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Preface 

Peristaltic pumping is a fluid transport phenomenon which is attained through a progressive 

dynamic wave of expansion or contraction propagating along the walls of a distensible tube 

containing fluid. Many researchers, biologists, engineers and physicist studied peristaltic 

transport in different geometries due to its wide range applications in numerous fields. It is 

an intrinsic phenomena of several biological/physiological systems such as reproductive 

system, nervous system, digestive system, cardiovascular system and renal system. Several 

modern engineering devices also operate on the principle of peristalsis. Examples abound: 

diabetic pumps, corrosive fluid transport pumps in nuclear industry, roller and finger 

pumps, pharmacological delivery pumps, infusion pumps etc. In recent times, electro 

osmosis-modulated peristaltic transport in micro fluids channel is proposed as a model for 

the design of lab-on-a-chip device. It is evident from above mentioned applications that 

peristaltic motion is the nature’s as well as humans way of transporting the fluids. 

Heat transfer is an important phenomenon of nature, which works on the first law of 

thermodynamics. According to this law the energy added per unit mass to a closed system 

increases the total energy per unit mass of the system (fluid). The application of this law to 

flowing fluid yield the well-known energy equation. The study of non-isothermal 

peristaltic flows required the application of both momentum and energy equations. The 

motivation to analyze heat transfer in peristaltic flows arises due to applications of such 

flow in hemodialysis process, blood pumps, dispersion of chemical impurities, heart lung 

machine and corrosive fluids transport in machines. Moreover, temperature variations 

inside the fluid may affect the bolus movement. The latest techniques of heat transfer like 
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cryosurgery and laser therapy have also inspired researchers for thermal modeling in 

tissues. 

Mass transfer phenomenon is vital in the diffusion process such as the nutrients diffuse out 

from the blood to the contiguous tissues. A multifarious relationship is observed between 

driving potentials and fluxes when heat and mass transfer are considered simultaneously. 

The analysis of peristaltic flow with heat and mass transfer is of valuable importance due 

to its promising applications in biomedical sciences. Example abound: conduction in tissue, 

convection due to circulation of blood in porous tissue, food processing and vasodilation. 

It is important to point out the mass diffusion from boundaries into the fluid is always 

happening in physiological flows and therefore a complete analysis of such flows must 

incorporate concentration equation along with momentum and energy equations. 

The utility of peristaltic flow with heat and mass transfer is further enhanced when 

curvature effects with non-Newtonian characteristics of the fluid are also integrated in the 

whole analysis. However, not much literature is available pertaining to peristaltic flows of 

complex fluids with heat/ mass transfer through a curved channel. Motivated by this fact 

the main objective of this thesis is to develop and simulate mathematical models of 

peristaltic flows with heat/ mass transfer in a curved channel. The model development is 

achieved through the use of fundamental conservation laws of mass, momentum, energy 

and concentration for fluids. Employing these laws, a system of partial differential 

equations is developed which is later simplified by using physiologically relevant 

approximations. The reduced system is simulated by using appropriate numerical 

technique. The solution obtained through this technique is later used to explain physical 
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structure of flow and heat/ mass transfer features. This thesis is composed on following 

nine chapters.   

Chapter 1 starts with brief explanation of the topics such as peristaltic flow, non-

Newtonian fluids and heat/ mass transfer. The fundamental equations and dimensionless 

number related to the topic of research are provided in the main body. A comprehensive 

review of the available literature on peristaltic flows is also presented at the end. 

Chapter 2 investigates the hydromagnetic peristaltic flow in a porous-saturated heated 

channel by utilizing Darcy-Forchiemmer law. The equations for velocity, temperature and 

mass concentration are developed by using the delta approximation. A finite difference 

scheme is employed to solve these equations. The effects of pertinent rheological 

parameters are thoroughly investigated. It is observed that presence of porous media 

obstructs the flow velocity and reduces circulations of streamlines. The results of this 

chapter are published in Thermal Science; TSCI170825006A.  

Chapter 3 explores the heat and mass transfer to mixed convective hydromagnetic 

peristaltic flow in a curved channel in the presence of joule heating. Boussinesq 

approximation is used to couple the momentum and energy equations. Numerical solution 

of these equations is developed by neglecting the inertial and streamline curvature effects. 

The results of simulations are displayed graphically. It is noted that thermal Grashof 

number enhances the temperature while it has an opposite effect on mass concentration. 

The results of this chapter are submitted for publication in Theoretical and 

Computational Fluid Dynamics. 
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Chapter 4 presents the analysis of heat/ mass transfer to peristaltic flow of Sisko fluid in 

a curved channel. The fundamental equations are derived by employing an orthogonal 

coordinate system for delta approximation. The effect of relevant parameter are observed 

on velocity, pressure rise, temperature and concentration fields and streamlines. It is 

observed that circulating bolus shift from upper half to the lower half of the channel as we 

switch from shear-thinning to shear-thickening fluid. The results of this chapter are 

published in Thermal Science; TSCI161018115A.  

Chapter 5 provides modeling and simulations for peristaltic flow of Carreau fluid model 

with heat/ mass transfer in a curved channel. The calculations for axial velocity, pressure 

rise per wavelength, temperature and concentration fields and stream function are carried 

out under delta approximation in the wave frame by employing suitable numerical implicit 

finite difference technique. It is noticed that rapid changes occur in flow velocity and 

streamlines for shear-thinning fluids due to which a boundary layer develop in the vicinity 

of channel walls for increasing values of Hartmann number. Furthermore, the amplitude of 

heat transfer coefficient is suppressed for larger values of channel curvature, power-law 

index and Hartmann number. The results of this chapter are submitted for publication in 

Communications in Theoretical Physics. 

Chapter 6 investigates the analysis of peristaltic flow of Rabinowitsch fluid in a curved 

channel with heat transfer. The reduced set of equations is solved via a semi-analytic 

procedure while energy equation is simulated numerically using Mathematica routine 

“NDSolve”. The effects of important parameters on flow velocity, temperature field and 

streamlines are shown in detail. It is observed that with increasing coefficient of 
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pseudoplasiticity flow velocity achieve symmetric profile. Moreover, flow velocity 

becomes symmetric with increasing dimensionless radius of curvature. The fluid 

temperature inside the channel rises with increasing the coefficient of pseudoplasiticity. 

The results of this chapter are published in Zeitschrift für Naturforschung A 2016; 72(3): 

245–251.  

Chapter 7 investigates the effects on heat and mass transfer in peristaltic flow of 

magnetically influenced incompressible micropolar fluid model through a curved channel. 

The set of fundamental equations is derived by utilizing delta approximation. The effects 

of coupling number, micropolar parameter, Hartmann number and curvature parameter on 

velocity, pressure rise and temperature and concentration fields are thoroughly examined. 

It is observed that the axial velocity rises with increasing micropolar parameter in vicinity 

of the lower wall while it shows opposite behavior near the upper wall. The fluid bolus 

concentrated in vicinity of upper part of the channel for lower values of micropolar 

parameter splits into two parts with increasing micropolar parameter. The results of this 

chapter are submitted for publication in Journal of fluid mechanics. 

Chapter 8 reveals the features of heat and mass transfer in peristaltic flow of bi-viscosity 

fluid through a porous-saturated curved channel in the presence of magnetic field and Joule 

heating effect. The governing equations are reduced by using delta approximation and then 

integrated numerically using FDM. It is noted that bi-viscosity fluid parameter, 

permeability parameter and Hartmann number have similar effects on the axial velocity. 

The results of this chapter are submitted for publication in Results in physics. 
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Nomenclature 
 

a Amplitude of upper wall 

*a  Viscosity parameter 

1b  Index of consistency 

Br Brinkmann number 

*B  Characteristic magnetic induction 

0C  Mass concentration at lower wall 

1C  Mass concentration at upper wall 

c Wave speed 

pc  Specific heat at constant pressure 

sc  Concentration susceptibility 

uD  Dufour Effect 

mD  Molecular diffusivity 

E Electric field 

Re  Radial direction unit vector 

Xe  Azimuthal direction unit vector  

lkme  Permutation symbol 

F Body force per unit mass 

0F  Forchiemmer parameter 

CGr  Concentration Grashof number 

TGr  Thermal Grashof number 

g Gravity 

Ha Hartmann number 

I Identity tensor 

J Current density 

j Micro moment of inertia 

k Thermal conductivity 

*k  Permeability of porous medium 
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TK   Thermal diffusivity 

1k  Chemical reaction parameter 

2k  Dynamic micro-rotation 

L Characteristic length 

klm  Moment stress tensor 

n Index of power-law 

P  Pressure  

Q Amount of heat flux 

q Flow rate in moving frame 

R Radial coordinate in laboratory frame 

Re Reynolds number 

S Extra stress tensor 

Sr Soret number  

Sh Sherwood number 

T  Fluid temperature 

0T  Lower wall temperature 

1T  Upper wall temperature 

t Time 

mT   Mean fluid temperature 

T  Ambient Temperature 

1 2,u u  velocity components 

kw  Micro-rotation velocity 

We Weissenberg number 

w Half width of the curved channel 

z Coefficient of heat transfer 
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Greek letters 


  Density 

  Dissipation function 


 Dynamic viscosity parameter 

b  Plastic dynamic viscosity 

0  Viscosity at zero-shear-rate 

  Viscosity at infinite-shear-rate 

  Second invariant 

  Time constant 


 Axial coordinate in laboratory frame 

  Ratio of infinite to zero shear-rate viscosity 


 Dimensionless radius of curvature  

  Stress relation time 

  Specific process time 

  Wave number 

,   Amplitude ratio 

  Bi-viscosity fluid parameter 

  Coefficient of pseudoplasiticity 

*   Wavelength 


 

Concentration 


 Stream function 

T  Thermal expansion coefficient  

C  Concentration expansion coefficient 

* * *, , ,  
 

Coefficient of angular velocity  
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Chapter 1 
 

Introduction 
 

The objective of this chapter is to elaborate fundamental concepts such as non-Newtonian 

fluids, peristalsis and heat and mass transfer. The conservation laws necessary for flow and 

heat and mass transfer analyses are briefly explained. The dimensionless numbers related 

to the topic of thesis are defined. A brief review of available literature on the topic under 

consideration is also provided. 

 

1.1     Peristaltic flow 
 

The phenomenon of fluid transport is known as peristaltic pumping which is attained 

through a progressive dynamic wave of expansion or contraction propagating along the 

walls of a distensible tube containing fluid. Due to wide range of applications in 

engineering and medical sciences the peristaltic transport via tubes /channels have attracted 

substantial consideration of researchers. It is an inherent phenomena of numerous 

biological/physiological systems such as transport of lymph in the lymphatic vessels, 

chyme in small intestine, blood in small blood vessels, cardiovascular flows, fluids from 

the mouth through the esophagus (Fig. 1.1), movement of refluxes in neuron, the 

locomotion of worms and transport of urine from kidney to bladder. Modern machines 

which operate on the principle of peristalsis are roller and finger pumps, diabetic pumps 

(Fig. 1.2), corrosive fluid transport in nuclear industry, pharmacological delivery systems, 
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transport of sanitary fluids, uterine cavity, etc. Recently, electro osmosis-modulated 

peristaltic transport in micro fluids channel is proposed as a model for the design of lab-

on-a-chip device. From above discussion it is clear that peristaltic motion is the nature’s 

way of transporting the fluid in human beings. 

 

 

 

Fig. 1.1: Motion of food bolus through 

esophagus. 

Fig. 1.2: Schematic diagram of peristaltic 

pump.  

 

The peristaltic flow through curved channel is pertinent to many biological, environmental 

and industrial processes. Examples are physiological tubes, glandular ducts, laser 

accelerators, optical synchrotrons, laser guiding in curved plasma channels, harmonic 

generators, micro heat exchangers and circular x-ray. Therefore, it appears sound to study 

the peristaltic flow in a curved channel. In past, several researchers worked on peristaltic 

motion of Newtonian and non-Newtonian materials in different geometric setups subject 

to various boundary conditions. Several important aspects arising from consideration of 

porous media, magnetic field are also analyzed. Two frequently used assumptions in the 

modeling of peristaltic flows are known as long wavelength assumption (delta-

approximation) and low Reynolds number assumption. These assumptions are quite 
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compatible as far as peristaltic flows in physiological system are concerned. However, 

there are some situations for instance, in engineering devices where such assumptions do 

not give reliable results. In such situations the above mentioned assumptions are dropped 

and the analysis is performed for complete two-dimensional equations. 

 

1.2     Non-Newtonian fluids 
 

The theory of fluids has gained attention of scientists, engineers, biologists and 

mathematicians in recent times. Generally, fluids are characterized as Newtonian and non-

Newtonian fluid. Newtonian fluids are those in which the viscous stresses arising from 

their flow, at every point, are linearly proportional to the local strain rate. Newtonian fluids 

are the simplest mathematical models of fluids that account for viscosity. On the other 

hand, Navier-Stokes equations are unable to describe the flow of many fluids including 

suspensions, clay coatings, liquid detergents, drilling muds and oils etc. These fluids are 

known as non-Newtonian fluids. Many physiological, pharmacological and industrial 

liquids are known to be non-Newtonian in nature including bile, blood, mucus, digestive 

fluids, capillary fluids, bio membranes, custard, ketchup, starch, paint, flow of liquid 

metals, nuclear slurries, alloys, etc. In order to accurately describe the rheology of non-

Newtonian fluids analysts have designed a number of non-Newtonian fluid models, which 

lead to the highly non-linear differential equations. Commonly used non-Newtonian model 

in literature are power-law model, Jeffery fluid model, Sisko model, Oldroyd-B model, 

Giesekus model, Carreau model, Johnson-Segalman model etc. Generally, non-Newtonian 

fluids are categorized as generalized Newtonian fluids (GNF) and viscoelastic fluids. For 
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later fluids, the shear stress is a function of shear rate at the specific interval, but 

independent of the history of deformation. Though GNF is non-Newtonian in nature but 

its fundamental equation is a generalized form of the Newtonian fluid. GNF are categorized 

in two main types, namely, time-independent GNF and time-dependent GNF. The fluids 

for which the value of shear rate at a point, within the fluid, is deliberated only by the 

present value of shear stress at that point are called time-independent fluids. These fluids 

are further classified as shear-thinning (pseudoplastic behavior) and shear-thickening 

(dilatant behavior) fluids depending upon viscosity. In shear-thinning fluids the viscosity 

gradually decreases with increasing shear rate while in case of shear-thickening fluids 

viscosity increases with increasing shear rate. The fluid for which the shear rate and shear 

stress shows dependence on the duration of kinematic and shearing history are called time-

dependent fluid. These fluids are explicitly divided into two types: thixotropic fluids and 

rheopectic fluids. Thixotropy is a time-dependent shear thinning property while rheopexy 

is time-dependent shear thickening property. 

The viscoelastic fluids are non-Newtonian fluids, possessing both viscous and elastic 

properties. Viscoelastic fluids in contrast to Newtonian liquids are not described by a 

universal equation. Hence a number of constitutive equations have been developed to 

describe rheological characteristics. The flows of such fluids are governed by higher order, 

complicated and more nonlinear equations than the Navier- Stokes equations. Examples of 

viscoelastic models are: Maxwell model, Oldroyd-B model, Burgers model, Generalized 

Maxwell model, Giesekus model and PTT model.  

