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Preface

Peristalsis is an important mechanism generated by the propagation of
waves along the walls of a channel or a tube. The peristaltic flows are
very significant in physiology and industry. It involves in the chyme
movement in the gastrointestinal tract, the vasomotion of small blood
vessels such as venules, capillaries, arterioles and so forth etc. In
industrial applications, it is involved in artificial heart and ortho-pumps,
transport of toxic material and others. In view of such physielogical and
industrial applications, the peristaltic flow has been studied with great
interest by various researchers, for viscous and non-Newtonian fluids [/-
8). Since most of the fluids, for instance, polymer solutions, soaps, blood,
ketchup, shampoo and greases are of non-Newtonian nature. Because of
their wide applications in technology viscoelastic fluids have gained
significant importance in the last few years [9-77]. In fact, the
physiological duct and glandular ducts are curved in shape. It is observed
that curved channels in industrial and physiological processes are more
practical than the straight channel. Some important studies related to the
Peristaltic flow in curved channel are cited in [/2-716]. Magneto-
hydrodynamic is the science which deals with motion of a highly
conducting fluid across the magnetic field. Some researchers have
considered the effect of magnetic field on peristaltic flow of Newtonian
and non-Newtonian fluids [/7-18].

This thesis is organized in the following way.
Chapter 1 contains some basic definitions and equations.\newline

Chapter 2 is related with the peristaltic transport of a Newtonian fluid in
a curved channel [/6]. Analytic solution is carried out under long
wavelength approximation. The effect of a pertinent parameter on the
axial velocity, pressure gradient, pressure rise and streamlines is also
examined graphically.\newline

In chapter 3, we studied the influence of magnetic field on peristaltic
flow of Oldroyd 8 constant fluid in a curved channel, The reduced
equations are solved by using perturbation method and finite difference

i#



method. The various impacts of emerging parameters are studied in detail
through graphs.
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Chapter 1

Preliminaries

1.1 Introduction

The aim of this chapter is to provide the relevant definitions and laws.

1.2  Fluid

A substance that continuously deform under an applied shear stress is known

ag fluid.

1.3 Classification of fluids

1.3.1 1Ideal fluids

A fluid with zero viscosity is called ideal fluid i.e, it offers no resistance.

1.3.2 Real fuids

1t g a fuid in which viscosity is not zero.



1.3.8 Newtonian Hulds

In a fluid if the viscous stresses that arises from its flow, at every point, are

directly proportional to the strain rate then the fluid is said to be Newtonian.

1.3.4 Non-Newtonian fluids

A non-Newtonian fluid is a fluid whose flow properties differ in any way from
those of a newtonian fiuids. Most commonly the viscosity of non-Newtonian

fluids is dependent on shear rate.

1.4 Flow

A inaterial goes under deformation when different forces act upon it. If the
deformation is continuously increases without limit, then the phenomena is

known as flow,

1.5 Types of flows

1.5.1 Uniform How

A fiow in which velocities of liquid particles at all sections of the pipe or channel

are same. This term is generally applied to flow in channel.

1.5.2 Non~uniform fow

A flow in which the velocities of the liguid particles are not same at all sections

of the pipe.

1.5.3 Laminar flow

It is a flow in which each liquid particle has a definite path and the path of

individual particles do not cross each other.



1.5.4 Turbualent How

It is a flow in which each liquid particle does not have a definite path and the

path of individual particles also cross each other.

1.5.5 Steady and unsteady flows

A flow in which the quantity of liquid Sowing per second is constant is called
steady flow. A steady flow may b uniform or non-uniform. whereas a flow
in which the quantity of liquid flowing per second is not constant is called

unsteady fow.

1.5.6 Incompressible and compressible flows

A How in which the volume and the density of the flowing fluid does not change
during the flow. All liquids are generally considered te have incompressible
fluid.

A compressible flow is one in which the volume and thus the density of the
flowing fluid changes during the flow. All the gases are generally considered to

have compressible fluid.

1.6 Basic definitions

1.6.1 Density

It is defined as mass per unit volume, Mathematically, it is denoted by p and

defined as

m

where g is the density, m is the mass, and V' is the volume.



