




















Abstract

The skew morphism of a group G is used to decompose G into disjoints sets
A and B where both A and B are subgroups of G such that AN B = {1} and
AB = G. In mathematics, a ring is one of the fundamental algebraic struc-
tures used in abstract algebra. It consists of a set equipped with two binary
operations that generalize the arithmetic operations of addition and multipli-
cation. Through this generalization, theorem from arithmetic is extended to
non-numerical objects such as polynomials, series, matrices and functions.

In our work we will present a number of previously unknown properties of
skew morphism of rings. We will also prove a number of theorems about skew
morphism of ring which will extend recent theorems of Conder [4].

The concept of structure preserving maps commonly known as homomorphism
between two algebraic structures was widely discussed by many algebraists.
Skew-morphisms are different from the conventional homomorphism. In skew-
morphisms rather than multiplying the images the power functions are used.
It helps to answers the problems that are not solved by the usual homomor-
phism.

In 2002, Jajcay and Siran discussed the decomposition of skew-morphism of
cyclic groups. They addressed one of the central problems of the theory of
regular maps, that is, the problem of classification of finite group admitting a
regular Cayley Map.

1.Kovacs, R. Nedela, 2011 discussed the decomposition of skew-morphism of

cyclic groups.



ABSTRACT ii

The dihedral group Dn, that is, the group formed by rotation and reflections
of a regular n-gon is a non-abelain solvable group with many applications in
geometry. Zhang and Du, 2016 introduced the skew-morphisms of dihedral
groups.

In the year 2016, Conder et al., determined the cyclic complements and skew
morphism of groups.

Using the existing literature here we want to establish a link between skew-
morphism of groups and skew-morphism of rings. The thesis is divided into
three chapters.

Chapter 1, is essentially an introduction. It is survey aimed at recalling some
basic definitions and facts of groups, rings, ideals and ring homomorphism.
Chapter 2, deals with skew-morphisin of groups and we also introduce the con-
cept of Kernel and Fix of skew-morphism of groups. While some important
results and skew-morphism of direct product are also presented in this chapter.
Chapter 3, concerned with study of skew-morphisin of rings. Here we present
the Kernel and Fix of skew-morphism of rings. In this chapter we also deal with

some important results, finite examples and skew-morphism of direct products.
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a finite number of elements. The number of elements in group G is called the
order of G, denoted by |G|. Otherwise if the set G contains infinite number of
elements then it is said to be an infinite group. Let for an element a of group
G if a™ = e for some positive mteger n, then tbe smallest such positive integer

is called the order of a and is denoted by |a].

Example 1.1.2. 1. The set G = {e,a} where the operation of multiplica-

tion is defined as

is an abelian group.

2. Under the operation of usual addition the set of all integers Z, rational
numbers {J, real numbers R and complex numbers C are examples of

abelian groups .

3. The set of all matrices whose order is n x m denoted by M, «..(G)} over a

group (G, ») forms also a group where the binary operation is defined as
[a:;] © [bij] = [34; * byj)-

If G is abelian, that is the binary operation on G is commutative then

M, xm(G) is abelian.

4. The set map (X, G) of all functions from a non-empty set X into a group
(G, ) also forms a group, where the binary operation, for all x € X is
defined as

(f © g)(z) = f(z) * g(z) for all f,g € map(X,G)

If the group G is abelian, that is the binary operation on G is commuta-

tive then the map (X, G) is also abelian.
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Definition 1.1.3. [11] If the pairs (Gy, .} and (G, *) arc any two groups, then

G = G1 X G4 is called a group under the binary operation defined as

(91, 92)(91, 93) = (91.91. 92 * 93)

Where (e, eg,) is the identity and (g7, ;') is the inverse of (g, g2) in G} X
G,. If both &y and G5 are abelian then G, x G5 is also abelian.

Definition 1.1.4. [11] Let the set G he a group and H he a subset of & where
H is non-empty set. Then H is called a subgroup of G{ denoted by H < G) if
under the binary operation of group G, H is itself a group. That is, under the
binary operation of G associativity holds for all elements in H, H contains an

identity element also for each element in H an inverse element in H exists.

Example 1.1.5. 1. Every group G has at least two subgroups, namely the
identity group {e} and group G itself. These are said to be the trivial
subgroups of G.

2. For any number n € Z, under addition the set nZ = {na : a € Z} is a

subgroup of set of integers Z.

Proposition 1.1.6. {11] Let G be a group and H is a subgroup of G & 27 'y €
H forallz,y ¢ H.

Proposition 1.1.7. [11] If {H; : i = 1,2,...,n} is any collection of subgroups
of a group G. Then NI_ H; < G.

