P2P File Sharing Application ¥ y

o Do (pu8). 132

Toll3S

Developed by
Muhammad Rashid

Supervised by
Prof. Dr. Khalid Rashid

LIBRARY

tstarmabad

Department of Computer Science

International Islamic University, Islamabad
(2004)

doe. Ba. :(rn}..t:/:ig

In the name of ALMIGHTY ALLAH,
The most Beneficent, the most
Merciful.

Department of Computer Science,
International Islamic University, Islamabad.

16 Aug, 2004

Final Approval

It is certified that we have read the thesis, titled “P2P File Sharing Application”
submitted by Muhammad Rashid under University Reg. No. 11-CS/MS/01. 1t is our
judgment that this thesis is of sufficient standard to warrant its acceptance by the
International Islamic University, Islamabad, for the Degree of Master of Science.

Committee

External Examiner

Dr. Abdus Sattar w A

Consultant Multimedia Center,
Department of Computer Science,
Allam Igbal Open University, Islamabad

Internal Examiner
Dr. S. Tauseef-u

Incharge,

International Islamic University, Islamabad.

Supervisor

Prof. Dr. Khalid Rashid \ : . S

Dean, Faculty of Management Sciences, 16 Y. 2wy
Dean, Faculty of Applied Sciences,

International Islamic University, Islamabad.

P2P File Sharing Application Dedications

Dedications

To my father, for giving me the courage to undertake this task, my mother, for
giving me the patience when things got tough, my sister, for her wisdom which proved

invaluable through out the project, and to my brother for making this whole experience a
lot of fun.

P2P File Sharing Application Degree Requirement

A dissertation submitted to the Department of Computer Science,
International Islamic University, Islamabad in partial
fulfillment of the requirements for the degrec of
Masters of Science in Computer Science.

il

P2P File Sharing Application Declaration

Declaration

I hereby declare that this software, neither as a whole nor as a part thereof has
been copied out from any source. It is further declared that I have developed this software
entirely on the basis of my personal efforts made under the sincere guidance of my
teachers and supervisor. No portion of the work presented in this thesis has been

submitted in support of any application for any other degree or qualification of this or any
other university or institute of learning.

Muhammad Rashid
11-CS/MS-01

1ii

P2P File Sharing Application Acknowledgement

Acknowledgement

All praise is to Allah Almighty, the most merciful, the most gracious, without
whose help and blessings, I was unable to complete the project.

Thanks to Prof. Dr. Khalid Rashid, my project supervisor, whose sincere efforts
helped me to complete my project successfully. Without his great help, motivation and
righteous guidance it would have been impossible to complete this project.

And a special thanks to my family who helped me during my most difficult times
and it is due to their unexplainable care and love that I am at this position today.

Muhammad Rashid

v

P2P File Sharing Application Project in Brief

Project in Brief

Project Title: P2P File Sharing Application
Undertaken by: Muhammad Rashid
Supervised by: Prof. Dr. Khalid Rashid

Dean, Faculty of Management Sciences
Dean, Faculty of Applied Sciences
International Islamic University, 1slamabad

Started in: September 2002

Completed in: August 2003

Software used: Java™ 2 SDK, Standard Edition, Version 1.3.0
Allaire Kawa Java IDE, Professional Edition, Version 5.0
Microsoft® Office XP

Operating System used: Microsoft® Windows XP Professional

. System used: Intel® Celeron™ CPU 1 GHz

P2P File Sharing Application Abstract

Abstract

This thesis focuses on peer-to-peer (P2P) technology, which is recently so much
spoken about in both the business and the academic world. During the thesis an
application layer protocol capable of sharing resource among peer systems was
developed. This protocol is specifically capable of sharing files among peers but can also
be extended so that other resources can be shared (e.g. processor). An application was
also developed which by using the above mentioned protocol is capable of sharing files
among pecrs. This report gives an overview of peer-to-peer technology, defining it and
describing the architecture. Also the most successful file-sharing implementations from
the P2P world are presented in detail; each is followed by an analysis, pointing out the
advantages and disadvantages. This document also contains the research, design, and
implementation details of the above mentioned peer to peer protocol and application for
resource sharing.

vi

P2P File Sharing Application Table of Contents

Table of Contents
Ch. No. Contents Page No.
1. INEEOQUCHION.....cueveieieiercrteeerereceerenresseses s sesuassestestsarsuisbesssnssressnresaessssaesssssasassnsrensesns 1
LI ODBJECLIVES wevvvrrrrireirresiieecseerennss st srsse e sn s e srsba e s sesessssenssaenseseas [
1.2 Peer to Peer NEtWOIKS......ccccecveevririerrirnrenee et sraeerasssnessnessaessessnesnssnes 1
1.3 ReSOUICE SharinNg........ccoorererneririmriiiiisiisieeresressessesnesresesnesnssnsseessassosssesssessssnss 4
1.3.1 File SHariNg......c.covreerirreririrreninieisee et ssitseeesees e esessessresassesssnsssssees 4
1.32 Grid COMPULINGeveerririiriiriiriee sttt sb e sras e enes 5
2. Existing Implementationsccceeverireeermnisiinrenienienserineneneneesesesensesssssessessssesanss 6
2.1 NAPSIET ccuececrrrerererreie st reeseeee et sttt st esn e sb e e b n e e s b s b e s s besa e e e e sreea 6
2.1.1 Napster Protocol DELALSc.evveerereeeriiinreerienininiiniene e e seessesnnes 8
2.1.1.1 Client-Server ProtoCol........c.evveeveerrerrerssiisiiiiueseeiiueiiisnesncsssessnesssnsnsesns 8
2.1.1.2 Client-Client ProtoCol..........ceevevmrrvererrerrcrieniinieiininnieeienisieseessnesssnsenns 8
212 ANALYSIS......cooviereeerenrirereseseesessse st ssessesesestsses s stssssesestsneseesesesstrsesesbsrneesaes 10
2.2 GIULEIIA....cueereerertcrece ettt s seee st s et s s e s ar s e e bt s b e n e ene s 12
2.2.1 Gnutella Protocol Details........oocvevveveeiiiiciniienicieceninneieneecnneecee e 13
222 ADALYSIS....verrrreeeerririenreinereerse s s be e s s ne e e ens 16
3. Requirement ANALYSiS....coovevvuerrreeesreeirnsieeieenire s etesate e ssbe s bes e eesaesbneeens 20
3.1 Protocol REQUITEMENLS.ccovvivrerreermrrnreenrrirriieieeseesne et snaesreessnssnesasens 20
3.1.1 Platform independence.............cocveveeecerrurnuriiniricnnnnniriiiee oo 20
3.12 | S1Te) (e F: o) Lo TS O RS RSOUUTRRRTTRN 20
3.13 SCALADIC ...cccveveriirriirrirsie ettt s er e s es e es s e s nes s s e nassrrassas 21
3.2 Application REQUITEINENLScecveererrerreeraenersereessesessesssesanesesssessesnse rerrerenenans 21
3.2.1 Implement the Protocol..........ccouevveeeniiviinininnninniinineccieeene s 21
322 Implement the file sharing message...........c.ccoeveverrrvrevercrererserssensisseesenas 22
3.23 User defined file management.............coceeerveeeenernrenecrerenineenenncseeneesennennes 22
3.24 Peer management..........cocveeviiieirecmiinic e 22
325 NEtWOrk MapPINgccceevveeverereirenrecierensrerestereesessessessessensessasesssssessnsscsanens 23
3.26 USDILILY ..vevvevvenrersiic et crissecensesesree e s se s e ss e s e ssas e s e srassnas s essesenesanons 23
4., SYSLEIM DESIZN ..cuveuvereieirveeientesertereerreenreaererrressessteresssessesresssesaesssesassssessersessssrssarassses 24
4.1 ProtoCOl DESIZN....coevvrriiierienrisiinenireereiee e sttt s e ssessnesaerseseesnscnessnoseessecs 24
4.2 APPLCALION DESIGNvevereererenrerirerrenreeeseesersessessssessessessesessessessassesessssssensaseens 28
5. IMPIEMENtAtIONcceevvrereeereereretreeerrrerrerreeereesessesreesseneseseraessessnasssesssssssesssnssssessssenns 32
5.1 General Implementation NOLESceveeverereerermrienereercereeereessessssesesessessesessesens 32
5.1.1 Language CROICEccoeevrereerierreirerieseseereesesrerieseesesssaesesseesessersessasesses 32
5.1.2 NetWOrk ChOICEccvvvervrerrirecierriene et er e ese e sn e e s 32
5.2 Application DEtailsccovevrerrevrereeririereeirienrereeeere et e sr e sr e e srenne 32
5.2.1 MiSCellaneous ClASSESc..ceerevreereriierrirerenrerreneenre e e sseeaesreese st ersennas 33
5.2.1.1 The MeSSage Class.........ccecvrivuiereriererievenesrenessesissensseesessssessesessesessersonens 33
5.2.1.2 MessageIDWIapper Class.........coceevvevrenieneeeereerineneeeeseeseeseeseseesesnesens 34
5.2.1.3 MessagePeerIdWrapper Classcoceeerierrrirerenrerinierenesnenessesserersereonens 35
5.2.1.4 RESUIL ClASS.....coevrereerirrerieririrrirrreceesresessesresseseesaeeresae e s e asessssesrassesaenne 35
5.2.1.5 TransferInfo Class.........cococovvreverrienecereneneieese e e 36
5.2.1.6 UL ClaSS....ciiviriiiirirreinreirieereercnesesiessse st stenssesseresse e sesssbeseesassesessens 37
5.2.2 The GUI EICMENL.........cocvvvererrirreisrcirerestecte e sesvessve e sres s ssessens 39
5221 GUICLBSS..uceeeerenieneerirreirineseereeteseesesseseesessessessessesnesessesesaessessesessennenes 39
5222 SearchPanel class........c.cccvverrevrienirenerenrenenencte e sreenesrenns 43
5.2.2.3 SearchPanelTableModel Classcccoceeveerrrerirvervunrenreeneereereeresneseenenns 44
5.2.2.4 TransfersPanel..........oevevveiveverenieesereccire e e ere e aeresens 44

vii

P2P File Sharing Application Table of Contents

5.2.2.5 TransfersPanelTableModel..........ccccoovivvvviniivniiiinnniennecireeniennee, 45
5.22.5 SetupPanel.........ocoovoiiiniiri e 45
5.2.2.6 FAlELiSteToeciiiieecieiecrreceeceeeeectreeesreesraseessnesssssnnssssnnesssassssssssassesssnnssssassos 47
5.2.2.7 FUHEREIMOVEL......ccueerveciiiienieiie sttt st sie e s sbbs s s besseseseenes 48
5.2.2.8 PeErPanCl.......covieeceevirienircerecrerti e s 49
52.2.9 NetworkMapPanelccccocevirviirvieneenreeene e S0
5.2.2. 10 NetWOTKMAPccueevveerreeerereeerrresnesresstiesssessesissessasesssnessssssssasossnsessnnes 51
5.2.2. 11 NOGE...cuveereererieierreiresteeesere s e et saesssstensssssuas e saesaesasssesnsanesns 51
52202 BAGE .oovviceieecieienrenentnncesse s sresar s e esss e s s ssas st s saas s e e san s 52
523 The Download SECHON.........covevreeieerrereereneeiestesenessisene e sssaesasssenesses 52
5.2.3.1 DownloadManager...............ccoeomeveerniinienisinnsnisennninsressssessisesesnes 53
5.23.2 DOWNIOAA.......cocieerririeerreirenriieeeeneeensit e ene 54
5233 UPIOQ..riiiiereicerere et ese e st neees et sess s e snes s sass s snensane 55
5.2.4 The NetWOrk SECHOMcccevveiiireneereerenseesserseeniesensessessssessnseesssseenssssessssssssenes 55
5.2.4.1 CONrOl ClaSS.....ccvvverrerrereerrnireiet sttt saes e sse e saessesesans 56
5242 PeerLiStener Class........ccevvvvvereriereerrevenreeeneenseneensenessessessesnesseseesssseonsene 58
5283 Peer Class....cociicicieeieeenetcecee sttt 58
5.24.4 MessageHandler Class..........coccevrervemreereencernneesivenseeseesssecssesseesssnssnsossnss 60

5.24.5 PeerMessageHandler class, QueryHandler class, and QueryHitHandler
ClASS ettt et s e e er s e st n e e sa s sr e b e sn e sne s snan st sane e neaes 61
6. The System in OPEIALIONccceevveriererereerererreereeerrerereesssesreeesseassaeseeseassessesssssans 62
6.1 SEAICH TAD ...ttt sr e se e e sr e snes 62
6.2 TransSfers Tabcocooevvereneniriirreiesereeeeresr et e saessesrae e seeases 63
6.3 SELUP LAD......eecveireiirre et e te e e erse s e s saes s be e eres s bneesre e aneaernees 63
6.4 PEr LiSt Tab. ..coueeuiereeeieeceeiecececeere st cve e s et e e sraesses e enessnesnennes 65
6.4 NCIWOTK Map Tab. ...cocverireeercer s s sreseveseseseress s snene 66
7. Results and ConCIUSION...........coceevirieienrienieerenrereerestssecsreseesesssesessersosessessesassessenseses 67
7.1 Study at least one existing peer to peer file sharing application................c....... 67
7.2 Specify a peer to peer protocol for resource sharingceceevevverevenrecirenrennns 67
7.3 Create an application to share resources (files) between machines................... 67
74 Advantages of Shadow Protocol.......cceevveveeeivievnieiecececeeereeeseeeee e ne 67
7.5 ScOpe fOr fUUFE WOIK ...c.veovevieeiecececeeceteee e e e eae 68
References and BiblIOZIAPHYccceverueverirverirenerecreniniessenmrssesessesnssesessesessssesessesssssssees 69
ADDENAIX A ...ttt crtes st e st e raae st sbes e st ae e e sbeebe e s se e st e be st en b st erbesterreneas A-1
ADPPENAIX B ..ot e st sr e s esa e saeene B-1

vili

Chapter 1
Introduction

Chapter 1 Introduction

1. Introduction

This document contains the research, design, and implementation details of a peer
to peer application for resource sharing. In this scction the problem outlinc and the
objectives of the project are presented..

In many professional environments there is an abundance of personal computers
(PCs). These PCs are high powered machines which often do not reach anywhere near
their maximum throughput, with processors often running idle cycles. There are also
many situations where large amounts of processing power is needed, but the price of a
‘super computer’ matching the requirements needed make such a machine unfeasible.

This project looks into specifying a protocol, and then building an application that
will allow machines on a network to set up connections between themselves and allow for
resources to be shared between neighbors. We will also need to look at the way in which
neighboring machines are chosen, so that optimum resource usage can be obtained.

1.1 Objectives

Following objectives must be fulfilled in order to claim that the project is a
success.

i) Study at least one existing peer to peer file sharing application

Two most popular applications namely Napster and Gnutella have been studied in
detail (Section 2) before developing a peer to peer file sharing application.

i1) Specify a peer to peer protocol that can be used to coordinate resource sharing

The protocol we need to design must be able to communicate between peers,
querying cach othcr about what resources they can sharc. Although we cannot say for
sure what resources people will want to share, but we will make the protocol extendable,
efficient and scalable.

il Create an application to share resources between machines.

In order to test our protocol we need to create an application that uses it to share
resources. We will use this application to share computer files.

1.2 Peer to Peer Networks

This section of the report deals with the background research into the design of
peer-to-peer networks and applications. It will look at the underlying protocols of such
applications and identify key features.

Peer to peer technology has been used for almost as long as there have been
computer networks. The internet itself can be seen as a large peer to peer network, with
data passing from router to router. In general, a peer to peer system can fall into one of

P2P File Sharing Application ' 1

Chapter 1 Introduction

the two categories. The first is a full distributed (pure) peer to peer system. The second is
a central server peer to peer system.

A pure peer to peer system can be described as “any application or process that
uses a distributed architecture and direct bi-directional communication between
autonomous resources without central coordination and management” {1]. The nodes in
the network are equal in functionality, i.e. each node is both a client and a server (a
servent). When a node joins the network, it connects to one or more other nodes. These
nodes are its neighbouring peers. Communication between nodes is done through
message passing between neighbours. For example in Figure 1.1, to communicate with
node I, node A must pass a message to its neighbours (B and/or C), who will then pass the
message to their neighbours; and so on until node 1 reccives the message. The method
used to forward data between nodes is dependent on the system being used. The Gnutella
network floods the data to all of its neighbours, excluding the one that sent it. IP routers
use routing tables to decide which peer is the most appropriate recipient for the message,
only flooding if a decision cannot be madec.

Figure 1.1 Example Peer to Peer Network

Pure peer to peer networks have the advantage that there is no central point of
failure. This means that the network should be able to loose some nodes/ connections
without collapsing the entire system. Take the of example network in Figure 1.1. Suppose
nodes D and F become disconnected, and node E looses its connection to node C. This
gives us a network similar to Figure 1.2. Despite the loss of these two nodes, and node
E’s connection to node C, it is still possible for all the remaining nodes to communicate
with each other.

Fig. 1.2 The p2p network after loosing nodcs/ connections.

P2P File Sharing Application 2

Chapter 1 Introduction

Another advantage of pure peer to peer networks is the scalability of these
systems. Each node sees only its neighbours, and so only needs to scale in proportion to
them. For example, suppose nodes can have at most two neighbours. The nodes could
then form a long chain of connections with less cost to any individual node. Pure peer to
peer networks do have disadvantages though. The main disadvantage is the same as the
main advantage, no central control. This means that any work being done between nodes
must be coordinated by the nodes themselves. This leads to more complex applications.
Also, without central control it is difficult to control data distribution. If we take file
sharing applications, it is very hard to stop the sharing of copyright material. This is
because several nodes can download the same file at once and the file can spread across
the network very quickly. Whercas it is rclatively casy and cost cfficicni 1o lakc onc uscr
to court and have them remove their copy of the file, it become more expensive when you
are taking many hundred users to court.

The ease and speed with which messages pass between nodes also causes a
security risk to users. Suppose node E in Figure 1.1 is infected with a virus that
automatically copies itself to neighbouring peers. It would very quickly infect the entire
network. Viruses like this do exist. The VBS.Gnutella virus was discovered in May
2000{2]. This virus was fairly harmless, creating and sharing both a copy of itself and a
file containing the victim’s name. The method of transmission was also fairly basic, with
the virus creating a shared file with an appealing name (such as Gladiator.vbs, or
Battlefield Earth.vbs). It was hoped that users would think that they were downloading
- the named file but actually would be downloading the virus. Since then several advanced
viruses have been created. W32.Gnuman.Worm was discovered in February 2001 [3].
Unlike VBS.Gnutella this virus changes its filename to match any query that has been
made, thus increasing the potential number of contractors. This virus also provides a
greater security risk because it opens a port on the infected machine.

On the whole, peer to peer networks are being seen as ‘another vector of delivery
for malicious code’ [4]. Because many peer to peer applications involve transferring of
files from a possibly unknown source, users can never be sure whether the file they are
downloading is actually the file they want. Even if the file they downloaded is the file
they want, it still may be infected with a virus. It is also feared that a virus could connect
a uscr 10 a peer to peer network without his/his/her knowledge [4). The virus could be
spread by any method, and provided it doesn’t set off a virus protector it could start up a
servent to a peer to peer network without the user realising. Many firewall setups
wouldn’t detect this attack because they tend only to block incoming connections. In
contrast to pure peer to peer systems, other type of peer to peer technology employs the
use of a central server. Consider the network in Figure 1.3:

A c
Central
Server

5 © @

Fig. 1.3 An Example of Peer to Peer Network

DD 270 Ol vsstocce Aovon bl o an ”~

Chapter | Introduction

Rather than passing messages between peers, each message is sent to the central
server. The central server then decides who should receive the message, and then
forwards it on to them. At first glance this looks like the classic client server network
model, and in many ways it is similar. The difference between the two is that the
messages sent through the central server are often only very simple, with any other data
transfers being done directly between peers. For example, the Napster network when it
still operated used to use the central server to hold a database of which music files were
being shared by which peers [5]. Once a peer had the list of files another peer was
sharing, all other communications (such as transfer requests) were sent directly between
the two peers.

