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Preface 

Peristalsis is an important mechanism generated by the propagation of 
waves along the walls of a channel or a tube. The peristaltic flows are 
very significant in physiology and industry. It involves in the chyme 
movement in the gastrointestinal tract, the vasomotion of small blood 
vessels such as venules, capillaries, arterioles and so forth etc. In 
industrial applications, it is involved in artificial heart and ortho-pumps, 
transport of toxic material and others. In view of such physiological and 
industrial applications, the peristaltic flow has been studied with great 
interest by various researchers, for viscous and non-Newtonian fluids [ I -  
81. Since most of the fluids, for instance, polymer solutions, soaps, blood, 
ketchup, shampoo and greases are of non-Newtonian nature. Because of 
their wide applications in technology viscoelastic fluids have gained 
significant importance in the last few years [9-111. In fact, the 
physiological duct and glandular ducts are curved in shape. It is observed 
that curved channels in industrial and physiological processes are more 
practical than the straight channel. Some important studies related to the 
Peristaltic flow in curved channel are cited in [12-14. Magneto- 
hydrodynamic is the science which deals with motion of a highly 
conducting fluid across the magnetic field. Some researchers have 
considered the effect of magnetic field on peristaltic flow of Newtonian 
and non-Newtonian fluids [17-181. 

This thesis is organized in the following way. 

Chapter 1 contains some basic definitions and equations.\newline 

Chapter 2 is related with the peristaltic transport of a Newtonian fluid in 
a curved channel [la. Analytic solution is carried out under long 
wavelength approximation. The effect of a pertinent parameter on the 
axial velocity, pressure gradient, pressure rise and streamlines is also 
examined graphically.\newline 

In chapter 3, we studied the influence of magnetic field on peristaltic 
flow of Oldroyd -8 constant fluid in a curved channel. The reduced 
equations are solved by using perturbation method and finite difference 



method. The various impacts of emerging parameters are studied in detail 
through graphs. 
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Chapter 1 

Preliminaries 

1.1 Introduction 

The aim of this chapter is to provide the relevant definitions and laws. 

1.2 Fluid 

A substance that continuously deform under an applied shear stress is known 

as fluid. 

1.3 Classification of fluids 

1.3.1 Ideal fluids 

A fluid with zero viscosity is called ideal fluid i.e, it offers no resistance. 

1.3.2 Real fluids 

It is a fluid in which viscosity is not zero. 



1.3.3 Newtonian fluids 

In a fluid if the viscous stresses that arises from its flow, at  every point, are 

directly proportional to the strain rate then the fluid is said to be Newtonian. 

1.3.4 Non-Newtonian fluids 

A non-Newtonian fluid is a fluid whose flow properties differ in any way from 

those of a newtonian fluids. Most commonly the viscosity of non-Newtonian 

fluids is dependent on shear rate. 

1.4 Flow 

A material goes under deformation when different forces act upon it. If the 

deformation is continuously increases without limit, then the phenomena is 

known as flow. 

1.5 Types of flows 

1.5.1 Uniform flow 

A flow in which velocities of liquid particles at  all sections of the pipe or channel 

are same. This term is generally applied to flow in channel. 

1.5.2 Non-uniform flow 

A flow in which the velocities of the liquid particles are not same a t  all sections 

of the pipe. 

1.5.3 Laminar flow 

It is a flow in which each liquid particle has a definite path and the path of 

individual particles do not cross each other. 



1.5.4 Turbulent flow 

It is a flow in which each liquid particle does not have a definite path and the 

path of individual particles also cross each other. 

1.5.5 Steady and unsteady flows 

A flow in which the quantity of liquid flowing per second is constant is called 

steady flow. A steady flow may b uniform or non-uniform. whereas a flow 

in which the quantity of liquid flowing per second is not constant is called 

unsteady flow. 

1.5.6 Incompressible and compressible flows 

A flow in which the volume and the density of the flowing fluid does not change 

during the flow. All liquids are generally considered to  have incompressible 

fluid. 

A compressible flow is one in which the volume and thus the density of the 

flowing fluid changes during the flow. All the gases are generally considered to 

have compressible fluid. 

1.6 Basic definitions 

1.6.1 Density 

It is defined as mass per unit volume. Mathematically, it is denoted by p and 

defined as 

where p is the density, m is the mass, and V is the volume. 



1.6.2 Viscosity 

In fluids the measure of its resistance to gradual deformation by shear stress is 

called viscosity. Mathematically, viscosity is the ratio of shear stress to shear 

strain i.e. 
shear stress 

viscosity = p = 
shear strain ' 

where p is called the coefficient of viscosity. 

