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Preface 
The idea of fuzzy sets (FSs) was first proposed by Zadeh[31] and has achieved a huge success 

in many areas. The concept of fuzzy sets was generalized as intuitionistic fuzzy sets (IFSs) by 

Atanassov. In Xu[25] proposed some geometric aggregation operators, like the intuitionistic 

fuzzy weighted geometric (IFWG) operator, the intuitionistic fuzzy ordered weighted 

geometric (IFOWG) operator and the intuitionistic fuzzy hybrid geometric (IFHG) operator, 

and applied IFGH operator to multi-criteria decision-making problems with intuitionistic fuzzy 

knowledge. Some of the arithmetic aggregation operators like intuitionistic fuzzy weighted 

averaging (IFWA) etc. were introduced by Xu [25]. Tursken (1986) and Gorzaleczany (1987) 

gave the idea of so-called interval-valued fuzzy sets (IVFSs) which was considered to be 

further general form of a fuzzy set, but really there is solid bond between IFSs and IVFSs. Both 

the IFSs and IVFSs were further generalized by Gargov (1989), named as interval-valued 

intuitionistic fuzzy sets (IVIFSs). For IVIFSs some aggregation operators, labelled as the 
I 

I 

interval-valued intuitionistic fuzzy weighted geometric aggregation (IIFWGA) operator and the , 
interval-valued intuitionistic fuzzy weighted arithmetic aggregation (IIFWAA) operator were 

introduced, and utilized these operators to decision making problems involving multi-criteria 

with the help of the score function of interval-valued intuitionistic fuzzy information. I 

( 

Multi-criteria decision making (MCDM) is a procedure which enables a decision maker to point 
l 

out the best alternative among the provided alternatives. The fast development in diverse 

fields like management, economics and engineering etc. has made the situation more complex 

for a single decision maker to deal with all dimensions of a problem. In general, many decision 

makers are involved in the decision making. In the whole process of decision making, the 

information to make the decision about alternatives is usually fuzzy or uncertain due to 

increase in the complexity of politico -socio -economic situation of the world. PROMETHEE, 

AHP, TOPSIS etc. are representative methods which were introduced to solve MCDM problems 

in various fields like business, engineering and industries. Such approaches in decision making 

has a drawback that they generally consider the decision making with certain information of 

decision values and weights, this thing makes these methods less effective when dealing with 

fuzzy or uncertain information. 

Technique for order preference by similarity to ideal solution (TOPSIS) is one of the familiar 

classical MCDM method was introduced by Hwang and Yoon [Ill. The base of the TOPSIS is a 

concept that chosen alternative must have the shortest distance from the positive ideal 



solution and the longest distance from the negative ideal solution. During the application of 

TOPSIS mainly exact values of performance ratings and weight of criterion are considered. 

However in real world situation normally data (attributes etc.) is often not so exact and 

precise, therefore these situations usually fall under huge fuzziness. Due to this reason many 

researchers have extended the TOPSIS method to fuzzy environment. This extended approach 

has great use in fuzzy multi-criteria decision making problems. Triantaphyllou and Lin [6] 

introduced the fuzzy TOPSIS approach depending upon fuzzy arithmetic operations. Then 

Chen [6] extended the TOPSIS technique for the fuzzy group decision making problems by 

defining a crisp Euclidean distance between any two fuzzy values. Later Tsaur using the 

TOPSIS approach converted the fuzzy multi-criteria decision making problem to non-fuzzy 

multi-criteria problem. 

The procedure in which one finds the right suppliers who can provide the customer with the 

right product, at  suitable price, a t  suitable time and in the right quantity is known as supplier 

selection. Supplier selection is considered back bone for establishing an efficient and effective , 
I 

supply chain. Selection of an inappropriate supplier could harm the whole supply chains at  the i 

economic and management levels badly. Now a days without good suppliers it is almost 

impossible to produce low cast, high quality products in a successful manner. The main 
I 

objective of the supplier selection procedure is to minimize purchase risk, enhance over all I 
t 

worth to the buyer and construct the confident building measures between suppliers and 

buyers on long term basis. In simple words, the major goals of supply chain management is to 

minimize supply chain risk, curtail down production costs, increase revenue, improve 

customer services, optimization of time cycle, customer satisfaction and revenue. There is no 

doubt that supplier selection is a multi-criteria decision making (MCDM) problem which has 

many conflicting factors in its account like price, quality and delivery etc. Multi-criteria 

decision making is being heavily affected by these factors. There are also many factors which 

affect the performance of a supplier. 

In this thesis, we will solve different multi-criteria decision making problems having 

information in cubic set values. We solve the multi-criteria group decision making problem 

with the help of well-known SIR method and TOPSIS technique. We introduce different 

aggregating operators for cubic sets. A score function has been proposed to solve different 

multi-criteria decision making problems in this thesis. 



Structure of the Thesis 

The thesis is organized chapter wise as follows: 

Chapter 1: 

This chapter is introductory and sets up the background for the problems taken in the thesis. It 

overviews fuzzy sets, interval-valued fuzzy set, cubic set, decision making, alternatives, 

criteria, rate or  weight, TOPSIS method, SIR method etc. 

Chapter 2: 

In this chapter, we will solve different multi-criteria decision making problems having 

information in cubic set values. In the first section of this chapter we deal with the multi- 

criteria decision making problem using a score function. In the later section we solve the multi- 

criteria group decision making problem with the help of well-known SIR method. 

Chapter 3: 

In this chapter, we solve the multi-criteria decision making problems using a new approach, 

named as TOPSIS. The first section is comprising of a procedure to solve the multi-criteria I 

1 
decision making problem through TOPSIS approach while using score function. We have I 

observed that the aid of score function makes the use of TOPSIS technique very simple. The 

second section relates to the solution of the multi-criteria group decision making problem 

through TOPSIS technique, without any aid of score function. 



Contents 



Chapter 1 

In this chapter, we present a concise summary of basic definitions and preliminary 

results, which will be helpful in the subsequent chapters of this dissertation. For 

undefined terms and notions, we reffer to [I ,  2, 3, 4, 8, 12, 13, 21, 22, 23, 25, 26, 27, 

331. 

1.1 Definitions and Examples 

In this section, we review some basic defnitions and notions. 

1.1.1 Definition [lo] 

Decision maker is any individual, group of individuals which can play a role, directly 

or indirectly in the decision process for whom the decision-aid tools are developed 

and implemented. 

1 



Alternatives are the possibilities, one has to choose from. Alternatives can be iden- 

tified or even developed. We will follow B = {Bi : i = 1,2,3, . . . .m) to denote the 

alternatives. 

Criteria are the characteristics or requirements that each alternative must possess to 

a greater or lesser extent. Usually are rated on how they possess each criterion. We 

will follow C = {Ci : i = 1,2,3,  ... .n) to denote the criteria. 

Rate or weight of the criteria is the value that indicates the relative importance of one 

criterion in a particular decision Drocess. It depends upon decision maker preference. 

Decision making can be regarded as the mental processes resulting in the selection of a 

course of action among several alternatives. Every decision making process produces 

a final choice. The output can be an action or an opinion of choice. 

A function which measures the accuracy of possible alternatives is known as score 

function. It is the measure of the calibration of a set of possible options. We will 



denote score function by M 

1.1.7 Definition [24] 

The procedure in which one finds the right suppliers who can provide the customer 

with the right product, at suitable price, at suitable time and in the right quantity is 

known as supplier selection. 

A linguistic variable means a variable whose values are words or sentences in a natural 

or artificial language. 

1.1.9 Example 

Age is a linguistic variable if its values are linguistic rather than numerical, i.e. , 

young, not young, very young, quite young, old, not very old and not very young. 

etc. , rather than 19, 24, 27, 29, ... , . 

The method of tackling the process of decision making in the presence of multiple 

criteria or objectives is known as multi-criteria decision making (MCDM). 
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1.2 Fuzzy sets 

A fuzzy set is a pair (X, A) where X is a set and X is a function from X to the unit 

closed interval I = [0, 11, i.e. X : X --+ [0,  11. For each x E X ,  X (x) is called the 

grade of membership of x in (X, A) and X is called membership function of (X, A)  . 

A fuzzy subset X : X --+ [O, I] is non-empty if X is not a zero map. Note that 

X (x) E [0, 11 for all x E X. 

Let X be a non-empty subset. Then for any A  C X the characteristic function of A 

1 if X E A  
is denoted by CA defined by CA (x) = 

0 if x $ A  
for x E X .  

A fuzzy subset of X of the form 

is called the fuzzy point with support x and value t ,  where t E (0, 11. It is usually 

denoted by x, 

The complement of the fuzzy subset of X of the form X (x) is denoted and defined as 



X C  ( x )  = 1 - X (x) . 

1.2.5 Remarks 

1. Two fuzzy subsets A and p of a set X are said to be disjoint if there is no x  E X 

such that X ( x )  = p (x ) .  If X(x) = p ( x )  for each x E X, then we say that X and p 

are equal and write X = p. 

