
A Novel Valid Features Combination Approach for Product
Derivation in Software Prodrict Line

i
i

/

Ph.D Thesis

By

Muhammad Fezan Afzal
23.FBAS/PHDSE/FI6

Supenisor

Dr. Imran Khan
Professor, Department of Computer Science. IIUI.

Co-Supenisor

Dr. Asad Abbas
Assistant Professor, University of Central Punjab.

Departnent of Software Engineering, Faculty of Computing

International Islamic University, Islamabad

January 2024

?hD u'

eas l5

ATN

%

t ' ' '-r;la'i'"6+'
g, {,lN n'? c''b'

n;,',,' f.' f*
,r,#aann'

D'2"4t'(

vo'd,t[{ tolr'fi}

A dissenation submined to the
Faculty of Computing and Information Technology,

Inte rnational I slamic University, Islamabad
$ a partialfiilfillment of the requirements

for the award of the degree of
Doctor of Philosophy in Sofiware Engineertng.

lll uhum m ud Fe-rtn Af-al' 2 3 - F MYP H DS FJ F I 6 Rtge i of 86

INTERNATIONAL ISLAIVIIC I'NIVERTIITY ISLAMABAI)
FACIILTY OF COMPUTING & INX'ORIT{ATION TECHNOLOGY

DEPARTMENT OX' SOFTWARE ENGINEERING

Dafpz 19'01'2024

tr'inal Annroval

It is certified that we have read this thesis, entifled ": A Novel Valid Features Combination Approach

for product Derivation in Software Product Line "submitted by Muhammad Fezan AftaI
Registration No. 23-XtsAS/PHDSE/I'16. It is our judgment that this thesis is of sufficient

*tanAara to warrant its acceptance by the Intenrational Islamic University Islamabad for the

award of the degree of PhD in Softruare Engineering.

Committee

Extemal Examiner:
Ih. Arif Ur Rehman,
Professor
Batuia University, Islamabad

Extemal Examiner:
Dr. Basit Raza.-

Associate Professor
COMSATS University, Islamabad

Intenral Examiner:
Dr. Syed Muhammad Saqlain,
Assistant Professor,
Departrnent of Computer Science,

FoC, IIUI

Supervisor:
fh. Imran Khan,
Assistant Professor,
Departnent of Computer Science,

FoC,IIUI

Co-Supervisor:
Ih. Asad Abbas,
Assistant Professor
University of Central Punjab, Lahore

Ctr .-kt

Declaration

I hereby declare that this thesis, neither as a whole nor any part thereof has been copied out from

any source. It is further declared that no portion of the work prcsenterl in this rcport has been

submitted in support of any application for any other degree or qualification of this.or any other

university or institute of learning.

Ll uhammad Fe=on Aft ul : 2 3 - F BAYP H DSAF b htse fi ol tl6

Dedication

This thesis is dedicated to my family, especially to my father Rana Muhammad Afzal Khan.

mother Sidra Beghum, wife Saira Fezan. sisters Aroosa Afzal, Arooj Afzal, Amreena Afzal and

brothers Mohsin Jabran, Ahsan Arslan.

llltthunmad Fc:an .{f3l : 23 - FBAYPHDSAF rc Page n ol ti6

Acknowledgments

This thesis and all my efforts are fruitful only due to ALLAH Almighty, the Most Merciful and

Beneficent, Who gave me strength to complete this task to the best of my abilities and knowledge.

I would like to thank my supervisor Prof, Dn Imran Khan and Co-Supervisor Pruf. Dn Asad

Abbas, who gave all their knowledge, guidance and support to boost my confidence and learning.

I would also like to thank my wife who hars supported me patiently and firmly during completion

of my task.

I would also like to acknowledge my brothers, friends, students and colleagues especially Pruf.

Dn Sluhbaz Ahmed Khm Ghayyor Pruf. Dr Imran Khan, Pruf. Dr Asad Abbas, Pmf. Dr. Salma

Imtiaz chairperson Department of Sotnvare Engineertng, Prof. Dt Mudasar Ghafoon Pruf. Dn

Hafiz Abtd Masood" Pmf, Imran Saeed, Dr Mulnmmad Shabir Kallu, Pmf Dr Nasir Ali, Prof.

Dr. Irfuthammad Aarut (NUST), Dr Rana lavaid Rashid Mr. Rana MuhammadAshfaq, futn Hafiz

Saleh, Mn Muhammad Arslnd, Mn Nuntsr Arshad, Mn Dawood Shabeen Mn llsman Haider

.i.r//tr and lligher Education Commission (HEC), Pakistan. All of them encouraged and provided

logistic and technical help during this rcsearch.

I would like to admit that I owe all my achievements to my truly, sincere and most loving parents

and friend.s who mean the most to me, and whose prayers have always been a source of determina-

Lruu lor nle.

lllttlrunnnud Fc:on,lftal : 2J - FBAilPHDSAF rc Ptge v of tl6

Abstract

Software Product Line (SPL) is a group of software-intensive systems that share corlmon and vari-

able resources for developing a particular system. SPL epitomizes the notion of a planned reuse. It

encourages the development of a series of softwarc applications by rcusing basic functiondity to

the maximum extent. All the products part of SPL are technically called "featulEs". Features can

be represented through a compact graphical format called a feature diagram. This visual represen-

tation is further termed a feature modet. The feature model is a tree-type structure used to manage

SPr--s common and variable tbatures with their different relations and problems of Crosstree Con-

straints (CTC).Common features exist in every SPL product, while variable features are part of the

product according to application requirements. constraints. and relationships. Therefore. invalid

feahrre combinations can be generat€d due to constraints. and relationships between varied features

resultantly make this process complex and consume extra effort while developing applications in

SPL. This happens due to ttre need for better algorithms working when implementing cross-tree

constraints.

CTC problems exist in groups of common and variable features among the sub-hee of feature

models more diverse in Internet of Things (IoT) devices because different Internet devices and

,,,l,tocols arp communicated. Numerous methods are available to cope with the complexity and

extra effort when selecting features for specific product derivation. The selected subset of prod-

ucts has both valid and invalid configurations. That is why complexity and effort are increased

during the development of SPL. Therefore, managing the CTC problem to achieve valid product

configuration in loT-based SPL is more complex. time-consuming, and hard. In literature, multi-

ple algorithms are proposed for selecting features from the featurc model for product derivation.

Howerrer, proposed algorithms only consider the cardinality consraints of feature models such as

OR group and alternative. However, the CTC problems ar€ not considered in previously proposed

approaches such as Commonality Variability Modeling of Features (COVAMOF) and Genarch+

tool; therefore, invalid products arc generated due to the violation of feature selection constraints.

This research has proposed a novel approach, Binary Oriented Feature Selection Crosstnee Con-

srrainrs (BOFS-CTC), to find all possible valid products by selecting the features according to

cardinality constraints and cross-tree constraint problems in the feature model of SPL. BOFS{TC

removes the invalid products at the early stage of feature selection for the product configuration.

Furthermore, this research developed and applied the BOFS-CTC algorithm to loT-based feature

models. The findings of this research are that no relationship constraints and CTC violations occur

and drive the vatid feature product configurations for the application development by removing

ltlulwmmud Fe--an Aftnl : 23 - F BAYP HDS FJF I 6 Puge vi ofE6

the invalid product configurations. In its first step, irn intensive literaturc review is conducted to

understand the working and weak areas of existing feature models. Secondly, based on literature

findings, understand the limitations of existing algorithms used to calculate the valid total number

of ptoducts of the SPL feature model with primary cardinality constraints. In the last phase, the

proposed algorithm will be developed to calculate the valid total number of products by consider-

ing the cross-tree constraints of the feature model.

Furthermore, we will validate our results using the "simple random sampling" technique, where

random products (combination of features) will be chosen from different small and large feature

models. Validation will be based on comparing manually generated combinations and system-

generated rcsults. For the development of SPL. organizations require advanced investment in do-

main engineering. The accuracy of BOFS-CTC is measurcd by the integration sampling technique.

where differcnt valid product configurations are compared with the product configurations derived

by BOFS-CTC and found to be reasonable correctness. Using BOFS-CTC reduces the testing cost

of SPL as invalid products arc removed from the total number of products. Eliminates the testing

cost and development effort of invalid SPL products.

frluhmunad Fe:on,lfitl : 23 - FBAYPH DSAF rc Rtge w ol'86

Contents

Intrcduction

l.l Objectives and Scope

Litereture Review

2.1 Valid Products of SPL

2.2 Testing Efforts of SPI- Products

2.3 Research Gap . 18

2.4 Problem Statement 19

.1.-5 Research Questions 19

Binary Oriented Featurc Selection Crusstrce Corstraints (BOFS-CTC) 20

3.1 Material and Methods . 20

3.2 CornplexityofCrosstreeConstraints 2l
3.3 Factors of Invalid Features 22

3.4 Tlpes of Crossuree Constraints 24

3.5 Binary Oriented Feature Selections (BOFS) 24

3.5.1 BOFS-CTC Framework 25

3.6 BOFS-CTC Product Derivation 26

3.6.1 BOFSCTC Algorithm 28

3.6.2 BOFS-CTC Comparison 3l

Binary Orientcd Featune Selection-Cnosshee Constraints Validation 33

4.1 Feature Model Optional Selection 34

4.2 Alternate Feature Model Optional Selection 4l
4.3 lncrease Alternate Feature Model Optional Selection 45

I
5

7

7

8

vul

5 Resulb and Analysis

5.1 Impact of Managing Crosstree Constraints

5.2 Applications of CTC

5.3 BOFS-CTC Feature Models

6 Conclusions and Futurr Directions

6.1 Potential Impact of Research

s2

53

55

58

77

78

,l I tt lun mad Fe --o n Aft al : 2 3 - F MyP H DS AF rc Poge Lt ol 86

List of Figures

l.l Mobile Phone Feature Model [19] 3

1.2 Cost estimation of SPL and single product I

3.1 BOFS-CTC framernrork 26

4.1 CTC of One optional to two optional features 34

4.2 Crosstree constraints with one optional to two optional 34

4.3 Valid and Invalid Products indicates table 4.1 35

4.4 Four Optional Features with One-to-Ttwo CTC 36

l.-.i \'alrd and Invalid Product configurations indicates table 4.2 37

4.6 Five Optional Featurcs with One-to-Two CTC 37

4.7 Valid, Invalid Configurations from able 4.3 39

4.8 Six Optional Features with One+o-TWo CTC, Valid,Invalid Configurations 39

4.9 six optional Features valid and Invalid configurations from table 4.4 4l
4.10 TWo Altemate Features with One+o-Two CTC Fearure Model 42
4.1I ValidandlnvalidContigurationsfromable4.S +1

'1.12 Ttrro Alternate Features with One-to-TWo CTC, Four optional Feature Model M
4.13 Valid and Invalid Configurations from table 4.6 45

4.14 Three Alternate Features with One+o-Thrce CTC Optional . . . 45

4.15 Valid and Invalid Configurations from table 4.7 47

4.16 Featuremodelof nalternateandnoptionalfeatures 48

4.17 Valid and Invalid product configurations from fig 4.18 49

4.18 Four optional features with one-to-three optional CTC 49

4.19 Four Alternare and Four optional features with one-tethree optional CTC 49

4.20 Valid and Invalid product configurations from fig4.19 50

4.21 Four Alternate and Four optional tbatures with one-to-three optional CTC 50

List of Figurcs

4.22 Yalid and Invalid product configurations from fi94.21 50

4.23 Three Alternate and six optional features with one-to-three optional CTC 5l
4.4 Yalidandlnvalidprodrctconfigurations from fig4.23 5l

5.1 MobilePhoneFeaturcModel57
5.2 Algorithm for require and exclude 57

5.3 Eight feature models with CTC and without CTC 60

5.4 CTC based Featurc Models with 20. 31,32 63

5.5 Complex and large feature models with and without CTC il
5.6 Four featrrre models dataset 65

5.7 Feature model of fifty tbature with CTC and basic relationships . 67

5.8 Small feature model with large CTC . 68

5.9 Large feature model with less CTC (l) 69

5.10 Large feature model with less CTC (2) 70

5.1I Large feature model with less CTC (3) 7l
5.12 Large feature model with less CTC (4) 72

5.13 Large feature model with less CTC (5) 73
'- t r I

"r.se feature model with mediam size of CTC 74

).1-r rvredramsizefearurcmodelwithlargeCTC 75

Lluhammud Fe-an Afrol : 23-FMVPHDSFIF I 6 Prtqe x of E6

List of lhbles

", I

,7

2.3

2.4

,s
2.6

3.1 Existing approaches comparison for managing variability with crc zl
? 'i Mobile phone SPL product configurations without consirlering crosstrce constraints 23

3.3 Mobile phone feature model valid product configurations 30

3.4 BOFS-CTC Comparison with other proposed approaches based on featurc model

level31
3.5 BOFS-CTC Applied on small and large feature models 32

4.1 Valid and invalid product configuations of Figure 4.2 . . 35

4.2 Valid and Invalid Product configurations from Figure 4.4. . . 36

4.3 Valid and Inyalid Product configurations from Figure 4.6. . . 38

4.4 Invalid Product with six optional features one-to-one crc from fig 4.8 40
4.5 Combination of two alternate and thre optional from fig. 4.10 . 42

4.6 Two Altemate Featurcs with one-to-Two CTC, Four optional from fig4.12 43

4.7 Three Alternate Features with One-to-Two CTC, Four optional from fig 4.14 46

5.1 Valid Product Configurations by using BOFS-CTC Algorithm 59

5.2 BOFS-CTC algorithm results of 20.31 and 32 features of feature model 66

5.3 BOFS-CTC Valid conligurarion of 50 to 60 fearures 76

Comparison of existing apprcaches

Analysis of litrature with respect invalid feature combination

Valid and invalid feature combinations due to crosstree consraints

Problems identified due to invalid feature combinantions

Method/Approach followed in the wake of invalid feature combinations

Mapping SPL issues with SDLC phases

ll
L2

l3
L4

l6
L7

xu

Chapter L

Introduction

Software applications have become central to today's age and daily life. Irrespective of age. sex,

p,rofession, or geographical boundaries, all of us depend upon sofnrare applications. This de'

pendency may be direct or indirect in any sense. Many professionals, from doctors to engineers,

parcnts to students, buyers to suppliers, and manufacturers to service providers, depend entirely on

sr'ft$,ilre Il. 21. However, it is disappointing that even though heavy amounts are spent on software

tppiications to make them accurate, efficient, secure, and reliable, vulnerabilities and defects re-

main. This is not a one-time investment; instead, it is a continuous investrnent that will be exceeded

yearly to fix the flaws and ovetrcome software vulnerabilities [3, 4].

According to the National Institute of Standards and Technology (MST)Zffi2rtsearch, the annual

software error cost is approximately $59.5 billion. This figure is estimated just for the United

States. This situation woruens daily as software gets more complex, has numerous featurcs, and

goes online. On the other hand, IT companies are reducing their budgets each year to overcome

their research, development, and maintenance costs [5, 61.

Due to the increased expenses, organizations are trying to overcome their issues rclated to the need

for more resources. IT companies are trying to improve productivity, enhance qudity, decrease

cost, decrease labor needs, decrease the time required to market the product and reduce the time

necessary to cat€r to the market. Domain engineering or product line development is critical in

systematic software reuse. It is the whole process of reusing domain knowledge to produce new

software systems [7,8].

Software Product Line (SPL) is a paradigm for developing and managing internal software sys-

Chapter l. Introduction

tems from a common sct of rcsources using a specific production process. It is a technique used

to create software products with similar characteristics that share the exact natue of code, experi-

ence, and developer documentation [9]. Specifically, SPL is a group of software-intensive systems

with common manageable characteristics. These functions are combined to meet specific market

requirements. SPL improves the reuse of existing resources, i.e., common and variable featurcs,

and reduces development time, cost, effort, and time to market [9. l0l.

SPL is a goup of related products; features are the characteristics of a program, and the feature

model manages these features. The feature model is used to manage SPL s common and variable

features I l]. Theretbre, the feature model has become one of the most used in the SPL community

to develop the software family. A feature is an option to include specilic functions rn the system

configuration. Features can be presented in a compact graphical format called a featurc diagram.

This visual tree-type strucrure is also called a featurc model [21. The feature model manages

generic and variable SPL functions with various relationships and constraints. During application

development, products are developed by selecting features from the SPL domain [3, l-ll. Fig. 1.1

shows the feature model of mobile phones.

SPL consists of two processes: l) Domain and 2) Application engineering. Domain engineering

consists of all possible common and variable features of specific SPL. Furthermore, the feature

model is a ree-type structure that shows the domain of SPL with all common and variable features

[[5, 16l. Common features are part of every SPL product; however, variable features are selected

according to user requirements and pre-defined relationships between features. Therefore. the

selection of variable features differentiates the products of SPL [7].

The feature model is composed of pre-defined relationshrps between features. as shown below

[8. l8J:

' Required. These are the standard features that must be part of every SPL product. In Fig.

l.[, a call is the common tbaturc always selected in every product.

. Optional. These features may or may not be part of the SPL product. The selection of these

features is according to end-user requirements. In Fig. l.l. "GPS" is an optional feature.

. Alternative. The group features from where one and only one feature can be selected for the

productdevelopment of SPL. If there are morc than two features in an alternative group, then

only one feature can be selected for the product derivation of SPL. In Fig t . l. there are three

features, "basic, color, and high resolution." on the screen; we can select only one feature at

a time in the development of the product.

llluhammad Fczan Af.al : 23- FMYPH DSUF I 6 Page 2 of$

Chapter l. Introduchon

I uerrcoo"y

I opffi
,6\ A,.nratne

..*\. ot

--.+ Requret

+-..D ErCt*hC

Figure l.l: Mobile Phone Feature Model [9]

' Or group. A collection of child features is associated with its parent, antl more than one

featurc can be selected for SPL product development. In Fig l.l. the camera MP3 has the Or
group relationship, where one or both can be set in the Product devekrpment of SPL.