1.6.3 Viscoelasticity 

The property of material exhibiting both viscous and elastic characteristics 

when undergoing deformation is called viscoelasticity. Kinds of fluids which 

describe such behaviour are known as viscoelastic. 

1.6.4 Shear thinning effect 

It is an effect in which viscosity decreases with increasing rate of shear stress. 

Fluids describing such effects are termed as Pseudoclassic. 

1.6.5 Shear thickening effect 

Shear thickening effect is one in which viscosity of a fluid increases with the 

rate of shear stress. Fluids which posses such effect are called dilatant. 

1.6.6 Body force 

Body forces are those forces which depend upon the mass of the fluid in control 

volume e.g weight, electromagnetic force and gravity. 



1.6.7 Magnetic field 

The magnetic influence of electric currents and magnetic materials is said to  

be magnetic field. It is a vector field, because at any given point, it is specified 

by both direction and magnitude. 

1.6.8 Magnet ohydrodynamics 

hdagnetohydrodynamics is the science that deals with the study of dynamics 

of &ctrically conducting fluids. 

1.6.9 Curvilinear coordinate system 

A coordinate system for Euclidean space in which the coordinate lines may be 

curved is known as curvilinear coordinate system. 

1.6.10 Stream function 

A stream function is a. function which describes the form of pattern of flow, 

or in other words it is the discharge per unit thickness. Mathematically, for 

steady state two dimensional flow field, we may have 

where $J is the stream function, f is the coefficient of stream function and x, y 

are coordinates of the the point where the stream function is required to be 

found out. 

A stream function a mathematical expression that describes flow field in terms 

of either mass flow rate, for compressible fluid, or volume flow rate, for incom- 

pressible fluid. 



1.7 Dimensionless number 

7 1 Reynolds number 

Ratio of the inertial forces to the viscous forces is said to be the Reynolds 

number. It is denoted by the symbol Re. Mathematically, 

inertial forces 
Re = 

viscous forces ' 

1.7.2 Wave number 

It is defined as 

where alis the half width of the channel and X is the wavelength of the wave. 

1.7.3 Hartmann number 

The Hartman number is the ratio of lorentz force to the viscous force. I t  is 

denoted by 
Lorentz force 

Ha = 
viscous force ' 

in which Ha is the Hartman number. 

1.7.4 Curvature parameter 

It is defined as 

where R* is the radius and al is the half thickness of the channel. 

1.8 Maxwell's equation 

The set of four equation which relate the electric and magnetic field to  their 

sources, charge density and current density are Maxwell's equations. These 



equations are given by 

where p is the total charge density, eo is the permittivity of the free space, p 

is the permeability of free space and J is the total current density. 

1.9 Equation of continuity 

Mat,ter cannot be made or destroyed, and so the total mass of a fluid element 

must remain the same. Thus if the density of a fluid element decreases, its 

volume must expand accordingly. This expansion causes a divergence of the 

velocit,y field, giving the conservation equation 

Above, p is the fluid density. Eq. (1.12) is called continuity equation. It is also 

named as law of conservation of mass. For incompressible fluid p is constant. 

Thus Eq. (1.12) reduces into the following 

where 

1.10 Equation of Momentum 

In an isolated system, the total momentum of the system remains same when 

some bodies act upon one another. In inertial frame of reference, the general 



form of equations of fluid motion or the law of conservation of momentum is 

where T is the Cauchy stress tensor and b is the body force. 

1.11 Method of solution 

Most of the problems encountered in fluid mechanics are nonlinear. To find 

the exact solution of these nonlinear problems is very difficult and sometimes 

impossible. Therefore various methods have been developed to solve nonlin- 

ear differential equations. Among these finite difference and perturbation are 

widely used to solve non linear differential equation. 

1.11.1 Finite difference met hod 

In this method, the derivative in the differential equation (and in the boundary 

conditions as well) are replaced by appropriate finite difference and differential 

equation is therefor reduced to a system of algebraic equations. The solution 

of algebraic equations then gives the dependent variables a t  discrete values of 

independent variables. 