 

https://en.wikipedia.org/wiki/Shear_stress
https://en.wikipedia.org/wiki/Non-Newtonian
https://en.wikipedia.org/wiki/Constitutive_equation
https://en.wikipedia.org/wiki/Newtonian_fluid
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1.3     Heat and mass transfer 
 

Heat transfer is an essential phenomenon of nature, which works on first law of 

thermodynamics, according to this law heat always travel from a region of higher 

concentration to a region of lower concentration. There are three basic modes of heat 

transfer namely, conduction, convection and radiation. In primary mode heat is transferred 

due to vibration of adjacent atoms due to which heat is transferred from region of higher 

temperature to lower temperature. Fluids and gases are less conductive than solids because 

they are less dense. In convection heat is transferred by physical movement of molecules. 

There are two types of convection i.e., natural convection and forced convection. Heat is 

transferred by convection in numerous phenomena for example wind, oceanic currents and 

movements within the Earth's mantle. In case of radiation heat is transferred due to waves. 

Radiation occurs without an intervening medium, for example, energy from the sun travels 

through the vacuum to the Earth due to convection. In peristalsis heat transfer is beneficial 

in number of applications for instance hemodialysis process, blood pumps, dispersion of 

chemical impurities, heart lung machine and corrosive fluids transport in machines. 

Physiologically thermal properties of tissues are analyzed by using evaporation technique. 

The latest techniques of heat transfer like cryosurgery and laser therapy have also inspired 

researchers for thermal modeling in tissues.  

Mass concentration is measure of the extent to which a fluid resists a change in its direction 

or speed when a force is applied. Mass transfer phenomenon is vital in the diffusion process 

such as the nutrients diffuse out from the blood to the contiguous tissues. A multifarious 

relationship is observed between driving potentials and fluxes when heat/ mass transfer are 
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deliberated simultaneously. When heat/ mass transfer arise jointly in a moving fluid, then 

it affect many transport processes present in nature and also the applications relating to 

science and engineering. Studies pertaining to heat/mass transfer in peristaltic flows 

through straight geometries have also been carried out by various researchers. This is 

because of numerous applications of heat and mass transfer in industrial and physiological 

processes such as condensation, crystallization, evaporation, etc. 

 

1.4     Objective 
 

The purpose of present research is to investigate the peristaltic flow with heat and mass 

transfer in a curved channel through the use of different non-Newtonian fluid models. The 

system of equations is developed for the case when wave number is vanishingly small. A 

well-tested finite difference scheme is employed for the solution. The existing literature 

surveyed by the author deals with non-isothermal peristaltic flows of different non-

Newtonian fluids in planar channel, axisymmetric tube, curved channel or a rectangular 

duct. However, less attention is given to the simultaneous effects of heat and mass transfer 

in peristaltic flow through curved geometry. Motivated by this fact, the research carried 

out in this thesis provides improvement of existing mathematical models of peristaltic 

transport of Newtonian and generalized Newtonian fluids, interpretation of the 

fundamental equations and examination of different key factors on flow and heat/ mass 

transfer features. 

The analysis also take into account the presence of pertinent effects such as 

magnetohydrodynamic, Joule heating, Soret and Dufour and porous media effects. The 
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effects of porous medium are studied by utilizing Darcy’s law which relates pressure 

gradient and flow velocity linearly through the porous medium. Similarly, Maxwell’s 

equation with generalized Ohm’s law have been used to study the magnetohydrodynamics 

effects. 

 

1.5 Dimensionless numbers 
 

The important dimensionless numbers pertaining to the topic of research are briefly 

explained in this section. 

 

1.5.1     Reynolds number 
 

Reynolds number is defined as ratio of the inertial force to the viscous force and usually 

denoted by Re.  Mathematically, it is given by 

Re .
cL


         (1.1) 

Reynolds number is used to describe two main types of flow i.e., laminar and turbulent 

flow. Laminar flows with vanishingly small Reynolds number are called creeping flows. 

Peristaltic flows, specifically relevant to physiology, usually occur at very low Reynolds 

number. For turbulent flow inertial force is dominant with large Reynolds number. This 

flow produces vortices, fluctuations and eddies.  
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1.5.2     Brinkman number 
 

Brinkman number is defined as ratio of heat produced by viscous dissipation to the heat 

transported by molecular conduction. The higher value of Brinkman number correspond to 

increasing temperature rise due to lesser conduction of heat produced by viscous 

dissipation. Mathematically, Brinkmann number is defined as  

 

2

0 1

,
c

Br
k T T





     (1.2) 

where k, 0T  and 1T  are the thermal conductivity, temperature of lower and upper wall, 

respectively. 

 

1.5.3     Weissenberg number  
 

Weissenberg number is used to describe the relation of stress relaxation time (  ) and 

specific process time (  ) of the fluid. It is a dimensionless number used to describe 

viscoelastic flows. It is given by, 

.We               (1.3) 

 

1.5.4     Heat transfer coefficient 
 

The heat transfer coefficient is proportionality constant between flux and thermodynamic 

driving force for the flow of heat, given by 

,
Q

z
T




           (1.4) 
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where z is the heat transfer coefficient, Q is the amount of heat flux and T  is 

temperature difference between solid surface and area adjacent to fluid. 

 

1.5.5     Hartmann number 
 

Hartmann number is defined as the ratio of electromagnetic force to the viscous force. It is 

denoted by Ha. Mathematically,  

* ,Ha B L



      (1.5) 

where 
*B  is magnetic induction and   is Stefan-Boltzman constant. 

 

1.5.6     Wave number 
 

Wave number is defined as the ratio of width of channel to the wavelength of propagating 

wave along the channel wall. Mathematically 

*
,

L



         (1.6) 

where   is the wave number and *  is the wavelength.  

1.5.7     Soret and Dufour numbers 
 

The energy flux due to concentration gradient is termed as Dufour effect. Contrary to this 

mass flux can be created by temperature gradient and referred as Soret effect. These effects 
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are important when density difference exists in flow regime. The dimensionless numbers 

characterizing Soret and Dufour effects are Soret and Dufour numbers. Mathematically, it 

is given by  

0

0

( )
,

( )

m T

m

D K T T
Sr

T C C








      (1.7) 
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





      (1.8) 

where mD  is the molecular diffusivity, TK  thermal diffusion ratio, mT  is the mean fluid 

temperature, pc  is the specific heat at constant pressure, sc  is the concentration 

susceptibility, T  is the ambient temperature, 0C  is channel concentration and C  is the 

ambient concentration. 

 

1.5.8     Grashof number 
 

Grashof number is the ratio of natural convection buoyancy force to the viscous force. It is 

given by  

3

0 1

2

( )
,

L g T T
Gr






                                                                    (1.9) 

where g is the gravity and  is the bi-viscosity fluid parameter. 
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1.6     Governing laws for fluid mechanics 
 

To describe the physical behavior of fluid flow, we must have to use some mathematical 

relations including law of conservation of mass, law of conservation of momentum and law 

of conservation of energy. 

 

1.6.1     Law of conservation of mass 
 

According to law conservation of mass, the mass of enclosed system always remains 

constant with passage of time, unless mass is added or removed from the system. The 

mathematical relation stating this law is called equation of continuity. The vector form of 

continuity equation for compressible fluid is  

) 0,
t





  


V       (1.10) 

where t is the time. For an incompressible flow above equation takes the form 

0.V                          (1.11) 

 

1.6.2     Law of conservation of momentum 
 

The law of conservation of momentum for an incompressible fluid is given by the equation  

,
d

dt
 

V
F +       (1.12) 
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where   is Cauchy stress tensor, F is the body force per unit mass and d
dt

 is the material 

derivative. 

 

1.6.3     Law of conservation of energy 
 

The law of conservation of energy is recognized on the first law of thermodynamics. For 

incompressible fluid energy equation is given by  

2 .p

dT
c k T

dt
          (1.13) 

 

1.6.4     Concentration equation 
 

According to Fick’s law, the rate of change in concentration with time is directly 

proportional to the rate at which the concentration gradient changes with distance in a given 

direction at a constant diffusivity. Mathematically 

2 2
+ .m

m

m

D Kd C
D C T

dt T
  T

                                             (1.14) 

1.6.5     Maxwell’s equations 
 

A set of partial differential equations is referred as Maxwell's equations that account for 

the magnetic and electric field generation as charges/ current fluctuate. These equations are 

utilized in magnetohydrodynamics and given by 
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0 , (1.15)

, (1.16)

0, (1.17)

0. (1.18)

m
t

t
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

 



  



 

 

E
B J +

B
E

B

E









 

Here, equation (1.15) is mathematical form of Ampere’s law and (1.16) is Faraday’s law 

while (1.17) and (1.18) characterizes Gauss laws for magnetic and electric fields, 

respectively. In above equations J is the current density while B and E are magnetic field 

and electric field, respectively.  

 

1.6.6     Lorentz force 
 

The Lorentz force is combination of magnetic and electric force arises due to 

electromagnetic fields on a point charge. Mathematically, 

F = J B,       (1.19) 

where 

 .  J = E V B      (1.20) 

1.7 Fundamental equations in curvilinear coordinates system 
 

In geometry, curvilinear coordinates are coordinates system for Euclidean space in which 

the coordinate lines may be curved. In curvilinear co-ordinates continuity Eq. (1.10), 

momentum Eq. (1.12), energy Eq. (1.13) and concentration Eq. (1.14) take the forms: 
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1.8     Literature Review 
 

Due to wide range applications, mathematical modelling of peristaltic movement has 

received increasing interest among researchers, primarily because of its significance to 

industrial applications and biological systems. The fundamental work carried out by 

Latham (1966) and Shapiro (1969) et al. for tube and channel geometry theoretically 

evaluate the reflux and trapping phenomena related with peristaltic mechanism under long 

wavelength and low Reynolds number assumptions. The flow was investigated in the wave 

frame. Peristaltic flow in a circular tube under long wavelength approximation was 

proposed as a model of intestinal flow by Barton and Raynor (1968). Fung and Yih (1968) 

adopted an alternative approach based on perturbation technique to analyze the peristaltic 

flow in the fixed frame (without employing long wavelength and low Reynolds number 

approximations). A comprehensive review of initial theoretical and experimental work on 

peristaltic transport was reviewed by Jaffrin and Shapiro (1971). The reflux phenomenon 

was discussed for several values of Reynolds number. Jaffrin (1973) studied the peristaltic 

transport and highlight the streamline and inertial curvature effects. Raju and Devanathan 

(1974) considered the peristaltic motion of a power law fluid in a tube, with a sinusoidal 

wave of small amplitude travelling down the wall of channel. Gupta and Seshardi (1976) 

investigated peristaltic flow in non-uniform tube and channel. Poiseuille flow with 

superimposed peristaltic flow was investigated by Mittra and Parsad (1974) and Srivastava 

and Srivastava (1985). Numerical study of two-dimensional peristaltic flows was carried 

out by Brown and Hung (1977), Takabatake and Ayukawa (1982) and Takabatake et al. 

(1988). Peristaltic pumping of second grade fluid in planar channel and tube was discussed 

by Siddiqui et al. (1991) and Siddiqui and Schwarz (1994). The influence of peristaltic 
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flow in a channel for viscous flow was examined by Chu and Fang (2000). Elshehawey 

and Husseny (2002) studied analytically the peristaltic flow of an incompressible viscous 

fluid with suction in a channel by using perturbation technique. Peristaltic flows of 

Johnson-Segalman, third order fluid and Oldroyd-B model were also investigated by Hayat 

et al (2002; 2003; 2004). Srinivasacharya et al. (2003) investigated the peristaltic transport 

of micropolar fluid. Mishra and Rao (2003) investigated peristaltic flow in an asymmetric 

channel. Mekheimer (2003a) comprehensively discussed the peristaltic flow through a 

porous medium in an inclined planar channel for viscous fluid. Mekheimer (2003b) also 

studied the transport of magnetohydrodynamic viscous and incompressible peristaltic flow 

in an inclined planar channel. Hakeem et al. (2004a) observed the separated flow in 

peristaltic motion of an incompressible Carreau fluid in uniform tube under long 

wavelength approximation. Hakeem et al. (2004b) studied the effects of endoscope on 

peristaltic motion under low Reynolds number approximation. Elshahed and Haroun 

(2005) considered peristaltic transport of magnetically influenced Johnson-Segalman fluid 

through a flexible channel. Mishra and Rao (2005) studied peristaltic transport in both 

peripheral and core regions inside a porous channel. Hakeem et al. (2006) examined the 

peristaltic flow for generalized Newtonian fluid in presence of magnetic field. Elshehawey 

et al. (2006) used Adomian decomposition method to study the peristaltic transport of an 

incompressible viscous fluid in an asymmetric channel through a porous medium and 

found an explicit form of stream function. 

The work of Elshehawey was extended by Hayat et al. (2008) by using partial slip condition 

with the conclusion that trapping is reduced in the presence of surface slip. Hayat et al. 

(2006) thoroughly studied the peristaltic flow of a Newtonian fluid in a tube. Hayat et al. 
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(2007) examined peristaltic motion of an incompressible non-Newtonian Burger’s fluid in 

a planar channel for long wavelength case. Haroun (2007b) employed a third-order fluid 

to discuss peristaltic transport in an asymmetric channel and analyzed the effects of 

Deborah number and phase difference. Wang et al. (2008) studied magnetohydrodynamic 

peristaltic motion of a Sisko fluid in a symmetric or asymmetric channel. Ali et al. (2009) 

considered third grade fluid with peristalsis in a circular cylindrical tube. Pandey and 

Tripathi (2010) observed the peristaltic transport through a cylindrical tube under the 

influence of constant magnetic field for a viscous fluid. A variational method for 

optimizing peristaltic transport in a channel was presented by Walker and Shelley (2010). 

Ceniceros and Fisher (2013) employed immersed boundary method to study peristaltic 

flow in a pump for all possible occlusion ratios and Weissenberg number in excess of 100. 

Böhme and Müller (2013) performed an asymptotic analysis of axisymmetric two-

dimensional peristaltic flow to investigate the influence of the aspect ratio, the Weissenberg 

number, the Deborah number and the wave shape on the pumping characteristics. Shit et 

al. (2014) studied effects of applied electric field on hydro- magnetic peristaltic flow 

through a micro-channel. Abbas et al. (2016a) analyzed hyperbolic tangent fluid in a non-

uniform channel in the absence of inertial effects. The investigation of 

magnetohydrodynamics peristaltic blood flow of nanofluid in non-uniform channel is also 

carried out by Abbas et al. (2016b). More recently, Abbas et al. (2016c) studied peristaltic 

flow of entropy generation for nanofluids in a varying two-dimensional conduit. 

Mekheimer (2005; 2008b), Haroun (2007a), Tripathi and Beg (2014a; 2014b), Nabil et al. 

(2011), Tanveer et al. (2016), also contributed to the literature on peristaltic transport in 

various scenarios. The principle study of micropolar fluid was presented by Eringen (1964; 
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2001) to describe the suspensions of neutrally buoyant rigid particles in a viscous fluid. 

Eringen presented micropolar fluid as an extension of the classical Navier-Stokes theory 

to include the micro-rotation effects. Ariman et al. (1974) studied application of 

microcontinum fluid mechanics in a broader prospect. Na and Pop (1997) investigated 

boundary-layer flow of a micropolar fluid due to a stretching wall. The investigations 

dealing with peristaltic flow of micropolar fluid were carried out by Srinivasacharya et al. 

(2003), Hayat et al. (2007), Mekheimer (2008a). 