2. Let X and p  be two fuzzy subsets of non-empty set X. Then X is said to be 

included in p i . e . ,  X 2 p  if and only if X ( x )  < p ( x )  for all ,x E X. 

3.  Let X and p  be two fuzzy subsets of non-empt'y set X. Then X is said t,o be 

properly included in p i.e., X c p if and only if X ( x )  < p ( x )  for all x  E X. 

4. The union of any family { X i  : i E R) of fuzzy subsets X i  of a non-empty set X 

is denoted by ( U X i )  and defined by ( U X i )  ( x )  = S U P X ~  ( x )  = V X i  ( x )  , for all x  E X. 
ZER ~ E R  i E R  id2 

Moreover ( U X i )  is smallest fuzzy subset which containing X i .  
Z E R  

5. The intersection of any family { A ,  : i E R) of fuzzy subsets A, of a non-empty 

set X is denoted by ( n A,) and defined by ( f? A,) (x) = infXz ( x )  = A A, (x) , for all 
zER zER z ER zER 

x  E X. Moreover ( n A,) is largest fuzzy subset which is contained in A, .  
2ER 
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1.3 Int erval-valued fuzzy sets (IVFs) 

An interval number means a closed subinterval of I = [O, 11 . We denote the set of all 

interval numbers by [I] . 

Let X be a non empty set. A function ,B : X ---t [ I ]  is called an intterval-valued 

fuzzy set (briefly, an IVF set). Let [I]" denote the set of all IVF sets in X. For every 

a E [I]" and x E X, P (X) = [@ (x) , 8' (x) ] , is called the degree of membership 

function of an element x to P, where 8- : X ---t I and pf : X - I are fuzzy sets 

in X which are called lower fuzzy set and upper fuzzy set in X, resp. 

The complement /Y of P E [I]" is defined as follows PC (x) = ,B (x)" for all x E X, 

i.e. PC (x) = [1 - /3+ (I) , 1 - /3- (x)] for all x E X. 

1.4 Cubic sets (CSs) 

1.4.1 Definition [3O] 

Let X be a non-empty set. By cubic set in X we mean a structure A = {(x, (x) , X (x)) ( x E X) 

in which ,B is an IVF set in X and X is fuzzy set in X. A cubic set A = {(x, ,L? (x) , X (x)) ( x E X) 

is simply denoted by A = (P, A). 



1.4.2 Example 

Let X be a non-empty set. Let P be an IVF set in X. Then A = {(x, P (x) , 1 (x)) I x E X )  , 

B = {(x, p (x) , 0 ( 2 ) )  1 x E X )  and C = {(x, P (x) , X (x)) ( x E X )  , where (x) = 

8 - ( x )  + pf are cubic sets in X. 2 

Let X be a non-empty set. A cubic set A = (P ,  A) in X is called an internal cubic 

set (briefly ICS) if P- (x) < X (x) < P+ (x) for all x E X. 

1.4.4 Example 

Let A = {(x, ( x ) ,  X (x)) / x E I )  be a cubic set in I .  If p(x) = [0.3, 0.71 and t 

X (x) = 0.4 for all x E I ,  then A is an ICS. 
I 

Let X be a non-empty set,. A cubic set A = (P ,  A) in X is called an external cubic 

set (briefly ECS) if A (x) $ (8- (x) , 4'- (x) ) for all x E X. 

1.4.6 Example 

Let A = {(x, ,8 (x), X (2)) I x E I )  be a cubic set in I .  If p(x) = [0.3, 0.71 and 

X (x) = 0.8 for all x E I, then A is an ECS. 
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1.4.7 Example 

If p (x) = [O .3, 0.71 and X (x) = x for all x E I, then A is neither an ICS nor an ECS. 

1.4.8 Theorem 

Let A = (p ,  A) be a cubic set in X which is not an ECS. Then there exist x E X 

such that X(x) E (P- (x) , pf (x) ) .  

1.4.9 Theorem 

Let A = (p ,  A )  be a cubic set in X. If A is both an ICS and an ECS, then (V x E X) 

(X(x) E U(A) u L(A)) where U(A) = (+(x) 1 x E X} and L(A) = (- (x) I x E X). 

Let A = (p ,  A )  and B = (y, p )  be cubic sets in X. Then we define 

(a) (Equality) A = B e f i  = y and X = p. 

(b) (P-order) A Cp B @ P C y and X < p. 

(c) (R-order) A C R  B # C y and X 2 p. 

1.4.11 Definition[30] 

For any Ai = { (  x, pi (x) , Xi (x) ) I x E X) where i E A, we define 



The complement of A = (P ,  A) is defined to  be the cubic set A" = { (x, BC (x) , 1 - X (x)) I x E . 

Obviously (Ac)" = A. Also for any Ai = (( x, Pi (x) , X i  (x) ) 1 x E X) where 

i E A, we have i c  = UP (A)" and = np (Ai)". Also we have 
i E A  ( i ~ A ~ i ) c  i G A 

(AilC and (i2*~z) = i UR 6 A (4)'. 

1.4.13 Proposition 

For any cubic sets A =  (p,  A), B = (y, p ) ,  C = (6, v) and D = ( 6 ,  {), we have 

(1) if A Sp B and B C_p C then A Cp C. 

(2) if A Cp B then Bc C_p AC. 

(3) if A Cp B and A L P  C then A G p  B n p C .  

(4) if A Cp B and C G p  B then A Up C C_p B. 

( 5 ) i f A C _ p B a n d C ~ r D t h e n A U p C C p B U p D a n d A n p C C p B n p D .  

(6) if A CR B and B GR C then A CR C. 

(7) if A C R  B then Bc C_R AC. 

(8) if A CR B and A ZR C then A CR B nR C. 

(9) if A CR B and C CR B then A U R C  (IR B. 

(10) i f A c R B a n d C c ~ D  t h e n A u R C C R B u R D a n d  A n R C z R B n R D  
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1.4.14 Theorem 

Let A = (p, A) be a cubic set in X. If A is an ECS (resp. ICS), then A" is an ICS 

(resp. ICS). 

1.4.15 Theorem 

Let {Ai = (Pi, Xi) I i E A} be a family of ICSs in X. Then the P-union and P- 

intersection of {Ai = (pi, Xi)  I i C A)  are ICSs in X. 

1.4.16 Remark 

P-union and P-intersection of ECSs need not to be an ECS. The following example 

illustrates this. 

1.4.17 Example 

Let A = (p, A )  and B = (7, p )  be ECSs in I = [O, I] in which P (x) = [0.3, 0.51, 

X (x) = 0.8, 7 (x) = [0.7, 0.91, p (x) = 0.4 for all x E I. 

(1) We know that A u ~ B  = {(z, y (z) , X (x) ) 1 x E I) and X (x) E (y- (x) , y+ (x)) 

for all x E I. Hence A Up B is not an ECS in I. 

(2) We know that AnpB = {(x, 13 (x) , p (x) ) / x E I )  and p (x) E (p- (x) , 13' (x)) 

for all x E I. Hence A np B is not an ECS in I. 



1.4.18 Remark 

R-union and R-intersection of ICSs need not to be an ICS. The following example 

illustrates this. 

1.4.19 Example 

Let A = (9, A) and B = (y, ,u) be ICSs in I = [O, 11 in which P (x) = [0.3, 0.51, 

A (x) = 0.4, y (2) = [0.7, 6.91, p. (x) = 0.8 for all x E I. 

(1) We know that AURB = ((2, y (2) , X (x) ) I x E I) and X (x) 6 (7- (x) , yf (x)) 

for all x E I. Hence A UR B is not an ICS in I. 

(2) We know that AnRB = {(x, ,L? (x) , p. (x) ) I x E I )  and p (x) 6 (p- (x) , ,Bi (x)) 

for all x E I. Hence A nR B is not an ICS in I. 

1.4.20 Remark 

R-union and R-intersection of ECSs need not to be an ECS. The following example 

illustrates this. 

1.4.2 1 Example 

Let A = (p, A) and B = (y, p )  be ECSs in I = [O, 11 in which P (x) = 10.2, 0.41, 

X (x) = 0.7, y (x) = [0.6, 0.81, p(x) = 0.9 for all x E I. 

(1) We know that AURB = {(x, y (x) , X (x) ) I x E I) and X (x) E (7- (x) yf (x)) 

for all x E I. Hence A UR B is not an ECS in I. 

(2) Let A = ((3, A) and B = (y, p) be ECSs in I = [O, 11 in which /5'(a) = [0.2. 



12 

0.41, X (x) = 0.1, 7 (x) = [0.6, 0.81, p (x) = 0.3 for all x E I. Then A nR B = 

{(x ,B (x) , p (x) ) / x E I) and p (x) E (8- (x) , ,8+ (x)) for all x E I. Thus A ~ R  B 

is not an ECS in I. 