The advantages and disadvantages of central server peer to peer networking are
opposite to the pros and cons of pure peer to peer networks. The biggest pro of the central
server is its central control. As mentioned above, it is easier to co-ordinate tasks between
nodes if there is a central server. Also, it is easier for a company to monitor the use of
system thus creating a more secure environment, and more importantly for a company, it
provides a base for billing peers for use of the network.

Although many of the security floors that affect pure peer to peer networks would
also affect central server nctworks, scveral can be climinated. In case of the
W32.Gnuman. Worm, the file transmitted may have any name, but it is always a Windows
executable (exe) file of size 8192 Bytes [3]. With this knowledge, the central server could
. be designed to identify requests for these files and block them.

The main disadvantage of central server peer to peer networks is the scalability
issues. Suppose the central server in Figure 1.3 can only support the 8 nodes shown. If a
ninth node was to be added either another central server would have to be added, or the
server would have to be upgraded. Because the server would only be upgraded a certain
number of times, eventually another server would need to be used. This then poses
problems of synchronising the servers, so that a node connccted to server A could conncct
1o a node connccted to server B.

In conclusion, the style of peer to peer networking used is dependent on the
application being developed and the requirements of the company producing the product.
If the application is to be deployed on a large ‘scale, it is cost effective to use a pure peer
to peer solution. If the application requires any element of central control, and the

scalability issues are not seen as a problem, then the central server approach is more
effective.

1.3 Resource Sharing
Many of the peer to peer’ technologies available today are used to share resources

between peers. The following two subsections discuss two of the most commonly shared
resources, files and processor cycles.

1.3.1 File Sharing

File sharing applications are the most well known of all of the peer to peer
technologies. It is common to see peer to peer technologies described as ‘Napster/

P2P File Sharing Application 4

Chapter 1 Introduction

Gnutella like’ due to the popularity of these file sharing applications. The popularity and
the publicity of these services stem from illegal sharing of copyright material, such as
music and movies. Users are attracted to the file sharing applications because of their
ability to download entire movies and CDs at no cost. This theft of copyright material has
lead to many high profile court cases, which in turn advertises the technology to more
users. It is important to note that there are many people who only download legal files,
and there are also some applications that bill the users for copyright material.

The next chapter will discuss two of the most famous file sharing applications,
Napster (a central server peer to peer system), and Gnutella (a pure peer to peer system).

1.3.2 Grid Computing

Grid computing is the name given to applications that use several computers to
complete a task. These applications are becoming more and more popular due to the
increasing power/ price ratio of desktop PC’s and the high performance of the networks
that connect them. We will be taking grid computing as our example for non- file
resource sharing,

Grid computing solutions are best suited to applications where large volumes of
raw data need to be processed. It works effectively only when this large data can be
segmented into smaller independent data units (often called work units). One such
. application is seti@home [15). Seti@home uses data recorded by the Arecibo telescope in
Puerto Rico to search for extra-terrestrial intelligence. The problem with this is that the
data produced per day is too large to be processed by a single machine in any reasonable
amount of time. The solution to this is to break down the data into work units, and allow
people to download these and process them at home. The seti@home application runs as
an idle process on many machines around the world, automatically downloading the work
units as needed. This is an example of processor sharing.

There are several problems with Grid computing solutions. Firstly, the end users
must be trusted enough to perform the correct processing on the data received without
falsifying results. Another major problem is that of lost work units. If the application
sends out each unit one at a time, the system would experience problems if any of this
data was corrupted on the network, or simply never returned. To work around this
problem most grid computing systems store all of the data sent out until a response is
returned. If after a certain time out period no response has been heard the work unit is
sent out to another end user. In all, grid computing solutions are being used in
environments where there is often a lot of wasted computer power (e.g. large offices,
universities), or via voluntary systems such as seti@home. The types of applications are
often medical or scientific where large amounts of data are to be processed.

P2P File Sharing Application 5

Chapter 2
Existing Implementations

Chapter 2 Existing Implementations

2. Existing Implementations

The implementations presented in this chapter are the best known from the file
sharing type of P2P applications. The documentation and tcchnical specifications of the
available systems help to give a detailed description and analysis of their architecture and
protocols. In order to analyze the systems from the user point of view, all the described
applications have been installed and used for at least half a year.

2.1 Napster

Napster is a program for MP3 (MPEG-1 Layer 3) files exchange [5]. This is a
peer-to-peer application that made many people look differently at Internet. Before
looking into Napster’s details, let us have a look at the history of Napster.

The recording industry that is closely related to the Napster boom was always in
control of its business, even when the well known high-quality digital sound format
MPEG-1 appeared. The new format gave the possibility to store songs of a near CD
quality in relatively small files, and to distribute these files. There began to appear more
and more websites having big lists of MP3 files being offered for download. But it was
possible for the recording industry to shut them down, or at least to ask the people behind
these services to shorten their lists. Some of them were even brought to court. But the
- possibility to have any song we like at hand, to make our own collection, to exchange
songs with our friends, was very attractive and there was a way to get around recording
industry control.

Shawn Fanning, a student at Northeastern University (Boston, MA),in January
1999 at the age of 19 decided to create an application that gave the possibility to campus
students to share MP3 files. By the end of the same year this application was launched on
the campus of Indiana University. It spread very quickly despite the problems and fights
with university administration, and the Napster Community grew by leaps and bounds.
Napster service was introduced to the public through www.download.com and shortly
became the most downloaded software on the site. Napster has been named the fastest
growing application in the history of the Internet by Media Metrix, an Internet research
company. Nearly 5 million people used Napster in July 2000 compared to 1.1 million in
February, the first month the Napster use was measured [19].

It turned out to be not so easy to shut the Napster service down, as it was in the
casc of web servers with copyright content. Alrcady in December 1999 RIAA (Recording
Industry Association of America) sued Napster for copyright infringement and related
state law violations. Then in April 2000 the heavy metal rock group, Metallica, sued
Napster for copyright infringement and racketecring. Rapper Dr. Dre followed suit two
weeks later. In October 2000 Napster announced it was partnering with the German
media giant, Bertelsmann AG, to develop a new membership-based distribution system
that would guarantee payments to artists. Under the deal, Bertelsmann would drop its
lawsuit against Napster, make its music catalog available and gain the right to buy a stake
in Napster.

P2P File Sharing Application 6

Chapter 2 Existing Implementations

To explain why it was not that easy to judge the Napster creators, and finally shut
down the service by March 2001, let us take a look at how Napster works, at a very
superficial level.

First of all there is a client-part piece of software we have to install in order to use
Napster. Most of the pecr-to-pecr implementations have their own client side application.
Then there is a set of computers that are intended for Napster network organization. They
are keeping track of the registered users, the content the users share, type of connection,
user presence online and some other things. We cannot say they are servers in the context
we define a “server" in the client server model. They do not store the contents that users
are searching for, they just store the index of filenames and where the files are located.
These computers are located at Napster’s Headquarters and use distributed techniques for
index and user management. As we shall see, they are acting more as routers in the peer-
to-peer environment, than as servers. We will still use the “server” term when talking
about these special-purpose computers.

Afier the user installs and launches the client-side software, it automatically
connects to one such server. First time, the user has to register by entering a username and
password. Usernames are unique in the Napster network, and the reason is explained
below. After registration the user specifies the directory of files open for sharing. The
username, the password, details about the connection, user’s current IP and port number,
as well as the information about the shared files is sent to the server where it is stored for
future reference.

When a registered user launches the client, it connects to one of the servers
(actually we can see them all as onc, as this is transparent for thc user) and it scnds the
information that might have changed from last login, such as IP address and port number,
the list of shared files. The server also internally updates the user's status as "online". At
this moment the user becomes an active part of the Napster community, and can benefit
from services, as well as provide the same services to others. For example, the user wants
to find a certain song. He/she enters the search parameters, presses the search button and
the query is sent to the server for execution. The search results are sent back to the user,
together with the IP address, port number and other connection details for each successful
search hit. These search results are presented in a user-friendly way, so that the user can
sort the results by different parameters. When the user finds the desired song and clicks
on the link, a direct connection is made between this user's computer (peer) and the
computer (peer) that is holding the song (file) itself. A peer-to-peer connection is
established and the download process begins.

For the second peer the described process looks a little bit different. Let us say the
user does not do anything, but the Napster client software is running. Besides the above
described functionality, that is clearly client-oriented, the same application has a kind of
server-oriented functionality. There is a "process" that is listening on a specific port for
incoming connections from other peers. Therefore, after receiving a request and after the
connection is established, for this user the described process will look like an upload, or
more simple, as a provider of service by giving the shared file. The user can specify how
many simultaneous downloads and uploads he/she wants to have, in such a way
specifying both his/her interest in the services, and his/her contribution to the services.

P2P File Sharing Application 7

Chapter 2 Existing Implementations

After each successful download the client reports to the server some information, both for
logging and for catalog (index) updating.

2.1.1 Napster Protocol Details

In order to make an analysis of Napster protocol and architecture, we will go into
some technical details about structure of the messages and some significant examples of
messages. They exemplify the basics of the protocol and exhibit advantages and
disadvantages. The complete protocol specifications can be found in [10] and [18].

2.1.1.1 Client-Server protocol

Napster uses TCP for client to server communication. Typically the servers run
on ports 8888 and 7777. This is different from the *metaserver' (or redirector) which runs
on port 8875.

Each message to/from the server is in the form of:

<length><type><data>
Where <length> and <type> are 2 bytes each. <length> specifies the length in bytes of the
<data> portion of the message. Detail of the messages can be found in Appendix A.

- 2.1.1.2 Client-Client Protocol

File transfer occur directly between clients without passing through the server.
There are four transfer modes, upload, download, firewalled upload, firewalled download.
The normal method of transfer is that the client wishing to download a file makes a TCP
connection to the client holding the file on their data port. However, in the case where
the client sharing the file is behind a firewall, it is necessary for them to "push" the data
by making a TCP connection to the downloader’s data port.

Normal Downloading

Regardless of which mode, the downloading client will first issue either a search
(200) or browse (211) command to the server. This returns a list of files and information
on the client sharin the file. To request a download, a get (203) request is sent to the
server. The server will respond with a get ack (204) containing more detailed
information.

This is the point at which the different methods diverge. If the 204 get ack says
that the remote client’s data port is 0, you must send a 500 request to the server requesting
that the remote client send the data to you. 1In this case you wait for the remote client to
connect to your own data port.

In the case where the sharing client is not firewalled, you make a TCP connection
to the data port specified in the 204 message from the server. The remote client should
accept the connection and immediately send one ASCII char, ‘1' (ASCII 49). Once you
read this char, you send a request for the file you wish to download. First send the string
"GET" in a single packet, and then send

<mynick> "<filename>" <offset>

A TY V) D . 2 2 e O

Chapter 2 Existing Implementations

Where <mynick> is your napster user name, <filename> is the file you wish to download,
and <offset> if the byte offst in the file to begin the transfer at (if you are downloading for
the first time, and not resuming a prior transfer, you should uses 0 to start at the beginning
of the file).

The remote client will then return the file size, or an error message such as
"INVALID REQUEST" or "FILE NOT SHARED". Note that the file size is not
terminated in any special way, and the best way to figure out the size is to keep reading
until you hit a character that is not a digit (it will usually be Oxff which is the start of the
MP3 frame sync header, but if a ID3v2 tag is present it might look different).
Immediately following the file size is where the data stream for the file begins.

Once the data transfer is initiated, the downloader should notify the server that
they are downloading a file by sending the 218 message. Once the transfer is complete,
you send a 219 message to indicate you have finished the download. Note that this is
cumulative, so that if you are downloading multiple files, you send one 218/219 pair for
EACH concurrent download—this is how the server knows how many transfers you have
going on. Likewise, the up loader should send one 220 message for each upload, and one
221 when each upload has finished.

Firewalled Downloading

As described above, when the file nceds to be pushed from a client behind a
fircwall, the downloader scnds a 500 message to the server. This causcs a 501 message to
be sent to the up loader, which is similar to the 204 message for a normal download.

Once the uploader receives the 501 message from the server, they should make a
TCP connection to the downloader's data port (given in the 501 message). Upon
connection, the downloader's client will sent one byte, the ASCII character '1'. The
uploader should then send the string "SEND" in a single packet, and then the information:
<mynick> "<filename>" <size>
where <mynick> is the uploader's napster user name, <filename> is the file being sent,
and <size> is the size of the file in bytes.

Upon receipt, the downloading client will either send the byte offset at whceih the
transfer should start, or an error message such as "INVALID REQUEST". The byte
offset should be sent as a single packet in plain ASCII digits. Just as with above, a 0 byte
offset indicates the transfer should begin at the start of the file.

Each client should notify the server that they are uploading or downloading with
the 218/219 (downloading) or 220/221 (uploading) command pairs.

Client to Client Browsing

Napster 2.0 BETA 8 adds a feature which allows direct client-to-client browsing
of file lists. To request a browse, a client uses the

640 <nick>
command. The server then sends a

640 <requester>

DP2D Eils Chaviveer Avmmlsrnatine O

Chapter 2 Existing Implementations

to the client which is getting browsed with the nick of the client that is requesting the
browse. If the client accepts the browse request, it sends back a
641 <requestor>
to the server with the nick of the client requesting the browse. The server then sends a
641 <nick> <ip> <port>
to the requesting client. In the case of an error, the server will send a 642 command in
response to the 640 command.

The browsing client then makes a TCP conection to the remote client's data port.
After getting the "1" character, the browsing client sends a

GETLIST
At which point the remote client sends its nick followed by a linefeed (\n) by itself in a
single packet (ie, one write() call)

<nick> LF
followed by the list of files being shared (the format being the same as the data of the
"share" command). Each line is terminated by a linefeed char. At the end of the list, an
additional linefeed char is sent and then the client closes the connection.

In the case that the remote client is firewalled, the browse list will have to be
pushed to the requesting client. The remote client makes a TCP connection to the
requesting client, then sends :

SENDLIST <nick>\n
followed by the list of files, as with the "GETLIST" command response.

2.1.2 Analysis

Although Napster became so popular and spread all over the world in a very short
time because of the services it offered, and not because of its architecture and protocol
specification, it still made a lot of IT professionals think about the technology behind it.
One reason is Napster’s ability to cope with scalability in an extreme rate of growth, the
huge number of users that joined the community, without shuting down the Napster
nctwork, without overloading the Napster scrvers (as might happen if a client-scrver
model was used), without causing big problems to the Internet traffic in general. In other
words Napster and the technology behind it showed a previously unseen degree of
scalability, and this was thc start for diffcrent companics and cnthusiasts to begin
developing their own implementations of peer-to-peer. Also in the academic world it has
attracted attention, leading to the introduction of more research papers on this technology.

With respect to the pecr-to-peer concept, Napster is a hybrid modcl of P2P. It has
a central computer (or a distributed network of such computers) that performs some
special tasks for the network to function. Napster’s scalability is due to the fact that even
if there is a server, to which the clients connect, and which is a central point for the whole
network, its functions are quite different from those a server in a client-server model has.
Its role in the network is more organizational than for providing of services.

In the Napster case the main purpose of this server is to keep the catalog of shared
files in the network, keep the information where these files are located, perform search
through this catalog on behalf of the user, and report all the results back together with all
the information needed to establish a direct peer-to-peer connection between the
requesting peer and the one that holds the requested data. It acts as a router to the

P2P File Sharing Application 10

Chapter 2 : Existing Implementations

requester, as the client is given the contact address where he/she can find what he/she is
looking for. It still seems that there is a lot of work that the server performs, especially if
looking into protocol details, but this still takes much less time than performing uploads
of large media files to the client in client/server architectures.

From another point of view the existence of this server makes the network
dependent on it, as the crash of the server would mean the crash of the whole network.
Besides, as the scrver stores the content index of all the registered uscrs, we cannot spcak
about anonymity and privacy in such a nctwork.

A gteat concern in a peer-to-peer network are the modem users, with unreliable
and slow connections.

First of all, all the computers that connect to Internet using a modem have
dynamic IP addresses (as usual), and second, most of them are behind a firewall. The
problem of the permanently changing IP address is solved by Napster in a well known
way — the users are registered using a unique nickname, thus bypassing the DNS system
and permanent IP addresses. The same method is used by ICQ for example, with the
diffcrence that User Identification Numbers (UIDs) arc uscd as identificrs instcad of
nicknames. In Napster the nicknamc is what identifics a uscr in the network, and not its IP
address or Domain Namc. Every time a uscr connccets to the network, the client sends to
the server its current address, port number, and these are used later for direct connection
between clients. The firewall problem is solved by Napster based on the possibility of the
client behind the firewall to make outgoing TCP connections, being unable to receive
messages. This is known as ”pushing” data (see Napster protocol details, messages
500/501). Actually, the same method is used by other implementations to solve the
firewall problem.

Despite the fact that Napster became so popular, and it was used by a lot of users
before it was shut down, it has some drawbacks that we want to point out. One of the
main drawbacks we have already mentioned — that is the presence of a central server. This
makes the network easier to shutdown and more vulnerable to external attacks. It is
enough to shutdown the server, or to find a security hole in the server, and the whole
network will be affected. Another limitation of Napster is the exchange of just MP3 files.
Some can regard this as a good thing, because there is more order in the network, and
there is less threat of viruses, which have not yet found their way into MP3 format. So, it
is not a general purpose peer-to-peer network, it is rather specialized. But even for MP3
files exchange, the search engine is quite weak. The search is performed only as
substrings of filenames, not distinguishing between the author and songname, despite the
fact that there are two separate fields for them in the client-side search window.
Therefore, if the search is quite general, or the secarch string or keyword is ofien
encountered in song names, then there are plenty of results, from which only the first 100
are displayed, ending in the possibility that you will not find the song you seek even if it
is available in the network.

Another problem that is not addressed in Napster is corrupted or broken files that
can very quickly spread among a lot of nodes. This is because in the case of a transfer
interrupt, the file is written in the shared directory and the index on the server is updated,
whether the file was completely downloaded or not.

P2P File Sharing Application 11

Chapter 2 _ Existing Implementations

It is worth mentioning that connection speed information does not always
correspond to the real speed. Some users claim to have a slow connection while they have
a fast one, so that it is not so attractive for other users to connect to them. That is why,
from the practice of using Napster, we can say that the ping time value is more
informative. Napster has a lot of successors that try to improve on the Napster model by
making changes and additions to the Napster protocol.

2.2 Gnutella

Gnutclla is another representative of peer-to-pecr networking. It was originally
developed by programmers inside America Online's Nullsoft (developers of Winamp, the
popular MP3 player), but without the knowledge of AOL's top cxecutives. When Gnutella
was ready to deploy, the developers put it for public download on the Nullsoft website.
Gnutella was there for a few hours only before it was taken down, but during that time
several thousands downioads occurred. Using these downloads programmers reverse-
engineered the software and created their own Gnutella software packages.

Gnutella works much like Napster, but at the same time it is quite different. The
main difference is that in Gnutella’s variant of peer-to-peer there is no central server at
all. We can speak about Gnutella as a pure peer-to-peer network with a completely
decentralized protocol. The only component parts of the network are the peers, and the
logical network is formed dynamically every time you log into the network. Your
computer connects directly to a couple of other computers, each of which are connected
to some other computers, creating a tree chain of members that quickly becomes
enormous. You can even specify how big you would like the network to be, by setting
some protocol specific information that will be used by the piece of software that you
have to install in your computer in order to be able to become a part of the network. The
information you provide is used to build the virtual network that you think better suits
you taking into account your own network parameters and the character of the
information you share.

Once attached to the network, peers interact with each other by means of
messages. Peers will create and initiate a broadcast of messages as well as rebroadcasting

others (receiving and transmitting to neighbors). The messages allowed in the network are
[257:

PING MESSAGE — message directed at a host to check its presence in the network, as
well as to announce peer’s own presence (the presence of peer that issues the message).

PONG MESSAGE — a reply to a ping. The pong message contains information about the
peer such as their IP address and port as well as the number of files shared and the total
sizc of those filcs. Pcers forward this kind of message to their neighbors so that it is
possible to later {ind other peers. This is nceded in case there is a disconnect in the
network.

QUERY MESSAGE — these are messages sent when searching for certain information, and
can get forwarded throughout the entire network. Query messages are uniquely identified,
but their source is unknown.