The predefined relationships of feature models, such as optional, alternative, and Or grcup, are

defined by every feature model. However, another relationship or constraint, known as the crosstree

constraint, is also part of the feature model. Crosstree constraints are the relationships between

sub-trees of the featurc model. There are two types of crosstrce constraints: l) include features

and 2) exclude features [[9], as shown in Fig l.l. *GPS"
has the exclude crosstree constraint with

the "Basic scrEen." and "camera" includes the "high-rcsolution sclEen."

Organizations put in the time. money, and effort necessary for the product configuration based on

the feature model before constructing the features. The initial costs of SPL and single product de-

velopment are depicted in Fig. 1.2, indicating that SPL organizations invest in initial development

costs without benefiting from the market 120,211. The break-even point of SPL shown in Fig. 1.2

depends on the size of SPL, i.e., the total number of pruluct configurations. The total ralid number

of products is a significant parameter for the advanced cost estimarion of SPL [23, 2-tl. However.

calculating the total number of valid products is challenging due to the feature model's predefinal

relatronships and crosstree constraints. Therefore, multiple methods and approaches exist. such

as determining how many products arc included in the feature model. Binary Pattern tbr Nested

fil uhmnmad Ferun,lftal : 23- FBAYPHDSAF I 6 Page 3 of86

Chapter l. Introduction

Hlghrufront__-
lnwfiroil -

Figure 1.2: Cost estimation of SPL and single product

Cardinality Constraints (BPNCC) canlinality Constraints (dealing of Features (approach is applied

to the Internet of Things (IoD and Software Product Line of Things (SPLOT) are discussed in the

literature. However, these approaches only consider the primary and nested cardinality constraints

such as
*OR," "AND.'"Alternate," and "OR group" relationships to calculate the total number of

products. However, therc are still possibilities of invalid product derivation due to the crosstree

constraints in the sub+ree of the feature model. This problem leads to wrong cost estimation of
SPL due to invalid products 125,261.

There are multiple rcsearch problems in SPL such as aspect oriented domain for the multithread-

ing of software and crosscutting concerns. However, these problems are undertaken at the time

of development of SPL applications and need to solve at the time of product development. It is
more important to solve the problem of crosstree constraints at dornain level of SPL. Therefore,

this research solve the crosstree problems in feature model of sottware product line. Cross-tree

constraints provide feature models with maximum expressive power as they enable the capture

of any interdependency between features through arbitrary propositional logic formulas. How-

ever. the prcsence of ftese constraints adds complexity to the process of reasoning about featurc

models. whether using SAf, solvers or compiling the model into a binary decision diagram for
efficient analyses. While certain efforts have attempted to streamline constraints by eliminating

them, these approaches typically focus on simple constraints like "requires" and "excludes," or
they necessitah the introduction of an extra set of features, thereby raising the overall complexity
of the rcsulting feature model [27]. Conventional methods for analyzing feature models rely on ad-

dressing algorithmic challenges like boolean satisfiability. satisfiability modulo theories, or integer

linear programming. While the.se existing approaches effectively handle small and medium-srzerl

problem instances, challenges arise when dealing with the scalability of large-sized feature models.

Llulwnunad Fe:att Afotl. 23 - FMilPHDSAF I 6 Page I of 86

Chapter l. Introduction

Quantum computem offer the potential for super-polynomial speedups in solving specific algorith-

mic problems, presenting an opportunity to overcome the scaling issues observed in the analysis

of larger feature models [28].

The first problem is crosstree constraints in the loT-based featurc model, which cause invalid fea-

ture combinations to become part of SPL, leading to extra effort and cost in developing SPL.

As shown in Fig.l.l, the crosstree constraints "Global Positioning System (GPS)" and "Basic" ex-

clude each other; therefore. any product thatcontains GPS and Basic will be invalid. Moreover. the

crosstree constraint "Canrera" includes the "High Resolution"; if the camera is selected, the high

resolution must be part of the product. Fig. l.l shows "mobile phone" SPL where ten products

are invalid due to the crosstree constraints problem. It is essential to rcmove the invalid products

from the total number of ploducts before developing SPL. However, existing approaches find the

total number of products but do not consider the crosstree constraints that lead to both valid and in-

valid products. Due to invalid products. the development cost and effort incrcase. "Hence, invalid

feature combinations are generated due to constraints problem, and rclationships between varied

feanres rcsultantly make this process complex and consume extra effort during integration testing

of SPL."

This research proposed a novel binary-oriented feature selection crc,sstree constraint (BOFS-CTC)

approach that calculates the valid feature product combinations by considering IoT devices' pri-

mary and nested cardinality and crosstrce constraints. BOFS-CTC applies for small and large

feature models with low to high complexity constraints. The conribution of this paper is to miti-
gate the invalid feature combinations for product derivation at an early stage of SPL development.

Furthermore, BOFS-CTC has applied different complexity feature models to obtain the total valid

digits of products and found high accuracy. However, the previous approaches need to consider the

crosstrEe constraints problem to get valid products. In this thesis, differcnt methods arc compared

with the proposed BOFS-CTC algorithm, and it is found that BOFS-CTC is a more appropriate

and applicable approach for an accurate features' combination of the feature model. As a result,

using BOFS-CTC minimizes the total cost and effort of SPL pnrduct development. Furthermore.

BOFS-CTC is the indepenrlent approach of any specific tool as we have proposed its algorithm.

L.L Objectives and Scope

The aims of our research are:

. To highlight the strength and weaknesses of existing nrodels prcsenting their work towards

Ill uhcnnmod Fe:an Af:al : 23- FBAYPH DSAF I 6 Pagc 5.tlt6

Chapter L lntroduction

Invalid Feature Combinations, we analyrc the methodology and approach researchers used

in their work.

. To find the invalid product combinations of SPL.

' To derive the valid product configurations of SPL with the selection of features

' To identify the valid feature combinations for each product derivation.

' To find the cost for each SPL using valid feature combinations and a total number of valid
products.

We will apply the "sintple random sampling" technique to validate our proposed solution. The
simple random sampling technique is based on randomly selecting products from the population.
ln a simple random sampling technique, each product has an equal chance of occurrence from the
population. Therefore, our validation of results will be based on the random selection of manu-
ally generated products from small and large feature models and will be comparcd with system-
generatal results. We have also driven all invalid products and reached out to them with the list of
all products (combination of featurcs); the absence of invalid products validated the correctness of
our proposed solution.

This thesis is structured as Chapter 2 is Literature Review, Chapter 3 is Binary Oriented Feature
Selection Crosstree Constraints (BOFS-CTC), Chapter 4 is Binary Oriented Feature Selection-
Crosstree Constraint Validation, Chapter 5 is Result and Analysis and Chapter 6 is Conclusions
and Future Directions.

,ll uhonnnd Fe:ott Aftal : 23 - FBAyp H DSUF t 6 Page 6 of lt6

Chapter 2

Literature Review

2.1 Valid Products of SPL

The development of a software product line consists of two life cycles: domain engineering and ap-

plication engineering. In domain engineering, all possible common and variable featurcs under the

SPL domain exist. In application engineering, the common and variable features are selected firom

the domain engineering to dwelop the p,roduct according to the end-user requircments [27. 28]. To
design multiple combinations, we can use the Binary Pattern for Nested Cardinality Constraints
(BPNCC) Method, which calculates the exact number of combinations of products. BPNCC finds
all possible products automatically by using a top+o-bottom approach. However, invalid products

are generated in the total number of products due to the crosstree constraint between features. Au-
thors have ignored the exclude and include constraints between features t2l. It is only possible

to test some of the products individually as a lot of effort, cost, antl time are required because a

large SPL has thousands of products. Through a literature review. it is concluded that this problem

can be solved through combinatorial testing. This type of testing selects a subset of protlucts that
covers all possible interactions of features [25].

Different approaches are used for the develupment of products. When we drive other products by
combining multiple prrrduct line features, many things need to be corrected. Thereforc, integration
testing of components is essential for detecting faults and failures in products. Integration testing
tests the interfaces of different SPL features and detects faults due to incompatibility among mul-
tiple parts of an SPL [29]. Due to the increasing number of products, testing them individually
and detecting defects takes a lot of work. Thus, only a subset of protlucts that covers all possible

Chapter 2. LiteraEre Review

interactions of featurcs is selected for testing. In many types of research, different methods are

used for feature integration testing of SPL products and to reduce the number of prcducts. All
of ttrem aim to reduce the effort and cost of integration testing and increase the fault detection

ratio. To minimize testing efforts, a subset of products are selected using different approaches such

as independent pathway tests, combination tests, priority-based tests, mutation-based tests. and

model-based tests [30, 3ll.

In all these approaches, feature models or product lines are used to select a subset of products.

Many researchers use these approaches differently, with some benefits and limitations. An inte-

gration testing method has been presented to improve testing by dealing separately with optional

features and alternative features of an SPL. This paper recognizes that by growing the number of
ircms. alternative features have a negative effect. They offer a new approach, ttre simple form. to
black-hox testing. This approach converts the model of the function into a graph of feature inclu-
sion and then associates cases of use with each featurc 132,331. Then, select the base paths on

this graph using an algorithm that tests feasibility using the Depth First order to find the longest

path. Finally, if ttrey arc linearly independent, add these path algorithms. In this algorithm, group

all possible rcutes by alternative characteristics and use the base route algorithm for each group.

However, this method has some limitations, such as the cost of calculation being higher than the

eost of all characteristics and efforts to create a characteristic model dependency structure. These

efforts are reduced by providing a new algorithm called the "Full Feature Algorithm." In this
method, therc is no need to design any graphs, such as the Feature lntegration Graph (FIG). This
algorithm aims to select a subset of products covering all functions. We must greedily add func-
tions to the variable until we have a product that includes the most unused functions. Then, update

the set of user functions, and once all functions are enabled, you're done [34].

2.2 Testing Efforts of SPL Products

Reducing testing effort by pruning irrelevant features based upon multiple test cases. Outside

leatures are those whose absence or prcsence has no change in the system's behavior. Thus, they

only test the combinations of relevant features and reduce the testing effort. But at the same

time. it has some limitations, such as we already need to know about all test cases and different
usage scenarios. Furthermore, in other studies, multiple approaches focus on increasing the fault
detection rate using higher strength suites [35].

Researchers also use the prioritization method to detect taults and decrease the testing effort effi-

.llulrununod Fe:an Aful : 23-FBTIYPH DSAF rc Page E ol ltb

ciently. A research work describes a process of effective product-line testing using similarity'based

prioritization. In this method, incrementally select the products that are diverse in features to in-

crcase the feature interaction coverage. Prioritize the products on a similar basis and then test all

of them. The results show that it potentially increases the fault detection ratio but needs to de-

crcase the testing effort efficiently. Moreover, intnoduces a PINE method, which is applied before

generating integration test case scenarios. PINE consists of four significant steps: in the first step,

feature model analysis is done by partitioning the FM into some independent sub-trees. Then.

prioritize each feature with the score given by the domain engineer based on customer needs. time

to market, relationship between elements, etc. At the same time, the score is dso obtained through

"event probability," these two factors are multiplied through an algorithm to get the scorc for each

feaftrc. In the third step, prune the featurc model but cut less important branches by prioritizing

the feahrres on three preference levels: high, medium, and low. These ranges are defined through

Boehm's method. In the last srep, another algorithm is presented for selecting configurations in

which every feature is covered at least once in a design. To choose selected configuration features,

they are anatyzed based on their relationship and find configurations that cover the maximum no

of features. Thus, these nno algorithms reduce the number of products for testing, and the effort of

integration testing decreases [36].

ln some rpsearch, testing is done through the mutation process, like they perform testing on feattrre

model mutation by using the fault-based approach. They define some mutation operators that help

find faults and check whether all products are valid. Therefore, it detects glitchcs related to several

characteristics and relationships. The main measures of these operators ale

. The wrong cardinality of a single feature.

. Faulty elements of a grouped relation.

. Existence of a set relation.

. WronB cardinality of a fixed rclation.

. Wrong constraint.

Moreover, this method increases the probability of tinding faults. so confidence is developed that

the products in the feature model match their requirements. However. the problem of growing com-

plexity is due to the large number of invalid feature combinations and crosstree constraints. It also

ignores some fearure model constraints [37]. In addition, some studies are also improving mutation

testing based on function-oriented programming, while the problem of increasing complexity still

ilIulwmmod Fetrn Afal : 23- FBASIPHDSAF I 6 Rtge 9 of 86

Chapter 2. Literature Review

needs to be solved. In their work, they receive appropriate mutation operators that validate their

approach across tbur software product lines and further discuss the challenges of mutation testing.

The result shows that it improves the defect detection method. Still, its limiurtions are that it is
relatively expensive due to the large number of products or options and does not reduce the testing

effort [381.

As we step forward, tbr generating Integration testing scenarios (tTS), we studied dittercnt meth-

ods in the literature, such as creating test scenarios through activity diagrams, which are the most

promising approaches. In our research work, we are focusing on valid feature combinations for
developing SPL. Errors are caused due to invalid t'eature combinations concerning cross-tree con-

straints.

In the Sofnuare Product Line, core assets are reused to develop a family of products, which helps

reduce development costs. time. and effort. Still, much effort, time, and cost are required to test

this t'amily of products as it exposes errorc or compatibility issues caused by integrating diftbr-
ent components or features. Hence. trying all the products individually is challenging [2]. The

literature solves this problem through combinatorial testing in which, instead of all of these prod-

ucts, a subset of pnrducts tbr testing that covers all possible interactions of features is individually
relected [39]. Different methods are defined for choosing this type of product subset, which are

helpful but still have some limitations, as mentioned in Table 2.l. In research work, use a model-

based testing method to test all possible interactions of components. They crcate placeholders

and integration scenarios that cover all interactions for integration testing. Hence. it is helpful to
uncover inter-component failures through these placeholder integration scenarios [.10].

Before proceeding further, it is imperative to present evidence from the literature that the problem

statcment stated in this research exiss. The following sections give a detailed overview of invalid
f'eature combinations in the literature.

ln continuation to the probe to present literature on invalid feature combinations. table 2.2 provides

a detailed overview of the ten research publications t'rom renowned 3ournals to give the reader an

idea about the existence of invalid feature combinations.

Table 2.3 shows the combination of the features in binary form by applying the BPNCC approach

[25]. After shalding light on invalid feature combinations, table 2.4 gives an idea about the prcb-
lems highlighted due to the invalid featurc combinations. These findings are gleaned after an

intensite literature review of the same research papers ACM, IEEE, and Springer presentetl.

In previous sections, table 2.I and Table 2.2 have already given enough information on the exis-

Iltthanunod Fe-ttn Al:ol : 23 -FBAS/PH DSAF I 6 Pugc l0 ol tt6

Chapter 2. Literaturc Review

Table 2.1: Comparison of existing approaches

References Approaches
FM
Tree

Rolationship

CroesTlee
Constraints

Tbtal.No.
ofproducts

Mapprng
ofFM

J. Miguel Horcas,
et. al. Softwarc
hoduct Line

Conference.2020.
Canada [4ll

Web interface to
construct

syntactically
and semantically
Feature model

Yes No No Yes

H. Shatnawi et. al.
ACM Software

Engineering 2020.

usA [42]

Extensible
model driven
engineering

approach

Yes No Yes Yes

Abbas, A et. al.
IEEE Access,

2018 [2s]

Multi-Objective
Optimization-
Binary Pattern

for Nested
Cardinality
Constraints

Yes No No No

Abbas, A. et. al.
IEEE Access,

20t71261

Binary Pattern
for Nested

Cardinality
Constraints

Yes No Yes Yes

,lI uhuttntod Feiltt .{f:al : 2 3 - F BAYPH DS AF rc Puge ll olE6

Chapter 2. Literaturc Review

Table2.2: Analysis of litrature with respect invalid feature combination

Source Document Finding from the Urcrature

Framework for Refactoring
Software Product Line
Architecture [5]

. Inconsistencies arise

. Create invalid combinations of features.

. Misconligured product t'eatures and the
evolution of SPL.

Environment Modeling-B ased
Requirements Engineering for
Sofnvare lntensive Systems [6]

. Generates a set of functions according to
variability constraints.
. FM irccepts as output to minimize the invalid
joins to a multi-step configuration.

PACOGEN u7I
Combinations of functions arc common pnrbletns
Generate paired tests
Determine the number of N rows

a

a

a

Feature-Oriented Software
Product Lines [l8]

. Mismatched mutability given by a speEffic application

. Code integration of teamwork.

. Optional feature expr€sses erfi)rs.

Pairwise Testing of SPL [43]

. Differcnt qualities and similarities are combined

. Combining functions make test configurations.

. tligh variability combination results in unmanaged test

Test Generation Using
Minimum Invalid Ttrples [,14]

. Certain settings may be prohibited.

. Settings are null and are not protected.

. U-tuple is tnre if it can be used in a valid f-test.

Codc Generation to Support
Static and Dynamic
Composition [45]

. Validation process configuration provided against
the constraints.
. Functions that arc not present in the model.
. Incomplete mandatory functions and invalid function.

Genetic Algorithm for
optimized feature
selection [9]

. Computationally expensive and time-consuming.

. Developers need the ability to easily crcate and evaluate
the selection.

Detection of Feature
Interactions Feature-Aware [zt6]

. Functional interactions unforeseen

. Combination of t'unctions are soruce of failure.