Proof. Since each H; € G = e € H;foralli =1,2,..,n = ¢ € NIL H;. Let
a,benN Hi=>abe H, Vi=12.,n
Since H; is a subgroup = ab™! € H; foralli=1,2,..,n = ab™! € N H;

Thus, intersection of subgroups is a subgroup of G. O

Proposition 1.1.8. {11] If {H;:i = 1,2,...,n} is any collection of subgroups
of a group G. Then the union of subgroups of a group GG do not form a subgroup
of group G. However, H; UH; is a subgroup if and only if H; C H; or H; C H;.
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Definition 1.1.16. [11] If G is a group and N is a normal subgroup of G,
that is, for all g € G gtg~! € N where t € N then the quotient group G/N
has elements {gN : g € G}, the cosets of N in G, and operation (gN}.(hN) =
(gh)N.

Definition 1.1.17. [11] Let G be a group, and H and K be normal subgroups
of G such that G = HK and H N K = {e}. Then G is said to be the direct
product of H and K, denoted by

G=HXxK.

1.1.2 Homomorphism

Definition 1.1.18. [11] Let the pairs (G,.) and (G, *) be two groups. A map
8:(G,.) = (G, +) is called a group homomorphism or simply homomorphism

if the group operations are preserved, that is,

8(g1.92) = 8(g1) * 8(gz), for all g1, 92 € G.
1. If 8 is surjective, then it is called an epimorphism.

2. If 8 is injective, then & is called a monomorphism. We can say that G is

embedded into G
3. If @ is bijective, then 8 is called an isomorphism, denoted by G = .

Example 1.1.19. Let G = (Z,+) and G’ = (2Z,+). Amap8: G = G’
be defined by #(n) = 2n. Then

8(n1 + nz) = 2(ng + ng) = 2n; + 2ny = 4(ny) + 8(ny)

We get € is homomorphism.
Now let t € 2Z, then! = 2n wheren € Z. As #(n) = 2n = t. This

implies # is onto. Now consider

8(n,) = 8(ny)
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3. The set of Gussian integers Z[i] = {a + ib : ¢,b € Z} is a subring of

complex numbers C.

4. If 81, 5,, 53..., S, are subrings of Ry, R, Ra, ..., R, respectively, then §; x
83 X 83... X 8, is a sub ring of Ry x Ry X Ra,... x R,.

5. If §is a subring of R, thatisa—b € S and a.b € § for all a,b € §, then

M,(S) is a subring of M,(R).

In the next section we will discuss a special type of subsets of a ring R called

ideals of R. We start with the definition of ideal.

1.2.1 Ideal

Definition 1.2.6. [2] Let R be a ring. A non-empty subset [ of R is said to

be a left ideal of R if it satisfies the following axioms:
1. {{,+) is a subgroup of {R,+), that is, for all a,b € I,a — b € I;
2.raciforallre Randa €.

Similarly, a non-empty subset I of R is said to be a right ideal of R if it satisfies

the following axioms:
1. {I,+) is a subgroup of (R,+), that is,a —be [ forall a,6 € I;
2. greilforallre Randa€ .

If I is both a left and a right ideal of R, then [ is called a two sided or simply
an ideal of R. The zero ideal {0} and the ring R are examples of two sided
ideals in any ring R.

It is not difficult to verify that every ideal is a subring but the converse is not
necessarily true. For example the set of integers Z is a subring of the set of

real numbers R but Z is not an ideal of R.
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Example 1.2.7. 1. Every ring R has at least two ideals {Og} and R itself.
These two ideals R and {0g} are usually referred to as the trivial ideals

of R.
2. For any integer n, nZ is an ideal of Z.

3. If I is an ideal of R, that is, I is both left and right ideal of R then
Muxm(I) is an ideal of M, (R).

4. The set of all matrices (having the order n X n) whose last row is zero
forms a right ideal in the ring of all n x n matrices under usual addition
and multiplication of matrices. It is not a left ideal. The set of all
matrices (having the order n x n) whose last column is zero forms a left

ideal but not a right ideal.

Proposition 1.2.8. [2| Intersection of any collection of ideals of R forms again

an ideal.

Proof. Let {Ixea} be a collection of ideals of K. Now let a,b € [, I) then
a,b € I, for each A € A. Therefore a — b € I, and ar,ra € I, for each A € A,
This implies that @ — b € ()¢, /s and ra,ar € [),., /5. Thus intersection of

ideals is again an ideal. 0

Definition 1.2.9. The sum A + B of ideals A, B of a ring R is called direct
sum if A(YB =0g. It is denoted by A& B.

Proposition 1.2.10. (2] A ring R is direct sum of its ideals A and B if and
only if every element of R is uniquely written asr =a+b, YVa e A and b € B,

that is every element of R has unigue representation.

Proof. First suppose that R is direct sum of A and B. We have to prove that
each element of 7 uniquely expressible as r = a + b. Suppose on contrary that

r € Rcan be writtenasr =a+ band r =a + & then

a+b=a +b
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>a—-a =b—b

Sincea —a € Aand b —b=a —a'. This implies that ¢ — ¢ € B. Then this

implies that @ —a’ € AN B. Since AN B = {0g}, so e ~a = 0. Thus we get

a = ¢, similarly b = b". Now conversely, assume R = A+ B. Let 0 £ r € ANB

and 7 = Og + r and also r =  + 0g. This implies that Og +» = r + 0g. Then
we get » = 0. Hence, ANB=0=>R=A¢B. O

Definition 1.2.11. [2] Let for a ring R, 7 be the two sided {both left and
right}ideal of R. If we define a relationon Rby "e ~b & a—-be 1" Va,b € R,
then it is quite easy to verify that ~ is an equivalence relation and it partitions

A into disjoint classes
[g]={beR:a~b}={beR:a-bel}

={beR:bca+1}=a+1!

