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Preface

The multiphase flow usually has complex flow pattern, which brings many difficulties in
measuring. In recent years, researchers have been doing numerous research in two and three-
phase flow, and many new measurement methods and theoretical models are proposed. Also,
lots of instruments and tremendous milestones have been achieved in these research works.
Peristaltic flow are physiological flows existing naturally in animal body and many industrial
devices in medical science and fluid transport are inspired by these flow phenomenon. Due to
such importance, it grabs the attention of different researchers. Peristaltic is continuous process
of compressing and relaxation of smooth muscles in a living body in digestive system and
blood flow etc. Moreover, this phenomenon is keenly observed in a motion of cilia, a motion
of urine from the kidney to the bladder and a motion of Chyme in the gastrointestinal tract work
on the principle of peristalsis. Peristalsis has also shown a significant role in biomechanical
and mechanical instruments such as, finger pumps, heart-lung machine and roller pumps. Such
kinds of applications opened a new way for physicians and scientist to manipulate their
equipment for analyzing better results. The motivation of this thesis is to study multiphase fluid
in variety of geometries in which flow is induced by peristaltic movement. To observe the
various aspect of these flows formulated for flow situation and mathematical equations are

non-dimensionalized. The exact and numerical solution are obtained and plotted.

This thesis consist of nine chapters. Chapter one provides literature review and some
preliminary discussion about peristalsis, its phenomenon and constitutive relation for

Newtonian and non-Newtonian fluids. Also, a section is delighted for Multiphase fluids.

In chapter two, the peristaltic movement of particle-liquid suspension with slip effect and

endoscopy through a non-uniform annulus is discussed. The equations for the flow problem of



particle fluid suspension comprises of continuity and momentum equation for both particle and
fluid phase. The particles are consider light and suspended uniform in base fluid. The fluid in
this case assumed to be Jeffrey fluid. The Results are published in Journal of Molecular
Liquids, 218 (2016): 240-245.

Chapter three, studies the peristaltic transport of MHD dusty three-dimensional Biorheological
Non-Newtonian fluid in a rectangular duct is investigated. The base fluid is taken as Casson
and Ree-Eyring fluids separately. The governing flow problem is based on law of conservation
of mass and momentum. Numerical integration has been used to determine the pumping
characteristics. Trapping phenomena are also discussed and sketched by drawing streamlines.

This study is published in Chinese Journal of Physics, (2017).
Chapter four to nine focus on the flow of multiphase fluid through different channels.

Chapter four, illustrates the flow of suspension of small particles in non-Newtonian Ree-Eyring
base fluid in a channel. The effects of transverse magnetic field is also observed. The problem
is modeled using law of conservation of mass, momentum and energy. Under the assumption
of creeping flow and long wave length the governing equations of solid and liquid phases are
reduced. The exact solutions have been obtained by solving the formulated model. This article

is published online in Thermal Science ( accepted June 8, 2017).

Chapter five, explores the simultaneous effects of heat transfer and inclined magnetic field on
peristaltically induced motion of particles through a uniform inclined channel. Asymmetric
channel waves are accounted. The problem formulated contains continuity equation,
momentum equation and energy equation. This analysis is published in the Brazilian Society

of Mechanical Sciences and Engineering (2017): 1-9.

Chapter six, investigates the heat and mass transfer with the transverse magnetic field on

peristaltic flow of particle-fluid suspension through a planar channel with peristaltic wave has



been examined. The flow is observed under the influence of electrosmosis and chemical
reaction. The present flow problem is modelled using equation of continuity, momentum, heat
and diffusion equations, lubrication theory approximation in combination with long
wavelength and creeping flow assumptions is used to simplify the problem. Moreover, the
electric effects are simplified using Debye linearization. Analytical solutions are obtained for
the resulting differential equations. The problem is published in the Journal of Molecular

Liquids 230 (2017): 237-246.

Chapter seven, devoted to discuss the peristaltic flow of two phase fluid in a rotating channel
with wall properties in the presence of magnetic field. Law of conservation of mass and
momentum is used to formulate the problem. The governing equations subject to the conditions
of low Reynolds number and long wavelength and solved analytically. This analysis is

submitted in Chinese Journal of Physics.

Chapter eight, addresses the influence of particulate-fluid suspension on asymmetric peristaltic
motion through a curved channel with heat and mass transfer. To examine the two-phase
peristaltic motion between small muscles for different biological fluids this study is useful. The
mathematical formulation of problem includes continuity, momentum, energy and mass
transfer equations. Exact solutions are presented for velocity, temperature and concentration
distributions with help of MATHEMATICA. The Results are submitted in Journal of

Bionics for possible publications.

Chapter nine, established the theoretical and analytical analysis of a unidirectional laminar
bubbly two-phase flow in a symmetric channel with flexible wall. The two-phase model uses
water as base fluid and hydrogen bubble suspended in it. Rayleigh-Plesset equation in term of
volume fraction is used to model void produce due to presence of hydrogen. The flow is driven

by symmetric peristaltic movement of the wall. A uniform magnetic field in the transverse



I

direction to peristaltic motion is applied. Homotopy perturbation Method (HPM) is utilized to
get the series solution, after simplifying the differential governing equations under the
influence of long wave length and low Reynolds number. The volume of the void and radius
of the bubble is analyzed graphically. The problem is accepted at International journal of

hydrogen energy.



NOMENCLATURE

by

bo
uv,w
uv,w
XYz

XY, 2

d +d,

Radius of endoscope
Radius of outer tube
Velocity components
Dimensionless velocity components
Coordinate axis
Dimensionless coordinate axis
Time
Boundary velocity
Concentration of particle
Volume flow rate
Fluid pressure
Stress tensor

electrical field parameter
Drag force

Current density

Curve channel width
Thermal conductivity

Chemical reaction parameter
Mass diffusivity
Radius of curvature
Soret number

Curvature parameter

Width of the channel
Wave velocity
Wave amplitude
Duct height
Duct width
Magnetic field strength
Non-Dimensional wave
Reynolds number
Effective heat capacity
Schmidt number
Prandtl number
Eckert number

Mean temperature
Suspension parameter

Weber number

Magnetic field



xR

o R

()]

Mean temperature
Thermal diffusivity
electro-osmotic parameter
electrical field parameter
Behaviour index
Hartmann number
Froude number
Surface tension
spring stiffness
Upstream bubble radius
mass per unit area

flexural rigidity

coefficient of the viscous damping

membrane

elastic tension is the membrane



Greek symbols

A Jeffery parameter
Us viscosity of the fluid
® Angle of inclination
K Slope of outer tube
¢, Concentration
B Slip parameter
oL Density of the liquid
o Phase difference
o  Electric conductivity of the fluid
0 Dimensionless temperature
a' Ree-Eyring parameter
{ Casson parameter
A Wavelength
Subscripts
14 particulate phase

fluid phase

Pa,

a0

)

Ho

Retardation time
Cavitation number
Rotation parameter

Chemical reaction parameter

Bubble population per unit liquid volume

Density of the gas
Dimensionless concentration
Inclined angles
Fluid density
Volume of the void
Amplitude ratio
Stream function

Constant fluid viscosity
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Chapter 1
Preliminarily

The chapter is divided into two parts. In first part, a comprehensive review of the literature
present on the topic is presented. Whereas, in second part basic introduction of all the

component of the topic and related material is presented.

1.1 Literature review

1.1.1 Peristaltic movement and pumping

Peristaltic transport is an important biotic mechanism which is produced through the
contraction and extension of a stretchable boundary e.g. human digestive tract peristaltic flow
with different reactions are also found in the physiological study and due to such importance,
it grabs the attention of different researchers. Peristaltic is the continuous process of
compressing and clasping of smooth muscles in a living body such as digestive system or
digestive tract. Moreover, this phenomenon is keenly observed in a motion of cilia, a motion
of vasomotion of small blood vessels and Chyme in the gastrointestinal tract i.e. Venues,
capillaries and arterioles exertion on the principle of peristalsis. Moreover, peristalsis has also
shown a significant role in physiological sciences by formulation biomechanical and
mechanical instruments such finger pumps, heat-lung machine and roller pumps that work on
the mechanism of peristalsis. Such kinds of applications opened a new way for physicians and
mathematicians to manipulate their equipment for analyzing better results. For instance,
Mekheimer [1] considered the peristaltic motion of blood under the effects of a magnetic field
through a channel. He obtained the exact solution for both Uniform and non-uniform channel.
Haroun [2] considered the nonlinear peristaltic movement of further grade fluid through an

inclined asymmetric channel. Hayat et al. [3] also investigated the nonlinear peristaltic motion



through a planar channel. He also measured the effects of magnetic with non-Newtonian fluid
model. The peristaltic movement of Carreau nanofluid through an asymmetric channel
numerically simulated by Akbar et al. [4]. Khan et al. [5] examined analytically the peristaltic
transport of non-Newtonian Jeffrey fluid. He also considered the fluid with variable viscosity
through a porous asymmetric channel. Maraj et al. [6] presented Williamson fluid model
mathematically the peristaltic motion through a curved channel. The particles in a fluid flow is
a branch of multiphase and multicomponent flows. The flow of muitiphase and
multicomponent mixtures involves an enormous range of applications and flow conditions.
Such kinds of study are important in various physical problems such as sedimentation,
atmospheric fallout, powder technology, aerosol filtration, fluidization [7], ash and lunar flows
etc. Moreover, with the help of continuum theory of mixtures, it is easy to examine various
diverse subjects [8], disposition of particles in a respiratory tract and swimming of
microorganisms [9]. Furthermore, particle characterization is also an important part in a
production of particle, processing, handling, and manufacturing and in various industrial
applications [10]. Particle characterization is a necessary and initial step that helps in a process
including solid particles. Such kind of characterization not only involves the intrinsic static
parameters i.e. density, morphology, shape and size etc. also their dynamic attitude associated
with fluid flow i.e. terminal velocity and drag coefficient. Yao et al. [11] studied the multiphase
flow through the permeable porous channel with wall effect. He considered the Beavers and
Joseph slip boundary conditions and using perturbation method to obtained the series solution.
He observed that slip boundary condition significantly enhance the velocity of the fluid a
decrement of slip parameter tends to rise the magnitude of velocity through a channel.
Furthermore, he also observed that increase in volume fraction density, fluid phase axial
velocity rises. Mekheimer [12] considered peristaltic motion of Newtonian solid-liquid

suspension through an annulus. Kamel et al. [13] investigated the slip effects on the peristaltic



flow through a planar channel of particle-fluid suspension and using perturbation method to
calculate the series solution. Bhatti and Zeeshan [14] studied analytically the heat transfer on
non-Newtonian Jeffrey fluid having variable viscosity through a planar channel. Bhatti et al.
[15] investigated very recently the effects of Magnetic field on a metachronal wave of solid-
liquid suspension induced by cilia motion. Javed et al. [16] analyzed the velocity and thermal
slip effects on the peristaltic motion of a non-Newtonian Walters-B fluid model. Bhatti et al.
[17] studied the three- dimensional peristaltic motion of a Jeffrey fluid model in the existence
of magnetic field with compliant walls. He attained exact solution for the velocity function,
and found that influence of magnetic field significantly which opposes fluid velocity. Ellahi et
al. [18] also determined the three-dimensional peristaltic flow with compliant walls. Ellahi et
al. [19] discuss the peristaltic movement of a non-Newtonian Carreau fluid through a rect-
angular duct having porous walls. They applied homotopy perturbation method to obtain series
solution. Kothandapani et al. [20] discussed the peristaltic flow through an asymmetric
permeable channel in the presence of a magnetic field. Some more pertinent studies can be

found from the Refs. [21-30] and several works cited therein.

1.1.2 Multiphase flow

Multiphase flow means a flow which contains more than one fluid phase or a mixture of gases,
liquids and/or solid particles flowing simultaneously in the same enclosure. Multiphase flow
and heat transport has gained out class attention of scientists and engineers due to their
application in chemical and petrochemical engineering, power generation, mineral engineering,
food production, nuclear reactor technology, chemical process, aerospace and automotive
industries in complex field, material engineering, information technology, micro and nano-
technologies, microelectronics engineering, space technology, biomedicine and life sciences.
The equation for the motion of multiphase fluids are proposed by the Navier-stokes equations.

