" A Novel Valid Features Combination Approach for Product
Derivation in Software Product Line

Ph.D Thesis
By

/" Muhammad Fezan Afzal
e 23-FBAS/PHDSE/F16

Supervisor

Dr. Imran Khan
Assistant Professor, Department of Computer Science, [IUL

Co-Supervisor
Dr. Asad Abbas
Assistant Professor, University of Central Punjab.
Department of Software Engineering, Faculty of Computing
International Islamic University, Islamabad
January 2024

A dissertation submitted to the
Faculty of Computing and Information Technology,
International Islamic University, Islamabad
as a partial fulfillment of the requirements
for the award of the degree of
Doctor of Philosophy in Software Engineering.

Muhammad Fezan Af-al: 23-FBAS/PHDSE/F 16

Page i of 86

INTERNATIONAL ISLAMIC UNIVERSITY ISLAMABAD
FACULTY OF COMPUTING & INFORMATION TECHNOLOGY
DEPARTMENT OF SOFTWARE ENGINEERING

Final Approval

Date: 19-01-2024

It is certified that we have read this thesis, entitled “: A Novel Valid Features Combination Approach
for Product Derivation in Software Product Line “submitted by Muhammad Fezan Afzal
Registration No. 23-FBAS/PHDSE/F16. It is our judgment that this thesis is of sufficient
standard to warrant its acceptance by the International Islamic University Islamabad for the

award of the degree of PhD in Software Engineering.

Committee

External Examiner:

Dr. Arif Ur Rehman,
Professor

Bahria University, Islamabad

External Examiner:

Dr. Basit Raza,

Associate Professor
COMSATS University, Islamabad

Internal Examiner:

Dr. Syed Muhammad Saqlain,
Assistant Professor,

Department of Computer Science,
FoC, ITUI

Supervisor:

Dr. Imran Khan ,

Assistant Professor,

Department of Computer Science,
FoC, IIUI

Co-Supervisor:
Dr. Asad Abbas,
Assistant Professor

University of Central Punjab, Lahore

e

0,

\U—

o

et

Declaration

I hereby declare that this thesis, neither as a whole nor any part thereof has been copied out from
any source. It is further declared that no portion of the work presented in this report has been
submitted in support of any application for any other degree or qualification of this or any other
university or institute of learning. /

Muham Fezan Afzal

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F16 Puage 1it of 86

Dedication

This thesis is dedicated to my family, especially to my father Rana Muhammad Afzal Khan,
mother Sidra Beghum, wife Saira Fezan, sisters Aroosa Afzal, Arooj Afzal, Amreena Afzal and
brothers Mohsin Jabran, Ahsan Arslan.

Muhamm: zan Afzal

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Page v of 86

Acknowledgments

This thesis and all my efforts are fruitful only due to ALLAH Almighty, the Most Merciful and
Beneficent, Who gave me strength to complete this task to the best of my abilities and knowledge.

I would like to thank my supervisor Prof. Dr. Imran Khan and Co-Supervisor Prof. Dr. Asad
Abbas, who gave all their knowledge, guidance and support to boost my confidence and learning.
I would also like to thank my wife who has supported me patiently and firmly during completion
of my task.

I would also like to acknowledge my brothers, friends, students and colleagues especially Prof.
Dr. Shahbaz Ahmed Khan Ghayyor, Prof. Dr. Imran Khan, Prof. Dr. Asad Abbas, Prof. Dr. Salma
Imtiaz chairperson Department of Software Engineering, Prof. Dr. Mudasar Ghafoor. Prof. Dr.
Hafiz Abid Masood, Prof. Imran Saeed, Dr. Muhammad Shabir Kallu, Prof Dr. Nasir Ali, Prof.
Dr. Muhammad Azmat (NUST), Dr. Rana Javaid Rashid, Mr. Rana Muhammad Ashfaq, Mr. Hafiz
Saleh, Mr. Muhammad Arshad, Mr. Numan Arshad, Mr. Dawood Shabeer. Mr. Usman Haider
Aullu and Higher Education Commission (HEC), Pakistan. All of them encouraged and provided
logistic and technical help during this research.

I would like to admit that I owe all my achievements to my truly, sincere and most loving parents
and friends who mean the most to me, and whose prayers have always been a source of determina-
uoin vl me.

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Page v of 86

Abstract

Software Product Line (SPL) is a group of software-intensive systems that share common and vari-
able resources for developing a particular system. SPL epitomizes the notion of a planned reuse. It
encourages the development of a series of software applications by reusing basic functionality to
the maximum extent. All the products part of SPL are technically called features”. Features can
be represented through a compact graphical format called a feature diagram. This visual represen-
tation is further termed a feature model. The feature model is a tree-type structure used to manage
SPL’s common and variable features with their different relations and problems of Crosstree Con-
straints (CTC). Common features exist in every SPL product, while variable features are part of the
product according to application requirements, constraints, and relationships. Therefore, invalid
feature combinations can be generated due to constraints. and relationships between varied features
resultantly make this process complex and consume extra effort while developing applications in
SPL. This happens due to the need for better algorithms working when implementing cross-tree
constraints.

CTC problems exist in groups of common and variable features among the sub-tree of feature
models more diverse in Internet of Things (IoT) devices because different Internet devices and
. tocols are communicated. Numerous methods are available to cope with the complexity and
extra effort when selecting features for specific product derivation. The selected subset of prod-
ucts has both valid and invalid configurations. That is why complexity and effort are increased
during the development of SPL. Therefore, managing the CTC problem to achieve valid product
configuration in IoT-based SPL is more complex, time-consuming, and hard. In literature, multi-
ple algorithms are proposed for selecting features from the feature model for product derivation.
However, proposed algorithms only consider the cardinality constraints of feature models such as
OR group and alternative. However, the CTC problems are not considered in previously proposed
approaches such as Commonality Variability Modeling of Features (COVAMOF) and Genarch+
tool; therefore, invalid products are generated due to the violation of feature selection constraints.

This research has proposed a novel approach, Binary Oriented Feature Selection Crosstree Con-
straints (BOFS-CTC), to find all possible valid products by selecting the features according to
cardinality constraints and cross-tree constraint problems in the feature model of SPL. BOFS-CTC
removes the invalid products at the early stage of feature selection for the product configuration.
Furthermore, this research developed and applied the BOFS-CTC algorithm to IoT-based feature
models. The findings of this research are that no relationship constraints and CTC violations occur
and drive the valid feature product configurations for the application development by removing

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Puge vi of 86

the invalid product configurations. In its first step, an intensive literature review is conducted to
understand the working and weak areas of existing feature models. Secondly, based on literature
findings, understand the limitations of existing algorithms used to calculate the valid total number
of products of the SPL feature model with primary cardinality constraints. In the last phase, the
proposed algorithm will be developed to calculate the valid total number of products by consider-
ing the cross-tree constraints of the feature model.

Furthermore, we will validate our results using the “simple random sampling™ technique, where
random products (combination of features) will be chosen from different small and large feature
models. Validation will be based on comparing manually generated combinations and system-
generated results. For the development of SPL, organizations require advanced investment in do-
main engineering. The accuracy of BOFS-CTC is measured by the integration sampling technique,
where different valid product configurations are compared with the product configurations derived
by BOFS-CTC and found to be reasonable correctness. Using BOFS-CTC reduces the testing cost
of SPL as invalid products are removed from the total number of products. Eliminates the testing
cost and development effort of invalid SPL products.

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Puage vit of 86

Contents

1 Introduction
1.1 ObjectivesandScope i e

2 Literature Review
2.1 ValidProductsof SPL. e
2.2 Testing Effortsof SPLProducts0.0oou...
23 ResearchGap i e e e
24 ProblemStatement e
23 ResearchQuestions i i i e

3 Binary Oriented Feature Selection Crosstree Constraints (BOFS-CTC)

3.1 MaterialandMethods,
3.2 Complexity of Crosstree Constraints
33 FactorsofInvalidFeatures0.0.0......
34 TypesofCrosstree CoONStraints v v v v v v v v e v e s e e e
3.5 Binary Oriented Feature Selections(BOFS)

35.1 BOFS-CTCFramework¢¢0uiuuiuenen..
3.6 BOFS-CTCProductDerivation.¢c.uuuiunn..

3.6.1 BOFS-CTCAlgorithm

362 BOFSCTCComparisoncuuuuuueenn.

4 Binary Oriented Feature Selection-Crosstree Constraints Validation
4.1 Feature Model Optional Selection
4.2 Alternate Feature Model Optional Selection
4.3 Increase Alternate Feature Model Optional Selection

viii

Contents

5 Results and Analysis 52
5.1 Impact of Managing Crosstree Constraints 53
52 Applicationsof CTC 55
53 BOFS-CTCFeatureModels000i0ivienee.. 58
6 Conclusions and Future Directions 71
6.1 Potential ImpactofResearch 78

Muhammad Fezan Af-al: 23-FBAS/PHDSE/F 16 Page 1x of 86

List of Figures

1.1 Mobile Phone Feature Model [19], 3
1.2 Cost estimation of SPL and singleproduct 4
31 BOFS-CTCframework i i ittt ittt ne e 26
4.1 CTC of One optional to two optional features 34
4.2 Crosstree constraints with one optional to twooptional 34
4.3 Valid and Invalid Products indicatestable 4.1 35
44 Four Optional Features with One-to-TwoCTC 36
4.2 Valid and Invalid Product configurations indicates table 4.2 37
4.6 Five Optional Features with One-to-TwoCTC 37
4.7 Valid, Invalid Configurations fromtable4.3 39
4.8 Six Optional Features with One-to-Two CTC, Valid, Invalid Configurations 39
4.9 Six Optional Features Valid and Invalid Configurations from table4.4 41
4.10 Two Alternate Features with One-to-Two CTC Feature Model 42
4.11 Valid and Invalid Configurations fromtable4.5 44
4.12 Two Alternate Features with One-to-Two CTC, Four optional Feature Model 44
4.13 Valid and Invalid Configurations fromtable4.6 45
4.14 Three Alternate Features with One-to-Three CTC Optional 45
4.15 Valid and Invalid Configurations fromtable4.7 47
4.16 Feature model of n alternate and n optional features 48
4.17 Valid and Invalid product configurations from fig4.18 49
4.18 Four optional features with one-to-three optional CTC 49
4.19 Four Alternate and Four optional features with one-to-three optional CTC 49
4.20 Valid and Invalid product configurations fromfig4.19 50
4.21 Four Alternate and Four optional features with one-to-three optional CTC 50

List of Figures

4.22
4.23
4.24

5.1
52
53
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13

~ vt

2.0

Valid and Invalid product configurations fromfig4.21 50
Three Alternate and six optional features with one-to-three optional CTC 51
Valid and Invalid product configurations from fig4.23 51
Mobile Phone Feature Model 57
Algorithm forrequireandexclude 57
Eight feature models with CTC and withoutCTC 60
CTC based Feature Models with20,31,32 63
Complex and large feature models with and without CTC 64
Four feature modelsdataset 65
Feature model of fifty feature with CTC and basic relationships 67
Small feature model withlarge CTC 68
Large feature model withlessCTC(1) 69
Large feature model withlessCTC(2), 70
Large feature model withlessCTC (3) v i i v v v v v v 71
Large feature model withlessCTC(4) 72
Large feature model withlessCTC(5) 73
' ~rac feature model with mediam sizeof CTC. 74
wicdiam size feature model withlarge CTC 75

Muhammad Fezan Af-al: 23-FBAS/PHDSE/F 16 Puge x1 ot 86

List of Tables

2.1
2.2
23
24
25

2.6

31
1"
3.3
34

35

4.1
4.2
43
44
45
4.6
4.7

5.1
5.2
53

Comparison of existingapproaches 11
Analysis of litrature with respect invalid feature combination 12
Valid and invalid feature combinations due to crosstree consraints 13
Problems identified due to invalid feature combinantions 14
Method/Approach followed in the wake of invalid feature combinations 16
Mapping SPL issues with SDLCphases 17
Existing approaches comparison for managing variability withCTC 21
Mobile phone SPL product configurations without considering crosstree constraints 23
Mobile phone feature model valid product configurations 30
BOFS-CTC Comparison with other proposed approaches based on feature model

level i e e e e e 31
BOFS-CTC Applied on small and large featuremodels 32
Valid and invalid product configurations of Figure 4.2 35
Valid and Invalid Product configurations from Figure44. 36
Valid and Invalid Product configurations from Figure 4.6. 38
Invalid Product with six optional features one-to-one CTC fromfig4.8 40
Combination of two alternate and thre optional from fig. 4.10 42
Two Alternate Features with One-to-Two CTC, Four optional from fig4.12 43
Three Alternate Features with One-to-Two CTC, Four optional from fig4.14. . . . 46
Valid Product Configurations by using BOFS-CTC Algorithm 59
BOFS-CTC algorithm results of 20, 31 and 32 features of feature model 66

BOFS-CTC Valid configuration of S0to 60 features 76

xii

Chapter 1
Introduction

Software applications have become central to today’s age and daily life. Irrespective of age. sex,
profession, or geographical boundaries, all of us depend upon software applications. This de-
pendency may be direct or indirect in any sense. Many professionals, from doctors to engineers,
parents to students, buyers to suppliers, and manufacturers to service providers, depend entirely on
software [1, 2]. However, it is disappointing that even though heavy amounts are spent on software
appiications to make them accurate, efficient, secure, and reliable, vulnerabilities and defects re-
main. This is not a one-time investment; instead, it is a continuous investment that will be exceeded
yearly to fix the flaws and overcome software vulnerabilities [3, 4].

According to the National Institute of Standards and Technology (NIST) 2002 research, the annual
software error cost is approximately $59.5 billion. This figure is estimated just for the United
States. This situation worsens daily as software gets more complex, has numerous features, and
goes online. On the other hand, IT companies are reducing their budgets each year to overcome
their research, development, and maintenance costs [5, 6].

Due to the increased expenses, organizations are trying to overcome their issues related to the need
for more resources. IT companies are trying to improve productivity, enhance quality, decrease
cost, decrease labor needs, decrease the time required to market the product and reduce the time
necessary to cater to the market. Domain engineering or product line development is critical in
systematic software reuse. It is the whole process of reusing domain knowledge to produce new
software systems [7, 8].

Software Product Line (SPL) is a paradigm for developing and managing internal software sys-

Chapter 1. Introduction

tems from a common set of resources using a specific production process. It is a technique used
to create software products with similar characteristics that share the exact nature of code, experi-
ence, and developer documentation [9]. Specifically, SPL is a group of software-intensive systems
with common manageable characteristics. These functions are combined to meet specific market
requirements. SPL improves the reuse of existing resources, i.e., common and variable features,
and reduces development time, cost, effort, and time to market [9, 10].

SPL is a group of related products; features are the characteristics of a program, and the feature
model manages these features. The feature model is used to manage SPL's common and variable
features [11]. Therefore, the feature model has become one of the most used in the SPL. community
to develop the software family. A feature is an option to include specific functions in the system
configuration. Features can be presented in a compact graphical format called a feature diagram.
This visual tree-type structure is also called a feature model [12]. The feature model manages
generic and variable SPL functions with various relationships and constraints. During application
development, products are developed by selecting features from the SPL domain [13, 14]. Fig. 1.1
shows the feature model of mobile phones.

SPL consists of two processes: 1) Domain and 2) Application engineering. Domain engineering
consists of all possible common and variable features of specific SPL. Furthermore, the feature
model is a tree-type structure that shows the domain of SPL with all common and variable features
[[15, 16]. Common features are part of every SPL product; however, variable features are selected
according to user requirements and pre-defined relationships between features. Therefore, the
selection of variable features differentiates the products of SPL [17].

The feature model is composed of pre-defined relationships between features, as shown below
(8. 18]:

* Required. These are the standard features that must be part of every SPL product. In Fig.
1.1, a call is the common feature always selected in every product.

* Optional. These features may or may not be part of the SPL product. The selection of these
features is according to end-user requirements. In Fig. 1.1. “GPS" is an optional feature.

* Alternative. The group features from where one and only one feature can be selected for the
product development of SPL. If there are more than two features in an altemnative group, then
only one feature can be selected for the product derivation of SPL. In Fig 1.1, there are three
features, “basic, color, and high resolution,” on the screen; we can select only one feature at
a time in the development of the product.

Muhammad Fezan Af-al: 23-FBAS/PHDSE/F |16 Page 2 of 86

Chapter 1. Introduction

Mobile Phone
Calls GPS Screen Media
’
; Z \
- High resolution Camera MP3
| Crosstree f_.____...._..:
Constramis

é Mandasory A Anhemative --<->= Requres
& Optional A\ o <> Exciudes

Figure 1.1: Mobile Phone Feature Model [19]

e Or group. A collection of child features is associated with its parent, and more than one
feature can be selected for SPL product development. In Fig 1.1. the camera MP3 has the Or
group relationship, where one or both can be set in the Product development of SPL.