1.6.2 Viscosity

In fluids the measure of its resistance to gradual deformation by shear stress is
called viscosity. Mathematically, viscosity is the ratic of shear stress to shear

strain L.e.
shear siress

shear strain’ (12)

viscosity = ju ==

where p is called the coefficient of viscosity.

1.6.3 Viscoelasticity

The property of material exhibiting both viscous and elastic characteristics
when undergeing deformation is called viscoelasticity. Kinds of fluids which

describe such behaviour are known as viscoelastic,

1.6.4 Shear thinning effect

It is an effect in which viscosity decreases with increasing rate of shear stress.

Fluids describing such effects are termed as Pseudoclassic.

1.6.5 Shear thickening effect

Shear thickening effect is one in which viscosity of a fluid increases with the

rate of shear stress. Fluids which posses such effect are called dilatant.

1.6.6 Body force

Body forces are those forces which depend upon the mass of the fluid in control

volume e.g weight, electromagnetic force and gravity.



1.6.7 Magnetic field

The magnetic influence of electric currents and magnetic materials is said to
be magnetic fleld. It is a vector field, because at any given point, it is specified

by both direction and magnitude,

1.6.8 Magnetohydrodynamics

Magnetohydrodynamics is the science that deals with the study of dynamics

of electrically conducting fluids,

1.6.9 Curvilinear coordinate system

A coordinate system for Euclidean space in which the coordinate lines may be

curved is knowsn as curvilinear coordinate system.

1.6.10 Stream function

A stream function is a function which describes the form of pattern of flow,
or in other words if is the discharge per unit thickness. Mathematically, for

steady state two dimensional flow field, we may have

77[} = f(’ﬂ, y)’ (1’3)

where ¥ is the stream function, f is the coefficient of stream function and z, ¥
are coordinates of the the point where the stream function is required to be
found out.

A stream function a mathematical expression that describes flow field in terms
of either mass flow rate, for compressible fiuid, or volume flow rate, for incom-

pressible fluid.



1.7 Dimensionless number

1.7.1 Reynolds number

Ratio of the inertial forces to the viscous forces is said to be the Reynolds

number. It is denoted by the symbol Re. Mathematically,

_ inertial forces

e , 14
€ vigeous forces (14)
1.7.2 Wave number
It is defined as
ay
= e 1.
=2, (15)

where aiis the half width of the channel and X is the wavelength of the wave.

1.7.3 Hartmann number

The Hartman number iz the ratio of lorentz force to the viscous force. It is

dencted by

- L 1 o
Ho = .orent:? foroe, (1.6)
viscous force

in which Ha is the Hartman number,

1.7.4 Curvature parameter

it is defined as
R*
ko= (1.7

ay

where B* is the radius and a; is the half thickness of the channel.

1.8 Maxwell’s equation

The set of four equation which relate the electric and magnetic field to their

sources, charge density and current density are Maxwell's equations. These



equations are given by

VE=*f (1.8)
&0
V.B =g, {1.9)
oB
VxE:m= W“éj“t”, (110)
V x B = gl 4—;,:069%?, {1.11)

where p is the fotal charge density, ¢ is the permittivity of the free space, u

is the permeability of free space and J is the total current density.

1.9 Equation of continuity

Matter cannot be made or destroyed, and so the total mass of a fluid element
miust remain the same. Thus if the density of a fluid element decreases, its
volume must expand accordingly. This expansion causes a divergence of the

velocity field, giving the conservation equation

Bp _
"55 + V(pV) =), (1.12)

Above, p is the fluid density. Eq. (1.12) is called continuity equation. It is also
named as law of conservation of mass. For incompressible fluid p is constant.

Thus Eq. {1.12) reduces into the following

V.V = (), {1.13)
where
du v Ouw
Y i e I 1.14
V.V 8x+8y+8z’ (1.14)

1.10 Equation of Momentum

In an isolated system, the total momentum of the system remains same when

some bodies act upon one another. In inertial frame of reference, the general



form of equations of fluld motion or the law of conservation of momentum is

pi‘g = V.T + b, (1.15)

where T is the Cauchy stress tensor and b is the body force.