1.4.22 Theorem 

Let A = (p ,  A )  and B = ( y ,  p) be ICSs in X such that, 

max {,B- (4 1 7- (4 } 5 (A1 P) (4 

for all x E X. Then R-union of A and B is an ICS in X. 

1.4.23 Theorem 

Let A = (p ,  A)  and B = ( y ,  p.) be ICSs in X satisfying the following inequality 

min (8' (2) , r+ (4 ) 2 ( A ,  1.4 (4 

for all x E X. Then R-intersection of A and B is an ICS in X. 

1.4.24 Remark 

Suppose that A = (p .  A)  and B = (7, p) in X ,  if we exchange p and A ,  we denot,e 

the cubic sets by A* = ( P ,  p) and B* = ( y ,  A )  resp. For two ECSs A = (,B, A )  and 

B = ( y ,  p) in X ,  two cubic sets A* and B* may not be ICSs in X as observed in the 

following example. 



1.4.25 Example 

(1) Let A = (p ,  A) and B = (y, p )  be ECSs in I = [O,  11 in which P ( x )  = [0.6, 0.71, 

A(x) = 0.8, y (2 )  = [0.3, 0.41, p ( x )  = 0.2 for all x E I. Then we know that A* = (P, 

p )  and B* = (y, A) are not an ICSs in X because p (0.5) = 0.2 6 [0.6, 0.71 = A (0.5) 

and A (0.5) = 0.8 6 [0.3, 0.41 = B (0 .5) .  

(2) Let X = { a ,  b} be a set. Let A = (p ,  A) and B = (7, p )  be ECSs in X defined 

by the following table. 

Then we come to know that A* = (P,  p )  and B* = (7, A) are not ICSs in X I 

0 

1 
I 

because p (a )  = 0.9 6 [0.2, 0.31 = A (a)  and A (a)  = 0.1 6 [0.4, 0.51 = B (a) . 

1.4.26 Remark 

P-union of two ECSs in X need not be an ICS in X. We observe this in the following 

exa,mple. 

1.4.27 Example 

Let X = { a ,  b, c )  be a set. Let A = (,B, A) and B = (y, p) be ECSs in X defined by 

the following table. 



Then we come to know that A Up B = (P U y ,  A  V p )  is not an ICS in X because 

( A  V p )  ( b )  = 0.65 $ [0.25, 0.551 = (/3 U y )  ( b )  . 

1.4.28 Theorem 

For two ECSs A = (P ,  A) and B = ( y ,  p )  in X ,  if A* = (P,  p )  and B* = ( y ,  A )  are 

ICSs in X  , then P-union A Up B of A = (P ,  A )  and B = ( y ,  p) is an ICS in X. 

1.4.29 Theorem 

Let A and B be ECSs in X such that A* and B* are ICS in X. Then the P-intersection 

of A and B is an ICS in X. 

1.4.30 Remark 

If A and B are ECSs in X ,  two cubic sets A* and B* may not be ECSs in X as 

illustrated below. 

1.4.31 Example 

Let X = {a ,  b) be a set. Let A = (P ,  A )  and B = ( y ,  p )  be ECSs in X defined by 

the following table. 



Then we come to know that A* = (P, p) and B* = (r, A) are not ECSs in X 

because p (b)  = 0.4 $ (0.3, 0.6) = A ( a )  and A (a)  = 0.5 E (0.4, 0.5) = B (a)  . 

1.4.32 Theorem 

Let A = (p,  A )  and B = ( y ,  p )  be ECSs in X such that A* = (P ,  11,) and B* = (7: A) 

are ECS in X. Then the P-union of A and B is an ECS in X. 

1.4.33 Theorem 

Let A = (p ,  A )  and B = ( y ,  p)  be ECSs in X such that 

min {max {B+ (4 , r- (4 } , max {P- ( x )  , r+ (4 } }  2 (A  A P )  (4 

> max {min {P+  (4 , 7- ( 4  } , min { P -  (4 , 7+ (4 ' } } 

for all z E X. Then the P-intersection of A and B is an ECS in X. 

1.4.34 Remark 

For two ECSs A = ( P ,  A) and B = (y, p) which satisfy the condition 

min {maw {8+ (4 ,  7- ( x )  } , max {P- (4,  r+ (4 } }  > (A  A P )  (4 

= max {niin {P+ ( x )  , 7- ( x )  } , min {P- ( x )  , r+ (a)  } } 

for all z E X, the P-intersection of A and B may not be an ECS in X. We just,ify 

it with following example. 
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1.4.35 Example 

Let X = {a, b, c )  be a set. Let A = (p,  A) and B = (7, p )  be ECSs in X defined by 

the following table. 

Then we know that A = (P, A)  and B = (7, p )  satisfy the following condition 

min {max { +  4 ,  7- (4 } , a x  {Ci- (4 ,  Y+ (4 } }  > P )  (4 

= maw {min {B+ (4,  r- (4 } , min { F  (4, 7+ (4 } }  

But A f l p  B = ( p  n 7, (A  p) ) is not an ECS in X because (A A p)  (a) = 0.3 E 

10.2, 0.61 = ( (B  f l y ) -  (4 1 (P 7)+ (a) )  . 

1.4.36 Theorem 

= max {min {B+ (4, r- (4 } , min {F (4 Y+ (4 } }  

for all x E X. Then the P-intersection of A and B is both an ECS and an ICS in 

X .  

1.4.37 Remark 

P-union of two ECSs A and B may not be an ECS. As shown in the following example. 



1.4.38 Example 

Let A = (p ,  A )  and B = (y, p} be ECSs in I defined by 

( [O.6, 0.71 if 0.5 5 s < 1 

[0.8, 0.91 if 0 < x < 0.5 
Y (4 = 7 P (4 = 

[ O . l ,  0.21 if 0.5 5 x 5 1 

Then 

But A u p  B is not an ECS because 

1.4.39 Theorem 
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1.4.40 Theorem 

1.4.41 Remark 

If A = (p, A) and B = (y, p) are ECSs in X satisfying the following condition 

rmn {max { (4 Y ( )  } I max {B- (4, r+ (4 } }  = (A A p) (2) 

> max {min {P+ (4 , 7- (x) } , f in  {B- (x) , 7+ (4 } } 

for all x f X. Then the R-union of A and B may not be an ECS in X. Next 

example is an evident of this. 

1.4.42 Example 

Let X = {a, b, c )  be a set. Let A = (p, A) and B = (y, p )  be ECSs in X defined by 

the following table. 

Then we know that A = (P,  A )  and B = ( y ,  p )  satisfy the following condition 

min {max {Bt (4 , Y- (4 } , max { P -  (x) , r+ (x) } } = (A p )  (x) 



1.4.43 Theorem 

Let A = (p,  A) and B = ( y ,  p )  be ECSs in X such that 

min {max (8' (4, 7- (4 } , m a  {F (51, Y+ (4 } }  2 (A v p)  (4 

> max {min { +  4 ,  7- ( 1  } 7 min {p-  (4 ,  y+ (4 } }  

for all z E X. Then the R-intersection of A and B is an ECS in X. 

1.4.44 Remark 

If A = (p,  A)  and B = (y ,  p) are ECSs in X satisfying the following condition 

min {max {P+  (4, 7- (4 } , m a  {P-  (4 r+ (4 ) }  > ( A  V P )  (4 

= maw {min {P+ (4 ,  r- ( I )  } , min {P- (4,  r+ ( x )  } }  

for all x E X. Then the R-intersection of A and B may not be an ECS in X. Next 

example is an evident of this. 

1.4.45 Example 

Let X = {a ,  b, c )  be a set. Let A = (p,  A)  and B = ( y ,  p) be ECSs in X defined by 

the following table. 



1.5 General TOPSPS technique 

We can carry out the TOPSIS technique as follows 

Step 1: Form an evaluation matrix comprising of m alternatives and n criteria, 

with the intersection of each alternative and criteria given as uij , thus we have a 

matrix ( u ~ ~ ) , ~ ~ .  

Step 2: Then the matrix ( u ~ ) ~ , ,  is normalised to form the matrix R = (ri j)mxn 

with the following normalisation method 

r . .  zJ = d&2 t/ j .  

i=l 

Step 3: Calculation of the weighted normalised decision matrix as ( & j ) m x n  = 

n 

(wij x r i j ) ,  1 5 i 5 m. Here w;j = so that Cwj = 1 and Wj is the original 
C WJ j=1 
j=1 



weight given to each criteria. 

Step 4: Determination of the positive and negative ideal solutions: Both the 

positive ideal solution ?+ and the negative ideal solution I/,- are given as 

+ 

= { ( m u  Kj, j € J+) ,(min Ej, j E J - ) , I  5 i 5 m] 

y- = {(min Ej, j E J+) , ( m u  Ej, j E J-),1 5 i 5 m} 

where J+ indicates the benefit criteria and J- indicates the non - beneficial criteria. 