The pre-defined relationships of feature models, such as optional, alternative, and Or group, are
defined by every feature model. However, another relationship or constraint, known as the crosstree
constraint, is also part of the feature model. Crosstree constraints are the relationships between
sub-trees of the feature model. There are two types of crosstree constraints: 1) include features
and 2) exclude features [19], as shown in Fig 1.1. “GPS” has the exclude crosstree constraint with
the “Basic screen.” and “camera” includes the “high-resolution screen.”

Organizations put in the time. money, and effort necessary for the product configuration based on
the feature model before constructing the features. The initial costs of SPL and single product de-
velopment are depicted in Fig. 1.2, indicating that SPL organizations invest in initial development
costs without benefiting from the market [20, 21]. The break-even point of SPL shown in Fig. 1.2
depends on the size of SPL, i.e., the total number of product configurations. The total valid number
of products is a significant parameter for the advanced cost estimation of SPL [23, 24]. However.
calculating the total number of valid products is challenging due to the feature model’s predefined
relationships and crosstree constraints. Therefore, multiple methods and approaches exist, such
as determining how many products are included in the feature model. Binary Pattern for Nested

Muhammad Fezan Af-al: 23-FBAS/PHDSE/F16 Page 3 of 86

Chapter 1. Introduction

L ,

Number of products”

Figure 1.2: Cost estimation of SPL and single product

Cardinality Constraints (BPNCC) cardinality Constraints (dealing of Features (approach is applied
to the Internet of Things (IoT) and Software Product Line of Things (SPLOT) are discussed in the
literature. However, these approaches only consider the primary and nested cardinality constraints
such as "OR,” "AND,” "Alternate,” and "OR group” relationships to calculate the total number of
products. However, there are still possibilities of invalid product derivation due to the crosstree
constraints in the sub-tree of the feature model. This problem leads to wrong cost estimation of
SPL due to invalid products [25, 26].

There are multiple research problems in SPL such as aspect oriented domain for the multithread-
ing of software and crosscutting concerns. However, these problems are undertaken at the time
of development of SPL applications and need to solve at the time of product development. It is
more important to solve the problem of crosstree constraints at domain level of SPL. Therefore,
this research solve the crosstree problems in feature model of software product line. Cross-tree
constraints provide feature models with maximum expressive power as they enable the capture
of any interdependency between features through arbitrary propositional logic formulas. How-
ever, the presence of these constraints adds complexity to the process of reasoning about feature
models. whether using SAT solvers or compiling the model into a binary decision diagram for
efficient analyses. While certain efforts have attempted to streamline constraints by eliminating
them, these approaches typically focus on simple constraints like “requires” and “excludes,” or
they necessitate the introduction of an extra set of features, thereby raising the overall complexity
of the resulting feature model [27]. Conventional methods for analyzing feature models rely on ad-
dressing algorithmic challenges like boolean satisfiability. satisfiability modulo theories, or integer
linear programming. While these existing approaches effectively handle small and medium-sized
problem instances, challenges arise when dealing with the scalability of large-sized feature models.

Muhammad Fezan Afzal. 23-FBAS/PHDSE/F 16 Page 4 of 86

Chapter 1. Introduction

Quantum computers offer the potential for super-polynomial speedups in solving specific algorith-
mic problems, presenting an opportunity to overcome the scaling issues observed in the analysis
of larger feature models [28].

The first problem is crosstree constraints in the loT-based feature model, which cause invalid fea-
ture combinations to become part of SPL, leading to extra effort and cost in developing SPL.
As shown in Fig.1.1, the crosstree constraints "Global Positioning System (GPS)" and "Basic™ ex-
clude each other; therefore, any product that contains GPS and Basic will be invalid. Moreover, the
crosstree constraint "Camera™ includes the "High Resolution”; if the camera is selected, the high
resolution must be part of the product. Fig. 1.1 shows "mobile phone™ SPL where ten products
are invalid due to the crosstree constraints problem. It is essential to remove the invalid products
from the total number of products before developing SPL. However, existing approaches find the
total number of products but do not consider the crosstree constraints that lead to both valid and in-
valid products. Due to invalid products, the development cost and effort increase. “Hence, invalid
feature combinations are generated due to constraints problem, and relationships between varied
features resultantly make this process complex and consume extra effort during integration testing
of SPL.”

This research proposed a novel binary-oriented feature selection crosstree constraint (BOFS-CTC)
approach that calculates the valid feature product combinations by considering IoT devices’ pri-
mary and nested cardinality and crosstree constraints. BOFS-CTC applies for small and large
feature models with low to high complexity constraints. The contribution of this paper is to miti-
gate the invalid feature combinations for product derivation at an early stage of SPL development.
Furthermore, BOFS-CTC has applied different complexity feature models to obtain the total valid
digits of products and found high accuracy. However, the previous approaches need to consider the
crosstree constraints problem to get valid products. In this thesis, different methods are compared
with the proposed BOFS-CTC algorithm, and it is found that BOFS-CTC is a more appropriate
and applicable approach for an accurate features’ combination of the feature model. As a result,
using BOFS-CTC minimizes the total cost and effort of SPL product development. Furthermore,
BOFS-CTC is the independent approach of any specific tool as we have proposed its algorithm.

1.1 Objectives and Scope

The aims of our research are:

* To highlight the strength and weaknesses of existing models presenting their work towards

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Page 5 of 86

Chapter 1. Introduction

Invalid Feature Combinations, we analyze the methodology and approach researchers used
in their work.

* To find the invalid product combinations of SPL.
* To derive the valid product configurations of SPL with the selection of features
* To identify the valid feature combinations for each product derivation.

* To find the cost for each SPL using valid feature combinations and a total number of valid

products.

We will apply the “simple random sampling” technique to validate our proposed solution. The
simple random sampling technique is based on randomly selecting products from the population.
In a simple random sampling technique, each product has an equal chance of occurrence from the
population. Therefore, our validation of results will be based on the random selection of manu-
ally generated products from small and large feature models and will be compared with system-
generated results. We have also driven all invalid products and reached out to them with the list of
all products (combination of features); the absence of invalid products validated the correctness of
our proposed solution.

This thesis is structured as Chapter 2 is Literature Review, Chapter 3 is Binary Oriented Feature
Selection Crosstree Constraints (BOFS-CTC), Chapter 4 is Binary Oriented Feature Selection-
Crosstree Constraint Validation, Chapter 5 is Result and Analysis and Chapter 6 is Conclusions
and Future Directions.

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Puge 6 of 86

Chapter 2

Literature Review

2.1 Valid Products of SPL

The development of a software product line consists of two life cycles: domain engineering and ap-
plication engineering. In domain engineering, all possible common and variable features under the
SPL domain exist. In application engineering, the common and variable features are selected from
the domain engineering to develop the product according to the end-user requirements {27, 28]. To
design multiple combinations, we can use the Binary Pattern for Nested Cardinality Constraints
(BPNCC) Method, which calculates the exact number of combinations of products. BPNCC finds
all possible products automatically by using a top-to-bottom approach. However, invalid products
are generated in the total number of products due to the crosstree constraint between features. Au-
thors have ignored the exclude and include constraints between features [2]. It is only possible
to test some of the products individually as a lot of effort, cost, and time are required because a
large SPL has thousands of products. Through a literature review, it is concluded that this problem
can be solved through combinatorial testing. This type of testing selects a subset of products that
covers all possible interactions of features [25].

Different approaches are used for the development of products. When we drive other products by
combining multiple product line features, many things need to be corrected. Therefore, integration
testing of components is essential for detecting faults and failures in products. Integration testing
tests the interfaces of different SPL features and detects faults due to incompatibility among mul-
tiple parts of an SPL [29]. Due to the increasing number of products, testing them individually
and detecting defects takes a lot of work. Thus, only a subset of products that covers all possible

Chapter 2. Literature Review

interactions of features is selected for testing. In many types of research, different methods are
used for feature integration testing of SPL products and to reduce the number of products. All
of them aim to reduce the effort and cost of integration testing and increase the fault detection
ratio. To minimize testing efforts, a subset of products are selected using different approaches such
as independent pathway tests, combination tests, priority-based tests, mutation-based tests. and
model-based tests [30, 31].

In all these approaches, feature models or product lines are used to select a subset of products.
Many researchers use these approaches differently, with some benefits and limitations. An inte-
gration testing method has been presented to improve testing by dealing separately with optional
features and alternative features of an SPL. This paper recognizes that by growing the number of
items, alternative features have a negative effect. They offer a new approach, the simple form, to
black-box testing. This approach converts the model of the function into a graph of feature inclu-
sion and then associates cases of use with each feature [32, 33]. Then, select the base paths on
this graph using an algorithm that tests feasibility using the Depth First order to find the longest
path. Finally, if they are linearly independent, add these path algorithms. In this algorithm, group
all possible routes by alternative characteristics and use the base route algorithm for each group.
However, this method has some limitations, such as the cost of calculation being higher than the
cost of all characteristics and efforts to create a characteristic model dependency structure. These
efforts are reduced by providing a new algorithm called the “Full Feature Algorithm.” In this
method, there is no need to design any graphs, such as the Feature Integration Graph (FIG). This
algorithm aims to select a subset of products covering all functions. We must greedily add func-
tions to the variable until we have a product that includes the most unused functions. Then, update
the set of user functions, and once all functions are enabled, you're done [34].

2.2 Testing Efforts of SPL Products

Reducing testing effort by pruning irrelevant features based upon multiple test cases. Outside
features are those whose absence or presence has no change in the system's behavior. Thus, they
only test the combinations of relevant features and reduce the testing effort. But at the same
time, it has some limitations, such as we already need to know about all test cases and different
usage scenarios. Furthermore, in other studies, multiple approaches focus on increasing the fault
detection rate using higher strength suites [35].

Researchers also use the prioritization method to detect faults and decrease the testing effort effi-

Muhammad Fe:zan Af=al: 23-FBAS/PHDSE/F 16 Puge 8 of 86

Chapter 2. Literature Review

ciently. A research work describes a process of effective product-line testing using similarity-based
prioritization. In this method, incrementally select the products that are diverse in features to in-
crease the feature interaction coverage. Prioritize the products on a similar basis and then test all
of them. The resuits show that it potentially increases the fault detection ratio but needs to de-
crease the testing effort efficiently. Moreover, introduces a PINE method, which is applied before
generating integration test case scenarios. PINE consists of four significant steps: in the first step,
feature model analysis is done by partitioning the FM into some independent sub-trees. Then,
prioritize each feature with the score given by the domain engineer based on customer needs, time
to market, relationship between elements, etc. At the same time, the score is also obtained through
"event probability,” these two factors are multiplied through an algorithm to get the score for each
feature. In the third step, prune the feature model but cut less important branches by prioritizing
the features on three preference levels: high, medium, and low. These ranges are defined through
Boehm's method. In the last step, another algorithm is presented for selecting configurations in
which every feature is covered at least once in a design. To choose selected configuration features,
they are analyzed based on their relationship and find configurations that cover the maximum no
of features. Thus, these two algorithms reduce the number of products for testing, and the effort of
integration testing decreases [36].

In some research, testing is done through the mutation process, like they perform testing on feature
model mutation by using the fault-based approach. They define some mutation operators that help
find faults and check whether all products are valid. Therefore, it detects glitches related to several
characteristics and relationships. The main measures of these operators are

» The wrong cardinality of a single feature.
¢ Faulty elements of a grouped relation.

* Existence of a set relation.

* Wrong cardinality of a fixed relation.

* Wrong constraint.

Moreover, this method increases the probability of finding faults, so confidence is developed that
the products in the feature model match their requirements. However. the problem of growing com-
plexity is due to the large number of invalid feature combinations and crosstree constraints. It also
ignores some feature model constraints [37]. In addition, some studies are also improving mutation
testing based on function-oriented programming, while the problem of increasing complexity still

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F16 Puge 9 of 86

Chapter 2. Literature Review

needs to be solved. In their work, they receive appropriate mutation operators that validate their
approach across four software product lines and further discuss the challenges of mutation testing.
The result shows that it improves the defect detection method. Still, its limitations are that it is
relatively expensive due to the large number of products or options and does not reduce the testing
effort [38].

As we step forward, for generating Integration testing scenarios (ITS), we studied different meth-
ods in the literature, such as creating test scenarios through activity diagrams, which are the most
promising approaches. In our research work, we are focusing on valid feature combinations for
developing SPL. Errors are caused due to invalid feature combinations concerning cross-tree con-
straints.

In the Software Product Line, core assets are reused to develop a family of products, which helps
reduce development costs, time, and effort. Still, much effort, time, and cost are required to test
this family of products as it exposes errors or compatibility issues caused by integrating ditfer-
ent components or features. Hence, trying all the products individually is challenging [12]. The
literature solves this problem through combinatorial testing in which, instead of all of these prod-
ucts, a subset of products for testing that covers all possible interactions of features is individually
selected [39]. Different methods are defined for choosing this type of product subset, which are
helpful but still have some limitations, as mentioned in Table 2.1. In research work, use a model-
based testing method to test all possible interactions of components. They create placeholders
and integration scenarios that cover all interactions for integration testing. Hence, it is helpful to
uncover inter-component failures through these placeholder integration scenarios [40].

Before proceeding further, it is imperative to present evidence from the literature that the problem
statement stated in this research exists. The following sections give a detailed overview of invalid
feature combinations in the literature.

[n continuation to the probe to present literature on invalid feature combinations, table 2.2 provides
a detailed overview of the ten research publications from renowned journals to give the reader an
idea about the existence of invalid feature combinations.

Table 2.3 shows the combination of the features in binary form by applying the BPNCC approach
[25]. After shedding light on invalid feature combinations, table 2.4 gives an idea about the prob-
lems highlighted due to the invalid feature combinations. These findings are gleaned after an
intensive literature review of the same research papers ACM, IEEE, and Springer presented.

In previous sections, table 2.1 and Table 2.2 have already given enough information on the exis-

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F16 Puge 10 of 86

Chapter 2. Literature Review

Table 2.1: Comparison of existing approaches

FM .
CrossTree | Total .No. | Mapping
References Approaches Tree .
Relationship Constraints | of products | of FM
J. Miguel Horcas, | Web interface to
et. al. Software construct
Product Line syntactically Yes No No Yes
Conference. 2020. | and semantically
Canada [41] Feature model
H. Shatnawi et. al. Extensible
A(.:M S.o ftware mod-el dn.ven Yes No Yes Yes
Engineering 2020. engineering
USA [42] approach
Multi-Objective
Abbas, A et. al. g"“‘“‘f,:‘t‘t‘;‘;
IEEE Access, nary Yes No No No
for Nested
2018 [25] -
Cardinality
Constraints
Abbas, A. et. al. B‘f'(‘)a’l{‘::t::“‘
IEEE Access, rones e Yes No Yes Yes
Cardinality
2017 [26] .
Constraints

Miuthammad Fezan Afzal: 23-FBAS/PHDSE/F16

Puge 11 of 86

Chapter 2. Literature Review

Table 2.2: Analysis of litrature with respect invalid feature combination

Source Document

Finding from the Literature

Framework for Refactoring
Software Product Line
Architecture [15]

* Inconsistencies arise

* Create invalid combinations of features.
* Misconfigured product features and the
evolution of SPL.

Environment Modeling-Based
Requirements Engineering for
Software Intensive Systems [16]

* Generates a set of functions according to
variability constraints,

* FM accepts as output to minimize the invalid
joins to a multi-step configuration.

PACOGEN [17]

* Combinations of functions are common problems
* Generate paired tests
¢ Determine the number of N rows

Feature-Oriented Software
Product Lines [18]

* Mismatched mutability given by a specific application.
* Code integration of teamwork.
¢ Optional feature expresses errors.

Pairwise Testing of SPL [43]

» Different qualities and similarities are combined
» Combining functions make test configurations.
* High variability combination results in unmanaged test

Test Generation Using
Minimum Invalid Tuples [44]

¢ Certain settings may be prohibited.
* Settings are null and are not protected.
* U-tuple is true if it can be used in a valid f-test.

* Validation process configuration provided against

optimized feature
selection [19]

Code Generation to Support the constraints
2:::: a:i(tii(l))ny?:;r]nc * Functions that are not present in the model.

PO * Incomplete mandatory functions and invalid function.
Genetic Algorithm for * Computationally expensive and time-consuming.

* Developers need the ability to easily create and evaluate
the selection.

Detection of Feature
Interactions Feature-Aware [46]

¢ Functional interactions unforeseen
¢ Combination of functions are source of failure.