P2P File Sharing Application 12

wnaper £ Existing Implementations

QUERY RESPONSE MESSAGE - these are replics to query messages, and they include
the information necessary to download the file (IP, port, and other location information).
Responses also contain a unique client ID associated with the replying peer. These
messages are propagated backwards along the path that the query message originally
took. Since these messages are not broadcast it becomes impossible to trace all query
responses in the system.

GET/PUSH MESSAGE - get messages are simply a request for a file returned by a query.
The requesting peer connects to the serving peer directly and requests the file. Certain
hosts, usually located behind a firewall, are unable to directly respond to requests for
files. For this reason the Gnutella protocol includes push messages. Push messages
request the serving client to initiate the connection to the requesting peer and upload the
file. However, if both peers are located behind a firewall a connection between the two
will be impossible.

2.2.1 Gnutella Protocol Details

Next we consider how Gnutella protocol works, and then we discuss the most

important issues of this kind of implementation. This more or less detailed and useful
information is provided by Jerome Kuptz [22].
1. The Gnutella application on your desktop is actually a peer, acting as both client and
server in interactions with a network of similar peers. Unlike Napster, Gnutella has no
- central servers to which it can connect for information. Before it can begin swapping
files, your pecr must be told (by the user or from its own databasc) the IP address of one
other peer to which it can connect.

2. Your Gnutella peer transmits a handshake message ("GNUTELLA
CONNECT/0.4\n\n") to the other peer. The handshake identifics you to the other peer,
which in return sends back a confirmation ("GNUTELLA OK\n\n").

3. Your peer sends a ping request to the other peer, announcing its presence on the
network. The ping request includes a time-to-live (TTL) count, which states how many
times the request can be forwarded to other computers. The default for most Gnutella
peers is 7.

>>> CONTENTS OF HEADER

0-15 GUID (Globally Unique Identifier)
16 Messaging Identifier

0x00 Ping

0x0] Pong

0x41 Push

0x80 Query

0x81 Query results
17 TTL
18 Hops

19-22 Payload length

>>> CONTENTS OF PING

DD 2702 €L osloice Ao o udl? o 1

Chapter 2 ‘ Existing Implementations

No payload. Just the header is sent as the "I’'m here" message.

4. The other peer replies to your ping with a pong, which contains its IP address and file
sharing information (total files and kilobytes shared).

>>> CONTENTS OF PONG

0-1 Port

2-5 IP address

6-9 Number of shared filcs on the host

10-13 Total kilobytes of shared files on the host

5. The other peer also forwards your ping to additional Gnutella peers it knows about,
after first reducing the TTL count by 1, from 7 to 6. Each peer that receives the packet
similarly subtracts 1 from the TTL and forwards the packet to others. Many peers end up
forwarding your ping to one another over and over. Gnutella relies on fat bandwidth to
overcome this inefficiency. Users raising their TTLs past 7 could flood the Net with
trillions of pings. To keep Gnutella efficient, other peers will adjust high TTLs before
forwarding them.

>>> RULES FOR FORWARDS

. Hops > 7 — drop the message, because it has exceeded the maximum TTL of 7.
TTL > 50 — drop the mcssage.

7 < TTL < 50 — possibly overzealous users. Adjust TTL to 7.

TTL + hops > 7 — adjust to TTL = 7-hops (maximum 7).

6. Each peer that receives your ping sends back a pong to your peer, routing the pong
back along the path of the ping.

7. As pongs arrive, your hostcatcher collects the IP addresses of available peers. They
may be anywhere on the Internet, but all are at most seven degrees of separation from
you. This network of peers known to your own node is your "horizon”.

8. A typical radius includes 2,000 to 10,000 other peers, with 500,000 to 1 million files.
Gnutella's open architecture mecans you can also share files with users of compatible
programs such as Gnutella or Gnucleus [29].

9. To find a file, you enter a search term into the Gnutella interface on your screen. Your
peer then sends a query directly to every peer known to your peer.

>>> CONTENTS OF QUERY

0-1 minimum connection speed of responding servers
2+ NULL terminated string of search criteria

P2P File Sharing Application 14

Chapter 2 Existing Implementations

10. Each peer searches its local files for matches to your query. If it does not find any, it
does not reply. This prevents your computer from being bombarded with "no results"
messages.

11. If there are one or more matches, a query results message is routed to your peer,
containing the IP address of the sender and the matching file name. Unlike Napster or a
Web search engine, your peer does not know when the search process is complete: Peers
that have not replicd either have found no results, or arc still working on a rcply. Newer
implementations allow the user to set the duration of the search.

>>> CONTENTS OF RESULTS
0 Number of hits

1-2 Port

3-6 IP address

7-10 Speed in kilobits/sec of responding host
11+ Results start (there are n of these)
Index
Size of file in bytes
8+ File name terminated with a double NULL
Last 16 bytes GUID identifying the client to be used during a push request

12. When you select one of the query results for downloading, your peer creates a
standard HTTP request (the kind used by browsers to request Web pages) from the IP
address and filename in the results message. It sends this request directly to the peer,
which returns the file via HTTP. This is part of what makes Gnutella networks hard to
shut down, as their file transfers look just like ordinary Web traffic.

13. If the file you are after is hidden behind a firewall, your peer will issue a push request
— a broadcast message that winds its way around the network until it gets to the recipient,
which responds by connecting to your peer and transmitting the file. An estimated 50
percent of Gnutella traffic is across firewalls.

>>> CONTENTS OF PUSH

0-15 Client identifier from the results message
16-19 File index

20-23 1P address to push to

24-25 Port to push to

14. Peers on low-bandwidth networks will miss (or "drop") messages, causing pings,
pongs, queries, and replies to be lost. This happens not only to messages to and from the
low-bandwidth computer, but to any to which it is trying to forward packets. In other
words, a huge portion of your radius can "go dark," becoming unreachable and unusable
(see Figure 2.1, 2.2 and 2.3). This is another incfficicncy inherent in Gnutclla’s serverless
structure.

P2P File Sharing Application 15

Chapter 2 Existing Implementations

2.2.2 Analysis

We can now evaluate Gnutella’s network organization, taking into account the
way the protocol works and the experience of using Gnutella?

Because there is no central point that monitors the connections or the traffic on
this network, and no company is responsible for the software that all the computers are
using, it is quite difficult to keep track of what happens inside the network. Therefore, it
is essentially anonymous. This decentralized architecture also means there is no company
against which to file a copyright-infringement lawsuit. The anonymity is caused also by
the file-transfer method. As mentioned above, all traffic looks like normal HTTP traffic,
which makes it difficult or even impossible to track Gnutella traffic.

Gnutella offers the possibility to share any type of files. This could sound nice, but
it also raises some sccurity problems, as malicious users can usc thce network for
spreading viruses. It is true that such systems as Gnutella, Scour, Freenet do allow viruses
to be spread more easily. But that is the case with any system in which two people
exchange files, whether it is people sharing a disk, as in Gnutella's case, or the Internet
itself [26] [21]. A good example is electronic mail exchange. That is a perfect
environment for a virus to spread, and some well known cases have proven that.
Nevertheless people still use email. You just have to be conscious when clicking with
your mouse on the attachment. With little care and knowledge about viruses, unwanted
surprises can be avoided. The same is truc for the file exchange nctworks. You have to
take responsibility when downloading and launching files. And the extent that a virus can
spread in a peer-to-peer network is much smaller than it is with e-mail, taking into
account the number of users that use c-mail (all Internet uscrs, actually), and the intensity
of mail exchange against file transfers.

10f3
.
S S [= —
= / El_[“' "‘;"T\y::; % A
= :\ -\'\\-: .1’-
-1 ' g’\ y __j/
)sw.‘v"‘:' w2,
N W T -
'i f"'f:;rh
.;ﬂJ,, . £ /.f':w Ej/
/ AR »{" 3 / 3 \
‘rJ \ e "_EJJ"*
4'_«47/" “‘\ N ..: _._L .__ E -/ i
‘r
Clip:.‘t-ia&'tblcd"mrohs:uh ". Lswel el nedvonk fowrns
iy didee.cip2 com P
7EN Cip> e, I

Fig.2.1 Low-traffic network forms

But there are some drawbacks of Gnutella architecture that merit more attention
here. We mention two main problems that are related to each other — network overload,
and the resulting bad scalability. Message traffic in Gnutella network is quite high, and it
consumes a lot of bandwidth. Even if theoretically the number of participating peers can

P2P File Sharing Application 16

Chapter 2 Existing Implementations

be unlimited, the practice shows that such architecture has limited scalability. This is the
reason messages have a TTL value, that specifies the "horizon" beyond which peers can
not see, as well as the small cache of routed messages to prevent re-broadcasting.

Another big problem with Gnutella is the slow-speed peers, connected via a slow
connection. Let us examine what happens in such a case. At the beginning we have a
consistent network of peers, a part of the nodes being connected via modems, these
connections being slow and unreliable (Figure 2.1).

With time, more and more unreliable nodes go offline, or are over flooded with
messages. They become unresponsive (Figure 2.2).

Tratie inrreasas
PRI IISS Cip2 oo fenaEsY CiAk1Lp hogts harnmea LINTASENNSiviR
22000 Clip2.0om, Ino.

Cip2 Listib.ted Seerch Soktions L LA

Fig. 2.2 Traffic increases dial-up hosts become unresponsive

3of3
o0 '
T Na s
e B
o) © L
s -
T
,
::rr.\
=]
Clip2 Cigtribouted Ssacch Sohtons Hetwoi nagﬂgnq

g fessciazzon -
O 2300 Cipl.com, ine.

Fig. 2.3 Network fragments

_ This leads to a situation where instead of having a consistent network of peers we
have just separated segments of peers, that can not communicate between them (Figure
2.3). From the practical using of Gnutella we can say that the network of nodes changes

P2P File Sharing Application 17

Chapter 2 | Existing Implementations

constantly. You can have 10k hosts, and in a minute their number can drop to less than
1k. And this does not happen because suddenly 9k hosts went offline, but because your
peer “neighbors”, through which you accessed the network, went offline.

As specialists at dss.clip2.com, which made an analysis on Gnutella traffic, affirm
about 67,000 bits/sec are necessary for a peer just for message communication in case the
number of query messages in the network reaches the value of 10 per second [23]). And
this means that peers connected via modems (even with 56 kbps) cannot deal with the
high traffic, therefore delaying or just dropping messages. This leads to a situation where
instead of having a consistent network of peers we have just separated segments of peers
(Figure 2.1, 2.2 and 2.3) [24]. As thc same source shows, this barricr of 10 querics per
second was reached at the end of July, during the "Napster Flood", and then by middle of
August, staying around this value until now [23].

—ox!

fhe Navgation Tools Help

Y‘@ iu:lch.%‘a uml.t.n 'r ﬁ Lmumcﬁns :% Cotansuity '@ .uma\y,i

i Ojviee (T semen) -
~ -~ !
i slolice of this lambs (15) |
_@0 Rilanta Ot Tha | amhs Niar ai AMTARMKR T3 100 Mullina (7N EAI“:
Siiznc2 OfThe Lambs ai 601560KB Nodem 100 171.64.215.139 !
1h2 Stence o°the Lambs al BU1 bbUkB 11 109 L an i ”
Silanca_0f_Tha_] arhs()} a AM SANKA T3 117473771113 ” =
Silanc2 Of The Lanbs Dix al 593858KB Cabis 100 213.63.149.138 -}
© | @ guznca otine Lambs {UAX] al J3HUSKE 1 100 Multp e (i) ! ”
o aviRllente_N_The_| amas-’ afi al ‘QRNRRKA Nndem 1N 1R 1372111908 .
© Silanc2 ofthe Lambs 2 asf *94000kB Cabiz 100 Muttipe (2) ‘ ’I
2 Sianca ottheLambs Harl ast ‘BHBIgkE 1 100 Multipe tt) .l

e Pl s AT e m et de P ay e cn s e e e LA DA, TR L e L ANG BEASOAT L Al

Cnovntoad ANY) (Dewatoad 811,) [cancel) (RiowseHomt | [Growed

! |

(Hatowaioat) (o oach) [Ot) ,
i - j

A1 meeonnnct : P Feadback.

Fig. 2.4 LimeWire screen shot

In turn, these problems lead to issues in search problems. In the Napster case the
search is done on one server, at a high speed, and for all currently connected peers. All
the results are presented at once to the peer that issued the search request. In Gnutella the
search request propagates from one peer to the other, and the results come one by one. An
important detail is that those peers that do not have any files that match the search pattern
do not reply at all. This is done to minimize traffic, but from another point of view, the
requesting peer does not know the actual reason of silence — is it because no files were
found, or because of network problems? If a slow peer, as described above, just drops
such a search request message, the entire network tree beyond that peer is not even aware
of the scarch request. This indicates that the scarch actually was done in a part (or scveral
parts) of the network, and not on the entire network. Also related to this, a lot of files

P2P File Sharing Application 18

Chapter 2 Existing Implementations

have the same name and completely different sizes (music or video, for example). The
screenshot in Figure 2.4 represents a search result for the movie “Silence of the lambs”,
taken from the LimeWire Gnutella client [27]. You can see in the search results several
files that have same name, but different sizes. That indicates incomplete files, or even if
complete, of a worse quality. There is no description that would carry useful information
about the file. So the user could end up spending several hours downloading something,
and then realize that it is of no use, especially if it is a type of file that does not load at all
if it is not complete (MPEG-4). It seems there are no means to continue the download, as
the file is sent via HTTP that does not support a reget method.

The ad hoc character and decentralized architecture of Gnutella led also to a
different kind of spam. First it occurs because "beta or badly written versions of the
Gnutella software send poorly formed results onto the network, using precious
bandwidth" [20]. But the main spam attacks are from those who spread different kind of
advertisements, sending the desired information for any search request. Developers are
looking now for methods to stop spam before it gets out of control. One idea, originally
posted pseudonymously on the Slashdot.org community site, is of considerable interest
among developers. Under that model, the Gnutella software would send a test search
composed entirely of random characters. Any computer that responded to that
meaningless string would then be filtered out of the next, real query [20]. First of all, it
actually doubles the search requests traffic, and second, methods will be found to
overcome this anyway. Another idea is to set up trusted third-party sites, which would
review files on the Gnutella network and approve them as spam free. Software could be
configured to accept only files that had been approved by one of these groups [20]. This
will involve third-party sites, that will have to keep an eye permanently on the network
content and files flow. In this way Gnutella becomes not so anonymous as it now is.

Despite all these drawbacks, the Gnutella architecture is quite powerful in the P2P
world. It is much discussed and is looked upon as a basis for developing an architecture
and protocol for the future.

P2P File Sharing Application 19

Chapter 3
Requirement Analysis

Chapter 3 Requirement Analysis

3. Requirement Analysis

This section of the report deals with the requirements of the project. We will first
detail the requirements of the protocol, and then we will detail the requirements of the
application.

3.1 Protocol Requirements

This section will detail the requirements of the resource sharing protocol. These
requirements are platform independence, extendibility, and scalability.

3.1.1 Platform independence

A key requirement for any communication protocol is to be platform independent.
By this we mean that the protocol should be defined in a format that can be interpreted by
any system using any programming language. The reason why this is an important
requirement is because we are developing a protocol for use in resource sharing
applications, not a protocol for use in our resource sharing application. This is a subtle
difference, but an important one. It is envisioned that our implementation of the protocol
will be the first of many implementations, and so we should define it to be independent of
any tcchnology wc may bc using.

An example of this is the use of bytes in the message headers. Suppose we were to
have one byte field. We should define exactly how the eight bits in this byte are used.
Some technologies will have bytes defined as unsigned numbers between 0-255 both
inclusive, others have signed versions ol bytes c.g. sign and magnitude, Diminished
Radix Complement, Radix Complement, ctc.

3.1.2 Extendable

An important requirement for the protocol is that it should be extendable. At this
time we know of several resources that we wish to be able to share, such as file sharing,
CPU cycles, and memory. If the protocol was defined with only the three resources above
and no way of adding more we would have to re-write the entire protocol and possibly a
large number of applications if we decide to add another resource. For this reason the
protocol needs to be extendable. Another reason why it would be beneficial for the
protocol to be extendable is to help with scalability. For example, suppose we define one
message type for file sharing, with a field for file name. Suppose after a period of time in
operation we study the contents of this field and find that in a high percentage of the
messages the search is for a particular file type, such as avi. If there is a user on the
network that only shares mp3 files, they would still have to process all query messages
despite the fact that the vast majority of them will not return a result. With an extendable
protocol we could introduce an ‘avi file query’ message, which would specifically deal
with searches for avi files. If a user has no avi files the client could be told to pass the
message without reading it.

P2P File Sharing Application 20

Chapter 3 Requirement Analysis

3.1.3 Scalable

The final requirement of the protocol is that it should be scalable. One of the
floors in the Gnutella protocol is that the main header that accompanies every descriptor
is 22-bytes long. Although this is still quite small, it is still several times longer than other
protocol headers such as the Napster header. When dealing with one or two messages, a
long header is not a serious problem, but if we scale up the number of messages the
header length becomes more of an issue.

Fig. 3.1 An example of peer to peer network

Small message sizes are the first step in a scalable protocol. Another step is to
limit the number of messages that are on the network. This can be done by including time
to live (TTL) field. With a TTL field we can set a horizon for the message, the point
where the message is no longer forwarded. This stops the message from exiting on the
network forever. Another way to limit the messages on the network is to have a unique id
for each message, and have the nodes remove any message that they have already seen.
- Suppose we have a network set up as in Figure 3.1.

Suppose node A sends a message to node B with a TTL of 10. Node B decrements
the TTL, and forwards the message to node C. Node C decrements the TTL and forwards
the message to node A. If there was no way of identifying the message, node A would
have no way of knowing that it has sent the message, and so it would decrement the TTL
and forward the message to node B. Node B would have no idea that it had already seen
the message, and so would decrement the TTL and forward the message to C. This would
happen until the TTL reaches zero. Suppose that there is an id file in the message, the
message would go from node A to node B to node C and back to node A. Once at node A,
it would recognize that it has sent the message, and so would not forward it anymore.

3.2 Application Requirements

In this section we will talk about the requirements for the resource sharing
application we build. These requirements are to implement the protocol, to enable file
sharing, to allow for user defined file management, to allow user defined peer
management, to allow the network to be mapped, and for the system to be usable.

3.2.1 Implement the Protocol

The first and possibly most important requirement for the application is that it
implements the protocol that we will design. It must be able to read in the entire message,
process the header, handle the contents of the message if appropriate, and forward the
message. Reading in the entire message should be a simple case of reading from an input
stream. Processing the header will include tasks such as decrementing the TTL and

P2P File Sharing Application 21

Chapter 3 Requirement Analysis

determining what type of message this is. Handling the contents of the message is a stage
that may not occur in many of the messages received. For example, upon processing the
header we may find that the message type is not supported by our application. In this case
the message contents will not need to be processed. Finally, forwarding of the message
will be decided using several rules specified by the protocol. The application must also
ensure that the messages it sends comply with the message formats specified by the
protocol.

3.2.2 Implement the file sharing message

We envision that the protocol we design will be used to request many different
types of resources to be shared. This does not mean that the application needs to be able
to share many different types of resources. In many cases it may not be suitable to have
an ‘all in one’ application that can handle all types of resource sharing requests. Because
of this, and because of time constraints, the application should only handle the sharing of
files.

3.2.3 User defined file management

The application should allow the user to decide which files they share with the
network, along with the location where downloaded files are placed. The first part of this
requirement is a security consideration. The user may have confidential files on their
system, such as usernames and passwords, or files that they cannot legally share, such as
mp3 files, and system files. The application should allow the user to decide which files to
sharc.

Choosing of a download location is mainly a house keeping option. Most users
will want their downloads in a separate directory where they can quickly find them and
access them.

3.2.4 Peer management

The application should allow the user to decide how many peers it wants to
connect to, along with deciding how these peers are. This means the application must
allow the user to add and remove peers at will.

There are several reasons for this. First is security. Suppose the application is
sharing sensitive information for use within a company. The users will want to specify
who connects to them (other members of the company), whilst blocking any other
connections.

Another reason for this requirement is performance. Suppose the application starts
up and immediately has 5000 peers connected to it. Even if these peers only send one
message a second this is still enough to cause significant strain on the system. This could
result in poor performance by the user leading to lost messages. This would compromise
the performance of the network as a whole.