The major difficulty as said by researcher that modeling of turbulence flow and its impact on



momentum and mass transport. The governing equations for multiphase flows with correct
formulation is still the area to debate. Multiphase flow further classify into the following sub
categories. Magnetohydrodynamics incompressible flow towards a porous media through
dilating and squeezing permeable walls. Zaidi and Mohyud-din [31] addressed the heat transfer
and Magnetohydrodynamics impact on two dimensional wall nanofluid wall jet flow using
passive control flow model. Khan et al. [32] simultaneously examined the thermo-diffusion
and diffusion thermo impact on second grade fluid towards two inclined plane walls. The
influence of Magnetohydrodynamics on peristaltic flow have significant importance in arterial
flow, hyperthermia, magneto therapy, and compressor etc.  Furthermore,
Magnetohydrodynamics is very helpful to analyses various kinds of electrically conducting
fluids such as electrolytes, plasmas, and liquid metals. Some more pertinent on the said topic
can be found from references [34-40]. The model of non-Newtonian is most useful to
understand various physical problems. Also, the investigation on the flow of combinations is
useful to understand different physical problems in various area of technical significance.
Fetecau et al. [41] observed that the Newtonian and non-Newtonian solutions contributions.
Maxwell and Newtonian fluids having the similar solutions, execution the equal motion, are
gained as limiting cases of our common results. Fetecau et al. [42] presented the unsteady flow
of an incompressible generalized Oldroyd-B fluid induced by a constantly accelerating plate
between two side walls perpendicular to the plate has been considered by Fourier sine and
Laplace transforms. Fetecaua et al. [43] analyzed the simpler exact solutions corresponding to
the second problem of Stokes for Newtonian fluids are established by the Laplace transform
method. Khalique et al. [44] examined the stationary solution of the nonlinear Schrédinger’s
equation in non-Kerr law media. The types of nonlinearity that are measured are Kerr law,
power law, parabolic law and the dual-power law. Khalique et al. [45] illustrated the solution

of the three dimensional Zakharov—Kuznetsov modified equal width equation. The Lie group



analysis is used to carry out the integration of this equation. Khalique et al. [46] discussed the
integrals of the various cases, which admit Noether point symmetries, and reduction to
quadratures for these cases are obtained. Gazanfer et al. [47] devoted the symmetries of
Stratonovich dynamical system is given. Determining systems of symmetries for Stratonovich
systems have been obtained, and their relation has been discussed. Gazanfer et al. [48]
discussed the exact and quasi symmetries of Stratonovich dynamical control systems.
Determining systems of symmetries for these systems have been obtained and their relation is
discussed. Nazar et al. [49] devoted the micro polar fluid for steady two-dimensional stagnation
point flow of an incompressible over a stretching sheet. Nazar et al. [50] investigates the
incompressible viscous fluid in two-dimensional unsteady stagnation point flow over a flat
sheet. Nazar et al. [S1] reported the induced unsteady flow due to a stretching surface in a
rotating fluid, where the unsteadiness is caused by the suddenly stretched surface. Ishak et al.
[52] derived the solution to the unsteady mixed convection boundary layer flow and heat
transfer problem due to a stretching vertical surface. Ishak et al. [53] published the heat transfer
over a stretching surface with uniform or variable heat flux in micro polar fluids. Ishak et al.
[54] investigated the unsteady laminar boundary layer flow over a continuously stretching
permeable surface. Turkyilmazoglu et al. [55] reported that the viscous compressible boundary
layer flow in three-dimensional direct resonance instability in rotating disk. Turkyilmazoglu et
al. [56] examined the exact solutions to the steady Navier-Stokes equations for the
incompressible Newtonian viscous fluid flow motion due to a disk rotating with constant
angular speed. Vieru et al. [57] studied the unsteady flow of the fractional Maxwell and a
viscoelastic fluid with model between two side walls perpendicular to a plate. Exact solutions
for the velocity field are established by means of the Fourier and Laplace transforms. Nazar et

al. [58] derived the exact solutions for second grade fluids using Laplace transform method.



1.2 Peristaltic flow

The mechanism of peristaltic movement fluids in channel or ducts under progressive wave of
range expansion or contraction propagates of a distensible tube having fluid. It investigates,
mixing and propulsive movement the fluids against pressure rise. Peristaltic movements in
physiology is an intestine leverage of smooth muscle contraction. It contains the transport food
through the digestive tract, urine from the kidney to the bladder, chyme motion in the
gastrointestinal tracts, vasomotion of small blood vessels, movement of ovum in fallopian tube,
bile from the gall-bladder into the duodenum, swallowing food through the esophagus,
movement of Spermatozoa and the human reproductive tract, etc. Peristaltic flows is quite
valuable in physiology and industry because enormous of applications and in mathematics and
complex geometries and results of nonlinear equations. Also, in industry, this mechanism is
widely used in roller and finger pumps and in blood filtration devices. Latham et al. [61] is the

first introduced the mechanism of peristaltic pumping fluid motion.

1.2.1 Pumping phenomena

The peristaltic transport has been enticing devotion of biomechanical engineers. The
importance of mechanical and physiological situations. In physiological applications it is
motivating to deliberate the peristaltic movement of a bio fluid with suction and injection.
Peristaltic pumping are distributed into four regions i.e.(Q > 0,4p > 0), retrograde
pumping(Q < 0, Ap > 0), augmented pumping region(Q > 0,Ap < 0)and free pumping

region.

1.2.2 Trapping phenomena

Another most engrossing phenomena of this study is trapping viewed of streamlines.

Physically, this mechanism is very favorable for the preparation of thrombus in blood and the
propagation of food bolus i.e. in a gastrointestinal tract. The stream function (?) satisfying
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equation of continuity is described as

%, B a%;,
Ve = T xR T gy

1.3 Multiphase fluid

Almost all the said studies have invariably measured single-phase systems. Most of the
technological applications having combustion, lunar ash flow, micro-propulsion, vapor
deposition and aerosol filtration, multi-phase suspensions ascend. Systems are be mentioned to
as “dusty” fluids and the solid particle flow in these fluid-particulate suspensions has a
significant influence on thermo fluid characteristics. Thermal conductivity of occupied fluids
in industrial strategies may be enhanced via the cautious introduction of small solid particles

in the fluids to form slurries.

1.3.1 Solid liquid flow
The flow of this nature represent the liquid continuum transport a dispersed solid particles
suspended under the impact of drag and pressure forces of liquid act on particles, also arises in

crystallization systems, in hydro-cyclones and in china clay extraction.

1.3.2 Gas liquid flow

It is surely most imperative type of two-phase flow in which gas-liquid are enforced to move together
and have many practical applications in pipeline systems for carrying gas-oil mixtures, sewerage
treatment plants, submerged combustion systems, evaporators, boilers, condensers, refrigeration plants
and air-conditioning, cryogenic plants. Additional combination of gas and liquid schemes are also

useful in weathercasting and other natural wonders.
1.4 Non-Newtonian fluid models

Non-Newtonian fluids deviate from Newton's law of viscosity, and exhibit variable viscosity.

The behavior of non-Newtonian fluids is generally represented by a rheological model, or

10



correlation of shear stress and shear rate. Examples of substances which exhibit non-Newtonian
behavior include solutions and melts of high molecular weight polymers, suspensions of solids

in liquids, emulsions, and materials possessing both viscous and elastic properties.

1.4.1 Jeffrey fluid

The Jeffrey fluid with Cauchy stress tensor is described as [59]

M .
S——l+l(7+/12;/).

Here ¢ is the viscosity, 4, is the retardation time, jis the velocity gradient, 4, is the delay

time and 7 is the second derivative with respect to time.

1.4.2 Casson fluid

Stress tensor for Casson fluid which is presented as [60]
S=—pd, +2u(},)V,
w2 | [ K] [ gk -
a=n:p=2"1)s,

Where7 is the Casson coefficient of viscosity, and 7,, is the yield stress.

1 1
Jo=sV ¥, =V + 75 +275),
ou
Car
ov
sz =5_y_’
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1.4.3 Ree-Eyring fluid

Stress tensor for Ree-Eyring fluid model is presented as

S=ys€,i+—l-5inh“ 19 ,
dx, B C ox,

Since sinh™! x = x of |x| < 1, then

12

(1.10)

(1.i1)

(1.12)



Chapter 2

Flow of particulate fluid through an annulus

with endoscopy and slip effects

This chapter peristaltic movement of particle-liquid suspension discussed analytically
with slip effect and endoscopy through a non-uniform annulus. The equations of the flow
problem of particle fluid suspension comprise of continuity and momentum equations for
both fluid and particulate phase. The particles are considered light and suspended uniformly in
base fluid. The fluid, in this case, assumed to be Non-Newtonian (Jeffrey) fluid. Partial
differential equation is non-dimensions and reduced with the long wavelength and low
Reynolds number assumptions. The pressure rise is obtained by using numerical

integration. The results are displayed graphically.

2.1 Geometry of the problem

In this problem, a non-uniform annulus whose radius increase linearly is considered.
An Endoscope of radius b is placed such that both annulus and Endoscope is co-centric as

shown in Fig. (2.1).

I3

A

—

b(z)

Figure 2.1: Geometry of the flow problem
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A sinusoidal wave travels on the walls of external tube. The equation describes boundaries are

given mathematically as,

Fob 7 =b(Z)+&Sin—2/—1”—(Z—ct), @.1)

1
Where, j

b(Z)=b, +xZ.

Radius of outer tube at any point Z isi(Z), where Z is axial distance, at inlet radius of the outer

tube is b, . Velocity of wave propagation, wavelength, wave amplitude, radius of the endoscope

and time is represented by ¢, 4,a,b,,t. k(<1) is a constant.

2.2 Mathematical formulation

Consider incompressible, laminar flow of particles in Jeffery fluid. It is assumed that the
particles are small and uniformly distributed and transmitted in base fluid. The equation of fluid

phase and particle phase in an annulus is given by

av ou vV
1-C)=L+(1-0)—=L+(1-C)-L£=0 23
(1-C)=L+(1=C)—L+(1-C) L =0, (2.3)

oP 1 0 0 S
1-C)—=(0-C ——RS_+—S -2 |1CS'(V, -V,), .
1-O2 = 1-Oop (4 S, 4 28, - 22 |ecs', 7)) 4
oP 10 %,
1-C)y—=(0-C ——RS,_ +—S8 cs'u,-U
1-0Z -a-0p( S Zrs. 4 s, Jsesw,-v)) @)

ov ou vV
C—L+Cc—2L+C-L=y, (2.6)
OR oz R

8P .,
Cor=CS'WV, = V,), .7)
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1

0P _ ..
C=;=C8'WU,-U,). 28

Here S,.,S,_,Sy are components of stress tensor S for Jeffrey fluid defined in Eq. (1.2), C is

the concentration of particles, U and V velocity components, P is pressure, suspension viscosity
and drag force is given by u and S'. The equations are transforming from the laboratory frame
to wave frame using.

Vyy=VossUy +e=U,  ,R-ct=RZ=Z,P=P. (2-9)5

Non-dimensional parameter are describe as

R Z U AV, i 2 .
r=£92=£aufp= Le 9vfp— 4 5t tcs = bO P’;L_l: . avozﬁ,
b, AT c b,c Ape Mo c 2.10)
~ ~ - 2 — .
SR S SR S NYVR S
b b b A 2y A

Using transformation Eq. (2.9) and non-dimensional parameters defined in Eq. (2.10) the

governing equations are simplified as,

op _
5 =0, (2.11)
o ___E 0o, 04 M, _
oz r(l+4,) ar(r or j+(1- )(“” “r) (2.12)
8
L =M, (u,-u,). (2.13)

Oz

Boundary conditions in dimensionless form are

udr) =vo, r=ri =€ (2.14)
Ou Axz .
u (ry=-p 5 F=r =1+ +@sin 27 (x - 1). (2.15)

[

Where B is slip parameter and € is radius of endoscope.
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2.3 Solution of the problem
Fluid and particulate velocities are obtained in terms of j—z, given as
dp, 1 2 —
A+ ) -ty dp  B(O% ,l,)-(}-‘g-(r, — 1 =25 B) - 4(1-CIv,D)In(r)

" 4F(1-C) dz ,
4(1—C);f[ﬁ-r, h{r—'n

2

(2.16).

r((1+ ,1,)‘;—*‘2’(42 ¥ -2n,8)-4(1-Cw, M} In (1)}
+ + vy,
4(1—C);7[ﬂ—r2 1n(’—'U
)
d| —
- (1""71)(’2_"12) dp . rz((l+/1|)d—‘:(rf —rzz—ZrZﬁ)—él(l —C)vuy}]n(r)
P 4— _ e
H1-C)y 4(1—(:);{,43—;»-2 ln(:—'D
p : 2.17)
R+ A) 0 =0 =20 ) =40 -Cw)n(r) |
+ o] T
Ai-C)a| g-r,In| L
5
The volume flow rate is described as
Qz,1) = 04z + O, (2.0), (2.18)
Where
Q= 20(1-0) " rud, .19
Q= ZﬂCj:z Fupdr. (2.20)

Integrating and replaced in Eq. (2.18)
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0(z.1) = u (O =)+ AOM, L5, + )
8(1 -C)Mlﬁ[ﬂ -r, ln(:—‘n

—-rl(r, +3B)) +4(-1+C)(-C —%ﬂ + My (n+2DE)+r,(-(1+ A)M, (2.21)
(- P (r, +48))+ 4(-1+C)(C d—p(rl2 —r)=2M,r'v) ) In [’—1]
dz dz r
Simplifying Eq. (2.20) to get pressure gradient in terms of Q
D o 41+ OME-208 -7 =21+ 28)+ 20, 1)
In (:—;] 1R =)=+ B))M (7 (ry + B) =15 (1, +3B)) + 4(=1+ C)C 1) (2.22) |

+1r,(=(1+ )M, (5 =1 (r, + 4 ) +4(-1+ C)C(r> - ) E) In (i]

)

Pressure rise and the wall fraction force for the outer tube and inner tube is calculated

numerically using MATHEMATICA

Ap(t) = IZM %dz, (2.23)

aF3) = | ;Mr% (—%)dz, 2.24)
, LA, dp

AF!(t) = jo " (—Z]dz. (2.25)

2.4 Illustrations and discussion

To examine the impacts of several parameters i.e., slip parameters (f3), Jeffrey fluid
parameter (1,) and particle volume fraction (C) on velocity profile, pressure rise and wall
frictions graphs are plotted from Fig. (2.2) - (2.12).