Step 5: Calculations of the separation measures i.e. the distances d: and d; from 
I 

the positive ideal and negative ideal solution resp. as: I 

I 

I 
I 
I 

1 
I 

Step 6: Determination of the relative nearness of alternatives to the ideal solution: 

where 0 < ST < 1. Alternatives with the greater magnitudes of nearness are 

preferred. 



1.6 An overview of SIR method 

Here we discuss the main theme of superiority and inferiority ranking method. In 

order to execute the SIR method we firstly, form the superiority and inferiority matri- 

ces. These matrices are obtained with the help of superiority and inferiority indexes 

of alternatives. The superiority and inferiority indexes are obtained through pref- 

erence intensity of the given alternatives. After the formation of superiority matrix 

and inferiority matrix, we use standard MCDM aggregation procedures to aggregate 

superiority and inferiority indexes into two type of global preference indexes: the 

superiority flow (S-flow) and the inferiority flow (I-flow), which represent the global 

intensity of superiority and inferiority of each alternative. Finally, the alternative 

with the higher S-flow and the lower I-flow is considered to be best choice. 



Chapter 2 

Mult icriteria decision making using 

a score function and SIR method 

In this chapter, we will solve different multicriteria decision making problems having 

information in cubic set values. In the first section of this chapter we deal with the 

multicriteria decision making problem using a score function. In the later section we 

solve the multicriteria group decision making problem with the help of well known 

SIR method. 

2.1 Mult icriteria decision making based on cubic 

set 

In the this section we have suggested the application of cubic set for decision mak- 

ing problems having multicriteria. Our proposed an accuracy function or the score 
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function does not lead to the paradox of the difficult decision to the alternatives. 

We briefly introduce some aggregation operators for cubic sets. We suggest a score 

function, and then we provide two examples to justify that the suggested function 

is more suitable in the process of decision making. We have established a algorithm 

to recognize the best alternative. We make the use of cubic set weighted geometric 

aggregation (CSWGA) and cubic set weighted arithmetic aggregation (CSWAA) o p  

erators to aggregate cubic set information related to each alternative, and then give 

ranking to the alternatives and choose the appropriate one in view of the accuracy 

measures of the aggregated cubic set information corresponding to score function. We 

show the worth of the adopted method by presenting illustrative examples. 

2.1.1 Score function 

Let B= ([b, c] , d) be a cubic set value (CSV), a score function M of cubic set value 

is suggested by the formula given below 

b + c - l + d  
M ( B )  = 

2 

where M ( B )  E [-1,+1] 

2.1.2 Definition 

Let Bj ( l  5 j L: n) E C S ( X ) ,  where CS(X) is the collection of all cubic sets in X. 

The weighted arithematic average operator is defined by F, ( B1, B2, . . . , B,) = 



n ZW~L~, = ([I - j=1 % (1 - x , - j=1 i ((1 - ] , [ j=1 I )  (2) 
j=l 

n 

where w j  is the weight of Bj(l  5 j < n),  w j  E (0, 1] and C W ~  = 1. 
j=1 

Especially assume wj = ( j = 1,2, ..., n) then, F, is known as an arithematic 

average operator for CSs. 

2.1.3 Definition 

Let B j ( l  5 j 5 n) E CS(X). The weighted geometric average operator is defined by 

G,( B1, Bz, ..., B,) = . BY. = ( [ p w  (x) , , p i  ( X I  , [I - f (1 - ,Aj (X)),j 
j=1 3=1 3=1 

n 

where wj is the weight of Bj( l  < j 5 n), w j  E [ O , l ]  and Cwj = 1. 
j=1 

Especially assume wj = ( j = 1,2 ,  ..., n) then, G ,  is known as geometric average 

operator for CSs. 

The aggregation results F, & G ,  are still CS(X). 

2.1.4 Example 

If internal cubic set values for different alternatives are B1 = ([0.3, 0.51 , 0.4) and 

B2 = (L0.5, 0.71 , 0.6) , the wanted option is selected in view of score f~nct~ion. Aftcr 
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using equation (I), we have 

Obviously the alternative B2 has prefrence over B1. 

2.1.5 Example 

If external cubic set values for two diffrent alternatives are B1 = ([0.3, 0.41 , 0.5) and 

B2 = ([0.4, 0.51 , 0.6) , the desired alternative is chosen with the help of score func- 

tion. By using equation (1) we get 

clearly the alternative B2 has advantage over B1. 



2.1.6 Multicriteria 

on the score 

cubic set decision making method based 

function 

Decision Making Problem 11 

Alternatives + +, 
values 

Flow chart of the proposed method. 

Here we are going to present a method for tackling of multicriteria cubic set, 

decision making problems along with weights. Suppose that B= {B1, B2, . . . , B, ) 

is a collection of alternatives and also suppose that C = {Cl, C2, ..., Cn) is a set of 

criteria. Consider the criterion Cj (1 5 j 5 n) , recommended by the decision maker 

n 

has weight wj , wj E [0, I] and C wj = 1. In this situation, the characterstic of the 
j=l 

alternative Bi is represented by a cubic set as 
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The cubic set value which is the pair of IVFS and fuzzy number, i.e. 

(Bi (Cj ) = [bij , ~ j ]  , (Cj ) = dij ) is denoted by aij = ([bij, cij] , dij ) 

Since [bij, cij] C_ [O,1] & dij E [0, 11. Therefore a decision matrix of the form D = 

(aij) can be formulated. The aggregating cubic set value ai for Bi (1 < i < m) is 

CLli = ([bi, c ~ ]  , di) = Fiw (ail, ai2,. . . , sin) Or Cli = ([bi, ci] , di) = Giw (ail, CXi2,. . . , sin) 

which is obtained by using equation (2) or Eq. (3), in accordance with every row of the 

decision matrix. We will use Eq. (3) to calculate the accuracy M(a;) of aggregating 

cubic set value ai (1 < i < m) to rank the alternatives Bi (1 5 i < m) and then to 

choose the suitable one(s). Simply, the of process decision making .for the suggested 

technique can be described by the following steps. 

Step( a). Obtain the CSWAA values by applying Eq. (2) if we prefer t,he 

influence of group, on th other hand get the CSWGA values with the help of Eq. (3). 

Step( b). Obtain the accuracy M(ai) of cubic set value ai (1 < i < m) by the 

application of Eq. (1). 

Step ( c )  . Rank the alternatives Bi (1 < i < m) and choose the best one(s) in 

comparison with M(ai)  (1 < i < m) . 

2.1.7 Illustrative Examples 

This section is consisting of two examples. First example adapted from 1181 to solve 

a decision making problem along with m~lticrit~eria to potray the suggested cubic 

decision making method in the spectrum of reallity, as well as the validity of the 



effectiveness of the suggested algorithm. 

Here is a set of people provided with four options for the investation of their 

money: ( 1 )  B1 is a company of car; (2 )  B2 is a company of food; ( 3 )  B3 is a company 

of computer; (4) B4 is a company of arms. The investor must have to decide by 

keeping in mind these three criteria: ( 1 )  C1  is the analysis of risk; ( 2 )  C 2  is the 

analysis of growth; ( 3 )  C3 is the analysis of enviromental impact. Now decider will 

evaluate the four possible alternatives under the above mentioned criteria, as provided 

in the following matrices. First we consider the matrix Dl consisting of internal cubic 
r 7 

V) 
V) aD 
o we use the following algorithm. 

40 
Step 1. Eq. ( 2 )  provides us the CSWAA value a; for Bi (i = 1,2,  . . . , 4 )  . 

1 set values. Dl = -- 
i- 
a 
;E 

Step 2. By applying Eq. (1 )  we can compute M(cri) where i = 1 ,2 ,3 ,4  as 

M ( a l )  = 0.4817, M ( a 2 )  = 0.3784, M ( a 3 )  = 0.4552, M ( a 4 )  = 0.1374. 

([0.1,0.3],0.2) ([0.2,0.4],0.3) ([0.3,0.6],0.4) 

([0.5,0.7] ,0.5) ([0.3,0.4] ,0.3) ([0.7,0.8] ,0.7) 

([0.3,0.5],0.4) ([0.7,0.9],0.8) ([0.6,0.8],0.7) 

- ([0.4,0.6],0.4) ([0.1,0.2],0.2) ([0.6,0.8],0.7) - 

Step 3. Awarding ranks to all alternatives in view of the accuracy degree of 

hI(ai) (i = 1 ,2 ,3 ,4 )  : B1 > B3 > B2 > B4. and thus the best alternativeis B 1 .  