Automated Diagnosis
of Configuration Errors [47]

* Require several steps configure broad functions

» Making difficult to prevent conflicts and error

* New techniques are needed to debug invalid configurations
* Erroneous configurations

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Page 12 of 86

Chapter 2. Literature Review

Table 2.3: Valid and invalid feature combinations due to crosstree consraints

Nature of . High
#Products Products GPS | Basic | Color Resolution Camera | MP3
1 Invalid 1 1 0 0 0 0
2 Products | l 0 0 0 1
3 GPS 1 1 0 0 1 0
4 exclude 1 1 0 0 1 1
5 lgﬁifd 0 0 1 0 1 0
6 Products 0 1 0 0 1 0
7 Camera 1 0 1 0 1 0
8 Include 0 0 L 0 1 1
9 Hieh 0 1 0 0 1 1
10 & i 0 I 0 I I
11 0 0 0 I 0 0
12 0 0 1 0 0 0
13 0 1 0 0 0 0
14 1 0 0 1 0 0
15 0 0 0 1 1 1
16 1 0 0 1 1 1
17 Valid Products | 0 0 1 1 0
18 1 0 1 0 0 0
19 0 0 0 1 0 |
20 0 0 1 0 0 1
21 0 1 0 0 0 1
22 1 0 0 1 0 1
23 1 0 1 0 0 1
24 0 0 0 1 1 0

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Page 13 of 86

Chapter 2. Literature Review

Table 2.4: Problems identified due to invalid feature combinantions

Source Document Overview of the Problems

Framework for * Suspicious product does not perform correct functions.
Refactoring SPL ¢ it is necessary to evaluate the models to demonstrate the
Architecture [48] architecture and functionality of the SPL.

Environment Modeling- . Speciﬁc_ed b)l' a col_lection ?f functional and

Based RE for Software non-functional requirements

Intensive Systems [49]

¢ Coherent set of individual requirements
* Functions are invalid expressions.

Automatic Generation
of Pairwise Test
Configurations [50]

* Minimal instrumental support for the setup of
combination of test functions.
* Tool returns the minimum number of configurations.

Feature-Oriented SPL
[51]

* Unacceptable combination of functions and interaction,
¢ Challenge is to identify the missing behavior while

in the problem of additional functions,

* Coordination of code in a way that does not affect
mutability.

Integration Testing for

* Various methods and tools reveal scalability issues

SPL [43] * inefficiencies outside of a range of product variants,
Combinatorial Test * Challenge in this effort is to deal with the large number of
Generation for SPL [44] | constraints between different functions.
Code Generation for ° Static and dynamlf: methods dlsadvantfxges of versatility
. . in composition, efficiency, and consumption of resources.

Static and Dynamic .

.t * Force the programmer to develop between static and
Composition of SPL [45] . ..

dynamic composition.

Genetic Algorithm * Optimizing the SPL function with limited resources is a
for Optimized Feature very limited problem. Optimizing
Selection [19] Exact problem-solving algorithms do not scale well.

Detection of Feature
Interactions [46]

* different combinations of functions are possible,
* Not possible to detect the interactions of functions by
creating all possible combinations.

Automated Diagnosis
of SPL Configuration
Errors [47]

* Difficult to debug conflicts and bugs in large function
models.

Muhammad Fezan Afzal: 23-FBAS/PHDSE/Fi6

Puge 14 of 86

Chapter 2. Literature Review

tence of invalid feature combinations and the problems that arise due to the issue. Table 2.5 details
proposed solutions and approaches to counter the effects of invalid feature combinations.

In these approaches, they use feature models or product lines to select a subset of products. Many
researchers use these approaches differently, with some benefits and limitations. The FIG method
has been presented to improve testing by dealing separately with optional features and alternative
features of an SPL. This paper recognizes that by growing the number of items, alternative features
have a negative effect. They offer a new approach, the simple FIG form, to black-box testing. This
approach converts the model of the function into a graph of feature inclusion and then associates
cases of use with each feature. Then, select the base paths on this graph using an algorithm that
tests feasibility using the Depth First order to find the longest path. Finally, if they are linearly
independent. add these path algorithms. In this algorithm, group all possible routes by alternative
characteristics and use the base route algorithm for each group. However, this method has some
limitations, such as calculating FIG, which is higher than the cost of all characteristics’ efforts to
create a characteristic model (FIG) dependency structure. These efforts are reduced by providing a
new algorithm called the "Full Feature Algorithm.” In this method, there is no need to design any
graphs such as FIG. This algorithm aims to select a subset of products covering all functions. We
must greedily add functions to the variable until we have a product that includes the most unused
wunctions | 8].

Finally, Table 2.6 presents the mapping of various analysis methods onto the Software Develop-
ment Life Cycle (SDLC). This section gives an overview of the literature on how multiple re-
searchers analyzed the problems arising from invalid feature combinations and, as per their find-
ings, at which phase of SDLC this issue may be dealt with.

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Puge 15 of 86

Chapter 2. Literature Review

Table 2.5: Method/Approach followed in the wake of invalid feature combinations

of SPL Configurations [47]

Source Document Methods Approaches Used
Intensive Systems Goals of autonomous Reflecting autonomous
[49] objects. subjects.
. Permitted interactions
PACOGEN [50] Greedy algorithms, and between pairs of
meta-heuristics. .
functions.
Feature-Oriented Functional Model to Abstracted for
SPL [51] Prevent Interaction. function interaction.
Pairwise Testing Captures features linked by . .
for SPL [43] required, optional, and alternative. Combinatorial Approach.
Combinatorial Test Minimum Invalid Tuples Notion of Minimum
Generation [44] (MITS). Tinvalid tuples (MIT).
Code Generation and Dynamic composition Static and Dynamic
Composition of SPL [45] | in Object Teams. Composition.
Genetic algorithm . .
for SPL [19] GAFES Genetic Algorithm
Detection of Feature Intentional Testing
Interactions [46] of features . SPL VERIFIER
Automated Diagnosis CURE Diagnostics Debugging configuration

and constraint solver

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16

Page 16 of 86

Chapter 2. Literature Review

Table 2.6: Mapping SPL issues with SDLC phases

Source Analysis Specifications SDLC Phase
Document Method Strategy Galtzht:ging Design | Development | Testing
Variational
Correctness theorem feature-
-by- . based Yes
Construction proving specification
[41]
Feature-Oriented analysis feature-
Contract method based Yes
Composition [42] independent | specification
Modularization
. model .
of Refinement checking feature-
Steps for Agile theorem ’ based Yes Yes
Formal Methods . specification
proving
(52]
. Strategies for
Product-Line composition-
Verification: model based Yes
| Case Studies checking implemen-
and Experiments tation
[53]
Symbolic Model
Checking of family-wide
Product-Line model specification, Yes Yes
Requirements checking feature-based))
Using SAT-Based specification
Methods [54]
Probabilistic Model
Checking for
Energy Analysis model feature-
. . based Yes Yes
in Software checking I
Product Lines specification
[55]

Muhammad Fezan Af-al: 23-FBAS/PHDSE/F 16

Puge 17 of 86

Chapter 2. Literature Review

Towards Formal
Safety Analysis
- in Feature-Oriented | Model checking
Product Line
Development {31
Potential Synergies
of Theorem
Proving and Model checking, | feature-based Yes Yes
Model Checking theorem proving | specification
for Software
Product Lines [32
SPLat: Lightweight
Dynamic Analysis
for Reducing Testing feature-based Yes
Combinatorics in specification
Testing Configurable
Systems [33
Compositional

Verification of . feature-based
Software Product Model checking Yes Yes

specification
Lines [34]

feature-based

Tesi
specification Yes | Development | Tesing

2.3 Research Gap

BPNCC finds all possible products automatically using a top-to-bottom approach to all valid and
invalid combinations [25]. MOO-BPNCC [26] consists of three independent paths (first, second,
and third). Furthermore, heuristics on these paths found that the first path could be more feasi-
ble due to space and execution time complexity. The second path reduces the space complexity;
however, time complexity increases due to the increasing group of features. BPNCC and MOO-
BPNCC are the latest techniques that cannot find invalid. valid, and partially invalid/valid feature
combinations due to cross-tree constraints. The proposed solution will be able to identify the issues
mentioned above in the context of cross-tree constraints.

All major feature model drawbacks can be found using an XML-based modeling technique. The
feature model is mapped using an XML schema, turned into an XML file, and translated to an
XML Schema Definition (XSD) by defining the needs and constraints of the end user throughout
application development. Primary information of feature relationships, such as alternative, oblig-
atory, optional. and OR group, must be predefined at the stage of domain engineering to translate
all constraints and relationships of the feature model in the XML schema. Also, at the application

Muhammad Fezan Af-al: 23-FBAS/PHDSE/F16 Page 18 of 86

Chapter 2. Literature Review

engineering level, feature constraints and end-user requirements must be specified at the XSD level

for proper feature selection.

2.4 Problem Statement

All of the approaches mentioned above ignore the cross-tree constraints while using feature models
that produce some invalid products. Thus, if they consider these constraints, they can reduce invalid
configurations. Furthermore, they did not exploit how we can automatically test the feasibility of
products for their cross-tree controls, such as include and exclude. Due to crosstree constraints in
the feature model, invalid feature combinations become part of SPL, leading to extra effort and cost
in developing SPL. As shown in Fig. 1.1, the crosstree constraints "GPS" and "Basic” exclude each
other; therefore, any product that contains GPS and Basic will be invalid. Moreover, the crosstree
constraint "Camera” includes the "High Resolution”; if the camera is selected, the high resolution
must be part of the product.

Fig. 1.1 shows "mobile phone” SPL where ten products are invalid due to the crosstree constraints.
Table 2.3 1 shows the selection of features, and 0 indicates the feature is not part of the product. It is
essential to remove the invalid products from the total number of products before developing SPL.
However, existing approaches find the total number of products but do not consider the crosstree
constraints that lead to both valid and invalid products. Due to invalid products, the development
cost and effort increase. “"Hence, invalid feature combinations are generated due to constraints,
and relationships between varied features resultantly make this process complex and consume
extra effort during integration testing of SPL." Furthermore, table 2.6 shows a comparative study
of different research studies that map the issues of SPL in the software development life cycle.

2.5 Research Questions

* Mitigating the invalid feature combinations:

How do we minimize the number of invalid feature combinations generated during integrat-
ing software product line testing while dealing with cross-tree constraints?

e Formal method:

What would be the method for generating the finite prioritize feature set to test invalid feature
combinations during integrating testing in the software product line?

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Page 19 of 86

Chapter 3

Binary Oriented Feature Selection
Crosstree Constraints (BOFS-CTC)

We proposed an Oriented Feature Selection Crosstree Constraint (BOFS-CTC) approach that cal-
culates the valid feature product combinations by considering IoT devices’ basic and nested cardi-
nality and crosstree constraints. BOFS-CTC applies for small and large feature models with low
to high complexity constraints. The contribution of this paper is to mitigate the invalid feature
combinations for product derivation at an early stage of SPL development. Furthermore, BOFS-
CTC has applied different complexity feature models to obtain the total valid digit of products and
found 100% accuracy. However, the previous approaches need to consider the crosstree constraints
problem to get valid products. In this thesis, different methods are compared with the proposed
BOFS-CTC algorithm, and it is found that BOFS-CTC is a more appropriate and applicable ap-
proach for an accurate features’ combination of the feature model. As a result, using BOFS-CTC
minimizes the total cost and effort of SPL product development. Furthermore, BOFS-CTC is the
independent approach of any specific tool as we have proposed its algorithm.

3.1 Material and Methods

All of the abovementioned approaches ignore the cross-tree constraints problem while using fea-
ture models that produce some invalid products. Thus, if they consider these constraints. they can
reduce invalid configurations. Furthermore, they should have explored how we can automatically
test the feasibility of products for their cross-tree constraints problems such as include and exclude.

Chapter 3. Binary Oriented Feature Selection Crosstree Constraints (BOFS-CTC)

Table 3.1: Existing approaches comparison for managing variability with CTC

FM Tree Total Number | Mapping of
Approaches Relationship cre of Products | Feature Model
Web interface to construct syntactically
and semantically Feature model] Yes No No Yes
J. Miguel Horcas, et. al. 2020. [41]
Extensible model driven
engineering approach H. Shatmawi Yes No Yes Yes

et. al. 2020. [32]
Multi-Objective Optimization-
Binary Pattern for Nested
Cardinality Constraints Abbas, A Yes No No No
et. al. 2018 [26]
Binary Pattern for Nested
Cardinality Constraints Abbas, Yes No Yes Yes
A. et. al. 2017 [25]

Our proposed algorithm overcomes these limitations and improves the correctness of feature se-
lection. It helps to memorize all the constraints automatically through our new algorithm while
using the feature model. Then, check these constraints among all products to get valid products.
This approach reduces the development cost, effort. and time before SPL product development.
Table 3.1 describes the practices that consider the CTC variability of the feature model. However,
research needs to be done to manage the CTC variability.

3.2 Complexity of Crosstree Constraints

The complexity of the feature model depends on the crosstree constraints of the feature model.
CTCs include and exclude relationships among features and groups of the feature models. By
increasing the CTCs in the feature model, more inclusive and excluded operations that affect the
other feature combinations of SPL are performed. Developing complex systems that provide con-
sumers with various functions takes much work [58, 59]. The Challenge lies in providing many
options for different application contexts with high versatility while restricting the customization
of systems to achieve maintainability and growth management. The Feature model is essential to
dealing with invalid feature combinations by capturing and visualizing the similarities and depen-
dencies between features and the components that provide the features [60, 61]. Feature models
have been widely used in technical systems and as an element of implementing a line of software

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Page 21 of 86

Chapter 3. Binary Oriented Feature Selection Crosstree Constraints (BOFS-CTC)

products for more than ten years. Table 2 shows the comparison of existing approaches. Typically.
the feature model depicts a tree structure with various nodes known as features [62, 63].

3.3 Factors of Invalid Features

Valid and invalid features are based on the complexity of crosstree constraints. Valid features have
low crosstree constraints, and invalid features have high crosstree constraints. Invalid features in-
crease the probability of invalid product configurations. Table 3.2 shows the product configurations
of the “Mobile Phone” feature model in Fig. 1.1. which consists of valid and invalid product con-
figurations due to not considering the crosstree constraints. “GPS™ and “Basic™ features exclude
each other, i.e., only one can be part of the product configuration. Therefore, in Table 3.2, the
invalid product configurations consist of “GPS™ and “Basic,” such as product numbers 3, 9, 15,
and 21.

Furthermore, the Camera” requires “High Resolution,” i.e., if any product configuration adds the
camera in the final product derivation, then there must be a screen “High Resolution.” All the
products in Table 2 are invalid where the camera is one and the high resolution is 0, such as 14, 15,
17. 20, 21, 23, and 24 are invalid. Therefore, we propose a framework that distinguishes the valid
and invalid features of the feature model.

Violations of the given below factors lead to invalid product configurations.
* Or group relationships
* Alternative relationship
* Include crosstree constraints
* Exclude crosstree constraints
* One-to-One (optional to optional)
* One-to-many (optional to optional)
* One-to-One (optional to alternate)
* One-to-many (optional to alternate)
* One-to-One (optional to optional)

¢ One-to-many (alternate to alternate)

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F16 Page 22 of 86

Chapter 3. Binary Oriented Feature Selection Crosstree Constraints (BOFS-CTC)

Table 3.2: Mobile phone SPL product configurations without considering crosstree constraints

Mobile Phone | ... racy | Call | GPS | Basic | Color | . FIB® | camera | MP3
Products Resolution
1 valid 1 1 0 0 1 0 0
2 Valid | 1 0 1 0 0 0
3 invalid 1 1 1 0 0 0 0
4 Valid 1 0 0 0 1 0 0
5 Valid 1 0 0 1 0 0 0
6 Valid 1 0 1 0 0 0 0
7 Valid 1 1 0 0 1 0 1
8 Valid 1 1 0 1 0 0 1
9 Invalid 1 1 1 0 0 0 1
10 Valid 1 0 0 0 1 0 1
11 Valid 1 0 0 1 0 0 1
12 Valid | 0 1 0 0 0 |
13 Valid 1 1 0 0 1 1 0
14 Invalid 1 1 0 1 0 1 0
15 Invalid 1 1 1 0 0 1 0
16 Valid 1 0 0 0 1 1 0
17 Invalid | 0 0 1 0 1 0
18 Invalid 1 0 1 0 0 1 0
19 Valid 1 1 0 0 1 1 1
20 Invalid 1 1 0 l 0 1 1
21 Invalid 1 1 1 0 0 1 1
22 Valid 1 0 0 0 1 | l
23 Invalid | 0 0 | 0 1 1
24 Invalid | 0 | 0 0 1 |

Muhammad Fezan Af-al: 23-FBAS/PHDSE/F16 Puge 23 of 86

Chapter 3. Binary Oriented Feature Selection Crosstree Constraints (BOFS-CTC)

* One-to-one (alternate to alternate)

3.4 Types of Crosstree Constraints

There are two types of crosstree constraints in the feature model:
* Include (Require)
* Exclude (Reject)

The complexity of the feature model is based on the number of features in SPL and the crosstree
constraint relationships. Increasing the features in the feature model gradually increases the crosstree
constraint problems [64]. Therefore, this research focuses on all types of feature models. such as

¢ Small feature model with fewer crosstree constraints
* Small feature model with maximum crosstree constraints
* Large feature model with fewer crosstree constraints
* Large feature model with maximum crosstree constraints

Furthermore, these crosstree constraints are categorized into one-to-one and one-to-many. One-to-
one crosstree constraint is simple due to the relationship between only two features. However, the
One-to-many crosstree constraint is complex due to the relationship of one feature with more than
one feature that increases the dependency. These one-to-one and one-to-many crosstree constraints
further imply optional and alternative feature model groups, categorized as optional to optional and
optional to an alternative.

