seen that at
this noise level we can hardly find any information about the original image, yet AM
algorithm has successfully restored the original image, which can be seen in figure 5.3
(d). The figure 5.3 (b) and (e) shows degraded image with noise at 35dB and the
restored image respectively. Similarly figure 5.3 (c) and (f) represents the degraded

image with noise at 40 dB and the restored image respectively.
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Figure 5.4 Degraded observations and restored images with noise SNR 45dB, 50dB and
60dB (a) Degraded observation with noise of SNR 45 dB (b) Degraded observation with noise

of SNR 50dB (c) Degraded observation with noise of SNR 60dB (d, e, f) Restored images out
of observations (a), (b) and (c) respectively.

The figure 5.4 (a) represents the degraded image with noise of SNR 45dB and figure
5.4(d) represents the restored image by the algorithm. Degraded image with SNR
50dB noise is shown in figure 5.4(b) and its corresponding restored image is shown in
figure5.4 (e). Similarly figure 5.4(c) and (f) represents the degraded image with noise

of SNR 60dB and restored image respectively.

From this experiment it can be concluded that A.M algorithm is robust for the above
mentioned noise intensities and has successfully restored all the images out of
degraded observations. Since the A.M algorithm has been tested on a wide range of
noise intensities, varying from 30dB to 60dB and the A.M algorithm has restored the

images successfully, now the role of denoising parameter ¢ £’ shall be observed in the



convergence of this algorithm and only three noise intensities will be used in these

experiments i.e. 30dB, 40dB and 50dB.

Now the denoising parameter * £ is initialized as 0.016, the iterations to be performed
are kept as 1000 and the noise intensities to be used for the degradation of original
image are set as 30dB, 40dB and 50dB. The degraded inputs and their corresponding

restored images are shown in figure 5.5

(e)

Figure 5.5: Degraded observations and restored images using £=0.016 (a) Degraded

observation with noise of SNR 30dB (b) Degraded observation with noise of SNR 40dB (c)
Degraded observation with noise of SNR 50dB (d),( e) and (f) Restored images out of
observations (a), (b) and (c) respectively.

Now the denoising parameter ‘£’ is initialized as 0.0352, the iterations to be

performed are kept as 1000 and the noise intensities to be used for the degradation of
original image are set as 30dB, 40dB and 50dB. The degraded inputs and their

corresponding restored images are shown in figure 5.6
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Figure 5.6: Degraded observations and restored images using £=0.0352 (a) Degraded

observation with noise of SNR 30dB (b) Degraded observation with noise of SNR 40dB (c)
Degraded observation with noise of SNR 50dB, (d, e, f) Restored images out of observations
(a), (b) and (c) respectively.

Now the denoising parameter ‘&£’ is set as 0.06, the iterations to be performed are

kept as 1000 and the noise intensities to be used for the degradation of original image
are set as 30dB, 40dB and 50dB. The degraded inputs and their corresponding

restored images are shown in figure 5.7
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Figure 5.7: Degraded observations and restored images using &£=0.06 (a) Degraded

observation with noise of SNR 30dB (b) Degraded observation with noise of SNR 40dB (c)
Degraded observation with noise of SNR 50dB (d, e, f) Restored images out of observations
(a), (b) and (c) respectively.

In order to observe the effect of choosing the denoising parameter, the mean square
error graphs of different denoising parameters have been plotted by keeping number
of iterations and noise intensity constant. With the help of these graphs any change in

the quality of the recovered images can be analyzed.

These graphs have been plotted for three different Signal to Noise Ratios, i.e. 30dB,
40dB and 50dB, number of iterations to be performed are kept as 1000 and five
different denoising parameters have been used in order to analyze the performance of

the algorithm.
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4 Error graph with nolse of SNR 30dB
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Figure 5.8: Error plot shows rate of convergence of A.M algorithm using degraded
observation having noise of SNR 30dB with noise parameters £=0.016, £=0.0128, &

=0.0352, £=0.020 and £=0.06.

In figure 5.8, noise SNR is set to 30dB, number of iterations performed are 1000 and
five different denoising parameters are used. We can observe from the graph that

denoising parameter £=0.06 has quickly got into a stable state as compared to others
however it has produced larger error. Same is the case with £=0.0352, it has attained

a steady state soon after 200 iterations but error has decreased in a significant manner.