P2P File Sharing Application 22

Chapter 3 Requirement Analysis

3.2.5 Network Mapping

The application should provide the user with some information of how the
network is constructed. By this we mean it should display the users’ peers, those peers’
peers, and so on up to the message horizon. This should be done in a scalable manner.

3.2.6 Usability

A general requirement for the system is that it is easy to use. This requirement is a
rather subjective one because what one person finds easy, another does not. For example,
cxpert users might find it easy for all operations to be executed through keyboard
commands, whereas novice users might prefer a visual interface. For clarity, we will
describe usability as an ease with which a novice user can learn to use the system.

P2P File Sharing Application _ 23

Chapter 4
System Design

Chapter 4 System Design

4. System Design

This chapter describes the design of the system. The first section describes the
protocol design, including message formats and suggestions as to how applications should
handle messages. The second section will discuss the design of the file sharing
application, including architecture design and class break down.

4.1 Protocol Design

The resource sharing protocol is an application layer protocol that passes one of
several message types between peers on the network. Although it is envisioned that the
protocol will be run on top of TCP and IP, this is not part of the specification. The
protocol is to be used in a pure peer to peer environment, and has been designed to be a
more optimised version of the Gnutella protocol [14]. The message itself consists of two
parts. The first part is a fixed length header used mainly for the routing of the message.
The second part is message body, a variable length ficld depending on the type of
message being passed. The message header is shown in Figure 4.1.

Bytes 0 1 2 3 4 5 6 7 8
- +————- - +-———— = ot ——— 1_>—+1—-—1_—+

Next ayloac
| IP Address | UID | TTL lHeaderl Lenglh |
+————- t———— +————= +————= +————= +——=—= +————- - e +

Fig. 4.1 The main header of the resource sharing protocol

The first field in the header is the IP address of the node that originally sends the
message. The address is stored in IPv4 dotted format, with each value between the dots
being stored in its own byte.

The UID field is a field when coupled with the IP address uniquely identifies the
message on the network. This field is an 8 bit unsigned integer. It is up to the client to
specify how the UID is chosen. It may seem that 256 possibilities for the UID would
make unique identification impossible if a node is used for a long period of time, with
256 values being used within a matter of minutes. This is not the case however because
the clients only remember the values for a certain length of time before they timeout.
Because of this it is recommended that the clients repeat the sequence of UIDs once they
run out.

The third field is the TTL or time to live field. This field is actually split into two
sections. The first four bits are an unsigned integer value for the original value of the time
to live. These four bits are never changed throughout the life of the message. The last four
bits are an unsigned integer representing the actual time to live of the message. These four
bits are decremented at every node. This means that for a time to live of 4, the TTL will
look as follows:

01060 01090 time to live =4
0100 0011 time to live =3
0100 0010 time to live =2

P2P File Sharing Application 24

et st s

T~)/38"

Chapter 4 System Design

0100 0001 time to live =1
0100 0000 time to live =4

The reason for this split value for the time to live is to save space in the header
whilst ensuring that any response being sent to a message will only have a horizon up to
the sending node. Suppose the second node in the above example has a response to send,
it will subtract the second 4 bits of the TTL ficld from the first four bits to set the
response TTL to an appropriate value. This is shown below:

Original message= 0100 0011 time to live =3
0100
-0011
0001
Reply= 0001 0001 time to live =1

It may seem that for a file sharing application a horizon of 16 is rather low,
considering many nodes may only have a small number of peers. This is a valid argument
when looking at a file sharing application, but this protocol is designed to be used for
many different types of resource sharing. The reason why this makes a difference is due
to the way people will share resources. If a company is sharing processor cycles, it will
most likely only want to share them within the company. This can be done by limiting the
peers that are connected. All that needs to be done is connect all the nodes within a
company. Suppose each node connects to three other nodes, and these nodes are
connected to further three nodes. We can see how the network size increases with horizon
distance in table 4.2. :

Horizon Distance { Number of Nodes
0 0
1 3
2 8
3 21
4 45
5 93
6 189
7 381
8 765
9 1533

10 3069
11 5141
12 12285
13 24573
14 49149
15 98301
16 196605

Table 4.2 Showing how the number of nodes increases
with horizon (each node having 3 peers)

P2P File Sharing Application 25

Chapter 4 System Design

We can see, the problem of having a horizon of 16 can be solved using sensible
peer selection. The next field is the nextHeader field. This is an unsigned integer that
represents the message type that follows this header. The final field is the payload length
field. This is 16 bit unsigned integer that represents the number of bytes that follow this
header. This means that it is possible to have a message up to 65545bytes ~512Kbytes
long (2'° payload bytes + 9 header bytes).

The first of the message type we will discuss is the query message. This message
has the nextHeader valuc of 1 (00000001) in thc main hcader. Its format is shown in

Figurc 4.3,

Bytes 0 1
“Goootmmmon
l %’p;y | Query

Fig. 4.3 The query message

The query message has a very simple format. The first byte is an unsigned integer
specifying the query type. Currently the only query specified is query type 1
(00000001), the file query. The file query’s query field is an ASCII string containing
the clements of the file name to search for.

It is envisioned that queries for other resources (such as spare CPU cycles) will
use this message with a separate query type. Having the queries specified in such a way
means that we can have up to 256 different query types, satisfying the extendibility
requirement.

The second message type we will discuss is the query hit message sent in response
to the query message. It has the next header value of 2 (00000010) in the main header.
Its format is shown in Figure 4.4.

Bytes 0 1 2 3 4 5
t———— === t————— t=——— +——— tem—— F-—=. ..
| Destination IP Address| UID | Result..
te———- t=——— e ——— F———— Fe———— t———— Fe=— ..

Fig. 4.4 The qucry hit message

The first two fields of the query hit message are the same as the first two fields of
the main header that contained the original query. They arc included so that nodes can
check to see if the message is destined for them. The next field is the result field. The
format of this field is dependent on the original query that was made. Again, the only
specified result field is for file queries. Its format is as follows:

P2P File Sharine Annlication 26

Chapter 4 Spstem Design

1°* Filename

1°* File size (in bytes)
IP address of file owner
2" Filename

2" File size

IP address of file owner
n*™ Filename

nt® file size

IP address of file owner

Each of these fields are ASCII strings, separated by the new line (\n) character. As
you can see the IP address of the owner is repeated for every file result. This at first
appears to be a waste of bandwidth, but there is a reason for it. Suppose a remote node
caches every query hit message it sees. It will soon have a long list of file names/ sizes
and the IP addresses of the machines they reside on. If someone queries this machine it
can search the list of cached responses to return results faster, or possibly return results
that due to horizon size would not have been returned.

When looking at the query hit message it is a valid question to ask why there is
not a query hit type field similar to the query type field. The reason for this is to keep the
- message short and simple. The client should remember all queries it sends using the IP
address/ UID combination, and from that remember what type of query was issued.

The final message type that is specified is the network admin message type. This
has the nextHeader value of 0 (00000000) in the main header. Its format is similar to
the query message (Figure 4.3) with a one byte unsigned integer field to specify the type
of network admin message follows. Two such messages have been specified. The first is
message type 1 (0000001) the peer query message.

The peer query message does not contain a body. It is simple the main header
followed by the admin typc ficld. When a nodce sces this ficld it knows that the query
originator is requesting a list of all peers that are connected to this node. To reply there
are two methods. First (if supported), the node can make a separate connection to the
query originator and send an ASCII string of the nodes IP address foilowed by a spacc
separated list of its peers.

The second method is to send a response along the peer to peer network in a
similar fashion to a query hit message. The entire admin message has the format shown in
Figure 4.5.

Bytes 0 1 2 3 4 5
e et bt R e i fe——— fo-——- t-—-
| typel|Destination IP Address | Result..

pmmm—— tm——— i e tm———- N Fm—— .

Fig. 4.5 The admin message for a peer query response

P2P File Sharing Application 27

Chapter 4 System Design

The admin message type for a peer query response is 256 (11111111). The
destination IP address is the address of the node that sends the peer query. Finally, the
results are sent as an ASCII string in the format mentioned above.

Out of the two response types, the first is favoured more because it keeps the load
off the peer to peer network. The inclusion of the peer query response along the peer to
peer network is to respond to users behind a firewall, or those who are limited by the
number of connections that can be made.

Now wc have the message formats we can discuss how messages arc passcd.
When a nodc receives a message it checks to see i it has cver scen the message belore. It
does this by storing the IP address and UID fields of cvery message processed, and
checking all subscquent messages against this list. This list nceds to be dynamic, with
new message ID’s being added, and old ones timing out after a few seconds. If the
message has been seen before it means that there is a loop in the network. Rather than
process the message again it is just dropped. If the message hasn’t been seen before, a
copy is made for the node to process, while the TTL of the original is decremented. If the
TTL is greater than zero, the message is forwarded. If not, the message is dropped.

Forwarding a message depends on the message type. If the message is a query,
each node floods the message along all connections to all peers except the incoming
connection. If the message is a query hit, the client can either flood the response along all
. network connections, or the more preferred method is for the client to forward the query
hit along the connection that the original query came down.

4.2 Application Design

In this section we will discuss the design of the file sharing application. The
application was designed using an exploratory programming methodology, with the final
version being discussed here. An architecture diagram of the application can be found in
Figure 4.6.

Download Admin
. Message
Download < GU1 Handler

Manager y
II[Upload / Message), N%;:?ée
Handler Handler

A

.P et » Control

Listener Query Hit
‘ﬁ'—] Message
Peer | Handler

Fig. 4.6 File Sharing Application Architecture

PI2P EFile Sharino Annlication M"Q

Chapter 4 System Design

To describe the architecture of the application, we will start at the entry point of
the application, the GUI element. We will then branch off and discuss various other

sections of the architecture.

The GUI element is the graphical user interface to the application. The main

elements it must contain are as follows:

e an area where the user can enter a search string
an area where results can be displayed
an area where the user can view status of any current transfers
an area where the user can specify the maximum number of file transfers
an area where the user can view a list of current peers/ manage peers
an area where the user can add a new peer
an area where the user can specify the maximum number of peers
an area where the user can view a list of shared files/ manage shared files
an area displaying the network topology

The GUI element must be able to convert the user input into a message that the
remote peers will understand, as well as display the messages sent by the remote peer to
this node. Finally, the GUI must be able to pass enough information to the Download
Manager clement in order for it to start a download.

The Download Manager element is used to hold instances of the Download and
Upload clements- end points for all communication that does not occur on the peer to
peer network. It stores these instances, along with providing ways to canccl the transfcr
they represent. The Download Manager creates the Download instances that arc needed
when the user requests a filc to be downloaded. It also listens for any conncction
attempts, creating an Upload instance to handle the connection.

The Upload and Download elements are the endpoints of the file transfer
connections. These elements communicate with each other in the way shown below;

Download Upload

Attempt connection Accept connection

Send request Read request

Read response Send response

If positive response If positive response
Read file Write file

Close connection Close connection

The request that is sent has the format shown in Figure 4.7.

Bytes 0 1 3
o Fm——— Fo———— e Fe———— R -~ ..
|[RequestSize| File name \n file size
N Fm———— R Fm———— Fom———— = +-=. ..

Fig. 4.7 The file request

STy T *) £¥) o 4 Pe ae Ny

Chapter 4 System Design

The file request is a simple message containing the name and the size (in bytes) of
the file in an ASCII string, separated by the new line (\n) character. Precedmg this is the
size of this string in bytes, stored as a 16 bit unsigned integer.

The response to the request follows a similar format to the original request. The
difference is that the string contains an error message instead of a file request. If the
response is not a negative response the message is simple the two byte size field with the
value 0 (00000000 00000000).

To the other side of the GUI element is the Control element. This element stores
instances of the Peer element, the end point of all peer to peer communication. As such, it
must provide methods to add and remove peers following user requests to the GUI. The
control element also acts as a mid point for all messages that are passed either up from the
peer (via the Message handler), or down from the GUL

The Peer listener element listens for new connections from nodes wishing to
become a peer. It simply listens for a connection attempt, and once made passes the
socket to the Control element to create a Pcer element.

The Peer element is perhaps one of the most important elements of the
application. It acts as an cnd point for thc peer to peer communications. It has two major
tasks. The first is to send any messages passed to it from the Control element. The second
task is to read in messages from the remote peer. This is done by reading in the fixed
length header and identifying the Iength of the payload attached. The payload can then be
rcad in. Once the cntirc message has been reccived the Peer clement sends it 1o the
Message Handler clement.

The Message Handler clement rcads all messages that have been sent to the
application and then decides how they should be treated. Upon receiving a message, the
Message Handler users the IP address and UID fields from the header to see if the
message has already been seen. This is done by storing these fields from all new
messages it receives, with the older ones timing out after a defined time. If the message
has been seen before it is dropped, and no more processing is done on it. If the message
. has not been seen the Message Handler reads the nextHeader field from the message
header. If the nextHeader field is one, a copy of the message is passed to the Query
Message Handler. If the field is two, a copy of the message is passed to the Query Hit
Handler. It the field is zero, a copy of the message is passed to the Admin Message
Handler. If the field is of any other value no copies of it are sent anywhere, but the
message is passed to the Control element to be forwarded to all connected peers.

The Admin Message Handler checks the payload of the admin message to see
what action is required. If the admin message is a Peer Query, the Control element is
asked to return a list of the IP addresses of all connected peers. A Peer Query response
message is then created and passed to the Control element to be forwarded to the node
that made the original request. The original message then has its TTL decremented and (if
still valid) is then passed to the Control element (via the Message Handler) to be
forwarded to all peers except the one that sent it originally.

DD 21 Cle o vnnlon e A 1 o e s L ¥aY

Chapter 4 System Design

If the admin message is a Peer Query Response the Admin Message Handler
checks to see if the destination IP address is equal to the applications IP address. If it is,
the contents of the message are retrieved and passed to the GUI element via the Message
Handler and Control elements. If the destination IP address is not equal to the local IP
address, the TTL of the message is decremented and if still valid the message is passed to
the Control class via the Message Handler, to be forwarded as appropriate.

The Query Message Handler is used to process file queries. The first task is to
check the query message to see if the message is a file query. If not, the TTL is
decremented and the message sent for forwarding (as described above). If the message is
a file query the query string is retrieved. This string is then searched for against files
specified by the user. If any files arc found, a query hit message is created and sent for
forwarding in the appropriate manner. Once any responses have been sent, the original
message has its TTL decremented and it too is forwarded as appropriate.

Finally, the Query Hit Message Handler is used to process query hits. The first
task is to see if the query hit is destined for this node using the destination IP address field
in the message. If the message is not for this node, the TTL is decremented and the
message forwarded. If the message is for this node, the resuits are extracted from the
message and passed to the GUI (via the classes in between) to be displayed to the user.

e ye FrsF £ s a4 Fe e -~ .

Chapter 5
Implementation

Chapter 5 Implementation

S. Implementation

This section will discuss the implementation of the file sharing application. We
will first of all discuss some general decisions about the implementation before discussing
the implementation in more depth.

5.1 General Implementation notes

This section details the choice of language used to implement the application,
along with details of the network connections we will use.

5.1.1 Language Choice

The language we used for the implementation of the file sharing application is
Java. Java is a platform independent object oriented programming language developed by
Sun Microsystems. Originally designed for use in set top boxes, the growth in the World
Wide Web opened up a new field for Java applications. It was then seen that the main use
for Java could be in adding interactivity to web pages. It is now used mainly as an
enterprise business solution, with an emphasis on distributed systems.

5.1.2 Network Choice

There are two main network technologies that can be used for the peer to peer
networks connections, TCP sockets and UDP datagram sockets.

TCP, or transmission control protocol, is a way of reliable transition in a network
cnabled by creating a virtual circuit. The protocol cnsurcs that all data scnt by onc
machine is received by the other machine by through a process of sending
acknowledgements for all data reccived. If thc scnder docs not reccive an
acknowlcdgement, it presumes that the data was lost and therefore it retransmits it

UDP, or user datagram protocol, is a connectionless transport protocol. This can
be thought of in the terms of the postal service. If we imagine all the data packets that are
sent are letters to be posted, then it no matter what order we send them in we cannot
guarantee that they will arrive, or what order they will arrive in. This is in stark contrast
to TCP’s ‘virtual circuit’ paradigm where data appears not to get lost or appear in the
wrong order.

Because the effectiveness of the peer to peer network depends on the guaranteed
arrival of messages sent between nodes, we will use TCP sockets for the connections.

3.2 Application Details

This section deals with the actual implementation of the file sharing application.
We will take each of the elements in the design of the system and discuss their translation
into actual Java Classes. Firstly, we look at the design of some miscellaneous classes that
are used in the application.

AN TE FI'F €Y e o4 Fs .. -~

Chapter 5 Implementation

5.2.1 Miscellaneous classes

All but onc of the misccllancous classcs arc data types created to be sent between
different classes in the application. The exception is the Util class that is used to perform
common operations found in many of the classes. We will discuss each of these classes
individually.

5.2.1.1 The Message Class

The message class is a useful data type that is used to store a representation of the
message that will be sent between peers. Its object model is shown in Figure 5.1.

The variables in the message class represent the fields in the file sharing protocol.
There are three constructors that can be used to create an instance of the Message class.
Message() creates a blank message where all of the variables are set to zero. In the case
where the variable is an array, the correct length of the array is given, but its contents are
all zero.

Message
byte(] mainHeader;
byte[] ipAddress;
byte uld;
byte ttlField;
byte nextHeader;
byte(] payloadLength;
byte[] payload;
Message ()
Message (byte[] b, byte[] pl)
Message(byte(] ip, byte uid, byte ttl)
void setipAddress (byte[] ip)
void setUld{byte id)
void setTTLField (byte b)
void setNextReader {byte b)
void setPayloadLength (byte[] b)
void setPayloadLength{int i}
void setPayload (byte[] b)
bytel] getIpAddress ()
byte getUId()
byte getTTLField ()
byte getNextHeader ()
byte(] getPayloadLength ()
byte[] getPayload()
int length()
byte[] toBytes ()
String toString()
byte[] - getQuery ()
MessageldWrapper getMessageId()
bytel} getQueryiitPayload()
String getSearchString()

Fig. 5.1 The object model for the Message class

TINTY TV*F £ s 4 By ae ~

Chapter 5 Implementation

Message(byte[] b, byte[Ipl) creates a message where the bytes for the main header
are stored in the first byte array argument, and the bytes for the payload are stored in the
second byte array.

The Message(byte[] ip, byte uid, byte ttl) constructor allows a message instance to
be created with a specified ip address (first argument), UID (second argument), and TTL
(third argument).

The methods in the Message class are used to either get or set the variables stored
in the class. The exceptions to this are length(), toBytes(), toString(), getQuery(),
getMessageld(), getQueryHitPayload(), getSearchString().

The length() method returns an integer value representing the entire length of the
message in bytes. This will be the length of the payload variable plus 9 (number of bytes
in the header).

The toBytes() method compiles all of the variables data into one byte array,
returning this value.

The toString() method is used to obtain a textual representation of the message.
Each value of the header is listed separately with its value, as is the payload, which is
translated into whichever message type it represents.

The getQuery() method is used to return the all of the bytes in the payload except
the first one. This will be the query string in byte form, if the message is a query message.

The getMessageld() method is used to return an instance of the
MessageldWrapper class created using this messages ipAddress and UID variables, along
with the current time.

The getQueryHitPayload() method returns all of the bytes in the payload except
the first 5. If this is a query hit message, these bytes will be the results (in byte form).

The getSearchString() method returns a string representation of the results of the
getQuery() method. This will be the query string.

5.2.1.2 MessageIDWrapper class

The MessageIDWrapper class is a class that stores the message’s ID (IP address
and UID) along with a value for the time. Its object model is shown in Figure 5.2.

This is a very simple class with only two variables. The messageld variable is a
byte array with 5 elements. The first four elements are an IP address, and the last byte is
the UID of a message. The long time variable is a long representation of the time when
the MessageIDWrapper was created.

The methods in this class simply cither return the variables, or in the case of
toString() return a string representation of this class.