Automated Diagnosis
of Configunrtion Errors [47]

Requirc several steps configure broad trnctiolrs
Making difficult to prevent conflicts and error
New techniques are needed to debug invalid configurations
Erroneous conligurations

a

a

a

a

tlluhanwdd Fe:an Aful : 23 - FBAilP HDSAF rc Page l2of86

Chapter 2. Literature Review

Table 2.3: Valid and invalid feature combinations due to crcsstree consraints

Products

Camera
Include
High

Valid Products

lll uhommud Fc:an Aftal : 2 3 - F BAYP H DS AF I 6 tuge 13 ol86

Chapter 2. Literature Review

TableZ.4: Problems identified due to invalid feature combinantions

Source Document Overview of the Problems
Framework for
Refactoring SPL
Architecture [4E]

. Suspicious product does not perform correct functions.

. it is necessary to evaluate the models to demonstrate the
archirccture and functionality of the SPL.

Environment Modeling-
Based RE for Software
Intensive Systems [49]

. Specified by a collection of functional and
non-functional ruluirements
. Coherent set of individual requirements
. Functions are invalid expressions.

Automatic Generation
of Pairwise Test
Configurations [50]

. Minimal instrumental support for the setup of
combination of test functions.
. Tool rcturns the minimum number of configurations.

Feature-Oriented SPL

15U

. Unacceptable combination of functions and interaction,

. Challenge is to identify the missing behavior while
in the problem of additional functions,
. Coordination of code in a way that does not affect
mutability.

Integration Testing for
sPL [43]

Various methods and tools reveal scalability issues
inefficiencies outside of a range of product variants.

a

a

Combinatorial Test
Generation for SPL [zl4]

. Challenge in this effort is to deal with the large number of
constraints between different functions.

Code Generation for
Static and Dynamic
Composition of SPL [45]

. Static and dynamic methods disadvantages of versatility
in composition, efficiency, and consumption of rcsources.
. Force the programmer to develop between static and
dynamic composition.

Genetic Algorithm
for Optimized Feature
Selection [l9]

. Optimizing the SPL function with limited resourCes is a
very limited problem. Optimizing
. Exact problem-solving algorithms do not scale wcll.

Detection of Feature
Interactions [46]

. different combinations of functions are possible,

. Not possible to detect the interactions of functions by
creating all possible combinations.

Automated Diagnosis
of SPL Configuration
Errors [47]

. Difficult to debug conflicts and bugs in large function
models.

Ihthammad Fe:an Afoil: 23 -FBAS/PH DSAF rc tuse ll ol t)6

Chaper 2. Litcrature Review

tcnce of invalid feature combinations and the problems that arise due to the issue. Table 2.5 details

proposed solutions and approaches to counter the effects of invalid feature combinations.

In these approaches, they use feature models or product lines to select a subset of products. Many

rcsearchers use these approaches differently, with some benefits and limitations. The FIG method

has been presented to improve testing by dealing separately with optional features and alternative

tbatures of an SPL. This paper recognizes that by g:rowing the number of items, alternative tbuures
have a negative effect. They offer a new approach, the simple FIG form, to black-box testing. This
approach converts the model of the function into a graph of feature inclusion and then associates

cases of use with each feature. Then. select the base paths on this graph using an algorithm that
tests feasibility using the Depth First order to find the longest path. Finally. if they are linearly
independent. add these path algorithms. In this algorithm. grcup all possible routes by alternative
characteristics and use the base route algorithm for each group. However, this method has some
limitations. such as calculating FIG, which is higher than the cost of all characteristics' efforts to
crcate a characteristic model (FIG) dependency stnrcturc. These elTorts are reduced by providing a
new algorithm called the "Full Feature Algorithm." In this method, there is no need to design any
graphs such as FIG. This algorithm aims to select a subset of products covering all functions. We
must greedily add functions to the variable until we have a product that includes the most unused
ruuctions [8].

Finally. Table 2.6 presents the mapping of various analysis methods onto the Software Develop-
ment Life Cycle (SDLC). This section gives an overview of the literature on how multiple re-
searchers analyzed the problems arising from invalid feature combinations and, as per their find-
ings, at which phase of SDLC this issue may be dealt with.

lluhomnud Fe:an Al:al : 23 - FBAVPHDSFJF t 6 Puge l5.tlto

Chaper 2. Literature Review

Table 2.5: Method/Approach followed in the wake of invalid feature combinations

Source Document Methorls Approaches Used
lntensive Systems

l4el
Goals of autonomous
objects.

Reflectlng autonomous
subjects.

PACOGEN [501
Greedy algorithms, and
meta-heuristics.

Permitted interactions
between pairs of
functions.

Feature-Oriented
sPL tsll

Functional Model to
Prevent Interaction.

Abstracted for
function interaction.

Pairwise Testing
lbr SPL [.13]

Captures features linkcd by
rcquirrd, optional, and alternative.

Combinatorial Approach.

Generation [44]
Minimum Invalid T[ples
(MITS).

Notion of Minimum
Iinvalidtuples (MfD.

Code Generation and

Composition of SPL [45]
Dynamic composition
in Object Teams.

Static and Dynamic
Composition.

Genetic algorithm
for SPL [l9]

GAFES Genetic Algorithm

Detection of Feature
Interactions [46]

Intentional Testing
offeatures. SPL VERIFIER

Automated Diagnosis
of SPL Configurations [47]

CURE Diagnostics Debugging configuration
and constraint soher

ill uha mmad Fe-att Af.t I : 2 3 - F BAy P H DS E/ F I 6 Page 16of86

Chapter 2. Literaturc Review

Table 2.6: Mapping SPL issues with SDLC phases

Source
Document

Analysis
Method

SpecilicaEons

Strategy
SDLC Phase

Req.

Gathering
Design Development Testing

Variational
Conectness
-by-
Construction

t4ll

theorem
proving

feature-
based

specification
Yes

Feature-Oriented
Contract
CompositionV2l

analysis
method
independent

teature-
based

specification
Yes

Modularization
of Refinement
Steps t'or Agile
Formal Methods

Lszl

model
checking,
theorem
proving

lbature-
based

specification
Yes Yes

Product-Line
Verification:
Case Studies
and Experiments

ts3l

model
checking

composition-
based

implemen-
tation

Yes

symboltc Model
Checking of
Product-Line
Requirements
Using SAf,-Based
Methods [54]

model
checking

family-wide
specification,
tbature-based
specification

Yes Yes

Probablltstic Model
Checking for
Energy Analysis
in Softwarc
Product Lines

lssl

model
checking

feature-

based

specification
Yes Yes

L I uhu nurud Fe -an .lfir I : 2 3 - F BA yp H DS FJ F I 6 Page U ofE6

Chapter 2. Literature Review

Towards Formal
Safety Analysis

'in Feature-Oriented
Product Line

Development [31

Model checking
feature-based
specification

Yes Development Tesing

Potential Synergies
of Theorem
Proving and

Model Checking
for Software

Product Lines [32

Model checking,
theorem proving

feature-based
specification

Yes Yes

SPLat Lightweight
Dynamic Analysis

for Reducing
Combinatorics in

Testing Configurable
Systems [33

Testing
feature-based

specification
Yes

ComErsitional
Verilicuion of

Software Pnoduct

Lines [34]

Model checking
tbature-based
specification

Yes Yes

2.3 Reseanch Gap

BPNCC finds all possible products automatically using a top-to-bottom approach to all valid and

invalid combinations [25]. MOO-BPNCC t26l consists of three independent paths (first, second,

and third;. Furthermore, heuristics on these paths found that the first path could be morc feasi-
ble due to sPace and execution time complexity. The second path reduces the space complexity;
however, time complexity increases due to the increasing group of features. BPNCC and MOO-
BPNCC are the latest techniques that cannot find invalid. valid, and partially invalid/valid feature

combinations due to cross-tree constraints. The proposed solution will be able to identify the issues

mentioned above in the context of cross-tree constraints.

All major feature model drawbacks can be found using an XMLbased modeling technique. The
feature motlel is mapped using an XML schema, turned into an XML file, and translated to an

XML Schema Definition (XSD) by defining the needs and constraints of the end user throughout
application development. Primary information of feature relationships, such as alternative, oblig-
atory, oPtional. and OR group, must be preclefined at the stage of domain engineering to translate

all constraints anrl relationships of the feature model in the XML schema. Also, at the application

lI ututmmad Fe:an Aft al : 2 3 - FBAYP H DS FJF I 6 Rrge lE.rl tl6

Chaptcr 2. Literature Review

engineering level, feature constraints and end-userrequirements must be specified at the XSD level

for proper feature selection.

2.4 Problem Statement

All of the app,roaches mentioned above ignore the cross-tree constraints while using featurc models

that produce some invalid products. Thus. if they consider these constraints. they can reduce invalid
configurations. Furthermore, they did not exploit how we can automatically test the feasibility of
products for their cross-tree controls, such as include and exclude. Due to crosstrce constraints in
the feature model. invalid feature combinations become part of SPL. leading to extra effort and cost
in developing SPL. As shown in Fig. l.l, the crosstrce constraints "GPS" and "Basic" exclude each
other: therefore, any product that contains GPS and Basic will be invalid. Moreover, the crosstree
constraint "Camera" includes the "High Resolution"; if the camera is selected, the high resolution
must be part of the product.

Fig. l.l shows "mobile phone" SPL where ten pnrducts are invalid due to the crosstnee constraints.
Table 2.3 I shows the selection of features, and 0 indicates the feature is not part of the product. It is
essential to remove the invalid products from the total number of producs before developing SpL.
However, existing ap,proaches find the total number of products but do not consider thc crosstree
constrainf,s that lead to both valid and invalid pnrducts. Due to invalid prcducls, the development
cost and effort increase. "Hence, invalid featurc combinations arc generated due to constraints,
and rclationships benveen varied features resultantly make this p(rcess complex and consume
extra effort during integration testing of SPL." Furthermore, table 2.6 shows a comparative study
of different research studies that map the issues of SPL in the software development life cycle.

2.5 Research Questions

. Mitigating the invalid feature combinations:

How do we minimize the number of invalid feature combinations generated during integrat-
ing softwarc prorluct line testing while dealing with cross-rrce constraints:)

. Formal method:

What would be the method for generating the finite prioritize feature set to test invalid feature
combinations during integrating testing in the software product line?

lll ufumunud Fean Aftal : 23 - FBAil4HDSAF t 6 tuge 19 of tt6

Chapter 3

Binary Oriented Feature Selection

Crosstree Constraints (BOFS-CTC)

We proposed an Oriented Feature Selection Crosstree Constraint (BOFS-CTC) approach that cal-
culates the valid featurc product combinations by considering IoT devices' basic and nested cardi-
nality and crosstrce constraints. BOFS-CTC applies for small an{ large feature models with low
to high complexity constraints. The contribution of this paper is to mitigate the invalid feature
combinations for product derivation at an early stage of SPL development. Furthermore, BOFS-
CTc has applied different complexity feature models to obtain the total valid digit of products and
found l(X)% accuracy. However, the previous approaches need to consider the crosstrpe constraints
problem to get valid products. In this thesis, different methods arc compared with the proposed
BOFS-CTC algorithm, and it is found that BOFS-CIC is a more appropriate and applicable ap-
proach for an accurate features' combination of the feature model. As a result, using BOFS-CTC
minimizes the total cost and elfort of SPL product development. Furthermore, BOFS-CTC is the
independent approach of any specific tool as we have proposed its algorithm.

3.L Material and Methods

All of the abovementioned approaches ignorc the cross-tree constraints prnblem while using fea-
ture models that produce some invalid products. Thus, if they consider these constraints. they can
reduce invalid configurations. Furthermore, they should have explorcd how we can automatically
test the feasibility of products for their cross-tnee constraints problems such as include and exclude.

20

Chapter 3. Brnary Orientcd Feature Selection Crossts€e Constraints (BOFS-CTC)

Table 3.1: Existing approaches comparison for managing variability with CTC

Our proposed algorithm overcomes these limrtations and improves the correctness of tbature se-
lection. It helps to memorize all the constraints automatically through our new algorithm while
I'lri11c [19 feature model. Then, check these constraints among all products to get valid products.
This approach reduces the development cost, elfort. and time betbrc SPL product development.
Table 3.1 describes the practices that consider the CTC variability of the feature model. However,
research needs to be done to manage the CTC variability.

3.2 Complexity of Cnosstree Constraints

The complexity of the feature model depends on the crosstree constraints of the feature model.
CTCs include and exclude relationships among features and gmups of the feature models. By
increasing the CTCs in the feature model, morc inclusive and excluded operations that affect the
other feature combinations of SPL are performed. Developing complex systems that provide con-
sumers with various functions takes much work [58, 59]. The Challenge lies in provicling nrany
options for different application contexts with high versatility while restricting the customization
of systems to achieve maintainability and growth management. The Feature model is essential to
dealing with invalid feature combinations by capturing and visualizing the similarities antl depen-
dencies between features and the components that provide the features [60, 6l]. Feature mo6els
have been widely used in technical systems and as an element of implementing a line of software

Approaches
FM Tree

Relationship
cTc lbtal Number

of hoducts
Mapplng of

Feature Model
Web interface to construct syntactically

and semantically Feature modeU
J. Miguel Horcas, et. al. 2020. [4U

Yes No No Yes

Extensible model driven
engineering approach H. Shatnawi

et. a[.2020. I32l
Yes No Yes Yes

Multi-Objective Optimization-
Binary Pattern for Nesrcd

Cardinality Constraints Abbas, A
et. al. 20t8 [26]

Yes No No No

Binary Pattern for Nested
Cardinality Constraints Abbas,

A. et. al. 2017l25l
Yes No Yes Yes

frl uhqm mad Fc-un Af.o I : 2 3 - F BAyp H DS AF rc tuge 2l of Nt

Chapter 3. Binary Oriented Featurc Selection Crosstree Constraints (BOFS{rc)

products for more than ten years. Table 2 shows the comparison of existing approaches. Typically.

the feature model depicts a tree structure with various nodes known as features 162,631.

3.3 tr'actors of Invalid Features

Valid and invalid features are based on the complexity of crosstree constraints. Valid tbatures have

low crosstree constraints. and invalid features have high crcsstrree constraints. Invalid features in-
crease the probability of invalid product configurations. Table 3.2 shows the product configurations
of the 'Mobile Phone" feature model in Fig. l.l. which consists of valid and invalid product con-
ligurations due to not considering the crosstree constraints. *GPS-

and "Basic" features exclude
each other, i.e., only one can be part of the product configuration. Therefore, in Table 3.2, the
invalid product configurations consist of "GPS" and "Basic," such as product numbers 3, 9. 15,

and 21.

Furthermore, the Camera" rcquires "High Resolution," i.e., if any product configuration adds the
camera in the final product derivation, then there must be a scrcen "High Resolution." All the
products in Table 2 are invalid where the camera is one and the high resolution is 0, such as 14, 15,
17.20,21.23, and 24 are invalid. Therefore, we propose a framework that distinguishes the valid
and invalid features of the feature model.

violations of the given below factors lead to invalid product conligurations.

. Or group relationships

. Alternative relationship

. Include crosstree constraints

. Exclude crosstree constraints

. One-to-One (optional to optional)

. One-to-many (optional to optional)

. One-to-One (optional to alternate)

. One-to-many (optional to alternate)

. One-to-One (optional to optional)

. One-to-many (alternate to alternate)

lltthatnnrud Fe:an .{f:nl: 23- FBAypH DSE4F I 6 Rtge 22 ol86

Chapter 3. Binary Oriented Feature Selection Crosstn:e Constraints (BOFS-CTC)

Table 3.2: Mobile phone SPL product configurations without considering crosstree constraints

Mobile Phone
Products

Accuracy Call GPS Basic Color
Hish

Resolution
Camera MP3

I valirl I l 0 0 0 0
2 Valid I I 0 I 0 0 0
3 invalid I I I 0 0 0 0
4 Valid I 0 0 0 I 0 0
5 Valid 0 0 I 0 0 0
6 vdid I 0 I 0 0 0 0
7 Valid I I 0 0 I 0
8 Valid I I 0 I 0 0 I
9 Invalid I I 0 0 0 I
r0 Valid I 0 0 0 I 0
ll Valid I 0 0 I 0 0 I
t2 Valid I 0 I 0 0 0 I
t3 Valid I I 0 0 I I 0
l4 Invalid I 0 I 0 0
l5 Invalid I I I 0 0 I 0
l6 Valid I 0 0 0 I I 0
t7 Invalid I 0 0 I 0 I 0
l8 Invalid 0 I 0 0 I 0
l9 Valid I I 0 0 I I
20 Invalid I I 0 I 0 I I
2t Invalid I I I 0 0 I
22 Valid 0 0 0 I I I

23 Invalid I 0 0 I 0 I l
24 Invalid I 0 0 0 I I

ilttlunntntd Fe--on Afal : 23 - FBASIPHDSAF rc Page 23 of86

Chaptcr 3. Binary Oriented Feature Selection Crosstree Constraints (BOFSCTC)

. One-to-one (alternate to altemate)

3.4 lYpes of Crosstree Constraints

There ar€ two types of crosstree constraints in the feature model:

. Include (Require)

. Exclude (Reject)

The complexity of the feature model is based on the number of features in SPL and the crcsstree

constraint relationships. Increasing the features in the feature model gradually increases the cmsstrce

constraint problems [641. Therefore, this rcsearch focuses on all types of feature models. such as

. Small feature model with fewer crosstr€e constraints

. Small feature model with maximum crosstree constraints

. I-arge feature model with fewer crosstree constraints

. Large feature model with maximum crosstree constraints

Furthermore, these cn)sstree constraints arc categorized into one-to{ne and one-to-many. One-to-
one crosstree constraint is simple due to the relationship between only two features. However, the

One+o-many crcsstree constraint is complex due to the relationship of one feature with more than

one feature that increases the dependency. These one-to-one and one-to-many crosstrce constraints
further imply optional and alternative feature model groups, categorized as optional to optional and

optional to an altenrative.