The equivalence class a+/ is said to be a coset of I in R. the set of all such cosets
is denoted by [2/I. The set It/[ is a ring under addition and multiplication
defined by

a+I®b+I=(a+b0)+1

(a+ OB +I)=(ab)+]

The ring R/! is said to be quotient or factor ring. Note that, R/f is a commu-
tative ring with identity 1+ I. If R is a commutative ring with identity 1, that
is, l.a = a.1 = a and a.b = b.a for all a,b € R. Now we will define structure

preserving maps for rings as we have already defined for groups.

1.2.2 Ring Homomorphism

Definition 1.2.12. [2] Let (R, +,.) and (R, +',.") be any two rings. A map
f R = R is called a ring homomorphism if ring operations are preserved,
that is,

fla+b) = [(a)+ f(b) and f(ab) = f(a). [ (D)
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If the mapping f is surjective, injective or bijective, then f is called epimor-

phism, monomorphism or isomorphism (respectively).

Example 1.2.13. 1. §: R — R’ defined by 8(r) = 0 ¥r € R is a ring

bomomorphism called trivial homomorphism.

2. 8 : M.(R}) — R defined by 8(A) = detA for all A € M,(R) is a ring

homomorphisin.



Chapter 2

Skew-Morphism of Groups

In this chapter, we will discuss the skew-morphism of groups. The results

discussed in this chapter are taken from [4].

2.1 Skew-Morphism of Groups

Definition 2.1.1. Consider a group G, a bijection ¢ : G = G of the elements
of group G that fixes the identity of G, is called a skew-morphism of G with

associated power function 7 : G 2> Zifforall c,d € G
$(cd) = ¢(c)¢™(d).

Example 2.1.2. Z, has only one skew-morphism (namely identity).
Let ¢ : Z; = Z; be defined as ¢(z) = z and  : G = Z he defined by n(z) =

nVzr € G. It is clearly a bijection. Now, consider
$(0 +0) = 0= ¢(0) + $™9(0)

¢(1+ 1) = 0 = §(1) + ¢™(1)

Similarly,
#(04+1) =1 = $(0) + ¢"®(1) = ¢(1 +0)

Clearly, it is skew-mnorphism of group.

14
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Example 2.1.3. Let Zy = {0, 1, 2}. A map ¢:Zs — Z; defined as

$(0) =0, ¢(1) =2, ¢(2) =1
To check it is skew-morphism:

#(0+0) = 0= ¢(0) + ¢(0)

(1+1)=1=¢(1) +¢(1)

$(2+2) =2 = ¢(2) + ¢(2)

#(1+2)=0=¢(1) + ¢(2)
Similarly,

¢(0 +w) = ¢(w) = ¢(0) + ¢(w)

So it is automorphism in group w.r.t '+’ and also it is skew-morphism with

m(z) = 1. We get
Auto(Z;, +) = {1, ¢}.

This implies that skew-morphism of group= {i, ¢}.

Example 2.1.4. 1. Z, has two skew-morphisms, namely the two automor-

phism of Z,;

[

. Zy x Zy(= V3) has six skew-morphisms, namely the six automorphisms;
3. Zs has four skew-morphisms, namely the four automorphism ofZs;

4, Zg has four skew-morphisms, two automorphism and two others with

kernel Zs;
5. Z7 has six skew-morphisms, namely the six automorphistm of Z;

6. Zs has six skew-morphisms, four automorphism and two others with

kernel Zj;

7. Z4 x Z3 has 16 skew-morphisms: eight automorphisms and eight others

with kernel Z;
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8. Zy X Zy x Zy has 168 skew-morphisms, all of which are automorphisms.

Lemma 2.1.5. Let for a group G, ¢ be a skew-morphism with associated power
function m, that is, a map from the group G into the set of integers Z such
that m(z) = nVz € G. Then ¢"(vw) = ¢"(v)e"{(w) where o(n,v) =
Locicn M@ (v)), forallv,w € G andn € Z.

Proof. We will prove by using mathematical induction. if » = 1, then ¢(vw) =
B()pTiz0 "E N () = P(u)e" @M () = $(v)¢™(w). Now assnme that

statement is true for all n < £ — 1. This implies that,

#*(vw) =g(¢* (vw))
— (L (0) 6T 7 (¢ () (w)
=¢(¢" 1 (v)) ™" T OV (HTEI W WD (1))
=g (v)pTico T @) (),

Hence, we get that

k—1

¢F(vw) = ¢F(v)plizo "' ™) (w) Yo, w € G. 0

Now in the next lemma we will explain the power function for the product

of two elements in G.