C 
0 

Now assume that the weights of Cl , C2 & C3 are 0.35,0.25 and 0.40 resp. Then 
.- 



([0.4,0.5] ,0.3) ([0.4,0.6] ,0.2) ([0.1,0.3] ,0 .5)  

( [0 .6 ,0 .7 ] ,0 .2 )  ([0.5 ,0 .7] ,0 .2)  ( [0 .4 ,0 .7] ,0 .1 )  
D2 = 

( [0 .3 ,0 .6] ,0 .1 )  ( [0 .5 ,0 .6] ,0 .4 )  ( [0 .5 ,0 .6] ,0 .3 )  

( [0 .7 ,0 .8] ,0 .1 )  ([0.6 ,0 .7] ,0 .3)  ( [0 .3 ,0 .4] ,0 .2 )  
b 

Consider the same weights for C1,  C2 & C3 as mentionel 

following algorithm. 

Step 1. Applying Eq. ( 2 )  we get the CSWAA value C Y ~  for Bi (i = 1 ,2 ,  ..., 4 )  

a1 = ([0.2944,0.4590] ,0.3325) 

a2 = ([0.5026,0.7000] ,0.1516) 

QQ = ([0.4375,0.6000] ,0.2195) 

a4 = ([0.5476,0.6565] ,0.1737) 

Step 2. Using Eq. (1) wecancompute M(cri) (i = 1 ,2 ,3 ,4 . )  as M ( a l )  = 0.0430, 

Step 3. By ranking all alternatives in view of the accuracy degree of M ( c Y ; )  

(i = 1 , 2 , 3 , 4 )  : B4 > B2 > B3 > B1, and thus the alternative B4 is the best one. 

Finally we consider the matrix D3 consisting of cubic set values which are neither 

Again using the similar procedure as stated above with similar weights we have 

internal cubic set values nor external cubic set values. 

D3 = 

- - 
([0.3,0.7] ,0 .1)  ([0.3,0.7] ,0 .2)  ([0.3,0.7] ,0.4) 

([0.3,0.7] ,0.4) ([0.3,0.7] ,0 .5)  ([0.4,0.7] ,0 .1)  

([0.3,0.7] ,0.7) ( [0 .3 ,0 .7] ,  0.8) ([0.3,0.7] ,0.6) 

( [0 .2 ,0 .5] ,1 )  ([0.2 ,0 .5] ,0 .3)  ([0.2,0.5],0.6) 
- - 
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M ( a l )  = 0.1036, M ( a z )  = 0.1215, M(oi3) = 0.3403, M ( a 4 )  = 0.3017 so B3 > B4 > 

B2 > B1 and thus the alternative B3 is the most wishful one. 

Now we present another example in this section in which we want to invest'igate 

the suitability of an S-box to image encryption applications. We have been provided 

with nine different alternatives of S-boxes: (1) B1 is Plain Image; (2) B2 is Advanced 

Encryption Standard; (3) B3 is Affine Power AAine; (4) B4 is Gray; (5) B5 is S8; 

(6) B6 is Liu; (7) B7 is Prime; (8) B8 is Xyi; (9) B9 is Skipjack. We have to decide 

in accordance with the following criteria: (1 )  Cl is the entropy analysis; (2) C2 is 

the contrast analysis; (3 )  C3 is the average correlation analysis; (4) C4 is the energy 

analysis; (5) C5 is the homogeneity analysis; (6) C6 is t,he mean of absolute deviation 

( 
analysis. The nine possible alternatives are to be sorted out using the cubic set I 

information by the decider from the given criteria as presented in the form of following 
I 

I 
I 

matrix. 

Now we assume the same weight for each of Cl, Cz ,..., Cs, that is 0.167 and use 

the following algorithm. 

Step 1. We calculate the CSWAA value ai for Bi (i = 1,2, ..., 9 )  with the aid of 
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Eq. (2) .  

(ul = ([0.3035,0.4592] ,0.2922) 

( u p  = ([0.5096,0.6646] ,0.2501) 

a3 = ([0.5330,0.7200] ,0.3797) 

or4 = ([0.3575,0.5170] ,0.2334) 

a:, = ([0.3350,0.5194] ,0.3025) 

a6 = ([0.5884,0.7499] ,0.4088) 

a7 = ([0.5912,0.7845] ,0.4068) 

as = ([0.5330,0.7242] ,0.2567) 

ag = ([0.4942,0.7272] ,0.4670) 

Step 2. By applying Eq. (3 )  we can compute &?(ai) where i = 1,2,  .. ., 9 as 

M ( q )  = 0.0275, M(orz) = 0.2122, M ( c Y ~ )  = 0.3164, M ( a 4 )  = 0.0540, M ( a 5 )  = 

0.0785, M ( a 6 )  = 0.3736, M ( a 7 )  = 0.8913, h f ( a 8 )  = 0.7570, M ( a g )  = 0.3342. 

Step 3. After awarding ranks to all alternatives in view of tthe accuracy degree 

of M(or,) (i = 1,2 , ..., 9 . )  : B7 > Bs > BE > B9 > B3 > B2 > B5 > B4 > B1 and 

thus the alternative B7 is the most desired one. 

2.2 A multicriteria group decision making approach 

with cubic SIR method 

In this section we propose a mult>icriteria group decision making method based on 

cubic sets. Cubic sets basically consist of interval valued fuzzy set and a fuzzy set. 



In group decision making process several experts are involved to get a suitable result. 

The weigths of the experts are usually predetermined, however some experts assign 

same weight to each alternative. We suggest cubic set Superiority and Inferiority 

Ranking (CS-SIR) approach for application in group decision making problems. In 

view of cubic set we define operators to integrate the individual piont of views into 

group piont of views. We get Superiority (Inferiority) for each alternative by set- 

ting a threshold function. We order alternatives according to our suggestfed CS-SIR 

ranking rules and shape them into a final decision. We will illustrate this proccdwe 

with an example related to mamagement field. A detail description of cubic set SIR 

method has been provided. An Illustration of the multicriteria group decision making 

(MCGDM) problem with reference to the field of management has been included in 

this section. 

2.2.1 Algorithm for cubic set SIR approach 

In group multi-criteria decision malung problems we have multiple individuals who 

assess alternatives based on mutiple criteria. Here we present different decision factors 

for group MCDM problem and their representative symbols as. 

(1) Alternative sets by B;(1 < i < n). 

(2) Decision makers set by ek( l  _< k 5 I ) .  

(3) Criterion sets as Cj( l  5 j 5 m). 

(4) Decision maker weight,s by w k ( l  5 k < 1) wk = ( ( P i  (x), ,Bl (x), pk(x)). 

( 5 )  Criterion weights by wj (1 < j < m) wik) = (i5'y'k' ( r ) ,  /?:(*) (+), py) ( r ) ) .  



(6) Individual decision matrix as d::) = (&(*) (x), &'j'*' (x), (x)). 
- 

(7) Group-integrated decision matrix is represented as Jij = ( Q ,  (x) ,/I; (z) , pij (x)) 

and weight as w, = (By (x), ST (I), & (x)). 

Score function 

In decision making a score function measures the a,ccuracy of possible alternatives. 

It is the measure of the calibration of a set of possible options. For a cubic set 

B= ([b, c] , d) we propose a score function which is defined as 

b + c - l + d  
M(B)  = 

2 
, where M(B) E [-I, +1] 

Some of the properties of this score function are as follows: 

(i) M )  = 0 implies b + c + d = 1 

(ii) J I (B)  = 1 implies b + c + d  = 3 

(iii) M (B) = - 1 implies b + c + d = - 1 

(iv) if M(B1) < M ( B 2 )  then B1 < B2 

The cubic set SIR method comprises of the following steps. 

Stepl: Determination of the individual measure degree J k .  

The weights which are given to the decision makers are assigned in fuzzy literature 

which are defined using cubic sets. Table 1 gives an example of the term measure on 

" Importance" and "Quality" on different, levels. 



Level 

3 1 Very Important (VI) 

1 

2 

I Very Very Positive (WP) 1 ([0.80,0.90),0.2) 

"Importance" Measure 

4 1 Important (I) 

Extremely Important, (EI) 

Great Important (GI) 

I Very Positive (VP) 

"Quality" Measure Cubic Set value (CSV) 

Extrernely Positive (EP) 

Absolutely Positive (AP) 

([I ,  1],0) 

([0.90,1], 0.2) 

Positive (P) 

Less Important (LI) Medium (M) 

([0.60,0.90], 0.3) 
- 

([0.50,0.70]. 0.4) 

7 

8 

Let wk = ( p i ,  ,f?L, pk) be cubic set values confirmed based on table 1. 

The normalized Euclidean Distance is given by 

9 

where w+ = ( ,K,$+,p) = (1,1,0). 

Now similarity measure is obtained as 

Unimportant (UI) 

Not Important (NI) 

[ k ( ~ k , ~ + )  = 
DkbJk, w+) 
D k ( ~ k ,  w - )  

where 0 5 Jk 5 oo and wf = w- = (0,0,1). 

To inject this function into the interval [I. 0] we change it into the following func- 

t ion 

Table 1. "Imoprtance" and "Quality" ranked in cubic set values. 