P2P File Sharing Application 34

Chapter 5 Implementation

MessageIdWrapper
bytel[] messageld;
long time;

MessageIdWrapper (byte[] b, long 1)

byte[] getByteArray ()
long getTime ()
String toString()

Fig. 5.2 The object model for the MessageIDWrapper class

5.2.1.3 MessagePeerldWrapper class

The MessagePeerldWrapper class is a data type used to store an instance of the
message along an integer value used to identify which peer the message arrived from. The
object model for this class is shown in Figure 5.3.

MessagePeerIdWrapper
Message message
int peerld

MesgssagePeerIdWrapper ()
MessagePeerIdWrapper (Message m, int i)

void setMaessage (Message m)
void setPeerlId(int i)
Masgsage getMessage ()

int getPeerId()

MessageIdWrapper getMessageld()

Fig. 5.3 The MessagePeerldWrapper object model

There are two constructors for this class. The first constructor initiates the
message variable to null, and the peerld variable to zero. The second constructor has two
arguments used to set the message and integer variables. The methods in the class are
used simply to either set the variables or get access to them.

5.2.1.4 Result class

The Result class is used to represent a result returned in the body of a Query Hit
Message. Its object model is shown in Figure 5.4.

The three variables in the Result class are all strings representing the three fields
returned as part of a result, the file name, the file size, and the owner of the file (IP
address). '

There are three constructors in the Result class. The first takes no arguments,
setting the three variables to empty string values. The next two constructors both take
three arguments used to set the variables. The difference between them is that one uses
String arguments, while the other uses Object arguments which need to be cast to strings.

DID Eilo Chavino dnnlircticon . 25

Chapter 5 Implementation -

Result
String fileName;
String fileSize;
String fileOwner;
Result()
Result (String sl, String s2, String s3)
Result (Object sl, Object s2, Object s3)
void setFileName (String s)
void setFileSize(String s)
void setFileOwner (String s)
String getFileName ()
String getFileSize()
String getFileOwner{)
String toString()

Fig. 5.4 The Result object model

The methods in the result class are simply used to either get or set the three
variables, or in the case of toString() the method returns all the results at once.

5.2.1.5 TransferInfo class
The TransferInfo class is used to store information about a file transfer. Its object
model is shown in Figure 5.5.

The transferld variablc is an integer used by the DownloadManager to identify the
particular file transfer. The fileNamc variable is a string variablc that storcs the name of
the file that this transfer id represents. The progress variable is a string that is uscd to hold
the progress details of the transfer. This is most likely to be either a percentage value, a
number representing the number of bytes downloaded/ remaining, or a representation of
the time lcfi. Finally, the complcted variablc is a Boolcan used to represent if the transfer
has been completed.

TransferInfo

int transferid;

String fileName;

String progress;

boolean completed;
TransferInfo ()

TransferInfo(String sl, String s2)
TransferInfo(int i,String sl, String s2, boolean b)
TransferInfo({int i, String sl, String s2)

void setTransferId(int i)
void setFileName {String s)
void setProgress (String s)
void setCompleted (boolean b)
int getTransferId()

String getFileName ()

String getProgress ()

boolean getCompleted ()

Fig. 5.5 The TransferInfo object model

PID Eilo Charinoa Adnnilinntinm 2A

Chapter 5 Implementation

The class has for constructor methods associated with it. The first constructor has
no arguments, setting the variables of the class to zero, an empty string, or false
depending on the variable type.

The TransferInfo(String s1, String s2) constructor is used to set the fileName
variable (first argument) and the progress of the transfer (second argument). The body of
the constructor also sets the completed variable to false.

The TransferInfo(int i,String s1, String s2, boolean b) and TransferInfo(int i,
String s1, String s2) constructors are both used to set the variables in the class to those
values specified as arguments. The difference between the two constructors is that the
first one takes an argument to specify the completed variable, whereas the second one
automatically sets it to false.

5.2.1.6 Util class

Unlike the previous classes in this section the Util class is not used as a data type
to hold information to be passed between classes. It is used to provide methods that many
classes use, often in relation to bit manipulation. The object model for the Util class is
shown in Figure 5.6.

Util

boclean contains (String sl, String s2)
String byteAddressToStringAddress (bytel] b)
String intToBinary(int in)

Int binaryToInt{String s}

bytel] toByte{int in)

int tolnt(byte{] b)

int tolnt(byte b)

int[} splitByte (byte b)

byte combineInts (int[] in)

Fig. 5.6 The Util object model

The first method contains(String sl, String s2) is used to see if string s2 is
contained in s1. For example, if s2 was ‘ace” and s1 was ‘space’, the method would return
true. The pseudo code algorithm for how this is done is shown in Figure 5.7.

int n = the length of string sl
int index = 0

for{n times)
if after the index"™ char of sl the string starts with s2
return true
index ++

Fig. 5.7 The contains method algorithm

The next method, byteAddressToStringAddress(byte{] b), converts a 4 element
byte array into a string representation of an IPv4 address. It does this by calling the
toln(byte b) method, returning the outputs separated by the ©." character.

TN YTY Fv*? Y7 o+ @ ye . -~

Chapter 5 Implementation

int integerInput
String output

while (integerInput != Q)
output = (integerOutput % 2) + output
integerInput = integerInput / 2

Fig. 5.8 The intToBinary(int in) method algorithm

The intToBinary(int in) method takes an integer argument and returns a string
representation of its unsigned value. For example, if in was 25, the method would return
‘00011001°. If in was 300, the method would return ‘0000000100101100°. The
pseudo cade algorithm for how this is done is shown in Figure 5.8.

binaryTolnt(String s) is a method that does the reverse of the above method. 1t
takes in a string representation of a binary number and returns its integer value. The
algorithm for how this is done is shown in Figure 5.9.

String inputString
Int result
int index =1

for (all the characters in the inputString)
if the character = ‘1’
result = result + 2inde

Fig. 5.9 The binaryTolnt(int in) method algorithm

The toByte(int in) method is used to convert the integer argument into a series of
bytes, returned in a byte array. This method is useful in places where the payload length
field of the protocol’s main header needs to be completed. For example, if the method
was given the argument 300, the byte array returned would have 2 elements, one would
have the value ‘1°, and the other would have the value ‘44’. The pseudo code algorithm
for this method is shown in Figure 5.10.

Convert the input int into a binary string

Split the binary string into a set of B character strings
Convert these strings into ints

Convert these ints into bytes

Return a byte array containing the bytes.

Fig. 5.10 The toByte(int in) method algorithm

The tolnt(byte[] b) method is the reverse of the above method. It converts an array
of bytes into one integer value. It is important to note that for each of these methods the
bytes are taken to be an 8 bit unsigned number. 1n the case where an array of bytes are
used, the integer returned is not the integer values of all of the bytes added together, but
the integer value of the number if the bytes formed one long binary string.

Similar to the above method, the tolnt(byte b) method converts a byte into an
integer. The difference between the methods is that this one only deals with single bytes.

PP Filo Sharinag Annlicating 1

Chapter 5 Implementation

The splitByte(byte b) method is used mainly when processing the protocol main
header’s TTL field. If we remember the TTL byte is actually two 4 bit numbers, this
method takes the byte as an argument and returns an integer array containing these two
numbers.

The combinelnts(int[} in) method is used as the reverse of the above method.
When provided with an array of two integers the method converts them into two binary
strings, concatenates them, and then converts this string into a byte.

5.2.2 The GUI Element

As shown before, the GUI element is responsible for presenting information to the
user, taking user commands and converting them into messages, and sending the correct
information to the download element. The GUI element is implemented using thirteen
classes as shown in Figure 5.11. We will discuss each class in turn.

SearchPanelTableModel
Class
A
X
PeerPanel SearchPanel Edge
Class Class Class
A\
Gui NetworkMapPanel | NetworkMap
Class Class h Class
A \
SetupPanel TransfersPanel Node
Class Class Class
FileLister FileRemover TransfersPanel TableModel
Class Class Class

Fig. 5.11 The GUI element class diagram
5.2.2.1 Gui class

The Gui class builds a JTabbedPane to display the main interface to the user. The
object model diagram is shown in Figure 5.12.

Most of the variables are Swing components whose function can be inferred by
their name. There are also several variables of objects whose names end in ‘Panel’. These
objects will be discussed in later scctions. The String variable ‘localAddress’ is used to
store the IP address of the machine running the application. The Vector variable
‘sharedFiles’ is a vector that contains instances of the File class that represents the shared
files. The File variable ‘downloadLocation’ is used to store the location of the directory

P2P File Sharine Application 39

Chapter 5

Implementation

where downloaded files will be placed. Finally, the in variable ‘numberOfDownloads’
stores the number of file transfers allowed at any one time.

Gui
JPanel contentPane; JTabbedPane jTabbedPane;
JMenuBar menuBar; JMenu menuFile;
JMenultem menuFileExit; JNenultem menuFileSave;
PeerPanel peerPanel; SearchPanel searchPanel;
SetupPanel setupPanel ; TransfersPanel transfersPanel;
NetworkMapPanel networkMapPanel; Control control;
DownloadManager downloadManager; GridLayout gridLayout;
String localaddress; Vector sharedFiles;
File downloadLocation;
int numberOfDownloads;
Gui ()
void init ()
void build()
void menuFileSavePressed()
void menuFileExitPressed(]
void addResults (Vector v)
void downlocad(Result{] r)
void search(String s)
void setDownloadlocation{File f)
void addTransferInfo (TransferInfo t)
void setlLocalAddress (String s)
void updateProgress (Transferinfo t, String s)
void sendPeerQuery ()
void cancelRemoveTransfer (TransferInfo(] t)
void addSharedFiles (Vector v)
String getDownloadLocation ()
Vector getSharedFiles()
void setSharedFiles (Vector v)
void setNumberOfDownloads (int i)
int getNumbexrOfDownloads ()
void setMaxNumberOfPeers (int i)
int getMaxNumberOfPeers ()
int getNumberOfPeers ()
boolean canhddMorePeers()
boolean addPeer (String addressToAdd)
Vector getPeezrkList ()
void updatePeerList ()
void removePeer (int rI)
String getLocalAddress ()
void addEdgeToNetworkMap {String sl, String s2)
void main(String[] args)

Fig. 5.12 The Gui object model

The Constructor for the Gui class does not take any variables. It is designed to be
the constructor called to start the application. The constructor calls two methods, init(),
and then build().

The init() method is used to initialise all of the variables in the Gui class to their
appropriate default values.

Chapter 5

The build() method is used to construct the user interface. Its first task is to set the
size of the application window to 400x400 pixels. Once this has been done, a menu bar is
created with two menu items, menuFileSave and menuFileExit. Action listeners are
assigned to each of these menu items. After this has been done, the panels are added to
the jTabbedPane, and then the jTabbedPane is added to the contentPane.

The menuFileSavePresscd() method is called whenever the menuFileSave menu
item is pressed. Currently this method has no body, but would be the place where the
status of the application could be saved.

The menuFileExitPressed() method is called whenever the menuFileExit menu
item is pressed. This method causes the system to exit.

The addResults(Vector v) method is used to pass a Vector of Results to the
SearchPanel class’ addResult(Vector v) class.

The downioad(Result[] r) method is used to pass an array of Results to the
DownloadManager class’ download(Result[] r) class.

The search(String s) method is uscd to creatc a query message to send along the
network. It first of all create an instance of the Message class via the control class’
getEmptyMessage() method. It then scts the next header variable of the message to 1
- (query message). Once this has been done it takes the String argument provided and
converts it into a byte array. The size of this byte array is used to set the payload length
variable in the message. This byte array is then set as the payload variable in the message.
Finally, the instance of the message class is passed to the Control class via the
sendMessage(Message m) method in the Control class.

The setDownloadLocation(File f) method is used to set the downloadLocation
variable in the client to the value specified in this methods argument.

‘The addTransferInfo(TransferInfo t) method is used to pass instances of the
TransferInfo class to the TransferPanel class using its addTransferInfo(TransferInfo t)
method.

The setLocalAddress(String s) method sets the value of the localAddress method
in the Gui to that supplied by the methods argument.

The updateProgress(Transferlnfo t, String s) passes these arguments to the
TransferPanel using its updateProgress(TransferInfo t, String s) method.

The sendPeerQuery() method is used to create a Peer Query Message to be passed
to the Control class. The first task is to create an instance of the message class using the
Control class’ getEmptyMessage() method. The next header variable of the message is set
to 0, and the payload length of the message is set to 1. The payload of this message is
simply a one byte field containing the value 1. This is created and set. The message is
then passed to the control class using its sendMessage(Message m) method.

P2P File Sharing Application 4]

Chapter 5 Implementation

The cancelRemoveTransfer(TransferInfo[] t) is used to pass an array of
Transferlnfo’s o the DownloadManager class using its
cancelRemoveTransfer(TransferInfo[] t) method.

The addSharedFiles(Vector v) method is used to append the files stored in the
Vector provided as the argument to the sharedFiles variable in the Gui.

The getDownloadLocation() method returns the string representation of the Gui
variable downloadLocation.

The getSharedFiles() method is used to access the sharedFiles variable in the Gui.

The setSharedFiles(Vector v) method is used to set the sharedFiles variable to the
variable specified as the argument.

The setNumberOfDownloads(int i) method is used to set the numberOfDownloads
variable to the value specified as the argument.

The getNumberOfDownloads() method is used to access the numberOfDownloads
variable.

The setMaxNumberOfPeers(int i) method is used to set the maxNumberOfPeers
variable in the Control class. It does this by passing the argument here to the control class
via its setMaxNumberOfPeers(int i) method.

The getMaxNumberOfPeers() method returns the value returned when the Control
method getMaxNumberOfPeers() is called.

The getNumberOfPcers() method rcturns the valuc rcturned when the Control
method getNumberOfPeers() is called.

The canAddMorcPcers() method returns the value rcturncd when the Control
method canAddMorePeers() is called.

The addPeer(String addressToAdd) method returns the value retumed when the
Control method addPeer(String addressToAdd) is called.

The getPeerList() method returns the value returned when the Control method
getPeerList() is called.

The updatePeerList() method calls the updatePeerList() method in the PeerPanel
class.

The removePeer(int rT) method calls the method removePeer(int rl) in the Control
class, using the same argument supplied here.

The getLocalAddress() method returns the String variable localAddress, used to
store the IP address of the local machine.

P2P File Sharing Application 42

Chapter 5 ' Implementation

The addEdgeToNetworkMap(String sl, String s2) method is used to call the
method of the same name in the NetworkMapPanel class, using the same arguments.

The main(String[] args) method is the method used to start the application. Its first
task is to sct the look and feel of the application to ‘Mectal’. If this look and fecl cannot be
found the system will usc the dcfault look and feel. Next, a new instance of the Gui class
is created. This is then packed and validated before the location of the window can be set
to the centre of the screen.

5.2.2.2 SearchPanel class

The SearchPanel class is the first of the ‘Panel’ classes we shall look at. They all
have a similar structure, and they all extend Java’s JPanel class. They are used to draw the
clements in the particular panel of the uscr interface. The object model is shown for the
SearchPanel is shown in Figure 5.13.

SearchPanel

Gui gui;

JLabel searchlabel;

JTextField searchTextField;

JScrollPane searchScrollPane;

JTable searchTable;

SearchPanelTableModel searchPanelTableModel ;

JButton searchButton;

JButton downloadButton;

GridBagLayout gridBaglayout;
SearchPanel (Gui g)

void init()

void build()

void addResults (Vector v)

void searchButtonPressed ()

void downloadButtonPressed ()

Fig. 5.13 The SearchPanel object model

Most of the variables in the SearchPanel class are Swing components used in the
user interface. The two exceptions are gui, the instance of the Gui class that created this
SearchPanel, and searchPanelTableModel, the SearchPanelTableModel instance used in
the JTable.

The constructor for this class has one argument, Gui g. This is used to set the gui
variable to that of the parent Gui. The constructor then calls the init() and the build()
methods.

The init() method initialises all of the variables in the class to a suitable value.

The build() method is used to lay the interface components out in the format
required. It also adds action listeners to the two JButtons used.

The addResults(Vector v) method is used to pass a vector of Result classes to the
SearchPanelTableModel.

P2P File Sharing Application 43

Chapter 5 Implementation

The searchButtonPressed() method is called whenever the search button is
pressed. This causes the text from the secarchTextField to be copied and sent to the Gui
using its search(String s) method. If the search string was empty, a message prompting
the user to enter a search string is displayed.

The downloadButtonPressed() method is called whenever the download button is
pressed. This method requests the row/ rows of the selected results from the
SearchPanel TableModel, passing them to the Gui using its download(Result[] r) method.

5.2.2.3 SearchPanelTableModel class

The SearchPanelTableModel class is an extension of the AbstractTableModel
class, and is used to display Result classes in the SearchPanel’s JTable. The object model
for this class is shown in Figure 5.14.

SearchPanelTableModel

SearchPanelTableModel ()
int getColumnCount ()
int getRowCount ()
String getColumnName (int col)
Object getValueAt{int row, int col)
void addResults (int in, Vector v)
void clearResults ()
Result getRow(int i)

Fig. 5.14 The SearchPanelTableModel object diagram

Most of the methods in this class are relatively simple get methods, used to access
data in the table. There are also methods to add data, and also to clear the entire table. The
only mcthod of any interest to us is the getRow(int i) method. This method returns an
instance of the Result class for the particular row specified in the argument.

5.2.2.4 TransfersPanel

The TransfersPanel is another of the ‘panel’ classes and so has a similar structure
to the SearchPanel. Its object model can be seen in Figure 5.15.

TransfersPanel

Gui gui;

JScrollPane transfersScrollPane;

JTable transfersTable;

TransfersPanelTableModel transfersPanelTableModel;

JButton cancelRemoveButton;

GridBagLayout gridBagLayout;
TransfersPanel (Gui g)

void init()

void build()

void addTransferInfo (TransferInfo t)

void updateProgress (TransferInfo t, String s)

void cancelRemoveButtonPressed(}

Fig. 5.15 The TransfersPanel object model

P2P File Sharing Application 44

Chapter 5 Implementation

The variables and methods in this have similar functions to those found in the
other ‘panel’ classes. The ones that are different are addTransferInfo(TransferInfo t),
updatcProgress(Transferlnfo t, String s), and cancelRemoveButtonPressed() methods.

The updateProgress(TransferInfo t, String s) method passes a copy of the original
TransferInfo along with the new value for its progress variable to the
TransfersPanelTableModel class using its updateProgress(TransferInfo t, String s)
method.

The addTransferInfo(TransferInfo t) method simply passes the TransferInfo
variable to the TransfersPanelTableModel class using its addTransferinfo(Transferinfo t)
mcthod.

The cancelRemoveButtonPressed() @ method is called when the
cancclRemoveButton is pressed. It uscs the selected index in the JTable to get a copy of
the TransferInfo class that is to be cancelled, passing it to the Gui class using its
cancelRemoveTransfer(TransferInfo t) method.

5.2.2.5 TransfersPanelTableModel

The TransfersPanelTableModel is almost exactly the same as the
SearchPanelTableModel class. Its object model is shown in Figure 5.16.

TransfersPanelTableModel
TransfersPanelTableModel ()
int getColumnCount {)
int getRowCount ()
String getColumnName (int col)
Object getValueAt (int row, int col)
void addTransferInfo (TransferInfo t)
TransferInfo[] removeTransfers (int[] in)
void clearResults ()
void updateProgress (TransferInfo t, String s)

Fig. 5.16 The TransfersPane{TableModel object diagram

Due to the similarities to the SearchPanelTableModel class, the implementation
details will not be repeated here.

5.2.2.5 SetupPanel

The SetupPanel class is another ‘panel’ class, this one being used to draw the tab
used to set the shared files, download location, number of downloads etc. The object
model for this class is shown in Figure 5.17.