Lemma 2.1.6. Let for a group G, ¢ be a skew-morphismn and let m be the
power function of ¢, that is, a map from the group G into the set of integers
Z such that n(z} = nVr € G. Then we have for all u,v € G

m{u}-1

w(uv) = Z n{¢*(v))(modn).

i=0
Proof. Let u,v and w € G. Consider ¢(uvw) = ¢({uv)w). As ¢ is skew-
morphism of group. This implies that ¢((uv)w) = $(uv)d™ ) (w)

= ¢(u)d" @ (v)"@) (w) (2.1.1}
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1=¢(7)e()
=g,
Now let l1, 12 € Fiz(¢). Then ¢(l1} =1, and ¢(l2) = I3. Now again consider

o(hiz") =¢(l)g™ ™ (137)
=£1¢(l;1) = !16,;1
=>£1£2_1 S F‘&I((ﬁ)

Hence, the set Fiz(¢) = {I € G|¢(l) = I} is a subgroup of G. 0O

Lemma 2.2.6. Let for a group G, ¢ be a skew-morphism and let = be the
associated power function of ¢, that is, a map from a group G into the set of
integers 7, such that n(x} = n for all z € G. Then the intersection KgNFiz(¢)
is ¢ normal subgroup of Fiz(9).

Proof. Let m € Kg N Fiz(¢) and n € Fiz{¢). This implies that m € Kg and
m,n € Fiz(¢). Then this implies that n(m) = 1,¢(m) = m and ¢(n) = n.
Consider n(nmn™) = n{mnn~!) = n(m) = 1. This implies that nmn™! € Kg.

Now again consider
d(nmn=1) =p(nm)¢" "™ (n")
=¢(n)¢" ™ (n)p(n~")
=¢(n)p(n)p(n"") = nmn™*

Thus, we get nmn~! € Fiz(¢). Hence, the intersection Kg [ Fiz(¢) gives a
normal subgroup of Fiz(¢). ad

2.3 Some Important Results

Proposition 2.3.1. Let for a group G, ¢ be any skew-morphism, end let W
be a subgroup of K = Kg, that is, normal in G and is preserved by ¢, that
is, (W) = W. Then the mapping ¢" : G/W — G/W defined as ¢"(zW) =
Hz)W is a well-defined skew-morphism of G/W.
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Proof. Firstly, if w € W and z € G then ¢(zw) = ¢(z)d(w) € ¢(x}W, since
¢ preserves W, and so the mapping ¢* is well defined. As 7 be the power

function of ¢. Now we have to show skew-morphism of group. Consider
¢*(aW) = ¢"(yW)

= ¢(z)W = d(y)W
& W =yW.

Thus, the mapping ¢* is one-one. Now for every ¢(z)W € G/W where ¢(z) €
G there exist zW € G/W where ¢ € G such that ¢*(zW) = ¢(z)}W. This

implies that the map ¢* is a bijection. Now again consider

¢"((zW).(yW)) =¢" (zyW)
=o(zy)W = @)™ ()W - (¢ is skew-morphism of group)
=p(@)WE™ ()W = 6" (W) "W).

Hence, clearly the map ¢* is skew-morphism of group. O

Proposition 2.3.2, Let G be any given finite group. Then if G is any finite
group with a complementary subgroup factorisation G' = GY where Y is cyclic,
and y is a generator of Y, then the rule yr = ¢(r)y™™ (for r € G} gives a
skew-morphism ¢ of G with associated power function w, that is, a map from

a group G into the set of integers Z such that m(z) =n for allz € G.

Proof. Let G’ be any finite group that has a complementary subgroup fac-
torisation. Note that YG = GY (= G’), since GY is a subgroup of G'. As
Y is cyclic so let y be a generator of ¥. Then for any » € G, we know that
yr € YG = GY, so yr = r'y/ for some r' € G and some j € Z, both of which
are uniquely determined by 7. We can now define functions ¢ : G — G and

7w : G — Z by taking

#(r) =r and 7w(r) = j whenever yr = r'y’ where v € G and j € Z.
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To show yr = ¢(r)y™" (for r € G) gives a skew-morphism ¢ of G with
associated power function =, that is, a map from a group G into the set of
integers Z such that w(z) = n for all z € G. We consider ¢(r) = ¢(s).
This implies yry~"") = yry "), Then this implies that r~'s = (yr)tys =
y")-m") ¢ Y. So we obtain r—ls = 1. Clearly, ¢ is a bijection. Now again
consider

y(rs) = (yr)s = ¢(r)y™(s)

Particularly let x(r) =2

o(r)y*(s) =o(r)ylys)
=¢(r)y(d(s)y™) = o(r)(yd(s))y™"
=¢(r)(¢(¢(s))y™ @y
=¢(r)d?(s)y™ T = g(r) g (s)y™)

So in general

y(rs) =¢(r)¢”("}(s)yﬂ(rs}
=gy (G = 7(rs))

Thus, we get ¢(rs) = ¢(r)¢™)(s), so that ¢ is skew-morphism of G. O

Now it is obvious question that whether the inverse of skew-morphism of
group gives us again an skew-morphism of group. For this purpose we have

following lemma.

