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Preface

The flow problem of Newtonian/non-Newtonian fluids in the boundary layer induced by a
continuously moving or stretching surface is important in many manufacturing processes. In
industry, polymer sheets and filaments are manufactured by continuous extrusion of the polymer
from a die to a windup roller, which is located at a finite distance away. The thin polymer sheet
constitutes a continuously moving surface with a non-uniform velocity through an ambient fluid
[1]. Crane [2] has discussed in very detail about the effects of flow past a stretching plate, and he
obtained a numerical solution for his flow problem with the help of Runge-Kutta method. Heat
and mass transfer has been discussed by P.S. Gupta [3]. He also considered a stretching sheet for
his flow problem with the extra effects of suction and blow. In stagnation point flow, a rigid wall
or a stretching surface occupies the entire domain y > 0 for the horizontal axes and the flow
impinges on the wall either orthogonal or at an arbitrary angle of incidence. Heat transfer in

stagnation point towards a stretching sheet has been discussed by T.R. Mahapatra, A.S Gupta [4].

Due te increasing interest in the flow of fluids, a number of materials are utilized whose flow
qualities are not analyzed with the help of Newtonian fluid model. In this situation, non-Ncwtonian
fluid are very important because of their applications in polymer processing industries, petroleum
drilling and biofluids dynamics and many others. The most popular subclass of these fluids is
Casson fluid, which displays yield stress impact. Oka [5] discussed the characteristic of Casson
fluid medel in tubes and considered a generalized model for flow of Non-Newtonian fluid in tube
from which the Casson fluid model was constructed as a special case. Boundary layer flow of
different fluids in the region of stagnation point on a stretching/shrinking surface has attracted
many scientists and engineers due to its real world applications in industry engineering processcs

[6-12]. Motivated by the above mentioned studies, the thesis is arranged as follow as follow.

Chapter 1 includes some basic definitions and prerequisites [13-14] for the convenience and better
understanding of the reader. Chapter 2 comprises the study of non-orthogenal stagnation point
flow towards a siretching sheet [19]. The model equations are solved with the help of Runge-Kutta
method of order 4™ [15]. In chapter 3, we revised the work related to homogenous-heterogeneous

reactions in stagnation peint flow of Casson fluid [20].
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Chapter 1

Preliminaries

In this chapter, some basic definitions and concepts [15] which are used direcily or
indirectly in the next chapters are discussed. The equations that govern the flow of any
fluid namely continuity and momentum equations are also presented. Shooting method
with Runge-Kutta fourth order [18] integration for the general second order boundary value
problem also presented in detail.

1.1 Fundamental Concepts

Some basic definitions and fundamental concept for better understanding of the next
chapters are as follows:

1.1.1 Deformation

Change of body from a reference shape to a current shape is known as deformation. A
deformation may cause by external loads, body force (such as gravity or electromagnetic
force) or change in temperature.

1.1.2  Shear stress

Shear stress is defined as the ratio of shear force to the cross-sectional area. It is denoted

by 1, and mathematically it can be represented as

shear force
e f (1.1)

cross — sectional area

1.1.3 Fluid
Fluid is a substance that deforms continuously when acted upon by shear stress of any

magnitude and in this way liquids and gasses are considered as fluids. Water, cil and air
are common examples of fluid.

1.1.4 Flow

A phenomenon of continuous deformation under the action of applied force is called

flow.

1.1.5 Fluid mechanic

Fluid mechanic is a branch of continuous mechanic in which we deal with the behaviors of

fluids in the state of rest and motion.
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1.1.6 Stagnation point
A stagnation point is a point in a flow field where the local velocity of the fluid 1s zero.

Stagnation point exists at the surface of object in the flow field where the fluid is brought
to rest by the object.

1.2 Properties of fluid
The fluid can be analyzed based on following defined properties.

1.2.1 Density
Density is define as the amount of mass per unit volume of the fluid. Mathematically it is

denoted by

mass of fluid m
p= — = (1.2)
volume of fluid v

1.2.2 Viscosity
It is defined as the resistance offered to a layer of fluid when it moves over another layer

of fluid. It is denoted by u and mathematically denoted as

shear stress

viscosity = -
Y= Tate of shear surain

ryx

du/dy (1.3)

or H=

1.2.3 Temperature
Temperature is a physical quantity that measures the degree of hotness and coldness in an

object on a numerical scale. Temperature does not depend on the number of particles in an

object as it is an average measurement,

1.2.4 Kinematic viscosity
Kinematic viscosity is the ratio of dynamic viscosity to density (mass density) of a fluid. It

is denoted by v and mathematically it can be defined as

v= f (1.4)
1.2.5 Velocity field
Fluid motion cannot be visualized without the concept of velocity field. Among the
properties of a flow, the velocity field V(r,t) is the foremost. By a solution of the flow
problem we mean to find its velocity field, once a velocity field is determined other
properties follow directly from it. If one needs to determine temperature field, it can be

obtained once a velocity field is known. Generally, velocity is a vector point function of

position and times and has three component in a three dimensional space. Mathematically
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V(r, ) ={ulr ), v(r.0,wr 0], (1.5)
here r denote the position vector and u, v and w are components of velocity in three
orthogonal directions respectively.