Fig. (2.2) indicates the variations in velocity for fluid for particle volume fraction C and Jeffery

parameter 4, . It is observed that the velocity decreases with an increase of bothC and 4, .
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Physically, when the particle volume fraction rises, it tends to enhance the viscosity of the fluid

which reduces the velocity profile. Also at 4 =0fluid reduces to Newtonian fluid case. It is

clear that Newtonian fluids flows faster than Jeffery fluid. Fig. (2.3) is plotted to see the

influence of velocity of endoscope v, and slip parameter g for non-Newtonian case. On the

wall no slip condition is observed in the figure. Whereas, also increasing value of g shows an
increase in velocity on the channel wall. In stationary endoscope case maximum fluid velocity

was achieve for g =0and a slightly greater value of velocity is observed on the wall when
v, = 0. it is observed that in Fig. (2.4) particle velocity is greater in Non-Newtonian fluid then

in Newtonian fluid also velocity of particle decrease with in values of C because of the collision
increases and particles accumulates and started to get heavy. It can be seen that in Fig. (2.5)
particle velocity is increasing with the increasing values of slip parameter and endoscope
velocity. Fig. (2.6) - (2.8) are sketched to see the variation on pressure rise. From Fig. (2.6) it
is examine that with the slip parameter increase pressure rise tends to decreased. It is observed
that the pressure rise decreases for the different values endoscope velocity and particle volume
fraction. The effects of Newtonian and non-Newtonian fluid is discussed in Fig. (2.7) and (2.8)
in which the value of Jeffrey parameter is not zero then the pressure rise is minimized. On the
other hand Jeffrey parameter is equal to zero fluid become Newtonian then pressure rise
increases.

The numerical results of the friction forces for outer tube are examined in Fig. (2.9) and (2.10)
for different physical parameters. Fig. (2.9) indicates that friction force increase with the
increasing value of slip parameter. It is clear from Fig. (2.10) with the increase of Jeffery
parameter friction force increases.

Fig. (2.11) and (2.12) is plotted for the friction forces on an inner tube. It is observed that the

behavior of the inner tube is the similar to the outer tube.
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Figure 2.4: Particle velocity for different values of C and A;.
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Figure 2.12: Inner tube friction forces for various values of vy and A,.

2.5 Conclusion

In this chapter, the effect of endoscope and slip on peristaltic flow of particulate fluid in non-
uniform annulus. By the assumption of low Reynolds number and long wavelength obtaining
the governing equations for both fluid and particulate phase. Following are some main finding
of the study.

= Increase in particle volume fraction shows a decrease in pressure rise and flnid velocity.

¢ When fluid represents non-Newtonian behavior minimum pressure rise can be achieved.

* Greater value of Jeffery fluid parameter velocity fluid decrease.

= Due to slip effects, friction forces for inner and outer tube also rise.
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Chapter 3

Flow of particulate non-Newtonian fluid

through a duct with magnetic field

|

1
1

In this chapter, peristaltic transport of MHD dusty three-dimensional Bio rheological Non- (

Newtonian (Casson and Ree-Eyring) fluid in a rectangular duct is investigated. The governing
flow problem is based on law of conservation of mass and momentum. These equations are
modelled for fluid-particle phase along with the assumptions of a creeping regime and wave
travelling along the wall has long wavelength as compare to amplitude of wave. The exact
solution has been obtained from the resulting partial differential equation by means of Eigen
function expansion method. Graphical results are discussed against all emerging parameters
such as Hartmann number, particle volume fraction, Casson and Ree-Eyring fluid parameter
etc. Numerical integration has been used to determine the pumping characteristics. Trapping

phenomena are also discussed and sketched by drawing streamlines.
3.1 Geometry of the problem

A rectangular duct is assumed with flexible walls at Z = +H. the peristaltic wave propagates
parallel to X —axis as illustrated in schematic diagram in Fig. (3.1). Wave is travelling with a
speed ¢, an amplitude of @ units and wave length A. the dimensions of duct in the absence of

wave is bxd.
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Fig. 3.1: Geometry of the problem

Rectangular coordinate system is assumed with O as origion. The mathematical relation for

geometry of the wall is presented as

Z=H(X.T)=tbt acos[%(ﬁ’ - cf)}, y=1d. (3.1)

3.2 Mathematical formulation

The flow of solid particles in a two Non-Newtontan i.e. Casson and Ree-Eyring fluid through
a duct driven by a symmetric peristaltic wave. The flow is described using continuity and
momentum equations for both fluid and particle phases using continbum approach. A

transverse magnetic field is applied to the flow. The equations describing the flow are

eu, oW,
L Loy, .
ax | oz (32)

au, ; B¢ , 04 '
(- C]pf(—+b ax* E} 1~ C)— (- q[ S 255w+ -5 J+CB’(UP—UI}—J£UI,
(3.3)
W, oW, oW ‘
- C)pf[—w,r LW, azf]——u OF+a- C)[ e A
(3.4)
oU, oW,
Lt =0, (3.5)
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U + =-C—+CS'(U,-U,), 3.6
o Trax ez (v, ”) (3.6)

oU ol oU » oP
Py ax

ow ow ow oP .
Cpp( at” +U, aX” +W, 6ZPJ:—C—67+CS (Wf—Wp). 3.7

The stress tensor of Casson fluid and Ree-Eyring fluid is describe in Eq. (1.3) and (1.11)
respectively. The equations are transform in wave frame using Eq. (3.8).

X=X-c,Y=Y,2=2,U,,=U,,-c,W,,=W, ,,P(x.t)=P(X.Z,1). (3.8)

Non-dimensional parameter are describe as

: : v : s I
—_ X I 4 _ 71 _ H _ —_ pac —
X=4, Y=, W, =2 h=5,6=%,0%=%,Re a'=—=—=. (3.9)

Using non-dimensional parameters defined in Eq. (3.9) and (2.10) and assuming that § and

Re — 0 the governing equation for Casson fluid becomes

(H%J’B“ a;;’;*[“%]a;:f‘Mz(“f“)T_l_c)Z_i’ (3.10)
and for Ree-Eyring fluid
(1+a’)[ﬂ'zg%+g—:g—J—M2(uf+l)=(l_lc)%. @3.11)
Equation of motion for particulate phase is
L (g -u,), (3.12)
along with corresponding dimensionless boundary conditions
u (+l,z)=-1, and u,(y,+h)=-1. (3.13)

3.3 Solution of the problem

Using Eigen function expansion method, Non-homogenous partial differential equations are
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solved. The exact solution for Casson fluid is represented as

4Cos(C,z)Cosh(yC; )Sech (C, }((1+C,)Sin(-C, ))

up=C - (ﬂ_znf)(h+sm(h(l—2n)rz)} ’ (3.14)

r~2nr

4Cos{(C,z)Cosh (yC, )Sech (C,){((1+C,)Sin(-C,))

u,=~(1-C)M | C, - : (3.15)
(7 - Zquh + El—n(—:%z—:k—)]
and the exact solution for Ree-Eyring fluid case is
" 4Cos(C,z)Cosh (yC,)Sech (C; ){{1+C,)Sin(-C, ))
At . ?
(r- ZM)[“ Sm(h(l—2n);r)] (3.16)
m-2nx
w, =—(1-C)M,| €, - 4Cos(C,z)Cosh (st)Sec.h (C)((1+¢,)8in(-C,)) ’ 3.17)
Sin [h(l - Zn):r)
(ﬂ' - 2”.’1') h+ —;_'—2'?—

Where

(Z-[140)s 17) e Zcom(Cir)secn(hcy)
€= (CreO)fis17)

i+ M?
J1+¢ ’

C,=

M+ —l-{~1+ 2n)2 zz(l+-l—(—]+ 2n)rr)
C. = 4 2
17 »
[1+ %(—l + 2n);r)ﬂ"

Co==(n-Vrz,

by | —




The relation for flow rate in duct is defined as

9, =(1-C) s ou, +1)jez, (3.18)
=(C)fy lou, Bk, (3.19)

and hence
0=0,+0,. (3.20)

The pressure rise Apis calculated numerically with the help of following expression

Ap =1L gx. (3.21)

3.4 Illustrations and discussion

The graphical results of emerging parameters involved in the governing flow problem. To
determine the impact of these parameters on the flow, computational software
“MATHEMATICA” used. Particularly, the behaviour of velocity profile for both fluid, and
particle phase along peristaltic pumping, and trapping mechanism are sketched. For this
purpose Fig. (3.2) - (3.13) have been sketched for the variation of particle volume fraction C,
Hartmann number M and fluid parameter Casson ¢ and Ree-Eyring . Fig. (3.2) and (3.3)
indicate the velocity variations of particle volume fraction C for both particle and fluid (Casson
and Ree-Eyring) phase. The fluid velocity decreases because particle volume fraction rises then
fluid becomes thicker which goes to oppose the flow and as a results velocity of the fluid
decreases. Further it is seen that for both fluids particles flow slows down with an increase in
particle concentration, whereas, in the middle of flow the velocity of particles increases. Fig.
(3.4) and (3.5) are drawn to show the effects of Hartmann number Mon flow. Both fluid

(Casson and Ree-Eyring) and particles phase, velocity slows down for higher values of
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Hartman number M when the magnetic field is applied, an opposite force generated known as
Lorentz force which goes to oppose the velocity significantly. Since M = Byd \/E— which shows

the influence of hydrodynamic body force and the magnetic body force, therefore it is found that the
greater transverse magnetic field creates more Lorentz force M2 which in results decelerates the flow

more significantly. Fig. (3.6) - (3.9) displays the variation of Casson and Ree-Eyring fluid
parameter ¢ and «’on the velocity of a fluid and particles in respective solutions. The results
for Newtonian fluid can be achieved by taking — « anda’ — 0. It can be viewed from these
figures that fluid parameter does not cause any major impact on particle velocity, however, the
fluid velocity increases near the walls of the duct and converse behaviour has been observed in
the middle of the duct the behaviour is opposite for Ree-Eyring fluid.

Fig. (3.10) - (3.11) are developed to analyse the pumping characteristics for both fluid
Casson and Ree-Eyring under the effect of magnetic field and particle volume fraction. In Fig.
(3.10) we can be seen that due to an increment in Hartmann number M tends to boost the
pumping rate in retrograde and peristaltic pumping region whereas its behaviour is converse in
augmented pumping region. However, it can be observed from Fig. (3.11) pumping rate tends
to diminish in peristaltic and retrograde pumping region for particle volume fraction (C) greater
values.

One of the most interesting features of peristaltic motion is trapping phenomena, which
can be observed by drawing streamlines. The size of the bolus describes the volume of the fluid
that is bounded by the closed streamlines. It is clear from Fig. (3.12) and (3.13) that when the
Hartmann number M rises the number of bolus remains constant when the magnitude of the

trapping bolus rises.
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3.5 Conclusion

This chapter addresses the peristaltic flow of bio rheological non-Newtonian (Casson and Ree-
Eyring model) having small solid particles propagation through a rectangular duct. The flow is
described by means of continuity and momentum equations for both fluid and particulate phase.
The goveming equation is solved with the assumption of low Reynolds number and long
wavelength. The resulting partial differential equations are solved analytically with the help of
Eigen function expansion method and exact solutions are presented. The major outcomes for

the present analysis are summarized below:

e Velocity of the fluid reveals significant reduction due to greater influence of magnetic |

field.
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e Higher values of particle volume fraction also provides a significant reduction in the
transmission of fluid.

e Casson fluid parameter tends to enhance the velocity of the near the walls of the duct,
however, it reveals converse behaviour in the middle of the duct. Opposite behaviour
is observed for Ree-Eyring fluid.

e  When the fluid is Newtonian pressure rise is increased.

e The magnitude of trapping bolus rises gradually due to an increase in the particle
volume fraction and magnetic field.

e The present results reduces to Newtonian fluid and single phase flow by taking

§—>wora'—>0and C=0.
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Chapter 4

Flow of particulate fluid through a channel with

heat transfer

In this chapter, the flow of suspension of small particles in non-Newtonian Ree-Eyring fluid in
a channel induced by peristaltic waves is described. The effects of transverse magnetic field is
also observed. The problem is modeled using law of conservation of mass, momentum and
energy. Under the assumption of creeping flow and long wave length the governing equations
partial differential equations of solid and liquid phases are reduced to ordinary differential
equations. The exact solutions have been obtained by solving the non-linear coupled
differential equations analytically. The physical interpretation of emerging parameters for

Newtonian and non-Newtonian case is displayed using graphs.

4.1 Geometry of the problem

Let the Cartesian coordinate system i.e. X —axis is along the direction of the flow and Y —axis
is taken normal to the flow. Infinite plates parallel to X ~ axis bounds the fluid. A sinusoidal
wave travel with the velocity ¢ and amplitude a along the plate induces the flow Fig. (4.1).

Mathematically, equation of wall is defined as

H(X,f)=b+asin27”(/\7—ct), @.1)
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Fig. 4.1 Geometry of the problem.

4.2 Mathematical formulation

The void between the channels filled with incompressible, Ree-Eyring fluid with uniform
distributed small solid particle. The flow is laminar and in creeping regime induced due to

propagation of wave on the plate. The equation of fluid phase and particle phase is given by

P %o (42)

+—=0,

axy ar

1 au au aP 3 5 (4.3)
- S LA S l=_ 1- o _ v v
o, (i c)[ Ly, L, a,) (1-C) o+ (1= ) S + 55 |

+CS(U, -U,)-oBiU,,

oV av, ) 3
1-C L - o 2
( )p"[ a UitV a}'] (- C) +(] [ XS’“a}'S”J (4.4)
+CS* (VP—VI),
ar ar o7,
pf P(] (I)[ f f a; Vf a}/) k (I C.) a}fz +pPCPC(TP_Tf)
sU (4.5)
+es'(U, -U,Y 5, (- C)( f]
%+%’;&=o, (4.6)
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aU oU oU oP (4.7)
Cpp( LU, —L 4V ”):-C—+CS'(Uf—Up),

o Pax "oy ax
v ov oV oP .., (4.8)
Cp,,[ at” + Up—5Xl+ v, —a—Yi]=—C§+ cs(v, -v,).
or,  oT, (4.9)

o,
ppCcp ?-FUPE‘XT-FV‘D@—Y =ppcpC(Tf —Tp).