Lemma 2.3.3. If for a finite group G, ¢ is a skew-morphism then so is ¢
whenever i is coprime to the order |¢| of ¢. Hence in particular, the inverse

of every skew-morphism of group forms again a skew-morphism of group .

Proof. Let ¢ is a skew-morphism of group G, that is for all v, w € G ¢{vw) =
$()67®) (). Consider 9[¢(v)6 ) (w)] = ¢[p~ (1)} =0~ D [p~17D ()]
— ygr TN (@A) ().



CHAPTER 2. SKEW-MORPHISM OF GROUPS 22

Thus, we obtain
87 ()™ "D ()] =g (71N ) (231)
As v € Fiz¢. This implies that ¢(v) = v. Clearly ¢~ (v) = v. Then
m($7(v)) = 7(v).
Let
(¢~ (v)) = i = m(v)

g (T (w)) =g (6710 (w))
=¢' (47" (w)) = w

Weget ¢[¢(v)¢ 1N (w)] = vw. Thus, weget that [¢~!{v)¢~ "W (w)] =
¢~ *{vw). Hence, ¢~ is also a skew-morphism of group. O
Lemma 2.3.4. Let for a finite group G ¢ be a skew-morphism with associated
power function w, that is o map from a group G into the set of integers Z
such that m(z) = n for all z € G. Then ¢', that is, composition of ¢ is a
skew-morphism of G if and only if for every a € G there is some ki, a € Z¢|
such that o(i,a) = m(¢*1(a)) + .... + 7(¢(a)) + m(a) = iK; smod|d|. Moreover,
when this happens, the power function of ¢* takes a to k;,a for alla € G, and
if Kg is preserved by ¢, then K& = ker(¢*) containsKg.
Proof. Suppose g(i,e) = w(¢* (2)) + .... + 7(¢(a)) + w(a) = iK; ;mod|d|.
Also ¢ is skew-morphism of group. We prove this by mathematical induc-

tion.

If n=1, then we get
$zy) = $(z)" @) (y)
dlzy) = ¢(z)¢™ (y).

Now suppose it is true for n < k — 1.

¢* (zy) =d(d* (zy))
=p(p*~} ()0 TFE (1)) = ¢F(2)p™ T D (G T @) ()

k-1

=¢‘=(3)¢E.-=u ﬂ{¢‘(=})(y) - ¢k(I)¢e(k'r)(y)_
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Thus, ¢* is a skew-morphism of group.
Conversely, suppose ¢ : G —» G and 7 : G = Z. Also ¢' is skew-morphism of

group. Since,
m{z}—1

m(zy) = Y w(¢'(y).

=0
Consider n(zy) = o(n(z),y). Particularly, let n(z) = 2

1

o(2,y) =n(zy) = ) _ m(¢"(v))

i=0

=m(¢°(¥)) + 7 (¢ (¥)) = n(y) + m((y))

We get  o(2,7) = 7(y) + (¢(y)). In general o(i, y) = 35— 7(#'(y)). Now to
prove Kg C Ker¢* = K5. As Kg = {a€ G:n(e) =1}. Let a € K¢ and
K is preserved by ¢, that is, a € Kg. This implies that w(a) = 1. Also ¢(a) €
Kg. Then this implies that m(¢(a)) = 1. Now we have to check ¢/(a) € Kg.
Particularly, let j =2
(¢*(a)) = m{¢(¢{a)))

= Gr(8(a))) = 8(1) = 1

We get that ¢?(a) € Kg. In general ¢'(a) € K. Then,

m(¢'(a)) =1 for every j

= o(i,a)= O w(#(@) =14+ 14 e+ 1=

0<i<i
When this happens then, the power function of ¢* takes a to K ,. Implies that
K, =1 Then a € Ker¢*. Finally, we get Kg C K& = Kerd'. O

In following proposition we will explain the relation between group auto-

morphism and skew-morphism of group.

Proposition 2.3.5. Every group automorphism gives e skew-morphism, but
converse is not necessarily true. A skew-morphism of a finite group G is an
automnorphism of group G & s power function takes constent value 1, or

equivalently, its kernel is G.
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Now to show skew-morphism of group:

Consider (¢ x v)((r, 8)(t,u)) =(¢ x v){(rt), (su})
=(¢(rt}, v(su))
=(¢(r)¢" 0 (e), v (s)r" ) (u))

We get
(@ x v){((r,)(t,w) = ($(r)dm(2), v(8)v™H(u)) (2.4.1)

Now we have to show (¢ x v)((r,s}{t,u)) = (¢ x v)(r,sHe¢ x v)™"2(t ).

Consider

(6 x v){r, 8)(@ x wy T t,u) =((r), v(5))(($ x ¥)" " (2), (¢ x ¥)""(u))
=((r)¢" " (L), v(s)r" ) (u)).