3.5 Binary Oriented Feature Selections (BOFS)

Our proposed framework consists of two phases. In the first phase, we identity the valid and invalid
features from the feature model according to the complexity of crosshee constraint problems. In
the second phase. we drive the product configurations of SPL based on valid and invalid features.

The BOFS-CTC is a novel approach built on the binary combinations of features for cross-trce
(sub-tree). leaf. and parent node restrictions. The BOFS-CTC is a linear method for counting all
feature model products without violating crosstree and cardinality restrictions.

Lluhummad Fc:on Afotl: ZI-FBAYPHDSAF h Puge 21 of86

Chapter 3. Binary Orienrcd Featurc Selection Crosstnee Constraints (BOFS-fiC)

Additionally, this technique counts all products in an exrcnsive feature model, with n backtrace

nested constraints having zero violation of the constraints. Since terminal features (leaf nodes) are

usable and obvious to end users. they are necessary for prodrct derivation. Functional features

known as terminal features are used to create SPL goods because they do not have any further

child features. At the terminal, the poduct's benefits and actual functionality are visible. All
connections between parents of terminal featurcs are represented by non-terminal features [65, 66,

671. As a result, consider the relationships benreen the constraints on the sub-tre,e and the terminal

characteristics of each group (alternative, optional, OR).

3.5.1 BOFS-CTCFramework

The tiamework suggested a trcsh and efficient method to count all SPL products, as shown in Fig.

3. l. OG is the number of optional features in one group, and OF is the number of optional features

in any group. The required, optional. alternative, and OR groups make up the SPL t'eature model.

All products must always have the necessary characteristics. However. varying features set ttrc

goods apart in the wide range of features. Six stages make up this BOFS{TC strategy.

' In the first stage. formulas corresponding to various variable groups use a backtrace tree

structure to determine the products.

' The second step, which consitlers crusstree constraints of features, cr€ates binary combina-

tions ofeach group and its subgroups.

' The third stage entails dividing the crosstree constraints in Fig. 3.1 into the groups listed

below:

- Optional to Optional.

- One-to-One

- One-to-T[vo

- One+o-Three or more

- Alternate to Alternate.

- One-to-Many

- Optional to Alternate and vice versa.

- One-to-Many

\I u lumtmod Fcztn AJ:ul : 2 3 - F BAVP H DS AF rc Pase 25 ofE6

Chapter 3. Binary OrientcdFeature Selection Crosstrce Constraints (BOFSCrc)

Wherc "OG' ls number of ftatures ln opdonal
group

Ano tF" r the number of optonal features in
ceoture model

'No of Conrtnlntr" arc the number cf
relatlonshlps wlth other features.

-feftrc I
' Model I

*#-B

l.lYilrd Prolurt toF:,nat,c1s

:ctona,'o oEt c4al L'J? eFll ro cDt
"1a Ah."nrl: to cpt oar llt!.nlta tc A iarlrtt

Figure 3.1: BOFSCTC framework

' iu tltr: tburth stage, formulas corresponding to various variable groups use a backtrace tree

structure to determine the products.

. The fifth step, which considers crlosstrce constraints of features, creates binary combinations

of each group and its subgrcups.

' The final sexist stage is to count all potential products in the feature model.

3.6 BOFS-CTC Product Derivation

ln the case of "one optional feature has the CTC with the single featurE," to lind the invatid products

trom the feature model. we have derived the mathematical equation 3. t "Accuracy Function" as

given below":

YJ

Nrrrnber o! inrulidprahrcts: 1
12rrc (3.1)

Here, OG shows the number of features in the OR group with constraints. Therefore. valid products

from the OR group can be derived from equation3.2.

Common hrtlns err rrmond from
featun modcl dlCto consEt ncy n
rtrtry rpClcltron of sPL
Consnsof mlyofoooJrd
iltemeftYe fcettr!

ilI uhannrud Fe:an Afitl : 23 - F BAVP H DS AF I 6 Page 26 of E6

Chapter 3. Brnary Oriented Feature Selechon Cro$$tr€e Constraints (BOFSCTC)

Where n is the total optional features that have CTC. In the case of "one optional feature has

CTC with two features of OR group." to find the invalid products trom the feature model, we have

derived the mathematical equation 3.3.

Total ualid, prulucts :2o - (f,* Zocy

^,\'rtnrDer of rntalitlproclucts:
3

1 2oc

Thereforc. valid products from the oR group can be derived from the equation 3.4.

Total ral td prulucts : 2" - (l x Zot'1

(3.2)

(3.3)

(3.4)

In the case of "one optional feature has CTC with three or more f'eatures of OR group." to find the

invalid products from the feature model, we have derived the mathematical equation 3.5.

Totu,l t'u.lid products:2oG -)

Therefore, valid products tlom the oR g:roup can be derived t'rcm equation 3.6.

(3.5)

Total raldproclucts :2o - lZocr - Z) (3.6)

In the case of 'Alternate to optional (One-to-many)," to find the invalid products from the featur€

model. we have derived the mathematical equation 3.7 and for all valid products, we have derived
equatron 3.8.

N umber inrulid products : zoP - | (3.7)

Total ral id products :2ots x ,{ - (2oF - 1) (3.8)

Where OF is the number of optional featurcs, A is the number of alternate features. Equation 3.7
calculates the invalid products of CTC between the altemate and optional OR groups. Equation 3.8

Llttlrununad Fc:on Af,al. 23-FBAYPH DSE/F I 6 Posc 27 of86

Chapter 3. Binary Orientcd Fe*ure Selection Crosshee Constraints (BOFS{TC)

evaluates the total number of valid products. In the case of "alternate to alternate (one-to-many),"

to find the invalid products from the feature model, we have derived the mathematical equation 3.9.

Invalid products = #constraints are applied on the alternate group of features as only one featurc is

selected among n number of'features.

Total ualtd prodttcts : n x n - inualid prwlucts (3.e)

3.6.1 BOFS-CTCAlgorithm

BOFS-CTC algorithm is developed to automatically generate product feature combinations in bi-
nary form, whereby characteristics selected are denoted by one and those not chosen by 0. BOFS-
CTC algorithm consists of six mcdules and one main module that calls the other six modules. as

given below.

The lirst module of BOFS-CTC stnrctured a trce known as the feaNre model, where root, parent,

and chilled nodes with their name have been defined. Algorithm l. requires the data set of features

and their cardinality relationships, such as mandatory, optional, alternate, and OR group.

| ?t I id Features Extruction
import random
from anytree import Node. RendefTree,render, AscirStyle
from anytree.exp)rter import DotExporter

Creating tree stracturc
A = Node('Mobile") # root
B = Node("Mandatory", parcnt=A)
C = Node("Optional", parent=A)
D = Node("c", parent=B)
E = Node("Scteen", parent=B)
F = Node("GPS", parcnt=C)
G = Node("Media", parent=C)
H = Node("Basic", parent=E)
I = Node("Color", parcnt=E)
J = Node("High Resolution". parent=E)
K = No<le("Camera", parent=G)
L = Node("MP3", parent=G)

Algorithm l: Feature model data and constrainrs input

Algorithm 2. consists of live modules, where the first and second modules generate a list of features
that an SPL domain contains acconling to their specific grcups anct relationships. As mentioned,

.ll rt hummad Fe:an Afo I : 2 3 - F BAyp HDSF./F I 6 tutge 2ll of tt6

ft
01

,G

N
a

t\f'-

chapter 3. Binary Oriented Feature Selection crosstrce constraints (BoFSCTC)

Definkg lists ofteanrcs
Screen = ["Basic","ColoC',"High Resolution"]
Media = ["Camera", "MP3"1

Mandatory = ["Calls" j'Screen"]

Optional = ["GPS","Media"l
Define turction to displty Manfulory fcatures

def display-rnandatory-features(Mandatory Screen. select):

print("Mandatory Features for Product:", Mandatory[0])
print("Mandatory Featurcs for Producu", Mandatory[I])
print("Select Screen Type :", Screen[select])

Definc function to display Optionalteatures
def display-optionalfeatures(Optional, Media, selectl):

prin("Optional Features for producfi". Optional[O])

print("Optional Features for product:", Optional I I])

if selectl == 0:

print("selected Optional Feature:", Optional[selectI])

elif selectl - l:
print("selected Optional Featurc:")

print("Media llpes:", Media[selectl])
print("Media QPes:", Media[0])

Definc function to disploy totalleotures anil selectedfcatures count

dr.' I r hsplay-count-plot(O-count, T-count' TJVI-count, T-S -count):
.S-M-count= 2
selected = SjVl-count + O-count
print("Total Feahttts:", T-count)
print("Selected Features:". selected)

import matPlotlib.PYPlot as Plt
left = [], 2,3,41
height = [T-M-count, T-S-count, T-count, selected]

tick-Iabel = ['Mandatory', 'Optional', 'Total Features', 'selected Features']

plt.bar(Ieft, height, ticklabel=tick-label, width=O.8. color=['blue', 'red'l)

plt.xlabel('Labels')
plt.ylabel('Count')
plt.title(' Features Modeling')

Plt.show0
Dcfinc mtinlunction to call alltunctiortt

def main-function():
print(RendefTree(A, style=AsciiStyte()))
display_rnandatory-features(Mandatory screen, random.randin(0, 2))

rlisplay_optional_features(optional, Media, random.randint(0, I))

disptay-count-ptot(random.randint(L,2), 7 , 4, 3)

Call mainfanction
main-functionO

Algoiittrm 2: Algorithm for entering l'eatures with relationships

I I uhantnttd Fe:an Af,al : 2 3 - F BAYP H DSEIF I 6 Poqe 29 of tl6

Binary Ckiented Feature Selection Crosstree Cont!*4{E9FS'CI9)

Table 3.3: Mobile phone feature model valid ploduct configurations

M.Phone
Products

Call GPS Basic Color
High

Resolution
Camera MP3

I I 0 0 I 0 0

2 I I 0 I 0 0 0

3 I 0 0 0 0 0

.t I 0 0 I 0 0 0

5 I 0 I 0 0 0 0

6 I I 0 0 I 0 I

7 I I 0 I 0 0

8 I 0 0 0 I 0 I

9 I 0 0 I 0 0 I

t0 I 0 I 0 0 0 t
u I I 0 0 I I 0

t2 I 0 0 0 I 0

l3 I 0 0 I I I

t4 I 0 0 0 I I I

the nanre of the features of the mobile featurc model is given below.

In the third module, mandatory features are always part of the product; however, constraints can

also exist in leaf nodes of mandatory features. Therefore. the thinl module deals with the manrla-

tory features where an altemate rclationship exists. In the given bellow module' only one featurc

can be part of the product configuration from the three mandatory alternate features (Basic et al.

Resolution).

The fourth module deals with optional featurcs that may or may not be part of product configura-

tion. Therefore, it has only two oPtions: l) select, i.e., [, and 2) not selected, i.e., 0. The given

bellow morlule is applierl on optional grcup mediu of mobile feature mrxlel wherc parent node

media consists of two leaf nodes MP3 and camera.

In the fifth and last module, input the crosstree constraints, including and excluding features; if

any configurations violate the crosstree constraints, that configuration is excluded from the rXal

number of products. This process generates final valirl feature combinations for the whole SPL do-

main. Therefore, get all valid features a combination without any cardinality relationship violation

and crosstree constraints.

previously proposed algorithms have been applied to the mobile phone feature model in Fig. l.l
and get 24 product configurations where some invalid configurations werc also generated due to

Jl uhtmnrud Fe:an Af, ol : 23' F BAilP H DS AF I 6 Puge 30 q &6

Orientcd Feature Selection Crosstree Conshaints (BOFSCTC)

Table 3.4: BOFS-CTC Comparison with other proposed approaches based on feature model level

Approaches CTC
Binary

Combination
Nested

Consuaints
Single L,evel

Constraints
COVAMOF No Yes No Yes

CrenArch+ No No No Yes

CVL No Yes No Yes

BPNCC No Yes Yes Yes

BOFS.CTC Yes Yes Yes Yes

crosstree constraints. as shown in Table 3.1. Thercfore, BOFS-CTC is applied to the same tbature

rruxlel with cardinality and crosstree constraints and has 14 product conligumtions. From Table

3.3. BOFS-CIC removed ten invalid product configurations, as shown in Table 3.3. Use the rela-

tionships below to verify the valid product configurations in Table 3.3. GPS has no relationship
(exclude) with Basic, such as "GPS-Basic," where GPS is selected. i.e., GPS=I, then Basic should
not be chosen. i.e.. Basicd). GPS can be set where the screen must be color or high rcsolution. The
other CTC of the camera rcquires a high-resolution screen; if camera=I, then the high resolution
must be 1. These CTCs arc satisfied. Therefo,re. all 14 p,roducts are valid in Table 3.3.

3.6.2 BOFS-CTCComparison

A comparative study is pertbrmed of BOFS-CTC with previously proposed approaches in the tit-
erature, such as COVAMOF, GenArch+, Common Variability Language (CVL), and BPNCC, as

shown in Table 3.4. A comparative study is based on significant parameters defining the working
and accuracy ofthe proposed approaches. These proposed approaches calculate and generate the

total number of SPL products. BOFS-CTC is more appropriate and covers all the significant pa-

ramehrs that generate all product configurations. The prcviously proposed approaches do not con-
sider the crcsstree constraints during the product configurations; however, BOFS-CTC generates

binary combinations with the single-level, nested, and crosshee constraints. Therefore, BOFS-

CTC is the best approach to calculating and generating the binary combinations of SPL producr

configurations.

BOFS-CTC is applied to small and large feature models with different relationships and limi-
tations. Table 3.5 shows the resuls of a total number of valid pncducts by considering all the

feature model's primary relationships and crosstree constraints. Results show that the crosstree

consEainB significantly affect the total number of valid products. If the crosstree constraints are

not considered, the total number of products is higher than the given products due to invalid prod-

ill uhonutad Fe:an Afotl : 23-FBAVP HDSAF I 6 Puge 3l .rt tl6

Oriented Feature Selectrcn Cros$tree Constraints (BOFSCTC)

Table 3.5: BOFS-CTC Applied on small and large feature models

Feature Model
No. of

Featurcs

Man<la-

tory
Optio-

nal
xoR OR Gnruged cTc # Valid

Product

Web Content
Delivery

r5 I -t 3 I 9 6 23

Delay block
semantics

specification

23 8 7 I 0 7 20 4t

Epic slice
machine

7,1 7 4 0 6 20 9 275352

Sale Computers
Specification

38 0) t0 I 35 23 12088

Route Finder
Featur€ Model

5l l0 I 7 ll 39 6 9997020

Smart Home 78 38 27 I 4 t4 t0 14180162

uct combinations. Therefore, BOFS-CTC is more effective and accurate for all feature models'

such as small, large, simple, and complex (nested cardinality constraints, crosstree constraiuts).

ill uhanumtd Fe:m Af:nl : 2 3' F BAYP H DS ElF I 6 Pase 32of86

Chapter 4

Binary Oriented Feature

Selection-Crosstree Constraints Validation

This thesis proposes the BOFS-CTC approach and is used to find the valid total number of products

in SPL. BOFS-CTC is a novel approach that evaluates the crosstree constrains in the feature model

,,r a.voitl invalid product configurations and find the valid prcducts of SPL. Based on the feature

grulel struchtre, we have categorized six cases of the feanrre model for the application of BOFS-

CTC acconling to the crosstree constraints. These cases are based on the different relationships

of the featgres of one parent node to the features of another parent node. Furthermore, these

relationships are between variable features. such as alternate and optional features. The first step

is to find the invalid product configurations that do not follow the crosstree constraints, and the

second step is to find the total number of products that include all the valid and invalid product

configurations. The third step is rcmoving the invatid producs calculated in the first step from the

total number of products. Only vatid producs that do not violate the crosstree and relationship

constraints are obtained through this process.

SPL companies that develop products from a specific domain by rcusing the features and expanding

the family of products only spend the exact cost and efrort on invalid products using our proposed

solution.

BOFS is valid for the 'n' number of features in a feature motlel where different features have

crosstrEe constraints with individual or group of features. Therefore, we have categorized the

crosstree constraints of features in the feature model as given below.

33

Oriented Feature Selection'Cro,sstree Constraints Valid.rtion

4.1 Feature Model Optional Selection

Fig. 4.1 shows feature model that only consists of crosstnee constraints among optional features.

where only optional features exist.

. One -to - One (O1- On)

. One - to - Two (O1t - (Op && Olr))

Case I: Feature model that exists zero alternate features and "n" number of optional features'

crossEee constraint: one optional to two optional features.

ffiffiffi
i

Figure4.2:Crosstreeconstraintswithoneoptionaltotwooptional

Fig. 4.2shows only three features that have crosstree constraints (O11 - (Orz ll Orl))

Equation4.lisusedtocalculatetheinvalidproductsgivenbellow.