1.11 Method of solution

Most of the problems encountered in fluid mechanics are nonlinear. To find
the exact sclution of these nonlinear problems is very difficult and sometimes
impossible. Therefore various methods have been developed to solve nonlin-
ear differential equations. Among these finite difference and perturbation are

widely used to solve non linear differential equation.

1.11.1 Finite difference method

In this method, the derivative in the differential equation (and in the boundary
conditions as well} are replaced by appropriate finife difference and differential
equation is therefor reduced fo a system of algebraic equations. The solution
of algebraic equations then gives the dependent variables at discrete values of

independent variables.

1.11.2 Perturbation solution

Perturbation theory cousist of mathematical methods for finding an approxi-
mate solution to a problem, by starting from the exact solution of a related
problem, This methods rely on there being a dimensionless parameter in the
problem that may b small or Jarge. The solution is given by few terms of

expansion. We cansider an equation
=14 epp?, (1.16)

for e =0

¢ =1, (1.17)



for small (5 0)
== Lok ety + €Sy + (1.18)

and Eq. (1.16) becomes
(e + P+ ) = (1 + ey + ey + ..)° (1.19)
Expanding for small € we write the above equation

(e + o + ) = €(1 + P9} + 2exdy + 264 + ) {1.20)



Chapter 2

Peristaltic transport of
Newtonian fluid in a curved

channel

2.1 Introduction

This chapter is detailed review of a paper by Ali et al. [16]. This chapter focuses
on peristaltic transport of viscous fluid in a curved channel. The analysis has
been carried out under the assumption of long wavelength and low Reynolds
number. The closed form solutions are obtained for siream function, axial
velocity, and pressure gradient. The influence of curvature is analyzed on

various flow quantities of interest.

2.2 Mathematical formulation

We consider a curved channel of half width « coiled in a circle with center O and
radius R*. The velocity components in radial (&) and axial (X ) directions are
{V} and (U), respectively. Sinusoidal waves of small amplitude b are imposed

on the flexible walls of the channel. The peristaltic flow is induced because of

it



the transverse deflections of the channel walls. The inertial effects are taken

small. The geometries of channel walls are defined as follows:
e e DYz, S
H(X, D) =a+ bsm[»»X*(X — ¢t}}l, upper wall

e 2 e "
~H{(X )= —a— bsir;[wg(}( —ct)], lower wall (2.1
in which ¢ is the speed and X is the wavelength. For the geometry under
consideration, the dimensional equations of motion are
8Uu
R+R*V~iRmmW{}, 2.2
W+ R (22)

a7 Va‘i? RU OV T 3

w o + T
ot 9R R +ROX R +R OR

i BN AR
o Ee ) () 2

R+ ROR R*+ R/ §%° (R +hp
oR*  aU
..... 2.3
(R + R)? ax} 23)
U 80U  RU U UV R &7
s d V ez T I + T S e T
Bt R R RAX  R+R RiRox
1 a{( ) } ( R )2322“7_ U
B+ ROR R R+R/) §%° (R+R?
LA (2.4)
(Rr + R 6X

In above equations 7 is the pressure, v is the kinematic viscosity, and ? is the
time. In the laboratory frame (&, X}, the ow is unsteady. However, it can be
treated as steady in a coordinate system (¥, T) moving with the wave speed ¢

(wave frame). The two frames can be related in the following from:

T=X-chi=RG=U~¢T=V, (2.5)



where U and ¥ are the velocity components ai{mg 7 and #-directions in the

= 0, (2.6)

2R Ju
(R* +7)? “E} ’ 27
MC§+ L0t Ra+cqom  (E+cv R op
bz 'or  R+T b8 R +F  FHAROT
8 (B (BT 5
T ETra Y Ve T\’ ) B (R
2R oW
TE ?)21’5%]' (28)
Introducing the following dimensionless quantities
2T 7 W W _pca w2?1'{.*,2
Z““MXM:?? a!u__crv"”z:}ze‘_‘ p's “)\p]cps
H 2na R*
and defining the stream function ¢ by
Y . kO .
UE g VO ae (2.10)

then Eq. (2.8} is identically satisfied and Egs. {2.7) and (2.8), under long

wavelength and low Reynolds number approximations, reduced to the following

12



dimensionless form:

P
Lo (2.11)

oP 18 9% 1 v

el — PR [ 2.12

5z kan{“f*mam} Mq+k)(i an) g (212)

From above equations, one obtains
ol O%p a 1 o
s e fo ) S e [ e = 0, 2.13
3ff2{(nw)3??2}+5??{(fz+k) (1 dn)} 213

2.3 Flow rate and boundary conditions

"The dimensional volume flow rate in laboratory frame is given by

H
Q= f o7 dR (2.14)
.y
in which I is a function of X and £. The above expression in wave frame
becomes
R
= f T dr, (2.15)
—h

where 7 s function of F alone. From (2.9), (2.14) and (2.15), we can write
Q=F+2H. (2.16)
The time-averaged flow over a period T at a fixed position X is
< 1 /7
me/Qﬁ, 2.17)
T Jo
Substituting Eq. {2.16) into Eq. (2.17) and then infegrating, one can write
Q = g+ 2ac, (2.18)

by defining the dimensionless mean flows 4, in the laboratory frame and ¢ in

the wave frame, according to

9 T
b= g==, (2.19)



Eq. {2.18) reduces to
§=q+2, (2.20)
where
g== [ =—dnp=—(h) ~H(-h}). (2.21)

We note that h(x) and (—h{z}) represent the dimensionless form of the surface

of the peristaltic walls
h{z} = 1+ ¢sinz,
~h{z}) = —1— ¢sinz. (2.22)

Where ¢ = 2

%

By the choice of ¢(h} = —% and ¢(~h} = § and thus the boundary

conditions in ferms of the stream function 1 are

q O
..... R h
71b 2! an 1 a‘t H
W9 9% _ _ ‘
) = 7 5 =1 at h. (2.23)

The dimensionless pressure rise over one wavelength is defined by

i3 dp

2.4 Solution of the problem

The solution of Eq. {2.13) with the boundary conditions Eq.(2.23} is in the
form

Ll

1
@m(wkﬁcz

{(m(nm) - 1)%&}

2
“““““““‘““““}“““ A Oy EH(?‘] + ;ﬂ) + Cy. (225)

i4



The axial velocity and the pressure gradieni is

C1] n+k
we o | (LE2 4 (o B)ingy + ) — 1
7tk Cy
F Gl (2.26)
ﬁf = 8h(2h + g) ;{ ~ 42K+ (B ~ K¥((In(k ~ B))? + (In(k + B))?)
- L
-1
~ 2012 ~ K2 In(k — h) In(k + h)} , (2.27)
where

-1
+ (B — K% ((Ink — B + (n(k + 1)) — 2(h* — K In(k — h) In(k + ?z)] :

k—h
k-+h

) (2h + q) [  4R2K2 4 (B2 — £ ((In(k — h))?

15



ke
k -+

, , , h
Cy = 2hk(2R® — 2RK: + RPq + B2 q) + (B* — k*)?In ( h) (~2h — g+ (2(h + k)

+ ) In{k — B} 4 (2h — 2k + ¢) In(k + h)) [ — 4R2K* + (h* — B9 ((In(k — h))?
-1
+ (In{k + B)?) = 2(A% — &*)? In{k — A) In(k + h)] .

2.5 Graphs and Discussion

In order to analyze the effect of pertinent parameter namely i.e curvature of
the channel (k) on the axial velocity, pressure gradient, pressure rise and the
stream function +, a set of Figs. 2.1 to 2.4 were prepared. Fig. 2.1 represents
the variation of u for various values of k. It is observed that for large values
of k the velocity profile is symmetric about the axis of the channel and the
maxima occur at n = 0. However for small values of k¥ the profiles are not
symmetric about 7 = 0 and maxima shifts towards the negative values of 7.
Fig. 2.2 shows the variation of ‘E‘E per wavelength for different values of £, It
is found that the magnitude of gg decreases in going from curved to straight
channel. Fig. 2.3 depicts the variation of pressure rise per wavelength AF with
mean flow rate § for different values of k. In co-pumping and free pumping
the pumping rate for straight channel is greater in magnitude as compared to
curved channel. Fig. 2.4 is plotted to discuss the trapping phenomenon for
various values of k. We observed that for small values of & the bolus is not
symmetric about 7 = 0 and is pushed towards the lower wall, However, as &£

increases the results of straight channel can be recovered.

