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Abstract

Load shifting aod utility grid power peak shaving arc two mechanisrns tbat are critical in

formiag stable and resilient microgrids (MGs). Both the mechaoisms have some limitations which

this study aims to addr€Bs. Firsfly, the cxisting cognitive shategies of power scheduling in the

research literafire mainly focts on a small sample dataset. So, the sfrategies prodrrce unsatisfrctory

r€sultr when applied to large population. Evcn wheir utilizing larger datasets, the static clustering

basd techniques fril to produce significant improvcment. Secondly, the existing peah shaviag

algoritbms have limitations of fixed demaod ad fed in limits. Power systems with dynamic

demand and feed hlimib cannotproduce significantimprovements in community-based netrvorks

as they are based on nondynamic optimization techniqtres.

Theproposed design uses a large population dataset aod achierres efficient load scheduling

usrng a dynamic chstened home energy managc,rr€,lrt system (DCHEI\{S) utilizing time overlap

criteria for consum€r communities. DCHEI\{S foms clusters of dwices, consumcr defind

conshaints and particle swann optimization (PSO) to attain optimized powcr demands. Modified

inclinedblockrate andreal-time electicityprice (RTP) strategies aredeployodto servethepurposc

of minimizing electrical costs. A largc population sample, of 1ffi0 residential ltsers, from differeiil

classes of society wqe tested. Thc results validatc the proposed DCHEI\dS showiag higher

efficieircy in comparison to the nondynamic clustered optimization method. Peak b avemageratio

(PAR) shows an improverneirt of 2lo/o while cost is reduced by 4o/o for the proposed DCHEI\dS.

there is an improvemmt of l9o/o in variaoce to mean ratio.

1Ae sUrdy orplores dynamic clustcring basd optimal peak shaving management schemes

in community-basd MG syst€m- In this study, a two-stage conhol technique is pro,posed for

estrablishing the inputs ncdd for rule-based peak shaving managemerl It involves both dynamic



demand and day-to-day feed-in limits to estimatc battery charge/discharge schedules for the

upcoming day. Limitedutility gdd dmand aod feed-in powers corrcspond to the day's demand and

fted-in limis. For minimiziag peak grid €Dsgy consumed ftom the utility grr4 the ideal iryuts

necessary forsuggestodrule-basedpeak shavi4g managementare derivedusing the PSO algorithm.

The suggested optrrnal peak shaving contnol scheme is compared quantitatively and qualiatively

with prwiorls wor*. MATLAB is usd to test the proposed mamgcrtent method for the diffqent

photovoltaic @V) power and load demaod patterns. An imp,roverrent ofnearly l5o/ois rrchiwed for

peak shaving in difrereiil cases.

The main contributions sf this work include: l) Proposes a novel idea of load schduling

using dlmamic dwice chrsteing schcme for the dwelopment of optimized load profiles for

confiollable devices, applicable to a MG corrmunity comprisiag of societal classes' 2) Proposes the

o,ptimal peak shaviag conEol sfiatery basd on two stage efficient disEibuted ftsource utilization

scheme, invotviag PV aod batt€ry €Nr€rgy storage (BES) pour€r sources in the MG comrrunity that

r€drrccs utility grid d€mand.
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Chapter 1

Introduction

Formfury stable and resilimt microgrids (MGs) have become a necessity of the present times.

This work is an e,ndcavor b suggest a solution for the limitations of the two critical areas of MG

enc(Sr managmcng load shifting aod pealc shaving mechanisms. A d)rnamic chstered home

encrgy menagetrtcnt sysEm for a residential comrlmity that guarantees efficiency in load shifting

for small to the large datasets is proposed. Also, dynamic optimal peak shaving schemes with

b community-basd HEI\{S have beeo orplored.

This chaprter presents a background study regarding the impact of load shiftiag and peak

shsving mecbani$ns in MGs. It hightights the limitations of the existi4g load shifting and pealc

shaving techniques. It also dissrsscs the contibrutions of this work in the field of €oeXg5r

maoagment systems. It presens the methodolory adopted to design the sysh. Iastly, it

sumnarizes the organization of this tlresis.

1.1. Backgrcund

The per capita power consrmption is rapidly incr€asing worldwide. The electic utility

companies are frcrng immense challcnges in fulfilting the ever-rising consumer dcmaods. As per

the energy information admidstation (EIA), till2025, there are 40% chances of an increase in

electricity dcmand h th€ r€sidcNilial polyer secbr, auard, a25o/o incrcase in the commercial sector.

Moroover, EIA rrports that the electricity demaod is expected to increase by 50o/o during the time

span from 2018 till 2050 [t].



The haditional power grid is unable b meet and manage the increasing clectricity demands

and challenges. To fulfill these rising d€mands, the tend 6f ffilizing locally generated power has

gahed popularity in the pourer sector. Enqgy is generated by orploitiag nom-conventional

reoeurable cnergf ftEouroes, such as photovoltaic (PV), microturbines, fuel cellg wind elreqgy, etc.

The concept of disEib,uted powcr gcneiation is a flex,ible solution for green en€rgy dwelopments

in tuturc [2].

Microgrid (MG) is an e'mcrging conccpt in smart grids that cnhanccs the effectiveness and

resiliency of power systems by allowing smart controt of consumer's power consumption while

distsibuted geirelation rcsources [3]. The MG ensures closer proximity bertween

genenation aad dernand-side as it involves flqible and intelligmt control sc,hmes. The transition

from passive, cmfialize4 and unidiroctional netrrorks to activg distributed and bidirectional

aetwotk has emphasizd futur€ technologies bunads more intclligent, flexible, and efficient

entities. MGs consisting ofcomparatively smaller-sized clusteis ofdistribruted generationunits and

loads can wo* indcpendcntly as si4gle entities. thcy can wort in parallel to thc utility grid without

atrocting the upsheam network integrity [a]. MGs have huge pot€ntial to improve the reliability

and stability of the syst€m. MGs allow autonomos opemrtions with dynamic control of both the

pow€r gmeiation and consumer sides. They offer a large number of beirefits for the utility grd as

well as the consurters. Fortheutilitygrl4 MGsbehave as aggregatodindividuals whichdo notrisk

the grid reliability and seority and follow grid regulations. For the emd-user, MGs offerbenefis of

continuots and reliable pow6 supply, roduction in transmission losses, and economic arbihage

support [5,6].

A home €Nr€rgy manag€rnent systm (IIEIVIS) warants the steadiness and consishcy of

MGs [7]. It is commonly referred to as the technique b the use of home dwices by



dmestic usclls. HEIUS plays a vital role in a smart grid connol system due b the widcsp,ead

d€maod for eleclricity in the domestic sector. [8]. It worlcs by allowing variations in the dernand

curve accordi4g to each profile of a user. The variation occurs due to the partaking of a usa in the

electric power market The whole process makes use of intelligent data anatytics that are located in

the softrrare running the database. The data analytics help save the user's profile at various points

of consumption. More spocificall5 an advanced mercring infiastructur€ (AIVID or smart meter

scn es as a connecti4g junction betlveen the electrical grid and dwices b e,nable the power supply.

HEI\{S prioritizes this load consumption that concerns cost and energy [9].

Today, ths intcgration of HEI\{S in an MG is an esseirtial part of smart grid contol as

domestic consumers zubshntially contribute to the toal elcricity consurytion. Also, there is a

needto improve the existing consqvativeHEXtds techniques to shrinkthepeakto theaveragcpower

demand of surart glds. This would fulfill the increasing energy demaod and overcome power deficit

conditions in underdeveloped countsies [0]. The grid generates s coatsolling signal known as

demaodresponse @R) thatreflects dtered electricityprices druingpeakhours. HEMS responds to

DR while nahtainiqg a balaoce befivea power geoeration aod elecfiicity consrmption across the

mtire grid.Itreshapes thcpowerusagepatternbyrescheduliag load onthe consumerend (d€mad-

side manag€mqrD.

Demaod-side mergf managcme,nt (DSEM) usi4g dwice scheduling is one of the possible

solutions forpeakpower demands in HEMS I U. Usiag DSM howwer, demand can be mainained

only till a certain lwel before it starts hinderiqg system operation and becomes a source of

consumerc' discomfort As a rcsult, storage systems provide the possibilrty of firrther modifying

demand profiles. lVith cor€ct en€ryy managemcnt trctics, an MG has a &nl bcnefit for the power

spt€m. Firstly, it can act as a single contnollable enerEy asset to delivq grid-friendly pow€r



responses and various grid services. Secondly, it can also coordinarc with distributod cNreIS/

resouroes to provide a reliable and steady cnffg5r supply for local loads [12]. MG, powered by

re,newable enerry lqlouroes, is becoming an important componeirt of the eleclrical distibution

ryst€m to meet sustainability metrics of commercial as well as resideirtial facilities [3].

Various rcbustncss problems arise because of the nondispatchable and intermittent

prcperties of rmewzble enqggr r€sources. Due b stochasticity and behavioral intermittency,

fluctuations rnay oocur in the genoated ouerut. This may cause disturbances in the conshntpowcr

supply. Therefore, mcrgy storage inrcgration is peceived to be an efficient buffer to compcnsate

for power mismabh and improve MG reliability and dynamic stability [14,15]. Energy stonage

systems include batteries, supucapacitons, flywheels, etc. These dwices have been extensively

usdto prcvidereireryable energy rcsources andplayan economic role in DR. Eneary storage can

also exchange bidirectional powa with the utility grid to provide auxiliary salices to the end-users,

providing them finaocial relief [16].

Among the energl storagg battery c,nergr sbrage (BES) is an effoctive solution as it absoibs

and stores the excess powff coming from rencwable energy resources aod laterprovides it b MG

oonsumem [18]. BES can incr€ase the local consumption of MG system by roducing the eirergr

demand of the utillty grid with the help of increasod PV power utilization U7H}O[. Numerous

ssvices can be offered by grid-tid BES such as load shifting, peak clipping, improve,meirts in

powcr quality, and involvenrent of spinning reserve [21].

Utility grid powerpeak shaving is an essclrtial application that helps both grid operators as

well as end-usems. It can ease electric utility companies by rnaintainiag balance iu supply and

dernaodwhichinfirmimproves load frctoraodeconomic stabilityofutilitygrid.Itcan also improve

the sptein efficie,ncy and power rdiability of the MG. The utility grid is also improvod [22].



Similarly, peak shaving is helpful in reducing consumers' elecficity bills by shifting peah demand

from ahigh-price period b a low-price period [23]. Moreover, it offers improved powo quality and

reliability for eod-users.

Problem Definition

The cognitive strategies of power scheduling in the litemature mainly focus on a small

population sample size while the rwults forthe large population still need to be investigatod. Even

the use of large sets has not produced significant improveme,lrt due to the use of static clustering

techniques [2a]. There is a need to uplore a dynamic clusterred home energr maoagement system

for a residential community that eradicates the limitation of underperformance for large population

s€8.

The existing techniques for peak shaving in the lit€ranr€ are generally based on fixod

demaod and feed in limiE and provide non-optimal solutions for peak sbaving. Even those ex.isting

in the literahrc do not prcpose dynamic HEI\dS-basd sptimizqtisa and are applied on small data

set. There is a aeed to explore dynamic Qptimal peak shaving schemes with application to

commrmi ty-based HEIV{S.

1.3. Objectives

The study aims b achiwe the following objectives;

i. To zuggest an efficient DR-basd en€(gy manegement sysm that can lead to the

stable and reliable operation of MGs as the existing static clustcring schemes

underperform while rnana8lng corrylex and iregular issues that may arise in the

MGs.

1.2.



To develop an algorithm by oploiting particle surann 6ptimization (PSO), dynarnic

problems, devicc clusteriag schcmes in the communities of an MG. Not only would

the dynamic HEMS peak reduction sch€me lead to a mor€ reliable and stable MG

system, it will dso be applicable for a large mrmber of con$mers.

To aralpe and compare the proposed method qualitatively and quantitatively with

the existiag non-optimized and static clustering techniques. The assessment

parameters to utilize are puceirtage cost reduction @CR), perccntage PAR reduction

(PPARR), power usage prcfile's variance to mean ratio (\lIt{R), perccntage peah

shavine PPS), and peak utility grid power (PUGP).

1.3.1. Design Objectives

Theproposed systemwas to be designed as anovel two-phase HEIUS optimization

shategy, which can be sunmarized as follows:

Phase l: Ioad Schduling

This phase would deal with the application of a dynamic clustered community home e,nerg5r

mnnagcrt€nt system (DHEMS) scheme to lhe residential community. It would focus on reside,ntial

pow€r seneduliag targeti4g elecEicity cost roduction for @nsrrnems and load profile PAR

curtailment for a relatively large coasumer population with non-homogelreor$ loads.

ii. Phase 2: Pea& Shaving

The second phase would prcpose a dynamic rule,based peak shaviag managemeirt method for the

phobvoltaic (PD systems and battay €Nrerry storage (BES) systeins that are comectod to the grid.

It would focus on effetive utilization of distributd Gn€rry rcsources with significant improveme,lrt

inutility grid peak pow€r shavi4g.

1ll.



The cognitive architecture for the desig! und€r consideiration is shown in Fig. l-1. Phase I

would propose a novel idea of load scheduling with the help of a dynamic dwice clusteri4g scherne

for the dweloprment of optimizod load profiles for coutrollable devices. lte proposed scherre

would be applied to an MG community with varioru classes of society involvod. Tlre second phase

would present the optimal pealc shaving conhol strategy by involviag PV and BES power sources

in the MG community. A novel two-stage efficicnt distributd r€sorrce utilization sc.heme would

be proposed whic;h would offc significant reduction in utility grid demaad with the help of

optimized peak shaving.
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Fig. 1- I Bloc& diagran of the proposod system model for efficient home eneqgr rnanagmeirt
system

I 3.2. Implementation Obj ectives

The major aspecE of the system to be implemented arc as follows;

Creneration of Load Profiles



. A larye data set of 1000 dwellings for the period of three months would be considered.

Tltis would include input comprisurg of consumers' preference data related to the

controllable derrices' operations.

o The non-homogeneors consutrler rcsidmtial load profiles would be dweloped b

rryresent dissimilar propaties of consum,er derrices and distinctive user preferences

trom various classes of communities.

o To make the model mcaniagful, realistic and practical, four classes ofconsumers would

be used i.e., lower, middle, upper-middle and higher class.

o Differeirt load profiles for winters and suomers along with distinct user prefere,nces in

rcsponse to the change of seasons would be utilized in the peak shaviqg algorithm.

ii. EfrcientLoadShiltingModel

o A model of dpamic clutered home eiragy menagement GrcHEI\dS) for MGs

communities would be proposed that overcomes undcrperformance of static

clusmiqg sche,mes.

o The suggested load scho&rllng model would reduce PAR aod oonsumer electicity

cos6 for a large population.

o A DR-based load scheduliag tecbnique for smart derrices that incorporates user

preferrnces would be implemmted.

o Con$meis ftrom different classcs wouldbe groupd into various communities with

their devices assembled as chrsters.

o PSO would be applied on each cluster for determining ad allocating optimum

shrting time to the devices.



lu.

. The incorporation of modified inclined block rate in the litsress fimction of PSO

avoids undesired power peaks in the load profiles.

o The tailoring of overlapping time sloB (tSs) with inclined block rate would be done

as it significantly improves PAR.

o Qnntitative and qualitative aoalysis would also be presmtcd againsi the existing

lit€ratur€.

o A comparison of resulr wittr nondynauric clustering tcchniques proposed by laz

et. al. and othems would be prese,nted [2a].

Opthrul Puk Slwving Model:

o An optimized rule-based peak shaving management metbod for thc PV and BES

systems thatare linkdto the grid+onnected MG wouldbe zuggested.

o The proposed technique would daernine the dynamic d€mand as well as feed-in

reshictions basd on the predicted load dernand aod PV pow€r profiles for the

upcoming day.

o The techniEre would estimatc the charge/discharge schedules of the BES for the

upcoming day.

o The regulations would be writEn in such a manner that peak utility grid demards

and feed-in power connspond to only the day's demand and feed-in limits. And

while doing so it nrould ensur€ that by the qrd of the day, the battuy's stateof-

charge (SoC) is the same as it was at the beginning of the day.

o To rninimize peak eneqry pu[ed ftrom the utility gri4 PSO technique would be used

to calculate the optimal inpu6 ncdd for imple,menting the appropriate nrle-based

management strategy.



. IVI{TLAB softTvarc would be uscd to test the proposed menagcm€ril method for

differeirt PV powerand load deurand pattenrs.

o The quantitative and qualitative comparison with the aistiag work would also be

presanted.

o FinallY, a two-stage confrol tehnique would be proposod for establishhg ttrc inputs

needed for rulebasd peah shaying menagement It would involve both dyoamic

demand and day-today fed-in limits. The preprocessing stage of dynamic HEMS

would assist the algorithm in improving PPS for ttre peak shaving control suategy.

o Detailed analysis of dynamic and nondpamic schemes implementation would be

presented for a comrnmity of 40 dwellings with various classes.

o Diffcrent load profiles for summer and wint€r day conditions along with high 6d
)

low PVpenetnation would bc discussed.

o Tlre perfonnance characteristics of the proposed schemes as compared to the

refereirce schemes would be prese,nted in quantitative and Eralitative menner.

o The r€sults would be analyzed with the help of quality assessment parameters e.g.,

PC& PPAR& \Am, and PPS.

o The data of real-time electicity prices would be taken fiom Amereir Illimis Power

Company (2015) for the duration of llth April2015 ro 9th July 2015.

o Solar irradiance vatres would be taken ftom ESMAP Tisl Meteorological Station

NUST uiversity, H-12, Islamabad.

t 1.4. Contributions

Thc proposed methods will add the following bencfits to the existing HEIUS schemes;
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i. Overcome theuuderperformancc of static clustering-based load scheduling schmes.

ii. Significatrt reduction in consumerloadprofiIc PAR and cost of electricity.

iii. Wide dah set implemenation on non-homogcneous coililm€r load profiles by usiag large

data set of 1000 dwellings for three months.

iv. Efficimt utilization of distribruted enersr rcsourcos in community-based grid-connected

MG.

v. Optimizd p€ak sltavi4g management schemes with dynamic demand and day-to-day feed-

inlimits.

vi. A nrle-based contnol algprithm tnking flqible day-today management into account.

) vii. lvrinimizedpeak grid enerry consrmption from the utility grid.

1.5. Ihesis Outline

The thesis is organized as follows.

o Ctapter 2 prescnts the liteiratre review of the proposd sfirdy. Thc research gaps in the

existing litffature are highlighted citing a mrmber of papers. A table is also preselrted to

highlight the limitations and objectives of oristiag rnodels and techniques.

o Chapter 3 presents thc proposed model of a dynamic clustered home eneqgy managemcnt

systenr for communities. The final objective of the proposed ryproach is highlighted by

presmting home electric devices usagepatHns and the inclinedblockratepricing schemes.

11



Chapter 4 discusses the modification in inclined block rate incorporated with the pncing

scheme. The use of PSO to target €ncrry consumptiol managernent is also detailed. The

chapter ends with the simulation resulg presented in comparison to the refere, ce

tecbniques.