@
l-F1-l tTl rEl ...iffi
lootlonat Ilootlonal lloottonal I ""'I

fe;

Figure4.l:CTCofoneoptionaltotwooPtionalfleatures

@

.Inttilid Prodtrcts :')'t-2 I2tt-:t

Intalirlp'oduds: 2J-2 + 2r-r

(4.t)

Fn

,llufurmtnad Fe:an .lf:nt : 23 - F BAYPH DS ElF I 6
Pusc 31 ol M

Oriented Feature Selection-Crosstrec Constraints Validation

Table 4.1: Valid and invalid product configurations of Figure 4.2

Products oFl oF2 oF3 Comment

I 0 0 0 Valid

2 I 0 0 Valid

3 0 I 0 Valid

4 I I 0 Invalid: (Os - Op)
5 0 0 I Valid

6 I 0 I Invalid: (On - On)
7 0 I I Valid

8 I I I lnvalid: (On - (OnOROrl)l

I n unlid prorluct.s : 2l + 20

I ntalul prothrct s : 2 * L : 3

In table -1.2. eight total products and three producb (4, 6, and 8) are invalid due to defined

crosstrEe conshaints that have been calculated using Equation l.

From Figure 4.2. where optional features are a minimum of three, i.e. n=3. Calculate the

invalid products by using equation 4.1. Fig 4.3 shows the total number of products, valid
, , :.rnd invalid products of the feature model of Fig {.2

Figure 4.3: Valid and Invalid Products indicates table 4.1

Fig4.4 shows the feature model with the same cnosstree mentioned above constraints. How-

ever, the number of optional features is incrcased by one. i.e.. .1.

From the figure 4.4, where optional feature are minimum 4 i.e. n=1. Calculate the invalid

pnrducts by using equation 4.1

Llulwmmul Fe-sn,*al : 23 - F BAilPH DS ElF I 6 Poge 35 of 116

Oriented Feature Selection'Crosstr€e Constraine Validation

@

ffiffi@r"-l--Tl
Figure 4.4: Four Optional Features with One-to-Two CTC

Table4.2: Valid and Invalid Product conligurations from Figure 4'4'

oFl oH2 oF3 oF4 Comment

I 0 0 0 0 Valid

2 I 0 0 0 Valid

3 0 0 0 Valid

4 I I 0 0 Invalid: (O r, - On)
I 0 --vm

5 0 0

6 I 0 I 0 Invalid: (On - Onl

7 0 I I 0 Valid

8 I I I 0 In-vatid: (Or - (O pOR Or))

9 0 0 0 I Valid

r0 I 0 0 Valid

ll 0 I 0 I ---Va il
t2 I I 0 I Invalid: (Oy - 01)
r3 0 0 I Valid

t4 I 0 I I

-Invalid:
(O1t r-- Of:r)

t5 0 I t I Valid

l6 I I I I lnvalid: (o1.- lonon9il)

l+Itthanrlnud Fe-.fin .\F.tl : 23' FBAYPHDSAF I 6 Pilse 36of 86

Oriented Feature Selection-Cro$str€e Constraints Validation

Figure 4.5: Valid and tnvalid Product configurations indicates table 4'2

I nualid produt:t s : 2t- 2 I 2t-:t

I n'ualzd Prod,u,t't s : 22 + 2r

Intalidyoducts: {*2:6

'lhble 4.2 shows sixteen total products, and six products (4,6, 8, 12,14, and 16) are invalid

due to defined crcsstree constraints. Fig. 4.5 shows the total number of products, valid and

invalid Foducts from the table4.2

ffiEE;J@tffi;lffil
Figure 4.6: Five Optional Features with One-to-Two CTC

Fig.1.6 shows the five optional features: the consEaints remain the same. i.e.. one-to-two

optional features. tn Table -1.3, thirty+wo total number of products and twelve products (4'

6. g, 12, [4. 16. 20,22,24.28,30, and 32) ue invalid due to defined crosstlEe constraints.

From the figure 4.6, where optional feature are minimum 5 i.e. n=5. Calculate the invalid

products by using equation 4.1

,\l ulrutntntd Fe:crn Af-nl: 23'FBASIPHDSEIF I 6 Page 37 of lt6

Chaptcr 4. Binary Oriented Feature Selection-Crosstree Constraints Validation

Table 4.3: Valid and Invalid Product configurations from Figure 4.6.

Products oFl oF2 oF3 oF4 oF5 Comment

I 0 0 0 0 0 Valid
2 I 0 0 0 0 Valid

3 0 0 0 0 Valid

4 I I 0 0 0 lnvalid: (O1- Op
5 0 0 I 0 0 Valid

6 I 0 0 0 lnvalid: (O1- O,1x)

7 0 t 0 0 Valid

E I I I 0 0 Invalid: (()rr - OnOROn))
9 0 0 0 I 0 Valid
l0 I 0 0 I 0 Valid

ll 0 I 0 I 0 Valid

t2 I I 0 I 0 lnvalid: (On - On
l3 0 0 I I 0 Valid
t4 I 0 I t 0 Invalid: (O1= 011,)

0 t I I 0 Valid
l6 I I I I 0 Invalid: (0rr - (OrzOROll))
t7 0 0 0 0 I Valid
t8 I 0 0 0 I Valid
l9 0 I 0 0 Valid

20 I t 0 0 t Invalid: (On - On
2l 0 0 I 0 Valid
,', 0 0 I Invalid: (O1- 06
23 0 t I 0 I Valid
21 I I I 0 I Invalid: (On - opoR of3))
25 0 0 0 I 1 Valid
26 0 0 I I Valid
,r1 0 I 0 I I Valid

28 I 0 I I Invalid: (O11- O12)

29 0 0 I I I Valid
_i0 I 0 I I I lnvalid: (O1- 0,j,)
31 0 I I I I Valid
32 I I I I Invalid: (Orr - ()pOROl3.))

.ll uhutnud Fe:ut,{f:al' 2 3 - F BAYP H DSE/F I 6 tuge 3.9 of E6

Oriented Feature Selectinn-Crosstree Con$traints Validation

frrd nLnh", rf F, rrl} l.

Figure 4.7: Valid, Invalid Configurations fiom table 4.3

Inralitlpruluct.s : 23 +22

Inrulid Prulu,cts : S + { : 12

Fig 4.7 shows ttre total number of products, valid and invalid products of feature model

combinations of table 4.3

ffiffiffir"-j-Tl mlml
Figure 4.8: Six Optional Featurcs with One-to-Tivo CTC, Valid, Invalid Configurations

From Fig 4.8, there are sixty-four possible total number of products and 24 products (4, 6.

8, 12, 14, L6.20,22,21,28. 30, 32, 36, 38, 40, 4,16.48, 52, 54. 56, ffi,62 and 64) are

invalid due to defined crosstree constraints as shown in table 4.4'

Figure 4.E shows optional features with a minimum of 6. i.e., n=6. Calculate the invalid

prorlucts by using equation -l.l Fig 4.9 shows the total number of products, valid and invalid

products of the feature model of Fig 4.8

I n rulid prulutt s : 2t-2 I tli-'t

InutlJtl prtxlttt't.,{ : 2t + 2r

@

llluhmnnutd Fe:an Af-d: Z3-FBAYPHDSE/F 16 tuge 39 of f*5

Oriented Feature Selection4rosshee Constraints Validation

Table 4.4: Invalid Pnoduct with six oPtional features one-to-one CTC from fig 4.8

products oFl oF2 oF3 oF4 oF5 oF6 Comment

I I I 0 0 0 0 lnvalid: (On - On
2 I 0 I 0 0 0 Invalid: On =- Ort
3 I t 0 0 0 Invalirl: On - (OpOROs))
.t I I 0 I 0 0 Invalid: Ot-On
5 I 0 I I 0 0 Invalid: O11 -O,.3',
6 I I I I 0 0 lnvalrd: On - (OrzOROn))
7 I 0 0 I 0 Invalid: O11- Up',

E I 0 I 0 I 0 lnvalid: Ofl-OH
I I I 0 I 0 lnvalrd: On - ()rzOROn))
l0 I I 0 I I 0 Invalid: (On - Orz

I 0 I I I 0 lnvalid: Ofl-OB
L2 I t I I 0 Invalid: (On - (OrzOROil)
l3 I 0 0 0 Invalid: (On =- On
t4 I 0 I 0 0 I Invalid: Orr - Ort
15 I I I 0 0 I Invalid: On - (OnOROti)
l6 I t 0 I 0 I Invalid: 01-Op
t7 I 0 I I 0 I Invalid: Ott - On
l8 I I I I 0 I Invalid: Or, =- (OI2OROfi))
l9 I I 0 0 t I Invalid: ()q - Up
20 I 0 I 0 I I Invalid: Or-On
2l I I 0 I I Invalid: Orr - (OzOROd)
22 I 1 0 I 1 I lnralid: 01- Os2

23 t 0 t I I (On - Or:r

21 I 1 I I I Invalid: On - (OrzOROt))

I I uhumtnad Fe-s n Afa I : 2 3 - F BAy P H DS A F I 6 tutge,l0 586

Oriented Feature Selection'Crosstree Constraints Validation

jtJ \rra!. r, hnlrl tdtd !,t.d

Figure 4.9: Six Optional Features Valid and Invalid Configurations fnom table 4.4

Inualid p'oduets : 16 + 8 : 12

. One - to -Tlree(O1- (OpEzEzOlt&,'&Ori)

4.2 Alternate Feature Model Optional Selection

Crosstree constraint: One optional to two optional features where two mandatory alternate features

and 'n' optional features exist, as shown in Fig 4.10.

' Ail ll Jrz && One - to - On'e (O13 - O1+)

' Afl ll .'tr2&& One-to-Tu'o(Oy3 - (Oya&&O6))

Where A1 and Ayz shows ttre alternate features, where only one feature can be part of

product configuration.

Table 4.5 shows sixteen total number of products, and six prulucts (7. 8, I l, L2,15, and 16)

are invalid due to defined crosstree constraints. Fig 4.1I shows the total number of products.

valid and invalid products of feature model configurations of table 4.5.

I ntali tl C omtnnantions : Alt x (2"-2 + 2"-r) (4.2)

Equation 4.2 is used to identify the invalid product configurations for the feature mndel

that consists of a group of two alternate features and three optional features. The crosstree

III uhommad Fe:an .lfil : 23 - F BAS/P H DS AF I 6 Page 4l of tl6

Chapter 4. Binary Oriented Featur€ Selcction-Crosstnee Con$traints Validation

Table 4.5: Combination of two alternate and thre optional from fig. 4.10

hoducts AFI AF2 oF3 oF4 oF5 Comment

I 0 I 0 0 0 Valid

2 I 0 0 0 0 Valid

3 0 I 0 0 Valid

4 I 0 I 0 0 Valid

5 0 0 I 0 Valid

6 I 0 0 I 0 Valid

7 0 I I I 0 Invalid

8 I 0 I I 0 Invalid

9 0 I 0 0 I Valid

l0 I 0 0 0 I Valid

n 0 I I 0 Invalid

L2 I 0 I 0 t Invalid

l3 0 I 0 I I Valid

t4 I 0 0 I I Valid

l5 0 I I I I Invalid

l6 0 I I I lnvalid

constraint among these three optionat features is 0ne-ttl-two. "n" is the total number of

optional tbatures, and 'Alt" is the total number of alternate features. The above figure shows

the value of n=3 and alt=2 in equation 4.2.

Int:alul Comhnantions : 2 x (23-2 + 23-J)

Int'alid Combinantions : 2 x (2I + 20)

InuahtlCombtnantions:2 x (3) :$

r
H@@Eil@

Figure 4.10: Tivo Alternate Featurcs with One+o-Two CTC Feature Model

lluhurunad Fe:an Af-ol: 23-FBAilPHDSAF rc Page 42 ol &6

Binary Oriented Feature Selection-Crossree Constraints Validation

Table 4.6: Tlvo Alternate Features with One-to-Two CTC, Four optional from fig4.12

#Producs AFI AF2 oF3 oF4 oF5 oF6 Comment

I 0 I 0 0 0 0 Valid

2 I 0 0 0 0 0 Valid

3 0 I I 0 0 0 Valid

4 I 0 0 0 0 Valid

5 0 I 0 I 0 0 Valid

6 I 0 0 I 0 0 Valid

7 0 I I I 0 0 Invalid

8 I 0 I I 0 0 Invalid

9 0 I 0 0 I 0 Valid

l0 I 0 0 0 I 0 Valid

ll 0 I 0 I 0 Invalid

t2 I 0 I 0 I 0 Invalid

r3 0 I 0 I I 0 Valid

L4 I 0 0 I I 0 Valid

l5 0 I I I 0 Invalid

I 0 I I t 0 Invalid

t7 0 I 0 0 0 I Valid

l8 I 0 0 0 0 I Valid

l9 0 I I 0 0 I Valid

20 I 0 t 0 0 t Valid

2t 0 I 0 I 0 I Valid

22 I 0 0 I 0 I Valid

23 0 I I 0 I Invalid

24 I 0 I I 0 I Invalid

25 0 I 0 0 I t Valid

26 I 0 0 0 I I Valid

27 0 t I 0 I I lnvalid

28 I 0 I 0 I I Invalid

29 0 0 I I I Valid

30 I 0 0 I l I Valid

3l 0 I I t I I Invalid

32 I 0 I I t I Invalid

L I uhmrruul Fe:sn Afrol : 23 - F BAYP H DS FJF I 6 Puge 43 ol ttb

Oriented Featu€ Selection-Crosstr€e Constraints Validation

Figure 4.1 l: Valid and Invalid Configurations frcm table 4'5

[;ilm|;'ilmffimT--.
Figure 4.12: Trwo Alternate Features with One+o-Two CTC, Four optional Feature Model

Table 4.6 shows 32 totalnumber of products, and t2 products (7, 8, l l, 12, 15, 16,23,24'

Z'1,2E,31, and 32) areinvalid due ro delined crosstree constraints. Fig 4.13 shows the total

number of products, valid and invalid products of feature model configurations of table 4'6

In figure,4.12 the value of n--4 and alt=2 put in equation 4'2'

I rttttltd Combintufi,iotts :2 x 12r-': + 2{-'})

I n t'altd, Conilti nttntions = 2 x (22 + 2l)

Inmtlul Conrbinuntiotts : 2 x (6) : 12

Lluhanundd Fe.fin Aftal : 23' FBAYPHDSFJF I 6 tuse 11ol tl6

Chapter 4. Sinoty Oti"q

I rl\ur+.ror F.trl il

Figure 4.13: Valid and Invalid Configurations from table 4.6

4.3 Increase Altemate Feature Model Optional Selection

Crosstree constrain[One optional to 'n' optional feaHrcs where 'n' mandatory alternate and 'n'

optional features exist.

' Afl ll ,lp ll J13 && One - to -Tltree (O11-' (06, &trc 010))

I^,#'-l [;"*]G.l@@@
i

Figure 4.14: Three Alternate Features with One-to-Three CTC Optional

f ntal irl Aonthnantiotts : 3 x 12t-z +'3-3)

Intu,lid Contbinantion,s::l x (21 + 20)

I nraltd C'ombinan'l.i,on s : 3 x (S) : 9

From the feature model Fig 4.14, there are nine invatid product configurations in Table 4.7.

However, the total number of products is 24, and the valid prorlucts are 13.

I rd

lI uhmtmad Fesn Aftal : 2 3 - F BASIPH DSE/F I 6 Page 45 ol li6

Binary Oriented Feature Selection-Cmsstree Constraints Validation

Table 4.7: Three Alternate Featurcs with One+o-TWo CTC, Four optional from fig .,1.14

Pnoducts AFI AF2 AF3 oF4 oF5 oF6 Comment
I 0 0 I 0 0 0 Valid
1 0 I 0 0 0 0 Valid
3 I 0 I 0 0 0 Valid
4 0 I 0 I 0 0 Valid
5 0 0 I I 0 0 Valitl
6 I I 0 I 0 0 Valid
7 0 0 I 0 I 0 Valid
8 0 t 0 0 I 0 Valid
9 I 0 I 0 0 Valid
l0 0 I 0 I t 0 Invalid
n 0 0 I I I 0 Invalid
t2 I I 0 I I 0 Invalid
l3 0 0 0 0 I Valid
t4 0 I 0 0 0 I Valid
l5 I 0 I 0 0 I Valid
t6 0 I 0 I 0 I Invalid
t7 0 0 I I 0 I Invalid
IE I 0 I 0 I Invalid
t9 0 0 t 0 t I Valid
20 0 I 0 0 I I Valid
2L I 0 0 I I Valid

22 0 I 0 I I I Invalid
23 0 0 I t I I Invalid
24 I I 0 I I I Invalid

Lluhummud Feun Aftul: 23 - F BAYPHDSAF I 6 Page 16 of 8(t

Chapter4. Binary Oriented Feom

Fig 4.15 shows the total number of products valid and invalid prodrct conligurations of the

feature model fromTable 4.7.

JE

2t,

l(t

rl

Figure 4.15: Valid and Invalid Configurations from table 4.7

Case III: Any number otAlternate and N number of optional

InualitlAonthnuntions : l' x Jlf x 2- (4.3)

Where "alt" is total number of alternate features. K is constant whose value is 7 i.e. k=7 and

m= 0.1,2.3,4,5,6....

Minimum optional feature shoutd be 4 where value of m=0. Where optional t'eatures will be

5 then the value of m=[as so on.

Equation .1.3 is only valid where any alternate and n number of optional features are used.

Still, the constraint is between one optional and three optional features, as mentioned in Fig

4.16. Put the values rn equation 4.3.

Inrol ulCombinantions :7 x 2 x 20 : Ll

As mention in table, there are 14 invalid product configurations that are the same as derived

from the equation 4.3.