Here, §,, and S,, are components of stress tensor defined in Eq. (1.11). The equations are
transform to wave frame using Eq. (3.8). Eq. (4.5) and Eq. (4.9) uses non-dimensional
parameters.

-, (4.10)

Using Eq. (2.10), (3.9) and Eq. (4.10). The governing flow Eq. (4.2) - (4.9) are simplified. Also,

employing long wave length and creeping flow.

5 (4.11)
(1+a) L - My, - P 2,
Py 1-C dx
2 2 2 (4.12)
L LyEc(l+a)| =L | =~ Ee (dp) ,
Pr & dy M (1-C)\ ax
dp (4.13)
dx 1(uf_”P)=O’
6,=6,. (4.14)
The corresponding non-dimensional boundary conditions are
u'y=60',=0, at y=0 and u,=-1, 6,=1 at y=h. (4.15)

4.3 Solution of the problem
Solving the velocity and temperature profile, the exact solution is represented as
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» _dp  dp yM hM (4.16)
- + ——cosh =sech
-c)m?- el by ey f+a

T (1-C)M>
dp d yM hM (4.17)
1- oLy h h
. =( C)M o cs NEYT sec Jﬁa’__l_d_p
? (1 c)M? M, dx’

: : 4.18)
- 2 My M Y h( 2My )Se h[ hM ) (
0, =Cey+Cy Cscmh[ﬁ+a.)&0h(ﬁ+a,) C,Cos T C o

Where

1 2 .
C, = ~2((-1+C) Ech(1+a')|M*M, Pr
8(—1+C)2hM6M1( (« ) Beh( )) ‘

2
+4(—1+C)Ech(1+a')M“MlZ—pPr+2(—1+C)EchM6[Z—pj Pr
X p

2 2
‘4Ec”(1+a')M2M1[Z—pj Pr+2(—1+C)EchM6(Z—pJ PrCosh( 2hM )
x x

2

dp\’ hM)
-2Ech(l+a")\M*M,|(1-C)M* + PrCosh Sech ,
eh(i+a)m M, ((1-C)m* + 2 | ros(r_m]j (W

1
C7= 2 6
8(-1+C)"hM°M,

2(-1+C)Y’ Ech*(1+a"YM°M, Pr

2
—4(-1+C)Ech*(1+« ')M“M, Z—pPr— 2(~1+C)Ech’M ¢ (%) Pr
X X

2
—Ec(1+a')M1(j—p) Pr—Eca'(l+a")\M, (j j Pr
% x

2
+4Ech*(1+aYM*M, [Z_p) Pr~16Ec(l+a ')’ M, ((—1 +C)M? —-‘;ﬁ]
X x

hM

vi+a!

2
((—1+C)M2—d—p P prycosh| M1
dx ) dx

Ji+a!

%EPrCOSh[ J+8M1((—1+C)2M°+2Ec(1+a')2
X

1

Gy = Ech(1+a )M
* T 8(-1+C)*hM M, (

j Pr+ Echa '(1+a )M, (‘;”] Pr
X

sz.|¥t1

1+a

dppc h( ]hM J
+a

(g
+16Ech(1+a')2M1((-1+C)M2 )d PrCosh( hM ]

—~16Ech(1+a")* M, ((—1+C)M2
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2
Cy,=Ech(l+a'*M, (%J Pr.

The volume flow rate is specified by

a - 2 dp))_ . dp hM (4.19)
- hM(M, . +(1-C)M [Ml +C de Vi+a'M, 0 tanh[mlj
- (-1+C)M>M, '
To obtain dp/dx after solving Eq. (4.19)
dp _ (-1+C)M°M, (h+Q) (4.20)

dx

M Y
-1+ CYChM® — hMM +\/l+a'Mtanh( ]
(-1+C) ! e

The pressure rise Ap is calculated numerically with the help of MATHEMATICA using Eq.

(3.18).

4.4 Illustrations and discussion

To examine the impacts of several parameters Prandtl number(Pr), particles volume
fraction(C), Hartmann number (M) and Eckert number (Ec) solution are plotted for both

Newtonian and non-Newtonian fluid cases in Fig. (4.2) - (4.9).

The transvers magnetic field parameter M effects on the fluid velocity, negatively due to
Lorentz opposing forces as shown in Fig. (4.2). From Fig. (4.3) it is notice that the decelerate
the velocity profile when increasing the values of particle volume fraction it indicates increase

in fluid viscosity.

From Fig. (4.4) it is examined that the values of Prandtl number rises temperature profile.

Prandtl number P, = % is the ratio between thermal diffusivity and momentum diffusivity.

The Prandtl number also described by the specific heat capacity and dynamic viscosity divided

by a thermal conductivity of the fluid. Prandtl number P, < 1 are associated to rheological
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propellants and shows that thermal diffusivity governs more as compared to momentum
diffusivity. When the fluid is Newtonian the temperature profile is lower for the Eckert number

whereas when values of Eckert number increases a rise in the temperature profile is seen (Fig.

(4.5)). Eckert number E, = 5(7‘%5 is the relationship between boundary layer enthalpy
1=+ o0

difference and kinetic energy of the flow and is used to analyses the heat dissipation effects. It
is observe through Fig. (4.6) when the value of particle volume fraction reducing the
temperature profile. The value of Hartman number effects the temperature profile positively as

investigated in Fig. (4.7).

Fig. (4.8) and (4.9) are discussed for pressure rise which is helpful in biological fluid. From
Fig. (4.8) the pumping rate rises (Ap < 0,Q > 0) in co-pumping region and free pumping
region (Ap < 0,Q < 0) when increases the value of particle volume friction but in retrograde
pumping region (Ap > 0, Q < 0) behavior is opposite. From Fig. (4.9) it is seen that when
increase in the value of Hartmann number is observed the decrease in pumping rate in co-
pumping region (Ap < 0,Q > 0) and free pumping region (Ap < 0,Q < 0) is noted and

increases in retrograde pumping region (Ap > 0,Q < 0) is seen.
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Fig. 4.2 Velocity field for different values of M .
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4.5 Conclusion

In this chapter, the effect of heat transfer examined on peristaltic wave with Ree-Eyring fluid
and magnetic field. The governing equations are solved with the assumption of low Reynolds
number and long wave length. The analytical solution is obtained by solving the coupled

ordinary differential equations. The main points are summarized below.

e The magnitude of velocity distribution for non-Newtonian fluid is larger than that of
Newtonian fluid.

e The effect of Hartman number and particle volume fraction velocity distribution
reduces.

o The behaviour is opposite for the temperature profile for particle and volume fraction
Hartmann number whereas temperature rises for Prandtl number.

e When the fluid is non-Newtonian pressure rise is greater.

e The present analysis is reduced to Newtonian fluid by takinga =0,and single phase

when C=0as a special case of this study.
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Chapter S

Flow of particulate fluid in a channel with

inclined magnetic field and heat transfer

In this Chapter, the heat transfer of peristaltic movement of particles with uniform inclined |
magnetic field has been examined over a uniform inclined channel. The problem modelled use
of momentum equations along with the energy equations in wave frame, with the assumption
of long wavelength, Problem are solved for both fluid and particle phase. The exact solution is
obtained by solving coupled ordinary differential equations for fluid and particulate phase. The
effect of different physical parameters is discussed graphically. Also, numerical manipulation

used to observe the pumping character.

5.1 Geometry of the problem

Consider the peristaltic (“sinusoidal”’) wave is moving with wave velocity ¢ on the wall of
the channel having a wave length A. The equation of wave propagation is described in Eq. (4.1).

The channel is inclined at a small angle a@ with X — axis as shown in Fig. (5.1)

r
!

X

Fig. (5.1) Geometry of problem
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5.2 Mathematical formulation

The fluid bounded by the channel has structures of incompressibility, irrotational, constant
density contain uniformly distributive small particles. The existence of magnetic field
B{= B, sin ©, By cos 0, 0} is applied at an angle © with the flow. The magnetic field is precise

small, hence induced magnetic field considered negligible. The equations governs the flow are

o, 3,
ax o

s

ou, eu, U, 2, B,
1= v, S S Jo-0-01 -0 Tk D0, -u,)

-oB? [(Uf + 1)(005(9)2 -V, cos@sin®]+ p,gsina,

o, 1% ov 62 62
1-C _ _fl-_Nn-

-oB; [(Uf cos@ + cos@)sin@ -V (sin@)z]— prgcosa,

or,  oT, oI,
(1—c)pf(a +Uf—a-)? v, 6Y) k,(1- c) +ppcpC(T T, )+Cs'(u, -U,) +

2
U, (I—C)(aa%] +0B} cos@((Uf + l)cos@— v, sin@)z,

oU, O,

ox oY

ouU ou, oU,) _op
Cpp( LU=, 6Y] Cop=-Cs(U,-u,),

oV av ov, opP
Co | —L+U L1y a
p”(ar Pox "aY) Cor sy =¥,).

ar, or,  aT,
4 4
ppC'c[ Uy GYJ ppCe, (T, -T,)

The equations are transform in wave frame using Eq. (3.8).
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Using non-dimensional parameters defined in Eq. (2.10), (3.9) and (4.10} and resultant

equations are simplified using long wavelength and creeping flow assumption, the governing

equations become

O
;(—Mz(l+uf)cosz®+£55ina—Lé{’_ﬂ},
oy Fr 1-C dx
a? a 2 9
L 6;'{+Ec U, . Ee (f’!;) +E£'M2(u!+l)zcos"'®=0,
Pr oy o | M (O-0)\ &
dp
M (u,—u =—,
l(f r) dx

9 =9f'

[

Boundary conditions are presented as

uy (0)=0, 6',(0)=0, and uf(h)=—1, 8, (n)=1.

5.3 Solution of the problem

Solving the velocity and teruperature profile, the exact solution is represented as

Y = sec’ ©(C,, — C;, cosh Mycos @)
y 2(-1+C)Frm?

1

B sec’ 8(Cy, - € cosh Mycos®) | dp

u ——

? 2(-1+C)FrM? M, dx

»

8=Cp +Cpyy+ " +Cp cosh[ Mycos @] + €, cosh[2Mpcos O]
Where
dp

C = Fr(Mz -CcM? +2§)_(—1+ C)FrM*Cos(20)+ 2(-1+ C)Re Sin(a ),
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{

C, = 2Sech(hMCos(0))(Fr§E—+ (-1+C)Re Sin(a)),
X

C,, =Sec(6’)Sech(hMCoS(0))( x2(-1+C)FrM |

Fr a (=14 C)ReSin(a ))

Ci =Fr(M2—CM2+ZZp

—) - (~1+C)FrM*Cos(26)+2(-1+C)ReSin(a),
X
C,, = Sech(hMCos (0))(Frj—p+ (-1+ C)ReSin(a)J,

X

Cs =2(-1+C)FrM*,

Ec (dp)z
Cs=——"""7—|+1|>
M,-MC\dx
h 2
C,, =M_lcz EchPr+lEchM2Pr+M
: 2 4 7 4

15
4C,EcPrSec(6)’ CLEcPrSec(6)
Cysh 8hM >

+%EchM2 PrCos(26)+

, ChEchM® PrSec(9)" , CiuEchM * Pr Sec (6)" 4C,,EcPrCosh(hMCos(6))Sec(6)’

2C125 C125 ClSh

. C},Ec PrCosh(2hMCos(0))Sec () , 4C,C EcPr Sec (6)" CLEcPrSec(9)'
8h’M? CLh 2CLh
4C,,C\,Ec PrCosh(hMCos(0))Sec(6)' ClLEcPrCosh(2hMCos(0))Sec(9)’
- + ,
CLh 2CLh

—£+1C122EcPr——l-EcM2 Pr-
2 4 4

_ CLEcM’PrSec(6)’ ClEcM?PrSec(8)’
2C125 C125 ’

C,EcM*Pr 1

C, = -—
18 CIS 4

EcM? PrCos(ZH)

_4C,EcPrSec(8)’ , ChEe PrSec(0)’ 4C,;C,EcPrSec(8)’ , ClEcPrSec @)
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CLEcPrSec(d)’ _ClLEcPr Sec(6)'
B 8 M ° 203 '

Cu=

The volume flow rate is defined as
h h |
Q=j(uf—Cuf)dy+£Cupdy. (5.17),
0

Simplifying Eq. (5.17) to get

(=1 + )M, (2FrM3Q + FrhM3Sec[0)? + FrhM3Cos[20]Sec[6]?
dp —2hMReSec[6]?Sin[a] + 2ReSec[#]3Sin[a]Tanh[hkMCos[6]]) (5.18)
dx _ 2Fr(—ChM3 + C2hM? — hMM;Sec[6]2 + M,Sec[6]* Tanh[kMCos[8]])

The pressure rise Apis defined in Eq. (3.18).

5.4 Illustrations and discussion

This section consist of graphical behavior of different parameters. Computational software
MATHEMATICA has been used to conclude the novelties of inclined angles (a, ©), Froude
number Fr, Hartmann number M, Reynolds number Re, Prandtl number Pr, Eckert number Ec,
particle volume fraction C and volume flow rate Q respectively. In particular, the impacts on

temperature profile 9f,p, velocity profiles %, and U, and pressure rise Ap are conferred. For

this purpose Fig. (5.2) - (5.11) are sketched.

Fig. (5.2) - (5.4) shows the behavior of velocity profile that with multiple values of
particle volume fraction C , Inclined angles (a, ©), Froude number Fr and Hartman number M.
From Fig. (5.2) it can be notice that when particle volume fraction increases velocity profile
decrease as it opposes the flow. Lorentz force is opposing the flow when magnetic field is

applied as observed from Fig. (5.2) it is observed that when increasing the value of magnetic
field the velocity profile of the fluid reduces. Fig. (5.3) explains the differences of %, verses ¥
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for different values of Q and a. Figure displays the velocity profile enhanced with increase in
inclination angle a. Furthermore, it can be notice that the velocity profile also increases with
the increasing the volume flow rate Q. In Fig. (5.4) it can be notice that velocity profile
increasing with rising the inclination angle of magnetic field ®. Froude number Fr goes to
resist the flow, the velocity of the fluid has larger effect when Fr<1 (subcritical flow) as

associated to when Fr=1 (critical) and Fr>1.