We get. (¢ x 2)(r, a)( X 1))t u) = ($(r)g™I (), p(e)y™ ") () (2.4.2)

However, if the power functions #(r) = n(r, s) = (s), then by equating (2.4.1)

and (2.4.2) this property holds. Hence, (¢ xv) is a skew-morphism of group.
|

Lemma 2.4.3. Let for a finite group G, ¢ be any skew-morphism and let G
be any finite group. Then ¢ can be extended to a skew-morphism 8 of the direct
product G x G, such that 8l = ¢ and Kg, o = Kg x G'. In particular,if ¢
is not an group automorphism of G, then @ is not an group automorphism of

G x G,

Proof, Let ¢ : G — G be any skew-morphism of group and i : G = G’ be
any automorphism. Then § = ¢ x¢: G x G' = G x G’ defined by

B(m, e) = (#(m),i(e)) = (¢(m).e)

Moreover ¢ is automorphism because ¢ : G -+ G and i : G — G’ are

automorphisms.
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Proof. Suppose v,w € R, then

$(v —w) = ¢(v) + 6"V (~w).

If v,w € Knu, then we get n(v) = 1 = #(w). Now if we consider that 0 =

w + (—w), then by applying power function on both sides we get
1=n(0) = m(¢"(~w)) - (m(w) = 1)
We get n(—w) = 1. Now again consider m(v — w) = m{¢"(—w)) = n(—w) = 1.
Thus, this implies that v — w belongs to Kg. Particularly,
m{vw) < m{v) + m{w)
mow) <1+1=2
Implies that 7(vw) = 1. Thus, vw € Kg. So, we get that Ky is a subring. [

Remark 3.2.3. Kernel is not an ideal. It gives an ideal if w(r) =1 for all 7 € R.

In this case skew-morphism is an automorphism.

Theorem 3.2.4. Let Ky be the kernel of ¢, where ¢ a skew-morphism of the

ring R with m to be an associated power function. Then forall v,w € R
m(v) = m{w)
S v+ Krp=w+ Kr.

Proof. As we know that
v+ Kp=w+ Kgr

Sv—w€ Kgr
erv-—w)=1
& 1(6%(~w) + 7 (~w)) + .. + 7(¢"O N (~w)) =1
& m{—w) + ... + IO _w)) =1

oa(—w)=1land r(v) =1 " 7w(a) > IVa € R.
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as
{u+I)=n{u)Vu € R,
then
(== (0+1)=7="(0) =1
Also,
*((u+Nv+ D) =n(uw)+ 1
= m(uv) < m(u) + 7(v)
=r"(u++n*(v+1)
and

P ((u+ D+ v+ 1) =¢"((u+v)+1)
=p{u+v)+1
=6(1) + 6" (v) + 1
=(¢(u) + I) + (¢"™(v) + I)
=¢"(u+ 1) + ¢ (w) +-7

=¢-(u+1) +¢t(1r“(u+f)}(v + I)

¢ ((u+ D(v + 1)) =¢"((wv) + 1) = ¢(uv) + 1
=¢{u)p(v) + 1
=(6(u) + I)(e(v) + I)
=¢*{u+ N¢*(v+I).

Ol

Theorem 3.4.2. Let R be a ring and ¢ be a skew-morphism of a ring R. Let
I C Kr(kernel of skew-morphism) be an ideal of the ring R. Then image of I

under skew-morphism ¢ is also an ideal of R.
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be a generator of Y. Then for any s € R, we knowthaty+s € Y+R=R+Y,
soy+8 =3 + jy for some s € R and some j € Z, both of which are uniquely
determined by s. We can now define functions ¢ : R > Rand 7 : R 5 Z by
taking
#(s)=s and 7(s) = j whenever y + s = ¢ + jy where s € R and j € Z.
To show y + 8 = ¢(s) + jy (for s € R) defines a skew-morphism ¢ of ring
R with associated power function m. We consider ¢(s) = ¢(u). This implies
y+ 8 —jy = y+u— jy. Then this implies that s = u. Clearly, ¢ is a bijection.
Now again consider
y+(stu)=(y+s)+u=_(s +jy) +u
Particularly let =(s) =2
$(s) + 2y +u=¢(s) +y+ (y +u)

=¢(s) + v+ (¢(w) + m(uw)y)

=6(6) + (3 + 8() + w(uly
=¢(s) + ¢ (u) + m{p(u))y + m(w)y
=¢(s) + ¢ (u) + y[n((w)) + m(u)}

So in general, j = m(s)} > 2
w(s)—1

y+ (s +u) =(s) + "D (w) +y Y 7(¢(w)y

=0
=¢(s) + ¢" () + 7(s + wly
=¢(s) + ¢"Hu) + jy - (m(s +u) = )
=¢(s +u) +jy
Thus, we get ¢(s + u} = ¢(s) + ¢*®(u). Similarly, ¢{su) = ¢(s)¢(u), so that
¢ is & skew-morphism of ring R. O

Now it is obvious question that whether the inverse of skew-morphism of
a ring gives us again a skew-morphism of the same ring. For this purpose we

have following lemma.
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Lemma 3.4.6. Let for o finite ring R, ¢ be a skew-morphism of the ring
R. Then the restriction of inverse of skew-morphism on Fiz(¢) is a skew-
morphism.