' Afl ll Al, ll ,lpr.k& One-to-Onl'(O1t- (06 && Os&,&:'O17)l

From figure 4.18, put the values in equation 4.3.

il
uil

ffi
'ulC Ntr[tat r.l s.qlrt

I I uhtmmad Fe-sn Akql : 2 3 - F BAVP H DS UF I 6 tuse 47 of 86

Chapter 4. Binary Oriented Feature Selection-Crosstree Constraints Validation

.--':;:i-j ii:rr-',:r--=-.-.
.. "--\..lrsl

'..
I optronl

I

I er ll Fa I

I optionat | | opt,on"r I

--Tr
L_J

-/

t&J
I
t
!
t

\
I
I

Figure 4. [6: Featurc model of n alternate and n optional features

Inrnlul Comlti,nt,ntions : 7 x 4 x 20 : 28

As mention in table, there are 28 invalid product configurations that are the same as derived from

the equation 4.3.

From figure 4.20, put the values in equation 4.2.

I nutlul Contbirutntions : T x 2 x 2r : 28

As mention in Fig 4.17, there are 2E invalid product configurations that are the sarne as derived

from the equation 4.3.

From above figure, put the values in equation 4.3.

InralidCombinufiiorts:7 x 3 x 22:81

As mention in Fi9.4.24, there are 84 invalid product configurations that arc the same as derived

from the equation 4.3.

tl uhumtnad Fe:an Afral : 23 - F BAYPH DSAF I 6 Page 1,1 of 86

Oriented Feature Selection-Cmsstree Constraints Validation

a0

!o

t0

5n

fl,

t0

ti l]7,r
Altornrl..l i tn*ru.,,n j' Atto7,111n

t
.r5

al

ffi
!El.I ilurtc o, Ro.lll

Figure 4.17: Valid and Invalid product configurations from fig 4.18

, Root

Figure 4.18: Four optional features with one-to-three optional CTC

i-F'_l
lcnt,-"r I

-

I opt'on.r I_-

I -":a

Figure 4.19: Four Alternate and Four optional featurcs with one-to-three optional CTC

I I uhonnud Fe:an Afral : 23 - F BAYP H DS FJF I 6 Page 19 of 116

Oriented Feature Selection{msstree Constraints Validation

Irl
It *tdi, l, N.mx rt 'Lfll d :'Jal

Figure 4.20: Valid and lnvalid product configurations from fig 4.t9

-l

,
,i,t<rn!te i

l- ri'- I : rl-_l
I nhernrte I i o=t'oner i

tsESri,
j cptrcrut , oot rnrt I opt.on", i

----Figure 4.21: Four Alternate and Four optional features with one-to-three optional CTC

Figure 4.22: Valid and Invalid product conliguration- # fig -1.21

It I u hmwnud Fe --ttn A-Ea I : 2 3 - F BAY P H DS AF I 6 tuse 50 of ffi,

Oriented Feature Selection4rosstnee Constraints Validation

r-?'
. aa

r--r
I o,,ir'"".

I

M
Totd !{unb.rol Prodrctt

H
Figure 4.23: Three Alternate and six optional features with one-to-three optional CTC

il

250

?00

150

t00

i0

0

Figure 4.24: Valid and Invalid product configurations from fig1.23

Puge 5l of 8(,il I uham mad Fc-tttt Afo I : 23 - F BAYP H DS AF I 6

Chapter 5

Results and Analysis

Crosstree constraints are essential to featurc modeling because they allow for analyzing and ex-

tracting insightful knowledge from feature models. A software system's configurations and interac-

tions benveen featurcs ar€ represented using feature models, which help stalceholders comprehend

and analyze the system's variability.

'lrtsstree constraints are used in feature modeling to specify dependencies or interactions between

several features or feature groups. These rcstrictions outline the requirements that must be met

for the system to be conligurcd validly. Several important conclusions can be drawn fiom the

outcomes and the cmsstrce constraints.

Crosstree constraints, in the first place. aid in discovering feature model discrepancies or conflicts.

Conflicts arise when conflicting restrictions prohibit certain feature combinations. Such disputes

can be found by analyzing the crosstrce constraints, which enables stakeholders to fix them and

guarantee the feature model is internally consishnt.

Second, crosstree constraints make comprehending how feature interactions alfect things easier.

Crosstree constraints capture the interactions that frequently occur between tbatures in a sofnvare

system. By analyzing the constraints. stakeholders can learn more about how the existence or

absence of particular featurcs impacts the availability or restrictions of other features. Making

decisions concerning feature dependencies and their effects on system behavior as a whole is made

easier with this information.

Thirdly, crcsstrce restrictions allow for identifying permissibte feature pairings and precise product

configurations. Stakeholders can determine whether or not feature combinations are permitted by

52

Chapter 5. Results and AnalYsis

looking at the limitations. This information is useful when crcating legitimate product setups or

assisting consumers during the conliguration prccess'

Crosstree constraints also make evaluating whether the feature model is comprehensive easier. By

examining the limitations, Stakeholders can identify gaPs or incomplete links between charac-

teristics. firis makes it possible for the feature modet to fully tlepict the system's variability by

capturing all necessary relarionships and restrictions'

In conclusion, crosstree rcstrictions in feature model findings and analysis arc crucial for spotting

inconsistencies, comprehending how features interact. figuring out legitimate feature combina-

tions, and evaluating the completeness of the feature modet. These limitations offer insightful

information that aids in dercision-making and supports stalceholders in managing software unpre-

dictability.

5.1 Impact of Managrng Crosstree Constraints

Depending on the complexity of the feature model and the particular constraints involved" address-

ing crosstree constraints in the featur€ model setup might have different effects. While crosstrce

- rrnstraints help ensure that feature configurations are valid and consistent, it isn't easy to pinpoint

the precise cost and labor savings. However, the following arc some potential advantages that may

be connected to successfully handling cross-tree constraints:

l. Reduced Configuration Errors:

Crosstree restrictions enforce dependencies and exclusions between feahrres to pre\rent im-

proper configurations. By effectively conEolling these limits, users are less likely to choose

feature combinations that are incompatible or contradictory, which lowers configuration

pnrblems and the need for further debugging or uoubleshooting'

2. Improved Efficiency in Decision-Making:

Users are guided during configuration by transparent and well-managed crosstree limita-

tions. They facilitate decision-making and save time and etTon by assisting users in under-

standing the relationships and constraints between features. expediting the decision-making

process.

3. Enhanced Reusability and Scalability: Crosstree constraints allow for the modularization and

reuse of feature models by accurately describing the connections and interactions between

[91 uh anrmad Fe :an Af-tl : 2 i - F MSIP H DS FJ F I 6 Puge 53 of 86

chapt@

featurcs. Well-managed constraints reduce the work needed for feature model maintenance

and evolution by explicitly defining dependcncies and rcstrictions, making adding or modi-

fying future features more straightforward.

4. Minimized Rework and Validation Efforts:

With appropriate crcsstrEe constraints, choosing between conflicting or insuflicient feature

configurations may be more accessible, which could result in validation or rcwork problems.

Effectively controlling the restrictions decreases the likelihood of such difficulties, saving

time and money that would have been needed to fix conliguration-related issues.

5. Requirement Analysis:

Crosstree constraints help to make the interdependencies and connections between tbatures

morc understandable. This clarity can speed up the re,quirement analysis ptocess, allowing

stakeholders to make better decisions and lowering the time and effort required for rcvisions

and iterations brought on by misunderstandings or misinterpretations.

6. Testing and Validation:

Pnrperly maintained crosstree constraints offer a morc reliable and consistent feature model.

This, in turn, makes it easier to test and validate the software system to ensure it functions as

intended in various feature configurations. The testing effort can be more concentrated and

effective if there arc fewer contradictions and disputes to be resolved.

7. Maintcnance and Evolution:

A well-managed tbature model with precise crosstree restrictions facilitates the maintenance

and development of the software system. The effect analysis and adaptation process might

go more smoothly when new featurcs are added, or old ones are changed. Long-term cost

reductions are achieved by reducing the work necessary for maintaining the integrity of the

feature model and upgrading it.

It is important to rememher that handling crosstree constraints can rcduce elTors, increase etfi-

ciency, prcmote reuse, and save rcwork. Still. it does take time and knowledge to deline, r'alidate,

and manage these constraints effectively. The amount of work necessary may vary depending on

the complexity of the feature model and the number of constraints. The cost and labor associated

with this procedure can be reduced using ap,propriate tool assistance and a systematic approach to

handling crcsstree rcstrictions.

Ll uhomnrud Fe's n Afot I : 2 3 - F BAy P H DS A F I 6 Pase 51 of86

Chaoter 5. Results and AnalYsis

5.2 Applications of CTC

It is essential to ensure that all potential connections and interactions between features alE accu-

rately represented while building a feature model. Crosstree constraints can be used to infer the

model,s completeness in this situation. By analyzing these limitations' stakeholders can find any

missing or imperfect tinks between features.

Consider a feature model for an e{ommerce application as an illustration. The featurc model

could have functions like "Prcduct Search," "IJser Registntion," and "shopping Curt." The "User

Registration" featurc might only be accessible if the "shopping Cart" feature is chosen, according

to the crosstree limitations. If there is no such restiction in the feature model, it rnay be possible

for users to register without a cart, leading to an inconsistent system.

Stalreholders can locate these holes in the featurc model by analyzing the crosstree constraints.

They can use it to decide whether mor€ constraints or dependencies are required to portray the

system's unpredictability accurately. By filling in these gaps, stakeholders can avoid any inconsis-

tencies or conflicts in the software system brought on by inadequate feature modeling.

Crosstree constraints also help preserve the feature model's consistency over time. A software

)-stem may add or modify new features as it develops. Participants in the evolution pnocess can

confirm that adjustments follow the dependencies and constraints already in place by looking at the

crosstree constraints. This guarant€es that the featurc model is accurate and current and indicates

the system's behavior.

ln conclusion, analyzing crosshee constraints in the contcxt of featurc model outPuts is essential

for determining the model's lwel of completeness. It aids in locating any missing dependencies or

links, enabling stakeholders to improve the feature model and guarantee that it appropriately cap-

tures the system's heterogeneity. Stakeholders can maintain a consistent and trustworthy feature

model as the scheme develops by considering these restrictions throughout the software develop-

ment lifecycle.

Feanre A is needed for Featurc B.

. B implies A

Feature C and Feature D are mutually exclusive:

. C excludes D

. DexcludesC

tluhwnmul Fe:an Aful: 23 -FBAYPHDSFJF 16 tuge 55 of M

Chaoter 5. Results and AnalYsis

Featurc E and Feature F cannot be selected together:

. EexcludesF

. FexcludesE

Feature G can only be selected if both Feature B and Featt[e C arc selected:

' G requires B

. G requires C

Feature H can only be selected if Feature E is selected:

. H requires E

Feature I can only be selected if Feature D is not selected:

. I requires not D

Feature J can only be selected if Feature G is selected and Feature H is not selected:

. J requires G

' J requires not H

These crosstree restrictions specfy the dependencies and exclusions between the fean[es. Con-

sraint I states, for instance, that if Feature B is chosen, FeaNre A must also be selected. Constraint

4 ensures the appropriate link between these features by stating that Feature G can only be chosen

if Feature B and Feature C are also preferred.

Stakeholders c:rn reason about the legitimate feature model configurations by analyzing these

crcsstr€e constraints. They support the user in choosing the best combinations of features based

on the indicated dependencies and aid in identifying conflicts. such as the mutual exclusivity of

Features C and D. Additionally. by eliminating incorrect conligurations and ensuring the tbature

model's internal consistency and completeness. these restrictions raise the sottware system's over-

all quality.

The many components of a mobile phone system are shown in connection to one another in Fig

5.1. Operating system, display, camera, storage, connectivity, baftery and other functionalities like

water resistance, facial recognition, and fingerprint scanner are all included in the t'eatures.

The top-level feature, in this case, the cell phone itself, is represented by the feature model's root.

The fearure mulel is then divided into many feature categories and those categories' corresponding

Itlulunmad Fe:an Aful : 2 3 - FBAYP H DSEIF I 6 Rqe 56 of E6

Chapter 5. Results ond AnalYsis

l- Fociol

I- Operoting SYstem Recognition

l- Android
l- ios

l- Disploy
l- Touchscreen
l- AMOLED
l- LCD

i- (lomero
l- Front Cumero
i- teor Conrero l- Storor=;e lonnectivity

;- Dygt C^omero l- tnteinat tulenrory l- Wi-Fi
l_ Tripte Comero

| - 32GB i -
l- 64(iB Bluetooth
l- l28GB l- NFc

l- ExPondotrle
Memory

Figure 5.1: Mobile Phone Feature Model

-.., rL-.tLhu5.

There are two sub-features, for instance, under the "Operating System" feature: "Android" and

"iOS." Similarsub-features existunderthe "Display" featurp, including "Touchsct€en""'AMOLED,"

and "[fD." by using the algorithm mentioned in Fig 5.2.

The "Camera" feature has the subfeatures "Front Camera" and "Rear Camera." as well as other

subfeatures like "Dual Camerd'and "Triple Camera" under "Rear Camera."

frrnction uranageCrcsstreeComtrairts(feature*\Iodel= coltiguratiop t :

for each coustraint iu feattra\Iodel.crossteeConstraints:
if coustraint.tvlre =='Requires":

if coustraint.dependeutFeature not in coufiguratiou:
return false

else if constaint.type : "Etcludes"'
if constraiut.depeudentFeature in coufignratiou:

rehrrn false
rctum true

Figure 5.2: Algorithm for require and exclude

T
Mobile Phone

l- Woter Resistonce

l- Fingerprint Sconner

l- Bottery
l- Renrovoble Bottery
l- Non-Removoble

Bottery

ilIuhammad Fe'ttn Afol : 23 -FBAYPHDSAF h tuse 57 of A,

Chapter 5. Results and Analysts

The feature model also provides options for banery life ("Removable Battery" and "Non-Removable

Battery"), connectivity (-Wi-Fi;'"Bluetooth," and "NFC"), and storage ("Internal Memory" and

"Expandable Memory").

Last but not least, the featurc model offers extras like "Water Resistance." "Facial Recognition,"

and "Fingerprint Scanner."

The managed Crosstrce Constraints method in Figure 5.2 pseudo-code accepts a featurc model

an<l a configuration as inputs. Each crosstree constraint in the featurc model is iterated through.

It cletermines whether the dependent feature described in the constraint is Present or absent in the

configuration depending on the type of consnaint (needs or excludes). The function returns false,

indicating an invalid configuration if the constraint is broken. The function returns true, indicating

a valirl setup if all restrictions are met. The featurc model and configuration must be expressed

using the proper data stnrctures in the programming language of choice tbr this pseudo-code to

work. Additionally, it presumes that the tbature model consists of a list of crosstree constraints,

where each constraint has properties likc type (needs or excludes) and the dependent feature.

With the feature model and the cunent setup. you would call the manage Crosstree Constraints

method to implement this algorithm. The format is valid if the function rcturns true according to

- cnrsstree restrictions. If it gives a false result, one or mor€ constraints have been broken, and

the configuration needs to be changed.

The stakeholders can comprchend and make sense of the nariety of the mobile phone system thanks

to this featurc model's organized representation of the numerous features and their interactions.

5.3 BOFS-CTC Featurc Models

The BOFS-CTC algorithm has applied to the SPLOT feature models. SPLOT is a library of real-

time featurc models where every type of feature model exists with all defined variability relation-

ships and constraints. There are small and large feature models with complex relationships. This

section consists of small ancl large feature models and product configurations in binary-oriented

combinations of features.

Fig 5.3 consists of four small feature models: l; System, 2) Computer selection, 3) AA sample,

and 4) Match Engine. In these feature models, some have both crosstree constraints and feature

variability relationships. However. some feature motlels consist of only feature vuriability relation-

ships.

iluhummad Fesn Afrol: 23-FBASIPHDSUF l6 Page 5E of86

Chapter 5. Resulb and AnalYsis

Table 5.1: Valid Product Configurations by using BOFS-CTC Algorithm

Feature Model: 10 Feature

Feature
Model

Mandatory Optional
xoR
group

OR
group

crc Valid
Configuration

BDS 0 9 0 0 I fi2
Eshop 3

,, I I .1 9

Mobile
Phone

2 2 I t 2 t4

Car _1
(, 0 0 0 l6

Match
Engine

3 4 I I 0 16

System + I I 1 8

Computer
Selection

8 I 0 0 0 1

Test 1 I I I 32

MyFM I I ,, 0 1 t9
Biciclete 3 0 3 0 I 6

. "System" feanue model consists of two crcsstrte constraints: "featurc 7" constrained with
"ftilture 10" and "feature E with "feature 10."

. "Computer Selection" feature model consists of 9 features without any cnosstree constraints.

r "fu{" feature model consists of 9 features without any crosstree constraints.

. "Match Engine" feature model consists of 9 features (3 mandatory and fouroptional features)

without any crosstree constraints.

Table 5.1 shows the valid product configurations of featurc models that consist of l0 features. The

table clearly shows that several variable features generate more configurations. The feature model

"BDS" consists of 9 optional features, with vdid product configurations I 12. On the other hand,

"Computer Selection" has eight mandatory features and one optional feature, and it has only nvo

valid product configurations.

Fig.5.4 consists of three feanrre models with 20, 31, and 32 features with more crosstree constraints

compared to Fig 5.3. The feature models arE "online shopping software," "historiaclinca," and

"IJrna." These feature models consist of various variabilities, such as alternate. optional, alternate

optional, mandatory altemate, and mandatory, optional groups. In Fig 5.4. the crossEee constraints

:il€:

.lluhtmnud Fettn Al:al: 2I-FBAVPHDSAF l6 Posc 59 ${b

_t

-a

-o

-o
a

-o
I
a
o
o
t

-t
-o

-a

a
a

-a

-J , ,or,, a-- 1J F.,r.,trc-tr' I

I . Ii,,rr,1o * !' rJr'1-.,i;g 1r,

Figure 5.3: Eight feature models with CTC and without CTC

. "Online Shopping Software" feature model consists of seven crosstlte constraints.