16
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Figure 2.1: Variation of u{n) for different values of & with ¢ = 0.8 and 6 = 2.

Figure 2.2: Variation of % for different values of k with ¢ == 0.2 and 6 = (.5.
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Figure 2.3: Variation of AP for different values of b with ¢ = 0.1
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Figure 2.4: Streamlines for k = 3.5 {panel @), k =5 (panel b}, k = 10 {panel
¢} and & - oo (panel d). The other parameters are =15 and ¢ = 0.8,
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Chapter 3

The influence of magnetic field
on peristaltic flow of Oldroyd
8-constant fluid in a curved

channel

3.1 Introduction

The a1 of present chapter is {0 investigate the the effect of magnetic field on
peristaltic motion of Oldroyd 8 - constant fluid in a curved channel, The gov-
erning equations for Oldroyd 8-constant model are derived in a curved channel.
The long wavelength and low Reynolds number assumptions have been used
to simphify the nonlinear differentisl equations. Solutions are obtained by two
techniques: analytically and numerically with the help of perturbation and
finite difference scheme respectively. The effects of emerging parameters have
been analyzed by plotting the graph of pressure, stream function and velocity

profile.

26



3.2 Mathematical formulation

Let us consider the MHD Oldroyd 8-constant fluid in a curved channel of radius
R* and uniform thickness 2a coiled in a circle with centre O. We denote the
axial and radial direction by X and R respectively. The components of the
veloeity field in the radial and axial directions are (V) and (U) respectively.
A uniform magnetic field By is applied in the radial direction. The induced
magnetic field is neglected by considering the small magnetic Reynolds number.
The shape of the wall is same as in the previous chapter, The relevant equations

governing the flow can be expressed as

V-V, (3.1}
&V o e =
p«ﬁwrv-’}?%—JxB, (3.2)
where
-
I x B = (33)

TR RET

in which % is the material derivative, J indicates the electric current density
and « is the electric conductivity of the fluid.

‘The constitutive equations for Oldroyd 8 - constant fluid are

T=-PI+§, (3.4)
....... DS s wr . wom o e L N s
S+ X7z + 5 (8 & + A 8) + Ftr(S)A; + Zir(S AT
— DA — Ayt e o
= p| AL+ g m; +,\4(A1)3+§[w(A1)2JI , (3.5)
Ay =L+ L7, L=gradV. (3.6)

Where T is the cauchy stress tensor, P is the pressure, 1 is the identity tensor,

S is the extra stress tensor, Ay is the first Riviin-Ericksen tensor, i is the

21



dynamic viscosity, A7 =1, 2, ..., 7} are material constants of the fluid.

To make the problem steady, we define the following transformations:

7% =R, X, ), F=X—el,F=RE=0U —c¢, 1=V, (3.7)

oo

in the above expression, U,% are the velocity components and B{F,F} is the
pressure in the wave frame respectively. Using the transformation (3.7), the
Bgs. (3.1}, (3.2) and (3.4) to (3.6) reduced to

8......