The interaction of heat/ mass transfer with peristaltic flow of Newtonian and non-

Newtonian fluids in different geometrical setups has also been reported by various 

researchers. For instance, Tang and Rankin (1992) investigated the symmetry of the 

solution of a heat-conducting fluid for peristaltic transport through an elastic tube. Tang 

and Shen (1993) considered the peristaltic flow of a heated fluid through a cylindrical 

channel. Radhakrishnamacharya and Murty (1993) considered the peristaltic transport with 

heat transfer in an asymmetrical channel. Vajravelu et al. (2008) studied peristaltic flow 

with heat transfer through a porous vertical annulus. Kothandapani and Srinivas (2008) 

considered hydromagnetic peristaltic flow through a porous medium with heated walls. 

Nadeem and Akbar (2008) examined the Herschel-Bulkley fluid with peristalsis under the 

influence of heat transfer in an irregular inclined tube under delta approximation. Srinivas 

et al. (2011) discussed heat/ mass transfer with peristalsis in an asymmetric channel. Hayat 

et al. (2010c; 2011b; 2013) considered motivating analysis of heat/ mass transfer 

phenomena with peristalsis. Shehzad et al. (2014) investigated the effects of 

thermophoresis on mixed convective nanofluid with peristalsis. Noreen (2017) studied the 

effect of heat/mass transfer in a non-uniform channel with peristalsis. 



  38 
 
 

In above-mentioned studies the flow is assumed to occur through straight geometry while 

most of the geometries observed in nature are not straighter one. Generally, fluxes with 

curved patterns and temperature gradients possess great importance due to instability at 

comparatively lower values of the governing parameters, so that the transformation to 

disorder can be studied in a well-organized way. The pioneering work in this direction was 

analyzed by Sato et al. (2000) for a viscous fluid in a laboratory frame. The analysis of 

Sato et al. (2000) has been revisited by Ali et al. (2010a) in a wave frame. Ali et al. (2010b) 

investigated peristaltic flow in a curved channel with heated wall for the first time. In other 

study Ali et al. (2010c) examined the peristaltic flow through a curved channel for 

micropolar fluid. Ramanamurthy et al. (2013) considered the peristaltic transport for time-

dependent generalized model in a finite length curved channel for laboratory frame of 

reference. Kalantari et al. (2013) examined numerically the peristaltic flow of Phan-Thien-

Tanner non-Newtonian fluid model through a curved channel. Hina et al. (2012; 2013a; 

2013b) observed the wall properties in a curved channel with peristalsis in different 

scenarios. Ali et al. (2015a) considered numerically a bio-rheological fluid having shear-

dependent viscosity in a curved channel with peristalsis. Javid et al. (2016) investigated 

the peristaltic flow through a curved channel for viscoelastic and curvature effects 

simultaneously. Tanveer et al. (2017) discussed shear-thickening and shear-thinning 

effects through mixed convective peristaltic flow of Sisko fluid. Several recent studies 

relating peristaltic flow through curved channel are carried out by Hayat et al. (2011c, 

2011d), Ali et al. (2015a, 2016).  
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Chapter 2 

 

Numerical solution of hydromagnetic peristaltic flow 

in a porous-saturated heated channel  
 

 

In this chapter, we analyze the hydromagnetic flow in sinusoidally heated porous channel 

by utilizing Darcy-Forchiemmer law with joule heating effect. The Darcy’s resistance term 

in the momentum equation is acquired by using modified Darcy’s law. The governing 

equations for flow velocity, temperature and mass concentration are developed under 

lubrication approximation, commonly known as long wavelength assumption in the realm 

of peristaltic flows. A well-tested implicit finite difference scheme is employed to solve 

the set of these equations along with appropriate boundary conditions. The governing 

equations involve important parameters namely, Forchiemmer parameter, dimensionless 

radius of curvature, permeability parameter, Hartmann number, Brinkmann number, 

Schmidt number and Soret number. The effect of these important parameters on velocity, 

temperature and mass concentration is illustrated through graphs. The pressure-flow rate 

relationship and streamlines are also shown. The presence of porous matrix inside the 

channel impedes the flow velocity and reduces the peristaltic transport and mingling. 

Moreover, temperature of the fluid rises with decreasing permeability of porous-matrix and 

Hartmann number.  
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2.1 Mathematical formulation  
 

Consider a curved channel of width 2w looped in a circle having center O and radius .R  A 

homogenous Newtonian fluid flows inside the porous-saturated channel due to the 

sinusoidal deformation of the channel walls. The flow is also subjected to an applied 

magnetic field in the radial direction. Let c be the speed of the waves propagating along 

the channel walls while a and b denote the amplitudes of the upper and lower walls of the 

channel, respectively. Both the walls of passage are conserved at persistent temperature 0T  

and 1T , respectively. Similarly, 0C and 1C  specify the mass concentration at upper and 

lower walls, respectively. The flow can be well described in a curvilinear coordinate system 

( , ,R Z ), in which R is oriented along radial direction,   is along the flow direction and 

Z is perpendicular to the plane spanned by R and .  The geometry and coordinate system 

are illustrated in Fig. 2.1.  

 

 

Fig. 2.1: Physical sketch of peristaltic flow scheme. 
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The shape of both walls is described mathematically as 
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               (2.2)  

It is intended to determine the flow, temperature and concentration fields. Due to complex 

nature of transport process in porous medium, the present work is based on simplified 

mathematical model with the following assumptions: 

(1) The medium is homogenous and solid material does not chemically interact with the 

permeating fluid. 

(2) The medium is isotropic. 

(3) The fluid is assumed as a continuum. 

(4) The fluid is single phase and obeys classical Newtonian constitutive equation. The 

density of fluid is constant i.e., fluid is incompressible.  

(5) No heat source or sink exist in the channel. Moreover, thermal radiation effects are 

negligible.  

(6) The solid matrix is in a local thermal equilibrium with the fluid.  

(7) The walls of the channel are non-compliant.  

(8) Flow is laminar with negligible gravitational effects.  

(9) Effects of induced magnetic field are negligible. 

(10) Joule heating and Soret effects are taken into account. 
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In view of above assumptions the equations governing the flow, heat and mass transfer are 

given by 

= 0, U                                      (Continuity Equation)  (2.3) 

* *
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dt k k
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        (Mass Concentration Equation)    (2.6) 

where U  is the velocity,  is the Cauchy stress tensor, T is the temperature, CE is a 

dimensionless form-drag constant, C is the mass concentration and   is the dissipation 

function. The form of the radial magnetic field B is given by 

*

.
B R

R R




 
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 

B Re       (2.7) 

In Eq. (2.7), Re  is the unit vector in the radial direction. The Cauchy stress tensor in Eq. 

(2.4) is given by 

,p    1I Aτ       (2.8) 

where 1A  is defined as 

  ,


   
1

A V V       (2.9) 

where   denote the transpose. Using Eq. (2.7), the term J B in Eq. (2.4) is given by 

(Kalantari et al. 2013) 
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where Xe  is the azimuthal direction unit vector. 

Assuming        1 2, , , , , , 0 , , , , , , ,U R t U R t T T R t C C R t       U  (2.11) 

Eqs. (2.3) - (2.6) yield
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T

The above equations are derived from the generalized equations given through Eqs. 

(1.21) - (1.26) in chapter 1. The scale factors 1 2,b b  and 3b  are such that: 
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 1 2 31, , 1.b b R R R b     

The boundary conditions associated with Eqs. (2.12) - (2.16) are (Ali 2010b)  

1
2 1 0 0 10, , , at = ( , ),  

H
U U T T C C R H t

t



   


     (2.17) 

2
2 1 1 1 20, , ,  at ( , ).

H
U U T T C C R H t

t



    


    (2.18) 

We use following transformations to shift from static   ,R   to moving frame  ,r x :                  

  1 2 2, , , , , .1x c t r R p P u U u U c T T                        (2.19) 

After making use of above transformations, the governing equations are obtained in the 

wave frame. These equations after defining the dimensionless variables  

2 2
*1 2

1 2* * *

1 1
0*

0 1 0 1

2 2
, , , , , ,

2
, , , , ,

a
K

k

R

a

u ur a
x x u u p p

a c c c

T T C C a CE ca
F

T T C C


 


  

 
  

 





    

 
   

 

  (2.20) 

and invoking long wavelength ( 0  ) reduces to 
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In above equations 0, , R e, F   and 
*K  represent the wave number, the dimensionless 

radius of curvature, the Reynolds number, Forchiemmer parameter and dimensionless 

permeability parameter, respectively. The stream function   and velocity components 1u  

and 2u  are related through the expressions  

1 2, .u u
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Solution of Eqs. (2.21) and (2.22) yield 
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The boundary conditions (2.17) and (2.18) transform to  

1, 1, 0, 0, at 1 sin ,
2

q
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
    




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2, 1, 1, 1, at 1 sin ,
2

q
h x


    




       


   (2.28) 

where a
w   and b

w   are the amplitude ratios. In summary, we have to solve Eqs. 

(2.23), (2.24) and (2.26) subject to boundary conditions (2.27) and (2.28). The physical 

quantities of interest are given by (Chu 1996)  
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2

0

,
dp

p dx
dx



      (Pressure rise per wavelength)            (2.30) 
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 
  

 (Sherwood number)   (2.32) 

Now, in order to solve Eqs. (2.23), (2.24) and (2.26) subject to boundary conditions given 

by Eqs. (2.27) and (2.28), an implicit finite difference technique is employed for the 

solution.  

 

2.2 Method of solution 
 

In this procedure the nonlinear BVP is transformed into linear form at the ( 1)thm   

reiteration step. Following reiteration process is adopted for the above specific problem: 
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where the index (m) shows the iterative step.  

In the next step, we insert finite difference approximations of 
 1m




, 
 1m




, 
 1m




 and 

their derivatives into Eqs. 2.33-2.35. In this way, we get a system of linear algebraic 

equations at each iterative step. These algebraic equations are solved at each cross-section 

to get numerical results of 
 1m




, 
 1m




 and 
 1m




. It is important to note that, suitable 

initial guesses are required for 
 m

 , 
 m

  and 
 m

  at every cross-section to start the 

reiteration way. For present computation, linear initial guesses (only satisfying the 

Dirichlet boundary conditions) are used. The iterative procedure at each cross-section is 

carried out until a convergent solution is reached. The convergent solution is obtained 

rapidly by sequential under-relaxation scheme. In this scheme the values of 
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where    is under relaxation parameter usually assumed small. In present computation the 

iterative procedure is terminated after achieving the values of ,   and   convergent to 

810 .   

 

2.3 Algorithm validation 
 

Before embarking on the physical interpretation of the obtained results it is better to 

validate our results by comparing them with the existing results in the literature. To this 

end, we have prepared Figs. 2.2 and 2.3. Fig. 2.2 presents a comparison of velocity profile 

2 ( )u  computed using present numerical scheme for * , 0, 2, 0.4,K Ha     

0, 1x    (solid line) with the velocity profile given in Fig. 2.3 of reference (Ali et al. 

2010a) corresponding to 2, 0.4, 0, 1k x      (superimposed dots). Clearly, both 

curves coincide showing an excellent agreement between our results with the existing ones. 

Fig. 2.3 shows a comparison of temperature profile ( )   based on our numerical scheme 

for 0.4, 0, 2x     and 1,   (solid line) with the temperature profile in Fig. 4 of 

reference (Ali et al. 2010b) corresponding to 1, 0.4, 0, 2,x k      (superimposed 

dots). Again, an excellent correlation is achieved which clearly testifies validity of our 

numerical results.  
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2.4 Computational results and their interpretation 
 

In this section, we interpret the graphical results provided in Figs. 2.4 - 2.28 to analyze 

flow and pumping characteristics, temperature distribution, mass concentration and 

trapping problem for various values of parameters like curvature parameter ( ) , 

Forchiemmer parameter  0F , Brinkman number ( )Br  and permeability parameter *( )K . 

The variation of friction forces and heat and mass transfer coefficients at both upper and 

lower walls is also shown.  

The axial velocity distribution for some specific values of Forchiemmer parameter  0F , 

permeability parameter *( )K , Hartmann number (Ha) and curvature parameter ( ) , is 

shown in Figs. 2.4 - 2.7, respectively. Fig. 2.4 shows that axial velocity is suppressed with 

increasing Forchiemmer parameter. The velocity profile becomes asymmetric with 

maximum appearing below the curve 0.   The Forchiemmer parameter  0F  is the ratio 

of solid-liquid interaction of viscous resistance. Larger values of 0F  correspond to the 

situation when viscous resistance is smaller in comparison to resistance due to the solid 

obstacles. Therefore the suppression of velocity amplitude observed in Fig. 2.4 for larger 

values of 0F  is attributed to the increase in resistance due to the solid obstacles. Fig. 2.5 

shows the effects of permeability parameter *( )K  on velocity ( 2 ( )u  ). Smaller values of 

*K  correspond to weaker porous medium effects while larger values represent the case 

when resistance due to porous matrix is strong. It is noticed that increasing values of *K

impede flow velocity amplitude and shift the maximum velocity away from the lower wall 
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of the channel towards the central line ( 0  ). Fig. 2.6 demonstrates the effects Ha on the 

flow velocity. Here it is quite obvious that flow velocity shows boundary layer behavior 

for larger values of Ha. In fact for large values of Ha, the disturbance in flow velocity is 

restrained in thin layer near both upper and lower walls. It is further noted from Fig. 2.6 

that the axial velocity for moderate values of Hartmann number recaptures its symmetric 

profile. The boundary layer behavior revealed by the flow velocity is due to resistive nature 

of magnetic force. This resistance due to magnetic force suppresses the flow in the vicinity 

of the channel center. In order to maintain the prescribed mass flux, the velocity near the 

boundary walls will rise. The simultaneous occurrence of both these phenomena leads to 

the function of boundary layer at the channel walls. Fig. 2.7 depicts the effects of 

dimensionless radius of curvature (  ) on velocity distribution. For smaller values of   the 

velocity is asymmetric about 0   with maximum appearing in the lower half of the 

channel. The asymmetry in flow velocity is due to the pressure accelerated fluid layers near 

lower wall of channel due to curvature. With increasing ,  the velocity regains its 

symmetry about 0.   This is expected because for large values of   channel becomes 

straight. 

Figs 2.8 - 2.11 demonstrate the effect of different parameters on pressure rise per 

wavelength. Fig 2.8 depicts the effects of Forchiemmer parameter on p . No peristaltic 

pumping region can be identified from this figure. The maximum pressure rise (i.e., p  

corresponding to 0  ) is zero against which peristalsis has to work. This clearly indicate 

that for suitable choice of involved parameters the resistance offered by pressure gradient 

to peristaltic flow can be avoided. The profile of pressure rise per wavelength for *K  
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(permeability parameter) is shown in Fig. 2.9. Here, it is noted that in peristaltic pumping 

region ( 0, 0)p    p  increases with decreasing *K for a fixed value of prescribed 

flow rate. Thus, in the present settings the porous medium inside the channel hampers the 

normal flow of the fluid and peristalsis has to do greater work against p  to maintain the 

same flux as in the case of clear medium inside the channel. This eventually reduces the 

pumping efficiency. Figs. 2.10 and 2.11 demonstrate effect of p  on flow rate   for 

different values of Ha and  , respectively. In pumping region  p  rises, by mounting Ha. 

It is observed that as Hartmann number increases, the value of pressure rise per wavelength 

decreases. Fig. 2.11 shows that below a particular critical value of ,  p  decreases as we 

shift from curved to straight channel in pumping region. An opposite trend is noticed above 

this particular value. This opposite trend is also observed in free pumping and co-pumping 

regions.  

The friction forces at upper and lower walls denoted by uF  and lF , respectively for various 

values of Forchiemmer parameter  0F , permeability parameter  *K  and Hartman number 

(Ha) are shown in Figs. 2.12 - 2.14. It is observed that the behavior of friction forces is 

opposite to that of pressure rise. Moreover, they resist the flow in the pumping region and 

magnitude of resistance increases with increasing permeability parameter and Hartmann 

number. However, the resistance due to friction forces in pumping region decreases with 

increasing Forchiemmer parameter. Further, resistance at lower wall is greater than at 

upper wall. 