. "Historiaclinca" feature model consists of 3l features without any crcsstree constraints.

. "Urna" feature model consists of 32 features with complex crosstrce constraints such as the

second CTC among eight features, i.e., eight tbatures are in include and exclude relationship.

Fig 5.5 also consists of more complex feature models with many crosstree constraints. BOFS-CTC

takes these feature motlels' input and generates the total possible feature combinations and number

of products, as shown in Table 5.2. ln Fig 5.5, the crosstree constraints are:

. "Building" feature model comprises 20 features with six crcsstree constraints.

. "Cloud Storage Software" feature model consists of 2l features without any cro$stree con-

straints.

. "Referrnce Management Sottware" tbature model consists of 36 features without any crosstree

constraints.

Fig 5.6 consists of four "GreenHouse." "Reference Management System." "TAM Reservas." and

"Family of Bilre Computers" feature models with and without cn)sstree constraints. The "Refer-

ence Management System" feature model has four crosstree constraints.

Fig 5.7 shows the single large feature model that consists of 54 features, and only two ctosstree

lluhommud Fc:att Af:rtl : 2.1 - FBAilPHDSAF I 6 tuge tfr of 86

A

Chaoer 5' Results and AnalYsis

constraints exist. The two crosstee constraints are "Set Profile and From Memory" and "Show

Event and Access" among the four features'

Fig 5.8 shows the feature model with many crosstree constraints, i.e., every feature has the crosstree

constraint with other features. The crosstree constraints arc:

. Feature 0 OR Feature 9 OR Feanrre lan OR Featurc 7 OR Destrnation'

. Feature 0 oR Feature 35 OR Feature 24 OR time date oR True OR walk oR mode'

. Feature false OR Triprcquest OR InterModelRoute'

Fig 5.9 shows the',virleo player" large feature model with only seven crosstree constraints' i'e-, a

prominent featurc model with fewer constraints. These crosstree constraints are:

. Envios excludes Factura Fisica.

. Notification excludes Listas.

. Gestion excludes hrblication products'

. Notification excludes Factura Online'

. Notification excludes Por Correo'

. Notification excludes Notification page'

. Notification excludes Certificado Compra'

Fig 5.10 shows the "system Bandara siBRAM" feature model existing of 44 features with three

crcsstree constraints. These crosstree constraints are:

. SMS Gateway excludes Basic Phone'

. SMS exclude Basic Phone.

' APp Notifier excludes smart phone'

Fig 5.1[shows the "carte sD" feature model that consists of more than lifty tbatures where only

five include condition crosstree constraints are exist. These crosstree constraints are:

. DMA requires USB.

. 32bits reuires Cortex M3.

. Red requires 33V.

Muhummatl Ferun.lfnl: 23'FBAYPHDSUF I 6
Page 6l of 116

Chapter 5. Results and Analysls

. 32bits requircs Cortex M4

. 64bits requires Cortex A8

Fig 5.12 shows the "e-commetrce" feature model exists more than 35 features and five exclude

condition crcsshee constraints. These crcsstrEe constraints are:

. Phone negate notification.

. Tablet negate notification.

' High negate Bank transfer'

. Account negate Reward program.

. Account negate Receipt history.

Fig 5.13 shows the "Iiendas-pos" feature model that exiss more than 40 features with six include

condition crosstree constraints. These crosstree constraints arc:

. Caja includes Dispositivos.

. Tasa includes Comun.

. Peso includes Balanzas.

. Usuarios includes Maneja-turnos.

. Dispositivos includes Terminales.

. Clientes includes Pedidos

Fig 5.14 shows the "Facturacion-Serv-hrblicos" complex featurc model, which comprises more

than 50 features. This feature model exists to exclude condition crosstlEe constraints. These

crosstree constraints are among every subtrce of the feature morlel.

Fig 5.15 shows the large feature model with 25 exclude condition crosstree constraints. These

crcssnEe constraints are among every feature of a subtree with other subtrees. Table 5.3 shows the

valid product derivations. and results show that many valid products. such as more than a billion,

also exist.

ll I uhannnud Fe:an AJ:al : 23 - F BAYP H DS AF I 6 tuse 62 of 8(,

Chapter 5. Results and AnalYsis

itEElErltrO
I

t. a o al aa
aaa a

aaa o a

rO
r Oll a

Figure 5.-l: CTC based Feature Models with 20. 31,32

I

a
I

a

aa

I

a

!J)t)).1i,+,?kYE<1; t *; i t
"a:o::{i + !i i :,2 ianv'J./,-ao
!Fd\:iL* i (:i t *

"J'i c*i:..{
rl=5?11,!i'if,E+fl
i ;r r i i i
'4. f. i'- l. 'i- i:2\ t
a\l
.J ,
q , ,;+"- .i2','i{T 'i
-l i.

Dt5+.:

I

.a

I

rl
r OO
.a

og
-t

jr .
.a

.:r

Pose 63 ol 86Ll trlrununad Festt .{fotl : 2 3 - F BAYP H DS AF h

Chapter 5. Results and Analysis

a oo
oa ta

I

Figure 5.5: Complex and large feature models with and without CTC

I

a

aa

dO:]fJE
-t

.i.1Y+'J3 .
i i ; : i i rrr
l':L'ir"j
E'.:ri't<
+':L:'=i

? ::-,:;
'; -

,a
aaaa

il I u hu nnnatl Fc'sn Afr a I : 2 3' F BASIP H DS A F I 6 Rtge 61 ol fft

Chaoter 5. Results and AnalYsts

aaoa

!0aa
rla

Figure 5.6: Four feature models dataset

I

t.
,a
alt

rra
a aa

.0

I

aaa

,al1

Ll ulununad Fe--rtn Aful : 23'F BASlPHDSAF I 6 Ptge 65 of 116

Chapter 5. Results and 4!9!Y!!!

Table 5.2: BOFS-CTC algorithm results of 20,3t and 32 features of feanrre model

ure

Feature
Model

Mandatory Optional
xoR
group

OR
gr0up

CTC
Valid

Configuration

Online
Shopping
Software

t5 I 0 0 7 u

Historiaclinica r3 6 0 0 0 48

Urna u 2 2 0 2 36

Cloud
Storage
Software

1t 6 0 I 0 102

Product line
Service

14 5 0 0 6 l8

Automotive
System

8 3 7 I 9 t34/.

Reference
Management

System

6 l0 I 3 7 87480

Green
House

t5 t5 0 0 4 3712

TAM
Reservas

8 4 6 0 2 1296

Family
of Bike

Computer

l3 + 6 0 5 2N

II ulwmmtd Fe'-rtn Af,al : 23 - F BASIP H DS AF I 6 Puge (rt of86

aaI

ra
ra

.a

I

ral
rla-o

t

tlr
rl

I

,l
.t
t

I

rf
1 .l

rf

ULI
ttt alt

.al .s.Tt
IrJ a,

r11

'tL t
=,i

Figure 5.7: Feature model of fifty feature with cTC and basic relationships

Rrye 67 of lt6
Iluhamntad Fe:an AFsl: 23 -FBASIPHDSEIF I 6

Chapter 5. Results and AnalYsis

I

Figure 5.8: Smatt feature motlel with large CTC

tO
rO

rll'
!tt

I

.o
t.

tl

'lrlt r.'

Itluhammud Fe'ttn Aftal : 23 -FBAVPHDSUF I 6 tuse 6E of ,9(,

Chapter 5. Results and Analysis

arrt

r.ar'
arart''

aa

t'
ra
orlOro

"
O r Ol

Figure 5.9: Large feature model with less CTC (l)

tr
lro

I

a

,J

,

t

tr
.,O rt

ilI uhqmmad Fe:cttt Af:ttl : 23 - F BAYP HDS AF I 6 Rrge 69 ol tl6

Chapter 5. Resuls and AnalYsis

-a

a

-a

-a

-a

-a

J r -Zr:i: Fl:,:-.s 'l -i: !S,;3::1i'ti ,

f , -.: 15 './ -i::1: ?'.'.-r:+ '

J , -.-)?]'r'i::t: ',/' -S'nr::?l-:::e I

o

I
-a

-a
-a

a

-o , -a
-a

I

-o

Figure 5.10: Large feature model with less CTC (2)

iltthtunmtd Fe:tn Af-ttl : 23 - FBAYPHDSAF I 6 Puse 70 of8(,

Clrapter 5. Resuls and4lalYsi$

-o
-a

_a

a

-a

_t

-a

-a

-a

-e

-o
a

a

-o
a

I

a

-a

-o

-a
I

a

-t
a

-J i n:tr "./ 'r:b i
J , ::'gl:s 'rJ'-'lrtr.'::'[:- .'

JrF.dV31:-t
'l , l:i:= I" r.:rte'slt.t !

- | 5 f o r.oi-
',, g,;pex AE .

a

Figure 5.ll: Large feature moclel with less CTC (3)

ill uhammtd Fe:ctn Af-rtl : 23' F BAYPHDS AF I 6 tuge 7l oI*(t

Chaoter 5. Resuls and AnalYsis

-a -a

-a if , Pl:cr.= 1.,' -:-::::i:l:'.:tt'
f, , Tiblet'/ -lt----ii:i::.:.r i

I , -3ir..k.. '. -12s \/ :{:;i:
if , .trc+unt 1i -p;+-ui:r-glrnr)

f i.tco'in:'j -Pece:p:i".1r--?r-i I

'a

-a

Figurc 5.l2zLargefeaturc model with less CTC (4)

lluhunttnud Fe:an Af-nl: 23' F BAYPHDSUF I 6 tuse 72 of tb

'a
r,a

,

I.o
.t

fl ,a
.l

I

, aa

I

raIJtrEEtrtr
ii..;ii'ri' :? ;r :,1 l: ;'i': ,i ?l "-r' -
4.'i,.

,.. Y ii, F

I i# I ,} li
ii. r,,r .ii 'r :- ':
't'J,; "iir .t I i,.!'i rT ii

ir ':, iJ

Figure 5.13: Large feature model with less CTC (5)

tu$e 73 oI,Vt
llulununrul Fe:an Aftal : 23 -FBAilPHDSAF ft

Chapter 5. Results and4lg$l!

Figure 5.1-t: Large feature model with mediam size of CTC

,.

I

,a
rO

I

tlulnmmad Fetm .lf-nl : 23 - FBAYPHDSAF I 6 Page 71o! tl6

Chapter 5. Results and AnalYsls

Figure 5.15: Mediam size feature model with large CTC

Itlulnntmad Fesn Af-sl : 23 - F BAilPHDSE/F I 6 ktge 75 ot86

ChaDter 5. Resulm and AnalYsis

Table 5.3: BOFS-CTC Valid configuration of 50 to 60 features

Feanrre

Mdel Mandatory Optional
xoR
group

oRl
srouil

CTC
lnvalid

Products

Valrd

Products

Mobile Visit
Guide

l6 8 6 5
,, .10105 r636800

Rout Finder 10 I 7 6 240123 9997020

Video Player r3 l6 0 9 I 2W945 4825497ffi

fienda
Virhtal

t4 l0 2 8 7 &7855 168972288

Feature
Model

SibRAM
l6 7 5 7 3 326980 387760128

SD Model l3 7 22 ll 5 47 128

Ecommere 5 7 I l1 5
More than
2 million

More than I
billion

Facturacion l0 6 5 10 u More than

2 million
137582550

Market
Place

Nootbook
0 7 5 7 20

More than

4 million
More thanl

billion

Tiend FOS 8 t4 4 6 6
More than
I million

More than I
billion

Muhammad Fetttt,lftal : 23 _ FBAS/4HDSWi
Pagc 76 of86

Chapter 6

conclusions and Future Directions

SpL is a successful strategy for rcsource r=use. The commonalities and variable characteristics

of SPL ar€ managed using a feature model. For an organization to implement SPL' finding the

totar valid number of producs to calcurate advance spL cost is essential. The totd valid number

of products is a crucial parameter that needs to be determined early in SPL domain development'

Invalid product configurations become the cause of wrong cost estimation as well as invalid appli-

cation rlevelopment in the domain of sPL. Invalid product configurations are due to the violation

of relationships and crosstr€e constraints between features of the feature mrxlel' Therefore' find-

ing the total number of valid product configurations that do not violate the essential connections

and crosstree constraints of the feature model is necessary. In this work we have proposed a

BoFs-cTc framework and algorithm tbr valid p'roduct configurations that do not violate the fea-

ture model's essential relationships and crosstree constraints' BOFS-CTC is a sequential approach

based on mathematical equations to apply to tbature models according to the rclationships and

crlosstree constraints. By comparing the features of the tbature model according to their relation-

ship and crosstree constraints, BOFS-CTC eliminates the invalid product configurations and gen-

erates the valid product configurations. BOFS-CTC is applied eurly in spl's domain engineering

to find the advanced initial development cost of complete products' The BoFs-cTC framework is

used to find the total number of valid Foducts by applying the mathematical equations that calcu-

late the invalid prodtrcts and then remove these products from the total number of products' As a

result. we find the total valid producs'

Furthermore. we have developed the BOFS-CTC algorithm based on the framework of mathemat-

icar equations. BoFS-crc algorithm finds the total varid product configurations automatically.

77

The dataset of the BOFS-CTC framework is a complete feature model structure, i.e., variable fea-

tures with their rclationships (optional, alternate, optional group, alternate grouP) and crosstree

constraints. The algorithm compute$ the total valid product configurations by categorizing each

variable feature (optional, alternate) and then maps ttre crosstree constraints between these features

predefined in the dataset.

We have applied the BOFS-CTC algorithm on various large and small feature models' from low

to high complexity feature constraints. our results show no crosstrEe constraints and relationship

violations and found valid product configurations. We verified our results by comparing the valid

products of BOFS-CTC with sampling techniques of different product conligurations.

Frcm the experimental results of the BOFS-CTC algorithm, we found a significant difference

between the total number of products and valid product configuration. This indicates that the

development cost of SpL also decreases due to eliminating the invalid product configurations t'rom

the domain of SpL. Resultantly, it also reduces resource utilization and enhances the integration

testing of features in the feature model. lntegration testing, i.e., the compatibility of features

in application development from the total number of valid products, is more accessible due to

eliminating invalid product configurations.

6.1 Potential ImPact of Research

Reduced Rework and Debugging Activities: Errors in feature conligurations can be found early in

the process by recognizing and controlling crosstree restrictions. As a result, configuration issues

that would have needed to be fixed later in the development cycle can now be set with a significant

rcduction in rework and debugging efforts. The time, I€sources, and expenses necessary to resolve

errors are reduced when they are fixed as soon as possible'

prevention of Downstream Issues: Violations of crosstree constraints can result in invalid setuPs

that cam have a cascading effect on downstream procedures. The tikelihood of further issues like

compatibility issues, data inconsistencies. or functional failures is significantly decreased by iden-

tifying and fixing these problems early on. This preventative strategy contributes to the overall

software system's stability and integrity.

Reduced Rework and Debugging Activities: By identi$ing amd managing crosstree constraints.

feature configuration errors can be discovered early. As a result, configuration issues that required

fixing later in the development cycle may now be rcsolved with a significantly lower investment

lll ulrummad Fe:an .\f,al : 2 3' F BASlP HDS U F I 6 Puge 78 of ttb

ChaPter 6. Conclusions and Future Directions

in rework and debugging. When faults are corrected as quickly as feasible, the time, money, and

resources needed to rectify thern decreases'

prevention of DownstreamProblems: Crosstrcr constraint violations can lead to invalid setups that

might negatively impact downstream procedures. The risk of further problems like compatibility

problems, data inconsistencies, or functional failures is significantly reduced by spotting and cor-

recting these errors iN soon as they arise. This preventative measure enhances the overall stability

and integnty of the software system.

Streamlined Development Process: Early error detection sanctionerl the development prorcess to

run more smoothly. The development team can maintain a constant development Pace without

substantial disruptions or rielays by fixing configuration issues early. This enhances the develop-

ment process's general effectiveness and productivity'

Facilitates Agile and Iterarive Developmenf Agile and iterative development approaches aI€ com-

patible with effective cross-tree constraint management. Early error detection and correction make

quick iterations and course adjustments possible, guaranteeing that the sofhvare system develops

baserl on tested and trustworthy settings. The rleveloPment Process is more agile. accelerating

market time anrl improving responsiveness to shifting client needs.

In conclusion, the early error detection attained by recognizing and managing crosstree constraints

saves rework, averts downstream problems, boosts testing effectiveness, raises customer happiness,

streamlines the dwelopment pnocess, and is by agile techniques. It guarantees a development

lifecycle that is more effective and efficient, with fewer risks and higher overall software quality.