1.11.2 Perturbation solution 

Perturbation theory consist of mathematical methods for finding an approxi- 

mate solution to a problem, by starting from the exact solution of a related 

problem. This methods rely on there being a dimensionless parameter in the 

problem that may b small or large. The solution is given by few terms of 

expansion. We consider an equation 

for t = 0 



for small E(# 0) 

$ = 1 +€$I  +e2$2  + ... 
and Eq. (1.16) becomes 

Expanding for small E we write the above equation 



Chapter 2 

Peristaltic transport of 

Newtonian fluid in a curved 

channel 

2.1 Introduction 

This chapter is detailed review of a paper by Ali et al. [16]. This chapter focuses 

on peristaltic transport of viscous fluid in a curved channel. The analysis has 

been carried out under the assumption of long wavelength and low Reynolds 

number. The closed form solutions are obtained for stream function, axial 

velocity, and pressure gradient. The influence of curvature is analyzed on 

various flow quantities of interest. 

2.2 Mat hemat ical formulation 

We consider a curved channel of half width a coiled in a circle with center 0 and 

radius R*. The velocity components in radial (R)  and axial (x ) directions are 

(V) and (g) ,  respectively. Sinusoidal waves of small amplitude b are imposed 

on the flexible walls of the channel. The peristaltic flow is induced because of 



the transverse deflections of the channel walls. The inertial effects are taken 

small. The geometries of channel walls are defined as follows: 

-- 2n - 
H ( X  , 5) = a + b sin[- ( X  - cj)] , upper wall 

X 

lowerwall 

in which c is the speed and X is the wavelength. For the geometry under 

consideration, the dimensional equations of motion are 

- +.[ 1 7- ( R + R * ) =  } + ( R *  - )2"V -- V 
R* + RaR R * + R  ax2 ( R * + R ) ~  

In above equations p is the pressure, v is the kinematic viscosity, and 5 is the 
-- 

time. In the laboratory frame (R, X) ,  the flow is unsteady. However, it can be 

treated as steady in a coordinate system (7, Z) moving with the wave speed c 

(wave frame). The two frames can be related in the following from: 



where v and ii are the velocity components along F and %directions in the 

wave frame. Using Eq. (2.5) into Eqs. (2.2)-(2.4) reduced to 

6% Z R*(U + C) 6% (U + c)v - 
- 

R* ap 
-c-+v-+ -+  

aT di- R * + F  LEE R * + F  F + P %  

+ 
(R* + T)2 E] . 

Introducing the following dimensionless quantities: 

and defining the stream function $J by 

then Eq. (2.6) is identically satisfied and Eqs. (2.7) and (2.8)' under long 

wavelength and low Reynolds number approximations, reduced to the following 



dimensionless form: 

From above equations, one obtains 

2.3 Flow rate and boundary conditions 

The dimensional volume flow rate in laboratory frame is given by 

in which H is a function of and t. The above expression in wave frame 

becomes 

where h is function of 5 alone. From (2.9), (2.14) and (2.15)' we can write 

The time-averaged flow over a period T a t  a fixed position X is 

Substituting Eq. (2.16) into Eq. (2.17) and then integrating, one can write 

by defining the dimensionless mean flows 0, in the laboratory frame and q in 

the wave frame, according to 

Q F e = -  q = -  
ac' ac' 



Eq. (2.18) reduces to 

where 

We note that h ( x )  and ( - h ( x ) )  represent the dimensionless form of the surface 

of the peristaltic walls 

Where q5 = 

By the choice of $ ( h )  = -: and $(-h)  = : and thus the boundary 

conditions in terms of the stream function ~ are 

The dimensionless pressure rise over one wavelength is defined by 

2.4 Solution of the problem 

The solution of Eq. (2.13) with the boundary conditions Eq.(2.23) is in the 

form 



The axial velocity and the pressure gradient is 

where 

C1 = -8hk(2h + q )  - 4h2k2 + (h2 - k2)2((ln(k - h))2 + (ln(k + h) )2)  

C2 = -2(2h + q)(2hk + (k - h)2 ln(k - h)  - (k + h)'ln(k + h ) )  - 4h2k2 [ 

C3 = (h2 - k2)2 1n (E) (Zh + q) [ - 4h2k2 + (h2 - ~ ~ ) ~ ( ( l n ( k  - h))l  



+ q )  ln(k - h) + (2h - 2k + q) ln(k + h)) - 4h2k2 + (h2 - k2)2((ln(k - h))' I 

2.5 Graphs and Discussion 

In order to analyze the effect of pertinent parameter namely i.e curvature of 

the channel (k) on the axial velocity, pressure gradient, pressure rise and the 

stream function 4,  a set of Figs. 2.1 to 2.4 were prepared. Fig. 2.1 represents 

the variation of u for various values of k. It is observed that for large values 

of k the velocity profile is symmetric about the axis of the channel and the 

maxima occur at  q = 0. However for small values of k the profiles are not 

symmetric about q = 0 and maxima shifts towards the negative values of 7. 