F we*)w}?*@m 0,

(3.8)

9

8.....
_ o G REtgow @tot) | 9
Pl " Ther o Royrl OF

9 R* 8%+ Sm
yra wéx{( F+ RS} + Z - : (3.9)
o5

H*+F &% B +F

. c% +728 R@+c)du  (i+c)p __ R o

1™ % o R %7 o R 4T 7+ R 0%

! O (1m .\ pi2T R* 85z o(u+c)B )
e Imga?{(w R*Y*Ser} + BTF o T IR (8.10)

SF?‘%‘A}{(“C“S?:+’“£?”+ R (2£~2—(’)d 2&?)8 L

OF 4 R g% OF T+ R
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Introducing the following dimensionless parameters

N R R “ﬁiws 277
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where 4 is the wave number and Hea the Hartman number. The dimensionless

form of governing Eqs. (3.8) — (3.13) become

%y du .
5?(5(? + Ky} + c%;;; = (3.15)

v o du kPlu+l0v  (u+ 1P| Bp
3‘35[“55;*““5;* R P e

5 a8 ké* 88 45,
e e+ 7)S 0+ o R 16
§~ r &7 {(k+7)Sn} k+r 8z kadr (3.16)
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T'he components of velocity in the form of stream function ¢ are written as

oy k¢
U=, US oTa - (321

Using Bq. (3.21), Eq. 3.15 is identically satisfied. Under Long wavelength and
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low Reynolds number approximations, one can find from Eqgs. (3.16) —

that

Jp 1 0 5
dr  k(k+r)or {4 r)5re} - kk+’r)(1 E}f)’

AL 2
St (Alsﬂ» iy : 25 (S + m)) A

5’2@} oy
(6“?2 * k+’r)

- (/\3+}\6-2)\;)(

k+r):

&Py 1 8¢
art k47

& 1 BEN2
o /\7) ..;.,.Eb,, -+ -, ,
ér? k41

By eliminating the pressure from Eq. (3.22) and Eq. {3.23), yields

Ha? o )] 0

)S,z e (s = 2

8
or

1

i 2
T A L) S

i

By solving Eqs.(3.24 — 3.26) simultaneously, we get

2 "
o {wm(%%“ﬁlmz}(&z% 1—%%)
1+a2(%+ o gr*  kdr

k+r

Where
(x; =~ /\1(/\4 -+ /\'g) - (/\3 + )\5)()\4 b Ap = Ag and
ag = M{As + Ag) — (Az + A5} {hs + ds — Ay
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Substituting Eq. {3.28) into Eqs. (3.23} and {3.27)}, we finally obtained

2 -
?"[W"L““ﬁ{wmoz{”“‘(%g*3*“‘“?'”’)2}(“32"” )
dr | klk +r)Br 1%&2(%"? _1{%)2 or? k+r
HEO- 301 (3.29)
CkEE+T | ‘
o _a
2 et s R |
dr  klk+ryér 1+02(gi + 1.;; 2 ar:  kAr
Ha*(1 — 4%y
........... H (3.30)

3.3 Boundary conditions

The boundary conditions are same as in the previous chapter.

3.4 Perturbation solution

"To obtain the solution of nonlinear Eqs. (3.28) and (3.30), we proceed under

the assumption thai on and «y are small and we write

¥ o= Py + gty O(Of%),
g = g + Cgy -+ O(O—‘%):
dp _dpo , . d;

et kS 2
&= gy Heagy 0@,
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where
Po = oo + cytPer + Ofad),

W1 = g + catbyy -+ Oed),

dpy  dpoo dpm
de  dx T Ydx +0{a )

dpy  dpyg dpn 2
s R e 3.32
T o +a 1 + Ofat), { }

substituting Egs. (3.31) and (3.32) into Eqgs. (3.29) — (3.30) and equating the
coefficients of like powers of oy and ¢y, we obtain a system of equations of

different orders:

3.4.1 Zeroth order system

¥
(k+ )4 1*’““ + 2k + 1) wmm(l&wf!a‘*)(k+r)28 Yoo

3%9

4 (1 Ha* Yk + 'r) = (1 + Ha®}{k + 1), (3.33)