1.3  Classification of fluid
The fluid can be classified into following two classes based on the viscosity of the fluid.

1.3.1 Ideal fluid

A fluid which is incompressible and in which viscosity is zero then, it is called an ideal
fluid. The occurrence of such fluid in real world is rare. Ideal fluid is also known as inviscid
fluid.

1.3.2 Real fluid

A fluid which is incompressible but viscous is called a real fluid. Real fluid is also known

as viscous fluid. Real fluid is further divided into two categories.
(i) Newtonian fluid
(i) Non-Newtonian fluid

@) Newtonian fluid
Fluids which obey the Newton’s law of viscosity are called Newtonian fluids. Newton’s

law of viscosity is expressed by

T=p— (1.6)

. . . . . dv , .
where 7 is shear stress, g is the viscosity of the fluid and i is the rate of strain. Examples

of Newtonian fluids are water, glycerin, light, hydrocarbon oil and silicon oil etc.

(ii) Non-Newtonian fluid

Fluids which do not obey the Newton’s law of viscosity are called non-Newtonian fluids.
Examples of Non-Newtonian fluids are ketchup, tooth paste, blood, paints and greases etc.
1.3.3 Compressible fluid

Compressible fluids are those in which fluid density changes with the change in pressure
or temperature. In general all gasses are treated as compressible fluid.

1.3.4 Incompressible fluid

Incompressible fluids are those in which fluid density remain independent of the pressure

or temperature.
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where ¢, denote heat capacity per unit volume of the fluid, u denote the kinematic viscosity

pr — (1.10)

and k is its thermal conductivity.

1.8  Governing equations
The laws which govern the motion of fluid are described as follow:

1.8.1 Continuity equation
The partial differential equation which represent the law of conservation of mass is called

continuity equation. The general form of continuity equation is

dp
et = 1.11
P V.(pV) =0. (1.11)

For incompressible flow i.e. if the density is independent of time and space the above

equation take the simplified form

.V =0 (1.12)

In cylindrical coordinates, the continuity equation is of the form

du 16(17r)+16w 0
2zt v or 7o

here u, v and w are velocity component respectively.

(1.13)

1.8.2 Energy equation
The energy equation used to analyze heat transfer within the fluid. Energy equation can be

construct by using first law of thermodynamics under the statement that energy can neither

be created nor be destroyed. In Cartesian coordinate system, the energy equation is

6T+ 6T+ ar _ k 32T+82T+62T N Il (114)
“ax TV ay 9z pr:IJ dx2  gy?  0@z? Lo e '
where, the dissipation function for three-dimensional case is
_, (6u) + 6v [6u av)®  aw  avy . [6u N 6w] (L.15)
=2 \ax y dy ' ox [ay Tz 8z @ '

The cnergy equation for stcady fluid flow, in term of the cylindrical coordinatc system is

3T+ 6T+W6‘T k 32T+15( 6T)+132T + u 116
¢ ar rd¢ \pc,/|dz® ror re r2 dp? pey @ (1.16)

where the dissipation function is
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Ju 2 av law 1du v auz
4"—2[3) + a) vae T ] [:Wfa [a+5
(1.15)

[1 dv ow w

rde ar r

1.8.3 Momentum equation
The equation of motion representing the law of conservation of momentum in vector form

is

v
. } b, 1.16
por=VT+p (1.16)

here b is the body force per unit mass and Cauchy stress T is given by

T= (1.17)

Txx Ty Txz
Tyx T}’}’ T}’Z,

Tex Tay  Taz

where Tyy, Tyy and T, are the normal stresses and Tyy, Tz, 2nd T,y are the shear stresses.

1.9  Numerical methods
Finding the exact solution of governing partial differential equations is hardly possible due

to its nonlinearity, but numerical solution of such equations can be computed. Although a
lot of numerical method are being used to find numerical solution of these types of
problems, fourth-order Runge-Kutta method (RK) and shooting method are more
frequently used. The details of these methods are as follows:

1.9.1 Fourth-order Runge-Kutta method

There are many numerical techniques available for solving initial value problems in term
of ordinary differential equations. However, the most effective techniques were developed
around 1900 by two German mathematicians C, Runge and M.W. Kutta. These methods
are famous as Runge-Kutta (RK) methods and distinguished due to their orders, because
they agree with Taylors series solution up to the term A", where r is order of method.
Runge-Kutta 4™ order method (RK4) is a numerical technique used to solve linear and non-

linear ordinary differential equations. Let us consider the second order initial value problem

of the form
'y dy (1.18)
rrciatl ( 5 ix ) '
subject to initial conditions
dy
y(x) =@, —=(x,) = b. (1.19)
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To solve above problem, it is required to convert the second order initial value problem to
the first order initial value problems. Introducing new dependent variable z as

dy

—=z=g{xy,2z

ax g (xy,2) , (1.20)
Z=f(xy2)

dx f ’ r

the initial conditions Eq. {1.19) become

y(x,) =a, z(x;) =b. (1.21)
Now the solution of the system of two first order ordinary differential equations given in
Eq. (1.20) subject to initial conditions given in Eq. (1.21) can be computed explicitly by

the formula of Runge-Kutta 4™ order method as follow

1
Yner =n + g(pi + 2p, + 2p3 + pa). (1.22)
1
Zpy1 = Zy t+ E(Q]_ + qu + ZQ3 + q4), (123)
where
L= hg(xm}’m zﬂ,) 3
ql = hf(xﬂl yﬂ! zn)
h P1 q,
p2=hg(xn+§ayn+?azn+?)
h
12 =hf(xn+—,yn+&,zn+g—-1-
z 2 2/, (1.24)
=h (x +E +p—2 z +£)
P3=ngi\xn Z:YR 2ttt

h D2 T2
@ =hf(tntzm+ 2z + 2

Ps = hg(x-n +hry~n + Pa.Zpn + q3)
q4 = hf(xﬂ_ +h:yﬂ, + Pz Zp + Q3) /

Where n is number of steps, h is uniform step size obtained by h = b-%a and x, (n =

1,2, ..., N) are uniform grid points with x4 = a,xy = b.

1.9.2 Shooting method

Shooting method is very popular to solve the boundary value problems given in terms of
ordinary differential equations. The idea of shooting technique 1s to reduce the boundary
value problem to the initial value problem. This method is applicable to almost all types of
boundary value problems containing different forms of the boundary conditions. In
shooting method we start to find the solution of the boundary value problem at one end and

*“shoot” to the other end with the initial value solver, unless the boundary condition at the

9
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other end converge to its correct value. The two point boundary value problem is a second
order differential equation with one condition specified at x = @ and another at x = b. Let

us consider the general second order boundary value problem as

y'=flxyy) y@=a yb)=g (1.25)
It is required to reduce the above boundary value problem into the initial value problem in
shooting method. The boundary value problem Eq. (1.25) is reduced to an initial value

problem as

y'=fxyy) y@=a y@=ul (1.26)
Here the missing initial condition uDis needs to be determined, that might be done by
supposing the value of u® as an initial guess byu(® = s. Now we have to calculate the
solution of initial value problem Eq. (1.26) from x = @ to x = b. One can obtain it through
Ruge-Kutta 4™ order method as explained in the previous section. Hence the value of y(b)
can be obtained at this stage, if the value is B which is our boundary condition y(b} = §,
then it is right, otherwise we have to readjust the value of initial guess s such that y(b} = f8
is satisfied. Instead of doing let and tried with initial guesses of u(, Newton-Raphson

formula is used for this purpose as follows

u(E“) — u(") _ (y(b) - ﬁ) .

d (1.27)
= ®

10
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Chapter 2

Study of non-orthogonal stagnation point flow towards a
stretching sheet

This chapter focuses the analysis of steady flow of viscous and incompressible and viscus
fluid towards a non-orthogonal stagnation point over a stretching sheet investigated by
[19]. The system of governing coupled partial differential equations {PDE’s) are converted
to the system of the coupled ordinary differential equation which are exposed to fourth-
order Runge-Kutta method with shooting techniques (for two unknown initial condition}
to solve numerically. The results are presented in the form of tables and graphs. The detail
discussion is made at the end of this chapter.

2.1  Mathematical formulation

Let us take an incompressible flow of fluid nearby a non-orthogonal stagnation point on
the surface happen together with the plane represented by y = 0, where flow is two
dimensional, steady and always hold the condition, y > 0. The surface is kept a full
stretched by applying a parallel and equal force on both the ends of the x-axis. It is
supposed that the fluid having some velocity V, (u,, v, )is colliding on the stretching surface

with a random choice of angle of incidence y as shown in figure 2.1.

.\‘

%

Ve (U,1,) \‘
N
N

RN

~— — ~— > —> —

U, (x) = cx
Figure 2.1: Physical model and coordinates system

Under the above assumptions, the flow can be described in the form of following

mathematical equations.