Whereas £=0.016, £=0.0128 and £=0.020, have taken more time to achieve a steady

state but they have produced minimum error when compared with other graphs.
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x10 Error graph with noise of SNR 40dB
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Figure 5.9: Error plot shows rate of convergence of AM algorithm using degraded
observation having noise of SNR 40dB with noise parameters £=0.016, £=0.0128, ¢&

=0.0352, £=0.020 and £=0.06.

In figure 5.9, noise SNR has been initialized with 40dB, number of iterations
performed are 1000 and five different denoising parameters are used. This graph
shows us that £=0.020 has produced minimum error but it has taken more time to
attain a steady state than ail other graphs. Other denoising parameters have also
produced lesser error as compared to the error they have produced earlier with 30dB

noise.
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¢ Error graph with noise of SNR 50dB
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Figure 5.10: Error plot shows rate of convergence of AM algorithm using degraded
observation having noise of SNR 60dB with noise parameters £=0.016, £=0.0128, &

=0.0352, £=0.020 and &£=0.06.

In figure 5.10, £=0.0352 has shown quicker rate of convergence and also has

produced lesser error than it has produced earlier for noise with SNR 30dB and 40dB
while other denoising parameter have not been able to show significant loss in error.
By observing the above mentioned results it can be concluded that denoising

parameter £=0.020 has produced minimum errors in all three noise intensities.
5.3 Evaluation Parameters

In order to evaluate the performance and robustness of A.M algorithm the following
parameters will be used. On the basis of this evaluation the best denoising parameter

£’ can be selected which will later be utilized for the multichannel blind image

deconvolution scenario.
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Mean Square Error

Table 5.1: Mean square values of degraded images

Denoising Parameter SNR =30dB SNR =40dB SNR =50dB
0.0128 6.3862¢-004 2.8413e-004 2.4065¢e-004
0.0160 6.3395e-004 2.8646e-004 2.4412e-004
0.020 6.3205e-004 2.3308e-004 2.3536e-004
0.0352 1.100e-003 8.2164¢-004 7.8747e-004
0.0600 3.000e-003 2.800e-003 2.800e-003
Root Mean Square Error
Table 5.2: Root Mean square values of degraded images
Denoising Parameter SNR =30dB SNR=40dB SNR =50dB
0.0128 0.0253 0.0169 0.0155
0.0160 0.0257 0.0169 0.0159
0.020 0.0251 0.0152 0.0153
0.0352 0.0325 0.0287 0.0281
0.0600 0.0548 0.0532 0.0529

Above mentioned parameters give us information about the denoising parameters regarding
the error they have produced. By observing these results it can be concluded that denoising

parameter £=0.020 has produced minimum error than all other denoising parameters.
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Signal to Noise Ratio

Table 5.3: Signal to noise ratio of degraded images

Denoising Parameter SNR =30dB SNR=40dB SNR= 50dB
0.0128 7.5979 11.1151 11.8365
0.0160 7.6298 11.0797 11.7743
0.020 7.4664 11.9381 11.6130
0.0352 5.4236 6.5035 6.6880
0.0600 0.8752 1.1241 1.1797
Improved SNR
Table 5.4: Improved SNR values of degraded images
Denoising Parameter SNR 30dB SNR 40dB SNR 50dB
0.0128 4.7812 6.2132 6.4771
0.0160 4.7942 6.1988 6.4844
0.020 4.8092 6.3855 6.5000
0.0352 3.8018 4.3268 44038
0.0600 2.4827 2.5989 2.6285

The parameters such as Signal to Noise ratio and Improved SNR provide information
regarding the quality of recovered image. These parameters have lead us to select
denoising parameter ‘£=0.020" as the best out of all other denoising parameters

which were used in the simulation.
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5.4 Proposed method results

Now for the proposed method’s results, two examples have been discussed. In the first
example the original image is produced by randomly selecting the nine non zero data
' points where as in second example the original image represents the sparse image of

the Benzyl Benzene molecule.

Let’s consider the case when imaging system has acquired three images of a sample.
These three images have passed through three different channels and each channel has
applied its own PSF and different intensity of noise distorts each channel as explained

in figure 4.2.

As a result channel noise and AWGN noise, the observed images results in degraded
images. Now these images need to be processed so that the original sent image and
the point spread function could be retrieved out of these degraded observations. For

this purpose A.M algorithm will be applied on these degraded observations and by

using the proposed method final estimated image ‘f * and point spread function ‘ H’

will be restored.
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Figure 5.11 Multichannel degraded images and Blind image deconvolution images with
denoising parameter ‘&’ 0.020 at 1000 iterations using AM algorithm (a) Degraded

observation of channel 1 (b) Partially known PSF used in algorithm (c) Restored image of
channel 1(d) Degraded observation of channel 2 (¢) Partially known PSF used in algorithm
(f) Restored image of channel 2 (g) Degraded observation of channel 3 (h) Partially known
PSF used in algorithm (i) Restored image of channel 3.