Fig. 2.2 shows the variation of 2 per wavelength for different values of k .  It 

is found that the magnitude of 2 decreases in going from curved to straight 

channel. Fig. 2.3 depicts the variation of pressure rise per wavelength A P  with 

mean flow rate Q for different values of k. In co-pumping and free pumping 

the pumping rate for straight channel is greater in magnitude as compared to 

curved channel. Fig. 2.4 is plotted to discuss the trapping phenomenon for 

various values of k. We observed that for small values of k the bolus is not 

symmetric about q = 0 and is pushed towards the lower wall. However, as k 

increases the results of straight channel can be recovered. 



Figure 2.1: Variation of u(q) for different values of k with q5 = 0.8 and 0 = 2. 

Figure 2.2: Variation of 2 for different values of k with 4 = 0.2 and 0 = 0.5. 



Figure 2.3: Variation of AP for different values of k with 4 = 0.1 



Figure 2.4: Streamlines for k = 3.5 (panel a), k = 5 (panel b), k = 10 (panel 

c) and k + CCI (panel d). The other parameters are t9=1.5 and q5 = 0.8. 



Chapter 3 

The influence of magnetic field 

on peristaltic flow of Oldroyd 

8-constant fluid in a curved 

channel 

3.1 Introduction 

The aim of present chapter is to investigate the the effect of magnetic field on 

peristaltic motion of Oldroyd 8 - constant fluid in a curved channel. The gov- 

erning equations for Oldroyd &constant model are derived in a curved channel. 

The long wavelength and low Reynolds number assumptions have been used 

to simplify the nonlinear differential equations. Solutions are obtained by two 

techniques: analytically and numerically with the help of perturbation and 

finite difference scheme respectively. The effects of emerging parameters have 

been analyzed by plotting the graph of pressure, stream function and velocity 

profilc. 



3.2 Mat hematical formulation 

Let us consider the MHD Oldroyd 8-constant fluid in a curved channel of radius 

R* and uniform thickness 2a coiled in a circle with centre 0. We denote the 

axial and radial direction by X and E respectively. The components of the 

velocit,y field in the radial and axial directions are (V) and (p )  respectively. 

A uniform magnctic field Bo is applied in the radial direction. The induced 

magnetic field is neglected by considering the small magnetic Reynolds number. 

The shape of the wall is same as in the previous chapter. The relevant equations 

governilig the flow can be expressed as 

where 

in which -$ is the material derivative, 3 indicates the electric current density 

and CJ is the electric conductivity of the fluid. 

The constitutive equations for Oldroyd 8 - constant fluid are 

Where 'T is the cauchy stress tensor, P is the pressure, f is the identity tensor, 
- 
S is the extra stress tensor, Kl is the first Rivlin-Ericksen tensor, p is the 



dynamic viscosity, X i  (i = 1, 2, . .., 7 )  are material constants of the fluid. 

To make the problem steady, we define the following transformations: 

in the above expression, 77, ?i are the velocity components and p(T, Z )  is the 

pressure in the wave frame respectively. Using the transformation (3.7), the 

Eqs. (3.1), (3.2) and (3.4) to (3.6) reduced to 

& R * "  w} [ z  { a2a a2a -+-- SFZ = p 2- + 2x2 - c- + 77- a;r; T + R  aa: T+R*  a ~ a ~  ai=2 

R* d2a R* 2 

-(!!) 6'7 r+R* +-((u+c)--!!!!) BEF d z 8  -(7)2(!!) r + R  

R* R* aa + 
(T + R*)2 ( E + c ) ~ )  & + ( h + h ) { 4 ( g ) 2 +  ($+-as 
F+ R* 

(3.11) 



Introducing the following dimensionless parameters 



where S is the wave number and Ha the Hartman number. The dimensionless 

form of governing Eqs. (3.8) - (3.13) become 

d du 
- (S (T  + k ) ~ )  + bk- = 0 ,  
dr d x  

S d kS2 dST, SS,, +-- 
k + r d r  { ( k  + r)SrT}  + -- - - 

k + r  d x  k + r 7  

1 d kS dS,, H a 2 ( u + 1 )  +-- 
k + r)2 dr  { ( k  + T-)~s,,) + -- - 

k + r  d x  
(3.17) 