Fig. (5.5) - (5.8) are drawn for temperature profile for different parameters. It shows
from Fig. (5.5) inclination angle.rises then the temperature profile rises moderately, the
temperature profile rising with the volume flow rate Q increase. It is clear that in Fig. (5.6)
Hartmann number M rises with temperature profile increase. The same behavior of
temperature profile examined with the particle volume fraction C rises. Fig. (5.7) shows the
behavior of inclination angle ® and Froude number Fr on temperature profile. From this
figure Froude number Fr accelerate temperature profile is observed. Fig. (5.8) illustrates the
behavior of Prandtl number Pr and Eckert number Ec on temperature profile. From this figure

it is observed that Prandtl number Pr, increases the temperature profile.

Fig. (5.9) - (5.11) are discuss for pumping characteristics and pressure rise. Fig. (5.9)
shows the behavior of Hartman number M and particle volume fraction C on pressure increase.
When Hartman number M and particle volume fraction C increases the pressure rise increases.
From Fig. (5.10) that pressure increase depicts similar behavior, by rising Reynolds. Whereas,
for Front number pressure rise decrease. Fig. (5.11) is drawn for inclined angle, and amplitude

ratiog From this figure it is clear that the pumping rate rises in this region. The attitude of

inclination angle, is reverse on pressure rise as related to the comportment of amplitude ratio.

Fig. (5.12) - (5.16) explains the streamlines (or “Trapping”) for different values of

controlling parameters. Fig. (5.12) clarifies that the magnitude of trapped bolus decreases
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slowly for values of angle a. From Fig. (5.13) the impact of particles shows similar
performance whereas magnitude of trapped bolus decreases more expressively. From Fig.
(5.14} it is notice that the increase in Froude number Fr effects the streamlines and causes the
bolus size to decrement. In Fig. (5.15), it is observed that magnetic field influenced on
streamlines trapped bolus vanishes. From Fig. (5.16) it can be seen that reduction of angle ©

goes to contract the trapping bolus.

5 00
o= 1/67/4.73.
—0.5}
—10I'. N " 1 " N x 1 . . 1
0.0 0.5 1.0 15

Fig. 5.3 Velocity field for different values of ¢ and a.
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Fig. 5.4 Velocity field for different values of © and Fr.

Fig. 5.5 Temperature ficld for different values of @ and Q.

0.0 0.5 1.0 15

Fig. 5.6 Temperature ficld for different values of Mand C.
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Fig. 5.9 Pressure field for different values of Mand C.
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5.5 Conclusion

This chapter deals with the peristaltic movement of fluid and particle induced by inclined
magnetic field with uniform channel. With the assumption of low Reynolds number and long
wave length governing equations are solved for fluid and particle phase. The analytical result

is obtained by solving the coupled linear differential equations.

e Velocity of the fluid reduces, the values are increased of C and M,

» The effect of Hartman number M and particle concentration C on the temperature is
negative.

¢ The temperature profile enhances with greater values of Ec andPr.

¢ With large values of Froude number /#in all regions, pressure rise decreased.

e With increase of Froude number Fr bolus size decreases.
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Chapter 6

Flow of particulate fluid in a channel with
electric double layer effects along with heat and

mass transfer

In the present chapter heat and mass transfer with the transverse magnetic field on peristaltic
of two-phase flow (particle-fluid suspension) through a planar channel with peristaltic wave
has been examined. The flow is observed under the influence of electric double layer and
chemical reaction. The present flow problem is modelled using continuity, momentum, heat
and diffusion equations, lubrication theory, to simplify the problem approximation in
combination with creeping flow and long wavelength assumptions is used. Moreover, the
electric effects are simplified using Debye linearization. Analytical solutions are found from
the resulting coupled ordinary differential equations. The influence of various emerging
parameters is discussed for velocity, temperature and concentration profile. Furthermore, the

behavior of pressure rise and trapping mechanism using stream lines is sketched.
6.1 Geometry of the problem

Let the Cartesian coordinate system i.e. Y —axis is taken normal to the flow and X —axis is
along the direction of the flow. Infinite plates parallel to X — axis bounds the fluid. A
sinusoidal wave travel with the velocity ¢ and amplitude b along the plate induces the flow

displayed in Fig. (6.1).
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Fig. 6.1. Geometry of the flow problem.
A static electric charge is applied on the wall creating a double layer. Mathematically

description of the wave along the wall is given in Eq. (4.1).
6.2 Mathematical formulation

The fluid is incompressible, electrically conducting, constant density with an applied electro-
kinetic body force through a longitudinal direction and a static magnetic field towards a
transverse direction in Cartesian coordinate system (see Fig. 6.1).

The equation of continuity, momentum, energy and diffusion equation for fluid and particle

phase are given as

v, au
= ; ton it A 6.1)
au; au, 8U a8 d
_ i/ A/ 2 DDA A 9
A=y (Vf az "YU ar) 1-0 (ax“ Sact a?s’“’)
(6.2)
2z ~ 6P '
+0B§U; + P.E+ (1 - C)a — (U, - U )Cs',
vy avy avf
) (6.3)
p , 9 ]
=(1- C)-é?_ (lf;, - l’}-)CS +(1-0) (Efsyx +6—YSyy),
Ty aT; 3Ty v
(1 - C)prpC(VfW + Uf ax + == ) ( C)SXX ( a;) (6.4)
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> 9? , 2
+k,(1-C) (W + -072-) Ty — ppcpC(Ty = Tp) + CS'(Up — Up)",

aF;  OF a2 a°
(1—C)(—+Ufax Vfay =Dnh(1-C) gﬁ+m Fr
6.5)
92 92 _ |
+p,cpC(F, = C) (OXZ 6Y2) Ty — K (Fr — Fo)- ‘
T Y
U, au, U ) 2
Cpyp (vpa—y” + Up—67” + at”) €= CS' (U +Up), (6.7)
av, av, av, op
c;;,,( b5y U,,a—;+ at) C5—CS (V, + V), (6.8)
aT, T, aT,
Ccppp (VP O—}f + Upa—; + a_tp) = ~ppcpC(T ~ T), (6.9)
dF, oF,  0F,
p,,C(at UtV OY) PpCpDm (Fr = Fp). (6.10)

Here, S is stress tensor of Jeffery fluid is represented in Eq. (1.2).The equations are transform
in wave frame using Eq. (2.9) and Eq. (3.8).

Non-dimensional parameter are describe in Eq. (2.10), (3.9) and (4.10).

Sem to gpoPDuKr (-0 ) o _Frp=F () _-E8l (6.11)
po’ #:Tm E—Fo e E_Fo T H e .

are employed and take § » 0 and Re — 0 as wavelength in take as long and flow is creeping.

Eq. (6.1) - (6.10) reduces to

1 0%y coshmy 1 dp
—M2 2 = —_— 6.12
A +1 dy? (ur + 1) +m?Uys coshmh 1-Cdx (6.12)
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e

0%, oo L (O ?  PrEc (
Gz T 1\ay ) T M(d-0)
1 02, _ 0
Sc dy? Yo = dy?
dp
d—x—N(uf up),
Bf = Bp,
(Df = (Dp
and their boundary conditions becomes
ou
! f !
= — = @'r =0,aty =0,
Bf 0; ay b aty

6.3 Solution of the problem

Exact solutions of velocities, temperature and concentration distribution presented as

1
U == [C22 cosh2/1 + A; My + Cp3 + C4 cosh my],
25

1
up = o [sz cosh 2\/1+ A; My + C,3 + Cy4 cosh my]
25

Orp = Caoy + C30y% + C3;cosh2,/1+ A, My + (3, cosh(,/l + A M- m)y

dp
dx

)

+ C33 cosh 2my + Cy, cosh({/1+ A4, M + m)y,
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(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

6.21)



1
Dpp = o [C41 — Cag cosh 21+ A; My — C39 cosh 2{/1 + 1; My cosh(my)

+ C4 cosh 2my + Cs5 cosh \/¥S.(h — ¥) + C36 cosh /S,yy

+ C4; sinh /1 + A, Mysinhmy + Csg sinh \/yS.(h —y) (6.22)
+ (34 sinh 1/.S'ny].

where

d d
Cyp = (—mMz-d—z + (1 +A)M? d—z +(~1+ C)mMzUhs) MV THLm Cosh (RmM)Sech(hmM) (1

— Tanh(h\/1 + 2,m))
Cas = (1 + A)M? — mM?) (-1 + C)M? — gg) Cosh(hmM)e" T amSech(hmM) (1 —

Tanh(h/1 + 1;m))Cosh(h,/1 + 2;m),

Cz4 = —Sech(hmM)(1 — Tanh(h\/1 + A;m))e™ 1*41mCosh(h,/T+ A;m)(~1 + C)(1

+ Al)MzmMzUHs,

625 = (—1 + C)Mz((l + /11)M2 - mMz),

c P Ec dp
= *— e (——
26 = 5T nx(1-0) (dx)'
_ PrxEc
S W P

Cag = C32°CorhM* + C342CorhM* + 20552 CorhA  M* + 2024 CorRAM* + Cy2°Corhd 2 M*
+ C242CprhA P M* — 2C5, 2 CoyAMPmMM? — 32C,5Cy4 CorhM? mM?2
— 2C24°Co7ARM?*mM? — 2C,,2Co7hA;M2mM? — 32C;,Cz4 Co7hA; M?mM?

— 2C34%Co7hA; M2 mM? + C,,%Cy hmM* + Cy,%C, hmM*,
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1

= 8h(Cos (1 T 1M — CpamME Y2 (Cag + 4(2 + Co6h?)(Co5(1 + A)M? — C;smM?)?
25 1 2

C29
+ €57(32C5;Co0 (1 + ))M?*mM? — (1 + 2h%(1
+ 11)M?)(Co2(1 + A)M? — CoumM?)? — (Cpe (1 + A1)M? — CosmM?)2(1
+ 2h2mM2)) + Cp7(Cz2(1 + A)M? — C,;mM?)2Cosh(2h/1 + A, M)
+ C4Cp7(—8Cop/T+ A, MMM((1 + 4,)M? + mM?)Cosh(h(/1 + 1;m — mM))
— 32C, (1 + 1)M?mM2Cosh(h,/1 + A;m)Cosh(hmM)
+ C4(—(1 + 1)M? + mM?)%Cosh(2hmM)
+ 8Cy2/1T + 2 M3mMCosh(h(y/1 + 2;m + mM))
+ 8Cy4;4/1 + 4;M3mMCosh(h(/1 + A;m + mM))
+ 8Cy4/1 + A;mmM3Cosh(h(y/1 + A;m + mM)))),

—26252626 + 6222627(1 + /11)M2 + 6242627mM2
4C,5°

C3 =

’

C2C24CoMmM((1 + 4,)%/2M? — 2(1 + A, )MmM + /1 + 1;mM?)
(Cos(1+ A9)M? — CpsmM2)2 '

C34 = —

Cas = —2C25°Cag + Co2*Cor (1 + A)M? + Cpy* CpymM,
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C36 = ~8C52C24Co74, M?mM2Sc3Sry3 Cosh(hy/1 + 2,;m)Cosh(hmM) + (4(1 + 1,)M?
= Scy)((1 + A)2M* + (mM? — Scy)? — 2(1 + A )M?*(mM? + Scy) ((C35Sr
— 2C,5%Y)(4mM? — Scy) + Cp4° ComM2ScSryCosh[(2hmM)]) — Sr(~Cs5(4mM?2
= Scy)(—4(1 + A,)3M® + Scy(mM? — Scy)? + (1 + A,)®M*(8mM? + 9Scy)
= 2(1 + 2,)M?(2mM* — 3mM?Scy + 3Sc?y?)) — C;7Scy(8C;,Caa(1
+ A)M?mM?(4(1 + 1,)M? — Scy) (4mM?2 — Scy) — C,5%(1 + A;)M?(4mM?
= Scy)((1 + A)2M* + (mM? = Scy)? — 2(1 + A, )M?*(mM? + Scy))
+ Co*mM2(—4(1 + A;)3M® + Scy(mM? — Scy)? + (1 + 4;)*M*(8mM? + 9Scy)
- 2(1 + A,)M?(2mM* — 3mM?Scy + 35¢?y%)))) (Cosh(hvVSc\/y)
+ Sinh(hVSc,/¥)) = C25C7MScSTy(—Cap (1 + A,)M (4mM? — Scy)((1 + A;)2M*
+ (mM? — Scy)? — 2(1 + A)M?(mM?2 + Scy))Cosh(2h\/1 + 1 M)
— 4Co,mM(—2MmM(4(1 + A;)?°M?(4mM? — Scy) + Scy(—4(1 + A;)mM?
+ Scy))Cosh(hy/1 + A;m)Cosh(hmM) + /1 + A (4(1 + A;)m? — Scy)((1

+ A.)M? + mM? — Scy)(4mM? — Scy)Sinh(hy/1 + 2;m)Sinh[(hmM))),

Ca7 = 2Cp5°(—1 + e2MV5VT)y (—4(1 + A;)M? + Scy)(—4mM?2 + Scy)((1 + A;)2M*

+ (mM? — Scy)? — 2(1 + A))M?(mM? + Scy)),

Cag = ST * (C22%Cor (1 + A)M2Scy(—4mM? + Scy) ((1 + A1)2M* + (mM? — Scy)? — 2(1

+ A,)M2(mM2 + Scy)),
C39 = (4(1 + /11)M2 - SC)/)8CBIC33C36(1 + ll)MzmMZSC}/(‘l-mMZ - SC}/)SI‘,

Cao = (4(1 + 1)M? — Scy)Cp4 2 CoymM3Scy (1 + 11)2M* + (mM? — Scy)? — 2(1 + A, )M2(mM?