3.5 Binary Oriented Feature Selections (BOFS)

Our proposed framework consists of two phases. In the first phase, we identify the valid and invalid
features from the feature model according to the complexity of crosstree constraint problems. In
the second phase, we drive the product configurations of SPL based on valid and invalid features.
The BOFS-CTC is a novel approach built on the binary combinations of features for cross-tree
(sub-tree), leaf, and parent node restrictions. The BOFS-CTC is a linear method for counting all
feature model products without violating crosstree and cardinality restrictions.

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Puge 24 of 86

Chapter 3. Binary Oriented Feature Selection Crosstree Constraints (BOFS-CTC)

Additionally, this technique counts all products in an extensive feature model, with n backtrace
nested constraints having zero violation of the constraints. Since terminal features (leaf nodes) are
usable and obvious to end users, they are necessary for product derivation. Functional features
known as terminal features are used to create SPL goods because they do not have any further
child features. At the terminal, the product’s benefits and actual functionality are visible. All
connections between parents of terminal features are represented by non-terminal features [65, 66,
67]. As a result, consider the relationships between the constraints on the sub-tree and the terminal
characteristics of each group (alternative, optional, OR).

3.5.1 BOFS-CTC Framework

The framework suggested a fresh and efficient method to count all SPL products, as shown in Fig.
3.1. OG is the number of optional features in one group, and OF is the number of optional features
in any group. The required, optional. alternative, and OR groups make up the SPL feature model.
All products must always have the necessary characteristics. However. varying features set the
goods apart in the wide range of features. Six stages make up this BOFS-CTC strategy.

* In the first stage, formulas corresponding to various variable groups use a backtrace tree
structure to determine the products.

* The second step, which considers crosstree constraints of features, creates binary combina-
tions of each group and its subgroups.

* The third stage entails dividing the crosstree constraints in Fig. 3.1 into the groups listed
below:

~ Optional to Optional.

-~ One-to-One

= One-to-Two

- One-to-Three or more

— Alternate to Alternate.

~ One-to-Many

— Optional to Alternate and vice versa.

— One-to-Many

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F16 Puge 25 of 86

Chapter 3. Binary Oriented Feature Selection Crosstree Constraints (BOFS-CTC)

» Common features are removed from
sature feature model due to consistency in
H Model | every application of SPL. »

. “0G” » Consists af only optional a

\A:::re 0G” is number of features In optional Rerstue -

group . eroum é,____.-i
* And “OF" 15 the number of optional features in "&ﬁ%

reature model o
* "No. of Constraints” are the number of gl B

relationships with other features. #iw'%

P W - T

lavalid Product Cors-nat:cns

,".-l. . 7
R

Zchona. = Czt cral to apt 218
ona. “a opt cmal v v Alternata to opt ona Alternats ¢o A Yerqste

3 joe - 208 3 2% g o of Constraints

1 RS I
3% S : e

Figure 3.1: BOFS-CTC framework

* .u the fourth stage, formulas corresponding to various variable groups use a backtrace tree
structure to determine the products.

* The fifth step, which considers crosstree constraints of features, creates binary combinations
of each group and its subgroups.

* The final sexist stage is to count all potential products in the feature model.

3.6 BOFS-CTC Product Derivation

In the case of “one optional feature has the CTC with the single feature,” to find the invalid products
from the feature model, we have derived the mathematical equation 3.1 "Accuracy Function™ as
given below™:

Nwmber of invalid products = -;— « 206 3.1)

Here, OG shows the number of features in the OR group with constraints. Therefore, valid products
from the OR group can be derived from equation 3.2.

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Puge 26 of 86

Chapter 3. Binary Oriented Feature Selection Crosstree Constraints (BOFS-CTC)

1
Total valid products = 2" — (5 x 20G) 3.2

Where n is the total optional features that have CTC. In the case of “one optional feature has
CTC with two features of OR group,” to find the invalid products from the feature model, we have
derived the mathematical equation 3.3.

3
Number of 1nvalid products = 3 x 20€¢ (3.3)

Therefore, valid products from the OR group can be derived from the equation 3.4.

Total ralid products = 2" — (% x 20¢) (3B.4)

In the case of “‘one optional feature has CTC with three or more features of OR group,” to find the
invalid products from the feature model, we have derived the mathematical equation 3.5.

Total valid products = 29€¢ - 2 3.5)

Therefore, valid products from the OR group can be derived from equation 3.6.

Total ralid products = 2" — (20¢ — 2) (3.6)

In the case of “Alternate to optional (One-to-many),” to find the invalid products from the feature
model, we have derived the mathematical equation 3.7 and for all valid products, we have derived
equation 3.8.

Number invalid products = 2°F — 1 3.7

Total valid products = 2°F x 4 — (29F — 1) (3.8)

Where OF is the number of optional features, A is the number of alternate features. Equation 3.7
calculates the invalid products of CTC between the alternate and optional OR groups. Equation 3.8

Muhammad Fezan Afzal. 23-FBAS/PHDSE/F16 Page 27 of 86

Chapter 3. Binary Oriented Feature Selection Crosstree Constraints (BOFS-CTC)

evaluates the total number of valid products. In the case of “alternate to alternate (one-to-many),”
to find the invalid products from the feature model, we have derived the mathematical equation 3.9.
Invalid pfoducts = #constraints are applied on the alternate group of features as only one feature is

selected among n number of -features.

Total valid products = n x n — invalid products 3.9

3.6.1 BOFS-CTC Algorithm

BOFS-CTC algorithm is developed to automatically generate product feature combinations in bi-
nary form, whereby characteristics selected are denoted by one and those not chosen by 0. BOFS-
CTC algorithm consists of six modules and one main module that calls the other six modules, as
given below.

The first module of BOFS-CTC structured a tree known as the feature model, where root, parent,
and chilled nodes with their name have been defined. Algorithm 1. requires the data set of features
and their cardinality relationships, such as mandatory, optional, alternate, and OR group.

Vulid Features Extraction

import random

from anytree import Node, RenderTree,render, AsciiStyle

from anytree.exporter import DotExporter
Creating tree structure

A = Node("'Mobile™) # root

B = Node("Mandatory”, parent=A)

C = Node(”Optional”, parent=A)

D = Node("’c”, parent=B)

E = Node('Screen”, parent=B)

F = Node("GPS", parent=C)

G = Node("Media”, parent=C)

H = Node("Basic”, parent=E)

I = Node(Color”, parent=E)

J = Node("High Resolution”, parent=E)

K = Node("’Camera”, parent=G)

L = Node("MP3", parent=G)
Algorithm 1: Feature model data and constraints input

Algorithm 2. consists of five modules, where the first and second modules generate a list of features
that an SPL domain contains according to their specific groups and relationships. As mentioned,

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F16 Puge 28 of 86

[- 2892 >

Chapter 3. Binary Oriented Feature Selection Crosstree Constraints (BOFS-CTC)

Defining lists of features
Screen = ["Basic”,”Color”,”"High Resolution”]
Media = ["Camera”, "MP3"]
Mandatory = ["Calls™,”Screen”]
Optional = ["GPS”,"Media™]
Define function to display Mandatory features
def display_mandatory_features(Mandatory, Screen, select):
print("Mandatory Features for Product:”, Mandatory[0])
print("Mandatory Features for Product:”, Mandatory[1])
print("Select Screen Type:”, Screen[select])
Define function to display Optional features
def display_optional_features(Optional, Media, selectl):
print(""Optional Features for product:”. Optional[0])
print("Optional Features for product:”, Optional{1])
if select] == 0:
print("Selected Optional Feature:”, Optional[selectl])
elif select] == 1:
print("Selected Optional Feature:")
print("Media Types:”, Media[selectl])
print("Media Types:”, Media[0])
Define function to display total features and selected features count
def display_count_plot(O_count, T_count, T_M_count, T_S_count):
S_M_count=2
selected = S_M_count + O_count
print("Total Features:”, T_count)
print("’Selected Features:”, selected)
import matplotlib.pyplot as pit
left =1, 2, 3, 4]
height = [T_M_count, T_S_count, T_count, selected]
tick label = ['Mandatory’, 'Optional’, "Total Features’, "Selected Features']
plt.bar(left, height, tick_label=tick label, width=0.8, color=["blue’, 'red'])
plit.xlabel(’Labels’)
plt.ylabel(’ Count’)
plt.title('Features Modeling’)
pit.show()
Define main function to call all functions
def main_function():
print(RenderTree(A, style=AsciiStyle()))
display_mandatory_features(Mandatory, Screen, random.randint(0, 2))
display_optional_features(Optional, Media, random.randint(0, 1))
display_count_plot(random.randint(1, 2), 7, 4, 3)
Call main function

main_function()
Algorithm 2: Algorithm for entering features with relationships

Muhammad Fezan Af-al: 23-FBAS/PHDSE/F 16 Page 29 of 86

Chapter 3. Binary Oriented Feature Selection Crosstree Constraints (BOFS-CTC)

Table 3.3: Mobile phone feature model valid product configurations

i‘frf;‘:c':: Call | GPS | Basic | Color Rei'li':ion Camera | MP3
i T T [0 o I 510
3 T 1T 0 [1 0 0 0
3 T T o0 00 i 0 | 0
3 T 10 0 | 1 0 0] 0
5 T T o0 1 [0 0 0 | 0
6 T T T 1 0 [0 1 0 i
7 T T 0 [1 0 0 i
8 T o0 00 I 0 1
5 T 10 0 1 0 0 |
0 1T 0 1T 0 0 0 I
T I 1T 0 [0 1 1 0
B 1T 10 0 0 I I 0
3 T T 11 0 [0 1 1 i
i 1100 o I i T

the name of the features of the mobile feature model is given below.

In the third module, mandatory features are always part of the product; however, constraints can
also exist in leaf nodes of mandatory features. Therefore, the third module deals with the manda-
tory features where an alternate relationship exists. In the given bellow module, only one feature
can be part of the product configuration from the three mandatory alternate features (Basic et al.
Resolution).

The fourth module deals with optional features that may or may not be part of product configura-
tion. Therefore, it has only two options: 1) select, i.e., 1, and 2) not selected, i.e., 0. The given
bellow module is applied on optional group media of mobile feature model where parent node
media consists of two leaf nodes MP3 and camera.

In the fifth and last module, input the crosstree constraints, including and excluding features; if
any configurations violate the crosstree constraints, that configuration is excluded from the total
number of products. This process generates final valid feature combinatijons for the whole SPL do-
main. Therefore, get all valid features a combination without any cardinality relationship violation
and crosstree constraints.

Previously proposed algorithms have been applied to the mobile phone feature model in Fig. 1.1
and get 24 product configurations where some invalid configurations were also generated due to

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F16 Page 30 of 86

Chapter 3. Binary Oriented Feature Selection Crosstree Constraints (BOFS-CTC)

Table 3.4: BOFS-CTC Comparison with other proposed approaches based on feature model level

Bina Nested Single Level
Approaches | CTC Combin;};ion Constraints Coistraints
COVAMOF | No Yes No Yes
GenArch+ | No No No Yes
CVL No Yes No Yes
BPNCC No Yes Yes Yes
BOFS-CTC | Yes Yes Yes Yes

crosstree constraints, as shown in Table 3.1. Therefore, BOFS-CTC is applied to the same feature
model with cardinality and crosstree constraints and has 14 product configurations. From Table
3.3. BOFS-CTC removed ten invalid product configurations, as shown in Table 3.3. Use the rela-
tionships below to verify the valid product configurations in Table 3.3. GPS has no relationship
(exclude) with Basic, such as “GPS—Basic,” where GPS is selected, i.e., GPS=1, then Basic should
not be chosen, i.e., Basic=0. GPS can be set where the screen must be color or high resolution. The
other CTC of the camera requires a high-resolution screen; if camera=1, then the high resolution
must be 1. These CTCs are satisfied. Therefore, all 14 products are valid in Table 3.3.

3.6.2 BOFS-CTC Comparison

A comparative study is performed of BOFS-CTC with previously proposed approaches in the lit-
erature, such as COVAMOF, GenArch+, Common Variability Language (CVL), and BPNCC, as
shown in Table 3.4. A comparative study is based on significant parameters defining the working
and accuracy of the proposed approaches. These proposed approaches calculate and generate the
total number of SPL products. BOFS-CTC is more appropriate and covers all the significant pa-
rameters that generate all product configurations. The previously proposed approaches do not con-
sider the crosstree constraints during the product configurations; however, BOFS-CTC generates
binary combinations with the single-level, nested, and crosstree constraints. Therefore, BOFS-
CTC is the best approach to calculating and generating the binary combinations of SPL product
configurations.

BOFS-CTC is applied to small and large feature models with different relationships and limi-
tations. Table 3.5 shows the results of a total number of valid products by considering all the
feature model’s primary relationships and crosstree constraints. Results show that the crosstree
constraints significantly affect the total number of valid products. If the crosstree constraints are
not considered, the total number of products is higher than the given products due to invalid prod-

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Page 31 of 86

Chapter 3. Binary Oriented Feature Selection Crosstree Constraints (BOFS-CTC)

Table 3.5: BOFS-CTC Applied on small and large feature models

No. of | Manda- | Optio- # Valid
Feature Model Features | tory nal XOR | OR | Grouged | CTC Product
Web Content
Delivery 15 1 4 3 1 9 6 23
Delay block
semantics 23 8 7 1 0 7 20 41
specification
Epic slice 32 7 4 0 |6 20 9 | 275352
machine
Sale Computers | 5 0 2 10 | 1 35 23 | 12088
Specification
Route Finder
Feature Model 51 10 1 7 11 39 6 9997020
Smart Home 78 38 27 1 4 14 10 | 14480162

uct combinations. Therefore, BOFS-CTC is more effective and accurate for all feature models,
such as small, large, simple, and complex (nested cardinality constraints, crosstree constraints).

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16

Page 32 of 86

Chapter 4

Binary Oriented Feature
Selection-Crosstree Constraints Validation

This thesis proposes the BOFS-CTC approach and is used to find the valid total number of products
in SPL. BOFS-CTC is a novel approach that evaluates the crosstree constraints in the feature model
*y avoid invalid product configurations and find the valid products of SPL. Based on the feature
wmodel structure, we have categorized six cases of the feature model for the application of BOFS-
CTC according to the crosstree constraints. These cases are based on the different relationships
of the features of one parent node to the features of another parent node. Furthermore, these
relationships are between variable features, such as alternate and optional features. The first step
is to find the invalid product configurations that do not follow the crosstree constraints, and the
second step is to find the total number of products that include all the valid and invalid product
configurations. The third step is removing the invalid products calculated in the first step from the
total number of products. Only valid products that do not violate the crosstree and relationship
constraints are obtained through this process.

SPL companies that develop products from a specific domain by reusing the features and expanding
the family of products only spend the exact cost and effort on invalid products using our proposed
solution.

BOFS is valid for the ‘n’ number of features in a feature model where different features have
crosstree constraints with individual or group of features. Therefore, we have categorized the
crosstree constraints of features in the feature model as given below.

33

Chapter 4. Binary Oriented Feature Selection-Crosstree Constraints Validation

4.1 Feature Model Optional Selection

Fig. 4.1 shows feature model that only consists of crosstree constraints among optional features,
where only optional features exist.

* One —to — One (Op — Oy3)
* One —to - Two (O_“ — (Ofg && Oj:;))

Case I: Feature model that exists zero alternate features and “n" number of optional features.
Crosstree Constraint: one optional to two optional features.

Root
Fi F2 | F3 Fn Optional
Optional | | Optional Optional | =TT feature

Figure 4.1: CTC of One optional to two optional features

Root

1| F2 F3 I
Optional | | Optional | | O tignal

Figure 4.2: Crosstree constraints with one optional to two optional

Fig. 4.2 shows only three features that have crosstree constraints (O «— (Opa || Oy3))
Equation 4.1 is used to calculate the invalid products given bellow.

Anvalid products = 2"7% 4 2"3 4.1)

Invalid products = 232 + 233

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F16 Puge 34 of 86

Chapter 4. Binary Oriented Feature Selection-Crosstree Constraints Validation

Table 4.1: Valid and invalid product configurations of Figure 4.2

Products | OF1 | OF2 | OF3 Comment
0 Valid
Valid
Valid
Invalid: (Oﬂ_ «— 0]2)
Valid
Invalid: (Op1 — Oyy)
Valid
Invalid: (O — (Op2 OR Oy3))

———| - | ojo|o

00| ~J] O\ | £ W NI —
| et | D | | = | DO

1
0
1
0
1
0
1

Invalid products = 2! +2°
Invalid products =2+1=3

In table 4.2. eight total products and three products (4, 6, and 8) are invalid due to defined
crosstree constraints that have been calculated using Equation 1.

From Figure 4.2. where optional features are a minimum of three, i.e. n=3. Calculate the
invalid products by using equation 4.1. Fig 4.3 shows the total number of products, valid
.1, und invalid products of the feature model of Fig 4.2

T - T yl
“utn aumper of Prosuctt /ia Invair1

Figure 4.3: Valid and Invalid Products indicates table 4.1
Fig 4.4 shows the feature model with the same crosstree mentioned above constraints. How-
ever, the number of optional features is increased by one, i.e.. 4.