The radial distribution of temperature of the fluid present in the channel for different values 

of Brinkmann number (Br), permeability parameter  *K , Hartman number (Ha) and 
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Forchiemmer parameter  0F  is shown in Figs. 2.15 - 2.18. Here it is noted that the effect 

of Br, *K  and Ha is to increase the fluid temperature inside the channel while the effect of 

0F  is quite opposite. It is observed that an increase in Forchiemmer parameter impedes the 

fluid motion only in the vicinity of the channel while remaining cross-section is unaffected 

with change in 0F . Due to this reason the heat transfer rate from boundaries to the fluid is 

reduced and the fluid temperature is decreased inside the channel with increasing 

Forchiemmer parameter.  

The variations of z at both walls for various values of 0F , Ha and Br are shown through 

Fig. 2.19. The profiles of z are clearly oscillating (periodic) due to periodic oscillating 

nature of the boundary walls. The amplitude of oscillation increases with increasing 0F , 

Ha and Br.  

The profiles of mass concentration inside the channel with several values of 
*, ,B r K Ha  and 

0F  are shown in Figs. 2.20 - 2.23. It is observed that the behavior of mass concentration is 

similar to behavior of temperature i.e. mass concentration inside the channel increases with 

increasing 
*,Br K  and Ha while its magnitude reduces with increasing 0F . The effects of 

Forchiemmer parameter 0( )F , Hartmann number (Ha) and Brinkmann number (Br) on 

Sherwood number at both walls are shown through Fig. 2.24. It is observed that Sherwood 

number also exhibits oscillatory behavior and its amplitude at both walls increases with 

increasing 0F  and Br. In contrast, the amplitude at lower wall (upper wall) decreases 

(increasing) with large values of Ha. 
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The streamline of flow inside the channel for different values of 0F  (Forchiemmer 

parameter), *K (permeability parameter), Ha (Hartman number) and   (curvature 

parameter) are shown in Figs. 2.25 - 2.28. These plots demonstrate trapping phenomenon 

in which a quantity of the fluid called bolus is trapped within closed streamlines. It is 

observed through Fig. 2.25 that bolus is not significantly affected with an increase in 

Forchiemmer parameter. However, the bolus gets shrinked and center of circulation shift 

from lower to upper half with increasing *K as shown in Fig. 2.26. Figure 2.27 shows the 

effects of Hartmann number on streamlines. Here it is noted that mingling bolus concerted 

in upper part of channel for Ha = 0.5 transforms to the bolus whose center of rotation lies 

in the lower half of the channel with increasing Ha to 3.5. In the process of transformation 

the size of the bolus is also reduced. Fig. 2.28 shows that the bolus is asymmetric and 

concerted in upper part of channel for smaller values of   i.e. in a curved channel. 

However, it regains its symmetry when    i.e. when channel becomes straight. 
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Fig. 2.2: Comparison of present results for 

velocity (solid line) with the results for 

velocity reported in ref. (Ali et al. 2010) 

(superimposed line). 

Fig. 2.3: Comparison of present results 

for temperature (solid line) with the 

results for temperature reported in ref. 

(Ali et al. 2010) (superimposed line). 

 

  

Fig. 2.4: Influence of 0F  on velocity 2 ( )u   

for   =1.5, *K =2, Ha = 0.5, 0.4   and 

1.2.  

Fig. 2.5: Influence of *K  on velocity 

2 ( )u   for   = 1.5, 0F  =2, Ha = 0.5, 

0.4,  and 1.2.  
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Fig. 2.6: Effect of Ha on velocity 2 ( )u   

for   = 1.5, 0F =2, *K  = 0.2, 0.4,  and 

1.2.  

Fig. 2.7: Effect of  on velocity 2 ( )u   

for *K  = 0.2, 0F =2, Ha = 0.2, 0.4, 

and 1.2.  

 

  

Fig. 2.8: Effects of 0F  on pressure rise per 

wavelength for  =2, *K  = 2, Ha = 0.5 

and 0.4.   

Fig. 2.9: Effect of *K  on pressure rise 

per wavelength for  =2, 0F  = 2, Ha = 

0.5 and 0.4.   
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Fig. 2.10: Effect of Ha on pressure rise per 

wavelength  for  =2, *K  = 2, 0F  = 2 and 

0.4.   

Fig. 2.11: Effect of   on pressure rise 

per wavelength  for Ha = 0.2, *K  = 0.5, 

 =2 and 0.4.   

 

 

 

Fig. 2.12: Friction forces at upper and 

lower walls for 0F  using Ha = 0.2,  =2 

and 0.4.   

Fig. 2.13: Friction forces at upper and 

lower walls for *K  using 0F  = 2,  =2 

and 0.4.   
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Fig. 2.14: Friction forces at upper and 

lower walls for Ha using 0F  = 2,  =2 and 

0.4.   

Fig. 2.15: Effect of temperature ( )   for 

Br using 0F  = 2, 0.4,   = 2 and 

1.2.  

 

  

Fig. 2.16: Effect of *K  on temperature 

( )   for 0F  = 2, Br = 2, 0.4,   = 2 

and 1.2.  

Fig. 2.17: Effect of Ha  on temperature 

( )   for 0F  = 2, Br = 2, 0.4,    = 2 

and 1.2.  
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Fig. 2.18: Effect of 0F  on temperature ( )   for Br = 2, 0.4,    = 2 and 

1.2.  

 

 

 

 

 

Fig. 2.19: Variation of z at upper (a) and lower (b) walls for different parameters with 

1.2  0.4   and 2.   
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Fig. 2.20: Effect of Br on concentration 

( )   for Ha = 1, Sr = 0.5, Sc = 0.2, 

0.4   and 2.   

Fig. 2.21: Effect of *K  on concentration 

( )   for Br =2, Sr = 0.5, Sc = 0, 0.4   

and 2.   

 

 

  

Fig. 2.22: Effect of Ha on concentration 

( )   for Br = 2, Sr = 0.5, Sc = 0.2, *K

=0.5, 0.4   and 2.   

Fig. 2.23: Effect of 0F  on concentration 

( )   for Br = 2, *K =0.5, Sr = 1.5, Sc = 

1.2, 0.4   and 2.   
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Fig. 2.24: Variation of Sherwood number Sh at upper (a) and lower (b) walls for 

different parameters with 1.5,   0.4   and 2.   

 

 

 

 

 

 

Fig. 2.25: Flow patterns for (a) 0 1,F   (b) 0 5,F   and (c) 0 10,F   with 2   

* 2K   and 0.8.   
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Fig. 2.26: Flow patterns for (a) * 0.1,K   (b) 
* 0.5K   and (c) * 1,K   using 2   

and 0.8.   

 

 

 

 

   

Fig. 2.27: Flow patterns for (a) Ha = 0.5, (b) Ha = 2.5 and (c) Ha =3.5, with 0F  = 1.5, 

2  ,  and 0.8.   
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Fig. 2.28: Flow patterns for (a) 3   and (b) ,   with 0F  = 1.5, Ha = 0.5, 

* 0.5K   and 0.8.   
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Chapter 3 

 

Mixed convective hydromagnetic peristaltic flow 

in a curved channel with Joule heating effect 
 
In this chapter, we investigate the flow, heat and mass transfer characteristics in peristaltic 

motion through a curved channel in the presence of mixed convection. The coupling 

between momentum and energy equation is attained using Boussinesq approximation. The 

equations describing the flow and heat/ mass transfer are developed using curvilinear 

coordinates. A reduction of these equations is made based on delta approximation. The 

reduced linear ordinary differential equations are integrated numerically using an implicit 

finite difference scheme. The effects of thermal and concentration Grashof numbers, 

Hartmann number, Brinkmann number and curvature parameter on longitudinal velocity, 

pressure rise, temperature and mass concentration are analyzed in detail. The flow patterns 

in the channel illustrating the effects of Grashof numbers, Brinkmann number and 

Hartmann number are also displayed.  

 

3.1 Mathematical Modeling 
 

The geometric scheme for this problem is similar as described in chapter 2 section 2.1. 

Similarly the fluid mentioned here is also same as described in previous chapter. However, 

due to consideration of buoyancy force (arising due to gravity, as shown in Fig 3.1) the 

momentum equations is modified as given below 
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0 0. ( ) ( )T C

d
T T C C

dt
          

U
g g J B,    (3.1) 

where 
T  and 

C  thermal and concentration expansion coefficients, respectively. The 

continuity, energy and concentration equations are same as given by Eqs. (2.3), (2.5) and 

(2.6), respectively. For two-dimensional velocity field given by Eq. (2.9), Eq. (3.1) yields: 
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Fig. 3.1 Physical sketch of the problem 
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The boundary conditions associated with Eqs. (3.2) and (3.3) are (2.17) and (2.18). After 

using transformations given in Eq. (2.19), the governing equations in the wave frame 

become: 

   
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The following dimensionless variables are defined to reduce the above equations in 

normalized form: 
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Using the dimensionless variables given by Eq. (3.6) and stream function given by Eq. 

(2.25) and employing delta approximation. Eqs. (3.4) and (3.5) will contract to 

0,
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Elimination of pressure between Eqs. (3.7) and (3.8) yield  
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    (3.9) 

In summary, we have to solve Eqs. (2.23), (2.24) and (3.9) subject to boundary conditions 

(2.27) and (2.28). Now, in order to solve Eqs. (2.23), (2.24) and (3.9), one has to rely on 

suitable numerical method. Although Eqs. (2.23), (2.24) and (3.9) are linear ordinary 

differential equation, yet its closed form solution is difficult to obtain. Therefore, an 

implicit finite difference technique is employed for the solution, for which detail is already 

provided in chapter 2. Once the solution is known, the quantities of interest such as pressure 

rise, heat and mass transfer coefficients can be readily obtained through the formulas given 

in preceding chapter. 

 

3.2 Computational results and interpretation 
 

The computations carried out using the aforementioned method are displayed in terms of 

velocity profiles, pressure rise per wavelength profiles, temperature and concentration 

profiles, streamlines contours and heat transfer coefficient.  

The axial velocity for some specific values of thermal Grashof number ( TGr ), 

concentration Grashof number ( CGr ), Hartmann number (Ha) and curvature parameter ( )  

are shown in Figs. 3.2 - 3.5, respectively. Fig. 3.2 shows an increase in the amplitude of 

the axial velocity with increasing thermal Grashof number. Thermal Grashof number is a 

parameter based on relative magnitudes of buoyancy and viscous forces. Larger values of 
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Grashof number correspond to the situation in which buoyancy effects are dominant over 

the viscous effects. Now due to curvature in channel, it is naturally anticipated that flow 

velocity will be asymmetric for smaller values of thermal Grashof number i.e. for weaker 

buoyancy effects. Fig. 3.2 confirms the anticipated asymmetric profile for 0TGr   with 

maximum lying below 0.   This observation is quite interesting and it may finds 

application in scenarios where it is desired to minimize the effects of curvature without 

changing the geometry of the channel. This observation also highlights the role of thermal 

field in tunning the transport process without altering the geometrical and rheological 

parameters of the model. The role of rheological features of the fluid in tunning the 

transport is already highlighted by Javid et al. (2016). Fig. 3.3 presents the axial velocity 

profile for several values of concentration Grashof number .CGr  Concentration Grashof 

number is a parameter based on relative magnitudes of buoyancy force due to concentration 

gradients and viscous force. Larger values of .CGr  correspond to situation in which 

buoyancy force due to concentration gradients is large. Contrary to Fig. 3.2, Fig. 3.3 shows 

that rise in concentration Grashof number shifts the maxima in velocity profile toward 

lower wall of the channel. In this way, a rise in the concentration Grashof number 

intensifies the effect of curvature. The effects of Hartmann number on axial velocity are 

displayed in Fig. 3.4. Hartmann number is a parameter number based on relative 

magnitudes of magnetic force and viscous force. Larger values of Hartmann number 

correspond to the situation in which magnetic force dominates the viscous force. It is 

noticed that a rise in the Hartmann number suppresses the velocity in the upper part of the 

channel. The suppression is due to the fact that Lorentz force in presence of magnetic field 
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acts as a resistance to the flow as a result of peristalsis. However, suppression in axial 

velocity amplitude is not observed over the entire cross-section. Fig. 3.5 displays the effect 

of dimensionless radius of curvature parameter   on axial velocity. This figure clearly 

demonstrates asymmetry in axial velocity for decreasing values of  . 

Figs 3.6 - 3.9 demonstrate the effect of different parameters on pressure rise per 

wavelength. Fig. 3.6 depicts the effect of thermal Grashof number TGr  on p . It is noticed 

that p  rises with increasing TGr  in all three regions. Fig. 3.7 shows the effect of 

concentration Grashof number CGr  on p . A reverse trend is noted here i.e. pressure rise 

per wavelength decreases with increasing CGr  in all three regions. Fig. 3.8 demonstrates 

the effect of Ha on p . In pumping region  0, 0 ,p     p  increases with increasing 

Ha, while opposite results are obtained for free ( p  = 0) and co-pumping region 

( 0, 0).p     Here p  decreases by rising Ha. Fig. 3.9 depicts the effect of non-

dimensional radius of curvature on p . It is examined that p  rises with rising   in all 

three regions. Both figures clearly highlight the significant effects of buoyancy force, 

magnetic force and curvature on p . In fact, the resistance offered by pressure gradient to 

peristaltic flow can be minimized by suitable choice of the involved parameters.  

The profiles of temperature field for different values of thermal Grashof number ( )TGr , 

Brinkman number (Br) and Hartmann number (Ha) are shown through Figs. 3.10 - 3.12. It 

is noted that ( )   increases over the entire cross-section with increasing each of TGr , Br  

and Ha. The increase in ( )   with increasing TGr  and Ha is due to retarding effect of 

these parameters on velocity. Brinkmann number is a parameter which is the ratio of 
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viscous heat to the heat transported by conduction. Larger values of Brinkmann correspond 

to the scenario when heat generated due to viscous dissipation is dominant. In such 

situation, increase in fluid temperature inside the channel is obviously justified.  

The variations of z at upper wall for several values of ,TGr Br  and Ha are presented 

through Figs. 3.13 - 3.15. The profiles of z are clearly oscillating due to periodic oscillating 

nature of the channel walls. The amplitude of oscillations is found to increase with 

increasing ,TGr Br  and Ha. 

The effects of TGr  (thermal Grashof number), Br  (Brinkman number), Ha (Hartmann 

number) and 
CGr  (concentration Grashof number) on mass transfer are demonstrated 

through Figs. 3.16 - 3.19. It is observed that ( )   decreases with increasing TGr , Br and 

Ha. In contrast, ( )   rises with mounting 
CGr . 

The streamlines of flow for different values of Br (Brinkman number), TGr  (Grashof 

number) and Ha (Hartmann number) are shown in Figs. 3.20 - 3.22. The objective is to 

investigate the trapping phenomenon. Fig. 3.20 shows the effect of Br on streamlines. For 

Br = 0.1, two circulating rolls exist in the channel. The lower roll increases in size while 

the upper one reduces with increasing Br. The two circulating cells in the lower roll also 

merge into a single cell with increasing Br. The effects of TGr  on streamlines are shown 

through Fig. 3.21. This figure shows a complex streamlines pattern with multiple 

circulating cells for 0.1.TG r   All these cells merge into a single circulating roll with 

increasing TGr . Fig. 3.22 depicts the effects of Hartmann number on streamlines. For Ha 

= 0.6, two circulating rolls can be identified in the flow field. The upper one in the 
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neighborhood of the upper wall is smaller in size than the lower one. The inner most 

circulating cells in the lower roll splits into circulating cells with increasing Hartmann 

number.  
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Fig. 3.2: Effect of TGr  on velocity  2u   

for  = 2, Ha = 0.5, 0.4,  CGr  = 2 and 

𝛩 = 1.5. 