+ Scy))Sr,

C41 = C35(4(1 + 2.)M? — Scy)(4mM? — Scy)((1 + 4,)?M* + (mM? — Scy)? - 2(1

+ A)M?*(mM? + Scy))Sr,
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Csz = (Sr(1 + A,)M? — Scy)(4mM? — Scy)4C3; C33C36+/1 + ALMmMScy((1 + A)M? + mM?

— Scy).

Some special case from the above solution can be obtain by
e The results of Newtonian viscous fluid can be found with A; = 0.
e The above expressions for simple peristaltic flow over a planar channel of non-
Newtonian fluid can be obtained by taking electrical field parameter (maximum electro-

osmotic) Uys = 0.

o The above expression can also be reduced for electro-kinetic peristaltic flow over a very |

thin Electric double layer (EDL) through electro-osmotic parameter m — oo,
e For M = 0 the above results reduces to the simple electro-kinetic peristaltic flow of

non-Newtonian fluid.

Hence, the pressure gradient (%) is calculated as

dp _
dx

(1—C)(1+e2hmM)hM2 (@+a)M?-m?)m T+ A MN

mcc4(1+e2h~/1+11’")h 1+,11M—<1+h 1+,11M+e2"~/1“1“(—1+h,/1+,11M))((1+,11)M2-m2)N

C4(l+e2h‘/ 1""IM)Qm 1+A, MN (6.23)

m cc4(1+e2'1~/1+11M)h 1+,11M—(1+h,/1+,11M+e2h~/1+11'"(—1+h,/1+/11M))((1+/11)M2—m2)N

my T2 mN; (—1+0)(~1+e 2 1HAM) [T T Mm2Upy s+ T+, MN, C3 1+e21Y 1*21M) sinh hm

m[CC4(1+e2h 1+11M)h 1+,11M—(1+h 1+,11M+ezh~/1+’11M(—1+h,/1+11M)>((1+11)M2—m2)N]

The pressure rise is evaluated numerically using formula in Eq. (3.18)
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6.4 Illustrations and discussion

In this section, the graphical results are presented for different emerging parameters in the |

governing flow problem. Graphical results are sketched in Fig. (6.2) - (6.16) for velocity

distribution, temperature distribution, concentration distribution, pumping characteristics and |

streamlines. Numerical and analytical computations have been performed using a symbolic |

computational software MATHEMATICA.

Fig. (6.2) and (6.3) shows the variation of Hartman number M, electro-osmotic parameter m,
particle volume fraction C and maximum electro-osmotic velocity Uys for fluid velocity. From
Fig. (6.2) that when magnetic field rises then a substantial decrement is noted in velocity
distribution due to Lorence force. But it can be seen from this figure that electro-osmotic
parameter m (which is inversely proportional to Debye length A; « 1/m), induce acceleration
in the flow of a fluid markedly. It is observed from Fig. (6.3) that an enhancement in particle
volume fraction C causes a considerable reduction in the velocity of the fluid as viscosity of
the fluid increase. When Uy increase it is clear from the figure that the flow behavior for single
phase fluid is consistent but for C # 0 close to the center flow character is opposite when
compare close to wall i.e. y > 0.5. Furthermore, the influence of electro-kinetic are associated
with an electrostatic axial body force that attained an excellent hydrodynamic control as
compared to Magnetohydrodynamics body force and such kinds of analysis are of significant
importance to accurate manufacturing in micro pumps. In this figure, it is observed that an

increment in electrical field parameter Uy tends to rise the velocity profile significantly.

The behavior of temperature distribution 6y, shown in Fig. (6.4) - (6.6) for various involved
parameters such as Hartman number M, Eckert number Ec, Prandtl number Pr, Electro-osmotic
parameter m, particle volume fraction C and electrical field parameter Uys. Fig. (6.4) reveals

the variation of Eckert number on temperature profile. From Fig. (6.4) it is clear that increase
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in Eckert number Ec greatly enhances the temperature distribution. Furthermore, the numerical
values are appropriate for incompressible flows, however, with the large values of Eckert
number are relevant to compressible and not appropriate for current study. Also in this figure,
it can be seen that particle volume fraction C shows opposite trend for temperature distribution
as particles are non-conducting. It depicts from Fig. (6.5) that an enhancement in Hartmann
number M tends to enhance the temperature distribution greatly while the behavior for
temperature distribution is reverse for the electro-osmotic parameter m. In Fig. (6.6) it is seen
that an increment in Prandtl number Pr significantly enhances the temperature profile. The
present results are deserved for those fluids which take high Prandtl number while revel less
important for those fluid which take a small Prandtl number. It depicts from Fig. (6.6) that

electric field parameter Uy markedly reduce the temperature profile.

Figs. (6.7) - (6.10) insights the variation of concentration distribution ®,, against different
values of Eckert number Ec, Schmidt number Sc, Chemical reaction parameter y, Soret number
Sr, particle volume fraction C, electric field parameter Uy, electro-osmotic parameter m and
Hartmann number M. It depicts from Fig. (6.7) that for large values of Eckert number Ec and
Schmidt number Sc, the concentration distribution diminish. Since Schmidt number Sc describe
the ratio between mass diffusivity and momentum diffusivity and is helpful to analyze the fluid
flows in which there is concurrent mass and momentum diffusion process. Fig. (6.8) illustrates
that an enhancement in Soret number Sr number tends to diminish the concentration
distribution. The Soret effect also known as thermophoresis are applicable to liquid mixtures,
which acts in a different and well-understood phenomena than gaseous mixtures. Furthermore,
thermophoresis mechanism is applicable for thermo-migration in solids (i.e. multi-phase
alloys). Fig. (6.8) also shows that with the increment in chemical reaction parameter y
concentration distribution tends to reduce. A chemical reaction has a significant role in

concentration distribution and an increment in a chemical reaction are associated with the
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interfacial mass transfer. For present study, it is considered y > 0. Fig. (6.9) illustrates that
with increase in particle volume fraction and electric field parameter significantly enhance the
concentration distribution. In Fig. (6.10) Hartmann number rises then it provides a noticeable
resistance to the concentration, however, electro-osmotic parameter m shows a favorable trend

on concentration distribution.

The pumping mechanism is illustrated in Fig. (6.11) and (6.12) against particle volume fraction
C, electro-osmotic parameter m, electric field parameter Uys and Hartmann number M.
Pressure rise Ap are estimated numerically using MATHEMATICA. Fig. (6.11) shows the
variation of the particle volume fraction C and electric field parameter Uys. It can be seen from
this figure pumping rate increases due to the increment in electric field parameter Uy in all
the regions i.e. retrograde pumping region, free pumping region, and co-pumping region.
However, the behavior in pumping rate is opposite due to the influence of particle volume
fraction C. It depicts from Fig. (6.12) that an increment in Hartmann number M tends to
enhance the pumping rate in a retrograde pumping region when Q € [~2, ~1.1] and electro-
osmotic parameter m = 1, while, the behavior become converse whenQ > —1.1. It can also be
seen here that when the electro-osmotic parameter m = 6 then the pumping rate rises only in
the region when Q € [—2,—1.5] for all values of M whereas, it decreases forQ > —1.5.

Peristaltic pumping is very helpful in a propagation of various kinds of fluids in a human body.

Trapping mechanism is viewed in form of streamlines. It is generally creation of internal
circulating bolus enclosed by streamlines and it moves forward along with a peristaltic wave.
Physically, this mechanism is very favorable for the creation of thrombus in blood and the
propagation of food bolus i.e. in a gastrointestinal tract. For this purpose Fig. (6.13) to Fig.
(6.16) shows streamlines for different physical emerging parameters such as particle volume
fraction C, electro-osmotic parameter m, Hartmann number M and electric field parameterlUy;.

Fig. (6.13) is sketched against different values of particle volume fraction. In this figure, it is

66



seen that an increment in particle volume fraction causes a significant increase in a number of
a trapped bolus however the magnitude of the bolus varies very slowly. From Fig. (6.14), it
illustrates that large values of Hartmann number M, trapping bolus significantly loses his
magnitude also the number of boluses reduces. It depicts from Fig. (6.15) that electro-osmotic
parameter m does not cause any major effect on contour lines. An increment in electro-osmotic
parameter causes a slight effect on the magnitude of the bolus. Moreover, we can see in Fig.
(6.16), that electric field parameter Uy shows a major influence on contour lines as compared
to electro-osmotic parameter m. The number of trapping bolus decreases significantly with the

increment in electric field parameter Uyg.

Fig. 6.2. Velocity distribution for various values of M and m.
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Fig. 6.3. Velocity distribution for various values of Uxs and C.
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Fig. 6.5. Temperature distribution for various values of M and .,
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71



{0

Fig. 6.16. Contour lines for multiple values of Uys. (a) 0, (b) 1, {c) 2.

6.5 Conclusion

In this chapter, the peristaltic movement of heat and mass transfer with a transverse magnetic
field induced motion of particle and fluid suspension (two-phase flow) through a planar channe!
has been investigated. Simultaneous effects of a static electric field and chemical are also taken
into present study. To model the present model, Debye linearization and lubrication theory
have been used. The effect of different parameters is taken into account with the help of graphs
and streamlines. Following are some main finding of the study.

¢ Electric field and electro-osmotic parameter enhance the velocity distribution

markedly.
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Temperature profile reduces significantly due to the increment in Electric field and
electro-osmotic parameter.

Prandtl number, Eckert number, and Hartmann number tend to increase the temperature
profile, however, particle volume fraction depicts converse behaviour.

Concentration profile decreases due to the increment in Schmidt number and Chemical
reaction parameter.

The Soret number and Hartmann number also shows a significant resistance in
concentration distribution.

Particle volume fraction and electric field parameter are favourable for a concentration
distribution.

Pumping rate increases in all the regions due to the influence of electric field and
electro-osmotic parameter.

Electric field parameter shows major influence on trapping and causes a reduction in
trapping bolus.

The present study can also be reduced to Newtonian fluid model by taking 4, = 0.
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Chapter 7

Flow of particulate fluid in a rotating channel

with wall properties and magnetic field

This chapter devoted to discuss the peristaltic flow of two phase fluids in a rotating channel
with wall properties in the oceurrence of magnetic field. Law of conservation of mass and
momentum is used to formulate the problem. All the governing equations have been solved
under the condition of low Reynolds number and long wavelength. The exact solution of
coupled differential equations is obtained. The graphical aspects of fluid phase, particulate
phase velocity and flow rates have been analyzed. The effects of pertinent parameters have

been discussed.

7.1 Geometry of the problem

Consider a channel rotating about Z — axis and the plates are taken parallel to X — axis
extended infinitely in Y — axis. A symmetric sinusoidal wave travels with the speed ¢ in X

direction described analytically in Eq. (4.1).

L]

£
g

Fig. 7.1. Geometry of the problem.



A

7.2 Mathematical formulation

To define the velocity of flowing fluid

=(U(X,Z,t),V(X,Z,0).W (X, Z.1)). (7.1)
The velocities U, ¥ and W having dimensions X and Z. Here, laminar incompressible
Newtonian base fluid with small particles are assumed. A magnetic field is applied
perpendicular to flow. Law of conservation of mass and momentum in component form is

described in Eq. (7.2) - (7.9) for both fluid and particle phase. ‘

ou, ow,
—L 1y, 7.
X oz (7.2)
U, au, au, U, &, ,
(1—C)pf[7+uf—a;¥— W, azj 200, =—(1- C)—+(l Ou [axz r—r +CS'(U,-U,)-oBU,.
(7.3)
v oV v, v, o,
- Trvu, Zraw, Cr - o
a C)pf( v LW, )+2QU,_ a- C) +(1 C)u [axz azzJ cs'(v,-v,)
(7.4)
ow, ow ow aP o'w, o'w
1-C +U, —L+w, —L|=-(1-C)=+(- / s (w _
( )pf( a I ox az] (A= Crag + A=Ohi| g+ g |+ CS' (W, =Wy,
(7.5)
ouU, ow
Ly —F£ =0, .
ox = oz (76)
au, au, ou, aP '
Cpp[ U, S W, — ]:Ca—+CS (v,-u,). (7.7)
ov av av oP
4 P
Cpp( LU, oW, asz Cor+Cs'(v,-V,), (7.8)
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ow, ow, _ ow,\ .op
. v, 22 |=cLics(w,-w,),
Cp"( o Urax az] oz S =,) (7.9)

The equations are transform in wave frame using Eq. (2.9) and Eq. (3.8).
Using non-dimensional parameters defined in Eq. (2.10), (3.9) and (4.10) and simplifying using

long wavelength and low Reynolds number, the governing equations become

o .. 0

E":zy v+ azuzf —M*(u, +1)+CM, (u, ~u,), (7.10)
o .
Dot =2 (1, 1), al

Where, 7' Ku is the Taylors number and for particulate phase
c

d ‘
L =0-0M, 4y ~u,), (7.11)
At z = h(x,t)=1+n(x,1)
Where n(x,1)=¢Cos2x(x~1),4 = U (amplitude ratio)and 0 < g <1.
a

Represent the flexible wall with the governing equation described as:

Lny=p - p, (7.12)

The pressure on the external surface of the wall due to tension in the muscle is p,, which is
taken as zero here. z =1+ 7 is the continuity of stress with x-momentum equation is used:
L is used an operator for the motion of stretched membrane of viscosity damping forces which

is given below

: (7.13)

In the view of above equation, K, , D, B and T is the spring stiffness, mass per unit area, the
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coefficient of the viscous damping membrane, the flexural rigidity of the plate, the elastic

tension is the membrane.

ap 3*n o*n 3%y 3’ 37
L =g 21 +FE E,—L_E —S4+F —L 7.14
x Y ottox M r ot  8x ( ;)
n 8y i, 'y an u,
Byt iy + B gt = Eagr t Ba g = Wt g M () CM (v, ) (7.19)
£, 2 g 2 g O g 20 e 2T cya i, - (7.16)
"otiax P adx C ax’ Yaxt Tt ax A

3 3 k] 3 L)
At z=1+7,inwhich g ="2C g D2 p _Ba p _Ta andE5=K—aarethenon-

FEM =/12}¢" LTI ‘=c-33}1 A

dimensional elasticity parameters.