11
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)

du 4 v

ax Ay

6u+ du  1dp

“ox "ay* p ox
dv dv 1dp 5

i —=__F i 23

“ax+”ay pay+vVv 2.3)

In above equations uand v denote the velocity components along the @ and y-axis

0, (2.1)

+ uV3y, 2.2)

respectively, p in place of pressure, p in place of density and v is the kinematic viscosity

of the fluid. The boundary conditions of the described problem are defined as

u=1u,(x)=cx,v=0at y =0,
u = u, = axsiny + bysiny, (2.4)
v =1, = aysiny,asy o w,
where a, b and c are positive constants and Y is the parameter. For 0 <y </, and 7/, <
y < m the flow model is favorable flow and unfavorable flow respectively. The external
flow is identified as a mixture of potential stagnation point flow and linear shear flow. We
introduce non-dimensional variables and eliininating pressure p from prescribed governing

Eqgs. (2.2) and (2.3), the non-dimensional variables are given as

=M y= M, w="L, @s)
in above equations 1) is the stream function defined through the usual relations u = % and
v=— % in Cartesian plane. The function 1 is also called non-dimensional stream

function. The Egs. (2.2} and (2.3) turn into non-dimensional form after using non-
dimensional variables in them, which is defined as
ayp o ayp o
2rg2 e (T2)) — = (V2 =

The appropriate boundary conditions given in Eq. (2.4) are also transformed {after applying

non-dimensional variables) into the following form

=0 aw— t y=0 2.7
p=0, ay'_xa y=0 (2.7a)
1
17 =Axysiny+iky2cosy as y - o, (2.7b)

12
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where A =a/c and k = b/c are taken as positive constants. The stream function 3 defined
in Eq. (2.7b) exactly satisfies Eq. (2.6). Solution of Eq. (2.6) can also derived subject to the
boundary condition Egs. (2.72) and (2.7b) in the form

Yx.y) = xf(y) +g0). (2.8)
From Eq. (2.8), we have

d d
= G =31 0)+g )
(2.9)
az aZ
3 =0 a—;f=xf"(y)+g"(y).

After putting the expressions from Eq. (2.9) into Eq. (2.6) and after simplification, we get

fiv +ffm _ frfu =0,
gip + fgul _ glfn' — 0.
Integrating once the above equations with respect to the following coupled ordinary

(2.10)

differential equations (ODEs) are formed
f = f e =0, 2.11)
ng +fg!f _ g.ff.l' + Cz — 0, (2'12)

where ¢, and ¢, denote the constant of integration and the value of it can be completed by

applying the following boundary conditions
f(0)=0,f(0) = 1,f'(o0) = Asiny, (2.13a)
g{0) =0,g'(0) =0, g"" () = kcosy, (2.13b)

in above equations, where prime sign indicates the differentiation w.r.t. y. In order to
determine constant ¢;, we take limit y approaches to oo in equation (2.11) and use the
boundary condition defined as f’(ec) = Asiny, and we find value of c; = A%sin’y. To
find the value of the other constantc,, assume f(y)~yAsiny + a as y tends to o, here
a = f — yAsiny is taken as real constant, by incorporating g'(o) = y k cosy and
g"' (o) = kcosy, we get the value of ¢, = —akcosy. By putting values of ¢, and ¢, into
Eqgs. (2.11) and (2.12), we get

fu.r + ff” _ ffZ + Azsinz}/ = 0' (214)

gm + fgu _ ffgr _ akCOS}’ = 0, (215)

13
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with boundary conditions given in Egs. (2.13a} and (2.13b). The linearity of Eq. (2.15)

allow us to find the solution of the form

g(y) = kcosyh(y) (2.16)
where h(y) can be obtained from Eq. (2.15)

R+ fh" — f'h' —a=0, (2.17a)

h(0) =0,A'(0) =0,h" () = 1. (2.17b)

It is noticed that a = a{A,y) is obtained by solving Eq. (2.14) subject to boundary
conditions Eq. (2.13a). Some values of « for different values of A and y are given in table

2.1. From Eq. (2.8), the stream function 3 becomes

Y(x,y) = xf(y) + kcosyh(¥). (2.18)

In non-dimensional form, the skin friction is given by

azw H 1
=gz = X0+ 9", (2.19)

As g(¥) = kcosyh(y), then above equation become
azlp r "
Tw = |7 = xf""(0) + kcosyh"(0). (2.20)
dy y=0
The curve # = 0 and the dividing streamlines ¥ = 0 connect the wall where r,, = 0 atthe

stagnation point. Thus the stagnation point x; is defined by following relation

__keosyh"(0)
Xg = W— (22])

2.2  Numerical solution
Since the boundary value problems Eqs. (2.14 & 2.17a) are non- linear, so it is impossible

to find the exact solution of it. To construct its numerical solution, we use Runge-Kutta 4"
order method with shooting technique. For this purpose, we need to convert modelled

system of boundary value problem into the system of first order initial value problem as

follow
f=7u (2.22)
f'=y (2.23)
" =y, (2.24)

14



fa! =-—Y1¥3t+ }’22 - Azsin(y), (2.25)

h =y, (2.26)
h' = ys, (2.27)
h" =y, (2.28)
Y == —¥1Ys + Y2¥s + a, (2.29)

with given initial conditions

y1(0) = 0,y,(0) = 1,y3(0) = uy,
(2.30)

¥5(0) = 0,y5(0) = 0, y6{0) = u,

where 1, and u, are two missing conditions, which can be found in such a way that solution
satisfy the boundary conditions (2.13a) and (2.17b) at co. We construct both the solution
with the help of Runge-Kutta 4™ order method with shooting technique.