 

 

 

Fig. 3.3: Effect of 
CGr  on velocity  2u   

for   = 2, Ha = 0.5, 0.4,   and 𝛩 = 

1.5. 

 

  

Fig. 3.4: Influence of Ha on  2u   for   

= 2, TGr  = 0.2, 0.4,   = 2 and 1.5.  

Fig. 3.5: Influence of   on  2u   for TGr  

= 0.2, Ha = 0.5, 0.4,   and 1.5.  
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Fig. 3.6: Effect of TGr  on p  for   = 2, 

Ha = 0.5, 0.4,  CGr  = 2 and 1.5.  

 

 

 

Fig. 3.7: Effect of CGr  on p  for    = 2, 

Ha = 0.5, 0.4,  TGr  = 0.2 and 1.5.  

 

 

 

. 

 

 

Fig. 3.8: Effect of Ha on p  for   = 2, 

TGr  = 0.2, 0.4,  CGr  = 2 and 1.5.  

 

Fig. 3.9: Effect of   on p  for TGr  = 0.2, 

Ha = 0.5, 0.4,  CGr  = 2 and 1.5.  
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Fig. 3.10: Effect of TGr  on temperature 

( )   for   = 2, Ha = 0.5, 0.4,  Br = 2 

and 1.5.  

Fig. 3.11: Effect of Br on temperature ( )   

for   = 2, Ha = 0.5, 0.4,  TGr  = 0.2 

and 1.5.  

 

 

 

  

Fig. 3.12: Effect of Ha on temperature ( )   

for   = 2, TGr  = 0.2, 0.4,  Br = 2 and 

1.5.  

Fig. 3.13: Effect of TGr  on heat transfer 

coefficient z for   = 2, Ha = 0.5, 

0.4,  Br = 0.5 and 1.5.  
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Fig. 3.14: Effect of Br on heat transfer 

coefficient z for   = 2, Ha = 0.5, 0.4, 

TGr  = 0.2 and 1.5.  

. 

Fig. 3.15: Effect of Ha on heat transfer 

coefficient z for   = 2, Br = 0.5, 0.4, 

TGr  = 0.2 and 1.5.  

 

 

 

 

 

Fig. 3.16: Effect of TGr  on concentration 

( )   for   = 2, Br = 0.5, 0.4,  Sr = 

1.5, Sc = 1.2 and   = 1.5. 

Fig. 3.17: Effect of Br on concentration 

( )   for   = 2, TGr  = 0.2, 0.4,  Sr = 

1.5, Sc = 1.2 and   = 1.5. 
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Fig. 3.18: Effect of Ha on ( )   for   = 2, 

TGr  = 0.2, 0.4,  Sr = 1.5, Sc = 1.2 and 

  = 1.5. 

Fig. 3.19: Effect of CGr  on ( )   for   

= 2, TGr  = 0.2, 0.4,  Sr = 1.5, Sc = 1.2 

and   = 1.5. 

 

 

 

 

 

   

Fig 3.20: Flow patterns for (a) Br = 0.1 (b) Br = 0.2 (c) Br = 0.3. The other parameters 

chosen are   = 2, Ha = 0.5, 0.4,  TGr  = 0.2 and 1.5.  
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Fig 3.21: Flow patterns for (a) TGr = 0.1 (b) TGr = 0.2 (c) TGr = 0.3. The other 

parameters chosen are   = 2, Ha = 0.5, 0.4,  Br = 2 and 1.5.  

 

 

 

 

 

 

 

   

Fig 3.22: Flow patterns for (a) Ha = 0.6 (b) Ha = 1 (c) Ha = 1.4. The other parameters 

chosen are   = 2, TGr  = 0.2, 0.4,  Br = 2 and 1.5.  
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Chapter 4 

 

Heat and mass transfer effects on the peristaltic 

flow of Sisko fluid in a curved channel 
 

In the present chapter heat and mass transfer phenomena in flow of non-Newtonian Sisko 

fluid induced by peristaltic activity through a curved channel have been investigated 

numerically using FDM. The governing equations are formulated in terms of curvilinear 

coordinates with appropriate boundary conditions. The velocity field, pressure rise per 

wavelength, stream function, concentration and temperature fields have been analyzed for 

the effects of curvature parameter, viscosity parameter and power law index. Additionally, 

the computation for heat transfer coefficient and Sherwood number carried out for selected 

thermo-physical parameters.  

 

4.1 Mathematical formulation  

 

An incompressible Sisko fluid is assumed inside the channel. The momentum and energy 

equations are given by  

. ,
d

dt
  

U
                   (4.1) 

2
+ .p

d T
c k T

dt
                    (4.2) 
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Eq. (4.2) can be also retrieved from Eq. (2.5) by setting Joule heating term equal to zero. 

The continuity equation remain same as used in previous chapters. Similarly, the 

concentration equation is given by Eq. (2.6). The Cauchy stress tensor is given by 

,P I S =               (4.3) 

where I is the identity tensor, P is the pressure and S is the extra stress tensor which for 

Sisko fluid model (Wang et al. 2008) satisfies 

 
1

1 1 1

n
a b


    
 

S A                       (4.4) 

Here 1a , 1b  and n are the infinite shear-rate viscosity, the consistency index and the 

power-law index, respectively. Also   is given by 

1

2
: . 1 1A A        (4.5) 

Using Eq. (4.3) in Eq. (4.1) we get 

.
d

P
dt

   
U

S ∇.           (4.6) 

Assuming velocity field defined by Eq. (2.11), Eqs. (4.2) and (4.3) yield 

  
2

1 1 2 1 2
1

1

,

RR

R

U U RU U U P
U R R S

t R R R R R R R R R

SR
S

R R R R










    
     

       


 

  

 
 
 

 (4.7)
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 
  2

2 2 2 2 2 1
1 2

1

,

R

U U RU U U U R P
U R R S

t R R R R R R R RR R

R
S

R R






 



    
      

       




 

   
  
  

  (4.8) 

 
 

2 2
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1 2

1 2 1 2 2 1 2
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+

+ ,
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S S S

R R R R R R R R R R R R
 


 

  

     
  

       

    
    

         

     
             

   
   
   

 (4.9)  

The boundary conditions associated with Eqs. (4.7) - (4.9) are given Eqs. (2.17) and (2.18). 

After using transformations given by Eq. (2.19), the governing equations in the wave frame 

become 

   
  

2

2 21 1 1
1

1

,

rr

xx
rx

R u c u cu u u p
c u r R S

x r r R x r R r r R r

SR
S

r R x r R


     

      
       


 

  

 
 
          (4.10) 

   

 
  22 2 12 2 2

1 2

+ + 1
+ + = + r +

+

+ ,

rx

xx

R u c u c uu u u R p
c u R S

x r r R x r R r R x rr R

R
S

r R x


    

  
       



 

   
   

  
      (4.11) 

 

 
 

 

2
2

2 *

1 2

21 2 1 2 1 2

1
+ + =

+

+ .

p
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u
R u cT T T T R T

c c k r R
x r r R x r r r R xr R

u cu u u u u uR R R
S S S

r r r R x r R x r R r R r R x


          
        
              

       
       

           

 (4.12) 
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After using these dimensionless variables defined by Eq. (2.20) and stream function given 

by Eq. (2.25), applying long wavelength and low Reynolds approximations, Eqs (4.10) - 

(4.12) will contract to 

0,
p







                   (4.13) 

  21
0,

( )
x

p
S

x
 

   

 
   
  

       (4.14) 

 
2

2

1 1
1 0,

( )
xBrS 

   

  

   


 

       
        

       
      (4.15) 

where 

*1 1 1

1

1

, , ,
n

a a b
a

c a

c


  

  
 
 
 

S S                           (4.16) 

0,xxS                                                  (4.17) 

  
2

1*

2

1
1 ,

n

xS a

 

   

  
     

  

  
  

  
         (4.18) 

0,S               (4.19) 

2

2

1
1 .

 

   

 
    

  

 
 
 

                                (4.20) 

Inserting Eq. (4.18) into Eqs. (4.14) and (4.15), we get 
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2 1
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1 1
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 
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 
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

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   
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   




 
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       
       (4.22) 

Solving Eq. (4.13) and (4.21), we get 

     
2

2 1*

2

1 1
1 0.

( )

n
a

 
 

       

   
     

     

     
      

    
       (4.23) 

Now, we have to solve Eqs. (2.24), (4.22) and (4.23) subject of boundary conditions 

defined by Eqs. (2.27) and (2.28). The finite difference scheme employed for the solution 

in previous two chapters is also used here to simulate the above mentioned boundary value 

problem. 

 

4.2 Computational results and interpretation 
 

In this section, we interpret the computational results provided in Figs. 4.1 - 4.20 to analyze 

flow velocity, pressure rise over one wavelength, temperature distribution, mass 

concentration and streamlines for different values of the factors  , n, Br, Sr, Sc, and 𝑎∗.  

Figs. 4.1 and 4.2 present the redial distribution of the transverse velocity u2 for different 

values of 𝑎∗ and n. Fig. 4.1 shows for shear-thinning bio-fluids (n<1) an increase in 𝑎∗ 

accelerate the flow. The structure of axial velocity is also substantially affected with the 

increase in 𝑎∗. For smaller values of 𝑎∗ the flow velocity is asymmetric with maximum in 

it appearing above 0.   With increasing 𝑎∗ to 1.5 the velocity approximately regained its 
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symmetry. Larger values of 𝑎∗ represent the case when viscous effects are stronger than 

the power-law effects. In such situation, the curvature effects on 
2 ( )u  are not significant. 

However, as 𝑎∗ decreases in value, the effects of curvature become dominant. Fig. 4.2 

illustrates the axial velocity profile for three different values of power-law index (n). It is 

noticed that axial velocity rises with rising n. For n<1 (pesudoplastic/ shear- thinning bio-

fluids), the axial velocity exhibits a boundary layer type character. However, such 

characteristic of axial velocity vanishes for Newtonian (n = 0) and shear-thinning/ dilatant 

fluids. For such fluids, non-vanishing gradients in axial velocity occur in the whole flow 

span [0, h]. 

The pressure rise per wavelength against flow rate is plotted in Figs. 4.3 - 4.5 for different 

values of 𝑎∗, n and  . Three distinct cases can be identified from these figures namely 

peristaltic pumping case, free pumping case and augmented pumping case. It is noticed 

that for peristaltic pumping case, p  rises by rising 𝑎∗, n and   for a fixed value of .  

This is consistent with observations already made for the axial velocity in Figs. 4.1 and 

4.2. For the case when 0p   an increase in 𝑎∗ does not significantly affect the magnitude 

of the flow rate  . However, the magnitude of   corresponding to 0p   increases with 

increasing power-law index and channel curvature. In augmented pumping case, the flow 

due to peristalsis is assisted by the pressure gradient and the magnitude of assistance 

increase with increasing 𝑎∗and n. In contrast, the assistance provided by p  declines with 

increasing .   

The effects of 
*

a  and Br on the temperature inside the channel are graphically displayed 

in Figs. 4.6 and 4.7 for shear thinning bio-fluid (n<1). An enhancement in the temperature 
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inside the channel is observed with increase in 
*

a and Br. 

Figs 4.8 and 4.9 depict the effects of 
*

a  and Br on z at the upper wall. It is noticed through 

both figures that z (heat transfer coefficient) varies periodically along the channel. This is 

in fact a direct consequence of the periodic characteristic of the peristaltic wall. 

Furthermore, the amplitude of heat transfer coefficient enhances via increasing 
*

a  and Br. 

Figs 4.10 - 4.13 depict the conduct of the mass concentration ( )  for various values of 

*,a  Br, Sr and Sc, respectively. These figures show that ( )   enhancing with 

increasing𝑎∗, Br, Sr and Sc. 

The impact of several parameters such as 𝑎∗, Br, Sr, and Sc on the Sherwood number (Sh) 

at the upper wall is shown through Figs. 4.14 - 4.17. Similar to the heat transfer coefficient, 

Sherwood number also oscillates periodically. Further, the amplitude of oscillations in 

Sherwood number (Sh) enhance via increasing 
*

a , Br, Sr, and Sc. 

The particular flow patterns for three various values of viscosity parameter (
*

a ) are shown 

in Fig. 4.18. This figure shows that for 𝑎∗= 0.1 a mingling fluid bolus concerted in the 

upper half of channel. No significant change is observed by increasing 𝑎∗ from 0.1 to 2, 

except the appearance of tiny vortices near the lower part of channel. Fig. 4.19 exhibits the 

effect of n (power law index) on streamlines for 
*

a = 0.1. This figure shows that a 

concentrated fluid bolus is mingling in the lower part of the channel for n ≥ 0.9. It is also 

noticed that a tiny eddy is appeared in neighborhood of upper wall. Furthermore, it is 

examined that with further increase in value of n from 0.98 to 1 the fluid behavior is 

changing from shear thinning to Newtonian fluid. A further rise in the value of (power-law 

index) n does not effect on the circulating phenomena in the upper part of the channel. 
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However, a slight decrease in the size of eddy near the lower wall is noted. The influence 

of channel curvature on trapping phenomena is illustrated through Fig. 4.20. This figure 

shows that for 2   a concentrated bolus of mingling fluid is observed in neighborhood 

of upper wall. The bolus regain its symmetric shape as .   From the above discussion 

it is concluded that the role of   is to affect the bolus symmetry while the effect of n is to 

shift the center of circulation from lower part of channel to the upper one. 
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Fig. 4.1: Effect of *a  on velocity  2u 

for n = 0.7, 0.4,  and 1.5.  

Fig. 4.2: Effect of n on velocity  2u 

for 2  , 0.4,  and 1.5.  

 

 

 

 

  

Fig. 4.3: Effect of *a  on pressure rise per 

wavelength for n = 0.7, 0.4,  and

2  . 

Fig. 4.4: Effect of n on pressure rise per 

wavelength for *a = 0.1, 0.4,  and

2  . 
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Fig. 4.5: Effect of   on pressure rise per wavelength for n = 0.99, *a = 0.1, and 

0.4  . 

 

 

 

 

 

 

Fig. 4.6: Effect of *a on temperature ( )   

 for n = 0.95, Br = 0.5, 0.4  and 2  . 

Fig. 4.7: Effect of Br on temperature 

( )   for n = 0.95, *a = 0.1, 0.4  and 

2  . 
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Fig. 4.8: Influence of *a  on z at upper 

wall for n = 0.98, Br = 0.5 and 2  . 

 

Fig. 4.9: Influence of Br on z at upper 

wall for *a = 0.1, n = 0.98 and 2  . 

 

 

 

 

  

Fig. 4.10: Influence of *a  on ( )   for n 

= 0.9, Br = 2, Sr = 1, Sc = 1, 0.4  and

2.   

Fig. 4.11: Influence of Br on ( )   for 

n = 0.9, Sr = 1, Sc = 1, 0.4,  and 

2.   
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Fig. 4.12: Influence of Sr on ( )   for n 

= 0.9, *a = 0.1, Br = 2, 0.4   and 2.   

 

 

 

 

Fig. 4.13: Influence of Sc on ( )   for n 

= 0.9, *a = 0.1, Sr = 1, Br = 2 and 2.   