Along with non-dimensional boundary conditions are describe
du
—djw) =0, v,(0)=0, (7.17)

u (hy=-1, v,(h)=0. ,
(7.18)

7.3 Solution of the problem

The exact solution is represented as

(—3}'*(:45 +4,?"'((~-1’|d'2 +C45)C43 +4y*C“)O)sh(Cﬂz}+4}’*((M2 +C"5)C“3 —4y*C“)Cosh(C“Z)) (7.19)

= 30T
4ec (dpJ (1e0) 8}’*2(4}“@5—(1\/!3+C45)C43)Cosh(Cﬂz)C43
—aF sl |-1-1+
dx -y * (4y *Cys +{-M"+ C,S)C“)cosh(c%z) (7.20
Y, =
’ (16(_1 +C)}" *2 C-ts) ’

F, is the primary velocity and F, is the secondary velocity are defined, respectively,

_ Y "
F=lfu,d (7.21)
Q
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F=2e zv Jd (7.22)

Where

29

_(Z—p(cOsh (hCy7)—Cosh (hCq))Sech[AC,;1Sec(hCyq ))
Co= (T(-1+C))

]

Z—p—(—M2 Cosh (hC,; )+ T Cosh (hC,; )+ M?*Cosh(hC, )+ T Cosh (hC,q ))Sech(hC“)Sech (hC\ys)
- Ox ,
Coa = 4(y*T(-1+C))

Cis=IM* -16y %

c G+ M?
2_

C
C,r = as

V2

7.4 Illustrations and discussion

In the above analysis, the simplified governing equations for peristaltic transportation of
rotating particulate fluid having compliant walls has been solved in the existence of applied
magnetic field. The exact solutions have been achieved for fluid and particulate phases velocity
components. Also, the expressions for flow rates are measured for both the velocity profiles.
In this section, it is discussed the graphical results which have been observed for different
features of the problem under the prominent effects of pertinent parameters. Fig. (7.2) - (7.4)
have been plotted to see the effects of particle volume fraction C, magnetic field M and rotation
parameter y* on fluid phase velocity Uy. Fig. (7.5) - (7.7) describe the influence of all above
mentioned parameters on particulate phase velocity U,. Fig. (7.8) - (7.10) show the flow rate
F; for the fluid phase and Fig. (7.11) - (7.13) are drawn for the flow rate F, for the particulate

phase.
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It has been observed from the Fig. (7.2) that fluid velocity decreases along axial direction x
under the variation of C. It is also noted that the profile of velocity gets maximum altitude at
the middle of channel. It illustrates form Fig. (7.3) that magnetic field causes slowing down of
the flow due to Lorentz force. From Fig. (7.4), one can see that velocity is decreasing with the
rising effects of rotation parameter y* which is evident that velocity reduces in the presence of
rotation. From Fig. (7.5) to Fig. (7.7), it is seen that all the above discussed features are very
similar for the particle phase velocity as that of seen in fluid phase velocity. The only difference
which can be clearly verified from these figures is that the particulate phase velocity is

relatively large as compared to fluid phase velocity for the same values of the parameters.

From Fig. (7.8), it can be easily reflected that fluid flow rate is decreasing in left half
(x = [0,0.5)) of the axial length and increases in the right half (x = (0.5,1]) with the variation
of C. It is depicted from Fig. (7.9) that for magnetic field, the results are quite opposite to that
of € in both sides. However, the variation in left part is more prominent as compared to the
other part. Almost same behavior is observed for rotation parameter as that of MHD parameter
but here the variation is wider across the two halves of the axial coordinate x (see Fig. 7.10).
It is also seen that the flow rate profile changes its concavity at the center i.e., x = 0.5. It can
be seen from Fig. (7.11) that particulate flow rate increased in left part and decreased in right
part under the increasing values of C. Fig. (7.12) denotes that the flow rate in left side is
decreasing with the rise of magnetic field and decreases in the right side. It can be discussed
from Fig. (7.13) that flow rate experiences opposite results with the variation of rotation
parameter than that of measured in the case of magnetic field. It is also observed from Fig.
(7.8) - (7.13) that fluid flow rate gets maximum value in the interval (x = (0.5,1]) and
minimum in the interval (x = [0,0.5)) while particulate fluid flow rate reveals totally opposite

situation.
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Fig. 7.4. Fluid velocity for various values of y*.
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7.5 Concluding remarks

In this chapter peristaltic flow of two-phase fluid with particle volume fraction and magnetic
field in the presence of compliant wall over a rotating disk is investigated. Exact solution
obtained by the formulation of the differential equations. The main theme of the existing

problem is summarized as follows.

e The different parameters applied, like non-uniform parameters and phase difference
control the fluid transport phenomena.

e The axial velocity increases with different values of particle volume fraction.

e Velocity of magnetic field and rotation parameter are decreased.

e Time mean velocity increase with particle volume fraction in first half of channel whose
opposite result for x > 0.5 is observed.

e A decrement is observed in F; when increasing values of Hartman number and rotation
parameter.

¢ Rotation parameter positively secondary mean velocity.
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Chapter 8

Flow of particulate fluid in a curved

configuration with heat and mass transfer

This chapter addresses the influence of particulate-fluid suspension on asymmetric peristaltic -
motion through a curved configuration with mass and heat transfer. A strong motivation for
current study are its applications, to examine the two-phase peristaltic motion between small
muscles for different biological fluids can resemble the current geometry. The mathematical
formulation of problem uses continuity, momentum, energy and mass transfer equations. Exact
solutions are presented for velocity, temperature and concentration distributions. All the -
parameters such as Prandtl number, suspension parameter, particle volume fraction, curvature
parameter, volumetric flow rate, Schmidt number, phase difference, Eckert number, and Soret
number discussed graphically for peristaltic pumping, velocity, temperature and concentration

distributions. The streamlines are also plotted with the aid of contour plots.
8.1 Geometry of the problem

Consider a curved channel centered at O. The center of channel have radius R and r is
the distance from center at channel to walls, X is taken along the center line of channel. A
sinusoidal wave move on both the walls described in equations. The geometry of walls are

described mathematically as

Upper wall: H(X,t)=a, cos[zer,%“ —27:1“ct]+dl, (8.1)

Lower wall: H,(X,f)=b, cos[27rX A+ 27r,l“ct] ~d,, (8.2)
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In above equation, the phase difference @ * having range0<@’ <z whereas®’ = » associated
with a waves are in phase and " =0 related to symmetric channel having waves out of phase.

The other constants satisfies the following condition

@ +8 +2ab cos<(d, +dy) . (8.3)

Here, @, and by is the amplitudes of the wave d, and d, are fixed distance of upper

and lower wall from center of channel respectively.

Fig. (8.1) Geometry of the problem

8.2 Mathematical formulation

Let us consider an asymmetric peristaltic transport of viscous fluid with incompressible,
constant density and irrotational properties having small particles propagating with constant
celerity. Equations for continuity, momentum, heat and mass transfer for Newtonian base fluid

and particles are describe in Eq. (8.4) - (8.13).

6[(R+ R')V] Lau
oR R %

_ (8.4)

k
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- v, L+ + ~a-0) L 2 020) 9 12 (g 1 R) |+
. C)pf[ o "/ oR TRAR oX R+RJ =% (R+K) o (K +5)

#;(R‘_R‘C)i(an R 6Vf_ U, J—(]—C)( 2u, )[ R 6Uf+ v, J

+ L] - L *
(R‘+R) X\ 8R R +R3X R +R R+R JIRP+R 60X R +R
+CS'(V,-¥,),
ou, U y au, UV, R'(1-C) 6P 1-0) 8 [oU 2
a-C)p,| =L+v,—L+ R U,—L+-LL = (=0  #01-0) [ f(R +R) +
o R R+R’ X R+R) R+R oX (R+R)’ oR| oR

8.5)

1-0)—L a[[ Ko, YU J(R +R)J+(1 C)[z"‘R Ji [% K, % ] (8.6)

g VY R(\K+RaX R+K R+R)ox|| & (R +R) (R +R
(R+R')

+s'(U,-U,),

ar, 8T, U,R" T o'T 1 ar R Y or
1-C Loy, Ly L L ap (1-C)| —L+ —L 4| = L1+
(1=Cese, [ a Vimtrer ) O N\ FaR) e
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oF oF, U,R" oF o°F, oF, 9°F, - ¥
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0T, ar © Yo
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T oR* R+R OR \R+R ) ox*

m

o[ (R, +rV,)] s
dR ax 7

ov oV U_R' av U?
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The equations are transform in wave frame using Eq. (2.9) and Eq. (3.8).

Non-dimensional parameter are in Eq. (2.10}, (3.9), (4.10), (6.12) and
= R—‘ =— N4 = * = —= = —< = E_I * = EL I
k= p By =L NA=8rSe, iy . a=- b g (8.14);

Along with assumption that wave length as long and flow creeping all the interial term tends

to zero. The governing equations (8.4) — (8.13) becomes

dp _{k+r | iaﬂff 2}y O 4y 2 _ I
dx_[ P )(k+r8r( 5 k) )+ar[ p) DJ'M'C(H" “) ®.15)
azaf 1 96, 2
o T e T M (6, ~0,)- (JPrEcM,Cu, - PrEcM,Cu, ) , (8.16}
3’4, 1 84, 8’8, 1 a8,
or? +(k +r) or ¥ A[ ar? +(r+k) or —_CM|(¢p_¢f)1 (8]7)
dp
o =(1-OM G -, (3.18)
Along with boundary conditions
uf(hl)=_l}
uy (h)=-1)" (8.19)
8, (h)=1. 6, (i)=0, '
¢ (h)=1. ¢,{r)=0.
Where
B (x)=1+acos(x), £.20
hy(x)=-b-dcos(x+@"}| (8.20)
8.3 Solution of the problem
Exact solution of fluid and particle phase are obtained as
- Cag + Coo? + Csgr? + Cyr? + Cylog{r + 5 )+ Cyyr log(r + &)+ Cyyrilog(r+ k), 8.21)

r+k
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_ G tCyr tGP G Gy log(r +k)+ Crlog(r th)+ G logfr+k) | 1 dp (8.22)

Where

Cys =

ka r+k A-O)M, de
85 =Css + s log(r‘+k)+C5,r+Cssr2, (8.23)
#r ,=Cy+Cy log(r+k)+Cgr+Ce?”, (8.24)
2k(h —hz)[6+(?(-6+ —{3k(h, +h)+2(2 + by + B )}H
Cis= +

6(~1+C)(h - B )(2k +h + h,)

ap -1+ C)k[(k + i) by log(h+ k)(ky +2k) - (2kiy + ) (B, + kY log( + k)]
dx 6(~1+C)(Al - h2){2k + k1 + h2) ’

(b + h,)[3+c{-3+%’(—3k2 B2+ hh, +h§)}]
31+ C) (I~ B, Y2k + /s + 1) o

30- )k L[ (k+ 1) tog(h + )~ (h, + £) log (i, + )]
-1+ C)(—h, +h)(2k+h + h) :

Cy =

p 20U =)k b + 1)+ 1= CY klk + ' tog(h + ) + ) kiog(h +0)|

co-®
0= 6(=1+C)(h ~k)(2k+h +h,)

(=14 C)(hy = by )b+ by) + 2k((=1+ C) Iy + y - Ckz)]

C”zdr 2(-1+C) (b - }(2k + by + hy)

[4+C’ECM ( ] Pra, (2k + 4, )]Iogk+h, - CEcM [d") (2Prhk + Priyh Yog(k + h,)

d(logk + i —log(k +n,))



-4+ CEcM (j ] Pr(h - iy )(2k + by + hy)
4(log (k + 1) - log{k + 4, }}

Cs.s =

1 Y
Cy, =——CEcMk| 2] pe
2 d

1 dp
C =——CEM
5B (dx]

& M-

—[—4+CE¢:M,M4[%)Z Pri, (24 +h,)]10g(k+h,) - CeM, [

Jz NAPr i (2k + b )log(k + i)
4{log(k+4)~log(k +1)) ’

Co=

-4 + CEcM NA(jp) Pelh, — iy )2k + by + 1)
X

Coo = (]og(k+k,)— log(k +h2))

Co =2 CEeM k[dp] Pr,
2 dx

C62

N eEem (dp] Pr,
dx

2
The rate of volume flow is given by

k.
Q=?uf(l—C)dr+;!upCdr, (8.25)

Pressure gradient is represented as,

36(-1+C) M, (h _hz)['(hz +Q-h) (A +2k+h)+2(h +E)(h, +k)'°8[::2 H

=(lq —h)Y (2k+h +f:2)(36+;'l{,{—6(—3+c)k2 +3(3+ C)k(h +1) +4C(K +hh, +h§)})

& &

826
36(=1+C) My (1 - fel( (0+h - fa)(i«+xa+2k)+2(’*+")("2**)‘°g(ff+2n o

PR SR S W

The pressure rise is evaluated numerically using formula in Eq. (3.18)
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8.4 Illustrations and discussion

The aim of this section is to see the variation of different parameters on peristaltic

pumping(Ap), streamlines, velocity(u,,), pressure gradient(dp/dx), temperature (9, ,)and
concentration distributions (4, ,). Numerical computation is used by shooting algorithm in .