From the figure 4.4, where optional feature are minimum 4 i.e. n=4. Calculate the invalid
products by using equation 4.1

Muhammad Fezan Af-al: 23-FBAS/PHDSE/F16 Page 35 of 86

Chapter 4. Binary Oriented Feature Selection-Crosstree Constraints Validation

Root

F1 | F2 3| F4 |
Optional | | O ti‘onal‘ Optional | | Optional

Figure 4.4: Four Optional Features with One-to-Two CTC

Table 4.2: Valid and Invalid Product configurations from Figure 4.4.

Products | OF1 | OF2 | OF3 | OF4 Comment
l 0 0 0 0 Valid
2 l 0 0 0 Valid
3 0 1 0 0 Valid
4 1 1 0 0 Invalid: (Os1 — Opa)
5 0 0 1 0 Valid
6 1 0 1 0 Invalid: (0,1 — Of:;)
7 0 1 l 0 Valid
8 1 1 l 0 Invalid: (Oﬂ_ — (sz OR Of_'j))
9 0 0 0 1 Valid
10 l 0 0 1 Valid
11 0 1 0 i Valid
12 1 1 0 [Invalid: (Oﬂ — Of_w)
13 0 0 1 1 Valid
14 1 0 \ 1 Invalid: (Ofl - Of:;)
15 0 1 1 1 Valid
16 1 l 1 1 Invalid: (O_n - (0}-2 OR ()f-;))

Muhammad Fezan Af-al: 23-FBAS/PHDSE/F 16 Puge 36 of 86

Chapter 4. Binary Oriented Feature Selection-Crosstree Constraints Validation

0

10 -

Total number of Products Vahd Invald

Figure 4.5: Valid and Invalid Product configurations indicates table 4.2

Invalid products = 212 4 243
Invalid products = 2% 4- 2!
Invalid products =1+2=16

Table 4.2 shows sixteen total products, and six products (4, 6, 8, 12, 14, and 16) are invalid
due to defined crosstree constraints. Fig. 4.5 shows the total number of products, valid and
invalid products from the table 4.2

Root

S Fz] F3| A, |
Optional | [Optional Optional Optional | _ Optional

Figure 4.6: Five Optional Features with One-to-Two CTC

Fig 4.6 shows the five optional features; the constraints remain the same, i.e., one-to-two
optional features. In Table 4.3, thirty-two total number of products and twelve products (4,
6. 8, 12, 14, 16, 20, 22, 24, 28, 30, and 32) are invalid due to defined crosstree constraints.
From the figure 4.6, where optional feature are minimum 5 i.e. n=3. Calculate the invalid
products by using equation 4.1

Muhammad Fezan Af-al: 23-FBAS/PHDSE/F 16 Page 37 of 86

Chapter 4. Binary Oriented Feature Selection-Crosstree Constraints Validation

Table 4.3: Valid and Invalid Product configurations from Figure 4.6.

Products | OF1 | OF2 | OF3 | OF4 | OF5 Comment

1 0 0 0 0 0 Valid

2 | 0 0 0 0 Valid

3 0 | 0 0 0 Valid

4 1 l 0 0 0 Invalid: (O, — Oy2)

5 0 0 1 0 0 Valid

6 1 0 1 0 0 Invalid: (Of — Op)

7 0 1 1 0 0 Valid

8 1 1 1 0 0 [Invalid: (Of, — (Op2 OR Oy3))
9 0 0 0 1 0 Valid

10 1 0 0 1 0 Valid

11 0 1 0 1 0 Valid

12 1 1 0 1 0 Invalid: (Oj; — Oy,)

13 0 0 1 1 0 Valid

14 1 0 1 1 0 Invalid: (O — Oja)

15 0 1 | 1 0 Valid

16 1 1 1 1 0 | Invalid: (Of, — (Of2 OR Oys))
17 0 0 0 0 I Valid

18 1 0 0 0 1 Valid

19 0 1 0 0 1 Valid

20 1 1 0 0 1 Invalid: (Oj1 — Oy2)

21 0 0 I 0 1 Valid

22 1 0 1 0 1 Invalid: (Oy; — Oy3)

23 0 | 1 0 1 Valid

24 1 I 1 0 1 | Invalid: (Op1 — (O2 OR Oy3))
25 0 0 0 1 1 Valid

26 1 0 0 1 1 Valid

27 0 1 0 1 1 Valid

28 1 1 0 1 1 Invalid: (Oy, — Oy)

29 0 0 1 | 1 Valid

30 I [0 | 1 | 1 |1 Invalid: (O, — O}3)

31 0 1 1 1 1 Valid

32 1 1 1 1 1 | Invalid: (O;1 — (Og2 OR Oy3))

Muhammad Fezan Af-al- 23-FBAS/PHDSE/F 16 Page 38 of 86

Chapter 4. Binary Oriented Feature Selection-Crosstree Constraints Validation

LTy

'.IJT

.3

: M L
Tt al nteher of P te vald ¥ Al

Figure 4.7: Valid, Invalid Configurations from table 4.3

Invalid products = 23 + 22
Invalid products =8 +4 = 12

Fig 4.7 shows the total number of products, valid and invalid products of feature model
combinations of table 4.3

Root

M F F2 F3 F4 F5 i F6
I_Qﬂi,maLl Louipnal..‘ I_Qo_quJ bpsigml_l L_Optional l I._Qp_xl_q_r\ﬂ]
Figure 4.8: Six Optional Features with One-to-Two CTC, Valid, Invalid Configurations

From Fig 4.8, there are sixty-four possible total number of products and 24 products (4, 6.
8, 12, 14, 16. 20, 22, 24, 28, 30, 32, 36, 38, 40, 44, 16. 18, 52, 54. 56, 60, 62 and 64) are
invalid due to defined crosstree constraints as shown in table 4.4,

Figure 4.8 shows optional features with a minimum of 6, i.e., n=6. Calculate the invalid
products by using equation 1.1 Fig 4.9 shows the total number of products, valid and invalid
products of the feature model of Fig 4.8

Invalid products = 2"—2 4 26-3

Invalid products = 24 + 23

Miuhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Page 39 of 86

Chapter 4. Binary Oriented Feature Selection-Crosstree Constraints Validation

Table 4.4: Invalid Product with six optional features one-to-one CTC from fig 4.8

products | OF1 | OF2 | OF3 | OF4 | OFS | OF6 Comment

1 1 1 0 0 0 0 [nvalid: (O — Oy2)

2 I 010070 Tnvalid: (Oj; — Oy3)

3 1 1 | 0 0 0 Invalid: (Of]_ «— (sz OR Of:;))
4 | | 0 | 0 0 Invalid: (Ofl «— sz)

5 1 |01 1]0]o0 Tavalid: (Oj; — Ojs)

6 1 1 l 1 0 0 Invalid: (0}1 — (Ofg OR Of:;))
7 1 1 0 0 | 0 Invalid: (O — Op;)

8 1 0 1 0 1 0 Invalid: (Ofl — Ofs)

9 1 1 1 0 | 0 Invalid: (Oﬂ — (sz OR O_f';))
10 1 | 1|0 | 1110 Invalid: (Oj, — Oj,)

11 1 0 1 1 1 0 Invalid: (Oj1 — Oys)

12 1 1 1 1 1 0 | Invalid: (O — (Op2 OR Op3))
13 1 1 0 0 0 1 Invalid: (O — Oys)

14 L |0 1] 0] 01 Tnvalid: (O, — Oja)

15 1 | 1 | 1| 0| 0 | 1 |Invalid (Op — (Oy2 OR Op3))
16 1 1 0 1 0 1 Invalid: (On — sz)

17 1 [0 |1] 101 Tnvalid: (Of, — Oy3)

18 1 1 1 | 0 1 Invalid: (Ofl «— (sz OR Of:;))
19 1 | 1] 0] 0| 1|1 Invalid: (O;; — Oj7)

20 1 | 0 | 1] 0] 11 Invalid: (O;; — Oy3)

21 1 1 1 0 1 1 [Invalid: (Op — (Of2 OR Oy3))
22 1 1 0 l 1 1 Invalid: (Oy; — Oys)

23 1 [0 | 1 [111 (O — Opa)

21 1 [1T [1 [1 [1 [1 |Tovalid: (O — (O5 OR Oypy))

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F16 Puge 40 of 86

Chapter 4. Binary Oriented Feature Sefection-Crosstree Constraints Validation

&

£

<)

L ind

Figure 4.9: Six Optional Features Valid and Invalid Configurations from table 4.4

Invalid products = 16 + 8 = 12
* One —to — Three (O — (Ojpz && Oy3 && Oyy))

4.2 Alternate Feature Model Optional Selection

Crosstree constraint: One optional to two optional features where two mandatory alternate features
and ‘n’ optional features exist, as shown in Fig 4.10.

o Ag || Ap2 &8& One — to — One (O3 — Oyy)
. Af], " -'lfz && One —to—Two (0f3 — (Of4 && O_f_r,))

Where Af; and Ay, shows the alternate features, where only one feature can be part of
product configuration.

Table 4.5 shows sixteen total number of products, and six products (7, 8, 11, 12, 15, and 16)
are invalid due to defined crosstree constraints. Fig 4.11 shows the total number of products,
valid and invalid products of feature model configurations of table 4.5.

Invalid Cominantions = Alt x (2" +2"%) 4.2

Equation 4.2 is used to identify the invalid product configurations for the feature model
that consists of a group of two alternate features and three optional features. The crosstree

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Page 41 of 86

Chapter 4. Binary Oriented Feature Selection-Crosstree Constraints Validation

Table 4.5: Combination of two alternate and thre optional from fig. 4.10

Products | AF1 | AF2 | OF3 | OF4 | OF5 | Comment
1 0 1 0 0 0 Valid
2 1 0 0 0 0 Valid
3 0 1 1 0 0 Valid
4 1 0 1 0 0 Valid
5 0 1 0 1 0 Valid
6 1 0 0 1 0 Valid
7 0 1 1 1 0 Invalid
8 1 0 1 1 0 Invalid
9 0 1 0 0 1 Valid
10 1 0 0 0 1 Valid
11 0 1 1 0 l Invalid
12 | 0 1 0 1 Invalid
13 0 1 0 | 1 Valid
14 1 0 0 1 1 Valid
15 0 1 1 1 1 Invalid
16 1 0 1 1 1 Invalid

constraint among these three optional features is One-to-two. “n” is the total number of
optional features, and “Alt” is the total number of alternate features. The above figure shows
the value of n=3 and alt=2 in equation 4.2.

Invalid Combinantions = 2 x (2372 4 23-3)
Invalid Combinantions = 2 x (2! +29)

Invalid Combnantions =2 x (3) =6

Root
1|l R Bl F4 F5
Alternate | | Alternate Optional Optional Optional
a Y &

Figure 4.10: Two Alternate Features with One-to-Two CTC Feature Model

Muhammad Fezan Af=al: 23-FBAS/PHDSE/F 16 Page 42 of 86

Chapter 4. Binary Oriented Feature Selection-Crosstree Constraints Validation

Table 4.6: Two Alternate Features with One-to-Two CTC, Four optional from fig 4.12

#Products | AF1 | AF2 | OF3 | OF4 | OF5 | OF6 | Comment
1 0 1 0 0 0 0 Valid
2 1 0 0 0 0 0 Valid
3 0 1 1 0 0 0 Valid
4 1 0 1 0 0 0 Valid
5 0 1 0 1 0 0 Valid
6 1 0 0 1 0 0 Valid
7 0 | 1 1 0 0 Invalid
8 1 0 1 1 0 0 Invalid
9 0 1 0 0 l 0 Valid
10 1 0 0 0 l 0 Valid
11 0 1 1 0 1 0 Invalid
12 1 0 1 0 1 0 Invalid
13 0 1 0 1 l 0 Valid
14 1 0 0 1 1 0 Valid
15 0 1 1 1 l 0 Invalid
16 1 0 1 1 | 0 Invalid
17 0 1 0 0 0 1 Valid
18 1 0 0 0 0 | Valid
19 0 1 1 0 0 1 Valid

20 1 0 | 0 0 1 Valid
21 0 1 0 l 0 1 Valid
22 1 0 0 1 0 1 Valid
23 0 1 | 1 0 1 Invalid
24 1 0 1 1 0 l Invalid
25 0 1 0 0 1 1 Valid
26 1 0 0 0 l 1 Valid
27 0 | 1 0 l | Invalid
28 1 0 1 0 l 1 Invalid
29 0 1 0 1 1 1 Valid
30 1 0 0 | | | Valid
31 0 | 1 1 1 | Invalid
32 1 0 l 1 1 1 Invalid

Muhammad Fezan Af-al: 23-FBAS/PHDSE/F16 Puge 43 of 86

Chapter 4. Binary Oriented Feature Selection-Crosstree Constraints Validation

Cuty ey Pl Y]

Figure 4.11: Valid and Invalid Configurations from table 4.5

Root
F1 F2 F3 F4 F5 F6
Alternate Alternate Optional Optional Optional Optional

L 3 5
Figure 4.12: Two Alternate Features with One-to-Two CTC, Four optional Feature Model

Table 4.6 shows 32 total number of products, and 12 products (7, 8, 11, 12, 15, 16, 23, 24,
27, 28, 31, and 32) are invalid due to defined crosstree constraints. Fig 4.13 shows the total
number of products, valid and invalid products of feature model configurations of table 4.6

[n figure,4.12 the value of n=4 and alt=2 put in equation 4.2.
Invalud Combinantions = 2 x (2172 4 24-%)
Invalid Combinantions = 2 x {22 +21)

Invalud Combinantions = 2 x (6) = 12

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Puge 44 of 86

Chapter 4. Binary Oriented Feature Selection-Crosstree Constraints Validation

4]

T tASumter ot Product

noad

Figure 4.13: Valid and Invalid Configurations from table 4.6

4.3 Increase Alternate Feature Model Optional Selection

Crosstree constraint: One optional to ‘n’ optional features where ‘n’ mandatory alternate and ‘n’
optional features exist.

. Aﬂ " Afg " .4/3 && One — to — Three (O_“ ~ (O_fs && Ofs))

Root
F1 F2 F3 F4 F5 F6
Alternate Alternate |{ Alternate QOptional Optional Optional

8 [] L

Figure 4.14: Three Alternate Features with One-to-Three CTC Optional

Invalid Combinantions = 3 x (2372 4 23-3)
Invalid Combinantions = 3 x (2} + 29)
Invalid C'ombinantions =3 x (3) =9

From the feature model Fig 4.14, there are nine invalid product configurations in Table 4.7.
However, the total number of products is 24, and the valid products are 13.

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F16 Page 45 of 86

Chapter 4. Binary Oriented Feature Selection-Crosstree Constraints Validation

Table 4.7: Three Alternate Features with One-to-Two CTC, Four optional from fig 4.14

Products | AF1 | AF2 | AF3 | OF4 | OF5 | OF6 | Comment
i 0 0 1 0 0 0 Valid
2 0 1 0 0 0 0 Valid
3 1 0 1 0 0 0 Valid
4 0 1 0 1 0 0 Valid
5 0 0 1 1 0 0 Valid
6 1 1 0 1 0 0 Valid
7 0 0 | 0 1 0 Valid
8 0 | 0 0 | 0 Valid
9 1 0 | 0 | 0 Valid
10 0 1 0 1 1 0 Invalid
11 0 0 1 1 1 0 Invalid
12 1 | 0 1 1 0 Invalid
13 0 0 1 0 0 1 Valid
14 0 1 0 0 0 1 Valid
15 1 0 1 0 0 1 Valid
16 0 1 0 1 0 1 Invalid
17 0 0 1 1 0 1 Invalid
18 1 1 0 t 0 | Invalid
19 0 0 | 0 | 1 Valid

20 0 1 0 0 1 1 Valid
21 1 0 1 0 1 1 Valid
22 0 1 0 1 1 1 Invalid
23 0 0 l l | 1 Invalid
24 1 | 0 | 1 1 Invalid

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Puage 46 of 86

Chapter 4. Binary Oriented Feature Selection-Crosstree Constraints Validation

Fig 4.15 shows the total number of products valid and invalid product configurations of the
feature model from Table 4.7.

P ——

“uial Number 1. Prochuct v o lieeold

Figure 4.15: Valid and Invalid Configurations from table 4.7

Case III: Any number of Alternate and N number of optional

Invalid Combinantions = k x Alt x 2™ 4.3)

Where “alt” is total number of alternate features. K is constant whose value is 7 i.e. k=7 and
m=0,1,23,4,56....

Minimum optional feature should be 4 where value of m=0. Where optional features will be
5 then the value of m=1 as so on.

Equation 4.3 is only valid where any alternate and n number of optional features are used.
Still, the constraint is between one optional and three optional features, as mentioned in Fig
4.16. Put the values 1n equation 4.3.

Invalid Combinantions =T x 2 x 2 = 14

As mention in table, there are 14 invalid product configurations that are the same as derived
from the equation 4.3.

hd flfl " Afg " .'1,‘3 && One — to—One (Of4 L (()f,', && Ofe && Of','))

From figure 4.18, put the values in equation 4.3.