  

Fig. 4.14: Effect of *a  on Sherwood 

number Sh at upper wall for n = 0.9,  

Br = 2, Sr = 1, Sc = 1, 0.4,  and 2.   

Fig. 4.15: Effect of Br on Sherwood 

number Sh at upper wall for n = 0.98,  

Sr = 1, Sc = 1, 0.4,  and 2.   
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Fig. 4.16: Effect of Soret number Sr on 

Sherwood number Sh at upper wall for n 

= 0.98, Sc = 1, 0.4,  and 2.   

Fig. 4.17: Effect of Schmidt number Sc 

on Sherwood number Sh at upper wall 

for n = 0.98, Sr = 1, 0.4,  and 2.   

 

 

 

 

 

   

Fig. 4.18: Flow patterns for (a) *a = 0.1, (b) *a = 0.98, and (c) *a = 2, for n = 0.98, 

using 0.4    and 2.   
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Fig. 4.19: Flow patterns for (a) n = 0.9, (b) n = 1, and (c) n = 1.05, for 2  , using 

*a = 0.1 and 0.4  . 

 

 

 

 

 

 

 

  

Fig. 4.20: Flow patterns for (a) 2  , and (b)   → ∞, for n = 0.98, using *a = 0.1, 

and 0.4.   
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Chapter 5 

 

Numerical modeling of non-isothermal hydromagnetic 

peristaltic flow of a bio-fluid in a curved channel 
 

In this chapter we investigate numerically the theoretical aspects of heat and mass transfer 

in peristaltic transport of Carreau fluid through a curved channel. The computations for 

axial velocity, pressure rise, temperature field, mass concentration and stream function are 

carried out under delta approximation by utilizing appropriate numerical implicit finite 

difference technique. The implementation of numerical procedure and graphical 

representation of the computations are accomplished using MATLAB language. The 

impacts of rheological parameters of Carreau fluid, Brinkmann number curvature 

parameter and Hartmann number are shown and discussed briefly.  

 

5.1 Mathematical formulation 
 

It is assumed that Carreau fluid occupied the space inside the magnetically influenced 

curved channel. The shape of both walls is described mathematically given by Eqs. (2.1) 

and (2.2). The momentum and energy equations are given by 

. ,
d

P
dt

     
U

S J B            (5.1) 

2 + .p

d T
c k T

dt
          (5.2) 
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The continuity and concentration equations are given by Eqs. (2.3) and (2.6), respectively. 

For Carreau fluid model extra stress tensor S  in Eq. (5.1) is given by (Ali et al. 2015a) 
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where 0  is the zero shear-rate viscosity,   is the infinite-shear-rate viscosity, n is the 

index of power-law,   is the time constant and   is determined by Eq. (4.5). The 

magnetic field B  in radial direction is given by Eq. (2.7) and the term J B  is given by 

Eq. (2.10). After using velocity field given in Eq. (2.11), Eqs. (5.1) and (5.2) will become 
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  (5.6) 

Now employing the transformations given by Eq. (2.19) and using dimensionless 

variables defined by Eq. (2.20) we get  
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In components form, Eq. (5.3) gives 
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After using stream function defined by Eq. (2.25) and low Reynolds and long wavelength 

number approximations, the Eqs. (5.7) - (5.10) are reduced to 
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Inserting Eq. (5.15) into Eqs. (5.13) and (5.14) we get 
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Solving Eq. (5.12) and (5.16) we get 
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The dimensionless concentration equation for problem under consideration is given by Eq. 

(2.24). The boundary conditions associated with Eqs. (2.24), (5.17) and (5.18) are defined 

through Eqs. (2.27) and (2.28). The boundary value problems comprising of above 

mentioned equations and boundary conditions are simulated using the finite difference 

technique which is already elaborated in previous chapters.  

 

5.2 Computational results and interpretation 
 

In this section, we interpret the numerical results to highlight some significant 

characteristics of the peristaltic motion for example flow velocity, pumping characteristics, 

temperature distribution, mass concentration and trapping for different values of the factors 

like Ha, ,  n, Br, Sr and We through Figs. 5.1 - 5.21. 

 

5.2.1. Flow velocity 
 

The axial velocity distribution for power-law index (n) and Hartmann number (Ha) is 

shown in Figs. 5.1 and 5.2, respectively. Fig. 5.1 shows that axial velocity rises with rising 

n. For n = 0.01 the velocity profile is asymmetric with maximum appearing above the curve 

0.   However, for n = 0.55 the velocity profile approximately regain its symmetry. A 

further rise in n exhibit asymmetric velocity profile with maxima lying below 0.   With 

the change in behavior of fluid from shear-thinning to shear-thickening, substantial 

changes in velocity are observed. In fact during this transformation of fluid the original 

non-symmetric velocity profile with maxima appearing above 0   transform to 
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asymmetric form with maxima lying below 0  . During this transformation process the 

velocity also approximately regains its symmetric shape. The whole scenario also indicates 

that the role of power-law index is to counteract the effects of channel curvature. Fig. 5.2 

exhibits the effects Ha on 
2 ( )u  . Here it is observed that 

2 ( )u   shows boundary layer 

nature for increasing values of Ha. In fact for larger values of Ha, the disturbance in 
2 ( )u 

is restrained in skinny layer near both upper and lower walls. The fluid outside these 

boundary layers moves with linear velocity. This observation is in contrast to the 

previously reported results on peristaltic flows in straight channel (Wang 2008). In straight 

channel the fluid outside the boundary layers moves with constant velocity.  

 

5.2.2 Pumping characteristics 
 

The effects of index of power-law (n) and curvature parameter (  ) on pressure rise per 

wavelength ( p ) plotted against time-averaged flow rate in the laboratory frame 

𝛩 (= 𝑓 + 2) are presented in Figs. 5.3 and 5.4. The computations of pressure rise are 

carried out using the formula (2.29). The present analysis demonstrate three pumping 

regions namely peristaltic pumping region, free pumping region and co-pumping region 

respectively. Here it is observed that p  rises with rising   and n. 

2.3 Heat transfer phenomena 
 

The effects of viscoelastic parameter (We), power-law index (n), channel curvature ( ) 

and Hartmann number (Ha) on the temperature distribution are graphically demonstrated 

in Figs. 5.5 - 5.8, respectively. Fig. 5.5 depicts the effects of We on the temperature 
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distribution for both shear thinning (n < 1) and thickening (n > 1) fluids. It shows that the 

temperature profile is a decreasing function of We for shear-thinning bio-fluid while 

reverse phenomena is observed for shear-thickening bio-fluids with increasing viscoelastic 

parameter We. Fig 5.6 shows enhancement in the magnitude of temperature profile when 

behavior of fluid shifts from shear-thinning fluid to shear-thickening. In Fig. 5.7, the effects 

of curvature parameter   are discussed. It is observed that ( )   inside the channel 

enhances with enhancing the values of  . Similarly Fig. 5.8 also shows an increase in 

temperature inside the channel with increasing Ha. 

Figs 5.9 - 5.13 depicts the effects of power-law index (n), Weissenberg number (We), 

Brinkmann number (Br), Hartmann number (Ha) and curvature of the channel ( )  on z at 

the upper wall (computed via the expression (2.31)). These figures shows oscillatory 

behavior of z due to peristaltic phenomena. The amplitude of the heat transfer coefficient 

decreases for shear-thinning fluid while it shows an increasing trend for shear-thickening 

fluids with increasing the Weissenberg number We. Moreover, the amplitude of heat 

transfer coefficient is found to decrease via increasing n,  , Br and Ha. 

 

5.2.4 Mass concentration 
 

Figs. 5.14 - 5.17 depict the behavior of the mass concentration (ϕ) for various values of 

We, n,   and Sr. The impact of We on concentration distribution is displayed in Fig. 5.14 

for two mounting values of n. It is noticed from Fig. 5.14 that for shear-thinning fluids 

( 1),n   the concentration distribution is a decreasing function of We while it shows 

reverse trend for shear-thickening fluids ( 1).n   It is noticed from Fig. 5.15 that the 
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magnitude of mass concentration enhances when behavior of fluid shifts from shear-

thinning fluid to shear-thickening. Fig 5.16 reveals that mass concentration decreases with 

increasing . Fig. 5.17 indicate that the magnitude of   rises by rising Sr. 

The effects of We, n and   on Sherwood number (Sh) at the upper wall (computed via the 

expression (2.32)) are graphically shown in Figs. 5.18 - 5.20. Similar to the heat transfer 

coefficient the behavior of Sherwood number is also oscillatory. The amplitude of the 

Sherwood number (Sh) decreases for shear-thinning fluids while it increases for shear-

thickening fluids with increasing the values of We. Moreover, the amplitude of Sherwood 

number (Sh) enhances via increasing n. In contrast a reverse trend is observed with 

increasing the values of curvature parameter (  ).  

 

5.2.5 Trapping 
 

The streamlines of the flow for different values of Hartmann number are shown in Fig. 

5.21. A circulating bolus of fluid can be clearly identified from all four panels. It is 

examined that the shape of the circulating bolus is greatly influenced with increasing Ha. 

In this transformation process the bolus also regain its symmetric shape approximately for 

Ha = 0.7. 
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Fig. 5.1: Influence of n on  2u  for Ha 

= 0.5, 𝜇0 = 1.3, 𝜇∞= 0.05, 1.5

and 2.   

Fig. 5.2: Influence of Ha on  2u   for n 

= 0.8, 𝜇0 = 1.3, 𝜇∞= 0.05, 1.5 and 

2.   

 

 

 

 

Fig. 5.3: Effect of n on ( )p  for 

0.4,  We = 2, Ha = 0.2, 1.5  and 

2.   

Fig.5.4: Effect of   on ( )p  for Ha = 

0.2, 0.4,   We = 2, n = 0.4 and

1.5.  



  100 
 
 

 

 

Fig. 5.5: Effect of We on temperature 

( )   for 0.4,  Br = 2, Ha = 1, 2 

and 1.5.   

Fig. 5.6: Effect of n on temperature ( )   

for 0.4,   Br = 2, Ha = 1, 1.5  

and 2.   

 

 

 

 

Fig. 5.7: Effect of   on temperature 

( )   for n = 0.8, Br = 0.5, Ha = 1, 

0.4,  and 1.5.  

Fig. 5.8: Effect of Ha on temperature 

( )   for n = 0.8, Br = 2, 0.4,  2 

and 1.5.  
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Fig. 5.9: z at upper wall for We with (a) n = 0.8 (shear thinning) and (b) n = 1.2  

(shear thickening), with 2,   Ha = 1, Br = 2, 1.5 and 0.4.   

 

 

 

 

 

Fig. 5.10: Influence of n (power-law 

index) on z for We = 0.5, 2,   Ha = 1 

and 0.4.   

Fig. 5.11: Influence of   (dimensionless 

radius of curvature) on z  for n = 0.8, Ha 

= 1, 1.5  and 0.4.   
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Fig. 5.12: Influence of Br on z for We 

= 0.5, 2,   n = 0.8, Ha = 1, 1.5  

and 0.4.   

Fig. 5.13: Influence of Ha on z for We = 

0.5, 2,   n = 0.8, Br = 2,  1.5 and

0.4.   

 

 

 

 

Fig.5.14: Effect of We on ( )   for 

2,   Br = 2, Sr = 1 and Sc = 1. 

Fig. 5.15: Effect of n on ( )   for 

2,   Br = 2, Sr = 1 and Sc = 1. 
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Fig. 5.16: Effect of   on ( )   for 

We = 0.5, n = 0.8, Br = 2 and 0.4.   

Fig. 5.17: Effect of Sr on ( )   for We 

= 0.5, n = 0.8, Br = 2 and 0.4.   

 

 

 

 

 

Fig. 5.18: Effect of We on Sherwood number Sh at upper wall for (a) shear 

thinning (n = 0.8) and (b) shear thickening (n = 1.2), with 2,   Ha = 1, 

 Sr = 1, Sc = 1, 1.5  and 0.4.   
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Fig. 5.19: Effect of n on Sherwood number Sh at upper wall for 2,   Ha = 1, Sr 

= 1, 1.5  and 0.4.   

 

 

 

 

 

Fig. 5.20: Effect of   on Sherwood number Sh at upper wall for n = 0.8,

We 0.5,  Sr = 1, 1.5  and 0.4.   
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Fig. 5.21: Flow patterns for (a) Ha = 0.1, (b) Ha = 0.35, (c) Ha = 0.7, and (e) 

0.4.  and 1.5 ,= 0.5 We 2, using = 0.1  n= 1.3 for  Ha  
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Chapter 6 
 

Peristaltic flow of Rabinowitsch fluid in a curved 

channel: Mathematical analysis  
 

In this chapter we discussed the Rabinowitsch fluid model for the mathematical analysis 

of peristaltic flow with heat transfer in a curved channel. The fundamental equations of 

flow and heat transfer are developed using curvilinear coordinates. The set of these 

equations reduced by using delta approximation. The reduced set of equations is solved by 

semi-analytic procedure while energy equation is simulated numerically using 

Mathematica routine “NDSolve”. The effects of curvature parameter and the coefficient of 

pseudoplasiticity on flow velocity, temperature and streamlines are shown in detail.  

 

6.1 Mathematical Formulation 
 

Let us consider a curved channel occupied with an incompressible Rabinowitsch fluid. The 

continuity, momentum and energy equations in components form are given by 

   2
1 0,

U
R R U R

R 


  

 
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 (6.4)  

According to Robinowitsch model the empirical stress-strain relations in component form 

are: 

12 ,RR

U
S

R






           (6.5) 
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          (6.6) 
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 (6.7)  

where   is the non-linear factor responsible for the non-Newtonian effects. By adopting 

the same procedure as described in chapter 4, Eqs. (6.2)- (6.7) are reduced to following 

form: 

    0,
p







                 (6.8) 
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0,S          (6.13) 
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Adopting the stream function formulation through the Eq. (2.25), Eq. (6.12) becomes 
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    (6.14) 

Eliminating xS  between (6.9) and (6.14) and integrating twice we get 
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     (6.15) 

The appropriate boundary conditions in terms of stream function are: 
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The boundary conditions (6.16) and (6.17) yields the following transcendental algebraic 

equations in terms of unknown 1 2 3, ,c c c and .p x   
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The above equations can be solved for 1 2 3, ,c c c and p s   using any symbolic software 

such as Mathematica or Maple at each cross-section  0, 2x   for specific values of 

involved parameters. In this way solution at each cross-section can be determined as an 

explicit function of  . The pressure rise can be obtained through the formula (2.30). The 

semi-analytical approach used to calculate stream function is not suitable to compute the 

temperature field due to complicated non-homogenous term. Therefore, temperature is 

computed numerically using Mathematica routine “NDSolve”. 

  

6.2 Results and discussion  
 

The results of computations are displayed in terms of velocity profiles, pressure rise per 

wavelength profiles, temperature profiles and streamlines contours for different values of 

coefficient of pseudoplasiticity ( )  , Brinkmann number (Br) and curvature parameter ( )  

through Figs. 6.1 - 6.7.  