P2P File Sharing Application 45

Chapter 5 Implementation

SetupPanel

Gui gui;

JLabel setupSharedDirectoriesLabel;

JScrollPane setupScrollPane;

JList setuplist;

JLabel setupDownloadLocationLabel ;

JTextField setupDownloadTextField;

JLabel setupTransfersLabel ;

JComboBox setupComboBox;

JButton setupChangeButton;

JButton addDirectoryButton;

JButton removeDirectoryButton;

GridBagLayout gridBagLayout;

int ARRAYSIZE = 99;

String(] data;

Vector sharedbirectories;

int maxNumberOfTransfers;
SetupPanel (Gui g)

void init()

void build()

void addDirectoryButtonPressad ()

void removeDirectoryButtonPressed ()

void setupChangeButtonPressed()

void setupComboBoxUsed ()

Vector getSharedDirectories ()

void setSharedDirectories (Vector v)

void addsharedFiles (Vector v)

void setSharedFiles (Vector v)

int getMaxNumberOfTransfers ()

Fig. 5.17 The SetupPanel object diagram

Most of the variables in this class are elements of the user interface, the
exceptions are ARRAYSIZE, data, sharedDirectories, and maxNumberOfTransfers.
Array size is a fixed integer value. It represents the size of the data variable. The data
variable is an array of length ARRAYSIZE containing the strings of all the numbers from
zero to ARRAYSIZE - 1. This is used as the data for the setupComboBox. The
sharedDirectories variable is a Vector containing Files representing the directories that
the application is sharing with the peer to peer network. Finally, the
maxNumberOfTransfers variable is an integer used to store the maximum number of file
transfers this application will allow.

The constructor, nit() and build() methods are similar to that of all the panel
classes. The getSharedDirectories() and getMaxNumberOfTransfers() methods simply
return the appropriate variable, while the addSharedFiles(Vector v) and
sctSharcdFiles(Vector v) pass their argument to the Gui class using methods of the samc
name. The setSharedDirectories(Vector v) method is used to set the data that is used in
the JList.

The addDirectoryButtonPressed() method is called when the addDirectoryButton
button is pressed. It is used to add another directory and its contents to the list of shared
files. It does this by creating a JFileChooser that is set to only select directories. If the use

P2P File Sharing Application 46

Chapter 5 Implementation

selects a valid directory the method reads in the selected file, passing it to a new instance
of the FileLister class.

The removeDirectoryButtonPressed() is used to remove the directory highlighted
in the JList when the removeDirectoryButton is pressed. It first of all checks to see if one
or more directories have been selected in the JList. If none are selected a warning is given
to the user asking to select a directory. If one or more directories are chosen the index of
the selection is used to gain access to the corresponding File in the sharedDirectories
variable. This is then passed to a new instance of the FileRemover class.

The setupChangeButtonPressed() is used to set the download location to a new
directory. The method is fired whenever the setupChangeButton is pressed. The method
starts by creating a JFileChooser that is set to only select directories. Once a valid
directory is chosen it is passed to the Gui class using its setDownloadLocation(File f)
method. It then sets the text of the setupDownloadTextField to the toString() value of the
sclected file.

The setupComboBoxUsed() is called whenever the user changes the option in the
setupComboBox, used for setting the maximum number of file transfers. This method
gets the newly selected number and passes it to the Gui class using its
setNumberOfDownloads(int 1) method.

. 5.2.2.6 FileLister
The FileLister class is used to obtain a list of all files within a directory. If a

directory contains a sub directory the user is prompted as to whether or not they wish to
add the contents of it. The object model for this class is shown in Figure 5.18.

FilelLister

SetupPanel setupPanel;

Vector directories;
Vector files:

File sourceFile;

Vector currentDirectories;

FileLister (SetupPanel sp, File s)

void getFiles (File £)

boolean isAlreadySelected (File f)
void setSharedDirectories ()
void setSharedFiles{)

void run ()

Fig. 5.18 The FileLister object model

The setupPanel variable is an instance of the SetupPanel class set to the
SetupPanel that created this FileLister. The Vectors directories and files are used to store
instances of the File class that represent the shared directories and files. The sourceFile
variable is a variable used to store the directory whose contents we are sharing. The
Vector currentDirectories is used to hold the list of current shared directories.

P2P File Sharing Application 47

Chapter 5 Implementation

The constructor of this class takes two arguments, a SctupPanel instance used to
tell the FileLister the SetupPanel that created this instance, and a File instance used as the
source directory whose contents we are listing. The constructor sets both of these
arguments to the appropriate variables along with initialising the directories and files
Vectors to new Vectors. The constructor then sets the currentDirectories variable to the
list of directories currently shared by calling the getSharedDirectories() method in
setupPanel. Finally, the constructor calls the start() method used to run this thread.

The run() method is used to start the thread running. It first of all adds the
sourceFile variable to the directories vector, then calls the getFiles(File f) method. Once
this has completed, the method calls the setSharedDirectories() and the setSharedFiles()
method.

The getFiles(File f) method is the main method used to get a list of the files inside
of a directory. The pseudo code algorithm that does this is shown in Figure 5.19.

Use the directory to make an array of its contents

For all of the elements in the array
If the file hasn’t already been selected
If the file is a directory
Ask the user if they want the directory contents
If yes
Add the file to the directories vector
Call the getFile method on this file
Else if the file isn’t a directory
Add the file to the files vector

Fig. 5.19 The pseudo code algorithm for the getFiles(File f) method

The isAlreadySelected(File f) method is used to check if the directory we are
adding has previously been added. It does this by comparing the argument with all the
elements in the directories Vector. If any of the files match, the method returns true,
otherwise it returns false.

Finally, the setSharedFiles(} and setSharedDirectories() methods are used to call
the methods in the setupPanel class to set the shared files and shared directory vectors.

5.2.2.7 FileRemover

FileRemover

SetupPanel setupPanel;

File fileToRemove;
Vector _ files;
Vector currentDirectories;

FileRemover (SetupPanel s, File f)
void getDirectoryContents (File f)
void run()

Fig. 5.20 The FileRemover object model

P2P File Sharing Application 48

Chapter 5 Implementation

The FileRemover class is used to remove a directory and the files it contains from
the list of shared directories. It does not remove any sub-directories automatically,
meaning that the user will need to manually ask for this to be done. The object model for
this class is shown in Figure 5.20.

The variables in the FileRemover class match those specified in the FileLister
class. The FileRemover constructor also works in a similar fashion, setting the variables
from the appropriate arguments and calling the start() method.

The run() method is called when the constructor calls the start() method. It does
three main tasks. Firstly it searches through the list of current directories until it finds the
directory specified to remove. It then removes this from the list. Now it has done this the
sccond task is to take the list of directorics and re-build the list of shared files by getting
the contents of each directory. The final task is to use the setSharedDirectories(Vector v)
and setSharedFiles(Vector v) methods in the setupPanel class to store the new file lists.

The getDirectoryContents(File f) is the method called by the run() method to
obtain the list of files within the directory specified as the argument.

5.2.2.8 PeerPanel

The PeerPanel is the ‘panel’ class used to draw all interface components used to
manage the peers connected to this application. Its object model is shown in Figure 5.21.

PeerPanel
Gui gui;
JLabel peerLabel ;
JScrollPane peerScrollPane;
JList peerList;
JTextField peerTextField;
JButton addPeerButton;
JButton removePeerButton;
JButton discoverButton;
JLabel maxPeerLabel;
JComboBox maxPeersComboBox;
GridBagLayout gridBagLayout;
int ARRAYSIZE = 99;
String({} data;

PeexPanel (Gui g)
void init()
void bnild{)
void addPeerButtonPressed ()
void removePeerButtonPressed ()
void - updatePeerList ()

Fig. 5.21 The PcerPancl object model.

As with the other ‘panel’ classes most of the variables are interface components.
The ARRAYSIZE and data variables are the same as those found in the SetupPanel class.
Most of the methods in this class are also the same as those found in the other panel

P2P File Sharing Application 49

Chapter 5 Implementation

classes, the difference being the addPeerButtonPressed(), removePeerButtonPressed(),
and updatePeerList() methods.

The addPeerButtonPressed() method is used to handle the addPeerButton being
pressed. Its task is to check to see if anything was entered into the peerTextField and if
anymore peers can be added. If the answer to both of these is yes, the method calls the
addPeer(String s) method in the Gui class to attempt to add the peer specified in the
peerTextField. If any errors are encountered the user is notified.

The removePeerButtonPressed() mcthod is similar to the addPeerButtonPressed()
method except its task is to remove the peer highlighted in the peerList. It does this by
retrieving the index of the selected item and passing it to the Gui using its removePeer(int
1) method.

The updatePeerList() method is used to set the data in the JList. It does this using
the vector returned when calling the Gui’s getPeerList() method.

5.2.2.9 NetworkMapPanel
The NetworkMapPanel class is the last of the ‘panel’ classes. It is used to hold the

NetworkMap instance, as well as the interface components used to interact with it. The
object model can be found in Figure 5.22.

As with the previous four panel classes, the variables and the constructor, init(),
and build() methods are the same as before.

NetworkMapPanel

Gui gui;
NetworkMap networkMap;
JButton updateButton;
JButton clearButtoni;

GridBagLayout gridBagLayout:

NetworkMapPanel (Gui g)

void init ()

void build()

void addEdgeToNetworkMap (String sl, String s2)
void updateButtonPressed ()

void clearButtonPressed ()

Fig. 5.22 The NetworkMapPanel object model

The addEdgcToNctworkMap(String s1, String s2) mcthod is used to add a new
node to the network map (s1), along with the connection to an existing node (s2). This
method simple passes the arguments to the NetworkMap class.

The updateButtonPressed() method is called when the update button is pressed. It
is used to clear the NetworkMap, add the central node (i.e. this instance of the
application) and call the method in the Gui responsible for sending out an Peer Query
message (sendPeerQuery()).

P2P File Sharing Application 50

Chapter 5 Implementation

The clearButtonPressed() method is used to clear the networkMap by calling its
clearMap() method.

5.2.2.10 NetworkMap

The NetworkMap class is used to draw a representation of the peers in the
network and the connections between them. It is based on the Graph and GraphPanel
classes developed by Sun Microsystems as examples of the power of java applets[17].
The object model of this class is shown in Figure 5.23.

NatworkMap

NetworkMapPanel networkMapPanel ;
Thread relaxer;

Vector nodes;

Vector edges;

Image offscreen;
Dimension offscreensize;
Graphics offgraphics;
Node pick;

boolean pickfixed;

NetworkMap (NetworkMapPanel nmp)

void xun ()

Node findNode (String s)

void relax({)

void update (Graphics q)

void start ()

void stop ()

void clearMap()

void paintNode (Graphics g, Node n)
boolean isNcode {String nn)

void addFixedNode {String nn)
void addNode (String nn)

void addEdge (String £, String t)
void mouseClicked (MouseEvent e)
void mousePressed (MouseEvent e)
void mouseReleased (MouseEvent e)
void mouseEntered (MouseEvent e)
void mouseExited (MouseEvent e)
void mouseDragged (MouseEvent e)
void mouseMoved (MouseEvent e)

Fig. 5.23 The object model for the NetworkMap class

Due to this class being a cut down/optimised version of the Sun Microsystems
class, the details of the implementation will not be detailed here.

5.2.2.11 Node

The node class is used by the NetworkMap class to represent a node on the
network. Again this is a class created by Sun Microsystems[17]. The object model is
shown here for the sake of completion (Figure 5.24).

P2P File Sharing Application 51

Chapter 5 Implementation

Node :

String nodeName ;

double xPosition;

double yPosition;

double dx;

double dy:

boolean fixed;

void Node ()

void setNodeName (String n)
void setXPosition (double d4d)
void setYPosition (double dj
void setDx (double d)

void setDy (double 4)

void setFixed (boolean b)
String getNodeName ()

double getXPosition ()

double getYPosition()

double getDx ()

double getDy ()

boolean getFixed ()

Fig. 5.24 The object model of the Node class
5.2.2.12 Edge

The Edge class is used by the NetworkMap class to represent the link between two
nodes. Again this class was created by Sun Microsystems and so is shown here only for
the sake of completion (Figure 5.25).

Edge
String from;
String to;
double length;
Edge ()
Edge (String £, String t, double d)
String getFrom()
String getTo ()
double getLength ()
void setFrom(String s)
void setTo (String s)
void setLength (double d)

Fig. 5.25 The Edge object model
5.2.3 The Download Section

The download section of the application consists of three classes, the
DownloadManager, Upload, and Download classes (Figure 5.26).

P2P File Sharing Application 52

Chapter 5 Implementation

Lu Download \

Download
Manager

U—“ Upload }i’

Fig. 5.26 The download section of the application
5.2.3.1 DownloadManager

The DownloadManager class is used to initiate downloads, via creation of
Download instances, listen and accept upload attempts, via Upload instances, and also to
manage connections once they have started. The object model for the DownloadManager
is shown in Figure 5.27.

DownloadManager
Gui gui;
Vector downloads;
Vector uploads;
int PORTNUMBER = 7660;
int idNumber = 0O;
DownloadManager (Gui @)
void download (Result{] r)
void error (String s)
void addTransferInfo (TransferInfo t)
void updateProgress (TransferInfo t, String s)
void removeUpload (int in)
void cancelRemoveTransfer (TransferInfo(] t)
void removeDownload(int in)
boolean canAddMoreTransfers ()
Vector getSharedFiles ()
void run{)

Fig. 5.27 The DownloadManager object model

The Gui variable is used to store the instance of the Gui class that created this
DownloadManager. The downloads and uploads vectors are used to store instances of the
Download and Upload classes. The PORTNUMBER integer is the port number that the
class will listen on for download attempts. The idNumber variable will be used to give
instances of the Upload/ Download class an id number.

The DownloadManager constructor takes one argument, a Gui instance. This
instance is used to set the gui variable. The constructor also initialises all of the variables
to appropriate values before calling the start() method.

The run() method is called when the start() method is run. It is used to listen for
connection attempts. It creates a server socket on port PORTNUMBER and blocks until a
connection is made. This is then used to create an instance of the Upload class which is

P2P File Sharing Application 53

Chapter 5 Implementation

stored in the uploads vector. The body of the method loops continually while the
application is run.

The download(result[] r) method is used to create instances of the Download class
using the Results in the argument. Before each instance is created the
canAddMoreTransfers() method is called to ensure the transfer limit has not been
rcachcd. The Downloads arc stored in the downloads vector.

The error(String s) method is uscd to display crror messages provided as the
argument to the user.

The addTransferInfo(TransferInfo t), updateProgress(TransferInfo t, String s),
getSharedFiles(), and getDownloadLocation() all call the corresponding methods in the
Gui class.

The removeUpload(int i) and removeDownload(int i) methods are similar in that
they both remove either an Upload or a Download instance from the vectors using its id
number, provided as the argument.

The cancelRemoveTransfer(TransferInfo[] t) method is used to remove a transfer
similar to the above two methods, but this method uses TransferInfo to identify them.

The canAddMoreTransfers() method is used to decide if the uploads and
downloads vector sizes combined have exceeded the maximum number of transfers
allowed. It returns false if transfers are still allowed.

5.2.3.2 Download

The Download class is the endpoint of a download attempt. Its object model can
be scen in Figure 5.28.

pDownload

DownloadManager downloadManager;

Result result;
int id;
int PORTNUMBER = 7660;
Download (DownloadManager dm, Result r, int i)
int getId()
void run ()

Fig. 5.28 The Download object model

The Download class has 4 variables. downloadManager is the instance of the
DownloadManager class that created this download. result is the instance of the Result
class that contains the information about the file to do downloaded. The id variable is
used to store the transfer id for this transfer, and the PORTNUMBER contains the port
number that the connection will be made on.

P2P File Sharing Application 54

Chapter 5 Implementation

The constructor for the Download class takes three arguments used to initialise the
variables. The constructor then calls the start() method.

Once the start() method is called the run() method is accessed. This method
creates the connection to the remote node and downloads the file. This is done in the
same way as specified in before.

The getld() method is used to return the id variable.
5.2.3.3 Upload

The Upload class is the opposite end to the Download class. It is very similar to
the Download class. The object model for this class is shown in Figure 5.29.

Upload

DownloadManager downloadManager:;
Socket socket;

int id;

Vector downloadableFiles;
File file;

Upload (DownloadManager dm, Socket s, int i, Vector v)

void run ()
boolean canDownload (String s)
int getId()

Fig. 5.29 The Upload object model

The downloadManager and id variables are the same as in the Download class.
socket is the instance of the Socket class made by the DownloadManager class. The
downloadableFiles vector contains a list of all the files currently shared. File is used to
store the details of the file that the remote user requests to download.

The constructor for the Upload class uses its arguments to initialise the variables,
and to start the thread running,

The run() method that is started when the thread is run uses the socket to listen for
the file request, and if available writes the file.

The canDownload(String s) method is used to check whether a file with the
filename ‘s’ is one of the shared files. If so the method return true, otherwise the method
returns false.

Finally, the getld() method returns the id variable of this instance of the Upload
class. :

5.2.4 The Network Section

The final part of the implementation is the section dealing with creating and
maintaining a working peer to peer network. The classes involved in doing this are shown
in Figurc 5.30. Each of these classes will be discussed in turn.

P2P File Sharing Application 55

Chapter 5 Implementation

Peer
Message
Handler

Query
Message
Handler

Message .
Handler

b

.Peer » Control
Listener | Query Hit
= Message

Peer Handler

Fig. 5.30 The classes in the networking section of the application

5.2.4.1 Control class

The Control class acts as a central point for the networking section. It acts as the
intermediary between the user interface and the three key sections of the network section,
the PeerListener, the Peers, and the MessageHandler. The object model for this class is
shown in Figure 5.31.

The Gui variable is the instance of the Gui class that created this Control instance,
with PeerListener and MessageHandler being the instances that this control class creates
for the application to use. The sharedFiles vector is used to store a copy of all the files
that are shared by this system. The peers vector is used to store instances of the peer class
that will represent each peer connection. The maxNumberOfPeers variable is used to
determine the maximum number of peers this application is allowed to have, with the
PORTNUMBER being the port number on which the peers connect on. The idNumber
field is an integer that will be used to give the instances of the peer class an id number,
with uid acting as the same but for use within message classes. Finally, localAddress is
used to store the IPv4 address of the local machine, and TTL is the default time to live
value for the messages.

The Control constructor takes onc argumcnt, thc Gui that crcated . The
constructor sets this to the appropriate variable, whilst initialising the rest of the variables.
The PeerListener and MessageHandler classes are also created by the constructor.

The getMaxNumberOfPeers(),getNumberOfPeers(), and the getLocalAddress()
methods all return the values which the method name insinuates.

Conversely the setMaxNumberOfPeers(int 1) and the setSharedFiles(Vector v) set
the two values insinuated.

The two addPeer methods are used to create a new instance of the peer class and
add it to the vector of peers, The method that takes a socket as an argument is used by the

P2P File Sharing Application 56

-_—

Chapter 5 Implementation

peerListener to accept incoming connection attempts, with the other method being used
by the gui class.

Control
Gui gui;
PeerListener peerListener;
Vector sharedFiles;
Vector peers;
MessageHandler messageHandler;
int maxNumberOfPeers;
int PORTNUMBER = 7659;
int idNumber;
int uid;
byte[] localAddress;
byte ttlField;
Control (Gui g)
int getNumberOfPeers ()
int getMaxNumberOfPeers ()
boolean canAddMorePeers ()
void setMaxNumberOfPeers (int i)
boolean addPeer (String s)
void addPeer (Socket s)
veoid removePeer (Peer p)
void removePeer (int index)
Vector getPeerInfo ()
String[] getPeerAddresses ()
void setSharedFiles (Vector v)
void sendMessage (Maessage m)
void reply(int in, Message m)
void forwardMessage (Message m, int id)
Message getEmptyMessage ()
void setResults (Vector v)
byte[] getLocalAddress ()
void addEdgeToNetworkMap (String £, String t)

Fig. 5.31 The Control class object model

The two removePeer methods are used to find and remove the specified peer from
the vector of peers, thus disconnecting the remote machine. The peer can either be
identified by its peer id number, or by passing a copy of itself to the method.

The getPeerinfo() method is used to obtain a vector of strings containing the
addresses of the peers. This method is used by the Gui class for use in displaying the
information about the peers.

The getPeerAddresses() method is similar to the getPeerInfo() method, however
this one returns the results as a string array.

The sendMessage(Message m) method is used to pass along a message to all of
the nodes connected to the application. It simply calls the send(Message m) method of all
the peers in the peers vector.

P2P File Sharing Application 57

Chapter 5 Implementation

The replyMessage(int i, Message m) method is used to send the specified message
to just onc pcer, specified by the peer ID, i.

The forwardMessage(int i, Message m) method is the reverse of the replyMessage
method. Rather than just reply to the peer specified, this method replies to all peers except
the one specified.