Chapter 5 presents a study on r€n€M/able integration with clusterod community HEMS. It

discusses the schsne for distributed rqlounee mergy managenrent and how it manages the

shortcomings of the managmeirt systems. It highlights the drawbacks of fixed denrand and

feed in limiB and the requirement of day-today man4gemqrt of BES statc of clrarge (SoC).

clrapter 6 prcsmts an optimel nrle-based peak shaving confiol algorithm using the dynamic

feed-in and demand limils. It preseirtr simulations, and nrles for charging/dischargiag.

Ctapter 7 presents the proposed dynamic HEl\ds-based optimal peak shaving control in an

MG system. Itpresents the loadprofiles based on appliances' usage preferences forwinrers

and surnmers. It highligh6 the percentage improvement in r€sults wheir using the rule-based

peak shaving algorithm.

Cbapter 8 preseirts conclusive rerrarks regarding the proposed strdy along with some

firtherresearch dirrctions in the similardomain of study.

t2



Chapter 2

Literafure Review

This chapter rwiews the literaare related to the prcposed sfirdy. fhe research gaps

pertaining b load schefuling and peak load shaving are highlighted. The objectives and limitations

of existing nrodels aod techniques have also bee,n srmmarized.

2.1. Energr lVlanagement

Th€re has bea a dramatic increase in demand due to continuod economic and population

glowtL As per a survcy conduc"ted by U.S. ElA, there arc chances of a 48o/o increase in energy

d€mand between 2012 d 204o 1251. The growing dmand cannot be fulfilled by the already

shrinldng fossil firel supplies. Furthqmore, this growing encrgy de,mmd has become a challenge

for electric utility companies and a threat b the srstainability of the e,nvironmeirt.

The two possible methods to conhol thcse rising enagy demands arc (i) demand-side eners/

managEnflrt (DSEM), ad (ii) generation+ide energrmanagemeirt (GSEM). DSEI\,I deals with an

incrpase in generation rmits' capaclty to fulfill tlre rising electricity demand. Contrarily, GSEM

aims fur create awarqress among the consumers for effective utilization and active participation in

DR-based prcgrams. The rnain target of these DSEI\d programs is to maintain a balance between

generation and demand aiming to e,nhancc pou/tr grid reliability and stability.

The haditional pow€r systems expatiate in turning onpeak powcr plaoE to meet the peak

elecficity d€mand. Co,nhastingly, DSEIvI strategias encourage oonsuErcrs to the reduction of

€n€qgy consumption actively &uing peak hours. The details of the DSEM sfiategies are prese,nted

as follows.
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2.1.1. Load Scheduling

Ioad schefuling is defined as shifting load ftom elwated price to less price t'-re slots. This

stratery does not afrect the total encrry consumption as it re,mains the same before and after load

shifting. The cusbmers are offaed beirefib of price aod incentive-based prcgruns for encouraging

th€m b get their loads schoduled to non-peak hours from peak hours.

2.1.2. Peak Clipping

Pealc clipping or peak shavi4g belierres in reducing the enelgr demand during high price

time slots. This can €nharce power grid stability by reducing consumption and generation. The

distibruted alternative eneryy resources may also be used b shave the peaks that reduce thebgrden

on the electic utility companies and the power grid.

2,1.3. StrategicConsenation

Shategic cons€nation is a teclrniquc utilized by electric utility companies to modiff the

shape of the load crrve basd on incentives targeted for end-users. The reduction in energy

consumption urd consoqueirt rc&rction sales of enelgy is represmtod by modification in the shape

ofload curve shape. The cost effectiveness of the deployed elec&ic utility companies compensate

for the deliberate and naturally occuning c;hanges in energy consumption as well in the slrape of

the load qrve. lnproved dcvice efficiency and weatherization can be taken as examples of stnategic

consqvation.

2.1.4. Valley tr'illing

A classical €ncryy rnanag€ment mechanim of buildiag loads druing off-peak periods to

srooth out the ovemall load curve is terrred valley filling. It is suitable for time slots when the



incremental cost is lesser as compared to the avemge electicity price. The addition of load to the

otr-peak pcriods also decremeots the cost of electricity for consumers. One of the ways of

employing yalley filing is to utilize ESS orplug-in hybrid eletric vehicles (PrEv).

2.1.5. Strategic Load Grcwth

The sfiategic load growlh can be defind as the change in the shape of load curve beyond

valley fiUing. Consums incentive-based approach is tsed in electric utility companies for load

curve shapiqg as a rcsult of increased consumption A major frcmr for increasod load is inchsion

ofemerging eloctric technologres such as industial heating, automation and electric vehicles which

is collectively referred to as electrification. These @erying Echnologies promise to reduce

dependence on fossil fuels while improviag ovqall productivity.

2.1.6. Flexible Load Shape

Flerdble load shape deals with planning consnaints and offers reliability improvement of

power grid systems. The eletic utility companies can comfortably plan the loads once the load

be,havion are forecastod. Flexible loads can be acquirod when the users are encouragod and

motivatod to participate in the incentive-based programs. The flexible load like int€nuptible load,

curtailable loa4 time flexible loa( ana pow€r flexible load participates in ene4gy marragem66f [e

ensurr reliability.

The overall DSEM shategies are depicted in Fig. 2-l 1261, [27]. This work focuses on

€Nrerry mentgcment via the second approach, i.e., DR programs. It explores the first two schemes

i.e., load shifting aod peak shaviqg with ap,plication b residential oonsumers t€Nrned as HEIvIS.

15



2.2. Load Scheduling Techniques: Objectives and Limitations

The DR prcoess generally comprises three pricing schemes; time of trse pricing, critical

peak pncing, and real-time electricity pncing (RTP). Time of use pncing and critical peak pncing

enable electricity price calorlation in advance. The price calculation prcc€ss can be performed

quarterly in both the schemes. Duc to hourly updates in the price, fl€ndbility in RTP can mirror load

profiles or the geneiation costs.

Fig.2- I Sfiategies for efficieirt demand-side energgr managemeirt

But tsi4g RTP for con$m€ds electricity cost reduction rnay increase PAR during low price time

slots. This is because thc pealc values in power consumption pattern will move to low electricity

price slots [28]. Hu et al. have prcposd a DR-based ener5/ consumption scheduling schme [29].

Price reduction is achieved but the customer's comfort is compromised with chanccs of peak load

emergence in low price hours. Du et al. zuggest an elecnicity rcduction-based optimization model

[30] that combines the trvo schcmes of RTP aod inclined block rate. Despitc achiwing significant

improvemffi in cost rodrrction, the schcme only opematas for limited time span of one day or one-

hrf CIhDlr; ttlCrnet hdSIfll

Ercjt Etllclcrry
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moffh. Also, the sample data set is small i.e., one household. Imran et al. propose a heuristic

computation-based load scheduling mochanism. The main objective of the proposed al.,proach is m

improve PA& minimize electricity bills, rcduce carbon emissions, and incrrease user comfort [31].

But thc simulations are presented for a small data set of a single house for a day only.

Many studies addressing various energy parameters have been conducted. The pararneters sffiiod

include the daily eneryy cost, allowable home terrperatrre mnges, enerry usagc, peak hours' energy

usage, and consumer's comfort 132-341. The effects and analysis of usage plans sre,h as fixed

pricing, timeof-use pricing and real-time pncinghave also been studied. To meet ene[g5r demand

in real timg Homod et al. proposd the Takagi-sugeno fiEzy based method. firis energy based

opemational model was dweloped for IMC systems that used dis6ibutod energl/ rellources, non-

confrollable appliances (NCD$ and BES systems. Clustcring rsed by output nariables made

different groups of tmperature avffage data for the entire year. The method was optimized for

IMC $ystems brut it did not consider rest of the commonly used residential loads t35]. The authors

have suggested perfonnance improvemeirts for IIVAC systerns [36]. Recent studies show the

application ofcluster-based optimization shategies at the MG lwel [37,33]. Yet thcy fril to consider

consuD.€ds preferences atappliance lwel. Also, the algorithms have limitations inhandling a large

dataset with variations in the tlpes of commrmities.

Some proposed models use game theory [39] and fuzzy logic-basod modcls [,10] to solve

encryy manag@ent problems of residential buildings. But these models are based on a very mrall

data set of a day a limibd number of horses, and appliances that do not depict practical sce,narios.

lVaseem et al. uses Grey Wolf and Crow Search Optimization (GWCSO) algorithm to reduce pAR

and EC [41]. But the pro,posed technique considqs only the tMC loads for scheduling which

limib the scope of GIVCSO algorithm. Kim suggests a heuristic computation-based binary
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backtacking search algorithm to optimize the eneqglusage of conhollable devices. In comparison

with particle swarm optimization (PSO), the algorithm shows higher e,nergy efficiency. But it does

not consider EC and PAR [42].

Dong reformulaEd the econo,mis dispaEhproblenr using datadrivcn @e[gy menag€mqlt

[43]. The model used an optimal algorithm at 30 minutcs sampling time and did not consider PAR

in the pro,Jrosed algorithrn. Iavaid et al. aod Hafeu et al. proposed heuristic algorithm-based

ogtimization mod€ls for household load scheduling to roduce overall electricity bill and PAR [44-

46]. But the models pqformed well for only small data sizes. The performaoce lowered as the size

of the data incrcased. The models zuggestod no mechanisnr b handls large d8ta. Hafeez et al.

prcposed an optimization scheme orploitiqg mixed-integer linear prograoming (MILP), binary

backttracking search algorithm (BBSA), and artificial neural netrrork (AI{I{) [42]. Although the

objective of eletricity bill reduction and PAR alleviation was attainod but at the cost of increased

system's complodty and execution time.

Jiangproposes anapprcachbased ongenetic algoriths b improveEC andPARunderstep

tarifrs in a power sysEm [48]. The simulation resulrc shown depict a v€,ry snrall data set of three

houses. Hussain snggests a genetic harmony-based search sche,me to analyze the si4gle-user and

the multi-user but with 6 smafl population size of 30 [a9]. A one-horu sampling time was used. The

small data set caoaot prcperly reflect the real-time operation of the appliaaces. The sampliag time

used is one hour that cannot reflect prcper real time operation of the appliances. Paudyal suggess

a load profile's peak reduction using a linear model [50]. But model uses a population of only 25

horses. Aziz d.d. presmts a power schoduling methodology for a large population [24]. Howwer,

thc tochaiErc is basd on the assumption of homogmeoru consumption. This means that all
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appliances in the entire population have the same properties and belo4g b a similar class of

oonsumerll.

2.2.1. Deductions

The litsature revie$, suggests that the majority of power scheduling strategies focrs on a

small population sample sizg thus leaving the investigation of their behavior under a larger

population size rmorplored. So, the algorithm's behavior bwards a largerpopulation size does not

get investigated. The rerriew srggesb a need for clusterod community-based home enq5r

manageinent systern for large population that is dynarrically clustered. For a big prpulation se!

such a system would atrect performance. Table 2.1. summarizes a fery studies on he,ristic

compuhtion sfiategies.

Table 2. I Srmmary of a few studies onheuristic computation shategies

Energr Menagemcnt Technlquer
Modelt

EfficientrcsidEotial GAMILP
I-oad scheduling

Objecfiver

PAR and @ergy Gxlrcnses

reduction.

Rpduction of CO2 emissions.

Roduce discomfort level of
consumclB.

Incrcasc MG cluster profit.

Lowcr MG opcration risks.

Elccticity cost, PA& and
6s9y usage rcdtrction in a
rcasonable amount of time.

I.inltetionr

Simulations rcprcs€Nrt a
small daA set i.c., one house
and ofone day.

MG clutcrs arc madc via
static chutering approach.

Usuprcfereoces arc not
incorporatsd at dwice level
strategies.

Simulation rcprescne rcsuls
for a day.

Modcl o,pcrablc for small
dcviccs number.

Bi-lwel qptimization
model

MILP,IABC
dgorithm

HEMs based urfirzzy
conhollcr

RTP, inclinedblock
ratc, and time of use
pncing
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Energr Mrntgemilt Technlquer
Modek

Innovativehme GWCSO
doviccs scheduling
franrework

scheduling

Dmestic Powq SCIIEIVIS
scheduling based m
time

Oblectiver Llmltetionr

Rcduction in electric bills and Testcd oaly for HVAC
anincr,easeinPAR. loads.

Heuristic bascd HEXvIs Hcuristic optimizationTo roduce PAR and elcctricityConsidcrs only
algcithm expcltscs. homogcneous loads.

Testcd on one house only.

Use of ganc thcory for Tirne of usc prici4g To rcduce PAR and electricityOrly three hornes
rcsidential load based on game theory cryr€nses. considcred.

To rcduce PA& \/IVIR and Homogeneou loads ad
elcctricity cxpenses. void ofconsurrer

classification.

Static chstering schane
applied.

2.2.2. Propositions ,

The proposod HEI\{S aims to improve a larger po,pulation's performmce as well. Thc

suggestod load scheduling aperoach roduces the load profile's PAR and oonsumer electricity cost

Consumers of variou socioeconomic sfiata from communities and their devices are grouped into

clusteis. To each chrster, PSO is applie4 and the derdces are given the best possible start time. The

fihess component of PSO additionally includes a modified inclined block ra6 to eliminarc

uodesirable peats during any time slot. Wheir the overlapping time periods of devices are adj,sted

with inclined block rate, PAR is docreased. The suggcstcd syste,nr's results are comparod to those

of Aziz et al.h static chutering techniques. To make the model meaningful, realistic and practical,

it uses a large dara sct of 1ffi0 houses for three months. It implemeirts a demand rcsponse-based

strategl based on @nsumers' prcfercnces for load scheduling of contnollable appliances. Also, it

considers the varioru tlpes of consumable appliances that are commonly used in households.
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2.3. Peak Load Shaving: Objectives and Limitations

Despite hsviqg a large number of advantages, peak reduction of consum,er load profiles

using load sche&rliag has a limitation due to cqtain constnainE provided by the consumer as per

their comfort Hence, the researchers have to look for some other solutions for ohanciqg the

reliability and stability of MGs. Peak load shaving can also be one of the prcmislng solutions for

creating a balance between electricity supply and power dmand. For the optimal peak shaving

conhol stBtegy, the participation of disributed cnerEy r€sourcqr is esseirtial in the MG sptem.

CrencallS PV and BES are used as DERs. Drc to a number of voltage drop and rise issues due to

the charging and discharging of BES, the problm of integrating ttre BES to the MG has bem a

cur€nt research topic in the rece,lrt past

BES chargddischarge schedules are contuolled using a variety of methodologies, itrcluding

genetic and nrlebased algoritbms, dyoamic progranming, and so on [51]- [53]. Rglobased

methods execute instructions by employing an initial set of data aod rules based on if-then

statemenB [54]. In comparison to other approaches, these algorithms have sfiaightforward

implementation and dcrveloprment. Itr [55] atrd [56], rule,basod techniques are conhastod to

optimization techniques. They have also compared the rule-based methodologies with optrmization

tecbniques. Rampelli et. al. preseirs an effective rule-based s&atery. The wolutionary algorithm

[57] is used for the dctennination of ideal inputs for the srggesed rulebased peak shaving

managsrrent. All of these straEgies are demonsfratcd to ignore the DSM stage before using rule-

based peak shaving techniques. To overcome this shortcomi4g, in the suggestod metbo4 the dahset

is subjected to a PSO method in load scheduling of home users'-conholled dwices prior to the

application of the peak shaving algorithm.
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For peak shaving, the demand limit (feed-h limio is the maximum amount of power that

can be er.tactcd ftrom (irrjected into) the electical grid. Flexible daily maoag€me|rt with a BES

mear* keeping the endofday soc the sa,oe as it was at the start. A battery contnoller is disc'ssed

to set demand limit in t5gH60l for peak d€mand shaving. Thc feed-in limitation, howwer, is not

discussed. [61] considers flexible daily menagement as well as operative PV mergy consrmption

forpeak dcmaod shaving applications. The demand s6iling, o'n the otherhand, is sc[ Itr [62], only

thedynamic feod-inresticionis alcen into accountforpeakdemand shavinS, igoring the demand

limit. In [63], peak d€mad shaving utilizing BES orptimum scheduting with a restiction on the

dynamic d€maod is explored. The feed-in limit is not discussed. In [57], both load demand md

feed-in powers are discussed while preserving flexible daily management'

2.3.1. Deductions

Tlre literature rwiew suggests that a pcak shaving algorithm be explored with application

to a comrruity-based architecture with a large number of hotrseholds and/or ltsolrces. In the

crdsting literatgre the optimal rule-based methods fail to provide dynamicity in tlre heuristic

compltation-based schemes applie& Additionally, the oristing schemes in lircrature haven't

incorporated weather-based flucfirations in consumer be,havior whilst incorporating rser

preferences. The literatgre rwiew suggests that load schoduliag and peak shaviqg be applied in a

more practical scenario with change in conrumer prefere,nces with weather conditions. A few papers

from optimal power flow managemeirt are briefly summarized as given in Table 2.2. N it is obvious

trom the table that most of the proposed schemes offer ftred demand and fed in limitations'
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Table 2. 2 Qualitative comparison of zuggested technique with the prwiorrs work

Demand Limit Feed in limit Daily managcment

Fixd Notconsidered Notconsidered

Fixd Not considerod Flexible

Notconsiderod DJmamic Not considered

Notconsidered Notconsidercd Notconsidcred

Fixd Notconsidsed Notconsidered

Fixd Notconsidered Notconsidcrod

[58-60]

[6r]

162l

[63]

t64I

[65]

2.3.2. Prcpositions

Basd on the above highlightcd limitations of load scheduling and peak shaviqg in encrgy

managemeirt system, a two-stage dynamic clusterod commrmity-based home e,lreqgy management

system (DcHExrds) is proposed ud applied b the residential. A pre-p,rocessing strge focuses on

load scheduling algo,rithm with application b a community archircctgre. Iilhile, to cat€rrcmaining

peak fu thc modified load profile, m optioal peak shaving algorithm with day-to-day eneqgy

managem€nt scheme is applied in the second stage. The second stage determines the inpgts needed

forthe proposed rule-based BES optimized peak d€mand shaving conhol by means of pSO. The

proposed schemeis targeEd to achiweimprovedperfonnance forcornmrmity architecture inMGs.

To make the model more relatablg closer to r€al worl4 and practical, the proposod model will be

focrued on the community-based architecturc utilizing non-homoge,noru toads analysis i.e., lower

(LCS), middle (MCS), rpper-middle ([JMCS), and high class (HCS) cotrsumen The load is non-

homogeneotu due to the non-ideirtical feafires of consumerproducts and variou ruerpreferemces

from different classes. Each class of consumcrs has its own set of PV installations to consider. To

accotmt for seasonal fltrctrations in consumer behavior, diftrent usage parameters for SDs in



summem and wintels will be examined in the study. Simulation results are compared to the values

without dynamic-HEMS optimization and a closely related work of Rampelli et al t54.
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Chapter 3

Demand Response Based Load Scheduling in Residential Energr Management
System

This chaptergives an intoductionto DCHEMS to be discussed inthe next chapter. Itdetails

the basic architecturre of a resideirtial netrvork in tsms of ene4gl management systems.