( k  + r ) 2  ' 



d2v 
+d2v- + ( u +  1)- 

d x d r  

d2v  d2v + ( - - - v- - 
d x d r  dr2  

The components of velocity in the form of stream function $ are written as 

a$ 71,= -- v =  -- (3.21) 
d r  '  r + k d x l  

Using Eq. (3.21) ,  Eq. 3.15 is identically satisfied. Under Long wavelength and 



low Reynolds number approximations, one can find from Eqs. (3.16) - (3.20) 

that 

By eliminating the pressure from Eq. (3.22) and Eq. (3.23), yields 

By solving Eqs.(3.24 - 3.26) simultaneously, we get 

Where 

a1 = A l ( A 4  + A7) - (A3 + A5)(A4 + A7 - A2 and 



Substituting Eq. (3.28) into Eqs. (3.23) and (3.27)' we finally obtained 

3.3 Boundary conditions 

The boundary conditions are same as in the previous chapter. 

3.4 Perturbation solution 

To obtain the solution of nonlinear Eqs. (3.29) and (3.30)' we proceed under 

the assumption that a2 and a1 are small and we write 

d p   PO dpi - = -  
dn: dn: + 0 2  + O ( a i ) ,  



where 

substituting Eqs. (3.31) and (3.32) into Eqs. (3.29) - (3.30) and equating the 

coefficients of like powers of a2 and a l ,  we obtain a system of equations of 

different orders: 

3.4.1 Zeroth order system 

subject to the boundary conditions: 



3.4.2 First order system 

along with boundary conditions: 

401 8$01 uOl = --, - = 0 at r = h, 
2 dr 

401 d$o1 GOl = -, - = 0 at r = -h. 
2 dr 

3.4.3 Second order system 



with corresponding boundary conditions: 

3.4.4 Solution of zeroth order system 

Solving zeroth order system, we obtain the stream function 

$00 = cl + ( r  + k ) 2 ~ 2  + ( r  + k )  1- J1+Ha2 c3 

+ ( r +  k)lfmc4 + ( r  + k ) ,  

the axial velocity is 

uoo = - 2 ( r  + k)c2 - ( 1  - d w ) ( r  + k)-mc3 

- ( 1  + m ) ( r +  k )  mC4 - 1, 

and pressure gradient becomes 

3.4.5 Solution of first order system 

The solution of the first order system gives 

$01 = cg + ( r  + k ) 2 ~ 6  + ( r  + k )  1-dm 
C7 



3.4.6 Solution of second order system 



where 





400 
el = -- - ( k +  h )  + (Foo + 2h) 

2 2L9 
{(k + h ) 2 ( ~ a 2  + 2)L18 + L3e1 



3.5 Graphs and Discussion 

In this section, we have presented the solution of Oldroyd-8-constant fluid 

graphically. Fig. 3.1 shows the comparison between numerical solution and 

perturbation for pressure rise and velocity profile. It is seen from 3.la, 3.lb 

and 3 . 1 ~  that for different values of al and a 2  the perturbation and numeri- 

cal solution show a very good agreement. It is observed from Fig. 3.ld that 

there is a difference between the numerical solution and perturbation towards 

the positive values of r .  To observe the behaviour of the emerging parameters 

involved in the expression of pressure rise, axial velocity and stream function 

$ Figures. 3.2-3.7 have been displayed. The effect of 01, ag, k and H a  on the 

pressure rise are shown in Fig. 3.2. It is observed from Fig. 3 . 2 ~  that pressure 
# 

rise increases with increasing a1 in peristaltic pumping region and free pump- 

ing region while it decreases in the augmented pumping region. 



It is depicted that Fig. 3.2b has an opposite behaviour as compared to the 

Fig. 3 . 2 ~ .  Fig. 3 . 2 ~  prepared to see the behaviour of k .  We observed the 

pressure rise increase with an increase in k .  Fig. 3.2d shows that the pressure 

rise decreases with an increase in H a  in augmented pumping and free pump- 

ing region. Fig. 3.3 is plotted to illustrate the effects of al, a 2 ,  k, and, H a  on 

velocity profile. In Fig. 3.3a the effects of al are studied. I t  is observed that 

velocity increases with the increase in a1 near the centre of the curved channel. 