The getEmptyMessage() method is used to return a copy of the message class with
the IP address, UID, and TTL fields set to the correct values.

Finally, the setResults(Vector v) and the addEdgeToNetworkMap(String f, String
t) methods pass their arguments to the corresponding methods in the Gui class.

5.2.4.2 PeerListener class

The PeerListener class is used to listen for connection attempts by other nodes.
Once a socket connection has been established it is passed to the control class in order to
create an instance of the peer class. The object model of the PeerListener is shown in
Figure 5.32.

PeerListener
Control control;
int PORTNUMBER = 7659;

PeerListener (Control c¢)
void run(}

Fig. 5.32 The PeerListener object model.

The control variable is used to store the instance of the Control class that created
this PeerListener. The PORTNUMBER variable is used to store the port number that the
communication will be made on.

The constructor for the PeerListener sets the control variable to that of its
argument, then starts the thread running.

The run() method creates a serverSocket and sits in a loop waiting for someone to
connect. Once a connection has been made, the socket is passed to the control class using
its addPeer(Socket s) method.

5.2.4.3 Peer class

The Peer class is used as the end point for all peer to peer communications. The
Control class will store one of these classes for each peer it has. The class provides
methods to read messages from the network, and also to send messages. Figure 5.33
shows the object model for this class.

The peerld variable is an integer that uniquely identifies this peer to the control
class. The inetAddress variable is the IPv4 address of the remote node connected to this

P2P File Sharing Application 58

Chapter 5 Implementation

peer, with the stringAddress variable storing the same information but in string format.
The socket variable stores the Socket that is used to connect to the remote node, with the
DatalnputStream and DataQutputStream variables holding the readers and writers to
actually send the bytes down. The control variable is used to store the instance of the
control class that created this peer, with the messageHandler storing the instance of that
class where the messages are passed to.

Peer

int peerld;
InetAddress inetAddress;
String stringAddress;
Socket socket;
Control control;
boolean connected;

DatalnputStrean in;
DataOutputStream out;
MessageHandler messageHandler;

Peer (Control ¢, Socket s, int i, MessageHandler mh)

String getAddress ()

byte[] getByteAddress ()
void disconnect ()

void internalDisconnect()
void send (Message m)
void run()

int getId()

Fig. 5.33 The Peer Object model

The constructor for the Peer class takes a control, socket, integer, and
mesageHandler instance as arguments. These are all self explanatory with the exception
of the integer, which is used to set the id number of this peer. Once the constructor has set
all of these variables it creates the dataOutputStream and starts the thread running.

The getAddress() and getByteAddress() methods both return the IPv4 address of
the remote node. The difference between the classes is that the first method returns a
string whilst the second method returns a byte array.

The internalDisconnect() and disconnect() methods both do the same tasks. They
close all readers/ writers and the socket before removing the peer from the control class.
The difference between the methods is that the disconnect method is called by the control
class when the local node wished to remove the connection, whilst the internalDisconnect
method is used when the remote node terminated the connection.

The send(Message m) method is used to send the message to the remote node. It
converts the message into a byte array using its toBytes() method, and then uses the
dataQutputStream to send it.

The run() method contains a continuing loop where messages are read in and
passed to the message handler. It does this by first reading in 9 bytes (the message
header) and creating a new instance of the message class. It then uses this class to find the

P2P File Sharing Application 59

Chapter 5 Implementation

length of the payload still waiting to be read in. Once this is discovered it is read in a
stored in the message class. The message is then passed to the messageHandlcr.

The final method is the getld() method. This simply returns the peerld variable.
5.2.4.4 MessageHandler class

The MessageHandler class is the first place messages are sent once they have been
received by the peer. The class first ensures that the message has never been seen before

by this node before passing it on to thc appropriatc message handler type. Figurc 5.34
shows the classcs objcct modcl.

MessageHandler
Control control;
PeerMessageHandler peerMessageHandler;
QueryHandler queryHandler;
QueryHitHandler queryHitHandler;
Vector messages;
Vector messagelds;
Vectox sharedFiles;
long MESSAGE_TIMEOUT VALUE = 60000;
String localaddress,
MessageHandler (Control c)
void addMessage (MessagePeerIdWrapper m)
void setRaesgults (Vector v)
void setSharedFiles (Vector v)
boolean haveRecieved (MessageIdWrapper miw)
void handleMessage (MessagePeerIdWrapper m)
void forwardMessage (Message m, int i)
String search (String s)
Message getEmptyMessage ()
void reply (int peerld, Message toSend)
void run ()
void checkTimeQut ()
void removeBefore (int in)
void addEdgeToNetwork¥Map (String £, String t)
String[] getPeerAddresses ()

Fig. 5.34 The MessageHandler object model

The control, peerMessageHandler, queryHandler, and queryHitHandler all refer to
variables that store instances of thosc classcs. The message Vector is used to store all
messages that are waiting to be processed by the class, while the messagelds vector stores
instances of the MessageIDWrapper class created by the Messages. sharedFiles keeps a
copy of the vector containing all of the files shared by the system, while
MESSAGE TIMEOUT VALUE and localAddress store their obvious values.

The constructor for this class initialises all of the variables in it, and starts the
thread running.

The addMessage(MessagePeerldWrapper m) method adds the argument to the
messages vector,

FP2P File Sharing Application 60

Chapter 5 Implementation

The addEdgeToNetworkMap(String f, String t), getPeerAddresses(),
getEmptyMessage(), reply(int peerld, Message toSend), forwardMessage(Message m, int
i), and setResults(Vector v) methods all call their corresponding methods in the control
class with their argument.

The haveRecieved(MessageldWrapper miw) method is used to check whether or
not this node has received the message beforehand. It searches through the messagelds
vector 1o sce if the MessageldWrapper supplied as the argument is found. If it is, the
method returns true, otherwise false.

The handleMessage(McssagcPcerldWrapper m) mcthod is uscd to scnd
messagePeerldWrappers to the correct message handler. It does this by looking at the
message’s nextHeader ficld, sending them to the appropriate class based on its value.

The search(String s) method is used to see if the String in the argument is found in
the filenames of any of the shared files. It steps through each shared file, testing it against
the string using the contains(String s1, String s2) method found in the Util class.

The run() mcthod is uscd to call the handlcMessage(MessagePcerldWrapper m)
method for all of the elements in the messages vector. When there are no messages
waiting the method calls the checkTimeOut() method.

The checkTimeOut() method is used to time out the messageldWrappers in the
messagelds vector. It does this by subtracting the time when the message id was stored
from the current time. If the value is greater than the timeout value the ID is removed
from the vector,

5.2.4.5 PeerMessageHandler class, QueryHandler class, and QueryHitHandler class

These three classes are very similar to each other. They each run a thread that
reads their particular message type and performs an action depending on the result. The
QueryHandler does a search on the filename, replying with a query hit if a result is found.
The PeerMessageHandler returns a peerQueryHit message to the response for a peer list.
Both of these classes decrement the TTL of the original message and forward it on to the
other peers.

The query hit handler checks to see if the result it has received is destined for it. If
it is, the results are passed up to the gui via the intermediary classes. If not, the class
forwards the message to the other peers.

P2P File Sharing Application 61

Chapter 6
The System in Operation

Chapter 6 The System in Operation

6. The System in Operation

This section shows the system as it looks when it is being used. We will split this
into five sections, one for each of the tabbed panes.

6.1 Search Tab

The search pane initially presents the user with a text field to enter a search string
and an empty table where the results will be displayed (Figure 6.1).

Peet To Prer =) 3
Fite
Search Tranfers Selup PeerList Network Map
Enter Search Term Search
File Name See Owner
Dovenlpant

Fig. 6.1 The Search Tab at start up

Entering a search term in the text field and clicking search/ pressing enter will
perform a search amongst peers for files matching the search term. The results are
displayed in the table (Figure 6.2).

‘ Feer To Feer M(n] £3
File

Semch Tromsfers Setup Peeclist Wetworktap
Enter Search Term mp3) Search

File Name Ske Owner
Cmusic\Tenatious D\Tenacious D - 01 - Kiel... 2877649 182.168.0.54 -~
CmusiciTenacious DiTenacious D-02-On... 1369234 192.168.0.5¢4
Camusic\Tenacious DiTenacious D - 03 - Irib... 3963358 182.168.0.54
CimusiciTenacious MTenacious D- 04 - wo... 39456789 192.168.0.54
CimusiciTenacious O\Tenacious D - 05 - Har... 663351 182.168.0.54
CamuslelTenacious D\Tenacious D - 06 - Fuc... 1891158 192.168.0.54
CamusiciTenacious MTenacious D - 07 - Exp... 1872039 192.168.0.54
CamusiciTenacious OiTenacious O - 08 - Dio... 1635056 192.168.0.54
CarnusiciTenacious tATenacious D - B9 - inw... 2197118 192168.0.54
Camusic\Tenaclous DiTenacious D- 10- Kyl.. 1465783 192.168.0.54
CmusiciTenacious D\Tenacious D - 11 - The... 2252800 192.168.0.54
CxnusiciTenacious Tenacious D- 12- Co... 804999 182.168.0.54
CamusiciTenaclous O\Tenacious D- 13- Lee... 1025254 192.168.0.54
C\musiciTensacious DiTenaclous D - 14 - Frie ,, 1485845 192 168.0.54
Clraysic\Tenacious D\Tanaciaus D- 15- Fue .. 1945426 1921688054
CimusiciTenacious D\Tenacious D - 16 - Kar... 613418 182.168.0.5¢4
Cimusic\Tenacious D\Tenacious D - 17 - Kar... 1064542 192.168.0.54
Cimusic\Tenacious D\Tenacious D - 18- Ro... 3431863 192.168.0.54 A

Download

Fig. 6.2 The Search Tab after a search

P2P File Sharing Application 62

Chapter 6 The System in Operation

The user can then highlight a file/ files and press the download button.

6.2 Transfers Tab

Upon start-up, the transfers tab has an empty table where details of downloads
will be placed (Figure 6.3).
B

Soarch [Tanwrs SO Peer Ust Awtwark Moo

Flie Nsme proqrass

Cancel/ Qear

Fig. 6.3 The Transfers Tab at start up

. Once a download is started on the search tab, or a remote download is requested,
the transfers tab lists that info (Figure 6.4).

Saorch Kansfers Sahgp Peerllst Network dMoap
Filg Namg prograss
Tenacious D - 16 - Karate Schnitzel mp3 1%
Tematious T - 49 - Kat#e Senizeomp %
Tenacious D - 01 - id¢ibasampd 0%
Tenatious D - N1 - Kigibasa. mp3 0%
Tenaclous - 03 - thuta.mp3 0%
Tenatlous C - 03 - ibute.mp3 (£
Tenackous D - 21 - City Halk.imp3 0%
Tenacious D - 20 - Daudle Team.mp3 %
Tenatlous O - 20 - Gouble Team.mp3 %
Tenacious D - 21 - Ciy Hallmg3 0%

Cancelf Clorat l

Fig. 6.4 The Transfers Tab during a file transfer

Notc that the rcason why the above screen shot has the filc names listed twicce is
due to the application downloading the file from itself (done for the purposes of the
example).

6.3 Setup tab

The setup tab is used to add/ remove shared directories, to specify the maximum
number of downloads, and to specify the location where the downloaded files will be
placed. The tab is shown in Figure 6.5.

P2P File Sharing Application 63

Chapter 6 The System in Operation

Upon pressing the Add... button, a file chooser window is created (Figure 6.6).

The user uses this to select the directory to share.

e

| SOOrCl. .. Transfars . Sotup . Posrliet . Network May
Shared Directories _M_A: : Ihllm —_

4

1

I

|
1
|
!

i
Max numbaer ot Transters ;10 7

Save DowrNeadedFleste .

Fig. 6.5 The Setup Tab at start up

Looki: & (€) v oo 8
=] Computer Science (] My Music |
Elgamea A Nedicee |
Cj2suk1.4.0 [Program Files :
[Clzsdkes131 [ISlerra :
Clmusic Cltemp

;EjMyDocumsms CIviplus !
| |
Flofame: (CiComputerSclence g
Fies of Type: rnllﬁss -

Fig. 6.6 The directory chooser

Once the Open button is pressed the directory is shared. If a sub-directory is
found, the application prompts the user as to whether or not it should also be shared

(Figure 6.7).
6 A sub-directory has been found.
° CMComputer SciencelMasters
include this sub-directory and its contents?

Yes || No

Fig. 6.7 The Sub-directory prompt

A shared directory can be removed by highlighting it and pressing the Remove
button. The combo-box towards the bottom of the tab is used to select the number of

P2P File Sharing Application 64

Chapter 6 The System in Operation

concurrent uploads/ downloads that can occur. This can have a value between 1 and 99.
Finally, pressing the Change... button brings up a dircctory choosc as shown in Figurc
6.6. The directory chosen in this case sets the download location for the files.

6.4 Peer List Tab.

Upon start up, the peer list tab displays an empty list where the peer details will go
once one has been connected, a combo box to set the maximum number of peers, and
buttons to add, remove and discover peers (Figure 6.8).

 Search .. Franators.. Setup . Poerlist | NetworkMog

Current Peers

i
i
!

e e e e e et e e en
H !
Maximum number of peers |9 ¥, i

. ‘. f
i Ad | Repwave |
ibmative i

| Dmcover]
1 e

Fig. 6.8 The Peer List Tab at start up

To connect to a peer, the address is entered into the text area at the bottom left of
the screen and either the enter key or Add button is pressed. If the connection is accepted,
the peer details are listed in the Current Peers list (Figure 6.9).

\ Soach . Translers | St | Peetlrsl | Vetesak S

Current Paers
narees T
M27.0.0.9

|

i)
{ !
{

}
1

1
1
l
t
%
|

Maximum number of peers 119 7

Fig. 6.9 The Peer List Tab after adding peers

Removing a peer is done by highlighting it in the peer list and clicking the remove
button.

DV s Clanaetrnce Aover 2 e bl ue L8

e

Chapter 6 The System in Operation

6.4 Network Map Tab.

Upon start-up, the network map tab shows an empty map and two buttons (Figure
6.10). The map also looks like this after the Clear button has been pressed.

b Fow Ta Pret CEE
132
Semich | Teavaters Setap | Posc LIS | Netwark Map

Fig. 6.10 The Network Map Tab at start up

Pressing the Update button after one or more peers have been added causes the

~ map to display the current topology of the peer to peer network (Figure 6.11).

T N T~

e
Semich . Tamlers : Solup Pow Let . NelworkMap

Fig. 6.11 The Network Map tag after a node has joined the network

PP Eilo Charing Annlinatinm AA

Chapter 7
Results and Conclusion

Chapter 7 Resuits and Conclusion

7. Results and Conclusion

This final section of the report will discuss the results and conclusions of the
project. First we will discuss cach of the objcctives from chapter onc in turn and detail
whether or not they were reached. Then we will discuss futurc developments of the
system, and what new features could be added.

The main aim of this project was to create a peer to peer application for resource
sharing. When looking at the project at this level of abstraction the project has been a
success. The application we have can be used to share a resource (files) in a peer to peer
environment. When looking at the project through the aims specified in chapter 1, the
success is put into perspective.

7.1 Study at least one existing peer to peer file sharing
application

This objective was completed successfully. Two of the most popular peer to peer
file sharing applications were studied in great detail. The study of both of these
applications (i.e. Napster and Gnutella) gave us insight into the working of pure peer to
peer system and client server peer to peer systems. Also many advantages and
disadvantages were identified, which proved very valuable when developing our own
- application.

7.2 Specify a peer to peer protocol for resource sharing

This objective was completed successfully. Our protocol allows for peers to be
queried about shared resources, and for results to be returned. The protocol can also be
seen as a success when looking at the issue of efficiency. The main header of the protocol
1s 9 bytes in length, less than half the size of some file sharing applications. This means
that a network will be able to carry a higher number of messages at any one point, helping
scalability issues.

7.3 Create an application to share resources (files) between
machines

Like the protocol objective, this object too has been met. OQur application allows
for the user to specify which files they wish to share, where they wish to download the
files to, and who their peers are. The user can also search for and download files, the main
part of this objective.

7.4 Advantages of Shadow Protocol

In February of 2001 Jordan Ritter published a paper by the name of “Why
Gnutella Can’t Scale. No, Really”[30]. This is a mathematical research paper in which
Jordan Ritter has determined the amount of bandwidth that is generated by a Gnutella
network. Suppose the Gnutella network is organized in such a way that it is well balanced
and each node is connect to 8 other nodes and the query message has a TTL of 8 for all

DPID il Charisnney Annlinatins ~7

Chapter 7 Results and Conclusion

nodes then the amount of traffic that will be generated for one node to issue a query of 18
bytes is approximately 6.3 GB. Now if the node is performing 10 queries per second
which is the average query per second during rush hour then the Gnutella network will
need to transfer data at a rate of 507.2 Gbps (63.4 GBps) (See Appendix B for
calculations).

Since the Shadow protocol is an optimized version of the Gnutella protocol Jordan
Ritter formula for calculating bandwidth can also be applied to the Shadow protocol with
slight modification. Now if the Shadow network.is arranged in the same way as the
Guutella network described previously and one node issues a query of 18 bytes then
approximatcly 5.2 GB traffic is gencrated. If the node performs 10 querics per sccond
then the bandwidth required will bec 420 Gbps (52.5 GBps) (Sec Appendix B for
calculations). Which means that the Shadow network incurred approximately 89.6 Gbps
(11.2 GBps) lcss overhcad then Gnutella performing the same query under samc
circumstances.

The structure of the Shadow network is decentralized, which has the advantage
that there is no one point of failure. This makes the Shadow network very stable. Also
when performing a search in the Shadow network it is not possible to determine exactly
which node initiated the query. Therefore the shadow network is anonymous. The
Shadow protocol currently supports file sharing but has the capability to be extended to
other forms of peer-to-peer computing.

7.5 Scope for future work

There are many areas of this project that could be improved should further work
be done. Time could be spent specifying further message types to allow for the sharing of
such resources as disk space, and CPU cycles. Also, messages could be developed to
request the ‘pushing’ of files from behind firewalls in the same way that the Napster and
Gnutella protocols feature.

Many improvements to the application could be made as well. Caching, both of
query hits and, in the case of file sharing the files themselves could increase the efficiency
of the system, reducing the number of messages on the network at any one time. As a
whole, the efficiency of the application could be improved by using a more efficient
programming language such as C or C++. And many of the searching algorithms that
currently just step through the options one at a time could be replaced with more efficient
algorithms.