2.ZErome Enerry Menagement Systems

A home @qgy mrnagement system consists of aa energl managemat contoller (EMC),

advancedmeEring infrastructure(AI\iI), home gateryay (HG), home dwices, and in-home drsplays

(trD). The tlpical structuc of an eirqr managemelrt systcrn in a home user's nefiuork is shown

inFig.3-1.

rI*#:,fflE{'

Fig. 3- I Architeture of residential otrffgy managenrelrt [66]
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The pro,posed model explores controllable devices (CD) and non-contrrollable devices

(NCD). CDs are aubmatic and do not require any manual intenrention to conduct their operations.

For instance, clothing washaq dishwashss, electic kettles, or rice cookers. The devices can also

be categorized as: non-internrptible (rice cooker) and interruptible (clothing dryer) [64. The NCD

operates under oonsum€r dependence and is operational while in use, such as a haod beater,

telephong ornon-robotic rnacuum cleaner. As aresult, the CD canonlybe scheduld whereas NCD

necessitates manual intervention. Furthenmore, the CDs taken into accormt in this technique are

mart home devices. CDs do not communicate with each other in the architecture shown below;

inst€ad, ttrey solely interlact with the home gatenray. The home gaffiray is responsible for

schoduling all the cDs comected b the house at the beginning of the day.

To fonnulaE a connection betweeir the smart meter and the home gatewan a variety of

wireless solutions are available.Ztg-Bw,Z-:Wwe,Wi-Fi, or a wired (plugged-in) protocol are the

possible options [68]. The home gatovay can provide an optimized pow€r consumption schedule

to each CD via the home area netrvork The schoduling process caa be monitored rhrough the in-

home display or remotely contolled gadge$ such as mobile phones, laptops, etc.

The proposed tec,hnologies preseoted in this research assune that smart meters and

household devices are combined into an EXI{C that accepr RTP data from the utility.

The Usage Pattern for Home CDs

The strdy has coosidsed 16 devices in one house with a population set of 1000 hotrses.

Once the utility delivers the userpreferences information and electicity price profile to the home

3.1.



gatcu/ay, the EItdC can draw inferences about device load scheduling. Consumers prefer to avoid

peak hours wherevq possiblg yet some jobs roquire beiag accomplished before certain time

pcriods. Some tasks, such as clothe washing with automatic washers, can be performed at night

because as residents arc asleep, the elecnicity price is low. As a result, custome,ls must specifi time

conshaints for each CD. As shom in Flg. 3-2,tfu parameters for time given as consumu input

include starting time ofdo,ice operation (STDO) ao*, ending time ofderrice op€,lation (ETDO) pa,

time length of device opeiation CILDO) Io*, time interval of derrice operation C[DO) lror,Forl,

and dcvice ratiqgzo*. One more parameter of timg i.e., activation time slog to*, is allocated m

ear,h dwice after being geirerated by the optrmization technique, which is discussed in the next

chapter. The subscript 'c' denotes the dwice number and 'k' denotes the house number. The EMS

via the home gateway receives the data collected ftom these paranretems by the in-home display

dwice.

C
+

p
rt

I

10 L2 t4
Hourofthclhy

16 18 20 22

FU. 3- 2 Parameterconsmaints of dcrdces

Only CDs are scheduled unds the proposed conc€pt; NCDs are not. The simulation

findings, on the other han4 show that the approach rcmains effective forNCDs as well. The optimal

power scheduliag for CDs follows a specified patt€rn, which is detailed in the next chapter.



As pruviously strt4 consumerpreferences mefiics are collected for each CD. To do this,

we rse the indexes cor and fi *e U ("* a 0 *),as the start and end TSs, respectively. Device power

consurrpion is beliwed to be accurate forproper schduling inside this opemation time range. I.et

TLDO, or needed TSs for device opematioq h l*. The characteristics listod above are daernrined

based onuserchoices obtainedvia in-home drsplay adafterrvard submittedto EMC. Furthermorg

B"r' ao* should either exceed or is equiraleirt Io. For inshocE if the clothing washu takes 60

minutes to complete the tash of Fo*- ao. could attain any number equal or larg€r than 6 and smaller

fun144. in the meantime. The biggcr the value of 0o; ar*,themore load scheduling options are

available. These correlations of the above-mentioned characteristics are shoum in Fig. 3-3 for fo,r

distinct 6pes of CDs i.e., ar, iz, ar, and al for the lctr dwelling.

h, P" frr ,hr

art

Fig. 3- 3 The relationship of devices par,ameters shoum in aa example

3.2. Inclined block rate Pricing Scheme

Althottgh RTP is more flexibls rhan time of use pncrng and critical peak pricing, it has the

disadvantage of clustailg many dwices in low elecEicity price zones as shorm in Fig. 34 (a). It
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can be observed that nery peaks have emeqgod around 20 and 100 TSs due b low elocEicity prices

in these timings. H@ce, RI? allows the accumulation of devices in the rcspective TSs. Given this

limitation, the ruggested systm uses a combination of inclined block rate with RTP, which can

alter electricity price nates within low electricrf price TS according to the devices' power usage

[69]. This climinates the possibility of a second peak in low elecnicity price time periods as shown

in FA. 34 (b). It can bc noticed, that application of inclined block rate reduces peak to average

ratio of powerprofile as well as prcvmts new peaks emergc,lrce. This leads to the fact tbat the use

of an inclined block rate, which may contol the power d€mand of one device by suggestrng its

penalty factor, reduces PAR. Howwer, if a large number of devices aplrear durfury the same time

slo6, the power consumption pathn of the mtire pow€r systm will s$rrocket.

Frg. 3- 4 Comparison of load scheduling tochniques, (a) toad scheduling with RTP O) t^oad
schduli4g with RTP combinod with inclined block rate [66].

This scenario is explained with the help of Fig. 3-5. For the sake of easiness, we've just

€xsmind one device per home in a commrmily of m homes. The devices in question are supposed

to have their co* in a TS with the lowest elecrtricity price compared to its successor slots. In this

case, any schduling method used in combination with the inclined block rate will tend to pnsh tar
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of all horses near the slot with the lowest electicity price. Despite this, the Inclined block rate is

able b kecp the power consurrption pattern of each dwelling below the required lwel. Howwer, a

pow€r consumption pattern peak in the general comrnrnity will be caused by the constellation of

derrices to* ananged around the lowest elecnicity price. It wennrally affects the e,lrtire electicity

systc,m. If an RTP data for examplg has the lowest electricity price around hou 5 of the day, aad

the dwices in Fig. 3-5 will be scheduled around that time, genemating a greato peak. This condition

neessitates a power schoduling syst€m that can scan the surroundi4g area while optimizing

activation time start for all devices. As a result, the next chapter discgsses how the proposed

algorithm solves the situation

.L.r- -.L, -*. ffiil,p.,
L- -1r,.**- @EI-p,

a

ar", l.n
<----.->qT EfffiI*-frFEA p.-

-

a68r0t:21a1618zo2224
Hourofrb ILy

Fig. 3- 5 Gener:ation of power peaks in dwice's cluster shown as an example.

3.3. Summaly

lls findings of th,e chapta show that thcre is a need to explore an optimized community-

basd qrergy manegement scheme that is capable ofhandling large data setr. A clusterod dynamic

management systcm is p,roposed with application b communities in an MG in the following

chapter.
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Chapter 4

DpanicClusteredCommunityHomeEnergrManagementSystem

In this chaptcr, the dynamic cluterod community home energr manag€ment (DCHEhdS)

model for confiollable dsvice.s (cDs) is presented which is phase I of the dissertatio'n. The patterns

of residential electric equipment trsage, as well as the chosen pricing mechauism' the inclined block

rate, is d€tailed. A mathematical model and flow diagrams are used b de'monstnate the srggested

pso-bascd aproach for energy consumptioa manageme,lrt. The enhancement in rcsults based on

theproposed technique incontrastto the plwailing techniques is also shown

The aim of an energl manageme, rt s),stcm (EMS) is to keep the electricity costs dowr while

lowering the pAR It accomplishes this ry planning powcr use in accordanoe with predeterrrined

electicity pricing. The stability aod reliability of the electricity supply ar€ guaraoteed by such

encrgf manag€mc,nt systms. As a result, wery DR-based scheme's prinary purpose is to lower

pAR a1d electricity cost, which beire,fie both the electic utility companies aod the consumcr'

The proposed community-based syst€m architecture is compliaot with MGs. In an

environment where sweral MGs are connected to the 8trl4 the proposed @hnology canbe applied

to a commrmity inside an MG. The connected MGs act as substations, delivering DR to oommmity

users in accordaoce with their size. The strucurc of the commmity-based scheme for HEMS

utilization in smart grid is shown in Flg. 4-1. The suggested technique can be implememtcd in a

pow€r syst€m with many MGs, consisting of commrmities. Furthennore, each commrmity has a

mrmberofhouses.
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4.1. Proposed System Model and f,'ormuleted Prcblem

The following section outlines an optimal load shifting stratcgy for all the CDs of the

residential consumer. It exploits RTP ad modified inclined block rate pricirU sche,mes.
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The content preselrbd in this chapter is based on my research also published in IEEE a@ess.
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4.1.1. Objective of Prcposed Approach

Electricity price rates are changed hourly in an RTP configuration. The degree of freedom

for optimiziag activation time start is lowcred if the schoduling of CDs is perforrred on an hourly

basis as per RTP. Conversely, smallcr time period considsation may experieoce convergence

problems due to a high numbo of possible parametems involved. As a resrlt, the plan is to divide a

onehour period inb six TSs, each lasting ten mimrtes. C;onsequenfly, a day has l,l4 TSs denoted

by the symbol z e T defined as {1, 2,3 ....14H} t70]. WhEn a day is partitioned into 144 TSs,

computationally efficient optimization prroblems such as PSO can be performed. As a resull the

smallest operation time of wery device is selectod as l0 minutes. The opeiation times should be

d€notd by ineger multiples of ten

Consideriag cornmon house,hold allpliances, it is assrmed that the number of CDs

connected b a house is 16. a is used to denote CDs. We assume that each appliance cx € I has

the power consumption scheduling rrcctor par of dimeosion I x L44 as,

P a2 L Inor(l), eon(2),.,. -., ? o*G44)l (4.1)

Whae pr*(z) represents the power consumption value for the atr device of the ktr housg dudng

the rth TS. po*(r) has the unit kwh. since eac,h horse has 16 dwices, ae{1,2,.....,16}. we

assume that each device's hourly power consumption r€maios fxed becagse each dovice has a

qpecified specification, as illushated inFig. L2.

If the po horn powcr consumption of the dadce ap is signified by xo*,the conesponding

power consrrrption during rth TS is estimated as,

ror(z) = f
33
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Her'e, xoris the attr dwice power rating for the ktr dwelliqg. Optimization of thc power

consnmption schduting vecbr Pc1 is ttre target It has been hanmritted to ath device via apropu

wireless connection.

rLc rMc ruMc rtlc

l^ ln

Flg. + 2 Deviccs with non-homogeneous loads, for all four classes, with power rating in kwh

$re dcfine a rnriable to. as the activation time slot (ATS) for the att device of ktn house.

Since, aa*, Fap lu ad xorare all known already, the power consumption scheduling vecbr of a

derrice'd cu.only be determined otrco tq: is knoum.

srDo d'opEIfDO Fa4,Aolfilao,r,Fo2l,TLDo to., andpowerconsumptionvalueperhour

xqr atre now anailable for each device dy E ?. Additionalln we made activation time start dcnoted

by to*, a variable. tar should be larger than or equal to co. and less than or equal to Fo*- tar and
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it can be determined if ao*, Fo., d lr* areknoum. To put it another way, the variable parameter

to* is rrritteir as

tuelao*Sor- h*l (4.3)

In Fig. 4-3, the ta* range is illustratcd as a sample for ah device of Hh dwelling.

We must calculatc the optimum value of ATS for wery CD subject to the constaint

speified in the equation for the atr dsvice atrd &ttr house (4.3). ATS for all the CDs is stored in a

variable vectorltor,tor,...t*]. Therefore, a power consumption scheduliqg matix for all CDs

would have the expression as

p =[plpr*G) =T,rore A,celtor,to*+ Io.l

hop(t) = o, Ya*e Al $lto*tor+hrl
(4.4)

where P denotcs a matrix in which each row stands for the power schedule of a certain device. r
specifies the column indices. r e ltor,trr+ Ia.l d€notes that r beloqgs to T but not b the

raoge [to, tar + Iqr]. Each column vector of the power utilization schoduling matix is added up to

calcutate the total power utilization scheduling vector pr"6 .

pscd = {pr.a lprco(t) = }p(r),VreT} (4.5)

P(r) denotes the ztr column in fte power utilization scheduling manix in equation (4.5).

Wh€n the lnwer utilization scheduliag problc,m is defined for a single residence, following is the

expression for objective function

mintmlze Electricity cost ( pr.d @.q

s.t. t*elaon,Fo. - I*l
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whrc,

Electricity co$ ( pscJ = Zl=|,,rtq(t). psca(z) (4.7)

The electricity cost at the ztr TS is deirotd by RTP in equation (4.7). Aa oprimization

sfratery can be used to rofrrce thc electricity price showa in eqrution (4.7).

Rangeoffu
,

q*

(b)

Flg.+ 3 The nange illushation of STDO for home dwices 'a': (a) device starting right at STDO
ad (b) device starting at the latestpossible time.

4.1.2. selected Pricing scheme and Modified rnclined BlockRate

Application of inclined block rate pricing scheme affects RTP rates by multiplying it with

a fac'tor I >1, whenever the power usage pattan of any houe goes beyond a predefined thrcshold.

nip is unatrected in any other rvay. Inclined block ratc acts as a monioring tem, pruventing

suddenpeaks inpower consumptionpatEns trom being carsed W the schoduling algoritlm. As a

rcsult of the scheduling algorithm optimization, unwanted power peals caa arise. lVhen numcrous

dsvices in a house operate with ovcrlapptry d.-erd F*,this can happen- They may be assigned

to idcNticalTSs &[ingwhichRTP offers low electricityratcs. As aresult,unfrvorablepowerpeals



cmc(ge. The PAR of the power consrmption pattenr is increased whe,n these rmwanEd peaks oocur.

Inclined block ratc contols such a situation by involving the p€nalty tenn aod prwen8 the

schduling algorithm from creating power peak pattqtrs. In the proposod approach, inclined block

rate is modified b reflect the penalty term which applies only when pow€r usage patt€rn crolrrs€s a

7, scaled threshold i.e. the number of houses lying undu the current community. T*o elcticity

price lwels are considered and thcre is a change in elcricity price wery hour. Modifred inclined

block rate contul is incorporated into the RTP formulated as:

rtPp"(r) = [*nfl8 'ii:3'l:r; (4.8)

wbcrE,

?c =Evaec"EvrecaPax9) (4.e)

Here rtp(z) is the real-time electricity price reccived frrom electicity supply company fon

time slot t, rtpp"(r) is the eleclricity price based on the pow€r consumption p" of the comrrunity

beiag optimizG4 th is the thr€shold set to 2 klt4t ad y, is the cormt of houses unda cur€Nlt

community. Cr r€pr€senB a set of houses in tho cur€Nrt community of coosumcrs and Cc refers to

the current clustsof CDs.

Numercus price forecast systems are given in the lieraure lTll,l7zl,despite the fact that

it appears unrealistic to forecast electicity prices a day prior. Fig. 44 shows the pricing data of

elecricity: RTP on the 9th ofJuly 2015, retriwed from Illinois [73].
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4.2. Proposed PSO Based EMS for Energr Consumption

This section intofirces PSO aod its application to the topic at haod.

4.2.1. Particle Swarm Optimization @SO)

Ebertart and Kennedy [7a] prorposd the PSO, which is a particle population-based iterative

apprcach. The optimization pn cess begins with the particles'positions and velocities being given

initial values. PSO enables candidate solutiory or particles, to congregate in sunoundings of best

solution spacc. Flight hajectories particles are monitored by the global best (gDest) and particle

best (pDest). For '' is, they dcfine the particle and local bestpositions, respectively.
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Fig. 'l- 4 RTP on 9th July 2015
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In our problcm, electricity cost is rofuced using PSO for optimum activation time start

allocation of each house in the community. The goal of optimization is b keep TLDO within the

range of STDO and Ef,DO as specified in equation (a3). Cnstomers provide the ruer preference

which is the initial value for optimization termed as STDO. Then the cost fimction is saved that

minimiz6s electicity cost as shorvn in (4.7) and adjusts pbest location for all the CDs. This process

will continue until the termination comdition is met.

As particle i goes throughout the search slrace, its velocity is updated according to equation

(4. 10). If r,t is rft particle of position vector in the search space (i. e R) at time step t, then equation

updates the location of each particle in the search space (4.1l).

,!t*' = avfl + c1r1(pbestfi - rfi) + c2r2(gxtl - xf1)

*tf'=rfi+rf+l

(4.10)

(4.11)

The de particle's velocity and position vectors in dimensionj at time t tr.evtiand rfi. pbest$

is fre particle i 's personal best position in dirnensionT as determined ftrom initialization to time t.

Simitarly, gbestf is thc global best in dimensionj discovered over time r from initialization. The

random numbcrs denoted by variables 1 and r2marmiformly generaEd dudng the nnge of [0,1].

Coefficieirts reprresent the particle weighg bepbest mome,ntum is represented by cr c2 represents

the pull towardsgDesL

Thevelocities andparticles are initializedrandomlywith thehelp of constraintd€scribedin

eqution (4.3). Each cycle is orpected to improve the same initially created population. BV keeping

ancyeonpDest,eachparticleinrprorrcsitsownversion lfane$rerformofpbestisimprovedthan

the old ong the old one is removed md replaced with the cuncrt one. Also, rf pbest ouperforms
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gbesq pbest will take its position. When the process is ended and the termination criteria as statod

in Frg. 4-5 are m€q the gbest is reurned as the final answer.

FU. + 5 Flow e,hart forPSO
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4.2.2. Formulntion of DCHEMS

Many firms, itrcludi4g California Bdison and Pacific Gas & Electric 1751,U67, have used.

the inclined block rate as a pncing mechanism for a lo4g period. As discrssed in the previous

chapter, if a large number of devices appear duriqg the same time sloE, modified inclined block

riate alone camot handle the increase in powu oonsumption pattan of the entire power E stem.

Therefore, it is requirod to explorc an optimization techniquc that is workable for such a situation

It is assumed that gdd or elocricity supply company comnrunicates DR-related tasks b the

zubstations. And they firth€r communicate it to the respective cornmunities. The 1000 house

complae population is separated into four sorts of commrmity classes fornon-homoge,neous load

analysis: lower, middle, upper-middle, and highcr class.

There arE arl equal ntrmber of dwelli4gp in each of these classifications. According to their

daily habits, each of these four classes has ib owrr set of rser prefere,nces. For exarnple, becanse

their morning chores begin about noon, higher-class, which usnlly have their ovm indepmdent

b,usinesses, wind up their chores till late at night Their homes are tlpically equipped with heary-

dutyloads, suchas 2 b 5 toneairconditionems, automatic clothewashersthatrequire alargeamount

of water to allow for extended water pump opemation, aad automatic water heating. In co,mparison

to other community t,"e$ all of these dsviccs 6p high in power ratings. Middle-class, on the other

hand, does it a little sooner, with lowa-power-nated devices linked at ttreirresidences. Derrices such

as automaticwash€rsaoddishwashcrs, forexample, areinstalledwithout theneod furelectricwater

heatiag. As a result, thcy consrme less power to ope,rate than the higher or upper-middle-class [77].