The axial velocity profiles for some specific values of the coefficient of curvature 

parameter ( )  and coefficient of pseudoplasiticity ( )   are shown in Figs. 6.1 and 6.2, 

respectively. It is observed through Fig. 6.1(a) that for negative values of , the velocity 

achieves maximum above 0   while for positive value the maximum appears below

0  . The flow velocity becomes symmetric as .   Fig. 6.2 shows the effects of 

coefficient of pseudoplasiticity on the flow velocity. It is noticed that the 2 ( )u   tends to 

achieve symmetric profile with increasing   values from negative to positive.  
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Figs. 6.3 and 6.4 are designed to analyze the effect of   and Br on the radial distribution 

of temperature of fluid inside the channel. It is examined that ( )  enhances by enhancing 

 and .Br  

The streamlines of flow inside the channel for various values of coefficient of 

pseudoplasiticity ( )   and curvature parameter ( )  are plotted in Figs. 6.5 - 6.7, 

respectively. Fig. 6.5 shows an asymmetric fluid bolus for which upper part is bigger in 

size than the lower one for   = 0. The area of lower part is decreased with increasing 

  to 0.1. A further increase in   results in a low intensity lower part with a 

substantially decreases area. The lower part eventually vanishes when   takes the value 

15.  The area of upper part also decreases with increasing   from 0 to 15. Figs. 6.6 and 

6.7 show the effect of curvature parameter ( )  on streamlines for 0.005   (Dilatant 

Fluid) and 0.1  (Pseudoplastic Fluid), respectively. It is observed through both figures 

that streamlines are asymmetric with respect to central plane for smaller values of  . 

However, streamlines regain their symmetry as one shifts form curved to straighter channel 

(i.e., as   ) regardless of the choice of  . It is important to mention that these 

results of streamlines are also consistent with the results reported by Sato et al. (2000), 

Ramanamurthy et al. (2013), and Narla et al. (2015). 
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(a) (b) 

  

Fig. 6.1: Effect of   on velocity  2u   for two different values of    0  

(𝑃𝑠𝑒𝑢𝑑𝑜𝑝𝑙𝑎𝑠𝑡𝑖𝑐 𝐹𝑙𝑢𝑖𝑑), 𝑎𝑛𝑑 0   (𝐷𝑖𝑙𝑎𝑡𝑎𝑛𝑡 𝐹𝑙𝑢𝑖𝑑)), with 0.4  and 0.5.  

 

 

 

 

 

 

Fig. 6.2: Effect of   on velocity  2u   for 0.4   and 0.5.  
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Fig. 6.3: Effect of Br on temperature ( )   for 0.4  , =0.5 and 2  . 

 

 

 

 

 

 

 

Fig. 6.4: Effect of   on temperature ( )   for Br = 0.5, 0.4   and 2  . 
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Fig. 6.5: Flow patterns for (Pseudoplastic Fluid) (a)   = 0 (Newtonian), (b)   = 0.1, 

(c)   = 5 and (d)   = 15. The other parameters chosen are 0.8, 1.5    and  = 2. 
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Fig. 6.6: Flow patterns for (a)  = 3.5 and (b) .   The other parameters chosen are 

0.8, 1.5    and 0.005   (Dilatant Fluid). 

 

 

 

 

 

 

 
 

Fig. 6.7: Flow patterns for (a)  = 3.5 and (b) .   The other parameters chosen are 

0.8, 1.5     and 0.1   (Pseudoplastic Fluid). 
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Chapter 7 

 

Micro structural effects on heat and mass transfer 

in peristaltic flow through a curved channel 
 

This chapter is prepared to investigate the effect of heat and mass transfer on magnetically 

influenced micropolar flow induced by peristaltic waves. The equations describing the flow 

and heat/ mass transfer are developed using curvilinear coordinates. A reduction of these 

equations is made based on delta approximation. Implicit finite difference scheme is 

employed to solve the set of reduced linear ordinary differential equations. The effects of 

coupling number, micropolar parameter, Hartmann number, Brinkmann number, rate of 

chemical reaction and curvature parameter on longitudinal velocity, pressure rise, 

temperature and mass concentration are analyzed in detail. The flow patterns in the channel 

illustrating the effects of several involved parameter are also displayed.  

 

7.1 Governing equations 
 

For micropolar fluid, the equations governing the flow, heat and mass transfer in tensor 

notation are given by 

Continuity Equation:                    , =0,i iU                         (7.1) 

Momentum Equation:               , ,k lk l kU f                  (7.2) 
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Moment of momentum Equation:   , ,k lk l kij ijj w m e                (7.3) 

Energy Equation:                      , ,p ii kl kl kl klc T kT a m b                            (7.4) 

Concentration Equation:           , , 1 .T
ii ii

m

Dk
C DC T k C

T
                (7.5) 

In above equations kU  is the velocity, kw  is the micro-rotation vector, kf  is the body force, 

kl  is the Cauchy stress tensor, klm  is the moment stress tensor, 1k  is the rate of chemical 

reaction, j  is micro moment of inertia and dot indicates the material time derivative. 

Moreover, , ,kl kl klm a  and klb  are given by 

 2

* * *

,

,

,
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,

,

kl kl kl lk

kl mm kl kl lk

kl l k lkm m

kl k l
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m tr b b b

a v e w

b w
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   

     


   


  
 

    (7.6) 

where 2k  is the dynamic microrotation viscosity, lkme  is the permutation symbol and 

* * *, ,   are the constants called coefficient of angular viscosity. It is important to 

mention here that if 
* * *

2 0k       , then kw  becomes zero and Eq. (7.2) reduces to 

Navier-Stokes equations. According to Eringen (1964) 
* *

2, , ,k   and 
*  must satisfy 

the following inequalities: 

* * * * *

2 22 0, 0,3 0, .k k              (7.7) 
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7.2 Mathematical Modeling 
 

Consider an incompressible hydromagnetic micropolar fluid flows inside the channel. The 

flow is generated due to the sinusoidal deformation of the channel walls. The geometry and 

coordinate system are illustrated in Fig. 2.1. The magnetic field is defined by Eq. (2.7). 

Thus by generalized Ohm’s law the body force term in Eq. (7.2) becomes  

( ) ,k kf  J ×B       (7.8) 

where ( ).J V×B  Here, we neglected the electric field and invoked the low magnetic 

Reynolds number assumption. Using the velocity, temperature, concentration and 

microrotation fields defined by Eq. (2.11), the set of Eqs. (7.1) - (7.5) in component form 

become; 
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The boundary conditions associated with Eqs. (7.9) - (7.14) are Eqs. (2.17) and (2.18). 

After making use of transformation given by Eq. (2.19), the governing equations are 

obtained in the wave frame. These equations after defining the dimensionless variables
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and invoking the lubrication approximations ( 0,Re 0   ) reduce to 
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Here 1 2,N N  and cR  denote the coupling number, the micropolar parameter and the 

dimensionless rate of chemical reaction parameter, respectively.  

Combining Eq. (7.17) with Eq. (7.18), one gets 
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 Eqs. (7.19)- (7.22) are solved subject to the subsequent boundary conditions. 
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The physical quantities of interest such as pressure rise per wavelength and heat transfer 

coefficients at both the wall ( 1,2)iz i   are defined by Eqs. (2.30) and (2.31), respectively. 

In summary, we have to solve Eqs. (7.19), (7.20), (7.21) and (7.22) subject to boundary 

conditions (7.23) and (7.24). An implicit finite difference technique is employed for the 

solution. For details of the method the reader is referred to section (2.2) of chapter 2. 

  

7.3 Results and Discussion 
 

The computations carried out using the above-mentioned method are displayed in terms of 

velocity profiles, pressure rise per wavelength profiles, temperature and concentration 

profiles, streamlines contours and heat transfer coefficient for different values of coupling 

number 1( )N , micropolar parameter 2( )N , Brinkman number ( )Br , Hartmann number 

(Ha) and curvature parameter ( ) , we interpret the graphical results provided in Figs. 7.1 

- 7.24.  

The effects of micropolar parameter 2( )N , Hartmann number (Ha) and coupling number 

1( )N  on axial velocity  2u   and micro rotation  w   are shown through Figs. 7.1-7.6. 

Fig. 7.1 shows that  2u   increases with increasing Ha in the upper half of the channel 

while reverse trend is noticed in the lower half. Fig. 7.2 exhibits the effect of Hartmann 

number (Ha) on micro rotation  w  . It is noticed that  w   rises with rising Ha in lower 
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half of the channel while its behavior is reversed in the upper half. The decrease in velocity 

with increasing Ha in lower part of the channel is attributed to the resistive nature of the 

Lorentz force due to applied magnetic field. In order to maintain the prescribed flux the 

velocity increases with increasing Ha in upper part of the channel. Fig. 7.3 shows the effect 

of 1N  on  2u  . The parameter 1N  is the ratio of the vortex viscosity to the dynamic 

viscosity of the fluid. In fact, it is a measure of which viscosity dominates the flow under 

consideration. Larger values of 1N  correspond the situation in which vortex viscosity due 

to spinning motion of fluid particles dominates the flow and as a result axial velocity  2u   

decreases in the upper part of the channel. In order to maintain the prescribed flow rate the 

axial velocity  2u   rises with rising 1N . Fig. 7.4 shows an enhancement in the magnitude 

of microrotation component  w   with increasing 1N  in both the parts of the channel. Fig. 

7.5 shows the impact of micropolar parameter 2( )N  on  2u  . It is observed  2u   

increases with increasing 2N  in lower part of the channel. In contrast  2u   decreases with 

increasing 2N  in upper part of the channel. Fig. 7.6 displays influence of 2N  on  w  . It 

is examined that  w   decreases in lower portion of the channel while it increases in upper 

portion with increasing 2N . Figs. 7.7 - 7.10 exhibit the effect of Hartmann number (Ha), 

coupling number 1( )N , micropolar parameter 2( )N  and curvature parameter ( )  on .p

The shapes of p  for various magnitudes of Ha (Hartmann number) and coupling number 

1( )N  are shown in Figs. 7.7 and 7.8. It is examined that in pumping region  0, 0 ,p     

pressure rise per wavelength increases with increasing Ha and 1N  Fig. 7.9 shows the 
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effects of micropolar parameter 2( )N  on p . In case of micropolar parameter an opposite 

trend is observed as seen in figure 7.7. Fig. 7.10 depicts the influence of curvature 

parameter ( )  on p . It is noticed that p  decreases with increasing  . 

The profiles of temperature field ( ( ))   for different values of Brinkman number ( )Br , 

coupling number 1( )N , micropolar parameter 2( )N  and Hartmann number (Ha), are shown 

through Figs. 7.11 - 7.14, respectively. It is examined that ( )   increases over the entire 

cross-section with mounting each of Br, 1N  and 2N . The increase in ( )   with increasing 

1N  and 2N  is due to retarding effect of these parameters on velocity  2u  . Brinkmann 

number is a parameter which is the ratio of viscous heat to the heat transported by 

conduction. Larger values of Brinkmann correspond to the scenario when heat generated 

due to viscous dissipation is dominant. Fig. 7.14 shows that ( )   decreases with 

increasing Ha.  

The variations of z at the upper wall for various values of Ha, 1N  and 2N  are displayed in 

Figs. 7.15 - 7.17. The behavior of z is clearly oscillating which is attributed to oscillatory 

nature of the channel walls. A damping in amplitude of oscillations is observed with 

increasing Ha.  

The effects of Br (Brinkman number), cR  (rate of chemical reaction), Ha (Hartmann 

number), Sc (Schmidt number) and Sr (Soret number) on mass concentration ( ( )  ) can be 

observed through Figs. 7.18 - 7.22. It is observed that ( )   is enhanced with increasing Br,

cR , Sc and Sr. On the contrary, ( )   decreases with increasing Ha. 
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The streamlines of flow inside the channel for various values of curvature parameter ( ) , 

and coupling number 1( )N  are shown in Figs. 7.23 - 7.24. The objective is to investigate 

the trapping phenomenon. Fig. 7.23 shows the effect of  on flow patterns. A trapped 

fluid appeared in the upper part of the channel occurs for smaller magnitudes of .  

However, such a bolus slits two symmetric parts with increasing .  The effects of 

coupling number 1N  on flow patterns are displayed in Fig. 7.24. It is observed that with 

increasing 1N  to 1.2, the bolus divides into two parts. The upper part is bigger in size than 

the lower one. The lower part of the bolus increases in size with increasing 1N  to 1.4. It is 

strongly anticipated that upper part of bolus vanishes with further increasing 1N  and 

channel is only filled with a single bolus concentrated in the lower part. 
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Fig. 7.1: Effect of Ha on  2u   for   = 

2.5, 1N = 0.5, 2N  = 1.2 and 𝛩 = 1.5. 

Fig. 7.2: Effect of Ha on  w   for   = 

2.5, 1N = 0.5, 2N  = 1.2 and 𝛩 = 1.5. 

 

 

 

 

  

Fig. 7.3: Effect of 1N  on  2u   for  = 

2.5, Ha = 2, 2N = 0.2, 0.4  and 𝛩 = 1.5. 

Fig. 7.4: Effect of 1N  on  w   for   = 

2.5, 2N = 0.2, 0.4  and 𝛩 = 1.5. 
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Fig. 7.5: Effect of 2N  on  2u   for  = 

2.5, Ha = 2, 1N = 0.5, 0.4  and 𝛩 = 1.5. 

Fig. 7.6: Effect of 2N  on  w   for   = 

2.5, 1N = 0.5, 0.4  and 𝛩 = 1.5. 

 

 

 

 

 

Fig. 7.7: Effect of Ha on p  for 1N = 

0.5,  2N  = 1.2,   = 2.5 and 0.4  . 

Fig. 7.8: Effect of 1N  on p  for   = 2.5, 

2N  = 1.2 and 0.4  . 
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Fig. 7.9: Effect of 2N  on pressure rise per 

wavelength for 1N = 0.5,   = 2.5 and 

0.4  . 

Fig. 7.10: Effect of   on pressure rise per 

wavelength for 1N  = 0.5, 2N  = 1.2 and 

0.4  . 

 

 

 

  

Fig. 7.11: Effect of Br on temperature ( ) 

for 1N  = 0.5, 2N  = 1.2, 0.4   and  = 

2. 

Fig. 7.12: Effect of 1N  on temperature ( )   

for 2N  = 1.2, 0.4   and  = 2. 



  128 
 
 

  

Fig. 7.13: Influence of 2N  on ( )  for Br = 

2, 1N  = 0.5, 0.4   and  = 2. 

Fig. 7.14: Influence of Ha on ( )   for 1N  = 

0.5, 2N  = 1.2, 0.4   and =2. 

 

 

 

 

  

Fig. 7.15: Effect of Ha on z at upper wall 

for 1N  = 0.5, 2N  = 1.2 and  = 2. 

Fig. 7.16: Effect of 1N  on z at upper wall 

for Br = 2, 2N  = 1.2 and  = 2. 
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Fig. 7.17: Influence of 2N  on z at upper 

wall for 1N  = 0.5, 0.4  and  = 2. 

Fig. 7.18: Influence of Br on concentration 

( )   for 1N  = 0.5, 2N  = 1.2, 0.4,  and 

 = 2. 

 

 

 

 

 

 

 

Fig. 7.19: Effect of cR  on concentration 

( )   for Br = 2, 1N  = 0.5, 2N  = 1.2, 

0.4,  and  = 2. 

Fig. 7.20: Effect of Ha on concentration 

( )   for Br = 2, 1N  = 0.5, 2N  = 1.2, 

0.4,  and  = 2. 
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Fig. 7.21: Effect of Schmidt number Sc on concentration ( )   for Br = 2, 1N  = 0.5,  

 = 1.2, 0.4   and  = 2. 