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Page 47 of 86

Chapter 4. Binary Oriented Feature Selection-Crosstree Constraints Validation

:'_\
N _ " —
" . ~. - \\-\
e .\ ~, \\\\ —
ll - * N \\ T
— —
L 3 s e e fn
i P2 + | Optional {| Optional Optional

Alternate Alternate

\
AN

I F3 F4
Optional Optional
= ¥

Figure 4.16: Feature model of n alternate and n optional features

Invalid Combinantions =T x 4 x 2 = 28

As mention in table, there are 28 invalid product configurations that are the same as derived from
the equation 4.3.

From figure 4.20, put the values in equation 4.2.
Invalid Combinantions =7 x 2 x 2! =28

As mention in Fig 4.17, there are 28 invalid product configurations that are the same as derived
from the equation 4.3.

From above figure, put the values in equation 4.3.
Invalid Combinantions = 7 x 3 x 22 = 84

As mention in Fig.4.24 , there are 84 invalid product configurations that are the same as derived

from the equation 4.3.

Muhammad Fezan Af-al: 23-FBAS/PHDSE/F16 Page 48 of 86

Chapter 4. Binary Oriented Feature Selection-Crosstree Constraints Validation

40

Tt Nurmber of Product

{vvakd

Figure 4.17: Valid and Invalid product configurations from fig 4.18

» Raoot
———e
1 r :
oy 2| P B | B l F?
Alterratei Alternate ! ' A‘ernate I LOpuonaI Ouotional - | Cptional | | Optional
a L} L)

Figure 4.18: Four optional features with one-to-three optional CTC

Fl

Alternate : Yteouate R '

2

| RO:[.

' PN 15 fu iro [t
Alteragte | | Alterngte Opteonal Optional Optional | Nphonal
AE— ¥ e" "1 Y

Figure 4.19: Four Alternate and Four optional features with one-to-three optional CTC

Muhammad Fezan Af-al: 23-FBAS/PHDSE/F 16 Puge 49 of 86

Chapter 4. Binary Oriented Feature Selection-Crosstree Constraints Validation

0
60
»
8
20
o ! - i
ot Numer of "o Ir vold

Figure 4.20: Valid and Invalid product configurations from fig 4.19

1 I i m | e s % 1
 uiernate i | Alternate | | Oztional ; | Opticnal JI , Cpuicnal Optonal | Optona
L] L} A &

Figure 4.21: Four Alternate and Four optional features with one-to-three optional CTC

(/]

19

Tota Number uf Praduct vald nvad

Figure 4.22: Valid and Invalid product configurations from fig 4.21

Muhammad Fezun Af-al: 23-FBAS/PHDSE/F 16 Puage 50 of 86

Chapter 4. Binary Oriented Feature Selection-Crosstree Constraints Validation

F4 F5

F1 F2 F3 Optional Optional

Alternate Alternate Alternate

el

N

F6 F7 F8
Optional Optional Optionai Optional
T ()

Figure 4.23: Three Alternate and six optional features with one-to-three optional CTC

200

150

108

100
84

k0

£ P07
Total Number of Products

0 -k

Invahd

Figure 4.24: Valid and Invalid product configurations from fig 4.23

Muhammad Fezan Af=al: 23-FBAS/PHDSE/F 16 Puge 51 of 86

Chapter 5
Results and Analysis

Crosstree constraints are essential to feature modeling because they allow for analyzing and ex-
tracting insightful knowledge from feature models. A software system’s configurations and interac-
tions between features are represented using feature models, which help stakeholders comprehend
and analyze the system’s variability.

“iosstree constraints are used in feature modeling to specify dependencies or interactions between
several features or feature groups. These restrictions outline the requirements that must be met
for the system to be configured validly. Several important conclusions can be drawn from the
outcomes and the crosstree constraints.

Crosstree constraints, in the first place, aid in discovering feature model discrepancies or conflicts.
Conflicts arise when conflicting restrictions prohibit certain feature combinations. Such disputes
can be found by analyzing the crosstree constraints, which enables stakeholders to fix them and
guarantee the feature model is internally consistent.

Second, crosstree constraints make comprehending how feature interactions affect things easier.
Crosstree constraints capture the interactions that frequently occur between features in a software
system. By analyzing the constraints, stakeholders can learn more about how the existence or
absence of particular features impacts the availability or restrictions of other features. Making
decisions concerning feature dependencies and their effects on system behavior as a whole is made
easier with this information.

Thirdly, crosstree restrictions allow for identifying permissible feature pairings and precise product
configurations. Stakeholders can determine whether or not feature combinations are permitted by

Chapter 5. Results and Analysis

looking at the limitations. This information is useful when creating legitimate product setups or
assisting consumers during the configuration process.

Crosstree constraints also make evaluating whether the feature model is comprehensive easier. By
examining the limitations, Stakeholders can identify gaps or incomplete links between charac-
teristics. This makes it possible for the feature model to fully depict the system’s variability by
capturing all necessary relationships and restrictions.

In conclusion, crosstree restrictions in feature model findings and analysis are crucial for spotting
inconsistencies, comprehending how features interact, figuring out legitimate feature combina-
tions, and evaluating the completeness of the feature model. These limitations offer insightful
information that aids in decision-making and supports stakeholders in managing software unpre-
dictability.

5.1 -Impact of Managing Crosstree Constraints

Depending on the complexity of the feature model and the particular constraints involved, address-
ing crosstree constraints in the feature model setup might have different effects. While crosstree
. onstraints help ensure that feature configurations are valid and consistent, it isn't easy to pinpoint
the precise cost and labor savings. However, the following are some potential advantages that may
be connected to successfully handling cross-tree constraints:

1. Reduced Configuration Errors:

Crosstree restrictions enforce dependencies and exclusions between features to prevent im-
proper configurations. By effectively controlling these limits, users are less likely to choose
feature combinations that are incompatible or contradictory, which lowers configuration
problems and the need for further debugging or troubleshooting.

)

Improved Efficiency in Decision-Making:

Users are guided during configuration by transparent and well-managed crosstree limita-
tions. They facilitate decision-making and save time and effort by assisting users in under-
standing the relationships and constraints between features, expediting the decision-making

process.

3. Enhanced Reusability and Scalability: Crosstree constraints allow for the modularization and
reuse of feature models by accurately describing the connections and interactions between

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F16 Puge 53 of 86

Chapter 5. Results and Analysis

features. Well-managed constraints reduce the work needed for feature model maintenance
and evolution by explicitly defining dependencies and restrictions, making adding or modi-
fying future features more straightforward.

4. Minimized Rework and Validation Efforts:

With appropriate crosstree constraints, choosing between conflicting or insufficient feature
configurations may be more accessible, which could result in validation or rework problems.
Effectively controlling the restrictions decreases the likelihood of such difficulties, saving
time and money that would have been needed to fix configuration-related issues.

5. Requirement Analysis:

Crosstree constraints help to make the interdependencies and connections between features
more understandable. This clarity can speed up the requirement analysis process, allowing
stakeholders to make better decisions and lowering the time and effort required for revisions
and iterations brought on by misunderstandings or misinterpretations.

6. Testing and Validation:

Properly maintained crosstree constraints offer a more reliable and consistent feature model.
This, in turn, makes it easier to test and validate the software system to ensure it functions as
intended in various feature configurations. The testing effort can be more concentrated and
effective if there are fewer contradictions and disputes to be resolved.

7. Maintenance and Evolution:

A well-managed feature model with precise crosstree restrictions facilitates the maintenance
and development of the software system. The effect analysis and adaptation process might
go more smoothly when new features are added, or old ones are changed. Long-term cost
reductions are achieved by reducing the work necessary for maintaining the integrity of the
feature model and upgrading it.

It is important to remember that handling crosstree constraints can reduce errors, increase effi-
ciency, promote reuse, and save rework. Still. it does take time and knowledge to define, validate,
and manage these constraints effectively. The amount of work necessary may vary depending on
the complexity of the feature model and the number of constraints. The cost and labor associated
with this procedure can be reduced using appropriate tool assistance and a systematic approach to
handling crosstree restrictions.

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Page 54 of 86

Chapter 5. Results and Analysis

5.2 Applications of CTC

It is essential to ensure that all potential connections and interactions between features are accu-
rately represented while building a feature model. Crosstree constraints can be used to infer the
model’s completeness in this situation. By analyzing these limitations, stakeholders can find any
missing or imperfect links between features.

Consider a feature model for an e-commerce application as an illustration. The feature model
could have functions like “Product Search,” "User Registration,” and "Shopping Cart.” The "User
Registration” feature might only be accessible if the “Shopping Cart’ feature is chosen, according
to the crosstree limitations. If there is no such restriction in the feature model, it may be possible
for users to register without a cart, leading to an inconsistent system.

Stakeholders can locate these holes in the feature model by analyzing the crosstree constraints.
They can use it to decide whether more constraints or dependencies are required to portray the
system’s unpredictability accurately. By filling in these gaps, stakeholders can avoid any inconsis-
tencies or conflicts in the software system brought on by inadequate feature modeling.

Crosstree constraints also help preserve the feature model’s consistency over time. A software

ystem may add or modify new features as it develops. Participants in the evolution process can
confirm that adjustments follow the dependencies and constraints already in place by looking at the
crosstree constraints. This guarantees that the feature model is accurate and current and indicates
the system’s behavior.

In conclusion, analyzing crosstree constraints in the context of feature model outputs is essential
for determining the model’s level of completeness. It aids in locating any missing dependencies or
links, enabling stakeholders to improve the feature model and guarantee that it appropriately cap-
tures the system’s heterogeneity. Stakeholders can maintain a consistent and trustworthy feature
model as the scheme develops by considering these restrictions throughout the software develop-
ment lifecycle.

Feature A is needed for Feature B.
* B implies A

Feature C and Feature D are mutually exclusive:
e Cexcludes D
* Dexcludes C

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Page 55 of 86

Chapter 5. Results and Analysis

Feature E and Feature F cannot be selected together:
* E excludes F
* F excludes E
Feature G can only be selected if both Feature B and Feature C are selected:
¢ G requires B
* G requires C
Feature H can only be selected if Feature E is selected:
* H requires E
Feature I can only be selected if Feature D is not selected:
* I requires not D
Feature J can only be selected if Feature G is selected and Feature H is not selected:
* J requires G
* J requires not H

These crosstree restrictions specify the dependencies and exclusions between the features. Con-
straint 1 states, for instance, that if Feature B is chosen, Feature A must also be selected. Constraint
4 ensures the appropriate link between these features by stating that Feature G can only be chosen
if Feature B and Feature C are also preferred.

Stakeholders can reason about the legitimate feature model configurations by analyzing these
crosstree constraints. They support the user in choosing the best combinations of features based
on the indicated dependencies and aid in identifying conflicts, such as the mutual exclusivity of
Features C and D. Additionally, by eliminating incorrect configurations and ensuring the feature
model’s internal consistency and completeness, these restrictions raise the software system'’s over-
all quality.

The many components of a mobile phone system are shown in connection to one another in Fig
5.1. Operating system, display, camera, storage, connectivity, battery, and other functionalities like
water resistance, facial recognition, and fingerprint scanner are all included in the features.

The top-level feature, in this case, the cell phone itself, is represented by the feature model’s root.
The feature model is then divided into many feature categories and those categories’ corresponding

Muhammad Fezan Afzal: 23-FBAS/PRHDSE/F16 Puge 56 of 86

Chapter 5. Results and Analysis

|- Facial
|- Operating System Recognition
II - %nsdroid ' | - Water Resistance
-
| - Fingerprint SCanner
| - Display
- Touchscreen
} - AMOLED |- Battery
LCD | - Removable Battery
I- | - Non-Removable
t
- Camerq Mobile Phone Battery
| - rront Camera I-
|=Reqr Camera 1-Storage Connectivity
t-DualCamera * _internal Memory |- Wi-Fi
|- Triple Camera |- 32GB |-
| - 4GB Bluetooth
|- 128GB |- NFC
|~ Expandable
Memory

Figure 5.1: Mobile Phone Feature Model

wee dvalUlied,

There are two sub-features, for instance, under the "Operating System” feature: "Android” and
”i08.” Similar sub-features exist under the "Display” feature, including "Touchscreen,” ”AMOLED,”
and "LCD.” by using the algorithm mentioned in Fig 5.2.

The "Camera” feature has the subfeatures “Front Camera” and “Rear Camera,” as well as other
subfeatures like "Dual Camera” and "Triple Camera™ under "Rear Camera.”

function manageCrosstreeConstraints{ featureModel. configuration):
for each constraint in featureModel.crosstreeConstraints:
if constraint.type == "Requires":
if constraint.dependentFeature not in configuration:
return false
else if constraint.type = "Excludes”:
if constraint.dependentFeature in configuration:
return false
return true

Figure 5.2: Algorithm for require and exclude

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F16 Page 57 of 86

Chapter 5. Results and Analysis

The feature model also provides options for battery life ("Removable Battery” and "Non-Removable
Battery'™), connectivity ("Wi-Fi,” "Bluetooth,” and "NFC"), and storage ("Internal Memory"” and
"Expandable Memory™).

Last but not least, the feature model offers extras like "Water Resistance,” "Facial Recognition,”
and "Fingerprint Scanner.”

The managed Crosstree Constraints method in Figure 5.2 pseudo-code accepts a feature model
and a configuration as inputs. Each crosstree constraint in the feature model is iterated through.
It determines whether the dependent feature described in the constraint is present or absent in the
configuration depending on the type of constraint (needs or excludes). The function returns false,
indicating an invalid configuration if the constraint is broken. The function returns true, indicating
a valid setup if all restrictions are met. The feature model and configuration must be expressed
using the proper data structures in the programming language of choice for this pseudo-code to
work. Additionally, it presumes that the feature model consists of a list of crosstree constraints,
where each constraint has properties like type (needs or excludes) and the dependent feature.

With the feature model and the current setup, you would call the manage Crosstree Constraints
method to implement this algorithm. The format is valid if the function returns true according to

- crosstree restrictions. If it gives a false result, one or more constraints have been broken, and
the configuration needs to be changed.

The stakeholders can comprehend and make sense of the variety of the mobile phone system thanks
to this feature model’s organized representation of the numerous features and their interactions.

5.3 BOFS-CTC Feature Models

The BOFS-CTC algorithm has applied to the SPLOT feature models. SPLOT is a library of real-
time feature models where every type of feature model exists with all defined variability relation-
ships and constraints. There are small and large feature models with complex relationships. This
section consists of small and large feature models and product configurations in binary-oriented

combinations of features.

Fig 5.3 consists of four small feature models: 1) System, 2) Computer selection, 3) AA sample,
and 4) Match Engine. In these feature models, some have both crosstree constraints and feature
variability relationships. However. some feature models consist of only feature variability relation-
ships.

Muhammad Fezan Af-al: 23-FBAS/PHDSE/F 16 Page 58 of 86

Chapter 5. Results and Analysis

Table 5.1: Valid Product Configurations by using BOFS-CTC Algorithm

Feature Model: 10 Feature
Feature . XOR | OR Valid
Model Mandatory | Optional group | group ctc Configuration
BDS 0 9 0 0 1 112
Eshop 3 2 1 1 4 9
Mobile
Phone 2 2 1 | 2 14
Car 3 6 0 0 0 16
Match
Engine 3 4 1 1 0 16
System 4 1 1 1 2 8
Computer 8 1 o | o | o 2
Selection
Test 1 2 1 1 1 32
MyFM 1 2 2 0 2 19
Biciclete 0 3 0 1 6

» "System” feature model consists of two crosstree constraints: "feature 7" constrained with
“feature 10” and “feature 8 with “feature 10.”

» "Computer Selection” feature model consists of 9 features without any crosstree constraints.
* "AA" feature model consists of 9 features without any crosstree constraints.

e "Match Engine” feature model consists of 9 features (3 mandatory and four optional features)
without any crosstree constraints.

Table 5.1 shows the valid product configurations of feature models that consist of 10 features. The
table clearly shows that several variable features generate more configurations. The feature model
“"BDS" consists of 9 optional features, with valid product configurations 112. On the other hand,
"Computer Selection” has eight mandatory features and one optional feature, and it has only two
valid product configurations.

Fig 5.4 consists of three feature models with 20, 31, and 32 features with more crosstree constraints
compared to Fig 5.3. The feature models are online shopping software,” “historiaclinca,” and
"Urna.” These feature models consist of various variabilities, such as alternate. optional, alternate
optional, mandatory alternate, and mandatory, optional groups. In Fig 5.4. the crosstree constraints
are:

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Page 59 of 86

Chapter 5. Results and Analysis

4 Lo e ¢ Feature-(o

1 Teanie 8 \f Tarive i

Figure 5.3: Eight feature models with CTC and without CTC

* "Online Shopping Software” feature model consists of seven crosstree constraints.
* "Historiaclinca” feature model consists of 31 features without any crosstree constraints.