Frg.4-2 depicts the power ratings utilizod for CDs in all four classes. Iower class usrally begiru

and ends the day earlier. They start around 4 am" while finishing all of the chorcs around 9 p.m.

Table +l rcflects these data for the abovementionod classes. In each class, we assumed varylng



pscentages of CDs. CD is supposcd tobe2Oo/o in the lower-class, 40% in the middle-class, 600/o in

the upper-middleclass, and \V/o inthe higher-class community.

Table 4- I Charact€ristic paramaers used for CDs [2a].

lontollable Dcvice )peration Time SloB (scattcrcd betu/cen

Inwer-clerr Eleclric Heafcr 95 -t2s
AirCooditions | -25,t25-14/.

Clothe Washcr t-4
tilatcrpump 65-9s

Dishsrashtr tts-14/.

ClothcsDryu 55-8s

Elecnic Kcttlc 25-50,95-u5

Rice Cookcr I - 35, 55 -75,92-ll5

Mlddle+hm AirC,onditioncr I - 35, t35-t4p,

Electric Heatcr 9s - 135

Clotbc r#ashcr l -65

Clothes Dryer 55-95

Dishwasher t25 - t4
lVatcrpump 75 - 110

Elccric Kcttlc 45-65,95- l15

Rice C.ooks l5-35,55-75,95-125

Ipper-middte-eJas] AirConditioncr t - 55, 135 - 144

Electric Heatcr 95 - 135

Clothc Washcr I -75

Clothes Dryer 75 - 100

Dishwashcr t25 -t4
Watcrpump 8s-115

Electsic Kcttle 55-75,95-l15
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lonhollable Dcviccr )peration Time Slots (scattercd betwccn

Rice Cooker 25 - 55,75 - 85, 100 - 135

Etgher+lrst AirC.onditioner t-14{-

Elecric HeaE 95 -t4
Clotre Washcr I -95

Clothes Drycr 95 -125

Dishrashcr I -25

Warcrpump 95 -125

Electic Kcttle 65 - 85, 100 - 125

Ricc Cooker 35 - 65,85 - 100, 100 - 135

A randomly gcnaated oneday load profile that is exposed to PSO to discover the optimal

clutering set among all possible clustering combinatioos of Cl, C2,nd.C3 as sbom in Fig. 4-6.

C3 cluster sizes ratrge from 2 to 7 pa commrmity, with both uniform and unequal cluster sizes [Z].

As shown in section 4.3, the opimal clustering combination basd on PAR reduction percentage is

usod in a randomly generated population load profilc for 90 days. Each class's whole population of

250 dwellings is separatod into Cl communities, dft devices inside the communities being

catogerized according tD C2 and nrbsequenfly grlouped into C3 chsten. According to the Cl

optimal valug eac,h community has 50 dwellings. Undtr C2, ETDO is chosen as the sorting

criterion As thc ideal nalue, the number of device clusters in each cornmunity designated by C3 is

sct to 5.

In general, the devised algorithm comprises of trro phases. The data formulation begins with

a praprocessing shge based on dynamic chutering. Seon4 for CD load scheduling, dynamic

clustering is used onthe formed data.
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In Fig. +7,thap,re-prucessing stoge is indicate4 which entails sorting of all houses before

naldng sets of commrmities according to Cl. The selection of houses into commrmities is dynamic

as it is based on average PAR of each cluster. Th€re are 16 derrices in each house. These 16 derrices

per house are divided into 5 clusters as per their STDO and ETDO. PAR is calculated for 5 clusters

and all hogses are sorted in ascending order based on maximum PAR S@orrd, the 1000-house

population is divid€d into five groups of 200 dwellings each" In addition, all sets are ranked by their

second-highest PAR Finally, thc 10 goups of 100 dwellings are ordered by thc third-higheet PAR.

Every 21st house from the sorted list is choseir to bring distinctions of data set in one cornmuity.

Houses are chosen atthetumofthe catry aiming to populato eachtown withadiversepopulation

ae,pelraing on PARs. Due to the availability of residmces with varying PAR values, dSrnamic

clgstering is madc easier. Since the size of one commrmity is 50 houses, ther€fore, the I,C consisE

of five commrmities of 250 houses. SimilarlS each ofthe other three classes consists of250 houses.

Fig. # 6 DCHEI{S parameters for clustering.
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Therefore, the five cornmunities belong b each class. One community of 50 houses has a

total of 800 deVice$, i.e., 50 x 16.

Accordi4g to criffiion C3, each communit/s dwices are furtlrer scparated into five clusters

of varied configurations. Even multiples of the integer intervd [-3, +3] are usd to vary the borders

of the cluster with thc greatcst average PAR. Thc combination with the lowest PAR is chosen.

The stages take,n by the DCHEMS algorithm are depictod in Frg. 4-7's flow diagram. The following

is a summary of the ovemall powcr sc,heduling goal:

minimize Electricity cost ( P..)

s. t. to*elarr,Po. - Io.I (4.12)

Electricity cost (p..) = EvrcclEr*c"Ef-rftPp"(r) .Pr*G) (4.13)

Here Electricity cost ( p." ) is the total electicity cost basod on polver consumption pattern. The

pow€r consmption poficm for the cluster of the community being scheduted is daoted by P"",

npp.(z) repneseirE electicity rate for the ttr time slot according to (4.8). P"*G) is the power rating

of CD for kt[ hogse and ctr device. lte horses in the cun€Nil community are represe,nted by Cr.

Current cluster is deiroted W C".Thercfore, the objective firnction of ourproposed algorithm is to

minimize oveiall consumer electricity cost of power constrmption. Modifid inclined block mtc is

applied on the entire community to keep the PAR under contol, as the population is divided into

serreral smaller commtmities.
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4.3. ResulB of Simulations

The simulation findings of the proposed €,nergy manageme,nt system arre detailed h this

section. For 90 days, PSO is ernployed with testd parametcrs on a randomly gene,rated hotrse

population of 1000 dweUings. Each class of commrmity comprises of 250 dwellings out ofthe 1000

total. Accordiag b Aaz elal.l247, the clwtuing parmeters are s€t for a single day's load profile.

The proposed algorithm's results and simulation rcsults arre prresentod itr this section" Wheir

comparedto existing approac,hes inthe lit€mafirc, theresulrc show animprovcmentinPARofpower

consumptionpaternaod electricity cosf, Ttreeperformance indicators wercutilizedto dmonstrate

the comparison with existing techniques: percentage cost reduction (PCR), perceirage PAR

ro&rction (PPARR), and power consumption pattern's variation to mean ratio (VMR). The

calculation of these parameters is as follows:

PCR= x 100

ppARR=qHEx100

VMR= xffi

(4.t4)

(4.15)

(4.16)

The pcak to average ratios arc PAR and PARPS before and after power scheduling, and the

mcar power consumption pattem is rrpup. Table 4.2 shows the percentage improvemeirts in the

proposed technique over re,ference procedures for the abovemeirtionod performance indicabrs. For

population load profile genaatiorl a maximum of 16 and 1 minimum of 8 dsvices are considered.
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Some dsvices can nrn multiple times eac,h day, dcpending on the users' normal routines. The

possible time poiods for CD power conrumption are shown in Table +1. All of the simulations in

this sfirdy were done in I{ATLAB. PSO employs the follorving parameters to meet the needs of the

optimization algorithm: swaf,m size of l(X), a neigbbor mininum fraction of 0.25, variable count

16, relative chaoge tolqance value of 10-16, and iteration stops at 3200.

The best clustuing set out of the possible clustriing parameters combination is generatcd when

PSO is applied on a load 1lrofile geireratod randomly for a day as shown in Frg. 4{. Values of 2n

7 cllsters for one commmity can be obtaiued in C3 for rmiform aod rmequal cluster sizes. For each

conrmunity, 50 houses were generated for each of the four sorts of community classes, and the

rpsulb are displayed hcre. ETDO is used to orgianize home derricqs. The number of chrsters will be

sct at five. The randomly generatcd load p,rofiles for a period of 90 days g@Gratc the specifiod

parameffis and they are stated to be the best chsEring combination [24].

The following four sor6 of profiles are created in this study: profiles forrmoptimized data'

inclined block rate combined with PSO for load shifting [24], static clustering-based load

scheduling 1241, ndthe proposed DCIIEI\{S. Note that the electricity pncing data is from Amereir

Illinois Power Compaoy (2015) and covers the period ftrom April llth to July 9th' 2015.

In Fig. &8, an oetimization for the 45th day power consurytion pattcrn against time TSs

is g1en, drmonsfiatingthat thcproposed algorithm greaflyinoreasesPARwhencomparodb non-

dynamic ctustering-based alternatives. In static clustering-based scheme dmoted by ccHEIrdS in

Fig. 4-8, the peak at TS 109 of 215 kWmS is lowered to 168 kWTS at TS 87 in DCHEMS. Shary

peals in power utilization are rcplaced by either no or extrerrely low power utilization pcaks in

,noptimized and psg-itrclinedblockrate approac,hes, indicating a differe,nce. The algorith adjusts
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a load of users to off-peak ftrom on-pealc hours, prwenting new peaks trom forming. This

de,monshates the value of inrcgrating inclind block rate with RTP, as stated in section 3.2.

The load curvds diversity factor iurproves after dynamic chstering is used. The gradual

change in the load profile validarcs effectiveiress of proposed load scheduling management. In

comparison to the static chlstering-based approach, the suggestod technique shows a considerable

improvment in PA& as showa h Flg. +9O), where mean PAR for the unoptimized schemg

optimized with inclined block rate and PSO, static clustering, and dynamic clustering are 3.78, 3.65,

2.51, aod 1.71, correspondingly. Fig. a-9 @) shows the electicity cost roduction for the proposed

and reference techniques in $/Day oyer a 90day timeframe ($. Saa.82 $/Day, M1.46 $Dry,

379.13 $/Day, aod 3,14.35 $/Dan respectively, for unoptimized method, optimized with inclined

block rate and Pso, scHH\ds, and DCHEMS' when compared to drrnamic clustering' the mem

electicity cost refirction with static clustering is roughly 4.12o/o-
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Fig. +9 (b) depicts the PAR effectr. PAR is reduced by 33.49 percmt with a static clustaing

scheure aud, 54.75 percent with DCHEI\{S. With rcfereirce to cost reduction capability, the

suggestod DCHEI\{S oulperforms nondynamic optimization by 4.ll percent. lVhen th€ PAR

reduction is assessod with DCHEIVIS, the rcsultr are morE positive, with a 21.26 percat

improvement ovu nondynamic optimization

Ihys

Fig. 4- 9 Simulatd Rcsrilts with PSO over a period of 90 days: (a) Cost of electicity, O) Peak to

average ratio and (c) WIR ratio of power constrmption pattern
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Giventhe incrcasedPARaod costsavings, utilities aremotivatedto providemore incentive

to consumers for participatiag in DR evenB. Tte last measure, the power consumption pattern's

variaoce b mean ratio (tylvlR), shows tbat DCHEI{S outperforms non-dynamic optimization in

terms of power consumption pattenr smoothness by l9o/o. As shown in Fig. 4-9 (c), our suggesbd

DCHEI\{S prcvides power consumption patttrtr smoothness in the contcrt of PSO. VI\{R of zero

leads to a flat power consumption patrcnr in theory, while DCHEIvIS reduces VI\{R to 0.ll ftom

0.3 in that of CCIIHVIII, which was reduced only up b 0.85 on averiage for nondynanric clustering.

Smooth power consumption pattffir and decreasd PAR ensurE the overall systm's stability and

durability.

Table 4-2 shows the averagod outcomes ofPSO optimization of 90 days.

Table + 2 Rcsults grrmmsfY

Se.hemer PCR, PPARR YMR

Non{lurtercd PSO 4s38 3/9 0.9s

Strflc clurtering wlth PSO 55.12 33/,9 03

Propored DCEEMS with PSO s9.a 9.76 0.11

Two design changes are responsible for the suggestod technique's zubstantial derease in

PAR aod electicity cost To bcgin with, consrm.ers are divided into numerous kinds of

commrmities. Secon4 basd on their operatiooal time overlap and correspondiag PAR values, the

device clwters were firthq divided into separarc sets. The dccrease in PAR promotes a better

balance betwecn demand and suply, which is required for an MG to perform well [78].
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4.4. Summary

In this chapter, a dynamic clusterod community HEl\ds-bascd system forresidential e,nergy

managc,ment is proposed. The proposed systcm incorporates DR and user prcferaces. By

lwemaging the differences in consums preferences and load utilization pattenrs of distinct social

classes, the suggested techniEre r€sults in compensated oonsumer and electric utility co,rrpanies.

Consumers gain lowcr electricity cost while electric utility company beirefits tom efficienfly

trimmed PAR, which improves MG reliability aod stability. Simulations wer€ run to nalidate the

proposed DCHEIvIS framewor*, aod the results were compared to those of a static clustering-basod

approach aod a PsG,itrclind block rate-based optimization PAR is enhancerl by 21.260/o urd

electicity cost is improvod by 4.llo/o usrng the zuggested DCHEMS-based approach" A l9o/o

improvement in the varianoe to mean ratio of power consumption walr achievod.
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Chapter 5

A Stndy on Renewable Integration on Clustered Community IIEMS

Phase 2 of dissertation begins with this chapter. fuiother Echnique usd in DSEI\d is

incorporation of re,newable energy r€!ilnroes and BES. This chapter focrrses on incorporation of

renewable clrerg[t lrsouloes to the MG systerr with a coordinatod contol stratery forgenerati4g a

balance between supply and demaod. Thaeforg utilization of BES and PV is incorporatod into the

dynamic clustering sptimization algorithm. PV is utilized when available and BES scheduling is

modeled for peak shaving in the peak hours of the day.

5.1. Modelling and Simulation Method Development for theAnalysis of
Power Consumption in a Residential Community Microgrid System

A large number of benefits are offered by commrmity MG systems to emhance cne{gy

efficiency, reduce consumer eleclricity cost and eohance the reliability of power provision to local

domestic oonsutrrcrs. Building awarqress about e,nergt consmption information may lead to

efficient utilizatio,D, contul, 6d mnnegemeirt of various encr5/ resources available in an MG

comrlrnity.ltis sectioaprcs€nts a simulation-based elecnicityutilizationmanagemeirt schc,me in

the presence of locally genemated power in the MG. lte benefig of eleclricity cost rcduction when

consulners acc€pt powcr ftom commrmity MG systcms and electic utility company frcilitation

when the power gnd is capable of absorbing excessive powcr when it is sent back to it are also

discussed.

5.2. Design Specifications

Once the load scheduling and optimal TS assignment to dl the CDs is complad another

stage of the strdy consisE of PV and BES incorporation for a small commtmity belonging to a



higher class [9]. Solar irradiance values have beeir talceir ftom ESIvIAP Tierl Metcorological

Station in Islamabsd, Pakistaq for the yar20l7. A rooftop Trina solar panel, TALLMN( TSM-

320 PDl4 Module, having peak power at lO0O Wlmz, panel size of 1.9 * 0.9 m2 gencllates a

maximum of320 Watts powtr, is considered. Maxirum efficienry of the module is taken as 17.5o/o.

A BES of lkY/h is also involved in meqgy menagemelrt. It supports the grid in case of PV

unavailability.

As per the statistics available and considering general trends in Pakistan, the higher class is

considered to consrme 1200 unitr/month [79]. t oad Prrofile data is used for a total of five home

nsers belonging to a higher class with ratod powerB as illustrated inFig. 4-2.

5.3. Microgrid Layout

Shrdy has been carrid out on the layout for a MG system pre.seitod in Fig. 5-l [80].

Fig. 5- I Ilhutation of MG layout with BES aod PV supply

The lalout consists of foru -ajor elements;

l. Utitity grid, delivers alternating supply to eachconsuner

Urlirr(ntd ++.

dlf A {}+t-ot*.}"o
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2. PV during sufficieNrt solar irradiance hours, it supplies power to each house as well as

charges BES.

3. BES for sbring extra PV powcr aod latcr supply it b the consum€,rs fitrfutg the night.

4. Elec.trical loads of five home users firom the higher+lass communities are considered. The

MG inthis study is connectcd to t220Y fility grid thatnormally op€,lat€s in grid-connected

mode.

5.4. Contnol Scheme

The main aim of the prcposed control scheme resides in carrying out the balance of power

genemation and consumcr dmand. The MG provides the maximum consumer eleficity when

alternatc @ergy sources including BES power aod PV power ge,lrematiou are ample thus decreasing

the utility grid power supply. The proposed coordirute manage,ment-based confiol stratcgy with PV

and BES in the MG system is depicted in Fig.5-2.The load demand profile and PV power are input

at the beginni4g of the flow. On the basis of tbe inputs taken, judgerne,nts are made using PV power

ge,neration Pw and the consumer load demand Pr.. In case Prv > Pr, the,n BES is monitored for

protection from overvoltage. If SoC is within the upper limit, which is 90% here, the MG contnol

ensurcs provision of power to the consumers ftrom the Ppv, and the remaining Pn, is used to charge

BES. The utility grid power Ps is not srpplied during this time. The indication of higher SoC than

90% rsflects maximum charging state of BES and leads to the BES over-voltage protection In case

of poor solar irradiaocg i.e., if Pnr > Pl is frlse, BES should be monitored for protection fiom low

voltage. If SoC is lsss +hen SoCr which is considered as No/oherc, their the load demand is sttppliod

by limited PV. Also, there will be a requirement of Pg to compensate for insuffioient PV powcr.

Meanwhile, no power is dranm from the BES since it eners a low voltage prohction statc. When



SoC is pslp rhen the SoCl, the required load poweris drawn frrom limitedPnr, Pg, ard BES. In the

meantime, theremaining enqgy stomge intheBEs rmits determines the batterylnwer, P5 ouput

er l.t[v.tUaii;1ry'
$y.Xarriu rrc ft.
rrplidtoBBslt[i! |

Pr ir 6rlly rDpli.d UJ
limiH Pp6 Ps od P1i

EES uoitr nry cotc im
dirhqing crE rnd hf
otpt ir &bruiDd H
rcuinr of ury rrrl{
inBEs uitr. i

Pr, tu rfidc r

bY Prr. FullY
BES einr
tdb3c F

l.

Fig. 5- 2 Flow diagram forMG contol straEry

The following operation stat€s are considcrcdduring the day andnighttime.

During thc daytine almost alt the pow€r demanded by the consumerB is supplied by PV.

The utility has to supply minimal pow€r to the load only if demanded powq qceeds PV

source power. Meanwhile, BES msy dso get chargBd by PV.

In case of insufficient solar irradiaace utility grid mafuly supplies pow€r to the consumer

and little power is hken ftom the PV system. Meanwhile, limit€d PV charges BES. Once

all the PV is consumed, BES unit charging may st'op.
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3. During thr oiglq if BES carries sufficimt pow€r, all tlre oonsumcrs are fed by BES, until

orbausted completely. Once BES is completely consume4 the utility Ekes up the remaining

r€quir€d powtr by the consumerc.