Opm _ ai%o g g (1 e
e i T 3.34
Sz fc ) ar? + {1+ Ha') kvr | (3:34)

subject to the boundary conditions:
_ 90 e _ -
7!*’00 = 7 "Gy =1latr h’?
doo =2 200 1 e n (3.35)
2’ or
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3.4.2 First order system
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along with boundary conditions:
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3.4.3 Second order system
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+ k+ v (k+7) o3 ar? k+r (3.40)
with corresponding boundary conditions:
qio M
T e e = Poroom h,‘
Y10 5 Datr
o OY .
ho=2, S8 =0atr=-h (3.41)
3.4.4 Solution of zeroth order system
Solving zeroth order system, we obtain the stream function
Pop = ¢ + (1 + kY Peg + {r 4+ k)Y
e (r A+ RYPTVIRES  (r 3 E), (3.42}
the axial velocity is
ugp = —2{r -+ kyeg — (1 =~ V14 Ha¥){r + k)'"’““fagca
— (1 +V1+ Ha?)(r + k)YHHH e — 1, {3.43)
and pressure gradient becomes
Opop 1
Ll (2 H % e). 3.44
0 L @HE) (3.44)
3.4.5 Solution of first order system
The solution of the first order system gives
You = ¢+ (1 + Yo + (r + K)VIE
S {r+ k)z.+x/i'3;f?¥3§’cg A {r k) 1-m3\/1+mﬁL1
+ (,r + k)----i--}—iivlwlvﬂ’a?Lz - (?‘ e k)uimvfi»%HaﬁLg
+ (k)T (3.45)
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gy = ~2(r + k)cg — (1 = VI + Ha?)(r + k)~VIFH¢,

~ (1+ VI + Ha)(r + k)Y 4 (1 +3V1 + Ha?)

(r+ k) VI L (14 3VT Ha¥)(r + k)48,
1+ VIF HaDr+ k) 2VIHIS L (L1 4 /1 + Ha?)

(r+ k) 2V L, (3.46)
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1

3.4.6 Solution of second order system

Yo = o+ (1 + k)erg + (r o+ K)LYIHIR

+ (?_ A k)“1+3v1+HQELS e (?,, e k)mlw\f1+-ffa§ LT

4 (r 4 k) IHVIRERT (3.48)

~ (U + VITHE) (r+ k)Y o (14 3V T Had)
(rob k) B VIFHE L (w1 4 3V 4 Ha?)(p 4 k) "2HIVIFHEE L
+ (L VT+ He)r+ k)" VIR (14 VIF Had)

(r + ky VI L (3.49)

Img

dz

(2Ha2c1g). (360)

ol

31



where
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Ara v Ha T T 4Ty Ha?
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(}. - 1A HGQ)LQL25

1 ”
1= Gro(l + V1 Ha? g+
G

{1+ 3V HaLsLoLao + (~ 1+ 31+ Hab) LeLeLn
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¢r2 m = {{1 — 1+ Ha*)Loggho + Lslag + Lebyy + LyLys + Lglys)

3.5 Graphs and Discussion

In this section, we have presented the solution of Oldroyd-8-constant fuid
graphically. Fig. 3.1 shows the comparison between numerical solution and
perturbation for pressure rise and velocity profile. It is seen from 3.1a, 3.1b
and 3.1¢ that for different values of ay and oy the perturbation and pumeri-
cal solution show a very good agreement. It is observed from Fig. 3.1d that
there is a difference between the numerical solution and perturbation towards
the positive values of r. To observe the behavicur of the emerging parameters
involved in the expression of pressure rise, axial velocity and stream function
i Figures. 3.2-3.7 have been displayed. The effect of o, oo, k& and Ha on the
pressure rise are sho%m in Fig. 3.2. it is observed from Fig. 3.2a that pressure
rise increases with ixﬁéreasing oy in peristaltic pumping region and free pump-