MATHEMATICA software. Particularly, we explored the variation of physical quantities i.e.
particle volume fraction C, suspension parameter M, curvature parameter k, volumetric flow
rate O, phase difference ©', Prandtl number Pr, Eckert number Ec, Schmidt number Sc and

Soret number Sr, respectively.

Fig. (8.2) and (8.3) depict the variation of particle volume fraction C on velocity profiles. It
reveals from both figures that due to increment in the value of C, the variation in velocity is
very small, however, velocity of fluid acts oppositely close the curvy walls. In the presence of
solid particles, the drag force rises and there is retardation in the flow. Fig. (8.4) and (8.5)
indicates that large values of curvature parameter k tends to resist the flow markedly whereas,
it is opposite close to the wall» > 0.1, it fails to produce a significant resistance and as a result,
the velocity of the fluid rises. Fig. (8.6) and (8.7) is drawn to visualize the pumping features.
In Fig. (8.6) it is observed that the magnitude of pumping rate is very high in peristaltic
pumping region as well as in retrograde pumping and increases for higher values of particle
volume fraction C. However, its attitude becomes reverse at Q=0.6and reveals opposite
influence in the co-pumping region. It is clear from Fig. (8.7) that suspension parameter M,
significantly enhances the pressure rise in retrograde and peristaltic pumping regions while its

behavior becomes converse at Q = 0.5 and depicts opposite behavior in the co-pumping region.

Fig. (8.8) - (8.10) represents the temperature distributions consists of the present results.

From Fig. (8.8) and (8.9), it is concluded that particle volume fraction C and curvature
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parameter k markedly enhance the temperature profile. Fig. (8.10) shows the variation of
Prandt! number Pr and Eckert number Ec on temperature distribution. In this figure, we can
see that both the parameters enhances the temperature. Inspection of Fig. (8.10) also reveals
that when Prandtl number is high, then thermal diffusivity is more prominent on momentum .
diffusivity.
Fig. (8.11) - (8.14) are plotted for concentration distributions to see the physical effects of
involved parameters. It can be viewed from Fig. (8.11) that concentration distribution |
significantly diminishes due to a greater influence of particle volume fraction. However, for |
large values of curvature parameter, concentration distribution markedly rises (see Fig. (8.12)).
From Fig. (8.13) it can be seen that higher values of Eckert number and Prandtl number

produces a marked reduction in a concentration distribution. Fig. (8.14) is plotted for

NA(=ScSr) (product of Schmidt number and Soret number) . Schmidt number Sc[= —“—] is

pD,
the ratio b/w momentum and mass diffusivity and it is beneficial to determine the convection
process of mass & momentum diffusion. This figure reveals that an increment in NA tends to
resists the concentration distribution. It happens because mass diffusivity becomes more
dominated over momentum diffusivity and due to higher soret number, the particles move to

cold region from hot region and as a result, the concentration distribution diminish.
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Fig 8.3. Particulate velocity for multiple values of C.

Fig 8.4. Fluid velocity for multiple values of 4.
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Fig 8.5. Particulate velocity for various values of £.
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Fig. 8.7. Pressure rise vs. volume flow rate for various values of M,
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Fig 8.14. Concentration profile for multiple values of NA.

8.5 Conclusion

The viscous particle-fluid (“two-phase”) model has been used to investigate the simultaneous
impact of mass and heat transfer on peristaltic transport through an asymmetric curve channel.
The exact solution expressions of velocity, concentration, pressure gradient and temperature
are obtained, whereas numerical integration has been carried to explore the pumping features.
Graphical illustrations are presented against multiple values of involved sundry parameters.

The important findings are described below

o There is a critical value of r around which the velocity distribution acts opposite.

e Pressure gradient enhances due to the increase in volume flow rate and phase
difference.

e Pressure gradient tends to diminish significantly for large values of C.

e Pressure change in peristaltic pumping and retrograde pumping region decreases for
higher values of C and opposite for suspension parameter M; .

e Prandtl number, particle volume fraction, and the Eckert number have an increasing

impact on temperature profile.

97



1

Curvature parameter fails to provide a significant resistance temperature distribution,
while its attitude is converse for concentration profile.

Concentration profile acts in similar form against C and NA (product of SrSc).
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Chapter 9

Flow of bubbly fluid in water with magnetic field

This chapter established the theoretical and analytical analysis of a unidirectional laminar
bubbly two-phase flow in a symmetric channel with flexible wall. The two-phase model uses
water as base fluid with hydrogen bubble suspended in it. Rayleigh-Plesset equation in term of
volume fraction is used to model void produce due to presence of hydrogen. The flow is driven
by symmetric peristaltic movement of the wall. A uniform magnetic field in the transverse
direction of peristaltic motion is applied. Homotopy perturbation Method is utilized to
formulate the series solution, after simplifying the differential governing equations under the
influence of low Reynolds number and long wave length. The volume of the void and radius

of the bubble is analyzed graphically.
9.1 Geometry of the problem

The geotnetry of the problem is displayed in figure (9.1). The mathematical formulation of the

traveling sinusoidal wave is given as

T N

.....-.._,_.

Fig 9.1. Geometry of the problem
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a(l-n,(X,1), if 1<X<t+1, 9.1)

Z=H(X,t)= {a(1_¢),otherwise

Where g, (x,1) = ¢S,-,,(%’i(x_ ct)), 4 = _b_(amplitude ratio)and 0<g <1.
a

9.2 Mathematical formulation

In the present model, we take U and W as velocity components of the fluid p;, and pg, is the
density of the liquid and gas. Bubble population per unit liquid volume is 7, and R is the
upstream bubble radius. Volume of the void is represented by V,where S* is the surface
tension. The equation of continuity and momentum transfer for fluid phase and Rayleigh-
Plesset equation in term of bubble radius, with assumption that velocity follow inverse square

law with respect to radius of bubble [62].

a_U+a_W= n (él.}. a_V+Wa_‘:.)’ (92)
ax 9z (1-pv)\or ~ax = oz
ou oU . U oP U oW n (61/ ov av) )
U —=+W = |=—(1-W) =+ 4| — +— |+ ———| —+U—+W = |-oB, )
p‘(az Pt az) ( ”V)6X+ﬂ’(aX2+aZZJ+3(I—77v) a o az) o (©-3)
ow oW ow oP U o'W n ov v avj
— U W = (=)= et e | A U+ W i
p‘( a U ax az) ( "V)aZJ'”’(aX”azzj+3(1—nv)(az+ ax ez ©4)
d*R 0’R OUBR OWIR d*R d’R 3R oU 8R d’R
-+ + + +W +U + -+ +
R ot 0Xor  0toX oroZ ooz otoX ox 0XoXx 0ZoX +
2 2 2
+U6W6R+WU6R+W6R+W6U6R+W26R+W6W6R 9.5)
oZax d8Zox 010z 0ZoX 0z* 07297 :
2 3k .
1(5_R+Uﬂ?_+wéﬁ) =ﬂ+&(&) _i_ﬂ(a_h QLWG_RJ.
2lar ax ez o, pL\R o, R R \at ox oz
Equation (9.2) is represented continuity equation and momentum equations are represented by
Eq. (9.3) and Eq. (9.4). Variation radius bubble is represented in Eq. (9.5).
The equations are transform in wave frame using Eq. (2.9) and Eq. (3.8).
R, , 1
W, = 7 ,T'= X 9.6)

Where Weber number W, and cavitation number 7’.
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Using non-dimensional parameters defined in Eq. (2.10), (3.9), (4.10), (6.12), (9.6) and

employing 6 — 0 and Re - 0 the (9.2) — (9.5) becomes

op 1 &w, n v |
= + —-M*w,, ‘
ax  3(1-pv) oz’ 3(1_77y)2 iar> Vs ©.7)
ap |
- =0, 9.8
o0z ( j
|
W, Or 2 T’ ‘
L S =, 9.9
r 0z Wyr 2r3 ( j,
|
e & *
6. ) . |
Q__‘_ (3671') VA_‘_iT.(“_”) p1oK Z g, (9_10j

oz W, 2 3

Flow equation of flexible wall is represented as
L(n)=p- p, (9.11)
L is an operator for stretched membrane which is taken as
. 2 - - 4 . 2
i=82+alsplipgl 70 9.12)
Ox ot ot Ox ox

In the view of above equation, K, i, D, B and T are the spring stiffness, mass per unit area, the
flexural rigidity of the plate, the coefficient of the viscous damping membrane and the elastic
tension is the membrane. The pressure from outside the wall owing to tension in muscle is p
which is taken as zero here. The relation is used in stress with x-momentum equation of liquid
matrix.

Along with non-dimensional boundary conditions
w(h)=-1, w'(0)=0, r(0)=0, v(0)=0. (9.13)
Equation (9.10) represents equation for volume of void fraction in term of bubble radius can

be defined as v = gnr3, If bubble is assumed to be spherical.
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9.3 Solution of the problem

Solution of the velocity and volume fraction of the bubble is

Wr = 80w2 _L_g-1-k(_64021/33% 2K’ Z 223 (ht - yhn® + 2022/33§+"'W0n(43"'h3%"1/3

231K 213 (=2 + Ly?) + i L (53K'n 2723+2k‘g§n§+’<‘nzr') +y?(3* /3 (-12+
( —4+y)y) + 27232 2 g L K 20201) 4+ WR(—619" hoM* o =+ 9K Mty (=30 + Ly?)+

103142 M2y2(18 22y 23 — 12(1 + 1) + L y?(3 + 2m)) + 537+ 41k p3 Lk e’ 4

15h*(59% M4 (-2 + y2) + 109% Mza” (3+2n+ 180” %) + 3 rrr "(5(12m)% —

274142 B2k p20) 4+ 45(-43K" (435" + 3(4m)¥ y?nr') +By2 (3142 4 g31+2 Y 4

89K'n? — 4K B3m)  ynr’ + (12m)F y2r') + 36 y2n3(49k +49%n + 3(4m) 2 y2c'?)) -

531K h2(3kK" M4y2(~12 + a1"y2) + 431+ M2(18" Zy*n® —2(1+n) +%§y2(3 +21)) +

. 92
6(83%+k 55113(1 +1) — 3212 k! + (4,3”’c + 4392 + 39(43% + (4n)* y2))))

9.14)
J=1— 12x6%/31/3z  12x62/3n1/3z | 6x6%/3k*nl/3z 92k 31Kk o 22K 31K k" gy
Wo (=2+k*)W, (=2+Kk*)W, -2+k
. 2(4x62/ 3012+ A worr)
2 142K 31—k penk®, 0, 108(3m)1/3z( We )2/3
-2+k* 5(=2+k")W,
4 * *
Sak*(3m)1/3z( 2axe?/ 2y Gk R Rl 2axe?/ 3l B4 G Wot) e
Wo _ Wo ) _
5(-2+k")Wo (—2+k" W
2—2+5k*32-—3k‘k‘221,2( z(4X62/3n1/3+(4_313)k WOT'))—k'
Wo
(9.15)

—-2+k*
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9.4 Illustrations and discussion

To examine the impacts of several parameters Hartmann number M, Weber number
W,, Cavitation number 7', behaviour index k* Bubble population per unit liquid volume 7, is
plotted for Bubble radius R, Volume of the void v and velocity of fluid w from Fig. (9.2) -

(9.12).

The impact of transvers magnetic field parameter M on the fluid velocity, which is decreasing
due to Lorenz opposing forces as shown in Fig. (9.2). Notice that if we rising the value of
Weber number the behaviour of flow is increasing for the fixed values of the other parameters
presented in Fig. (9.3). The effect of cavitation number shows different behavior. Fig. (9.4)
illustrate that when increase the value of ¢ then it is noticed that the flow is reducing. The flow
behavior index k* as indicates in Fig (9.5) and (9.6). If we take the value of index k* > 1 in

Fig. (9.4) and k* < 1 in Fig (9.5) the flow behaviour decreased.

The void fraction distribution behavior in the flow. The flow evaporates due to the qusi-
statically unstable, mean the void fraction bubbles rapidly approaches to unity. Fig. (9.7)
indicates that the increase in value of W, give the result to decrease the void fraction. With
rising the values of cavitation number and index k* the flow for the void fraction is also increase
in Fig. (9.8) and (9.9). Radius of the bubble is investigated in Fig. (9.10) for the different vales
of Weber number. It is observed that the flow behavior is reduced when we increase the values
of Wy. Instead of this if we examine the flow behavior for the radius of the bubble with different
parameters such as cavitation number and index k* the graph is increasing as shown in Fig.

(9.11) and (9.12)
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Fig 9.

2. Velocity curves for several values of A4
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Fig 9.5. Velocity curves for several values of k” > 1.
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9.5 Concluding remarks

In this chapter, we analyzed the formulation of the bubbly flow model with peristaltic
motion only. Excluded real flow of other non-equilibrium factors such as thermal dependence
between the density distribution and phases. The present study is the result obtained for the
flow behavior for the radius of the bubble and void fraction with different parameters. It is
observed that

o A decrease in fluid velocity is observed when increasing value of Hartmann number,

Weber number, Cavitation number and behavior index.
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Void fraction tends to reduce with increasing value of Weber number, but increase
with Cavitation number and behavior index.
The flow evaporates due to the qusi-statically unstable, mean the void fraction bubbles

rapidly approaches to unity.
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