4. Night time with no BES storage, utility sr4plies electricity to all the consumq!.

5.5. Simulation ResulB

The simulations are presmtod for one MG with indepemdent five single-phase domestic

consnmels aggregated together with specificatims of 220Y and 60 IIz. Two days are selected for

simulation purposes. One is hot plus cloudy. Oth€r is cold and sunny. In order to analpe r€sultr

thoroughly, an hour is dividod into 6 TSs, as done in chapter 4. Thercforg the simulations are

performal against ltl4 TSs.

5.5.1. Case-I

Casel depicb MG operation simulations for a summer's day. The day is hot with high solar

irradiaoce and a gut of clouds also appears during the day. Solar irradiance values are hke,n ftom

ESMAP Tierl Meteorological Station NUST University, Islamabad, for a hot day of June 2017 is

shown in Fig. 5-3(a). The consum,er load profile is shown in Fig. 5-4.
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The daum t'me was at 5:30 CfS 33) and dusk was at a round of 19:30 GS I lA. From daurn

to dusk, the PV framework gave plenty ofpower to both domestic power consumers. It also charges

BES units exccpt for the TSs where a grrst of clotrds appears arormd 10:00 (tS 60) that ends arorurd

12:20 (tS 74). The BES akes up the load instead of PV, as exhibited in Fig. 5-5. Behind the fusk

timg BES units have sufficient charge storage so they start sertring doruestic ooll$lmerc around

4:50 (tS l0l) util BES units dry out at roundabout of 20:00 CfS 120) whereaq the PV framework

is inoperative during this period as ilhstrated in Fig. 5-5, BES power supply section The electric

utility company has o fulfil the domestic consum€rs'pow€r demands for the time ahead of 5:30

CfS 33) ard lat€r of 20:00 GS 120) wheir the PV framework and BES both stop supporting the

home raers as illusfiatd in Fig. 5-5, in utility grid powu supply section.
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Fig. 5- 4 Elec"tricity load profile used for higher class ho,me users

Furthermorc, little powcr is suppliod by PV at the beginning of sunrise. From 5:30 CIS 33)

b 7:09 CIS 43), both the utility gnd and PV system supply domestic consumef,s. Therefore, the

porvcr grld and PV framework have to corporately handle the burden of domestic pow€r dmad.

Moreover, Fig. 5-6 shows the SoC variatiors of genemal BES activity.



5.1.1. Case-II

Case-II depicts MG operations simulations for a winter's day with comparatively lower

solar irradiarce. Solar irradiance values hken fiom ESMAP Tierl Meteorological Station NUST

university, Islamaba4 for a cold day of Decembq 2017 are shonm in Fig. 5-3O).

Flg. 5- 5 Eleficity rcsponse for simulatod MG case-I
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Thc dawn time was at 7:30 (IS 45) and dusk was at a rormd of 17:00 GS 102). From dawn to duslq

the PV framework gave plenty of power to both domestic power @nsumerc' and charges BES as

exhibitod in Fig. 5-7 in thc PV system Powq Supply section. Behind the dusk time, BES unis tum

to a realizing strte and start serrri4g domestic cotrsumems arormd 4:10 (TS 97) until BES uniE dry

out at roundabout of 19:00 CfS I 14) whqeaq the PV frameryork is inopemative during this poiod

as illushatod in Frg. 5-7, BES power supply section The utility gnd has h fulfil the domestic

consumcns' power dcmands for the time ahead of 7:30 (TS 45) aod later of 19:00 (tS I 14) when

the PV framework and BES both sbp supportiag the home usqs ar shown in Fig. 5-7, in utility

grid power supply section. fuflfurmore little power is supplied by PV in the beginning of sunrise.

From 7:30 CIS 45) to 8:20 (tS 50), both utility grrd and PV system collectively supply domestic

consumers. Thei,efore, the power grid and PV framework have to corporately handle the burden of

domestic power d€mad. Moreover, Fig. 5-8 shows the SoC variations of Genemal BES activity.

Fig. 5- 7 Eleticity Response for simulated MG Casetr
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Frg. 5- 8 Charging and discharging states of BES for case-tr

The proposed coordination-bascd mamgemcnt scherae in section 5.4 offers the benefit of

effective utilization of reneunable and dtcmate energy sources like PV and BES for maintaining a

balance in genaation and load But it has a major drawback of BES as a consequence

of a greatelnumbcr of battcry cycles utilization This makes the syste,ln un@onomical. Therefore,

thse is a need to fitrd an optimal solution that can only utilize BES power when therre is a peak so

that battcry lif{ime may be prolonged aod the design is economical.

For this, the following sectioa prese,nts BES scheduling for peak shaving and PV utilization.

5.2. Optimal BES Scheduling for Peak Shaving and PV Utilization

The ains of the proposed optimization proble,m while defining objective firnction and

constraints are; reduction ofpeak l6s{ minimization of elecEicity cost, elongation of BES lif*ime

while considering SoC of BES. The algorithm considers the fact that the more the number of cycles

consumed by the battery sbragg the more quickly it derates. Thereforg it kee,ps the BES charged

s60
(J
o
Jn
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during off-peakaod only uses it during peak load. ConsequentlS ttre batteryprovides grid support

during peakhorus.

For solarpower utilization, thrce PV pe,netration lwels are used in the study ,i.e.,So/o,l0o/o,

afr' 15% PV penetration in commuuity, as showa in section 5.6.3. In case of abundant alt€rnat€

enqgy sources, the concept of sending the excessive powcr back to the source is also preseirted.

For effective demonshation of confiol strategr, the implenrmtation of the suggested BES

scheduling method is applied on load profile data of 1000 horses belonging to a local cornrrunity

in Paldstrn. Peak load reduction and smooth ctarging/discharging of BES which is significant for

BES lifetime is depictod W the simulation results.

5.2.1. Challenges in BES lbchnolory

BES incorporation has another issue of frst dmting the life e:rpebncy of the batteries.

Therefore, the batteries life cycle is a major concef,n these days. A BES may need to charge and

discharge multiple numbers of times a day according to the variations in tr€ load profile due to the

@nsumer's demand.Inw depth ofdischarge (DoD) keeps the BES life cycle unaffec"ted, but large

DoD can lead to BES life degndation tr high discharge rate may also damage the batteries and

this, in turn, roduces €,lrer5t storagc systcm reliabitity.

5.2.2. Contnol Stratery

Considering all disctssod iszues, a model has been dweloped for PV incorporation and BES

pealr shaving algorith as explained in the following section

The elernentary form of the HEIVI system procodure is depictod by the comstaints prcs@tod

henceforth" Other more specific implerrentations can be exfracted and adapEd by the model. The
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suggested scherne's flow diagram is depicted in Fig. 5-9. the highligbt€d red block shows

monitoring of load pmfile for peals. The portion of the load profile above the threshold defined as

LP-th is considered to be the load peak. During the TSs of Ppy S P1, the BES is only utilized for

serving peals of load demand. In case if BES is not zufficient then limited PV serrres the required

load.IP+h is termd as Pecrr,, illustated in Fig. 5.10. The simple selection ofappropriate time /can

be decided as per the feasibility of the defined problem. E.g., if one hour is divided into int€rvals

of l0 minutes each, /would be 6.

Frg. 5- 9 Flow diagram forpeak shaviqg MG control stratery

The followiag mathematical model is utilized for simulating the proposed coordination-

basd energy manage,m€ot scherre. -
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Equation (5.1) statcs the frct that the domestic load i.e., Fr(t), the chargiag needs of the BES

fr$ t either fulfilled by the utility grid power Frtt) o, by the energy saved due to by the pV and

BES, i.e. p"9) *d P[t). Io case, if PV is sufficient and BES is already charged then power may go

back to the source as presented in simulations sec'tion.

5.222. BES Schedutlng

Wh€npf) is acquired, the following optrmization problern is ued to perform BES

schoduling [81].

rJ# Ei=luF;i -Ppcak

tc(l...q1{*}

F;D=Ftt)qpltt (5.3)

Foto 
=o (s.4)

a(t) _{FIo - Ppe* Ftt) > Pe"or,
'"-* - fo F[t) < ro"*

P:t*+Pu(t) > o

- Prrr* < P(t)r 3 Prrrox

566(t) = SoC(t-1) *!r"*

SoCr,,log 5s6(t) 3 SoCrro,

(s.2)

(5.5)

(s.6)

(s.7)

(5.8)

(s.e)

BES amount of cnargiag aod discharging is represeirtcd uvpuo. pfl* is the load powtr

betvveen Pp2as frd maximum value of load profile. Ppea- is taken to be a tuning parameter that



r€pres€rils d'esired peak load. Therefore, BES supplies is available power, tbat of pp"* for pak

shavi4g. As shorm in Fig. 5-10, P'B," denotes the load power shaved by BES. gs6(t) defines the

BES SoC. Pr(tl * the eleclricity dispatched by thc grid. soc-ordeftres the maximun and SoCr6

defines the minimum limit of BES SoC, which is t8k€n tob3}o/o urd,g}o/o.

Fig. 5- l0 Description of p,-- ud eo,*

The objective frurction ties to achiwe peak shaving as much as possible. Note that reducing

the size of p;t) - Ppe& by discharging means increasing the amount of the pealc shaving. In order

to avoid peak load that is ao iss;ue for the utility as well as the @nsurners. Therefore, larger peak

shaving is attained by minimiziag the difference between P;u - ppc*byBES discharging.

Equation (5.3-5.6) are the constraint equations catering to variors siarations that occur in

BES scheduling. Eqution (5.3) represents estimated aurormt ofprovided electicity ftom the utility

gtid, Po@ > 0 r€prcscns charging nd P;t' S 0 represents discharglng. Equation (5.a) depicts that

electicity provided by the utility grid is always positive. Equation (5.5) defines BES discharging

constraint of dispabhing only when load powa is greater themPpcatc. Equation (5.6) depicts that

BES canoot dispabh more th- P"1[]*. Maximum and minimum sfi21ging limit of BES are depicted
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inEquation(5.7) aodEquation (5.8) daotes themaximum andminimumallowable limits sfg64(t)

wherc, F. denote.s BES capacity and q represents charging discharging efficiency, taken as 0.95.

lhe simulations forthe proposed contol shatery are prasented in the following section.

5.23. Simulation Results

In Pakistan, various classes of people gencrally have different PV installatioms as per their

requirements and devices installed" Considcring the variations in society, three case studies are

prese,nted. Case I utilizes 5% of PV penetration. This means only SYo of houses, out of 1000 have

installed PV at their homes. Similarly, calculations are carried out for the next trvo cases fot l0%

nd,l1o/o of PV penetnation Two dalrs are selected for simulating PV penetration for each case, otre

cold and other is hot plus cloudy, considcring similar weather conditions as shown in Fig. 5-3 (a)

and 5-3 O). A BES of l48k$/h is used for the peak shaving for each case. The electricity profile

rued as load demand forthe simulations is showninFig. 5-11.

a0 60 80 100
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Fig. 5- 11 Electricity profile used load for a total of 1000 residential oonsumcm



Care Study l-5./o PV Penetretion

Simulation rwults arc prc.s€Nrtod in Fig. 5-12, where all the left-hand frgrues reflect cold day

conditions and those on right-hand side are reflectiag hot plus cloudy day conditions.

Fig. 5-12 (a) and (b) show the electicity rcsponse in the simulated scenario of the proposed

MG for hot and cold days. The load d€mand of the entire population, the PV output for So/o

pencfiation and the pow€r supplied by the utility grid is reflectcd in curves. The shaded area

represents BES units supplied against the Pec* of 122 kw. As per the scheduling constrains, BES

is only dispatrbd for fte load above Ppcztc.Dre to the srnall penetation of the pV systeq it may

only be rued for limitd power supply. PV in case of it availability is supposed b take up the load

and the peak power is supplied by the BES. The off-peak region is supportod by the limited pv aod

utility grid. Power supplied and ab,sorbod by thc BES along with SoC is illwhated in FA 5-12 (c)

and Frg. 5-12 (d), respectively. The y-axis on the right-hand side in the graphs depictcd in Fig. 5-

12 (c) and Fig. 5-12 (d), deirotes the SoC evolution of BES against the TSs. And the y-axis on the

left represeirs the power geneiatod by BES in klVs. Positive values of power rcflect the BES

dischargtng aod negative pow6 shows its charging TSs. The excessive pV for about a maximum

value of 8 kw is seirt back to the source as showr in Fig. 5-12 (e) and Fig. 5-12 (0.

Similarly, electricity response for a hot day where a gust of cloud appeas almost arouad TS

equals 60 is shorm in Fig 5-12 (b). Thc PV and utility grid alt€rnately take up the load during rhe

unexpected cloudy TSs.
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the figruc shown in 5-12 (a) and (b) is the electricity resporrse in the simulatod MG, left:

cold dar righe hot day. (c) and (d) show Pu and SoC of Energy sbriage system, L: cold day, R: hot

day. (e) and (D is the excess power smt back b the source, L: cold day, R: hot day

Crre Study II-l0Yo PV Pcnetredon

Similarly, a case sfirdy is carrid out for l}o/oPY penetratioq where l0% of houses of the

entire population have available PV installation The simulation of MG oper6tion in s.mmcrs and

wint€rs day conditions is ffiormed by using solar inadiance data as presc,lrted in Fig. 5-3 (a) and

5-3 O). The similar electricity profile in Fig. 5-l l is considered as the oonsumer load demaod. In

this cas€, PV pene&ation is companatively larger, thcreforg the solar irradiarce is improved than

that of case I. In the simulation resulE shoum in Flg. 5-13, the shaded arpa r€pr€s€nts BES uni*

rupplied against fu P*r of 120 kW. The effectiveness of the proposed solution for peak shaving

aod PV utilization can be viewed ftom the hot aod cloudy day in Fig. 5-13 (b), where the BES

zupporE the grid in case of PV unavailabiliff due to an unexpected gust of cloud during ppgan

region Due to the better solar irradiance as compared to case I, the power supplied by the utility

gnd is furtlrerreduced. The erce$ powcr seirt back bwads the utility grid which is considemably

large in comparison b case I is prasented in Fig. 5-13 (e) and Fig. 5-13 (0.
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The figure shown in 5-13 (a) and O) is the electricity rcsporule in the simulated MG, L: cold

day, R. hot day. (c) and (d) reflectPb and SoC of Eneqgy storage system, L: cold day, R: hot day.

(e) and (f) is the qroess powcr seirt back to the source, L: cold day, R: hot day

Care Study fr- ls%. PV Penetradon

Similarln case study is carried out for l5o/oPY penetration, whqe 15% of horses of the

entirc population have available PV installation. As shown in Fig. 5-14, the shsdd area rcpr€sents

BES units supplied against the Ppea of 120 kW. In this case, PV penehatiorn is firther larg€r,

thercfore, the solar irradiance is high€r tbar that in case il. Pshaoe is firther roduced since most of

Pp2a1s is srpported by PV. BES participaEs least in supplying the peak load due to enough PV

pow€r. Due to orcessive PV, the BES itr the summcr case over+harges Ey€n more than the upper

limitofBES charying.
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5.3. Summary

It can be obsqved frrom the cases prescntod above that large sized pV installation rnay lead

to excessive unutilized power whie;h is sent back to the utility. This may cagse the iss,es of voltage

rise on the generation rise and makes the system rmeconomical. Therefore, prcper pV sizing is

required' so that the available pow€r be fully utilized. The problm of effective utilization of

arrailable PV power may also be solved by incorporating dynamic (variable) 4..-a timits (pe"*)
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which is consid€red to be fixed in the above cases. It is zuggested that based on the available

distribut€d €Nre(g;/ ltsourtes and the consumer d€maod, an optimized dynamic deurand timit

solution may be proposod which can be fixed for a day but varies over a number of days.

Tte proposod technique presented in this chaptcr is based on the idca of pV power

utilization for the off-peak load as well. In the meantimg the utility grid power is ass,med b be

used for some other purposes or loads so that the maximum available PV power can be utilized.

But this leads to a number of issres, e.g., overchargirry and over discharging of BES, alternate roles

ofPV and gn4 i.e., the PV taking available off-peak load and grid is used to charge BES at times.

A uay arylnd this issue could be that grid should only take a load less than the peali, so that the

load profile may be smooth as p€r the requirement of the electric utility company. And pV should

be utilizerl to charge the BES that can serve the peak load whenwer it arises. Therrefor€, it is roquired

to present a rulebased peak shaving confrol mechanis4 that can work in various modes and

perform according to the required situation.

fuiother most promising solution to the ovucloarging of BES due to grid or pV rnay be

resolved by considering a limit to BES charging as per the roquirements of the peak hogrs.

Thercforc, there is also a need to decide on a feed-in limit to the BES to avoid is overcharging.

AIso, if the eneqgy roquirod for chargi4g battery is pre-calculated for each day, then the issue of

overcharging may solve completely. Hence, it is required to consider dynanric denrand and feed-in

limitations for effective utilization of BEs aod pv in the MG system.

A drawbaclc of the study is the lack of consideration of day-today managerne,lrt of the BES

*arging/discharging mechanism. The daily manege,ment should eililre some energy is stored in

BES at the emd of the day. This enables BES capable of serving any unexpected peaks appearing in
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thebeginning ofthenextdaybefore it charges. Theabove-mentionod issues have been incorporated

in the scheme of a study presented in the following chapter.

Note:Forbrcvity and clarity pqposes, all thc power and eirelgr units of kWTS and kWTS

have been mentioned as kW and kU/h in this aod the followiag chaptes. This change is due b the

time granularity of TS considered in this wodq i.e., l hour has six TS.
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Chapter 6

Optimd Peak Shaving\Clipping using D5rnamic Feed in and Demand timits

Peak clipping or peak shaving are two terms rsed intercbangeably in the literaure. peak

shaving is a DSEM basd technique rued in grid*onnected MG systems. It is advantageors for

both the electric utility company and the consumers while enhancing the stability of the ove,lall

electricity system. This chapter is focused on an optimized nrle-based derrand peak shaviag scherre

implemented for grid+onnected MG systems incorporating BES and pV powers. A method is

proposed for detcnnining fed-in aod dcmaod limitations for a priori knowlodge of predicted load

consrunption and PV availability Pp,. The c,targing/discharging schodules for BES are also

presenbd based on the optimized d€maod peak shaving contul manegemenf, 1he rules formulation

is so peformedthat the feed-in anddcmandpowers r€mainrestrictod to therespective de6rmined

limits oftlre day. The SoC ofBES follows the conshaint ofattaining a similarvalue at the beginning

and end oftte day. To determine required optimized inputs, PSO algorithm is used by the suggested

ntlebased confol schme to minimize peak demad energ5r dnavm ftom the grid. Variors load and

PV power profiles are used to test the overall confiol sche,me.

The colrtent pnresentod in ttris aod following chaper is based olr my rcsearch also publislred in IEEE

SCOeSS.

6.1. System Illustration

A utility grid-connected MG system consisting of PV and BES, as illustrated in Fig. 6-1.