The influence of cr2 on the velocity field is illustrated in Fig. 3.3b. It is noted 

that a2 yields an effect opposite to that of al. Fig. 3 . 3 ~  depicts that with the 

increase in values of k the velocity profile is symmetric about the axis of the 

curved channel however, for small values of k the profiles are not symmetric 

about r = 0. Fig. 3.3d indicates that with the increase in the value of H a  

causes decrease in velocity field near the center of the curved channel. It is 

due to the fact magnetic field provides resistance to  the flow. The velocity in- 

creases with an increase in the upper half of the curved channel, whereas it has 

opposite behaviour in the lower half of the curved channel. The stream lines 

pattcrn for different values of al ,  az, k ,  and, Ha is studied in Figures. 3.4-3.7. 

The stream lines for different values of a1 are shown in Fig. 3.4. It  is evident 

that the trapped bolus which is as whole increases in size with the increase in 

al. The effect of a2 can be seen through Fig. 3.5. It is observed that with the 

increase in a2 the size of trapped bolus decreases. In Fig. 3.6 stream lines are 

plotted for different values of curvature parameter k. We observed that with 

an increase in curvedness of the channel the size of the trapped bolus increases 

in the lower half of the curved channel and decrease in the upper half of the 

curved channel. The stream lines for different values of H a  are shown in Fig. 

3.7. we noticed that it is similar to that presented in Fig. 3.6. 



3.6 Conclusion 

In this study, we h developed the governing equations for peristaltic flow of 

an incompressible conducting Oldroyd 8-constant fluid under long wavelength 

and low Reynolds number assumptions. The major findings have been listed 

below. 

(1) The behaviour of a1 and az on the velocity u and pressure rise p are 

opposite. 

(2) The effect of increasing in magnetic parameter Ha decrease in velocity. 

(3) The bolus size decreases in the upper half of the curved channel while 

it increases in the lower half of the curved channel by increasing magnetic 

parameter Ha. 

(4) The curved channel for large curvature parameter is reduced into the 

straight channel. 



Figure 3.1: (a) Comparison of Ap for fixed 4 = 0.001, k = 1.5, H a  = 

.75, crl = .002 and a2 = ,001. (b) Comparison of Ap for fixed q5 = 0.001, k = 

1.5, H a  = .75, a1 = .02 and a 2  = .01. (c) Comparison of u for fixed 

k = 2.5, q5 = 0.003, a1 = .01, a 2  = .02 and H a  = 1. (d) Comparison of 

uforf ixed k = 2 . 5 ,  q5=0.003, a l = . l ,  a 2 = . 2 a n d  H a = l .  



Figure 3.2: (a) Variation of Ap for different values of al with q!~ = 0.6, k = 

2.5, Ha = 0.5 and a2 = 0.1. (b) Variation of Ap for different values of a2 with 

$ = 0.9, k = 2.5, Ha = 0.5 and al = 0.1. (c )  Variation of Ap for different 

values of k with 4 = 0.6, a1 = 0.1, a2 = 0.2 and Ha = 0.5. (d) Variation of 

Ap for different values of Ha with 4 = 0.6, a1 = 0.2, a2 = 0.1 and k = 2.5. 



Figure 3.3: (a) Variation of u(r)  for different values of a1 with 4 = 0.6, k = 

2.5, a2 = 0.1 and H a  = 0.5. (b)  Variation of u(r )  for different values of cuz with 

4 = 0.6, k = 2.5, cul = 0.1 and H a  = 0.5. (c) Variation of u(r )  for different 

values of k with 4 = 0.6, al = 0.2, az = 0.1 and H a  = 0.5. (d) Variation of 

u ( r )  for different values of H a  with 4 = 0.6, cul = 0.1, cuz = 0.2 and k = 2.5. 



Figure 3.4: Streamlines for a1 = 0.2 (panel a ) ,  a1 = 0.4 (panel b), and al = 

0.6 (panel c). The other parameters are 4 = 0.9, a2 = 0.4, k = 8 and Ha = 

3.5. 



Figure 3.5: Streamlines for a2 = 0.4 (panel a ) ,  a2 = 0.6 (panel b) and a2 = 

0.8) (panel c). The other parameters are $=0.9, a1 = 1.4, k = 4 and H a  = 

0.4. 



Figure 3.6: Streamlines for k = 6 (panel a), k = 8 (panel b) and k = 12(panel 

c). The other parameters are +=0.9, a1 = 0.4, a:! = 0.2 and Ha = 3.5. 



Figure 3.7: Streamlines for Ha = 0 (panel a), H a  = 3 (panel b) and H a  = 

3.5 (panel c) .  The other parameters are 4=0.9, a1 = 0.4, a2 = 0.2 and k = 4. 
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