In figure 5.11, images (a), (d) and (g) represents the output of channel 1, 2 and 3 respectively.
Whereas the images (b), (¢) and (h) represent the partially known part of system’s PSF.
Images (c), (f) and (i) represent the restored images by A.M algorithm. The output of
RESTORATION MODEL shows only one estimated output, hence following the proposed
method given by equation 4.25, average of these three images will be taken. The final restored

image is shown in figure 5.11
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Figure 5.12: Restored output f * of Multichannel blind image deconvolution model

On the basis of this restored image, now PSF will have to be restored. In order to

restore PSF equation 4.24 is solved, it will result in a vector 8, this & will be
transformed into Block Circulant matrix A by using the equation 3.10. The matrix H

is defined in equation 4.25, hence by setting £ to 1 and replacing the calculated value

of A the estimated PSF H will be calculated. The figure 5.13 shows the estimated

A

H.

|l 2 3 4 5 L] ? L] 9 W

Figure 5.13: Restored output * H’ of Multichannel blind image deconvolution model

In this second experiment, three images are acquired of the sample, these images are
different from one another because of time varying point spread function and different

intensity of atmospheric noise distorts the acquired image in different way.
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Figure 5.14 Multichannel degraded images and Blind image deconvolution images with
denoising parameter ‘£’ 0.020 at 1000 iterations using AM algorithm (a) Degraded

observation of channel 1 (b) Partially known PSF used in algorithm (c) Restored image of
channel 1(d) Degraded observation of channel 2 () Partially known PSF used in algorithm
(f) Restored image of channel 2 (g) Degraded observation of channel 3 (h) Partially known
PSF used in algorithm (i) Restored image of channel 3.

In figure 5.14, images (a), (d) and (g) represents the degraded observations produced
by channell, channel2 and channel3 respectively. Images (b), (¢) and (h) represents
the approximated point spread function which is being used in order to retrieve

original sent image and point spread function. Images (c), (f) and (i) represents the
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output of the Alternating Minimization Model. The final estimated £ , which resulted

after applying proposed method in RESTORATION BLOCK, is shown in figure 5.15.

Figure 5.15: Restored output * f > of Multichannel blind image deconvolution model

The final restored image f represents the sparse image in the shape of a Benzyl
Benzene molecule. As explained in previous example, this estimated f will now be used
in retrieving the point spread function of MRFM. The figure 5.16 shows the point

spread function restored by using figure 5.15. —-

Figure 5.16: Restored output H’ of Multichannel blind image deconvolution model

Observing the results, it can be stated that, A. M algorithm is proven robust against
noise and it has achieved minimum mean square error very quickly hence settles itself
into a steady state. In both examples, the proposed method has also successfully

restored the original image and system’s PSF.
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CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

The Alternating Minimization algorithm has been evaluated on the basis of certain
parameters in order to observe its convergence rate and behavior in different
intensities of degraded observations. A proposed method has been presented in order

to solve Multichannel Blind Image Deconvolution problem.

6.1 Summary of results

Since itcrative soft thresholding has been used for the purpose of denoising, the A.M
algorithm was repeatedly tested by varying the denoising parameter & ’. The results
have shown that A.M algorithm has successfully restored the original images from all
the degraded observations. Observing the results and evaluation parameters, it can be
concluded easily that A.M algorithm has proved out to be robust against different
noise intensities. The proposed approach for Multichannel Blind Image deconvolution
has worked in significant manner and in both examples, the original sent image and

system PSF, has been restored successfully.
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6.2 Future Directions

These experiments has shown us the need of a method which could lead us to the

optimal value of denoising parameter ‘ £’. Since we have seen how diverse the results

could be if the denoising parameter ‘ £’ is not set appropriately.

In this thesis Alternating Minimization algorithm has been used for the purpose of
Multichannel Blind Image Deconvolution, for further research algorithms such as

Particle Swarm Optimization (PSO) or Genetic algorithms (GA) can also be utilized.

Furthermore for the Multichannel Blind Image Deconvolution problem, research can
be done in order to exploit image diversity. Such techniques should be devised which
can extract information from the multiple restored images and on the basis of that

information the original image should be restored.
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