The utility grid is capable ofpower deliverance as well as absorption.
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In order to malce the comparison with the pre'vious results, the same load profile of 200kW

is used as in Ct4ter 4. The same PV is also used for only 5o/o arfi,l5o/o penehation lwels so that

effects of significant differeirce in PV can be analyzed. A220 V, 600 Ah BES is selectod for the

pttryose of peak d€mand shaving. The power balance equation anrong available sorucqr is given as

Ps(t)+ rou(t)+PD(r) = Pr.G)

Assuming discr€te time granularity, time interval is deiroted by *f in equation (6.1)

[(t - t) x Tg, t x Tcl,where T6 is the l0 minutes TS.

UtiliryGdd

.lt
ilfiI r( lrtr]r

1!'0rwh

Fig. 6- I Residential system withPV siounqe, BES, aad conrollable dwices (CDs) as load

6.2. BES Operating Modes

The purpose is to limit thc utility grid powo Pr(t) o the peak power so that the portion of

power above the peak can be takeir up by the MG power sources. Since peak power is the limit on

theconsumendemandto be catsodby theutility grid, thercfore it is termed as de,mandlimitpoly€r,

demoted by Pas. Therefore, the purpose of considering the PV souce accompanyiag the BES , is to
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restict Pr(t) to Pas The modcs of BES for opemating TSs for qpical load consumption profiles

and PV power availability are illushated in Fig. 6-2.

Fig. 6- 2 opemat'uu TSs of modes of BES: ra6-, whm pr.(r) > pdt&&pw(t) s rr14 - pari
t6 when Pr,(t) S Pal; and rr2 when pr,(t) > pdt && pw(t) > pl(t) - ior.

Thrce op€,rating modes are considered o limit Ps(t) to Pat byusing BES with availability

ofPV source. The modes are depicted in the fo[owing manner.

Dischughg node @aQ:DcM deirotod by tdis-c, is the time when load d€mmd

exceods the demand limit Aod the inzufficiemcy of PV sourEe does not allow it to

cater the load de,maod i.e. P{t) ) Pa&&Pee(t) < pz(t) - par l"ogical AI{D

operator is depictcd by the symbol "&&".

charghg nmdc I (cMr): cMl is denoted b/ tsr, is the time when load demand is

within the range of the de,mand limig i.e., pl(t) 
= 

pil.

l.

gs6l1, @{u414 lllcdr l, +.drrglnj Mod.-a

Trme Slotsll 0 rrnrres eachl
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Charging mode 2 (C:ltn)z CM2 is denoted tsz, is the time whcn load d€mand

exceeds the demand limit and PV source successfully supplies the nceded power,

i.e., P{t) ) Pa 8.& PeeG) > h.G) - Par

Frg. 6- 3 Input's coordination needed for rule-based management control method [57]

Detsnrine demand limit P61

Pp"* .

Determine available grid enerry to charge BES

+Eg* .
ine modified

of Utility grid coeffrcient C,

Determine feed in
limit Ps
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6.3. I)etermination of Optimal Inputs

Predictod PV powerand load demand are rsed b detennine the inputs that are required for

the suggested rulebased p€ak shaviqg managerr@t. The required inputs arc

P41,E6-s,Epo-s,Es-q,Cc,Pfr arrdPlt. The flowchart depictod in Fig. G3 reflects the coordination

among these inputs. Firsq P4, E6-e, d Epo-qare deterrrined. The4 E -, is deterrrined if Epo-c 
=

Eb-c. Arfr,Pfr is determined if Epo-cl Es-, S Eo_c; otherwise C, is determined. Where pyr is

daermincrl' if Epo-c ) Eo-e. BES charge/discharge schedules for the pqpose ofpeak shaving arc

determined by urng these inputs. The utilized method to determine the inpgt is presented ahead.

6.3.1. Demand Limit

Here, a confiol variable is required to be defined which is called the BES,s discloargeable

cneryf over24 hours (Ej-ar-J, which is selec"tod from 0 kU/h to the BES's rated merg5r capacity

Eb-rot"d (0 kU/h dE6_7as2a both included), i.e. i

The determination of demand limit is performed srch that Et-ars-c is equal to Ei_au_c.

ResultantlS it can be expressod as;

0 S Ei-ar" -c 3 Eb-rrt"a

since ED-r4ted is 150 k1t4r, E;_db_c e [0,150] ku/h.

Eo-au-c= Ei-ar-c

E Pr-ar"-c(t) - Ei-au-c = 0, Vt E tab-g

(6.2)

(6.3)

(6.4)
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To limit Ps(t) b P41, the rquird amormt of load powcr P1(t) - Pa is provided either by

BES or PV sounce, when Ps(t) ) Par Nwqtheless, BES only supplies the power which could not

be taken up by the PV source.

Thuefore, we have

Ps-as-r(t) = Pr,(t) - Pia- Poo(t), Vt e hi5-q

= e otherwise.

Substituting equation (6.5) itrto (6.4) givas

E(Pr,(t) - Pa) - Peo(t) - Ei-ai"-e= 0,Vt E tats-c

Equation (6.6) is in form of f (Pa) = 0, where

(Par) = E((pr,(t) - Pa) - PeyG) - Ei-air,-c, Vt e tais-c

(6.s)

(6.6)

(6.4

The root-finding algorithm of the regula ftlsi method is exploited b find the solution of Pa1 |

which is an indcpendent variable as depictcd in equation (6.7)1821. Both secant and bisection search

theorem methods combine to form the regula falsi method. It has frst response as compared to the

bisection method with guaranteed root cotrve[gclrce. As per the regula frlsi metho4 (Pa-n,Pa-n)

are selected in way tftrat f (Pd-r1) is assigned positive value md f (Pa-d as negative. Theq Pa-ro

is solved as follows:

Pd-$ =*(o - f(Pa-d) * Pa-n

UftGfl'e,
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urire oquation (6.8), we determinef(pa-ro). when lf @a-y)l(-e, p4-$ becomes pa1.

WhEn lf (Pa-dl ) e, either replace pa_n by pd_n $f f (pd-ro) > 0) or replace p7_12 by pa_n

(if f (Pd-d < 0). Them, continue the above prccess till pd_t6 becomes pa1.

6.3.2. The Energr Requircd for Charging BES for a Day

To be flexible for dailymanagemcnt, the encqgy necessary to charge the battery ov1g 24

hours mrst be equivalelrt to the eneqgy required b discharge the BES ov6;_ 24horus, i.e.,

Eo-c = Eo-ats-c = Ei-au-c (6.e)

6.3.3. PV Energr Available to Chalge BES Over 24 Hours

It can be defuced trom oquation (6.9), thc BES will be charged by the total enq5r E6-r,

ftom either the utility gnd or ftom PV source. Fintly, the PV €nergy that is available

forcharging the BES ovs the duration of 24 hours (without havi4g to inject it into the grid) is

det€rmind. If the availahle PV cneryy is insuffrcient, then the utillty grid eneqgy that may be

available for chargingthe BES is calculated. ThePpr-, isPeoG) and Peu(r)-(pz(t) -pa)
duriqg t6 and tsz, rqpectively, i.e.

^ - 
f(Pa-u)-l(Pa-u)

Pd-n- Pa-n

Ppo-c = Peo(t) vt c tcl

= Pw(t) - (Pilt) - Pa) vt e 42

= 0, othennrise

(6.8)
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The PV eners/ available to clnrge the BES over24 hours is then the sum of P*-r(t) over

24 hours. It is given as;

Eoo-r= ELr Ppo-r(t) (6.u)

Wh€rc T is 144 TSs.

6.3.4. utility Grid EnergrAvailabte for charying BEs over 24 Hourc

From equations (6.9) and (6.11), if Epo-c 3 Eo-c, it shows that tlre required BES eneq$/

caunot be provided by PV supply. This deficient mergr is provided by the utility grid while

ensuri4g the demand is not exceeding the demand limit This clarifies that BES does not hke any

charge trom the utility grid during t 2. Thereforg the excess utility pow€r during tcz is used to

charge BES with (Pc-e(r)), forlimiting pg b palis p4 - pLG), i.e.

Ps-eG) = Pat- Pt(t) Yt c \t
= Q otherwise (6.12)

Hence, the utility grid mergr available to c,harge BES over Z hours is then the sum

of Pn-rQ) over24hours. It is given as;

Es-c=ELrPs-cG) (6.13)
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6.3.5. Utility Grid Energr Coeflicient for Charying the BES

lf Epo-e3E6-s&&Eg-rlEpo-c) Eo-e, the deficit energy amount to fully chargethe

BES, i.e., Eo-c- Epj-e, must be supplied by the grid, as stated in equations (6.9), (6.11), md

(6.13). But, wheir using th€ total amount of the available PV eneryy for charging the BES, only a

portion of the grid e,nergy is needed. h the mentioned situation, if CsEs-c is us€d as lhe r€quir€d

grid enu5' for charging the BES, it equals Eo_c - E*-r, as

CgEs-r= Eb-c- Eou-,

Co =Eb-e-EP-
'g.f

(6.14)

6.3.5. Modification of Demand Limit

From equations (6.9), (6. I l), and (6. 13) , if Es-c * Epv-e s Eo-c,this depicts that the BEs

is not able b acquire the required amount of c,harging to limitPr(t) to pdt.In this situatiotr, SoCr

canmt match with soci, resulting in a breach of fluibility for day-to-day control. To prweirt this

violation, it is required to modify Par so that the dischargeable eirergr of BES over T should be

eqrral to the srrm of available PV sourpe and grld @qw for charging BES over T,i.e.,

ELrPIIIQ) + EL, Pfr_r(t) = ELr P{!au_e?) (6.15)
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Superscrifl'tn" depicts the conresponding variables for modified demand limit pl!. Using

equations (6.5), (6.10), and (6.12), substituting, p{!71r-r(t),pfr-r(t), andpJSe(r) into (6.15)

forfi, tp, and tfllr_r gt""t

E(pfr-pr,(rD +pwG)-Q= o weq

E(0) + (PeuG) - (pr,G) - pnD - (0) = o, vt e fr

E(0) + (0) - (- (r*u, - (pr(t) - ei;)) = o, vt e fr,-*

(6.16)

(6.r7)

(6.18)

(6.20)

The zero terms in the above equations refer to the absence ofpower for the occuning modes,

respectively. For exaurple, Tr;ro on the left-hand side of equation (6.16) refels to (.%(t) - pat)

which is not possible since Pt G) < Pdr during mode tfi. similarlS the zero on the right-hand side

of (6'16) refers to the abseirce of P#.ars-e (t) because it is the chargrng modg therefore, discharging

is not possible. Equations (6.17) and (6. I s) are developed in the similar rvay.

Conbining (6.16H6.18) over Zgives

Elr(no"tt) - (Pr.G)- Pft)) = o (6.1e)

Conseqtrenfly, the adjrstod dcmaod timit is represe,ntcd as

P ;;i =EL'(PzE)-ePu(O)

6.3.7. F'eed-in Limit

Basd on the equations (6.9) and (6.11), rf Epo-c) Et-c,then the battcry can be charged

with the ap|rropriate quantity of energr without using all of the arrailable pV cnergy. As a resul! a



PV power limit P4is establishd in a way that the PV sotuce is not utilized for charyrng the BES

when Ppu-s G) S ryt. When Pev-e(t) > Prr duriqg the period t , the battery is fully c,harged with

Peo-c(t) - P1ui.e.

ZPpu-cG) - P11= E6-s,Vt € ts&t1 (6.2t)

In equation (6.21), fr is the time when Pro-r(t) > ryr. Moroover, per-q(t) = ppu(t)

wheir t, = rer and prr_r(t) = pou(t) - (pr,(t) - pa)when r, = t z.

Z(pou-r(t) - Pi - Eo-c= Q vt e ts&tr (6.22)

Equation (6.22) is in form oft@n) = 0, wherE

@n) = E(rrr-r{t) - Pi - Eo-c vt E tc&tl $.23)

In equation (6.22), as Py1 is an independent variablg the regula falsi method's root finding

prcc€dure is employod to solve for P11. The regula falsi approach is uod to detemnine pyr in the

same mannq'as was wed to dctemnine Pa1. Initially, (P1n,P1n) are picked wrh, f (pnt) being

positive nd f (Pn) being negative. pyro is then calcurated as follows:

Where,

P1n =# f, - f (pn )) t p1tr,

* - f(Prn)-fen )
plz-pgr
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Using (6.24), we detennine/(p1d. Whmlf(|n1)l<-e,pln bcomespyr.

whcnl/@lr)l>e, eithq rqlrr;ep1u bypno (ifl(p/,0)>0) or tqtace\n bypno

(rt f (pno) < 0). Theq continue the above prccess till pyro becomes p1r.

6.4. Control Strategr for Rule-Based Peak Shaving

The peak shaving rules for the formulation of the upconring day's charging/discharging

schodules of BES are dweloped by using the abovedetermined inpuE. These regulations are

writtm in a way that they ensuE flexibility h the daily management while restrioting the feed-in

pow€rs and peak utility grid d€maod to the relwant feed-in and demand timig of the day. This

section details the BES sclrarging rules formulation.

1. DCM(During tars-c)

ktle 1 : The amount dispatched by the BEs (pr(r) - pa) - peu3)as per (6.5).

2. CMl (Dtringtr)

fule 2: lf Epr-cS Ep-s&Epv-s* En-r) Et-c, the BES hkes charge ftom PV source and the

utility grid with the amount P, 
"(t) 

+ cs(pil - h,G)) as per (6.10), (6.t2),and (6.14).

ktle 3: lf Ept-c 3 E6-q&&Epu-cl Eg-c 3 Eo-c, the BES akes charge ftom PV sourre and the

utility grid with the amount pe"G) + (pfr - pr.QD as p€r (6.16).

ktle,!: lf Epo-c) E6-s&&Ppr(t) > P1,trc BES takes charge trom pV source with the amount

eoo(t) - Py1 as per (6.10) and (6.21).

fule 5: rf Epo-e > Eb-s&&Ppr(t) s P1u theBEs tdres no charge from pv source.
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CM2 (Duringt@)

Rule 6: lf Epo-c 3 E6-q,the BES hkes charge firom PV source with the amormt pw(t) - (pr,(t) -
Par) as pq (6.10).

ktle 7: lf Epv-c > Ea-e&&(PeG)'(4.(t) - Pa)) ) Pn,the BES takes charge trom pV source

with the arnount (Pe(t) - (h.(t) - par)) - plru-po (6.10) and (6.21).

kde 'E: rf Epo-e > Eb-c&&(PeG) - @r,(t) - Pa)) < p1r, the BES hkes no charge &rom pv

Source.

Usiry thc coulomb'countiag approach [83], the SoC of the BES in iE charge/disc,harge modcs is

deternined as follows:

SoC(t)=!-:rElol
Ahb.,ratcd,

whm, discharging is reflected by positive r, and negative i reflecE clrarging.

(6.2s)

The resultiag utility gnd power while considering the above-mentioned Rules l-g and

eqrution (6.1), is grveir in Table 6.1.

Table 6- I Utility Grid Power

Rulc

I

2

3

4

5

6

7

E

ModcofQpcnthn

DCM

cMl

cMt

cxrll

cMl

CNI2

ctt,i2

CTt12

UdlltrcddPorffi

Pat

PLG) + Cs(Pil- Pilt))

w
PLG)-pl

PLG)- PerG)

P71

pat- prt

PLG)_Pe,G)
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6.5. Determination of Optimal Inputs

Peak shaving of utility grid elecnicity while ensuring optimized utilization of the BES is

critical. The followi4g is a discussion of the formulation of such an optimal problem.

The objective fimction along with the constainrc are detailed as follows:

minimizg/ = Es-.pt,. (6.26)

Subjected to

Ps(t)+ eou(t)+PD(r) = 4.(t)

SoCl S SoC(t) 3SoCu,SoCl - SoCt

PD-c(t) S Pp-s-61, Pa-ar"-e(t) S Pai"-r*

(6.27)

(6.28)

(6.2e)

(6.30)Ei-au-cS Eb-rot"a

The goal, according to Equation (6.26)is to minimize Es-pk.The powerbalance consfiaint

is shoum in equation (6.27). The consuaints of the batteryrs SoC as well as thc battery,s flexibility

in day-today opeiations are shom in Equation (6.28). The restictions of the battu/s

charge/discloarye powcrs and disc,hargcable meqgy through the duration ofa day are shown in

oqnations (6.29) and (6.30), respectively. Table 6.21571 lisE the systern parameters as well as the

limitations.
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Table 6- 2 Systemparameters [57]

Parameter Valuc Parameter Value

SoCllSoCu 0.U0.9

SoQ 0.s

PD_e_r* 40kw

PD-dt"-e-r* /t0 kW

Pa+*

Ppo-t*

Eo-rrna

Aht-ratea

165 kw

90430
kw

150kwh

600Ah

Eg-p* is the peak en€4$/ dnawn ftrom the utility grid over the course ofa day as per equation (6.26),
ie.;

Es-pt = matimtnn(+al'1, vt E [0,4 (6.31)

E, is deterrrinedas

Eg(t) = (Ps(t)) xTc (6.32)

Becaue the inputs needed for peak shavhg control are dependent on Ej_a6_s, as

prwiorsly meotioned, Ei-ai"-cis regiarded as a contol variable. The problem rtpr€serts an ofline

optimizationproblem that is dcfind with anonlinear fitness firnction The proble,rris handled in

MATLAB with particle swamr oprimization (PSO). For tackling a nonlinear optimization problem,

the PSO method is a prominent heuristic optrmization method [12].

In Fig. 64, a flow chart depicts the method of determining the batteq/s optimal

dischargeable cnergr (E|u-ab-c) urng the PSO. After d*ermining (Eio-au-)the inplts related

to (Eio-ait-*) are regardod as the optimized inpub needed for the postulatod rule-basod contol,

i.e. Ps4-1a, Eob-c, Eopo-c, Eos-c, Cos , Pli_m,md ps11.It signifies that the optimal rulebased



inputs are obtained as a result of optimizatioq i.e., solving the optimization problem. The pro,posed

rule-basedpeak shaving manag@€nt method thc,lruses these optimal rule-based inpuls to genemate

optimal battery schedules. The suggested peak shaving menagem€nt is depicted in Fig. 6-5 in the

form of a flowchart.

Fig. 6- 4 Particle swann optimization for finding optimal dischargeable eneqgy of BES

Initralize PSO
Parameters and produce

first swann

Calculate fitness function,
E uo* using proposed rules

Record pbestf,l and
find sbesrfd Up@tr xfi and y ;

Stop Criteria

Output optimal dischargeable
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P*(t) =(Pilt) -Par$)- PpvQ

!t
il

Fig. 6- 5 Flow diagram for optimal rule-based pealc sbaving contol [52

6.6. Simulation Resulh

The method presented above is Ested on a grid-connecbd MG framcwork incorporating PV

ad BES. Simulations are performed for four cases. PV penenation lerrels of 5o/o and 15% are

utilized forthehotand colddays, rcspectively. Theoptimal inputsrequired forapplying the control

algorithm for thc simulated case studies are depicted in Table 6.3. The best fitness value is acquired



for multiple nrns of the PSO algorithm for the case of l0 o/oPY arrailability for thc cold day. The

minimutrl value among these best fitness values (considering all nrns), i.e., il1.31 k\l/lr, is the

optimal peak enqgy drawn ftrom the utility gnd The attained r€sults of these cases with the

proposed method are discussod as follows.