* “"Uma” feature mode! consists of 32 features with complex crosstree constraints such as the
second CTC among eight features, i.e., eight features are in include and exclude relationship.

Fig 5.5 also consists of more complex feature models with many crosstree constraints. BOFS-CTC
takes these feature models’ input and generates the total possible feature combinations and number
of products, as shown in Table 5.2. In Fig 5.5, the crosstree constraints are:

* "Building” feature model comprises 20 features with six crosstree constraints.

* "Cloud Storage Software” feature model consists of 21 features without any crosstree con-
straints.

 "Reference Management Software™ feature model consists of 36 features without any crosstree
constraints.

Fig 5.6 consists of four "GreenHouse,” "Reference Management System.” "TAM Reservas,” and
“Family of Bike Computers” feature models with and without crosstree constraints. The "Refer-
ence Management System™ feature model has four crosstree constraints.

Fig 5.7 shows the single large feature model that consists of 54 features, and only two crosstree

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Page 60 of 86

Chapter 5. Results and Analysis

constraints exist. The two crosstree constraints are "Set Profile and From Memory” and ""Show
Event and Access” among the four features.

Fig 5.8 shows the feature model with many crosstree constraints, i.e., every feature has the crosstree
constraint with other features. The crosstree constraints are:

» Feature 0 OR Feature 9 OR Feature Ian OR Feature 7 OR Destination.
¢ Feature 0 OR Feature 35 OR Feature 24 OR time date OR True OR walk OR mode.
* Feature false OR Triprequest OR InterModelRoute.

Fig 5.9 shows the "video player” large feature model with only seven crosstree constraints, i.e., a
prominent feature model with fewer constraints. These crosstree constraints are:

* Envios excludes Factura Fisica.

* Notification excludes Listas.

» Gestion excludes Publication products.

» Notification excludes Factura Online.

+ Notification excludes Por Correo.

* Notification excludes Notification page.
 Notification excludes Certificado Compra.

Fig 5.10 shows the "System Bandara SiBRAM” feature model existing of 44 features with three
crosstree constraints. These crosstree constraints are:

¢ SMS Gateway excludes Basic Phone.
* SMS exclude Basic Phone.
* App Notifier excludes smart phone.

Fig 5.11 shows the "Carte SD” feature model that consists of more than fifty features where only
five include condition crosstree constraints are exist. These crosstree constraints are:

* DMA requires USB.
e 32bits revires Cortex M3.

* Red requires 33V.

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F16 Page 61 of 86

Chapter 5. Results and Analysis

* 32bits requires Cortex M4
e 64bits requires Cortex A8

Fig 5.12 shows the "e-commerce” feature model exists more than 35 features and five exclude
condition crosstree constraints. These crosstree constraints are:

* Phone negate notification.

« Tablet negate notification.

* High negate Bank transfer.

* Account negate Reward program.
* Account negate Receipt history.

Fig 5.13 shows the "Tiendas-pos™ feature model that exists more than 40 features with six include
condition crosstree constraints. These crosstree constraints are:

* Caja includes Dispositivos.

* Tasa includes Comun.

* Peso includes Balanzas.

* Usuarios includes Maneja-turnos.
¢ Dispositivos includes Terminales.
* Clientes includes Pedidos

Fig 5.14 shows the “Facturacion-Serv-Publicos” complex feature model, which comprises more
than 50 features. This feature model exists to exclude condition crosstree constraints. These
crosstree constraints are among every subtree of the feature model.

Fig 5.15 shows the large feature model with 25 exclude condition crosstree constraints. These
crosstree constraints are among every feature of a subtree with other subtrees. Table 5.3 shows the
valid product derivations, and results show that many valid products, such as more than a billion,
also exist.

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F16 Puage 62 of 86

Chapter 5. Results and Analysis

3 ¢ ~\frmbe Asroanr Manzeement T e \ozeent Pavinent
O (~pasmert V Orde Sihzzvine

Tt Aparert V irder stote Er

a { Add to Coxx N e der Ed Atinen «

a { “rder Bdr=ne V Orde: Submmatiny §

= (< Skrp G-rde Mrirgeraent Y Goards TLfamaton Menasemens |

3} =iacds Sperifiration Manarszent W Shop rine Raquees)

Figure 5.4: CTC based Feature Models with 20, 31, 32

Page 63 of 86

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16

Chapter 5. Results and Analysis

Jg i1334an !
- e m A om o= 1 1)
A ¢« o e .
(R o R T B
R T B Y
I__‘_-!asg".ll' soe s s @
L S S
2_121‘,4-"
ey~
[~ B 1
A
3 oD X
k] Ll -
[- - "
f- v
-
'E ui
'
.
[] v [] 1 &
[] [] .0
[N N]
L}
[. [] ' J
. . ' (N} [
. . |]]
. [}
’ .
]
[]

Figure 5.5: Complex and large feature models with and without CTC

Muhammad Fezan Af-al: 23-FBAS/PHDSE/F 16 Puge 64 of 86

Chapter 5. Results and Analysis

' [})] ea oo [}
° [()
[}
.
Pl ey
11, ' L L4
-:"ll"' ' [X] []
o
Coe
S
‘ .
Yoo -
Lo
VL2
]
e
_ ?
.
g'
o
v
)
]
e e .
. . .
. [[)
1]
L)) .. [}
]
seae
see
.

Figure 5.6: Four feature models dataset

Mulhammad Fezun Afzal: 23-FBAS/PHDSE/F 16 Puge 65 of 86

Chapter 5. Results and Analysis

Table 5.2: BOFS-CTC algorithm results of 20, 31 and 32 features of feature model

Feature Model: 20,31,32 Feature
Feature . XOR | OR Valid
Model Mandatory | Optional group | group cre Configuration
Online
Shopping 15 1 0 0 7 11
Software
Historiaclinica 13 6 0 0 0 48
Urna 11 2 2 0 2 36
Cloud
Storage 11 6 0 1 0 102
Software
Software
Product line 14 5 0 0 6 18
Service
Automotive
System 8 3 7 1 9 1344
Reference
Management 6 10 1 3 7 87480
System
Gireen 15 15 0 0 | 4 3712
House
TAM 8 4 6 0 2 1296
Reservas
Family
of Bike 13 4 6 0 | 5 240
Computer |

Muhammad Fezan Af-al: 23-FBAS/PHDSE/F16 Puge 66 of 86

—_— e —m——

Chapter 5. Results and Analysis

=
Mz

Lavad sl E.

. 83T
TMLET, 1Tug e
.

Figure 5.7: Feature model of fifty feature with CTC and basic relationships

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Puge 67 of 86

Chapter 5. Results and Analysis

® -
-
.

» M '
. (P ICLEEL I & I ¥ PR 2
i P . 1 L) .
P LA . 4
P o . i P
: E . Co. e e
P ~ -
~% ™ o, 8 - 4 . L v
L X - ~ - e e o~ e .
N 3 , = MRV L O A
CA .2 N R PEN
- 4 . .« . - -
e B, e ol RS
. mo- a7 % R " % -
2. T e k] - > N
R -i Ve 3 . " Pri - T o
- - P] H
. [AILCRL B Lo,ow o L FL
P e R R L 52 -
‘o, T S I | oy~ -
el O o - w
VT . it o1 i « . «
- " RN | - 1 "
L 4 § = s, s
N 3o (N i
[N LI HE .
L I 7 & .. P . i
w v MR oM s et
- . R i -
. . : .
' - 1 - -
' R . Do
' N H .
] P A . g « s
- A e . .
N - - i ’ ’ o
. . - ; - .
t
! %]
. 3 . 3 . L . o : .
. L}
H - ll v
, ~
-
3 - . - - - -
' 1 M ’
‘. - . . ' » e n
' . 1 » 3 -) ' “
e Y L i .
P 1 f . .
- -“-
~ 7 ’ -~ : .
: N i
.
T

Figure 5.8: Small feature model with large CTC

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F16 Puge 68 of 36

Chapter 5. Results and Analysis

Figure 5.9: Large feature model with less CTC (1)

Puge 69 of 86

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F16

Chapter 5. Results and Analysis

-®
-9 .
- -
-®
- 31 ~2azic Frome VD3 Tammir
SIS FREIE S PE IS S
¢ 3\ appovizer V ~$mamPhine,

- ! ‘.
-’
®
-~ @ - -
- ?
L]
»
-®
o -
- @
S
- »
’
-9
-
-
-9

Figure 5.10: Large feature model with less CTC (2)

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Puge 70 of 86

Chapter 5. Results and Analysis

-9 -~ ¢ - ¥
-9
- ~ * -t
L] - -
L]
-’ -

) -
-@
- &
- L} - .'
- L4 .
- -t 4 y DL 4 nh;
- 31zt V Soman Mz
- e = 3 Red V 337)
. - i ‘3 5ata ¥ Contex My
’ H - . . :
’ T . . 3 U6 o CorexaAd.
-9

Figure 5.11: Large feature model with less CTC (3)

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F16 Page 71 of 86

Chapter 5. Results and Analysis

-
.
- 3 phens V-
»
- d Tl =
.

A, -3ank: crer Y qix
. ’ .
2, account V Revard sregran)

. ! .
3 ¢ account V' ~Pecept iz

Figure 5.12: Large feature model with less CTC (4)

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Page 72 of 86

Chapter 5. Results and Analysis

t
) '
1 @ r ® N)]
. . s . » ']
.
I 1 '
') . N]
L] - » *
DoDDOO ; ' '
1 @ 1 (
. e m = e
™ b , - ' - -
2P A g
G B VI
:1 1 iu) |'\‘
no - <
R R ~h -
o
A B
o SRR TR
-t ', (] 1 ._l. Q
[I S S
We v o33 w " i
Vioom o IR
ey IS] o va
- -;": 1 (8] "._
Ty "
3 fi Hd
" :_' L]
a.' :_: 9

Figure 5.13: Large feature model with less CTC (5)

Muhammad Fezan Af-al: 23-FBAS/PHDSE/F16 Puage 73 of 86

Chapter 5. Results and Analysis

TsPenta eV m s e e

2 « *To. . .t. o
/

T~ gwtereagea W rea_Ien T e geees

T e Y It _recrenca’y
3, Sind_Ser .36 'y Corpsr Pendeer by
3 { ~Tad O e ey LI AT

3, i LU T L Y S

L R

TV mGer Ter_r:omeefieeres S s

"1 e Ve T

D ~tempearaen V9 3 e,

Figure 5.14: Large feature model with mediam size of CTC

Page 74 of 86

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F16

Chapter 5. Results and Analysis

CAddJJOud P LdL el 2G O

H [}] FIRI | [[[]

PR SRR - » L " . . e g

- . s :
+ [i I S L) - . N
) - t 44] I P] '
N . ’

Figure 5.15: Mediam size feature model with large CTC

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F16 Puge 75 of 86

Chapter 5. Results and Analysis

Table 5.3: BOFS-CTC Valid configuration of 50 to 60 features

Feature Model: 51 to 60 Feature
Feature . XOR | OR Invalid Valid
Model Mandatory | Optional group | group ctc Products Products
Mobile Visit n
Guide 16 8 6 5 2 40105 1636800
Rout Finder 10 1 7 11 6 240123 9997020
Video Player 13 16 0 9 1 200945 482549760
Tienda
Virtual 14 10 2 8 7 647855 168972288
Feature
Model 16 7 5 7 3 326980 387760128
SibRAM
SD Model 13 7 2 11 5 47 128
Ecommere 5 7 1 1 5 Mort.: t.han More than 1
2 million billion
Facturacion 10 6 5 1 More than
0 11 2 million 137582550
Market
Place 0 7 5 7 20 More than | More thanl
Nootbook 4 million billion
Tiend POS 8 14 4 6 6 More than | More than 1
1 million billion
Muhammad Fezan Af-al: 23-FBAS/P HDSE/F16
\

Page 767/‘%

Chapter 6
Conclusions and Future Directions

SPL is a successful strategy for resource reuse. The commonalities and variable characteristics
of SPL are managed using a feature model. For an organization to implement SPL, finding the
total valid number of products to calculate advance SPL cost is essential. The total valid number
of products is a crucial parameter that needs to be determined early in SPL domain development.
Invalid product configurations become the cause of wrong cost estimation as well as invalid appli-
cation development in the domain of SPL. Invalid product configurations are due to the violation
of relationships and crosstree constraints between features of the feature model. Therefore, find-
ing the total number of valid product configurations that do not violate the essential connections
and crosstree constraints of the feature model is necessary. In this work, we have proposed a
BOFS-CTC framework and algorithm for valid product configurations that do not violate the fea-
ture model’s essential relationships and crosstree constraints. BOFS-CTC is a sequential approach
based on mathematical equations to apply to feature models according to the relationships and
crosstree constraints. By comparing the features of the feature model according to their relation-
ship and crosstree constraints, BOFS-CTC eliminates the invalid product configurations and gen-
erates the valid product configurations. BOFS-CTC is applied euarly in SPL’s domain engineering
to find the advanced initial development cost of complete products. The BOFS-CTC framework is
used to find the total number of valid products by applying the mathematical equations that calcu-
late the invalid products and then remove these products from the total number of products. As a
result, we find the total valid products.

Furthermore, we have developed the BOFS-CTC algorithm based on the framework of mathemat-
ical equations. BOFS-CTC algorithm finds the total valid product configurations automatically.

77

Chapter 6. Conclusions and Future Directions

The dataset of the BOFS-CTC framework is a complete feature model structure, i.e., variable fea-
tures with their relationships (optional, alternate, optional group, alternate group) and crosstree
constraints. The algorithm computes the total valid product configurations by categorizing each
variable feature (optional, alternate) and then maps the crosstree constraints between these features
predefined in the dataset.

We have applied the BOFS-CTC algorithm on various large and small feature models, from low
to high complexity feature constraints. Our results show no crosstree constraints and relationship
violations and found valid product configurations. We verified our results by comparing the valid
products of BOFS-CTC with sampling techniques of different product configurations.

From the experimental results of the BOFS-CTC algorithm, we found a significant difference
between the total number of products and valid product configuration. This indicates that the
development cost of SPL also decreases due to eliminating the invalid product configurations from
the domain of SPL. Resultantly, it also reduces resource utilization and enhances the integration
testing of features in the feature model. Integration testing, i.e., the compatibility of features
in application development from the total number of valid products, is more accessible due to
eliminating invalid product configurations.

6.1 Potential Impact of Research

Reduced Rework and Debugging Activities: Errors in feature configurations can be found early in
the process by recognizing and controlling crosstree restrictions. As a result, configuration issues
that would have needed to be fixed later in the development cycle can now be set with a significant
reduction in rework and debugging efforts. The time, resources, and expenses necessary to resolve
errors are reduced when they are fixed as soon as possible.

Prevention of Downstream Issues: Violations of crosstree constraints can result in invalid setups
that can have a cascading effect on downstream procedures. The likelihood of further issues like
compatibility issues, data inconsistencies, or functional failures is significantly decreased by iden-
tifying and fixing these problems early on. This preventative strategy contributes to the overall
software system’s stability and integrity.

Reduced Rework and Debugging Activities: By identifying and managing crosstree constraints,
feature configuration errors can be discovered early. As a result, configuration issues that required
fixing later in the development cycle may now be resolved with a significantly lower investment

Muhammad Fezan Af=al: 23-FBAS/PHDSE/F 6 Page 78 of 86

Chapter 6. Conclusions and Future Directions

in rework and debugging. When faults are corrected as quickly as feasible, the time, money, and
resources needed to rectify them decreases.

Prevention of Downstream Problems: Crosstree constraint violations can lead to invalid setups that
might negatively impact downstream procedures. The risk of further problems like compatibility
problems, data inconsistencies, or functional failures is significantly reduced by spotting and cor-
recting these errors as soon as they arise. This preventative measure enhances the overall stability
and integrity of the software system.

Streamlined Development Process: Early error detection sanctioned the development process to
run more smoothly. The development team can maintain a constant development pace without
substantial disruptions or delays by fixing configuration issues early. This enhances the develop-
ment process’s general effectiveness and productivity.

Facilitates Agile and Iterative Development: Agile and iterative development approaches are com-
patible with effective cross-tree constraint management. Early error detection and correction make
quick iterations and course adjustments possible, guaranteeing that the software system develops
based on tested and trustworthy settings. The development process is more agile, accelerating
market time and improving responsiveness to shifting client needs.

In conclusion, the early error detection attained by recognizing and managing crosstree constraints
saves rework, averts downstream problems, boosts testing effectiveness, raises customer happiness,
streamlines the development process, and is by agile techniques. It guarantees a development
lifecycle that is more effective and efficient, with fewer risks and higher overall software quality.

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F[6 Page 79 of 86

References

[1] S. Dogan, N. A. Dogan, 1. Celik, "Teachers’ skills to integrate technology in education: Two
path models explaining instructional and application software use™. Education and Informa-
tion Technologies. Vol. 26 no. 13 pp. 11-32, Jan 2021.

[2] C. Watson, N. Cooper, D. N. Palacio, K. Moran, D. Poshyvanyk, “A systematic literature
review on the use of deep learning in software engineering research™. ACM Transactions on
Software Engineering and Methodology (TOSEM). Vol. 31 no. 2, pp. 1-58 March 2022.