23 Result and discussion

The pair of ordinary differential Eqgs. (2.14) and (2.17a) subject to boundary conditions
given in Egs. (2.13a) and (2.17b) are solved numerically for different values of the
participated parameter A and angle y with the help of shooting techniques based on Runge-
Kutta 4% order method. The parameter k is considered to be one in all cases and considered
the sitnation of favorable flowie 0 < y < m/2 . The casc of unfavorable flow i.e. m/2 <
y < m is not discussed here as it is symmefric about y —axis, The computed results are
compared with the results represented by Mahapatra and Gupta [4], Nazar et al. [10] for
orthogonal flow i.e. (y = n/2). It is found that the result are quite similar which prove
the accuracy of our code. The comparison of the values are given in table 2.2. It is noticed
from the table that the magnitude of f"(0) fell down continuously with increasing value
of A. Nonetheless the magnitude of f”{0) rises when A > A.(¥), here A, denote critical
value of parameter A. It means that boundary layer is thinning progressively with
increasing value of A. The valucs of A, = 1/siny with respect to ¥ are shown in table 2.3.
For A < A, and inverted boundary layer is formed, and with the increasing value of A the
boundary layer’s thickness decrease, this phenomena is shown in figures (2.2 - 2.4), It is
also notice from the figure that when y is small, the structure of stagnation flow imposing
obliquely on a fixed wall plane, which has been discussed by Tamada [12]. The values for

the stagnation point x; with A for several values of y are shown in table 2.4. It is clearly

15
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notice from table 2.1 and 2.4 that for A=2 when y = m/6, it is hard to find the exact values
of stagnation point x; and a, because of the numerical uncertainty near to the 1.(y) i.e.
critical value of A. Generally the magnitude of @ is approximately very small, while on the
other hand the magnitude of stagnation point x; is too large. Figs. (2.5-2.9) demonstrates
the shape of streamlines for the orthogonal flow, when the flow is favorable i.e. (0 < ¥ <
r/2) for A=2.5 and for some values of y. To construct the graphs of streamlines, we
considered the positive constant k to be 1.0 in all calculation. It is seen from the Figs. (2.5-
2.9) that the stagnation point x; are positive for the small values of the angle of incidence
y =n/15 and y = m/12. On the other hand, the stagnation point x; is negative for large

values of the angle of incidence y = n/6 and y = n /4.

Table 2.1: Values of a for several values of A and y.

A a
T G T 7 B
"T15 v =% "4 "3
0.1 0.9488 0.9371 0.8852 0.8445 0.8152
0.2 0.9025 0.8811 0.7917 0.7245 0.6776
0.3 0.8606 0.8316 0.7115 0.6246 0.5654
04 0.8215 0.7857 0.6406 0.5387 0.4700
0.5 0.7849 0.7432 0.5772 0.4627 0.3862
0.6 0.7506 0.7036 0.5192 0.3941 0.3122
0.7 0.7182 0.6662 0.4663 0.3325 0.2438
0.8 0.6874 0.6312 0.4165 0.2739 0.1832
0.9 0.6580 0.5981 0.3710 0.2233 0.1274
1.0 0.6301 0.5666 0.3283 0.1743 0.0748
1.5 0.5063 0.4277 0.1456 -0.0316 -0.1431
2.0 0.4018 0.3138 - -0.1946 -0.3181
2.5 0.3123 0.2146 -0.1211 -0.3310 -0.4630
3.0 0.2311 0.1289 -(.2277 -0.4482 -0.5882
4.0 0.0952 -0.0181 -0.4104 -0.6498 -0.8022
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Table 2.2: Comparison of computed f"'(0) with that of Mahapatra & Gupta [4] and

Nazar ¢t al. [10] for several values of A and y.

A f"(0)

v=r/12 y=wn/4 y=n/3 y=n/2

Present  Mahapatra  Nazar et

& al. [10]
Gupta [4]
0.1 -0 .9943 -0.9807 -0.9747 -0.9693 -0.9693 -0.96%4
0.2 -0.9870 -0.9504 -0.9336 -0.9181 -0.9181 -0.9181
0.5 -0.9562 -0.8062 -0.7344 -0.6672 -0.6672 -0.6673
1.0 -0.8796 -0.4243 -0.2050 - o _
2.0 -0.6486 0.7384 0.4010 0.0176 2.0175 2.0175
3.0 -0.3319 0.3131 0.5666 0.7296 2.7293 4.7296
4.0 0.0568 0.2218 0.1840 0.0013 _ .
5.0 0.5089 0.4180 0.1899 11.7537 . _
Table 2.3: Values of A = A, for different value of y.
Y Ac
n/15 4.8097
n/12 3.8637
n/6 2.0000
n/4 1.4142
n/3 1.1547
n/2 1.0000

Table 2.4: Values of stagnation point x; for several values of A and y.