Table 6- 3 Optimd inpuB of management algorithm with application to four cases

InprtPa lctsr Casct C*sc2 Casc3 Cssc4

Poar (kW) 137.ffi3 llt.3t t3 t2L(f,EtO7.EtZs

Eor-cGWr) 65.2ffi E1.7368 59.673?9t.0526

Eo?r-c (kWh) 6.1143 70.1186 60.1927 g2.l4t3

Eog-c (kwh) NA NA NA NA

Cos NA NA NA NA

P&rftW) NA NA NA NA

Porr (k$l) l5.5y2l 25.37t4 32.3715 35.i,tE9

The obtained r€sults with the proposed method are disctssed for these cases as follows.

6.6.1. case lz so/o pv penetration for Hot and ctoudy Day

In this scenario, fts mnnagcrne,lrt scheme is simulated oyer a hot and cloudy day as

illnshatcd in Fig. 6-6(a). The estimations conespondiqg b pod-tm, Eob-e, Eopu-e,and poyl are

137'4463 kw, 65'2600 k1[4t 66.3143 kltrh, anO ll.sg2l.The amount of available pV energ5r for

cnarying BES exceeds the energ5r roquired forcharging the BES Eoou-r> Eob-c.As a resul! in this

scemario, Eoc..c, cos, ad Pfr-mare not applicable (NA), as shom in Table 6.3. According to Fig.

6-5 for the estimaed Eob-e,the DCM occ'rs during t = 102-109 TS, and ctll is duriqg t= 32-39

and tl3-l 17 Ts. There is no CT\D because the BES charging is already at SoCuduring excess pV

TSs. The grid charges the BES dnring t = 13l-136 TS for daily manage,ment of BES SoC. Fig. 6-6



(b) shows the BES's optimal charge/discharge schedules for the different modc.s. As observed, the

PV sourcc exclusively charges the BES. Fig. 6-6 (c) illushates that SoC, = SoCl = S}Yo,which is

de.sirable to eirsurre flexibility in day-today managenrent. Flexible day-today managemeirt with

SoCl= SoCi = 50% is reflected in Frg. 6{(c). Fig. 6-6 (d) depicts the conesponding utility grid

d@and. The illustration srggests that the utiliU grd demand is capped fot po4-1^=137.4463 kW.
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6.6.2. Case 2t 5o/o PV penetration for Cold day

In this scemado, the managemeirt sche,me is simulatod over a cold day with comparably

lesscr magniurde PV power as illustated in Flg. 6-7(a). The estimated values correspondiag b

Pod-tm, Eob-e, Eopo-r,d,Pofrare l1l.3l13 kW,81.7368 kU/lL 70.1186 kWh, aod 25.3714 kW.

The amount of available PV energy for clrargi4g the BES again exceeds the energy roquirod for

chargi4g the BESE ,, -q) Eoo-c. As a resut! in this scenario, Eos-r, Cos, ad P{f,-6arc not

applicable (NA), as slrown in Table 6.3.
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Accordi4g to Fig. 6-7 for the estimated Eob-c,the DCM oocurs during t = 10-13 and 12-

118 TS' aod CMI is duriag t= 3641T5. There is again no CM2 because the BES charging is

already rt Socuduring exoess PV TSs. The grid charges the BES dtging F l-6, 13l-l,m for daily

management of BES SoC. Fig. 6'7 (b)shows the BES's optimal charge/discharge schedules for

the different modes. As observe( the PV source exclusively charges the BES. Fig. 6-7 (c)illsfiates

that SoCs = SoCl = 50o/o, which is desirable to msure flexibility in day-b{ay mamggmqt.

Flexible day-today manag€Nnetrt with socl = socl = 50o/o is reflected in Fig. 6-7(c). Fig. 6-7

(d) depicts the corcsponding utiltty grid dernand. The illusfiation suggests that the utility grid

d€mand is capped for Po4_1^=l l l.3l 13 kW.

6.6.3. cage 3t lso/o pv penetration for Hot and croudy day

In this scenariq ft6 manegeureDt scherne is simulatod over a hot and cloudy day with 15%

ofPV penehation as illustated in Fig. 6-8(a). The estimated values concsponding b pod-tm, Eob_c,

Eopu-e, afr' Ps11 arc 122.668kW, 59.6737 klt4t ffi.1g27 klt4u anC 32.375k1V, respectively. The

amount of available PV energr for charging the BEs exceeds the enqgy requirod for charging the

BEs (Eoe"- e> Eor-c).As a res,lt, in this scemario, Eon-r, cos, ad p!!_6uenotapplicable (NA),

as shown in Table 6.3. According to Fig. 6-8 for estimated Eob-c,the DCM occu6 durirg t= 32-

36 and 117 Ts, CMI is during t = 105-115 TS. There is again no CM2 because the BES charging

is already aJ socu duri4g exoess PV TSs. Fig. G8 @) shows the BES's optimal charge/discharge

schodules forthe difrerent modes. As observed, the PV source exclusively charges the BES. Fa. 6-

8 (c) ilhuhates that SoCl = SoCl = 50o/o, which is desirable to ensure flexibility in day-mday

maragment. Fig. 6-8 (d) depicts the corresponding utility grid demand. The
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illrutration suggests that the utility grid demand is capped for po4_1-= l22.66BkW which is less

t&rfr,s%PV penetnation of case l, as desired.
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6.6.4. Case 4z l5o/o PV penetration for Cotd Day

In this scenario, the management scherne is simulated over a cold day with comparably

lessq magnitude PV power as illustratod in Fig. 6-9(a). The estimated values concsponding to

Pod-tm, Eob-c, Eopu-c atd, Ponare 107.8125 kW, gl.O526kWlr, 92.1413 kWh, and 35.5489 klV,



respectively. The amount of PV ene{gy available for charging the BES again exceeds the energy

required for e;hargi4g the BEs (Eopo-c> Eor-). As a resul! in this soenario, Eos_r, Cos, frd

P#-mre not applicable (NA), as shovm in Table 6.3. According to Fig. 6-9 for the estimabd

Poa-tm, the DCM occurs during t: 9-14 and I l5-l 18 TS, CMI is during t = 36-38 TS. There is

again no CMI because the BES clrarging is aheady at SoCu dtuing exccxts pV TSs. Fig. 6-9

(b) shows the BES's optimal charge/discharge schedules forthe different modes. As observd the

PV sonrce exclusively charges the BES. Fig. 6-9 (c) illushates that soci = SoCl = S}o/o,which is

desirable to ensure flexibility in day-bday manegemcnt.

F g.6- 9 Case-4. (") Pryll"s forPVpowersupply and loadconzumption. (b) Schedules of BES
charge/discharge. (c) BES state of charge. (d) utility grid power
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Fig. G8 (d) depics the coneqpnding utility grid de,mand. The illusration zuggest that the

utility grid demand is cappod for Po6-.1,.: 107.8125 kW which is less than 5% PV penetration of

ease2,as desired.

Table 6- 4 Comparison of Percatage of Peak Shaviag GPS) For Differeirt Cases

Case-l Case-2 Case3 Case,4

PUGp(kW) 137.M63 l[.31t3 122.668 t07.8t25

PPS (7o) 16.36 32.27 25.35 34.40

6.7. Summary

Table 6.4 presents the perce,ntage of peak shaving (PPS) for each case. It is obvious frrom

theresults that increasing thePVpenehationreduces the demand limitandmore PV canparticiparc

in peak shaving. In the proposed algoritbm, systernatic coordination exiss betrreen various modes

and a smooth chargi4g dischargrng of BES is obscrved. This shows how dynauric feed-in aud

demand linits are effective in BES utilization as well as peak load shaving. Day-today

manag€melrt of the BES cltarying/dischargi4g mechanism also adds to the MG stability. The load

facbr of the utility gnd is improved as the off-peak load below the demand limit is only hken by

the utility grid. Hence an optimized pcak slnviqg contol suatery with a defined set of rules is

proposed with dynamic fed-in and demand limiE.

Howwer, due b the same load p,rofile trsed for all the caseq a number of rules could not

bc dernonstrated as shown in Table 6.3. Therefore, for enhancing the scope of thc presented study,

it is suggested to use difrerrnt load profiles for winters and srmmers along with distinct user

preferencas in response to the change of seasons should be utilized in the peak shaving algorithm.

And difrcrent PV penetrations should be deuronstratod for both"
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An optimization based preprocessing stage maybe addod to the MG systern that can reduce

the PAR of load d€mand before the optimal peak shaving application. This may lead to a mor€

optimized and economical solution which lessens thc burden on the BES system. EffecB on the

PPS can also be obscrved.

All these discussed issues are addressed in dynamic-HEl\,ls and rule basod optimal peak

shaving control technique presented in the next chapter.

100



Chapter 7

Ilptamic HEMS based Opt'nfl Peak Sheving Control in a Microgrid

In the existing litemtur€, the optimal nrle-based approaches do not provide dynarnicity in

the herristic conputation-based schemes applied [57,84,85]. This can have variou benefits of

improved percentage peak straviqg when peak reduction is the target of the heuristic computation-

basd schemes. This will also reduce the burden on the BES. To avoid that limitation, a two-stage

confiol shategy is proposed in this chapEr as shown in Fig 7-1. Apreprocessing stage based on a

modified dynamic-clustered home ensgf managcment system (DCHEIV|S) schme with

application to the rcsid€ndal commrurities is incorporatod. Based on the resultant load profilg the

socond stage is responsiUrc for the dae,rnination of desired inputs for optimized BES peak shaving

contol using PSO.

To make the model meaniagful, realistic and practical, the proposed model, in the pre-

processing stage wes four classes of consumers i.e., lower class, middle class, upper-middleclass

and higher class. Due to the non-identical properties of CDs and distinct 11ger preferences trom

diftrmt classes, the load is non-homogeneous. The PV installations considerod for each class are

also differmt. consideri4g the variations in consumers' behaviors due to seasonal changes,

difrerent usageparameters forCDs in summers and winters are considered in the study.

7.1. System lllustration

A utility grid-connectod MG, with a community-based HEI\,IS architectur€ consisting of

disEibuted e'neqgy resources of PV and BES power sources, is illushated in Fig. 7-l lsT.The utility

gnd is capable ofpower deliveiance as well as absorption.
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7.1.1. Load Demand

Two distinct load profiles are considerod for sunmer and winter conditions. The same eight

deviccs ar- coruidered which wrc taken in chapter 3. But some of the dwices arc rsod morc

frepenfly in gumm,ers, wh€rEas, some alt used in winters. For exaurple, the air conditioner is more

fropmtly uscd in surnmers fel66eting purposcs. The same air conditioner is less frequently gsed

for heating in wint€rs that consume lesser powcr as compared b that of cooting. This is d,e b the

tend ofmore sunlight utilization and getting done with most of the tasks during the day. This is the

reason why peak hours in the load dmad are genemally observed duri4g 09:00 b 12:00 hours in

winters, whereas they occur during 20:00 to 23:00 in summ,ers, in underrdeireloped countries like

Pakistan [57]. Similarly, elecfic heaters, clothes dryers alr morr frequartly used in winters as

comparod to surnm€rs. In conhast, as a general hend ofpeoplg the clothe nashers and waterp.nrps

arc rued morc in sunmcrs due to freErent clothes ch""Trrg atld bathing in thc hot seasotr. But tbesc

do not require hot water as normal tap water is fsir eirough in good sunny days. Similarly, the

dish$ashers can use normal tap urater in summems, tyh€neas, theyrequire heated water in winterto

get rid of utensils greasiness. For rice cookers, consum€rs belonging to first three classes genually

take meals thrice a day, unlike higher-class. In winErs, due b snraller days, only lower-class takes

tbrice, as they wake up too early in the moming. Considering all these frcts and the usage

parameters given for all the four classes given in [2], Table 7.1 provides the typical usage

parametels forCDs forwinters aod summss.

Classes of communities are aoalyzed both in winte,rs and summe,ls. The load profile of a

small 6pppgaily, consisting of40 houses is considered. fui equal number ofhouses are considered

fiom each class of consumers for winters and sumners. For summers, the peak load is 35.94 kW

and forwinters there is a peak of 33.89 kW.



Table 7- I Typical usage parameters for CDs in summers and urint€rs

lonhlhblc lhvicG )FntioD tDuE Suf,rcr! (3lttarld bdw€l )pcmtion hotlr Wintcrr(sttctrd bctuta

I.ortlt+Lrr ALCdittmcr lb4,2llo2l, 4io6

Ehclric llcatcr NA 5 b t, 19 to2l

ClothcWldEr lbE, 15b20 Itoll
Clol[crI]J/!r NA 7 l0.lz

Dirhrtr$cr I b 13, lEto24 9b 15, l6b2|

WilGrFrnp I to t, 13 tD l'.mbu l'o7,17 ba
Eletsicl(atlc 4to6 t0b l\t?lot9 5to9,llbl.ltb20
RiocC.rplrcr lb6,9bil, 16btt I b8, l0b 12, 15b lt

MEdlc+lru AirC.rlnditb(E I b620b2{ 5b7

Eldicllcltcr NA 6bt,15b22

Clo&cWrtu r b9' t7b2l IUrIZ

ClottcrDErcr 7 bl''mbu EtotS

Di!trruradGr 9b 12, 15 to lt, 19!o24 9b 15, 16to I

w.EPuDP 9 b t0,2l !o 23 Eto ll,20toZl

Eletric Katlc 6 to 10, 13 to 15, lE to 20 5b 10, ltto2l

RiccCokE t b I0, 12 to l{, 15 to 19 I b 12, 16b 19

AirCoditkm€r I loE,19b24 5ro9

El*lrbHcrtrr 15 to 20 7 l(o9,lSb23

ClothcWr$cr I to 10, 17 ft, ZZ llo13

ClothcrDrycr llblE.llb12 9b 17

DLhuhcr 9f, 12, lZtr 17.19]o7A 9b t5,19b23

wucrDtrrDP I b ll,Z)to24 lE.l2,mlo24

Elcrri:Ihtlc tb 13, 13ftl 16 19ro2l EbIr,lEbZl

RicCokcr lbll,12b15,ltto23 I b 13,17 ro7t2

H[h:ncJrrr AirCoditioocr lb24 lb24

ElchicIIcrE t5624 It to z/l

Clo&EWl*cr lb2I Ito15

ClolhoIrycr lb24 9bzt

Dirhra$cr l0blt7b24 l0bz,5b2a

ItrrrUpurp lb2t, llo2/,

Elcctrblkillc ll b l,f, ltb24 l0 to l3r IE to 24

RicGCo& I ro 14 ltb24 I b 14, lE!ozt
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7.1.2. Distributed Energr Resources (DERS)

Solar power generation for diffsent classes and comrrunities is explored as follows.

Solar irradiance values have beeir talren ftom ESMAP Tierl Meteorological Station in

Islamabad, Pakistan. A rooftop Trina solarpanel (SP), TALLMAX TSM-320 PDt4 Module, paoel

size of 1.9 * 0.9 m2 generates a maximum of 320 Watts power is considered. TIre morimum

efficienry of fte module is trken as 17.5o/o.

For Islamabad, lkW SP generates 4 units in a day that means 250W g€nerates I uit of

cNrcryC/. For example, if SP deployrnent size is calculated forproducing 200 unib; a 50 kW system

wouldproduce 200 tmits. Numberof SPs canbe calculatedbydividing the requiredpowerwith the

powerproducod by one SP plate. SP area can by calculated by multiplying the numbs of SP pla6s

by the area of a single plate, i.e.,

No of SPs =
Total Power Required, 50kw

=: =157Powerprodandby otu SP 320W

Totalmea = IVo.of SPs xAreaof singleSp

Totalarea= !57 x 1.9 x .9 =267.L8m2

SP Output (Wot*) = ef ficiency x areox Solu Inadiuue

SP Outpnt (Watts) = 0.175 + 267.18 * 640

P(Wat*) =29.92kW

This is how PV power is calculatcd for each class of oonsumcrc. As per survc,ys in Pakistan,

generally, thc lower class consumes low powa throughout the month consurnes about 150

unidmmth. Middle+lass without AC consumes 250 rmit/month. Upper-middle-class with a l-

105



ton AC consumes 500 units/month and higha-class with 2 tons AC co,nsum,es 750 gnitr/mo,nth

[77]. Considcrfury this frct and the general tncods of mixed commgnities, rmits are calculatod for

each class of the community. 250 unin/month are assumed for lower class, 400 gnits/month for

middle-class, 800 units/month forupper-middle and 1250 units/month forhigher-class.

Eac,h commrmity has its ovm locally genemated PV in various houses. It is assumed that lower class

fus2o/o of PV installation Middle'classha-" 4o/o,upper-middle-class has 6o/oand high€r-class has

8% ofPV installation.

An installd PV of 15 kw is considered where, the values corresponding to each class are 300w,

I.3kW, 1.5kW, alrd 3.2 kW, respectively.

For the purpose of peak shaviqg, a220y,600 Ah BES is chosen for the strrdy.

7.2. Stage 1- D5mamic IIEMs Based Contlul Scheme

The proposed DCHEMS algorithm presented in chapter 4 is used in stage I optimization

All the def ice usage pattcrns and clusteri4g parameters are the same. Therefore, the content is not

discltssd again in this section The load demand profiles for summ,ers aad winteis are processed

through DCHEI\{S atgorithm. PAR is reduced by the application of DCIIEMS. The peak roduction

of load profiles processed by stage I is shown in Fig. 7-2.T\eacttral load dmand based on.ser

preferences and the peak rcfircod load profiles are illustrated as g:raphs. It can be seen that the peak

is ro&rced ftom 33.8917 kW to 30.4p,17 kw in wint€rc, and from this 35.g417 kw to 30.1500 kw

in the sunrmer load profile as shounr in Fig. 7-2 (a) arld7-2 (b), rcspectively. The improvemmt in

peak roduction leads b PPS inc,rease. Since the time diffqence among the peals is increase4

resultaatln BES gets sufficient timc to recharge itself before the next peak arises. Once the load
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scheduliry and optinal time slot assignmmt to all the CDs are dong the r€sultatrt optimized load

demand is passed on to stage 2.

Fig.1' 2 DSmamic-IIEMS based peak reduction of load dcmand for a) Winters Day condition
with less PV b) S"mmers Day condition with more pV

7.3. Stage 2 - Optimal Peak Shaving Contnol Scheme

The oulput of stage I after the pealc reduction of the sunmer and winter load profiles is

Ekcn as iryut to the second stage of optimal peak shaving conhol scheme. lhe overall block

diagam of stage I aod stage 2 is shown in Fig. 74.1he optimal peak shaving con&ol schme is

discussed in detail in chapter 6, therefore, only the additionVcbanges att discrused here. One

additional mode with trvo set of rules is also incorporated to the prwioru regime, so that furttrer

better utilization of available resoupes can be performed. It is termed as charging mode 3 and it is

the time when the load dcmand is within fte range of the dcmand limit and thcre is no availability

of PV source ie., P1(t) < Par&& PwG) = 0. Thc additional mode deirorcd as CM3 is reflected in

Fig.7-3.
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Charging mode 3 consisE of two rules, ttrmed as rule 9 and rule 10, disorssod as follows

1. Chughg node 3 (CHM3)

ktle 9: If 1 < rs < 10 and a considsable peak in load arises before the pv power appearq i.e.,

h,G) > Pa1. Thm the BES takes charge firom the utility grid with the amount Cn(por_ h.G)).