Proof. Let ¢ be a skew-morphism of the ring R. Consider

3o (t) + ¢ "D ()] =g[p~1 (t)] + "¢ N[O (y))
=f + ¢W{¢_1“])(¢—1("(¢}) (v))

=t 4 ¢~ R ))

Ast € Fix(¢), this implies that ¢(t) = ¢. Clearly, ¢~1(t) = t, then n(¢~(t)) =
m(t).
Let

m(¢7'(t) =i =n(t)

= ¢ (7O ) =¢( 71O (v))
=$ @7 W) =v
We get @[¢7'(2) + ¢ "W (v)] = ¢t + v. Thus, we get that [p~1(t) +
¢~ (v)] = ¢t + v). Now consider ¢~1(tv) = tv = ¢~1(¢)¢~'(v). Hence,
¢~! is also a skew-morphism of the ring R. O

Lemma 3.4.7. Let for ¢ finite ring R, ¢ be a skew-morphism of the ring R,
with power function w. Then ¢ is ¢ skew-morphism of ring R if and only if
for every a € R, there is some K; , € Zyy such that p(i,a) = m(¢* (a)) +
. + m(¢(a)) + m(a) = iK; mod|¢|. Morcover when this happens the power
function of ¢* lakes a to K;, foralla € R and if Kp is preserved by ¢
then ker¢* = Ki contains Ky .

Proof. Suppose p(i,a) = n(¢*"'(a)) + .... + m(¢(a)) + w(a) = iK; ;mod|$)|.
Also ¢ is a skew-morphism of the ring R. We prove this by mathematical

induction on k.

If n=1, then we have

O(r + u) = ¢(r) + ¢" N (y)
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o(r +u} = ¢(r) + ") (w).

Now suppose it is true for n < k — 1.

¢*(r +u) =¢(¢* ' (r +u))
=p(¢7(r) + ¢ T O (w))
=GR (r) + "I OD (HTIT 7 ) (4y))
=¢*(r) + g0 "¢ (y,)
=¢*(r) + ¢ (u),

also ¢*(ru) = ¢ H(g(ru)) = ¢* " ((r)(w)).
Thus, ¢* is a skew-morphism of the ring R.
Conversely, ¢* is skew-morphism of the ring R with power function = . Since,

we have
w(r}—1

ar+u)= Y m(¢(u)).

i=0
Consider #(r + u} = g(n(r),u). Particularly, let w{r) =2

0(2,u) =n(r + u)
=) w(¢'(u)
=0

=m{(¢°(u)) + m(¢'(u))

=(u) + m(¢(u))
We get that o(2,u) = w(u) + m{e(u)).
In general, g(i,u) = Z;_’__B 7(¢’(u)). Now to prove Kr C Ker¢' = Kj. As
Kr ={r €¢ R: n(r) = 1}. Let a € Ky and KR be preserved by ¢, that is,
a € Kg. This implies that m{a) = 1. Also ¢(a) € Kg. Then this implies that
m(¢(a)) = 1. Now we have to check ¢?(a) € Kn. Particularly, let j = 2

7(¢*(a)) = m(¢(¢(a)))

= ¢(m(¢(a)) = (1} =1
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We get that ¢%(a) € Kg. In general ¢/(a) € Kg. Then,

m{¢(a}) =1 for every j

= oi,a) = Y m¢(@) =1+ 1+ ... tl1=1

0<j<i
When this happens, then the power function of ¢* takes a to Kj,. Implies that
Ki.=1. Thus e € Ker¢*. Finally, we get Kg C K}, = Kere®. 0

In following proposition we will explain the relation between ring automor-

phism and skew-morphism of ring.

Proposition 3.4.8. Fvery ring automorphism ts ¢ skew-morphism of a ring

R. Bul converse is not necessarily true.

Proof. Let ¢ : R — R be a ring automorphism. As skew-morphism ¢ is a

bijection and also a ring homomorphism. Then this implies
¢{vw) = d(v)g(w)

é(v +w) = ¢(v) + p(w)

Thus, the map ¢ is a skew-morphism of the ring R with power function
m{v) = 1V¥v € R. But every skew-morphism of ring need not to be a automor-

phism because for skew-morphism we can’t restrict our power function. W

In following theorems we will explain the concept how ring with identity
gives us only one skew-morphism and ring without identity can give us more

then one skew-morphisms.

Remark 3.4.9. Let R? be a ring with identity. Then R! has only one skew-

morphism namely the identity map with power function n(r) depends on r.

Example 3.4.10. The ring Z4 has only one skew-morphism (namely identity).
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Let ¢ : Zy — Z4 be defined as

Thus, ¢ is not a skew-morphism.

Theorem 3.4.11. Let given a ring R without identity, then ¢ : R — R may

have more then one skew-morphism.