A X

y=m/12 Yy=mn/6 Yy =m/4 y=m/3
0.1 0.0137 0.0967 0.1296 0.1164
0.2 0.1141 0.2353 0.2682 0.2264
0.3 0.1984 0.3462 0.3793 0.3167
0.4 0.2719 0.4425 0.4804 0.4039
0.5 0.3377 0.5315 0.5818 0.4993
0.6 0.3981 0.6181 0.6915 0.6153
0.7 0.4544 0.7060 0.8193 0.7712
0.8 0.5079 0.7989 0.9780 1.0052
0.9 0.5595 0.9006 1.1892 1.4133
1.0 0.6099 1.0157 1.4939 2.3375
1.5 0.8660 2.1542 -7.2924 -1.0317
2.0 1.1830 -1.0437 -0.4053
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Figure 2.6: Streamlines pattern for A = 2.5 wheny = n/12.

Figure 2.7: Streamlines pattern for A = 2.5 when y = n/6.

20




Figure 2.8: Streamlines pattern for A = 2.5 wheny = n/4.

Figure 2.9: Streamlines pattern for A = 2.5 when y = n/2,
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Chapter 3

Study of uniform suction and slip effects on homogenous-
heterogeneous reactions on the flow of non-Newtonian Casson
fluid

3.1 Introduction
In this chapter, we revised the simultaneous influences of homogenous — heterogeneous

reactions on non-Newtonian Casson fluid in the region of stagnation point studied by [20].
The slippery wall are having a uniform phenomenon of suction on a porous stretching
/shrinking sheet. The governing partial differential equations, are initially converted to
couple ordinary differential equations, with the help of suitable transformation. Later, a
numerical solution for these ordinary differential equation is sought by using the well-
known shooting technique method (for two unknown initial condition) with the addition
of Rung-Kutta method of 4 — order described in detail in initial chapter. It is noted that
unique solution is displayed to observe the variation in the stretching parameters. On the
other hand, variation in the shrinking parameter, yields a dual solution for the shrinking
sheet case. Finally, the velocity of concerned fluid is displayed, graphically against dual
solution.

3.2 Mathematical formulation

Here, we assume the steady, incompressible two-dimensional flow of a non-Newtonian
Casson fluid in the region of stagnation point caused by the linear shrinking/stretching of
the surface. Flow is restricted to the upper half plane represcnted by the region y > 0 above
the plane that analogous with (y = 0} on which x = 0 is the fixed stagnation point.
The x —axis is taken along the surface and y —axis is taken perpendicular to it as presented
in figure 2.1. The surface is being stretched in both the positive and negative x —directions
by applying two equal and opposite forces which produces a linear surface velocity defined
by expression u,,(x} = mx, in which m > 0 corresponds to stretching of sheet and m less
than zero represents shrinking of sheet. The velocity outside or above the boundary layer
is represented by the expression u,(x) = cx, here ¢ > 0 represents the strength of the

stagnation flow. The equations that govern the flow are written in non-dimension form as

du av_

5;-!-5—0, (3.1)
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«

du  du du, ( 1\ 9%u

— —_—=y, — 1+ _) — 3.2
”ax+"ay Up— -V 3) 3y G2

da da d%a
_ — =D, — — z 33
uax+v6‘y D‘ayz k.ab?, (3.3)

ob  ab 3%
u = + v—ay = Dg 37 + k. ab?, (3.4)

where u and v represents the components of velocity in x and y —direction respectively, a
and b are the concentrations of chemical species 4 and B, k; (i = ¢, s) are the rate constant,
v denotes the kinematic viscosity, f§ = pp\/z—nc / py is in place of Casson parameter,
diffusion coefficients are presented by D, and Dg .The boundary conditions for modelled

problem defined below

1\ 3
u(0) =u,(x)=mx+1L (1 +E)%,v(0) = -1,
d ab
DAl = k,a(0),D; —J = —k,a(0) :

() = 1, (x) = cx,v() = 0,a(%) = agb(w) = 0

(3.5)

where m and c¢ are the dimensional constants of dimension 1/time, L represent the
velocity slip length parameter, v, symbolized by mass transfer which corresponds to
suction velocity and a, is also assumed as a constant and the no slip condition can be

deduced by assuming L = 0. By incorporating the following non-dimensional variables

b

n= \/%y,u =cxf'(n), v=—Vovf(n),gln) = ai;,h(n) =—. (3.6)

ady

In Eq. (3.6), the continuity equations represented in Eq. (3.1) is satisfied identically and the
Egs. (3.2)—(3.4) after calculation reduce to