Lluharunad Fe:sn Af:nl : 2 3 - F BAYP H DS AF I 6 tuse 79 of 86

References

ttl S. Dogan. N. A. Dogan,I. Celik. "Teachers' skills to integrate technology in education: TUo

path models explaining instructional and application software use"' E'ducation and Informa-

tion Technologies. Vol. 26 no' 13 pp' I l-32' lanz0?l'

t2l c.watson, N. cooper, D. N. Palacio, K. Moran, D' Poshyvanyk, "A systematic literature

review on the use of deep learning in software engineering research"' ACM Transactions on

SoftwareEngineeringandMethodology(ToSEM).Vol.3lno.2.pp.l-58March2022.

t3] D.Coclq A. Ramdas, D. Schwyn, M. Giardino, A. Turowski,z.He,N' Hossle, D' I(orolija'

M. Licciardello, K. Martsenko, R. Achermann. "Enzian: an open. general, CPU/FPGA

plaform for systems software research," InProceedings of the 27th ACM International Con-

ference on Architectural support tbr Programming Languages and operating Systems' pp'

434451,Feb2022.

l4l M. A. Akbar, K. Smotander, S. Mahmood, A. Alsanad, "Tbward successful DevSecops

in software development organizations: A decision-making framework"' Information and

Software Technology. no. l'47 pp' 68-94' luly 2V22'

t5l D.D. Ruscio, D. Kolovos, J. de Lara, A. Pierantonio, M. Tisi, M' Wimmer' "['ow-code

development and model-driven engineering: Two sides of the same coin?" Software and

Systems Modeling. Vol. no' 414.'37'46' Apr2022'

16l M. Lochau, and J. Ikmischke, "Parameterized preorder relations for model-based testing of

software product lines,,, In International Symposium On Leveraging Applications of Formal

Methods, Verilication and Validation, Springer. Berlin, Heidelberg' pp-223'237,2012'

t7] P. Dhore. L. Wadhwa. P. Shinde. D. Chaudhri' P. vyas. "Brief Review on Dilferent Manual

sottware Testing Approaches and Procedure". Journal of Pharmaceutical Negative Results'

pp. 455-164. Jarn2023-

80

References

tgl M. A. Hadi, F. H. Fard, "Evaluating pre-trained models for user feedback analysis in soft'

ware engineering: A study on classification of app-rcviews", Empirical Software Engineer-

ing. VoL4. pp. 88, JulY 2023.

t9l A. A. pratama, A. B. Mutiara, "software quality analysis for halodoc application using iso

25010: 2oLL-,Int. J. Adv. comput. sci. Appl, vol. [2, no. 8,383-392,2021-

tlQl E. R. sepasi, K. N. Balouchi, J. Merciel and R. E. Lopez-Herrejon, 'An Empirical Eye-

Trzrcking Study of Feature Model Comprehension", arXiv preprint arXiv:2203.05068' 2022'

tl ll E. R. Sepasi, K. N. Balouchi. J. Mercier, and R. E. Lopez-Herrejon. 'An Empirical Eye-

Tracking Study of Feature Model Comprehension", arXiv preprint arXiv:2203.05068. 2022'

tl2l F. Bertolotti, W. Cazzola, L. Favalli. "Featurcs, believe it or not! a design pattern tbr first-

class citizen features on stock jvm", In Proceedings of the 26th ACM Intcrnational Systems

and Sofrwarc Product Line confercnce-volume A (pp. 32-42.2022.

tl3] D. Romano, K. Feichtinger, D. Beuche, U. Ryssel, and R. Rabiser, "Bridging the gap be-

tween academia and industry: transforming the universal variability language to pure:: vari-

ants and back", In Proceedings of the 26th ACM Intemational Systems and Software Prod-

uct Line Conference-Volume B, PP. 123-L31,2022'

tl4] I. Ayala. M. Amor L. Fuentes. anrl A. V. Papadopoulos. "Self-adapting Industrial Aug-

mented Reality Applications with Proactive Dynamic Software Product Lines", ln 2O2l

26th 1EEE International Conference on Emerging Technologies and Factory Automation

(ETFA), [EEE, PP. 0l-08, 2021.

tl5l A. Valdezate, R. Capilla, J. Crespo, anrl R. Barber, "Ruva: A runtime software variability

algorithm", IEEE Access, I 0, pp. 52525'52536, 2022.

t16l G. Kahraman, and L. Cleophas, 'A tool for modeling and analysis of relationships among

feature model views", In Proceedings of the 26th ACM International Systems and Software

Product Line Conference-Volume B, pp. lO3-1W,2022'

t17] M. Bhushan, J. A. G. Duarte, P. Samant. A. Kumar, and A. Negi. "Classitying and rcsolving

software product line redundancies using an ontological first-order logic rule based method".

Expert Systems with Applications' 168, I14167,2021'

tlS] V. M. Le, A. Feltbrnig, M. Uta, T. N. T. Tran, and C. V. Silva, "WipeOutR: :rutomuted

ll uluntmu! Fe:tn Af:nl : 23 - F BASlP H DS A F I 6 Page 8l of ttf

References

rcdundancy detection for feature models", tn Proceedings of the 26ttr ACM International

Systems and Software Product Line Conference-Volume A (pp. 164-169,2022'

tlgl M. I(owal, S. Ananieva, and T. Thiim,"Explaining anomalies in feature models", ACM SIG-

PLAN Notices,5vol.2, no. 3, 132-143,20L6'

t20l J. Guo, J. White, G. Wang, J. Li, and Y. Wang, '1{ genetic algorithm for optimized tba-

ture selection with resourpe constraints in softrrare product lines", Journal of Systems and

Software, 84(I 2), pp. 2208-2221, 20ll.

t2l] T. Thum. C. Kastner. S. Erdweg, and N. siegmund. 'Abstract features in feature modeling".

In l5th International Software Product Line Confercnce, IEEE, pp' l9l-200,2011'

LZZ1 H.Holdschick "Challenges in the evolution of model-based software product lines in the

automotive domain". In proceedings of the 4th tnternational Workshop on Feature-Oriented

Softwarc Development. Pp. 7O:7?, 2012.

W+l L.Ochoa, O. Gonzr{lez-Rojas, T. Thiim, "Using decision rules for solving conflicts in ex-

tended featur€ models", In proceedings of the ACM SIGPLAN International Conference on

Software Language Engineering (pp. 149-160, 201 5'

tJ-tl S. Urli, A. Bergel, M. Blay-Fornarino, P. Collet, and S. Mosser, 'A visual suPport for de-

composing complex feature models", In IEEE 3rd Working Conference on Software Visu-

alization (VISSOFT),IEEE, pp. 7G85' 201 5.

t25l A. Abbas, I. F. Siddiqui, S. U. J. Lee, and A. K. Bashir, "Binary pattern for nested cardinality

constraints for sofnnare product line of loT-based feature models", IEEE Access, vol. 5, pp'

3971-3980,2017.

t26] A. Abbas,I. F. Siddiqui, S. U. J. Lee, A. K. Bashir. W. Ejaz, and N' M' F Qureshi,'Multi-

objective optimum solutions for loT-based feature models of software product line", IEEE

Access,vol. 6, pp. 12228-12239, 2Ol8 -

l27l I.M. Horcas, J. Ballesteros, M. Pinto, and L. Fuentes, "Elimination of constraints for paral-

lel analysis of feature models", In Proceedings of the 27th ACM International Systems and

sofnrare hoduct Line conference-volume A, August 2023,pp.99-l10.

t2Sl D. Eichhorn, T. Pett. T. Osborne, and I. Schaefer. "Quantum Computing for Feature Model

Analysis: Potentials and Challenges", In Proceedings of the 27th ACM lutemational Sys-

tems and Software Product Line Conference-Volume A. August 2023. pp. l'7.

I l uhqmmtd Fe:an Afitl : 2 3 - F MVP H DS AF I 6 Page E2 of$

References

t29l A. Wasowski, and T. Berger,
*Feature Modeling. In Domain-Specific Languages: Effective

Modeling, Automation, and Reuse", Cham: Springer International Publishing' pp- 437'457,

2023.

t30l J. M. Horcas, M. Pinto, antl L. Fuentes, "Extensible and modular abstract syntax for feature

modeling based sn language constructs", Ln Proceedings of the 2-tth ACM Conference on

Systems and Software Product Line: Vol. A, pp' l'7'2020'

t3ll c. Bezerra, R. Lima, and P. silva, "Dymmer 2.0: A tool for dynamic modeling and evalu-

ation of feature model,. In Proceedings of the V Brazilian SymErsium on Software Engi-

neering, pp. 12l'126. 2021.

t32] F. Damiani, D. Faitelson, C. Gladisch, and S. Tyszberowicz,'A novel model-based testing

approach for software ploduct lines", Software and Systems Modeling, vol' 16, no' 4' pp

1223-1251,2017.

t33] H. Lackner, "Model-Based Product Line Testing: Sampling Configurations for Optimal

Fault Detection", In International SDL Forum Springer, Cham pp'238-251' 2014'

t34] H. Foidl, and M. Felderer, "Integrating software quality models into risk-based testing"

Software quatity journal, vol. 26,pp 809-847,2018'

t35l S. Reis, A. Metzger, and K. Pohl' "Integration testing in software product line engineer-

ing: a model-based technique", [n International Confercnce on Fundamental Approaches to

software Engineering pp. 321-335, Berlin, Heidelberg, March, 2007.

t36] F. Ensan, E. Bagheri, and D. Gasevi6, "Evolutionary search-based test generation for soft-

ware prcduct line feature mrxlels", In International Conference on Advanced Information

Systems Engineering , Springer, Berlin, Heidelberg pp. 613.628,20|2.

t37l A. Schiirr. S. Oster. and F. Markert, "Model-driven software product line testing: An inte-

grated appncach", In International Conference on Current Trends in Theory and Practice of

Computer Science Springer, Berlin, Heidelberg, pp' I 12-13l' 2010'

t3g] M. Lochau, S. Oster. U. Goltz, and A. Schtirr, "Model-based pairwise testing for feature

interaction coverage in sofware product line engineering", Software Quality Journal. vol'

20, no. 4, PP 56i1'604., 2OL2-

t39] B. P. Lamancha, M. P. Usaola, and M. P. Velthius, 'A model based testing approarch tbr

model-driven development and software product lines", In tnternational Conference on

ilInhammatl Fcsn Aftal: 23' FBAWHITSUF I 6 Page EJ of M

References

Evaluation of Novel Approaches to software Engineering, springer, Berlin. Heidelberg pp'

193-208,2010.

t-lgl p. Reales, M. polo, and D. Caivano, " Model based testing in software product lines", fu

International Conference on Enterprise Information Systems, Springer, Berlin. Heidelberg,

pp.27O-283. 201l.

t4ll J. M. Ferreira, S. R. Vergilio, and M. Quinaia. "software ploduct line testing based on

feature model mutation". International Journal of Software Engineering anrl Knowledge

Engineering, 27(05). pp 8 17-839, 2017 -

t+ll M. [.ochau, D. Reuling. J. Biirdek, T. Kehrer, S. Lity. A. Schtirr. and U. Kelter' "Model-

Based Round-Trip Engineering and Testing of Evolving Software Product Lines". In Man-

aged Software Evolution, Springer. Cham, pp' l4l-173, 2019'

t.t3] T. Bordis, T. Runge, A. Kniippel, T. Thtim' and I. Schaefer, "Variational correctness-by-

construction", In Proceedings of the 14th lnternational Working Conference on Variability

Modelling of Software-Intensive Systems, pp' l-9' 2020'

t44] T.Thiim, A. Iftiippel, S. Kriiger, S. Bolle, and I. Schaefer, "Feature-oriented contract com-

position", Journal of Systems and Softwue, [52, pp' 83-107' 2019'

t15] D. Marijan, A. Gotlieb, S. Sen, and A. Hervieu, "Practical pairwise testing for software

product lines", In Proceedings of the lTth international software pruluct line conference,

pp.2Tl-235,2013.

t46] L. Yu, F. Duan, Y. I.ei, R. N. Kacker, and D. R. Kuhn, " Combinatorial test generation for

software protluct lines using minimum invalirl tuples". In IEEE l5th Internatirlnal Symp<l-

sium on High-Assurance systems Engineering, IEEE, pp.65-72,2014.

t-t7] M. Rosenmuller, N. siegmund, G. saake, and s. Apel, "code generation lo support static

anddynamic composition of software product lines", [n Proceedings of the 7th international

conference on Generative programming and component engineering, pp' 3'12' 2008'

t-tg] S. Apel. H. Speidel. P. Wendler, A. Von Rhein, and D. Beyer, "Detection of t'eature inter-

actions using feature-aware verification". In 26th IEEBACM International Conference on

Automated Softrvare Engineering, IEEE. pp' 372'375, 201 l'

t49] J. White, D. C. Schmirtt. D. Benavides, P. Trinidad, and A. Ruiz{ort€s,'Automated diug-

I I ulwmmtd Fean Afa I : 2 3 - F BAy P H DS FJ F I 6 Pugc 81 of86

References

nosis of product-line configuration errors in feature models", In l2th International Software

Product Line Conference, IEEE, pp. 225-234, 2008'

l50l M. Tanhaei, J. Habibi, and S. H. Mirian-Hosseinabadi. 'A feature model based framework

for refactoring software prorluct line architecture", Joumal tlf Computer Science and Tech-

nology, vol. 31, no. 5, pp 951-986' 2016.

t5 U M. T. Fulop, M. Guban, A. Cuban, M. Avornicului, 'Application research of soft computing

based on machine learning production scheduling". Processes, Vol' 10' no.3.520.2022'

t52l A. Hervieu. B. Baudry, and A. Gotlieb, " Pacogen: Automatic generation of pairwise test

configurations from feature models", In IEEE 22nd International Symposium on Softrvare

Reliability Engineering . IEEE . pp. 120-129, 2Ol l'

t53l S. Apel. D. Batory. C. Kiistner, and G. Saake, "software Product Lines. In Feature-Oriented

sot'nrarc Product Lines", springer. Berlin, Heidelberg. Pp. .1-15, 2013.

t54l F. Benduhn, T. Thum, I. Schaetbr, and G. Saake. "Modularization of relinement steps for ag-

ile formal methods", In International Conference on Formal Engineering Methods, Springer.

Cham, (pp. 19-35,2017.

t55l S. Apel, A. Von Rhein, P. Wendler, A. Gr6Blinger, antl D. Beyer, "strategies for product-line

verification: case studies and experiments", In 35th International Confetrence on Software

Engineering (ICSE), IEEE, pp- 482491,2OL3-

t56] S. Ben-David, B. Sterin, J. M. Atlee, and S. Beidu, "symbolic model checking of product'

line requircments using sat-based methods", In IEEE/ACM 37th IEEE International Con-

ference on Software Engineering, IEEE, Vol. I , pp. I 89- 199' 2015'

t57l C. Dubslaff, S. Kliippelholz, and C. Baier, "Probabilistic modelchecking forenergy analysis

in software product lines". In Proceedings of the l3th international confer€nce on Modular-

ity,pp. 169-180,2014.

t58] S. Bessling, and M. Huhn, "Towards formal safety analysis in feature-oriented product line

development", In International Symposium on Foundations of Health Informatics Engineer-

ing and Systems, Springer. Berlin. Heidelberg, pp.2l7'235. 2013'

t59l T. Thtim, J. Meinicke, F. Benduhn, M. Hentschel. A. Von Rhein, and G. Saake, "Potential

synergies of theorem proving and model checking for sotiware product lines", In Proceed-

ings of the lSth International Software Product Line Contbrence, Vol. l. pp. t77-t86. 2014.

ll tthmunad Fe:an .ltfral : 23' F BAilP H DS U F I 6 Page 85 of86

References

t60] C. H. p. Kim, D. Marinov, S. Khurshid, D. Batory. S. Souto. P. Barros, and M. d'Amorim.

..SpLat Lightweight dynamic analysis for reducing combinatorics in testing configurable

systems", In Proceedings of the 9th Joint Meeting on Foundations of Software Engineering,

pp.257-267.2013.

t6U J. V. Millo, S. Ramesh, S. N. Krishna, and G. K. Nar*'ane, " Compositional verilication

of software product lines", In International Conference on Integrated Formal Methods,

Springer, Berlin, Heidelberg. pp. t09-123' 2013.

t62l T. Thiim. A. Kniip,pel, S. Kriiger. S. Bolle, and I. Schaefer, "Feature-oriented contract com-

position. Journal of Systems and Software", V)1. t52. pp. 83-107' 2019.

t63l M. I-ochau, D. Reuling, J. Biirdek. T. IGhrcr, S. Lity, A. Schiirr, and U-IGlter, "Model-

Based Round-Trip Engineering and Testing of Evolving Softwarc Product Lines", In Man'

aged Sofnvare Evolution, Springer, Cham, pp- l4l'173, 2019'

tell T. Bordis. T. Runge, A. Kniippel, T. Thiim. and I. Schaefer, " Variational correctness-by-

construction". In Proceedings of the l4ttr International Working Conference on Variability

Modelling of Software-Intensive Systems. pp. l-9. 2020.

:.-.', Z. Jin, "Environment modeling-based rcquirements engineering for software intensive sys-

[ems", Morgan Kaufmann, 2018.

t66l X. Li, W. E. Wong, R. Gao, L. Hu, and S.Hosono, "Genetic algorithm-based test generation

for software product line with the integration of fault localization techniques". Empirical

Software Engineering,23(l), pp. 1-51, 2018.

t67l E. Bagheri, T. Di Noia, A. Ragone, antl D. Gasevic. "Configuring software pruduct line

feature models based on stakeholders' soft and hard requircments", In International Confer-

ence on Software Prorluct Lines. Berlin, Heidelberg: Springer Berlin Heitlelberg. pp. 16-31.

2010.

168l J. Van Gurp, J. Bosch, and M. Svatrnberg, "On the notion of variability in software product

lines", In hoceedings Working IEEMFIP Conference on Software Architecture. IEEE. pp.

+5-54,2001.

169l K. Czarnecki. M. Antkiewicz, C. J. Kim, S. Lau. K. Pietroszek. 'Model-driven software

product lines",. In Companion to the 20th annual ACM SIGPLAN conference on Object-

oriented programming, systems. languages, and applications. pp. 126'127. Oct 2005.

,ll ntuunnad Fesn Afal : 2 3 - F BAYP H DS E/F I 6

\"*rr,rr*._.
- .

Rtgc tt(t of 86