[3] D. Cock, A. Ramdas, D. Schwyn, M. Giardino, A. Turowski, Z. He, N. Hossle, D. Korolija,
M. Licciardello, K. Martsenko, R. Achermann, “Enzian: an open. general, CPU/FPGA
platform for systems software research,” InProceedings of the 27th ACM International Con-
ference on Architectural Support for Programming Languages and Operating Systems, pp.
434-451, Feb 2022,

[4] M. A. Akbar, K. Smolander, S. Mahmood, A. Alsanad, “"Toward successful DevSecOps
in software development organizations: A decision-making framework”, Information and
Software Technology. no. 147 pp. 68-94, July 2022.

[5] D. D. Ruscio, D. Kolovos, J. de Lara, A. Pierantonio, M. Tisi, M. Wimmer, "Low-code
development and model-driven engineering: Two sides of the same coin?”, Software and
Systems Modeling. Vol. no. 4pp. 37-46, Apr 2022.

[6] M. Lochau, and J. Kamischke, “Parameterized preorder relations for model-based testing of
software product lines”, In International Symposium On Leveraging Applications of Formal
Methods, Verification and Validation, Springer, Berlin, Heidelberg, pp. 223-237, 2012.

[71 P. Dhore, L. Wadhwa, P. Shinde. D. Chaudhri, P. Vyas, "Brief Review On Different Manual
Software Testing Approaches and Procedure”, Journal of Pharmaceutical Negative Results,
pp. 455-464, Jan 2023.

80

References

[8] M. A. Hadi, F. H. Fard, "Evaluating pre-trained models for user feedback analysis in soft-
ware engineering: A study on classification of app-reviews”, Empirical Software Engineer-
ing. Vol. 4, pp. 88, July 2023.

[9] A. A. Pratama, A. B. Mutiara, ”Software quality analysis for halodoc application using iso
25010: 2011”, Int. J. Adv. Comput. Sci. Appl, Vol. 12, no. 8, 383-392, 2021.

[10] E. R. Sepasi, K. N. Balouchi, J. Mercier, and R. E. Lopez-Herrejon, “An Empirical Eye-
Tracking Study of Feature Model Comprehension™, arXiv preprint arXiv:2203.05068, 2022.

[11] E. R. Sepasi, K. N. Balouchi, J. Mercier, and R. E. Lopez-Herrejon. “An Empirical Eye-
Tracking Study of Feature Model Comprehension™, arXiv preprint arXiv:2203.05068, 2022.

[12] E Bertolotti, W. Cazzola, L. Favalli, “Features, believe it or not! a design pattern for first-
class citizen features on stock jvm”, In Proceedings of the 26th ACM International Systems
and Software Product Line Conference-Volume A (pp. 32-42, 2022.

[13]) D. Romano, K. Feichtinger, D. Beuche, U. Ryssel, and R. Rabiser, “Bridging the gap be-
tween academia and industry: transforming the universal variability language to pure:: vari-
ants and back”, In Proceedings of the 26th ACM International Systems and Software Prod-
uct Line Conference-Volume B, pp. 123-131, 2022,

[14] 1. Ayala, M. Amor, L. Fuentes. and A. V. Papadopoulos. “Self-adapting Industrial Aug-
mented Reality Applications with Proactive Dynamic Software Product Lines”, In 2021
26th IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA), IEEE, pp. 01-08, 2021.

[15] A. Valdezate, R. Capilla, J. Crespo, and R. Barber, “Ruva: A runtime software variability
algorithm”, IEEE Access, 10, pp. 52525-52536, 2022.

[16] G. Kahraman, and L. Cleophas, “A tool for modeling and analysis of relationships among
feature model views”, In Proceedings of the 26th ACM International Systems and Software
Product Line Conference-Volume B, pp. 103-109, 2022.

[17] M. Bhushan, J. A. G. Duarte, P. Samant, A. Kumar, and A. Negi, “Classifying and resolving
software product line redundancies using an ontological first-order logic rule based method™,
Expert Systems with Applications, 168, 114167, 2021.

18] V. M. Le, A. Felfernig, M. Uta, T. N. T. Tran, and C. V. Silva, "WipeOutR: automated

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Page 81 of 86

References

redundancy detection for feature models”, In Proceedings of the 26th ACM International
Systems and Software Product Line Conference-Volume A (pp. 164-169, 2022.

[19] M. Kowal, S. Ananieva, and T. Thiim,“Explaining anomalies in feature models”, ACM SIG-
PLAN Notices, 5vol. 2, no. 3, 132-143, 2016.

[20] J. Guo, J. White, G. Wang, J. Li, and Y. Wang, “A genetic algorithm for optimized fea-
ture selection with resource constraints in software product lines”, Journal of Systems and
Software, 84(12), pp. 2208-2221, 201 1.

[21] T. Thum, C. Kastner, S. Erdweg, and N. Siegmund, “Abstract features in feature modeling™.
In 15th International Software Product Line Conference, IEEE, pp. 191-200, 2011.

{22] H. Holdschick, “Challenges in the evolution of model-based software product lines in the
automotive domain”. In Proceedings of the 4th International Workshop on Feature-Oriented
Software Development, pp. 70-73, 2012.

[24] L. Ochoa, O. Gonzilez-Rojas, T. Thiim, “Using decision rules for solving conflicts in ex-
tended feature models™, In Proceedings of the ACM SIGPLAN International Conference on
Software Language Engineering (pp. 149-160, 2015.

24} S. Urli, A. Bergel, M. Blay-Fomarino, P. Collet, and S. Mosser, “A visual support for de-
composing complex feature models”, In IEEE 3rd Working Conference on Software Visu-
alization (VISSOFT),IEEE, pp. 76-85, 2015.

[25] A. Abbas, I. F. Siddiqui, S. U. J. Lee, and A. K. Bashir, “Binary pattern for nested cardinality
constraints for software product line of IoT-based feature models”, IEEE Access, vol. 5, pp.
3971-3980, 2017.

[26] A. Abbas, L. F. Siddiqui, S. U. J. Lee, A. K. Bashir, W. Ejaz, and N. M. F. Qureshi, “Multi-
objective optimum solutions for IoT-based feature models of software product line”, /JEEE
Access,vol. 6, pp. 12228-12239, 2018.

[27] J. M. Horcas, J. Ballesteros, M. Pinto, and L. Fuentes, "Elimination of constraints for paral-
lel analysis of feature models”, In Proceedings of the 27th ACM International Systems and
Software Product Line Conference-Volume A, August 2023, pp. 99-110.

[28] D. Eichhorn, T. Pett, T. Osborne, and I. Schaefer. "Quantum Computing for Feature Model
Analysis: Potentials and Challenges”, In Proceedings of the 27th ACM International Sys-
tems and Software Product Line Conference-Volume A. August 2023, pp. 1-7.

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F16 Puge 82 of 86

References

[29] A. Wasowski, and T. Berger, “Feature Modeling. In Domain-Specific Languages: Effective
Modeling, Automation, and Reuse”, Cham: Springer International Publishing, pp. 437-457,
2023.

[30] J. M. Horcas, M. Pinto, and L. Fuentes, “Extensible and modular abstract syntax for feature
modeling based on language constructs”, In Proceedings of the 24th ACM Conference on
Systems and Software Product Line: Vol. A, pp. 1-7. 2020.

[31] C. Bezerra, R. Lima, and P. Silva, “Dymmer 2.0: A tool for dynamic modeling and evalu-
ation of feature model,. In Proceedings of the V Brazilian Symposium on Software Engi-
neering, pp. 121-126. 2021.

[32] F. Damiani, D. Faitelson, C. Gladisch, and S. Tyszberowicz, “A novel model-based testing
approach for software product lines”, Software and Systems Modeling, vol. 16, no. 4, pp
1223-1251, 2017.

[33] H. Lackner, “Model-Based Product Line Testing: Sampling Configurations for Optimal
Fault Detection”, In International SDL Forum Springer, Cham pp. 238-251, 2014.

[34] H. Foidl, and M. Felderer, “Integrating software quality models into risk-based testing”
Software quality journal, vol. 26, pp 809-847, 2018.

[35] S. Reis, A. Metzger, and K. Pohl, “Integration testing in software product line engineer-
ing: a model-based technique”, In International Conference on Fundamental Approaches to
Software Engineering pp. 321-335, Berlin, Heidelberg, March, 2007.

[36] F. Ensan, E. Bagheri, and D. Gasevié, “Evolutionary search-based test generation for soft-
ware product line feature models”, In International Conference on Advanced Information
Systems Engineering , Springer, Berlin, Heidelberg pp. 613-628, 2012.

[37]1 A. Schiirr, S. Oster, and F. Markert, “Model-driven software product line testing: An inte-
grated approach”, In International Conference on Current Trends in Theory and Practice of
Computer Science Springer, Berlin, Heidelberg, pp. 112-131, 2010.

[38] M. Lochau, S. Oster, U. Goltz, and A. Schiirr, “Model-based pairwise testing for feature
interaction coverage in software product line engineering”, Software Quality Journal, vol.
20, no. 4, pp 567-604, 2012.

[39] B. P. Lamancha, M. P. Usaola, and M. P. Velthius, “A model based testing approach for
model-driven development and software product lines”, In International Conference on

Muhammad Fezan Af:al: 23-FBAS/PHDSE/F16 Page 83 of 86

References

Evaluation of Novel Approaches to Software Engineering, Springer, Berlin, Heidelberg pp.
193-208, 2010.

[40] P. Reales, M. Polo, and D. Caivano, *“ Model based testing in software product lines”, In
International Conference on Enterprise Information Systems, Springer, Berlin. Heidelberg,
pp- 270-283, 2011.

[41] J. M. Ferreira, S. R. Vergilio, and M. Quinaia, “Software product line testing based on
feature model mutation”, International Journal of Software Engineering and Knowledge
Engineering, 27(05), pp 817-839, 2017.

[42] M. Lochau, D. Reuling, J. Biirdek, T. Kehrer, S. Lity, A. Schiirr, and U. Kelter, “*Model-
Based Round-Trip Engineering and Testing of Evolving Software Product Lines™. In Man-
aged Software Evolution, Springer, Cham, pp. 141-173, 2019.

[43] T. Bordis, T. Runge, A. Kniippel, T. Thiim, and I. Schaefer, *‘Variational correctness-by-
construction”, In Proceedings of the 14th International Working Conference on Variability
Modelling of Software-Intensive Systems, pp. 1-9, 2020.

[44] T. Thiim, A. Kniippel, S. Kriiger, S. Bolle, and I. Schaefer, “Feature-oriented contract com-
position”, Journal of Systems and Software, 152, pp. 83-107, 2019.

{451 D. Marijan, A. Gotlieb, S. Sen, and A. Hervieu, “Practical pairwise testing for software
product lines”, In Proceedings of the 17th intemational software product line conference,
pp. 227-235, 2013.

[46] L. Yu, F. Duan, Y. Lei, R. N. Kacker, and D. R. Kuhn, * Combinatorial test generation for
software product lines using minimum invalid tuples”, In IEEE 15th International Sympo-
sium on High-Assurance Systems Engineering, IEEE, pp. 65-72, 2014.

[47] M. Rosenmuller, N. Siegmund, G. Saake, and S. Apel, “Code generation to support static
and dynamic composition of software product lines”, In Proceedings of the 7th international
conference on Generative programming and component engineering, pp. 3-12, 2008.

(48] S. Apel. H. Speidel, P. Wendler, A. Von Rhein, and D. Beyer, “Detection of feature inter-
actions using feature-aware verification”, In 26th IEEE/ACM International Conference on
Automated Software Engineering, IEEE, pp. 372-375, 2011.

[49] J. White, D. C. Schmidt, D. Benavides, P. Trinidad, and A. Ruiz—Cortés, “Automated diag-

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F16 Puage 84 of 86

References

nosis of product-line configuration errors in feature models™, In 12th International Software
Product Line Conference, IEEE, pp. 225-234, 2008.

[50] M. Tanhaei, J. Habibi, and S. H. Mirian-Hosseinabadi, “A feature model based framework
for refactoring software product line architecture”, Journal of Computer Science and Tech-
nology, vol. 31, no. 5, pp 951-986, 2016.

[S1] M. T. Fulop, M. Guban, A. Guban, M. Avornicului, “Application research of soft computing
based on machine learning production scheduling™. Processes, Vol. 10, no. 3, 520. 2022.

[52] A. Hervieu, B. Baudry, and A. Gotlieb, ** Pacogen: Automatic generation of pairwise test
configurations from feature models™, In IEEE 22nd International Symposium on Software
Reliability Engineering . IEEE , pp. 120-129, 201 1.

[53] S. Apel. D. Batory, C. Kiistner, and G. Saake, “Software Product Lines. In Feature-Oriented
Software Product Lines”, Springer. Berlin, Heidelberg. pp. 3-15, 2013.

|54] F. Benduhn, T. Thum, I. Schaefer, and G. Saake, “Modularization of refinement steps for ag-
ile formal methods”, In International Conference on Formal Engineering Methods, Springer,
Cham, (pp. 19-35, 2017.

[55] S. Apel, A. Von Rhein, P. Wendler, A. GroBlinger, and D. Beyer, “Strategies for product-line
verification: case studies and experiments”, In 35th International Conference on Software
Engineering (ICSE), IEEE, pp. 482491, 2013.

[56] S. Ben-David, B. Sterin, J. M. Atlee, and S. Beidu, “Symbolic model checking of product-
line requirements using sat-based methods”, In IEEE/ACM 37th IEEE International Con-
ference on Software Engineering, IEEE, Vol. 1, pp. 189-199, 2015.

[57] C.Dubslaff, S. Kliippelholz, and C. Baier, “Probabilistic model checking for energy analysis
in software product lines”. In Proceedings of the 13th international conference on Modular-
ity, pp. 169-180, 2014.

[58] S. Bessling, and M. Huhn, “Towards formal safety analysis in feature-oriented product line
development™, In International Symposium on Foundations of Health Informatics Engineer-
ing and Systems, Springer, Berlin, Heidelberg, pp. 217-235, 2013.

[59] T. Thiim, J. Meinicke, F. Benduhn, M. Hentschel, A. Von Rhein, and G. Saake, “Potential
synergies of theorem proving and model checking for software product lines™, In Proceed-
ings of the 18th International Software Product Line Conference, Vol. 1. pp. 177-186, 2014.

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F 16 Puage 85 of 86

References

[60] C. H. P. Kim, D. Marinov, S. Khurshid, D. Batory, S. Souto, P. Barros, and M. d’ Amorim,
“SPLat: Lightweight dynamic analysis for reducing combinatorics in testing configurable
systems”, In Proceedings of the 9th Joint Meeting on Foundations of Software Engineering,
pp. 257-267. 2013.

[61] J. V. Millo, S. Ramesh, S. N. Krishna, and G. K. Narwane, *“ Compositional verification
of software product lines”, In International Conference on Integrated Formal Methods,
Springer, Berlin, Heidelberg. pp. 109-123, 2013.

[62] T. Thiim. A. Kniippel, S. Kiriiger. S. Bolle, and 1. Schaefer, “Feature-oriented contract com-
position. Journal of Systems and Software”, Vol. 152, pp. 83-107, 2019.

[63] M. Lochau, D. Reuling, J. Biirdek, T. Kehrer, S. Lity, A. Schiirr, and U.Kelter, “Model-
Based Round-Trip Engineering and Testing of Evolving Software Product Lines”, In Man-
aged Software Evolution, Springer, Cham, pp. 141-173, 2019.

[64] T. Bordis, T. Runge, A. Kniippel, T. Thiim, and I. Schaefer, ™ Variational correctness-by-
construction”. In Proceedings of the 14th International Working Conference on Variability
Modelling of Software-Intensive Systems, pp. 1-9. 2020.

. Z. Jin, “Environment modeling-based requirements engineering for software intensive sys-
tems”, Morgan Kaufmann, 2018.

[66] X.Li, W. E. Wong, R. Gao, L. Hu, and S.Hosono, “Genetic algorithm-based test generation
for software product line with the integration of fault localization techniques™, Empirical
Software Engineering, 23(1), pp. 1-51, 2018.

[67] E. Bagheri, T. Di Noia, A. Ragone, and D. Gasevic. “Configuring software product line
feature models based on stakeholders’ soft and hard requirements”, In International Confer-
ence on Software Product Lines, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 16-31,
2010.

[68] J. Van Gurp, J. Bosch, and M. Svahnberg, “On the notion of variability in software product
lines™, In Proceedings Working IEEE/IFIP Conference on Software Architecture, IEEE. pp.
45-54, 2001.

[69] K. Czamecki. M. Antkiewicz, C. J. Kim, S. Lau, K. Pietroszek. "Model-driven software
product lines”,. In Companion to the 20th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pp. 126-127, Oct 2005.

(31 ey,
T
. -V_, s ls,'
7 3
.l'¥;

Muhammad Fezan Afzal: 23-FBAS/PHDSE/F16 (s

Puage 86 of 86

ree
€ L, "‘]

4 L tervs T