1
(14 g)r = fre=0 (3.7

Using Eq. (3.6} in Eq. (3.3), we get
! "+fg —kght=0 38
59 /g —kgh”=0, (3.8)

v
where Sc = aand K =k.a?/c.
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By using the non-dimensional variables Eq. (3.4) reduce to
) L, 5
Eh” + fh + kgh? = 0. (3.9

where § = Dg/Djand K = k.ak/c.
And by using the non-dimensional variables the boundary condition Eq. (3.5) becomes

1
FO) =S.F@ = 1+ (145)rf @), f() =1

g'(0) =k,g(0), g(o)=1 ’
Sh'(0) = —ksg(0), h(0)= 0

(3.10)

here prime represents the differentiation w.r.t. the independent variable 7, §=
v,/ (cv)/? (> 0) corresponds to the mass suction parameter. The parameter A represents
the ratio of the stretching to the external flow rate defined as A = m/c, where the A greater
than zero is for the stretching of sheet while less then zero is for the shrinking of sheet and
equal to zero is for fixed sheet. The parameter y = LS/, denotes the velocity slip
parameter, the non-dimensional Schmidt number is defined by S¢ = v/D,, the ratio of
diffusion coefficients is § = Dg/D,, K = k.a?/c is used to measure the amount of the
homogenous reaction, K; = k,Re~1/2/D, is used to measure the amount of heterogeneous
reaction and Re = c\v is known as the dimensionless Reynolds number. Following
Chaudary and Merkin [11], we assumed that coefficients D, and Dp which defines the
diffusion are equal and by assuming & to be one, the assumption deduced the following

relation

h(n) =1-g(n), (3.11)

thus Eq.(3.8) and Eq. (3.9) reduce to

1
g;g” —kg(1-g)*+fg =0, (3.12)

equipped with specified boundary conditions defined as
g'(0) = K;g(0)and g(o0) = 1. (3.13)

The important physical quantity of our interest is the coefficient of the skin friction

symbolized by Cr and defined as
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G=—2 (3.14)

- 2
PU™yw

In above equation ,, is the shear stress defined via relation

Py du
T, = (#B + ﬁ?c) (E)Fo' (3.15)

After incorporating Eq. (3.5) and (3.15) into Eq. (3.14) we get

Rexlfch = (1 + %) f”(O), (316)

where Re, = xu, /v represents the Reynolds number.

3.3 Graphical results and discussion

The governing partial differential equation are transformed to ordinary differential equation
(ODE) with the help of suitable transformation introduced in chapter 2. The boundary layer
non-linear Egs. (3.7) and (3.12) together with given boundary condition Egs. (3.10) and
(3.13) are solved numerically by Runge-Kutta 4%-order method with well-known Shooting
technique method (for two unknown initial conditions). Here, the values of f'(0)
and 8'(0) are calculated for which velocity profile as well as temperature profile satisfies
the boundary conditions defined on the infinity for several values of the participated
physical parameters. To get the accurate analytical solution, the process is repeated until
the error is reduced to 107, The numerical computations have been done for possible
important range of the involved parameters in the governing equations. The important
governing parameters are Casson parameter §f, slip parameter y, stretching/shrinking
parameter A and suction parameter §. The strength of homogeneous and heterogeneous
parameter are represented by K and K respectively, and the dimensionless Schmidt
number is represented by Sc. Figure 3.1 shows the velocity profile f'(n) for different
values of the stretching and shrinking parameters 4 by keeping other parameter fixed.
From the figure, it is clear that for stretching sheet case which corresponds to A > @, the
solution obtained for all values and the fluid velocity increases greater as compared to frce
stream velocity but fluid velocity decreases as the value of # increases, while for shrinking
sheet which corresponds A4 < 0, the existence of dual solution is noted shown only for A =
—1.52, = —1.42, A = —1.32 and at initial phases the velocity is in the region of negative
values but gradually velocity increases with increasing values of the parameter n and

becomes positive. Figure 3.2 illustrates the dual solution of the velocity profile f*(n) for
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various values of non-Newtonian Casson fluid parameter 8 for A = —1.52 and by keeping
the other main parameters fixed. From the figure, it is also note that the f'(3) fluid velocity
increase by increasing the Casson Parameter 8 which elucidates that for highcr values of
non-Newtonian (Casson) parameter f, the fluid behaves like Newtonian fluid.
Furthermore, figure exhibits the decrease in momentum boundary layer thickness for
magnifying values of Casson parameter 8. Figure 3.3 exhibits the effects of the slip
parameter y for shrinking case with valuesd = —1.52 on the velocity profile f'(7)
with § = 5 and assuming 8 = 1. From this figure, it also seen that for first solution the
momentum boundary layer thickness and the values of fluid velocity decreases due to
increase in the values of y. So one can say that by providing the retracting forces the
development of momentum can be controlled and causes the decelcration of the boundary
layer flow with shrinking of the sheet and in the case of second solution it is in reverse
trend. Figure 3.4 represents the effect on the fluid velocity profile f'(z) for variation in the
mas suction parameter S for fixed vales of other parameters as § =1,y = 0.3 and A =
~1.52. The same effects are noted as that of velocity slip parameter on the fluid velocity
as well as on momentum boundary layer thickness because suction 1s also a source of

producing resistance against the flow of the fluid.