 

 

 

 

 

 

Fig. 7.22: Effect of Soret number Sr on concentration ( )   for Br = 2, 1N  = 0.5,  

2N  = 1.2, 0.4  and  = 2. 
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Fig. 7.23: Flow patterns for (a) 2,   (b) 2.5,   (c) 3   and (d) ,  using 

1N  = 0.5, 2N  = 1.2 and 0.8.   
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Fig. 7.24: Flow patterns for (a) 1 0.8,N   (b) 1 1,N   (c) 1 1.2,N   and  

(d) 1 1.4N  , using Ha = 2, 2N  = 1.2, 2.5    and 0.8.   
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Chapter 8 

 

Numerical modeling of heat and mass transfer in flow of 

bi-viscosity fluid through a porous-saturated curved 

channel with contracting and expanding walls 
 

 

In this chapter we discussed the heat/ mass transfer in flow of bi-viscosity fluid through a 

porous-saturated curved channel with sinusoidally deformed walls. The magnetic field and 

Joule heating effects are also taken into account. A reduction of these equations is made 

based on long wavelength and low Reynolds approximations. The reduced linear ordinary 

differential equations are integrated numerically using an implicit finite difference scheme. 

It is observed that the bi-viscosity fluid parameter, permeability parameter and Hartmann 

number have analogous effects on the longitudinal velocity. Moreover, temperature of the 

fluid, heat coefficient and mass concentration increase by increasing bi-viscosity fluid 

parameter, Brinkmann number and Hartmann number.  

 

8.1 Modeling 
 

An incompressible bi-viscosity fluid flows inside the porous-saturated curved channel. The 

continuity and energy equations are given by Eqs. (2.3) and (2.5), respectively. The 

momentum and mass concentration are given by 

*
,

d

dt k


   

U
U + J B    (Momentum Equation) (8.1) 
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      (Mass Concentration Equation)      (8.2) 

Eq. (8.2) differ from its counterparts due to the addition of chemical reaction term. For bi-

viscosity fluid model  
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where yP  is the yield stress of the fluid given by  

2
.b

yP





        (8.4) 

Here   is the bi-viscosity fluid parameter, b  is the plastic dynamic viscosity,   is 

second invariant of 1A , 
C  is the critical value based on non-Newtonian model. For bi-

viscosity fluid flow, where 
C  , it is possible to write 

.
2

y

b

P
  


       (8.5) 

Using (8.4) and (8.5), we get stress tensor for bi-viscosity fluid flow 

1
1 . when .b C



 
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 
1A      (8.6) 

In view of (8.6), Eq. (8.1) becomes 

*

1
1 .b

d

dt k


 



 
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 
1

U
A U + J B    (8.7) 

By using Eq. (2.11), we get above equations in component form 
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2
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2
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m
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       
        

T  (8.10) 

where 
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2 2 1

2
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R R R R R R R R R R R R R R

U U UR

R R R R R R

  



           
            

                

 
         

 (8.11) 

After making use of transformations given in (2.19), the governing equations in the wave 

frame obtained. These equations after defining the dimensionless variables and invoking 

long wavelength and low Reynolds number approximations ( 0,Re 0   ) reduce to  

0,
p







                (8.12) 

 
2 2

2 *

1 1
1 1 1 0,

p Ha

x K

      
 

          

               
                  
               

 (8.13) 
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   (8.14) 

Elimination of pressure between Eqs. (8.12) and (8.13) yield  

 
2 2

2 *

1 1
1 1 1 0.

Ha

K

      
 

           

                
                

                

    (8.15) 

Therefore, for the analysis of present problem we have to solve Eqs. (2.23), (8.14) and 

(8.15) subject to boundary conditions (2.27) and (2.28). Though it is possible to find an 

exact solution of Eq. (8.15) but the whole set of equations can be solved numerically. An 

implicit finite difference technique is employed for the solution Eqs. (2.23), (8.14) and 

(8.15) subject to boundary conditions (2.27) and (2.28).  

 

8.2 Results and discussion 
 

In this section, it is intended to analyze the important features of peristaltic motion such as 

velocity, pressure rise, temperature distribution, mass concentration and trapping for 

various values of the curvature parameter ( ) , bi-viscosity parameter ( ) ,  Brinkman 

number (Br), rate of chemical action ( cR ), permeability parameter 
*( )K  and Hartmann 

number (Ha).  

The axial velocity distribution for some specific values of bi-viscosity parameter ( ) ,  

permeability parameter
*( )K , Hartmann number (Ha) and curvature parameter ( ) , is shown 

in Figs. 8.1 - 8.4, respectively. Fig. 8.1 depicts that velocity profile increases by increasing 
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bi-viscosity parameter. Fig. 8.1 depicts that velocity profile increases by increasing Casson 

parameter. Fig. 8.2 shows the effects of permeability parameter 
*( )K  on velocity ( 2 ( )u  ). 

Smaller values of 
*K  correspond to weaker porous medium effects while larger values 

represent the case when resistance due to porous matrix is strong. It is seen that greater 

values of 
*K impede the velocity amplitude and shift the maximum velocity away from the 

lower wall of the channel towards the central line ( 0)  . Fig. 8.3 exhibits the influence 

of Ha on 
2 ( )u  . Here it is quite obvious that flow velocity displays boundary layer 

character for increasing values of Ha. The fluid outside the boundary layer moves with a 

velocity which varies linearly with radial coordinate .  In contrast, the fluid outside the 

boundary layers moves with constant velocity in a straight channel. Fig. 8.4 depicts the 

influence of   on 
2 ( )u  .  For smaller values of   the velocity is asymmetric about 

0   with maximum seeming in the upper half of the channel. With increasing ,  
2 ( )u   

regains its symmetry about 0.    

Figs 8.5 - 8.8 demonstrate the effect of different parameters on pressure rise per 

wavelength. Fig 8.5 shows the influence of bi-viscosity parameter on p . It is noticed that 

p  is decreasing by increasing  in the peristaltic pumping region. The profile of pressure 

rise per wavelength for various values of *K  (permeability parameter) is shown in Fig. 8.6. 

Here, it is noticed that p  decreases with enhancing *K  for fixed value of prescribed flow 

rate. Thus, in the present settings the porous medium inside the channel hampers the normal 

flow of the fluid and peristalsis has to do greater work against the pressure rise to maintain 

the same flux as in the case of clear medium inside the channel. This eventually reduces 
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the pumping efficiency. Figs. 8.7 and 8.8 are designed to show the variation of p  against 

dimensionless mean flow rate  for numerous values of Ha and  , respectively. It is 

noticed that p  rises by rising Ha and  .  

Figs. 8.9 - 8.12 are plotted to analyze the effect of bi-viscosity parameter ( ) ,  Brinkmann 

number (Br), permeability parameter *( )K  and Hartmann number (Ha) on radial 

distribution of temperature of the fluid inside the channel. Figs. 8.9, 8.10 and 8.12 

respectively, report that ( )   increases by increasing , Br  and Ha inside the channel. In 

contrast, Fig 8.11 shows a decrease in temperature with increasing permeability parameter. 

It is due to the fact that heat transfer rate from boundaries to the fluid is reduced for clear 

medium and as a result a decrease in temperature is noted inside the channel.  

The shift of z for *, ,Br K  and Ha is shown through Figs. 8.13 - 8.16. The profiles of z are 

clearly oscillating (periodic) due to periodic oscillating nature of the boundary. The 

amplitude of oscillation enhances with enhancing , Br  and Ha, while it shows opposite 

behavior with increasing *.K   

The profiles of mass concentration inside the channel for several values of bi-viscosity 

parameter, Brinkmann number, rate of chemical reaction, Hartmann number, Schmidt 

number and Soret number are shown in Figs. 8.17 - 8.22. It is noticed that mass 

concentration inside the channel enhances with enhancing each of these parameters.  

The streamlines of flow for specific values of bi-viscosity parameter ( ) ,  permeability 

parameter
*( )K , Hartmann number (Ha) and curvature parameter ( )  are shown in Figs. 

8.23 - 8.25. Fig. 8.23 shows two nearly symmetric circulating rolls in lower and upper 

halves of the channel. However, lower roll increases in size while the upper one shrinks 
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with increasing .  Fig. 8.24 illustrates the impact of *K on trapping phenomenon. For 

slight values of *K i.e. for strong permeability effects the circulating roll in lower half 

contains two small eddies. The size of lower half is greater than the upper one. With 

increasing * ,K  the two eddies inside the lower roll merge into a single cell. Moreover, 

the size of upper roll reduces with increasing *.K  The formation of two circulating eddies 

in the lower roll for small values of *K  is never reported in the earlier available literature 

on the peristaltic flows through porous-saturated curved channel. Fig. 8.25 shows the effect 

of  (dimensionless radius of curvature) on trapping. It is observed that both circulating 

roll become equal in size with increasing .  
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Fig. 8.1: Effect of   on velocity  2u   

for   = 2.5, *K = 0.2, Ha = 0.5, 0.4, 

and   = 1.5. 

 

 

Fig. 8.2: Effect of *K  on velocity  2u   

for   = 2.5,  = 0.2, 0.4,  and   = 

1.5. 

  

Fig. 8.3: Effect of Ha on velocity  2u   for 

  = 2.5, *K = 0.2,   = 0.2, 0.4,  and 

  = 1.5. 

Fig. 8.4: Effect of   on velocity  2u   

for   = 0.2, *K = 0.2, Ha = 0.5, 

0.4,  and   = 1.5. 
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Fig. 8.5: Effect of   on p  for   = 2.5, 

*K = 0.2, Ha = 0.5, 0.4,  and   = 1.5. 

Fig. 8.6: Effect of *K on p  for   = 2.5, 

Ha = 0.5, 0.4,  and   = 1.5. 

 

 

 

 
 

Fig. 8.7: Effect of Ha on p  for   = 2.5, 

*K = 0.2,   = 0.2, 0.4,  and   = 1.5. 

Fig. 8.8: Effect of   on p for *K = 

0.2,   = 0.2, 0.4,  and   = 1.5. 
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Fig. 8.9: Effect of   on temperature ( )   

for Br = 0.2,   = 2, *K = 1, Ha = 0.5, 

0.4,  and   = 1.5. 

Fig. 8.10: Effect of Br on temperature 

( )   for  =0.2,   = 2, Ha = 0.5, 

0.4  and   = 1.5. 

 

 

  

Fig. 8.11: Effect of *K  on temperature 

( )   for Br = 0.2,   = 2, Ha = 0.5,   = 

0.2, 0.4,  and   = 1.5. 

Fig. 8.12: Effect of Ha on temperature 

( )   for Br = 0.2,   = 2, *K = 1.5,   = 

0.2, 0.4,  and   = 1.5. 
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Fig. 8.13: Influence of    on z for Br = 

0.2,    = 2, *K = 1, 0.4  and   = 1.5. 

Fig. 8.14: Influence of Br on z for  = 

0.2,    = 2, 0.4  and = 1.5. 

 

 

 

  

Fig. 8.15: Effect of *K   on z for Br = 0.2, 

  = 2, Ha = 0.5, 0.4  and  = 1.5. 

Fig. 8.16: Effect of Ha on z for Br = 0.2,  

  = 2, *K = 1.5, 0.4  and   = 1.5. 
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Fig. 8.17: Effect of   on ( )   for Br = 

2,   = 2, cR = 0.2, Sr = 1.5, Sc = 1.2, 

0.4  and = 1.5. 

Fig. 8.18: Effect of Br on ( )   for 

= 0.4,  = 2, Sr = 1.5, Sc = 1.2, 0.4 

and= 1.5. 

 

 

  

Fig. 8.19: Effect of   on ( )   for  = 

0.4, Br = 2,   = 2, Sr = 1.5, Sc = 1.2, 

0.4  and  = 1.5. 

Fig. 8.20: Effect of Ha on ( )   for 

= 0.4, cR = 0.2, Sr = 1.5, Sc = 1.2

0.4  and= 1.5. 
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Fig. 8.21: Influence of Sc on ( )   for  = 0.4, Br = 2,   = 2, cR = 0.2, Sr = 1.5, 

0.4  and = 1.5. 

 

 

 

 

 

Fig. 8.22: Influence of Sr on ( )   for  = 0.4, Br = 2,   = 2, cR = 0.2, Sc = 1.2, 

0.4  and= 1.5. 
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Fig. 8.23: Flow patterns for (a) 0.1,   (b) 0.5,   (c) 1   and (d) 1.5  , 

using   = 2, *K = 1, Ha = 0.5, 0.4  and = 1. 
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Fig. 8.24: Flow patterns for (a) 
* 0.1,K   (b) 

* 0.15,K   (c) 
* 0.2,K   and 

(d) 
* 0.3,K   using   = 2, Ha = 0.5, 0.5,  0.4  and= 1.5. 
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Fig. 8.25: Flow patterns for (a) 2,   (b) 3.5   and (c) ,   using Ha = 

0.5, *K  = 0.2, 0.5,  0.4  and= 1.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  149 
 
 

Chapter 9 
 

CONCLUSIONS 
 

The main objective of thesis was to analyze the heat and mass transfer characteristics in 

peristaltic flows through a curved geometry. To achieve the objective, the simulations are 

performed by utilizing FDM. The major predictions of the thesis are summarized below. 

 The flow velocity diminishes with increasing permeability parameter and 

Hartmann number.  

 Pressure rise per wavelength increases with increasing permeability parameter and 

Hartmann number. 

 The radial distribution of temperature inside the channel follows an increasing 

trend with increasing Brinkmann number, permeability parameter and Hartmann 

number while it decreases with enhancing Forchiemmer parameter. 

 The size of circulating bolus of fluid reduces with increasing permeability 

parameter and Hartmann number while it is almost unaffected with enhancing 

Forchiemmer parameter. 

 The symmetry in velocity and streamlines pattern is observed when curvature 

parameter is increased indefinitely. 

 The flow velocity and pressure rise increases with increasing thermal transfer 

Grashof number. A reverse trend is noted with increasing concentration Grashof 

number and Hartmann number. 
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 The temperature field is enhanced with increasing thermal Grashof number and 

Hartmann number. 

 The mass concentration decreases with increasing thermal Grashof number and 

Hartmann number while it enhances with enhancing concentration Grashof 

number. 

 The circulations become intense for greater values of Brinkman number, thermal 

Grashof number and Hartmann number. Thus, more mixing is realized in mixed 

convective peristaltic flow than that in a purely peristaltic flow. 

 Both temperature and mass concentration profiles are strongly influenced by Sisko 

fluid parameter and Brinkmann number. Each of this physical quantity is found to 

increase with increasing viscosity parameter and Brinkmann number. 

 The heat transfer coefficient and Sherwood number oscillates periodically and 

their amplitudes are greatly enhanced with enhancing the numerical values 

viscosity parameter and Brinkmann number.  

 The flow velocity achieves symmetric profile with increasing coefficient of 

pseudoplasiticity. 

 The area of trapping region reduces with increasing the coefficient of 

pseudoplasiticity. 

 The axial velocity enhances with enhancing micropolar parameter in vicinity of 

the lower wall while it shows opposite behavior near the upper wall. 

 The Hartmann number and coupling number have similar effects on axial velocity. 
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 The temperature inside the channel follows an increasing trend with increasing 

coupling number and micropolar parameter. However, it decreases with 

increasing Hartmann number. 

 The mass concentration increases with increasing Brinkmann number and rate of 

chemical reaction. 

 The flow velocity increases with increasing bi-viscosity fluid parameter. 

 Pressure rise per wavelength decreases with increasing bi-viscosity fluid 

parameter and permeability parameter. 

 The temperature of fluid follows a decreasing trend with increasing permeability 

parameter. However, it increases with increasing bi-viscosity fluid parameter. 

 The mass concentration increases with increasing rate of chemical reaction and 

bi-viscosity fluid parameter. 

 The results for Newtonian fluid are achieved for larger values of bi-viscosity fluid 

parameter. 
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