ing region while it decreases in the augmensed pumping region.
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It is depicted that Fig. 3.2b has an opposite behaviour as compared to the
Pig. 3.2a. Fig. 3.2c prepared to see the behaviour of k. We observed the
pressure rise increase with an increase in k. Fig. 3.2d shows that the pressure
rise decreases with an increase in Ha in augmented pumping and free pump-
ing region. Fig. 3.3 is plotted to illustrate the effects of oy, o9, &, and, Ha on
velocity profile. In Fig. 3.3a the effects of o, are studied. It is observed that
velocity increases with the increase in oy near the centre of the curved channel.
The influence of g on the velocity field is illustrated in Fig. 3.3b. It is noted
that ag yields an effect opposite to that of oy, Fig. 3.3¢ depicts that with the
increase in values of & the velocity profile is symmetric about the axis of the
curved channel however, for small values of k the profiles are not symmetric
about v = 0, Fig. 3.3d indicates that with the increase in the value of Ha
causes decrease in velocity field near the center of the curved channel. It is
due to the fact magnetic field provides resistance to the flow. The velocity in-
creases with an increase in the upper half of the curved channel, whereas it has
opposite behaviour in the lower half of the curved channel. The stream lines
pattern for different values of oy, g, £, and, Ha is studied in Figures. 3.4-3.7.
The stream lines for different values of ay are shown in Fig. 3.4. It is evident
that the trapped bolus which is as whole increases in size with the incresse in
ay. The effect of o can be seen through Fig. 3.5. It is observed that with the
increase in oy the size of trapped bolus decreases. In ¥Fig. 3.6 stream lines are
plotted for different values of curvature parameter k. We observed that with
an increase in curvedness of the channel the size of the trapped bolus increases
in the lower half of the curved channel and decrease in the upper half of the
curved channel. The stream lines for different values of Ha are shown in Fig.

3.7. we noticed that it is similar to that presented in Fig. 3.6.
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3.6 Conclusion

In this study, we ha,\%e developed the governing equations for peristaltic flow of
an incompressible cén&ucting Oldroyd 8-constant fluid under long wavelength
and low Reynolds number assumptions, The major findings have been listed
below.

{1} The behaviour of a; and ap on the velocity u and pressure rise p are
opposite.

(2} The effect of increasing in magnetic parameter Hea decrease in velocity.
{3) 'The bolus size decreases in the upper half of the curved channel while
it increases in the lower half of the curved channel by increasing magnetic
parameter Ha.

{4} The curved channel for large curvature parameter is reduced into the

straight channel.
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Figure 3.1: (a) Comparison of Ap for fixed ¢ = 0.001, k = 1.5, Ha =
15, Ha = 75, ¢ = 02 and ag = .0l. (c) Comparison of u for fixed

k=25 ¢ = 0008, ap = 0L, @z = .02 and Hg = 1. {d) Comparison of
ufor ized k=25, ¢=0003, oy =.], ay = .2 and Ha = L.

38



Figure 3.2: (a) Variation of Ap for different values of oy with ¢ = 0.6, k =

2.5, Ha = 0.5 and ap = 0.1. (b) Variation of Ap for different values of o with

Ap for different values of Ho with ¢ == 0.6, o = 0.2, a0 = 0.1 and & = 2.5
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Figure 3.3: (a} Variation of u{r) for different values of oy with ¢ = 0.6, & =
2.5, g = 0.1 and He = 0.5. (b) Variation of u(r) for different values of oy with
¢ =086,k =25, a; =01 and Ha = 0.5 {c) Variation of u{r} for different
vahies of k with ¢ = 0.6, a7 = 0.2, oy = 0.1 and Ha = (.5. {d) Variation of
u{r) for different values of Ha with ¢ = 0.8, oy = 0.1, ag = 0.2 and &k = 2.5,

40



Figure 3.4: Streamlines for «; = 0.2 (panel g}, a; = 0.4(panel b), and oy

0.6 {panel ¢). The other parameters are ¢ = 0.9, ag = 0.4, &k = 8 and Ha
3.5.
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Figure 3.5: Streamlines for oy = 0.4 {panel a), ay = 0.6 {panel b) and a9y
0.8) {panel ¢}. The other parameters are ¢=0.9, «y =14, &k = 4 and Ha
0.4.
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Figure 3.6: Streamlines for k = 6 (panel @), & = 8 {panel b) and & = 12(panel
¢}, The other parameters are ¢=0.9, oy = 0.4, ap = 0.2 and Ha = 3.5.
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Figure 3.7: Streamlines for Ha = 0 (panel q), Ha = 3 (panel b) and Ho =
3.5 {panel ¢}. The other parameters are ¢=0.9, a; = 0.4, oz = 0.2 and k = 4.
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