Figure 3.5 shows the variation of concentration profile g(n) against n and is presented for
numerous values of the A representing stretching-shrinking of the sheet. The dual solution
is obtained as shown in graphs for concentration profile g(n) for different values of the
A =-152,-1.42,-1.32. All the curves obeying ‘S’ shape trajectory which generated
from the origin and increases to the value at unity satisfies the boundary conditions that
also agrees with results of Shaw et al. [13]. Furthermore, it is noted that the behavior of
concentration profile for first and second solution is opposite due to increasc in
concentration of boundary thickness with increase in A for first solution, while decrease in
concentration of boundary thickness is observed with increase in A as predicted by the
second solution. Figure 3.6 contains the effects on concentration profile due to variation in
the non-Newtonian Casson fluid parameter 8 by keeping other involved parameter fixed.
This figure elucidated that the increase in Casson fluid parameter causes the increase in
concentration profile while shrinks the concentration boundary layer thickness because the
enhanced values of Casson fluid parameter magnifies the strength of elasticity stress.
Figure 3.7 shows the effects on the concentration profile for variation in the slip parameter

¥ in shrinking case by assuming A = —1.52 and fixed values of other involved parameters.
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It is noted that the concentration profile is the increasing function of the slip parameter
however incrcasing values of slip parameter shrinks the concentration boundary layer
thickness for first solution while decrease in fluid velocity is because of existence of slip
condition located at the wall and makes a sense that enhanced in the solute concentration
and thus opposite behavior is noticed for second solution. Figure 3.8 shows the variation
in the concentration profiles g(n) in concentration boundary thickness by varying the
values of the parameter S which represents the mass suctionand fixed values of other
involved parameters. The same effects are reported due to variation in the suction
parameter S on the concentration profile as in that of variation in the velocity slip parameter
and this is because of the fact that the increase in the friction between the layers of fluid
causes resistance in the flow of the fluid. Figure 3.9 shows the behavior of the gradient of
concentration g'(0) against non-Newtonian Casson parameter £ at the surface due to
different values of the mass suction parameter S along with A = —1.52. It is noted from
the figure that the gradient of concentration is an increasing function of both § and Casson
fluid parameter £ for as predicted by both first and second solution while gradient of

concentration at § = 1,2 coincide for second solution.

T T T T T T T T T

1.5} Jirst solution -
A=-1.52,-1.42,-1,32,-0.5,0, 1, 2

A=-1.52,-1.42,-1.32

scond solution 7
-1 '5 1 i 1 1 i 1 I 1 i
0 1 2 3 4 5 6 7 8 g 10
n

Figure 3.1: Velocity profile f’ () for variation of stretching/shrinking parameter A with
fixed values of y = 0.3, =3 and § = 0.
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Figure 3.2: Velocity profile f/(r) for variation of the Casson parameter g with fixed
values ofy = 0,A = —1.52 and § = 0.5.

n

Figure 3.3: Velocity profile f'(17) for variation of the slip parameter y with fixed values
of , A=-152,§=05and g =1.
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Figure 3.4: Velocity profile f'(n) for the variation of the suction parameter S with fixed
valuesof y = 0.3, A=—152and f =1,
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0.777 4y A=21,0,-05,-1.32
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0.2r ,f A=1.52,-1.42, -1.32 4

01r - P Second solution ’
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1 L 1 1

0 1 2 3 4 5 6 7 8 9 10

Figure 3.5: Concentration profiles g(s) for variation of the velocity parameter A with
fixed values of § = 3,K; = 05,5 =05,y =0.3,5c = 1 and K = 0.5.
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Figure 3.6: Concentration profiles g(n) for variation of the Casson parameter § with

fixed values of A = —1.52,K =05,y = 03,5 =05,K;, =1and Sc=1.
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Figure 3.7: Concentration profiles g(n) for variation of the slip parameter y with fixed

valuesof A = —1.52,K; =05, =1K =055 =05and Sc = 1.
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Figure 3.8: Concentration profiles g(n) for the variation of the suction parameter § with

fixed values of A = —1.52, K, = 0.5, =1,y =03,K =0.5,and Sc = 1.

g'(0)

Figure 3.9: Gradient of the Concentration profile g’(0) against Casson fluid parameter
g for variation of the suction parameter S along with fixed values of A = —1.52, y =
0.3,k =05Sc=1and K; = 1.
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