Unconsidered (UC) 

Negative (N) 

Very Negative (VN) 

([0.40,0.60], 0.5) 
- 

([0.1,0.3], 0.9) 

Extremely Negative (EN) ([O, 0],1) 



Finally, the vector of real numbers tk = (El, t2, t3, . . . , [ l ) T  are obtained as individ- 

ual measure degrees. 

Step 2: Integration to the group 

We define following two operators for cubic sets to integrate individual opinions 

into group opinions. 

(i) Integration of individual decision matrix 

(ii) Integration of individual criterion weights 

Thus we obtain group-integrated decision matrix d ; j  = ([&, B:,], pi j )  and the 

criterion weights G, = (is,, p: 1 ,  p,). 

Step 3: Formation of cubic set Superiority/ Inferiority matrix 

(i) Confirmation of the performance function 



We define h(Bi)  as the performance function. For cubic set we calculate h(Bi)  as 

where 0 _< h(B,) 5 1. 

(ii) Confirmation of the preference intensity Qk(Bz, Bt) 

We define Qk(Bi, Bt) as the preference intensity of alternative Bi over Bt, with 

respect to the kth criterion 

where 1 5 i, t 5 n, i # t and 1 5 k 5 1.Here Qk(d) is a t.hreshold function whose 

range is [0, 11. It may be one of generalized function or defined by t'he decision makers 

themselves. 

(iii) Formation of Superiority and Inferiority matrices 

For alternative Bi, we get cubic set Superiority/ Inferiority index and matrices as: 

Superiority index (S-index) : 

Inferiority index (I-index) : 
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Step 4: To get Superiority flow and inferiority flow: For cubic set we get the 

weighted Superiority flow and Inferiority flow as 

Obviously when we have higher S-flow (P(B;) and the lower I-flow @(Bi) then 

alternative Bi is better.Thus we abtain S-flow and I-flow of alternative Bi as 

Bi( @(Bi), WBi)). 

Step 5: The cubic set SIR rules: 

(i) Confirmation of Superiority ranking and Inferiority ranking 

The superiority ranking called (S-ranking) is obtained by descending order of 

@(Bi) as B, Q, Bk iff Q>(Bi) > @(Bk) and Bi I ,  Bk iff @(Bi) = @(Bk). 

In a similar manner the Inferiority ranking called (I-ranking) is obtained by using 

the ascending order of 9 (Bi )  as 9(Bi)  a.s Bi &, Bk iff B(Bi) > B(Bk) and Bi I ,  

Bk iff 9(Bi)  = *(Elk). 

(ii) Confirm the cubic set (CS) SIR 

We combine both S-ranking and I-ranking int,o a partial ranking structure R* = 

{Q, I ,  R )  = R> n RT, of two alternatives B; and BI, by applying the intersection 



principles. 

(a) The Prefrence relation Q according to rule: 

Bi Q Bk iff (Bi Q ,  Bk and Bi Q, Bk) or (Bi Q> Bk and B; I, Bk ) or (Bi 

I> Bk and Bi Q< Bk) 

(b) The Indifference relation I according to rule: 

Bi I Bk iff ( Bi I> Bk and B; I, Bk) 

(c) The incomparabilily relation by rule: Bi R Bk iff (B; Q, Bk and Bk Q,  B; 

) or (Bk Q, Bi and B; Q, Bk ). 

Step 6: Completion of ranking map and making decision: 

After obtaining every partial ranking structure of alternatives, to make the deci- 

sion we comp1et)e the map of CS-SIR. We present the above algorithm by following 

flow chart. 



Data in crisp form 
- 

Applying Table 

I Data in cubic sets I 
No~mahzed 

Euclidean D~stance Similarity Measure 

Individual Measure 
Decree 

Integrated Ind~vidual Integration of individual 

Pe~fo~iiiance function w 

S- flow 0 
Descending order Ascending order of 

Here we consider an example to illustrate the method. 

2.2.2 Example 

In Pakistan there are five different mobile network operators namely Mobilink, Te- 

lenor, Ufone, Zong and Warid which provide their services to the customers. If a 

government telecommunication company wants to make a business partnership with 

one of these mobile network operators, it will have to decide on the basis of many 

aspects. In simple words we can call it a rnulticriteria clecision niakiiig (1ICDII) 



problem in which decision makers evaluate each alternative from the alternatives; 

(1): (B1) Mobilink; (2): (Ba)  Telenor; (3): (B3) Ufone; (4): (B4) Zong; (5): (B5) 

Warid. We consider tha,t these alternatives are to be evaluated on the basis of follow- 

ing criterias; (C1) Internet facility; (Cz) Call rates; (C3) Coverage area; (C4) Service 

performance. 

Three telecommunication experts ( e k  ; 1 5 k 5 3) evaluate the alternative networks 

with the help of cubic set information. In the following, we apply the proposed cubic 

set SIR method to deal with this uncertainty group MCDM problem. 

Step (a): The importance of the telecomrnuincation experts is described in the 

form of cubic set in Table 1. In the Table 2 we provide the weights assigned to the 

experts on the term importance in a cubic set, form. Then individual measure degree 

is calculated wit,h the help of Eq. 3 and Eq. 4 which is tk = (1.0000,0.9353,0.8750). 

Step (b): Process of group integeration: 

Individual decision matrix of experts has shown in Table 3 while Table 4 indi~at~es 

the weights awa.rded t'o every criterion, these tables have cubic set values. 

- - - - -- - - -- - -- - -- -- -- - -- -- 
- -- 

Expert Importance Measure I CSV 
-- - - -- - - - - - --- - - - 

e Exteremly Important ([1 , I], 0) 
I 

el, Very Important ([O. 9, I]), 0.1) 

Table 2. Theterm 'Tmportance" weghted for experts. 



- - -- 

Altenlatlce networks Experf I Crlterwn 
L - -  & -- 

c', C': C'3 C4 

W P  VP VP VVP 

VP VVP P VVP 

VVP VP P  VP 

C I  C2 c3 C4 

VP WP VVP M  

M  VP VPP M 

P P  V P P  
~- - 

C I  C1 Cz C4 

V P M  V P W P  

M P  P  VP 

V P M  P VP 
- .- -- 

Cl c2 CZ C4 

VVP P VP M  

VP M M P  

Table 3. Individual decision matrix on term "Quality" 

Weight of criterion 

I 

1 d 

Table 4. Weights of criterion on term '7mnpo1tance". 

By using Table 1 and Table 3 we obtain the group-integrated decision matrix with 

the help of Eq. 5 



([O. 984 1,O. 99701,O. 0057) ([O. 9768,O. 99431,O. 0030) ([O. 9429,O. 99691,O. 01 13) ([O. 9845,O. 9972],0,0059) 

([O. 9296,O. 9914],0.0148) ([0.9707,0.9970],0.0081) ([0.9774,0.9946],0.003 1) ([0.8827,0.9870],0.0592) 

([O. 9296,O. 98411,O. 0057) ([O. 8843,O. 98791,O. 0582) ([O. 9429,O. 99691,O. 0148) ([O. 9774,O. 99461,O. 003 1) 

([O. 9774,O. 99461,O. 003 1) ([O. 8859,O. 98871,O. 0571) ([O. 9296,O. 99141,O. 0148) ([O. 9048,O. 99541,O. 0452) 

([O. 8859,0.9887],0.0571) ([0.8309,0.9556],0.0938) ([O. 8827,0.9870].0.0592) ([0.9564,0.9985].0.0040) 

Using Table 1 and Table 4 we get the group-intergrated weights with the help of 

Eq. 6. 

W, = ([0.6709,0.9119], 0.4659), ([0.3631,0.6709], 0.4774), 

([0.3564,0.6709], 0.5181), ([0.4123,0.7402], 0.5306)) 

Step (c) Formation of cubic set S-matrix and I-matrix: 

(i) With the help of Eq. 7 and Eq. 8 we obtain the performance function hk (B;) : 

Alternatives Cl c2 c3 c4 

BI (0.9918) (0.9893) (0.9761) (0.9919) 

B2 (0.9687) (0.9865) (0.9890) (0.9368) 

B3 (0.9693) (0.9380) (0.9750) (0.9896) 

B4 (0.9896) (0.9391) (0.9687) (0.9517) 

B5 (0.9696) (0.8975) (0.9368) (0.9836) 

(ii) We fix the threshold criterion function as 

Step (d): Calculation of S-flow and I-flow 



To calculate S-flow we use Eq. 12 and to calculate I-flow we use Eq. 13. See the 

following table 5. 