Proof. If R is without identity, then Auto(R) # {i}. As Auto(R) C Skew(R).
This implies that skew(R) # {i}. O

Example 3.4.12. Let R = {e, f, g} be a ring where binary operations are

defined as

-le f g +e f g
— | 2
ele e e ele f g
fie e e fi1f g e
gle e e glg e f

And the map ¢ : R =& R is defined as ole) = e, d(f) = g,6(9) = [.
Then

d(s +t) = ¢(s) + ¢(t)
¢(s - t) = e = (s} - $(1).
Thus, the map ¢ is skew-morphism of ring.

In the above example the automorphism of (R, +) imply skew-morphism of

the ring R. However, this is not true in all the cases.
Example 3.4.13. Let Z; = {0, 1, 2}. A map ¢ :Z3 — Zy be defined as
¢(0) =0, ¢(1)=2,4(2) =1

Then
¢(0+0) = 0 = ¢(0) + 4(0)
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I=¢(1) + ¢(I)
$(2+2) =2=¢(2) + ¢(2)
$(1+2) =0=¢(I) + ¢(2)

H1+1)

Similarly,
(0 + ) = ¢(8) = $(0) + (@)

So ¢ is an automorphism of (Zs, +) but ¢(1.2) = 1 5 ¢(1)¢(2). So ¢ is not a

skew-morphism of the ring (Z3, +, .).

Remark 3.4.14. If ¢ is homomorphism of (R, .}, then in general it does not
imply skew-morphism of the ring (R, +,.).

Example 3.4.15. Let R = {h, 1, j} be a ring where binary operations are
defined as

hi{i 11 h|h 1
i1 i i|i j h

il Pl] b

Consider
¢z -y) =i=d(z) - #(y).
Now consider
¢(h+7) = o(j) = A
Similarly, consider other side then
B(h) + 6"V (5) = Jj ;ifw(h) is odd

i ;if w(h) is even
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In particular, if ¢ is not an automorphism of O, then & is not an automorphism

of O x P.

Proof. Let ¢ : O — O be any skew-morphism of ring and ¢ : P — P be the
identity automorphism. Then 8 = ¢ xi: O x P — O x P defined by

0(1,e) = (8(1),i(e)) = (¢(0), €}

¢ is an automorphism because ¢ : O = O and i: P — P are automorphisms.
As Ko = O such that Kg.p = Ko x P = O x P. We are going to prove that
8((l,m) + (n,0)) = 8, m) + *t™(n o).

Consider  8(I,m) + 0¥¢™}(n, 0) = (¢(1), m) + (¢*™(n}, 0)

We get

81, m) + 6™ (n,0) =((1) + $*“™(n),m + o) (3.5.1)

Now,

6l +n,m+ o) = (¢(l +n),m+0)

8(l + n,m + o) =(6() + ¢"®(n),m + o) (3.5.2)

We get required condition if ¢({,m) = #(l). Then, the result holds.

Consider

6((1, m){(n,0)) =8(ln, mo)
=(¢(In), mo)
=(¢(I)¢(n), mo)
=(a(!), m)}(¢(n), o)
=6(1,m)&(n, o)
a

Theorem 3.5.2. Let Ry and R, be the two rings. If ¢, : Ry - R; and
&2 : Ry = Ry be two skew-morphisms with their power functions my and m3.

Then ¢: Ry x Ry -+ Ry x R, be a skew-morphism of ring.
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Proof. Let ¢ : R; x Ry =& R; x Ry be defined as

¢(a1,82) = (¢1{a1), ¢u(b2)) Va1 € Ry, Vb € Ry,
Consider
$(a1,b2) = ¢(ay, bo')
($1(@), $a(b2)) = (d1(01), $2(82))-
We get
$1(@) = d1(a;) and ¢a(ba) = da(by).
Since ¢; and ¢, are skew-morphisms. This implies that a; = a; and & = b,
Then this implies that (a;, b;) = (a7, b;). Thus, it is one-one.
Let (a',b') € Ry x Ry where ¢’ € R; and ¥ € R, since ¢; and ¢ are
bijections on R; and R;. So there exists a € R; and & € R, such that
$1(a) = a' and ¢y(b) = b’
¢(a.b) = ($1(a), $2(b)) = (a',¥)
Thus ¢ is onto. Hence, ¢ is a bijection. clearly
¢"(a,b) = ¢"'(¢(a, b))
= ¢""(¢1(a), 62(b))
= (¢7(a), ¢3(b)).
Consider
8((a1, 62) (01, b5)) =¢(@12,, boby) = ($1(a10,), ba(baby))
=(¢1(a1)¢1(a1); a(b2)a(by))

=(¢1(a1), $2(b2))(¢1(ay), $2(83))
=¢(a, b2)¢(“11 b;!)

Now, let  ¢((a1,b2) + (a1, b3)) =¢((a1 + by), (b + by))
=(¢1(a1) + 67" (a), ($2(B2) + 637 (5,))
=(¢1(a1), d2(b2)) + (67 (ay) + 677%7 (B))
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