P2P File Sharing Application 68

References and Bibliography

P2P File Sharing Application References and Bibliography

(1]

(2]

(3}

(4]

(5]

[6]

7]

(8]

9]

[10]

[11]

(12]

(13]

[14]

{15}

(17]

References and Bibliography

Enterprise P2P: Flexibility and ROI
Christine Axton
http://www.zdnet.com/enterprise

Symantec Security Response- vbs.gnutella
http://securityresponse.symantec.com/aveenter/venc/data/vbs.gnutella. html

Symantec Sccurity Response- w32, gnuman.worm
http://securityresponse.symantcc.com/aveenter/venc/data/w32.gnuman. worm. html

Malicious Threats of Peer-to-Peer Networking
Eric Chien
http://securityresponse.symantec.com/avcenter/reference/p2pnetworking. pdf

Napster Web site
www.napster.com

Napster timeline
http://www.personal.psu.edu/users/j/i/jid102/timeline.html

Napster timeline
http://www.idg.net/english/crd_napster_497926.html

History of Napster
http://holly.colostate.edu/~cass859/allbegan.html

Napster Face Liquidation
http://news.bbc.co.uk/1/hi/business/2234947.stm

Napster Protocol
http://opennap.sourceforge.net/napster.txt

MD35 Homepage (unofficial)
http://userpages.umbc.edu/~mabzugl/cs/md5/mdS.html

LimeWire: What is Gnutella?
http://www limewire.com/index.jsp/what_gnut

LimeWire: DEVELOPER RESOURCES
http://www limewire.con/index.jsp/developer

Gnutella Protocol
http://www9.limewire.com/developer/gnutella_protocol 0.4.pdf

Seti@home
http://setiathome.ssl.berkeley.edu/

Graph Layout Example Source code

£L~0

L

s

P2P File Sharing Application References and Bibliography

[18]

(19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

(271

(29]

[30]

http://java.sun.com/applets/jdk/1.0/demo/GraphLayout/Graph.java

The Napster Protocol, David Weekly’s protocol page, February 23, 2000
http://david.weckly.org/code/napster.php3

Napster makes Internet history, Business Journal, September 11, 2000
http://sanjose.bcentral.com/sanjose/stories/2000/09/1 1/daily8.htmi

Gnutella girds against spam attacks, John Borland, Staff Writer, CNET
News.com, August 10, 2000
http://news.cnet.com/news/0-1005-200-2489605.html?tag=st.ne.1002.tgif.ni

Gnutella viruses weaker than email bugs, John Borland, Staff Writer, CNET
News.com, June 5, 2000
http://news.cnet.com/news/0-1005-200-2020899.htmi?tag=ritdnws

Gnutella: Unstoppable by Design, Jerome Kuptz, a programmer who contributes
to the Gnutella protocol, October 10, 2000
http://www.wirednews.com/wired/archive/8.10/architecture.htmi

Bandwidth Barriers to Gnutella Network Scalability, Clip2 DSS, September 8,
2000
http://dss.clip2.com/dss_barricr.html

Gnutella: To the Bandwidth Barrier and Beyond, Clip2 DSS, November 6, 2000
http://dss.clip2.com/gnutclla.html#q3

Free Riding on Gnutella by Eytan Adar and Bernardo A. Huberman, October 10,
2000
http://firstmonday.org/issues/issueS_10/adar/index.htmi

The Freenet Project
http://freenet.sourceforge.net/

LimeWire: Running on the Gnutella Network
http://www .limcwirc.com/

SourceForge.net: Project Info - Gnucleus
http://sourceforge.net/projects/gnucleus/

“Why Gnutella Can’t Scale. No, Really.” By Jordan Ritter
http://www.darkridge.com/~jpr5/doc/gnutella.html

”~ N

Appendix A

P2P File Sharing Application Appendix A

Appendix A

Napster protocol Messages

The following section describes the format of the <data> section for each specific
message type. Each message to/from the server is in the form of:
<length><type><data>

Where <length> and <type> are 2 bytes each. <length> specifies the length in bytes of the
<data> portion of the message. Each field is denoted with <>. The fields in a message are
separated by a single space character (ASCII 32). Where appropriate, examples of the
<data> section for each message are given. The number on the left represent the message
type code (e.g. O is for error messages, sent by the server). <type> can be one of these
codes (converted to big-endian).

0 error message [SERVER]

Format: <message>

2 login [CLIENT)]

Format: <nick> <password> <port> "<client-info>" <link-type> [<num>]

<port> is the port the client is listening on for data transfer. If this value is 0, it means
that the clicnt is behind a fircwall and can only push files outward. It is cxpected that
requests for downloads be madc using thc 500 message
<client-info> is a string containing the client version info
<link-typc> is an intcger indicating the clicnt's bandwidth
0 unknown
1 14.4 kbps
2 28.8 kbps
3 33.6 kbps
4 56.7 kbps
5 64K ISDN
6 128K ISDN
7 Cable
8 DSL
9TI1
10 T3 or greater
<num> build number for the windows client [optional]

Example:
foo badpass 6699 "nap v0.8" 3
5 "auto-upgrade" [SERVER]

Format: <version> <hostname:filename>

P2P File Sharing Application Appendix A

Napster is out of date, get a new version. Or also known as gaping security hole.

<version> = string, the new version number.
<hostname> = string, hostname of upgrade (http) server
<filename> = string, filename

Connections are always made to port 80.

The HTTP Request:
GET <filename> HTTP/1.0
Connection: Keep-Alive
Host: <hostname>

Expected HTTP Response.
Content-Length: <size>
Content-Type: <doesn't matter> <data>

Upgrade file is saved as "upgrade.exe".
And exccuted as: upgrade.exe UPGRADE "<current.cxe>"

No confirmation is requested by Napster when it receives this message. And immediately

start to "auto-upgrade". To keep users informed that Napster is doing something

~ potentially very harmful to their computer it displays a message saying its "auto-
upgrading”. ‘

100 (0x64) client notification of shared file [CLIENT]

Format: "<filename>" <md5> <size> <bitrate> <frequency> <time>
<md5> see section "MDS5"

<size> is bytes

<bitrate> is kbps

<frequency> is Hz

<time> is seconds

Example:

"generic band - generic song.mp3" b92870e0d41bc8e698cf2f0alddfeac7 443332 128
44100 60

200 (0xc8) client search request [CLIENT]

Format: [FILENAME CONTAINS "artist name"] MAX_ RESULTS <max> [FILENAME
CONTAINS "song"] [LINESPEED <compare> <link-type>] [BITRATE <compare>
"
"] [FREQ <compare> "<freq>"] [WMA-FILE] [LOCAL_ONLY]

The artist name and the song name are, obviously, treated the same by the server.

<max. is a number; if it is greater than 100, the server will only return 100 results.

P2P File Sharing Application Appendix A

<compare> is onc of "AT LEAST" "AT BEST" "EQUAL TO"

<link-type> see 0x02 (client login) for a description

 is a number, in kbps

<freg> is a sample frequency, in Hz

LOCAL_ONLY causes the server to only search for files from users on the same server
rather than all linked servers.

The windows clicnt filters by ping time inside the client. It pretty much has to, and it's
easy to see the result by setting ping time to at best 100 ms or so, and max search terms to
50. You'll get back like 3 results, but the client will still tell you that it found "50 results".

Examples:

FILENAME CONTAINS "Sneaker Pimps" MAX RESULTS 75 FILENAME
CONTAINS "tesko suicide"” BITRATE "AT LEAST" "128"

MAX RESULTS 100 FILENAME CONTAINS "Ventolin" LINESPEED "EQUAL TO"
10

201 (0xc9) search response [SERVER]

Format: "<filename>" <md5> <size> <bitrate> <frequency> <length> <nick> <ip> <link-
type> [weight]

. <md5> scc sccton "MD5"

<size> is file size in bytes

<bitratc> is mp3 bit rate in kbps

<frequency> is sample rate in hz

<length> is the play length of the mp3 in seconds

<nick> the person sharing the file

<ip> is an unsigned long integer representing the ip address of the user with this file
<link-type> see message client login (2) message for a description.

[weight] a weighting factor to allow the client to sort the list of results. Positive values
indicate a "better" match; negative values indicate a “worse" match. If not present, the
weight should be considered to be 0.

Example:

"random band - random song.mp3" 7d733c1¢7419674744768db71bff8bcd 2558199 128
44100 159 lefty 3437166285 4

203 (0xcb) download request [CLIENT]
Format: <nick> "<filename>"

Client requests to download <filename> from <nick> Client expects to make an
outgoing connection to <nick> on their specified data port.

Example:

mred "C:\Program Files\Napster\generic cowboy song.mp3”

A-3

P2P File Sharing Application Appendix A

SEE ALSO: 500 alternate download request

204 (Oxcc) download ack [SERVER]

Format: <nick> <ip> <port> "<filename>" <md5> <linespeed>
Server sends this message in response to a 203 request.

<nick> is the user who has the file

<ip> is an unsigned long intcger represcnting the ip address
<port> is the port <nick> is listening on

<filename> is the file to rctrieve

<md5> is the md5 sum

<linespeed> is the user's connection speed (see login(2))

Example:

lefty 4877911892 6699 "genceric band - generic song.mp3"
10fe9e623b1962da85¢eea6 1df7ac1£69 3

205 (Oxcd) private message to/from another user [CLIENT, SERVER]
Format: <nick> <message>

The same type is used for a client sending a msg or recieving one

206 (0xce) get error [SERVER]

Format: <nick> "<filename>"

the server sends this message when the file that the user has rcquested to download is
unavailable (such as the user is not logged in).

212 (0xd4) browse response [SERVER]
Format: <nick> "<filename>" <md5> <size> <bitrate> <frequency> <time>

<nick> is the user contributing the file
<filename> is the mp3 file contributed
<md5> is the has of the mp3 file

<size> is the file size in bytes

<bitrate> is the mp3 bitrate in kbps
<frequence> is the sampling frequency in Hz
<time> is the play time in seconds

Example:

P2P File Sharing Application Appendix A

foouser "generic band - generic song.mp3" b92870e0d4 1bc8e698cf2f0alddfeac7 443332
128 44100 60

218 (0xda) downloading file [CLIENT]
No body.

Client sends this message to the server to indicate they are in the process of downloading
a file. This adds 1 to the download count which the server maintains.

219 (0xdb) download complete [CLIENT]
No body.

Client sends this message to the server to indicate they have completed the file for which
a prior 218 message was sent. This subtracts one from the download count the server
maintains

500 (0x1f4) alternate download request [CLIENT]
Format: <nick> "<filename>"

Requests that <nick> make an outgoing connection to the requester’s client and send
<filename>. This message is for use when the person sharing the file can only make an
outgoing tcp connection because of firewalls blocking incoming messages. This message
should be used to request files from users who have specified their data port as 0 in their
login message

501 (0x1f5) alternate download ack [SERVER]

Format: <nick> <ip> <port> "<filename>" <md5> <speed>

This message is sent to the up loader when their data port is set to 0 to indicate they are
behind a firewall and need to push all data outward. The up loader is responsible for
connccting to the downloadcr to transfcr the filc.

603 (0x25b) whois request [CLIENT)

Format: <nick>

604 (0x25c) whois response [SERVER]

Format: <nick> "<user-level>" <time> "<channels>" "<status>" <shared> <downloads>
<uploads> <link-type> "<client-info>" [<total downloads> <total uploads> <ip>

<connecting port> <data port> <email>]

<user-level> is one of "User", "Moderator”, "Admin" or "Elite"
<time> is seconds this user has been connected

P2P File Sharing Application Appendix A

<channels> is the list of channels the client is a member of, each separated by a space
(ASCII 32)

<status> is one of "Active", "Inactive" (offline) or "Remote" (on a different server)
<shared> is number of files user has available for download

<downloads> is the current number of downloads in progress

<uploads> is the current number of uploads in progress

<link-type> see 0x02 (client login) above

<client-info> see 0x02 (client login) above

The following fields are displayed for user level moderator and above:

<total uploads>

<total downloads>

<ip> note: can be “unavailable”

<connecting port>

<data port>

<email> note: can be “unavailable”

Example:

lefty "User" 1203 "80's " "Active" 0 0 0 3 "nap v0.8"

605 (0x25d) whowas response [SERVER]

Format: <user> <level> <last-seen>

if the user listed in a 603 request is not currently online, the server sends this message.
<user> is the user for which information was requested

<lcvel> is the uscr's last known uscr level (user/mod/admin)

<last-seen> is the last time at which this user was seen, measured as seconds since
12:00am on January 1, 1970 (UNIX timc _t).

619 (0x26b) queue limit [CLIENT]

Format: <nick> "<filename>" <n>

A client may limit the number of downloads from a particular client. Once the limit for a
particular user has been reached, the uploading client can send this message to notify the
downloader that they have hit the limit and can't have any more simultaneous downloads.
<nick> is the user who hit the limit, <filename> is the file they were trying to download

when they hit the limit, and <n> is the number of simultancous downloads allowed.

Example:
joebob "C:\MP3\Generic Band - Generic Song.mp3" 3

620 (0x26¢) queue limit [SERVER]
Format: <nick> "<filename>" <filesize> <digit>

P2P File Sharing Application Appendix A

This message is sent by the server in response to the 619 client request, when one user
needs to notify another that they have reached the maximum allowed simultaneous
downloads. When the server receives the 619 request from the uploading client, it sends
the 620 message to the downloading client. The only difference in format is the addition
of the <nick> field in the 620 message which specifies the username of the uploading
agent which is notifying the downloader that the queue is full.

Example:
joebob "C:\MP3\Generic Band - Generic Song.mp3" 1234567 3
640 direct browse request [CLIENT, SERVER]

Client: <nick>
Server: <nick> [ip port]

Client: request files for <nick>

Server: <nick> is requesting your files. Optionally, <ip> and <port> are given if the
client getting browsed is firewalled.

This message is sent to initiate a direct client to client browsing of shared files.

641 direct browse accept [CLIENT, SERVER]

Client: <nick>
Server: <nick> <ip> <port>

The client to be browsed sends this message back to the server to indicate it is willing to
accept a direct browse from <nick>. The server sends this message to the requestor of the
browse to indicate where it should connect in order to do a direct browse from <nick>.

748 login attempt [SERVER]

The server sends this message to a logged in client when another client attempts to log in
with the same nickname.

753 (0x2f1) change password for another user [CLIENT)]

Format: <user> <password> "<reason>"

Allows an administrator to change‘ the password for another user.

821 (0x33S) redirect client to another server [CLIENT, SERVER]

Client: <user> <server> <port>
Server: <server> <port>

This command allows an administrator to redirect clients to another server.

~Appendix B

A -

P2P File Sharing Application Appendix B

Appendix B

Bandwidth Usage Calculations for Gnutella and Shadow
Protocols

P

The number of users connected to the GnutellaNet.

The number of connections held open to other servents in the network. In
the default configuration of the original Gnutella client, this is 4.

T

Our TTL, or Time To Live, on packets. TTL's are used to age a packet and
nsure that it is relayed a finite number of times before being discarded.

B

The amount of available bandwidth, or alternatively, the maximum capacity
of the network transport.

f(n, x, y)

A function describing the maximum number of reachable users that are at
least x hops away, but no morc than y hops away.

(n, x, y) = Sum|((n-1)"(t-1)) *n, t = x->y]

G(n, t)

A function describing the maximum number of reachable users for any
given n and £.

ny=fnl1

f(n,ts)

A function describing the maximum amount of bandwidth generated by
relaying a transmission of s bytes given any # and ¢. Generation is defined
as the formulation and outbound delivery of data.

h(n, t,s) =n*s + fin, 1, t-1)*(n-1)*s

i(n, t, 5)

A function describing the maximum amount of bandwidth incurred by
relaying transmission of s bytes given any » and ¢. Incurrence is defined as
the reception or transmission of data across a uniquc conncction 1o a
network.

i(n, t,s) =(1+f(n, 1, t-1)*n*s + f(n, t,)*s

JMcan percentage of uscrs who typically sharc content.

‘Mean percentage of users who typically have responses to search queries.

lMean number of search responses the typical respondent offers.

Mean length of search responses the typical respondent offers.

R[] ~

A function representing the Response Factor, a constant value that describes
the product of the percentage of users responding and the amount of data
generated by each user.

R = (a*b) * (88 + r*(10 + 1))

j(m, T, R)

A function describing the amount of data generated in response to a search
query by tier T, given any n and Response Factor R.
j(n, T, R)=f(n, T, T) *R

(n, T,R)

A function decsribing the maximum amount of bandwidth generated in
response to a search query, including relayed data, given any n and t and
Response Factor R.

k(n, t, R) = Sum[j(n, T, R)* T, T=1->t]

Table B.1 Variables and Equations

B-1

rzr rue Sharing Application

Appendix B

IP header 20 bytes

TCP header 20 bytes

Gnutella header 23 bytes

Minimum Speed|l byte

Search string |13 bytes + 1 byte
(trailing null)

Total 83 bytes

Table B.2 Gnutella Search Query Packet Makeup

P header 20 bytes
TCP header 20 bytes
IGnutella header 23 bytes
Number of hits |1 byte
Port 1 byte
P Address 4 byte
Speed 3 byte
Result Set r*@8+1+2)

ytes
Servent 16 bytes
Identifier
Total 88 + r*(10 + /)
bytes

Table B.3 Gnutclla Scarch Response Packet Makeup

T=1] T=2 T=3 T=4 T=5 T=6 T=7 T=8
N=2| 3565 899 1,633 2,555 3,667 4,968 6,457 8,136
N=3| 533 | 2,165 | 6,566 17,635 44,314 106,748 249,773 572,133
N=4, 710 | 3976 | 17,176 .| 66,990 247,069 879,219 3,051,406 10,385,177
N=5| 888 | 6330 | 35665 | 183,261 894,685 4,224,529 19,480,490 88,250,692
N=6; 1,065 | 9,229 64,231 410,161 | 2,494,411 14,688,661 84,524,911 478,031,161
N=T7i 1,243 | 12,672 | 105075 | 802,470 | 5844,688 | 41,245083 | 284,529,996 | 1,929,534,709
N=81 1420 | 16,659 | 160,398 | 1,426,040 | 12,101,847 | 99,546,651 800,659,396 | 6,331,442,417

Table B.4 Bandwidth Generated in Bytes (§=83, R=94.56) Gnutella

P2P File Sharing Application

Appendix B
jliheader }20 bytes j
TCP header P20 bytes |
Gnutella header 23 bytes |
inimum Speed|] byte
Search string |18 bytes + 1 byic
(trailing null)
Total 83 bytes
Tablc B.2 Gnutella Scarch Query Packet Makcup
P header 0 bytes
TCP header 20 bytes '
Gnutella header 23 bytes
Number of hits |1 byte
Port 1 byte
IP Address 4 byte
Speed 3 byte
IResult Set r*@+1+2)
bytes
Servent 16 bytes
Identifier
Total 88 +r*(10+ 1)
bytes
Table B.3 Gnutella Search Response Packet Makeup
T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8
N=2| 355 899 1,633 2,555 3,667 4,968 6,457 8,136
N=3| 533 2,165 6,566 17,635 44 314 106,748 249,773 572,133
N=4; 710 3,976 17,176 | 66,990 247,069 879,219 3,051,406 10,395,177
N=5| 888 6,330 35,665 183,261 894,685 4,224,529 19,480,490 88,250,692
N=6| 1,065 | 9229 | 64,231 410,161 2,494,411 14,688,661 84,524 911 478,031,161
N=7| 1,243 | 12,672 | 105,075 | 802,470 | 5,844,688 41,245,083 284,529,996 | 1,929,534,709
N=8| 1,420 | 16,659 | 160,398 | 1,426,040 | 12,101,847 | 99,546,651 800,659,396 | 6,331,442417

Table B.4 Bandwidth Generated in Bytes (S=83, R=94.56) Gnutella

B-2

rzr File Sharing Application

Appendix B

T=1| T=2 | T=3 | T=4 T=5 T=6 T=7 T=8
N=2 295 747 1,356 2,122 3,044 4,124 5,361 6,755
N=3 442 | 1,798 | 5451 14,642 36,789 88,617 207,342 474,929
N=4 590 3301 | 14,261 | 55817 205,110 729,874 2,533,011 8,628,968
N=5 737 5257 | 29,612 | 152,146 742,738 3,506,924 16,170,937 73,256,069
N=6 885 7664 | 53,330 | 340,520 | 2,070,770 | 12,193,520 | 70,164,770 396,808,520
N=7 | 1032 | 10,523 | 87,242 | 666,217 | 4,852,037 | 34,238,786 | 236,190,215 1,601,684,430
N=8 | 1,180 | 13,834 | 133,174 1,183,907 | 10,046,478 | 82,636,583 | 664,632,068 5,255,653,701

Tablc B.8 Bandwidth Generated in Bytes (S=69, R=78.48) Shadow

T=1 | T=2 | T=3 | T=4 T=5 T=6 T=7 T=8
N=2 | 2950 | 7469 | 13,558 | 21216 30,444 41,242 53,609 67,546
N=3 | 4424 117,982 | 54515 | 146,416 367,888 886,172 2,073,424 4,749,289
N=4 | 5899 |33,014 142,613 | 556,166 | 2,051,102 | 7,298,736 25,330,114 86,289,677
N=5 | 7374 | 52,566 | 296,118 | 1,521,462 | 7,427,382 | 35,069,238 | 161,709,366 732,560,694 '
N = 6 | 8,849 | 76,637 | 533,297 | 3,405,197 | 20,707,697 | 121,935,197 | 701,647,697 3,968,085,197 I
N=7 | 10,324 1105227 872,416 | 6,662,166 | 48,520,374 | 342,387,856 | 2,361,902,147 | 16,016,844,304 J
N=8 | 11,798 [138,336(1,331,741/11,839,066| 100,464,778 | 826,365,830 | 6,646,320,682 { 52,556,537,011 1

Table B.9 Bandwidth rates for 10 gps (S=69, R=78.48) Shadow

B-4