I I I I I 

Table 5. S-flow and I-flow of alternatives 

Step (e). The CS-SIR 

Keeping in view the data in Table 5, we use Eq. 2 and the CS-SIR rules to rank 

alternative partners. We obtain the descending order of S-flow as: 

Therefore, we can obtain superiority ranking as: R; : {B1}  - {B4) -) 
(B3) -+ {B5}  -+ {B2) .  We obtain the ascending order of I-flow as: 

Therefore, we can obtain inferiority ranking as: R*, : {B1)  ---+ {B4)  --+ {B3)  -+ 

(B5) --+ (B2). 



Step (f) Completion of ranking and decision making: 

Finally we combine the S-ranking and I-ranking into ranking pattern R* = {Q, I ,  R )  = 

R; n R;, we map the complete CS-SIR from superior to inferior as: 

(B1) --+ (B4) (B3) - (B5) -) (B2). 

Therefore the alternative Al i.e. Mobilink should be choosen for partnership. 





Chapter 3 

Mult icriteria decision making using 

TOPSIS method 

In this chapter, we deal with the multicriteria decision making problems using a new 

approach, named as TOPSIS. The first section is comprising of a procedure to solve 

the multicriteria decision making problem through TOPSIS approach while using 

score function. We have observed that the aid of score function makes the use of 

TOPSIS technique very simple. The second section relates to the solution of the 

multicriteria group decision making problem without any aid of score function. 

47 
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3.1 An approach to decision making based on cu- 

bic set TOPSIS method 

This section suggests the technique of TOPSIS (technique for order preference by 

similarity to ideal solution) to deal with the multicriteria decision making problems 

in which all the available preference information provided by the decision makers is 

expressed as cubic set decision matrices in which all the elements are charaterized by 

cubic set values. we convert the cubic set decision matrix into a score matrix with the 

aid of proposed score function. The proposed score function makes the things much 

simpler for the application of TOPSIS technique. F'rom score matrix we calculate 

the separation measures of each alternative from the positive ideal solutions (PIS) 

and negative ideal solutions (NIS) . We propose formulae to calculate the separation 

measure of alternatives to find the relative closeness coefficients. In accordance with 

the values of closeness coefficients, the ranking of the alternatives can be done to get 

the most optimal one(s) during process of decision making. At the end, an illustrative 

example has been provided to show the application and effectiveness of the suggested 

decision making approach. 

3.2 Cubic set TOPSIS method based on score func- 

tion 

TOPSIS has wide application in multicriteria decision making problems. In the cur- 

rent sect'ion tto deal with rnulticriteria decision making problem, in which the whole 
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preference information given by deciders is presented as cubic set decision matrices 

(where each elernent is characterized by cubic set value) and the weight of each cri- 

terion is known, we develope a TOPSIS technique. Here we propose an accura.cy 

or score function t'o determine the separation measure of every alternative from the 

PIS and NIS. Later these separation measures will help us to calculate the closeness 

coefficients. 

Score function: 

In decision making a score function measures the accuracy.of possible alternatives. 

It is t,he measure of the calibration of a set of possible options. For a cubic set B= 

([b, c] , d )  we propose a score function which is defined as 

b + c - l + d  
A4(B) = 

2 
, where M(B) E [ - I ,  +l] 

Some of t,he properties of this score function are as follows: 

(i) M(B) = 0 implies b +  c + d  = 1  

(ii) M (B) = 1 implies b  + c  + d  = 3 

(iii) M(B) = -1 implies b + c + d =  -1 

(iv) if M(B1) < M(Bz)  then B1 < Bz 
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Algorithm: 

Let us consider that there exists a set of alternatives B = {B1, B2, Bs, ... , B,) in a 

multi-criteria decision making problem. Assessment of each alternative is based on 'n' 

criteria, which are represented as C = {Cl, C2, C3, ... , Cn), According to a criterion 

Cj , the characteristic of an alternative B; can be represented by a cubic set value as 

u . .  23 = ([bij, cij] , dij) ,where 1 < i m and 1 < j n. This cubic set value represents 

the membership and nori-membership degree of each alternative with respect to the 

provided criteria. The decision matrix based on cubic set values is defined as 

With the help of score function we convert above given cubic set decision matfrix 

Dmxn (uij) into the following score marix: 

he decision Now consider the weight of the criterion Cj (1 2 2 j -< n) given by t 
n 

makers is w,, where w, E [0,1] and C w j  = 1.The positive ideal solution for the 
j=1 

alternatives expressed as 



where 15 j 5 n. 

The negative ideal sol-dion for the alternatives is expressed as 

where 15 j 5 n. 

Separation measures of each alternative based on score function from the PIS and 

NIS is given by the following formulae: 

Now the rehtive nearness of an alternative Bi with respect tto the PIS is given by 

where Ni (Bi)  (1 < i < m) is the closeness co-efficient of the alternative Bi with 

respect to the positive ideal solution B+ and 0 5 (Bi) < 1.Hence we can rank the 

alternatives in accordance with the descending order of Ni (Bi) . The alternative with 

the greatest value of Ni (Bi) is the best one. 
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3.2.1 Example 

In this section, we present an example for multicriteria decision making problem as 

an illustration of effectiveness of the developed decision making algorithm. Suppose 

there is a man who wank to visit a foreign country to enjoy his spare time. We 

consider four possible alternatives for him which are as follows: 

( 1 )  B1 is America; (2) B2 is Australia; (3) B3 is Paris: (4 )  B4 is Dubai. He has 

to make a decision in accordance with these criteria: (1) C1 is the visa access; (2) C2 

is the security situation; and (3) C3 is the historical places. The criterion weights are 

given as C1 := 0.35, Cg = 0.25 and C3 = 0.40. The alternative B; (1 5 i 5 4) is to be 

evaluated using cubic set values t y  the decider under the above mentioned criteria as 

provided in the next mat>rix. 

By using ( 1 )  we transform cubic set decision matrix D4x3 (uij)  in the following 

score matrix: 



By using (2) we can compute d' (B+, Bi) (1 5 i 5 4) as: 

By using (3) we can compute d; (B - ,  Bi) ( 1  5 i 5 4) as: 

With the help of (4,5 and 6) we have the following closeness ceefficients: 

The descending order of four alternatives is B4, B2, B3 and B1; abviously B4 is 

better choice. 
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3.3 Group decision making procedure for supplier 

selection with cubic set TOPSIS approach 

Selection of supply chain partner is main issue of sipply chain area that contributes 

strong impact on the whole performance of the supply chain management. The selec- 

tion of supplier is not an easy job to  do because it is typically a multicriteria group 

decision making problem which falls under the most complex and uncertain environ- 

ment. The technique for order preference by similarity to ideal solution (TOPSIS) is 

a well known method to  deal with multicriteria decision making problems. In this sec- 

tion we apply the TOPSIS technique for group decision making with cubic set values 

to deal with supplier selection problems. Unlike the other researchers, the weights for 

every decision maker and the weights of each criteria are not predetermined in this 

algorithm. Considering the decision matrix of each decision maker we have calculated 

different weights. We have defined aggregating operators to convert the individual 

weights and individual criteria into the group weight and group criteria resp. We have 

proposed the the formula to calculate the normalized Hamming distance between two 

cubic set values. In the end, to clarify the suggested technique for supplier selection, 

an illustrative example has been provided. 

3.3.1 Proposed met hod 

The basic objective is to choose the niost optimal alternative among rn alternatives 

B = {B1, B2, ..., B,) under n criteria C = {C,,  C2. ..., CT2). Consider the group of t 

decision makers D = {Dl,  D2, . . . , DL) to identify the most appropriate supplier. Now 



algorithm for the cubic set valued TOPSIS method has been provided in the steps 

given below. 

Step 1. Calculate the weight of decision makers: 

To make an appropriate decision or conclusion, we have to fix the importance of 

decision of every decision maker. Thus we calculate the weight of decision makers. 

The decision maker Dt, t = 1,2, . . . , k can not easily determine precise value to thc 

alternative B, according to the criterion C,. Let, X t  = ( u )  be a decisiuil matrix 

formed by the tth decision maker, where u:, = ( [a:,, b , cb ) is a cubic set, value. 
k 

Now consider that X* = u:, = ( [a:,, b:,] , c; ) is an ideal matrix where zl:, = ~ u ~ , ,  
t=l 

and therefore we have 

Obviously, u:, = ( [a:,, bb]  , c:, ) is a cubic set value. Now, we define the sindarity 

between ideal decision matrix and decision matrix of decision makers Dt, t = 1 ,2 .  . .., 

d (Xt,  x*') s (xt, x*) = 
d (Xt, X*) + d (Xt, X*') 

Now using the similarity measure we can obtain the weight of each decision maker 

S (Xt, X*) 
A t =  Ic x (X", X*) 

i = I  

Obviously, At > 0 and EXt = 1, where 1 5 t 5 k .  
t=l  

Step 2. Formation of the aggregated cubic set valued decision rnat,rix: 



For the transformation of the individual decisions into the single decision to con- 

struct a single group decision we have to form a aggregated cubic set valued decision 

matrix. We define and denote this decision matrix as 

Step 3. Calculation of the weights of criteria: 

We denote the weights of criteria by W = (ail, w2, .. . , w,) , where w, corresponds 

to criteria C,.These weights are expressed interms of cubic set values. To get the 

weight W, we integerate the decision makers opinion to get the aggregated cubic set 

valued weights of criteria. To calculate the weights of criteria we use the following 

formula: 

We can observe that wj is a cubic set value. 

Step 4. Formation of the weighted decision matrix: 

Our next step is to construct a weighted decision matrix. Let rij be a decision 

matrix then 

T 23 = W 3 @ 3.. 23 = ( [0iii, pi,] , yij ) .  (6) 

Step 5. Determine the cubic set valued positive ideal solut,ions (PIS) and negative 

ideal solutions (NIS) : 

The application of TOPSIS technique here needs to be defined the positive ideal 

solution (PIS) and negative ideal solution (NIS). The solution which maximizes the 

benefit criteria and minimizes the cost criteria, is refered as PIS. In contrary NIS 



minimizes the benefit criteria and maximizes the cost criteria. The best alternative is 

that which is nearest to the positive ideal solution and the farthest from the negative 

ideal solution. We will denote the set of criteria of benefit by '-1 arid the set of criteria 

of cost by C. We calculate tJhe cubic set PIS as B+ = {r:, r:. . , .; r,+} . where 

Similarly, we can determine the cubic set NIS as B- = {r; ,  r; , . . ., r; ) ,where 

Now without any loss of generality we can say that for 1 < j < n, we have l:; = ( 

[~:,p:] ,?: ) and TJ = ( [ ~ J , B ; ]  ,Y; ). 

Step 6. Calculation of separation measures: 

The degree of the separation measures between the alternative Bi and the cubic 

set PIS is determined by using normalized Hamming distance as 

Similarly, the degree of the separation measure between the alternative B; and 

the cubic set NIS is determined by using normalized Hamming distance as 

1 " 

d - = { - I  "4m + I & , - P J +  - I < L < , I L  
~ = 1  

(10) 

Step 7. Calculation of closeness co-efficient: 

With respect to the cubic set value of PIS, the closeness co-efficient of the alter- 

native B, is defined as follows 
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Step 8. Ranking of alternatives: 

In accordance with the relative closeii~ss, TW r a r k  all altcrliativcs iu the desceridii~g 

order of C,'s. 

3.3.2 Application 

To demonstrate the suggested method, we consider the example presented in [13] 

where the managing board of a university has to come out with a conclusion for the 

making of a new campus. Therc are four alternatives B1, B2, B3 and Bq as possible 

companies, and also there is a group of four expertts Dl, D2, D3 and D4 which has 

to make a decision in accordance with these criteria: (1) C1: price, (2) Cz: quality, 

(3) C3: delivery time, (4) C4 is performance history, (5) C5 is economic status and 

(6) C6 is relation with industry. So, there is one cost criterion C1 and five benefit 

criteria C2, C3, . . . , C6. In the following tables we have converted different linguistic 

evaluations into cubic set values. 

Linguistic Term Cubic set values I 

Exteremely Important (EI) ( [O. 9 1,O. 951,O.l ) 
_ - - - - - - - 

VeryImportant(V1) ([0.80,0.90],0.10)1 
- - -  _ -- - .- 

Important (I) ( [O. 70,O. 751,O. 20 ) - -  - 
Medium (M) 

- - - - -- - --- 
I ( [O. 50,O. 60],0.45 ) 

-+  -- - 

Unimportant (U) ( [O. 30,O. 40],0.60 ) 
L - - _ --- _ - - _- - _,-_ - -- - -- _ - 1 ' Very Unimportant (W) I ( [O,O], 1 ) , 
- ---I-- - -_____I_I 

Table 1 ." Importance" weight as linguisticvariables. 



Linguistic Term Cubic set values (CSVs) 1 
- - 

Extremely good (EG) ( [I,IIT 0 )  i 
Very very good ( W G )  1 ( [O. 80,O. 90],0.10 ) I L  - - - i- 

L - - - -- . - - - - - - 

i 1 Very good (VG) ( [O. 70,O. 80],0.10 ) j 
I Good (G) ([0.60,0.70],0.20) , 

I 
I Mediumgood (MG) ( [0.50,0.60],0.30 ) , L - - 

Fair (F) 

I Medium bad (MB) ( [O. 30,O. 40],0.50 ) 
- 

Bad (B) L- - ( [0.20,0.30],0.60 ) , 
- L -- - - - - - 

I Very bad (VB) ( [O.OO,O. 10],0.80 ) I 

Very very bad (VVB) ( [O. 00,O. 00],1 ) 

Table2. Linguistic term for" rating" theakernatives 

( I ( ' 1  ( 3 c4 (.. ( 6 

MB MB G F VG VG 

B B V B  F G V G  

MG FB VG W G  G G 

B \ B MU \rB B MB 
- - . - - - - 

( 1  ( 1  ( 1  ('4 (, ( 6  

VG VG VVG G t MB 

G \'\& VG F G F 

VVG VG VG G G F 

G G VB \ ' G G  \ B  
- - - -  - -  

('1 ('2 ('3 c14 C S  CO 

F VVG VG G MB B 

MB VG G G B VB 

B VG VG G MB W G  

G MB VB MB VB MB 

( 'I ( ' 1  c'1 C'4 C >  C'6 

\'VG VG VG VB VVG G 

VG VVG VB B VG VG I 
VVG VG W G  MG VG G , 
VG VB G VB B VB 

Table 3. Individual Decision matrix oil tcmi " Rating". 



Weights of criteria 

I E I V I M I I  

VI VI EI VI I U 

I V I V I U I I  

M I I U U I  

Table 4. Criteria weights on term (( Rat,ingn. 

To proceed furthur we have to adopt the following setps. 

Step 1. Calculation of the weights of decision makers: 

To determine the weights of decision makers we have to get the ideal matrix by 

using formula (1) as shown in the Table 5 below. 

Table 5. Ideal matrix 

Now with the help of formulas (2) and (3), we get the weight of each decision 

maker which is shown in the Table 6. 



1 Decisionmaker I Dl 1 Dz 1 D3 1 D4 

Table 6. Decision makers's weights. 

Weight 

Table 6 indicates that the decision of third decision maker is more worthv than 

other decision rnakers. 

Step 2. Construction of the a.ggregated cubic set valued decision matrix: 

0.2690 

To aggregate the all individual decisions and to construct one group decision we 

use formula (4). The aggregated cubic set valued decision matrix is shown in Table 

0.2670 

Table 7. Aggregated cubic set valued decision matrix. 

Step 3. To determine the criteria weights: 

By applying formula (5) on tables 3 and 6 we get the import a ~ m  of t h  CI itclriw 

as listed in Table 8 below. 

0.2940 0.1700 



Criteria 

Step 4. Formation of the weighted decision matrix: 

Weights 

C6 

We can form the weighted decision matrix by using formula (6). Ta.ble 9 is the 

( [0.6238,0.6842] ,0.2682 ) 

weighted decision matrix. 

Table 8. Weights of criteria 

Table 9. Weighted decision matrix. 

Step 5 .  Determine the cubic set valued positive ideal solution (PIS) and negative 

ideal solution ( NIS): 
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By using formulas (7)  and (8)  we have determined the cubic set valued PIS and 

NIS as shown in the following Table 10. 

Criteria L PIS I NIS 1 

Table 10. Cubic set, valued PIS and NIS. 

Step 6. Construction of the separation measures: 

We have calculated the separation measures of each alternative from cubic set 

valued PIS and NIS with the help of formulae (9) and (10) respectively. Table 11 

shows how far each altermtive is from cubic set valued positive ideal solution (PIS) 

and negative ideal solution ( NIS). . 

-. - . -. - - - - - 

Alternatives Distance fiom positive ideal sohition (PIS) Distance fioni positive negative ideal sohrtion ( NIS) - --- -- +-- - 

B I n 0842 - - - -  - 
0 0776 

B2 0.0159 
I - - - -- - - -- - - 

1 B3 I 
-- - t 

0.1178 
- 

1 

B4 0 0406 
--- -- - -- - - -- - - -- -- - . - -- - - - -- - - - - -  - 

Table 11. Distance of each alternative from positive ideal solution (PIS) and 

negative ideal solution ( NIS). 

Step 7.  Calculation of closeness co-efficient: 



The closness co-efficient of every alternative can be calculated by using formula 

(11). The following T a t k  12 shows the closeness co-efficient of each altcrnative. 

Alternatives 

BI 

Step 8. In accordarice to the closeness co-efficient of all alternatives, the order of 

the ranking is shown in the above Table 12. Clearly company Bg, is selected as best 

construction company. 

B4 

Closeness co-efficient 

0.4796 

Ranking 

3 

Table 12. Closeness co-efficient of each alternative. 

0.7964 2 
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