This enables BEs b cater the arisiqg peak before the pv powo appearc.

Rule 10: If 7S > 130 &&SoC(t) 3 Soe BES takes chnrge frrom the utilrty grid with the amount

Cg(Pil - Pr,(t) so that SoCl = SoCl for flexible day to day menagernent.
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7.4. Simulation Resulft

This chapter prcIxrses a dpamic HEIvIS-based optimal peak shaving conhol strlatcgy. A

small community consisting of 40 houses, with l0 houses in each class is considered. To

demonsEate the application of the proposed technique for any grid+onnected PV system usiag

BES, the ee;hiqrc has been tesbd on the sfirdied system for various PV powu load profiles. Four

cases are presented with a combination of morc and less PV for both winter and summers load

profiles. For less PV, the perce,ntage of penefiation is furtlrer reduced with none considered firom

the lower aod middle class. The PV penetnation pqc€ntages for upper-middle and higher classes

are also reduced to 3o/o each. Variors modes and rules can be observed in different cases. The
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prcposed HEI\{S preprocessing stage improves on PPS which is presented separately for each case.

The qualitative and quantiative assessrneot in comparison to a reference sche,me is also presentod

in tabular form.

Table 7- 2 Op|jmal inputs 6f managetn€,nt algorithm with applicatio,n b four cases [57]
Cere 1 Crrel Wlthout- Ctre2 Ctlrc2 Crre3 Cere3 Cere4.Input

Peremeter

Poa-m (kW)

EoDr (kwh)

Eow-(kuh)

Eor-e GWh)

Cog

PIh-r- Gw)

Prfr G\t)

156.3791

87.Etzt

60.57s6

0.4

NA

2.?Atz

56.3359

59.2679

NA

NA

NA

2.2614

127.4254

48.5651

86.979s

0.1@2

NA

NA

t22.5867

49.1151

76.4s79

0.t102

NA

NA

127.03s7

94.6973

37.4251

0.3

NA

2..f009

58.948E

59.01l0

NA

NA

NA

2.3919

t07.5714

37.7882

7s.7ill

0.1269

NA

NA

Crre {
lYlthout-
mMs

26.5314

t00..t374

35.2805

101.2372

0.1789

NA

NA

Dynrndc- mMs DSnrmlc- rylthout- D5nrenrlc- rtithout- Dynrmic-EEMS EEMS EEMS EEMS EEMS EEMS

19.9321 22.6328 23.545 U.54t5 20.33t7 25.0750 23.73t4

The ideal inputs nocessary for performing the control algorithm for these cases are in the

socond stage and are listed in Table 7.2.T\ebest fitness value is acquired formultiple rus of the

PSO algoritbm for the case of winter load profile with more PV availability. The minim,m valre

among these best fitness valtrcs (considcriag all runs), i.e., 19.33 kWlu is the o,ptimal peak ene.g,r

dram from the utility grid. For these cases, the acquired results rsrng the proposed technique are

discussdas folloun.

For these sases, the acquired resuls rar4g the prcposed technique are discussed as follows.
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Case 1: DSmamio-EEMS Scherme; I.ord hofile for Winter with Eigh Availability of pV

Energr

In this scenario, the load demand profile forwinrcr that has a higher availability ofpV

eflrsry during a day is taken into accotmt, as showa in Fig. 7-5 (a).The estimations corresponding

b Poa-nt, Eob-c, Erw-r, Eoo-r, Cooalrd Pog arc 19.9321kW, 156.3291 k$/lt g7.gl2l kWh,

60j756 kWb 0.4 aadr2.2432, respectively. The PV clrerry available to charge the BES exceeds

the energy rcquircd forcharging thc BES (e-_c> Eo+).

120

Tme Slots

Tiq. Z- 5 D56amic-HEIvIS Case-I. (a) Profiles for PV power supply and load consumption O)
Schedules of BES chargo/discharge. (c) BES state of charge. (d) utility grid power

Therefore, Eos-r, Cos, arld. Pfr-mrc not applicable (NA) in this case. But the grid power

is only used at the beginning for charging BES with off-peak power to handle any arisurg peak
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before PV appears. Also, at the end of the day, the grid power is used to rcstore BES SoC to 50o/o

for day-today managenrent. Hence, the values of Eon-r, Coo te also shown in Table 7.2. As p6r

Fig. 7-5 for the dCIermined Pod-tm,the DCM is during t= 5-25,34,36and 95-l l8 TS where there

is peak aod PV is not sufficient b suppo4 CMI is duriqg t=39,41-58 TS. There is no CM2 since

BES has sufficient clrarge during the TSs efhigh pV. CM3 is during Fl-sand Fl3l_140 TS. The

grid charges BES with off-peak power during Fl-4 aod 131-138 TS. The rEsulhnt BES optimal

cnarginydischarghg schedules for these modes are illusfiated in Fig. 7-5O). The SoC for BES

scheduling is depictod in Fig. 7-5(c). Fig. 7-5 (c) illushates that soci = socl = S}o/o,which is

desirable tro ensure Aex,ibility in day-to-day managcm€nt. Fig. 7-5(d) reflects tlre utility grid

dcmard. The illustnation suggests that the utility grid demand is capped fot po4_1^=19.9321 kw.

The feed-in power is resricted b 2.Zl32kW.

cece 2: Dpemic.EEllfiS Scheme; Load PnofiIe for TYlnter with Low Aveilebi[ty of pv

Energl

In this situation, as showtr in Frg. 7{ (a), the load demand profile for winter is considered

wherein the availability of PV encrgy across a day is less. The estirnatod values correspondilg

b Pod'tm, Eob-e, Eopu-s, Eos-c, ard, Cos arc 23.5445 kW, 127 .4254 k\t4t 48.5651 k1t4t 86.9795

kltflL and 0.1602. The amouat of available PV energr for chargiqg thc BES is less than the amout

of merry nedd to charge the BES. Furthennore, tho total energy available frrom pV and the utility

grid exceeds the enqgy needed to charge the BES i.e.,(Epo-e< E6-q,&&Es-c* Epo..c> E6-*). As

a result, the Eos-e, Cos, aad, Pli-mare pot applicable (NA) in the studiod sccnario, ,, ,lon n io

Table 7.2. According to FA. 74 fot the estimaed Eob-e, the DCM oocult duriqg t = 6-14,76-

77,79,80, 84-87,89'114 TS, and CMI is during t = 16-65, I16, 118-139 TS. CIVI2 is during t = Zg,
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8l-83 and 88 TS. Thc battery's optimal charge/discharge schedules for the diff€rent modes arc

depictod in Fig. 7-6 (b). Fig. 7{ (c) depicb the soc for the gmerated BES schedrles. Fig. 7a @)

illrufiates tlrat soc;= socl = 50%, which is appropriate to ensure flexibility inthe day-today

rnnnegqneot.Fi$ T-6 (d) de,picts the resultant electical grid d€mand. According to the illustration,

the utility Srid d@and is capped b! Poa-m at23.545 kW as indicated in Frg. 7-6 (d).And feed-

inpower is not available.
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Care 3: Dynemic.EEMS Scheme; Ioed Profile for Summer with Etgh Aveilebtltty of PY

Energr

In this sinratiotr, as shown in Fig.7-7 (a), thc load demand profiIe for summ,cr is consids€d

wherein thc availability of PV cnergy across a day is higher.

1m
Tinp Slots

Fig. 7- 7 D5mamic-HEIvIS Case-3. (a) Prrofiles for PV power supply and load consumption @)
Schedulcs ofBES charge/discharge. (c) BES state of charge. (d) Utility grid power

The estimated nalues b Pod-tm, Eob-c, Eopo-s, Eog-r, Cog arrd Pofl ate 20.3317

kI'l, 127.0357 kWh, 94.6973 kWh' 37.4251 k\[41, 0.3 and 2.ffi9. The PV €ocrgy anailable to

charge the BES exceeds the e,nergy required for charging the BES (Eev-? Eo-).Threfore, Eos-r,

Cos, ard, Pli-.mrc not applicable (NA) in this case. But the grid power is only used in the

beginniag for charging BES with off-peak power to handle any arisrng peak beforc PV appears.
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Also, at the end of the day, the grid power is used b restore BES SoC to 50% for daily managem€nt.

Hence, Eos-caDrgCon are also shown in Table 7.2. According to Fig. 7-7 fortheestimated pod-tm,

theDCMoocursdurhgt=7-15,32-37,96, 100-102,lC/.-lz4TSwherethereispeakandpVisnot

sufficicnt to supporT CMI is during t= 3942 ad 4-59 TS. There is no Cn/f,I since BES has

sufficient charge duri4g the TSs sf high PV. CM3 is during Fl3l-140. The battery's optimal

charge/disclurge schedules for the differmtmodes are depictod in Fig. 7-7 (b).Fig.7-l (c) depicts

the SoC for the ganemated battery sclredules. Fig.7-7 (c) illushates that SoCl = SoCl = S1o/o,which

is appropriate b ensure flexibility in the day-bday menagement .Fig.7-7 (d) depicts the rezultant

electical grid demand. According to the illushation, the utility grid demand is cappod by poa_m

ar20.3317 klV as indicated in Fig. 7-7(d). AIso, the feed-in power is restricted b pofr at2.4OOg

kw.

Care 4: IlynamleHEllfiS Scheme; Ioad ProfiIe for Summer with Inw Avrihbility of pV

Energl

In this sinntion, the load dcmad profile for summsrs with decreased availability of pV

€ncrEy is takeir into account, as shown in Fig. 7-8(a). Tlre values arc23.7314kwh, 107.5214 kuIlt

37.7882 kWh" 75.7643 k$/h conesponding b poa_nr, Eob_c, Eopo_c, Eon_r, d, Cos are and

0.1269, respectively. The amount of PV cn€rg5r available b charge the battery is less than the

amount of meqgy nooessary to charge the battcry. Furthermore, the total ene[gg/ anailable frrom pV

and the utility grid exceeds the ene4ry requirod b charge the battery ( Epv-qS E6-e WEs_c * Epo_c

> Er-c). As a resul! as shown in Table 7.2, W-nrrrrd non are not relerrant in this sc€Nurio.

According to Fig. 7-8 forthe estimated Pod-tm,the DCM occum firing t = 10, 78-El, 87-l19 TS,

ad cMl is drring t = 2-8, 10, 15-34, 3742,82-gs, gg, lzo-lu. TS. The battery's ideal
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chargddischarge schodules for various modes are presented in Fig. 7-S (b). Fig. 7-8 depicb the SoC

for nrch battery schedules (c). Fig. 7-8 (c) ilhsfiates that SoCl = SoCl = 50o/o, that is desirable for

day-to{ay management flexibility. Fig. 7-8 depicts the resulting elecric grid d€mand (d). this

means that the utility grid dcmand is confined b Poa-rm or 23.7314 kW. Thc feed-in power is not

available.
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Fig. 7- 8 D5mamic-HEIvIS Case-4. (a) Prrofites for PV power supply aod load consumption (b)
Schedules of BES charge/discharge. (c) BES state of charge. (d) Utility grid power
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Cece 1: Non-D5mamlc-EEMS Setrene; Ioed Proflle for Winter with Eigh Availability of pV

Energl

In this scenario, the load de,mand profile for winter that has t high6p availability of pv

power during a day is taken inb account as illtutatod in Fig. 7-9(a). The estimations corresponding

b Pod-tm, Eob-c, Eopo-q,dPo1 arc22.6328kw, 56.3359 kvyb 5g.267gkwbr2.26l4 kw. The

amount of available PV ene4gy for charging the BES exceeds the energSr required for charging the

BES (Eop"- c> Eoo-e). Therefore, the Eon-r, Cos, d, Pli-mrcnot applicable (NA) for this sas*

as mentioned nTable 7 .2.
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According to Flg. 7-9 for the estimated Pod-tm,the DCM is during t = 107-119 aod 122 TS,

CMI occtttrs during t= 3l-38 and 4t-54 TS. Fig. 7-9 (b) shows the BES's optimal charge/discharge

schedules for the differmt modes. Fig. 7-9 (c) depicts the SoC for the resulting BES schedules. Fig.

7'9 (c) illttstrates that SoCr = SoCl = SU/o, which is desirable to emsur€ flexibility in day-today

,nanag€mqrt. Fig. 7-9 (d) depicts the conespondi4g utility grid demand. The

illtutration srggests that the utility grid d€mand is capped for Psa_1^ 122.6328 kW. The feed-in

power is resticGd tD 2.2614 kW.

Care 2: Non-Ilynrmic.EEMS Se.heme; I,oad Profile for lYlnter with Low Avellabitity of pV

Energl

This sittration, as show:r in Fig. 7-10(a), considers the load d€mand profile for winter

which has a low availabitity of PV €n€r5/ through the duration of a day. The values coresponding

b Poa-tm,Eob-q,Eopo-q,Eon-r,ail,Cosue24.54l5kW,122.5867kWh,4g.llilkWb"76.4579

kWh aod 0.1102. The amount of available PV aergl available for chargi4g the BES is less than

the aoount of enerry nedd b cbarge thc BES. Furthermore, the total elrerry available from pV

and the utility grid cxceeds the mqgr nedd to charge the BES (Epv-qsE6-q,&&Eg-e * Epo-e >

Eo-). As a result, in this scenario, Pli-maulrd, Pofl are not applicable (NA), as shoum in Table

7.2. Accotdittg to Fig. 7-10 for the estimated Eob-e,the DCM occurc during t= 4246,57-76,106-

I 18 TS, aod CMI is duriqg t= 2-39,47,77-105,12G'138 TS. There is no CMI in this case. lhe

batteryrs optimal charge/disclrarge gchedules for the mentioned modes are depicbd in Fig. 7-10 (b).

The battery appears to be charged by both the utility grrd and PV source. Fig. 7-10 (c) depicts the

soC for the estimated batEy schedules. Fig. 7-10 (c) illushates that socl = soCl = S}yo,which is

appropriate for flexibility in daily man4gement This means that the utility grid dcmand is limitod



b Poa-tm=24.5415 kW as indicated in Fig. 7-10 (d) and the feed-in power is not available for the

grid.
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Fig.7- l0 Without-HENdS Case-2. (a) Profiles for PV power supply and load consumption (b)
Schedules of BES chargc,/discnarge. (c) BES statc of charge. (d) Utility grid power

Cere 3: Non-D5memic-ffil1fiS Se.heme; Loed Pnof,le for Summer wlth Hlg[ Arnilebility of

PVEnergr

In this siuration, as shoum in Fig. 7-ll (a), the load demand profilefor Summer is

considered wherein the availability of PV eoqry acrcss a day is higher. The estimated values

corresponding b Pod-tm,Eob-c,Eopo-r,Eos-r, aulrdPofl are25.0750 kW,58.9488 kwb 59.0110

kWh,37.O5l kV[q and2.39l9,rcspectively. The PV ene45r available to clrarge the BES excceds
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the e,nerg5r rcquired for charging the BEs (Eopu-e> Eoo-). Therefore, Eos-r, cos, frd Pli-m*

not applicable (NA) in this casc. But the grid power is only used in the beginning for charging BES

with offpeakpower to handle any arisiqg peak before PV appears. Also, at the end of the day, the

grid power is usd to restore BES SoC tD 50% for daily menag€Nnqil. As a rcsult, the Eoo_r, Con,

aad Pn-m are not applicable (NA) in the shrdied scenario, as shoum in Table 7.2. As shorm in

Fig. 7-ll, forthe estimatod Pod,-tm,the DCM occun duriqg t = 10-13, lo-37,96, 9g,lo0-llz Ts

where there is peak ard PV is not sufficient to snpport, CMI is during t= 3842 and 4+56 TS.

Thore is no mode 2 charging since BES has sufficielrt charge durhg the TSs of high pV.
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Eig.7- I I Without-HEIvI! C*qf . (a) Prrofiles for PV power supply ad load consumption (b)
Schedule's of BES charge/discharge. (c) BES state of charge. (d) Utility grid power
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Thc Std charges BES with off-peak power dtring F13l-139. Th€ battery's optimal

cnargUdscnargc schedules for the diffcrmtmodes are depicted in Fig. 7-ll (b). SoC for the

generated battery schedules is depicted in Fig. 7-l I (c). Fig. 7-l I (c) illustrates that SoCl - SoCl =

50%, which is app,ropriate to ensure flexibility in the day-to{aymanagement Fig. 7-l l (d) depicts

theresulcnt elmtical griddsnand. According to the illusfiation, theutilitygriddemandis capped

by Poa-tm=25.0750 kw. Also, the feed-in power is restricted b Poftat 2.3919 kw.

Cace 4: Non-I)5nramleEEMS Scheme; Iaed Profite for Summer with Low Avallsbillty of pV

Energl

In this situation, tre load d€mand profile for summers with decreased availability of PV

enerry is considae( as illustrated in Frg. 7-12(a). The values are26.5314 k\t4t 100.1374 kl\[t

35.2805 kU/lt 101.2372 kV/h ad 0.1789 correspondiag b pod-tm, Eob-c, Espo_st Ers_r,rrd, Cos

respectively. The amount of anailable PV eirergy for charging the battery is less than the amormt of

e,ner$/ necessary to charge the battery. Furthermorg the total encryy available friom PV and the

utilitygridexceeds the eneqgyrequiredto charge the loprttery (Epe-cSEo-c&&Es-c+ Epr-c > Eu-e).

As a result as shoum in Table 7 .2, Pn4n arrd. Pofl are not relorant in this scenario. According b

Eig.7-12 for the estimarcd Pod-tm, the DCM occun during t = 36, 9l-l15 TS, and CMI occurs

duri4g t = 2-35,3748 TS. DCM occrurs during F90 only due to less PV. The batter/s ideal

charge/discharge schedules for varios modcs are presented in Fig. 7-12. (b). SoC for the battery

schedules are depicted in Fig. 7-12 (c). Fig. 7-12(c) illustnates that 5oC1 = SoCl = 50o/o, that is

desirable for day-to{ay menagertre11t floribility. Ftg.7-12 depicts the resulting electic grid demand

(d). This means tbat the utility glid demand is co,nfined b Poa-tm=26.5314 kW as indicated in Fig.

7-12(d). And the feed-in power is not available.
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Fig.l- 12 Without-HEltdS Case.4. (a) Prrofiles for PV power zupply and load consumption. @)

Schedules of BEII charge/disc,harge. (c) BES state of charge. (d) Utility gridpower

A discussion of the comparative analysis for the prcposd scheme is prcsented as follows.

7 .4.1. Quantitative Comparison

As the dynamic clustered commrmity-based idea in home energy management system is

novel, the qMem as well as the ratings choseninthe srggested literature are not directly comparable

to any existing syst€m- But as the shrdy is inspird by the systein chosen in [57] by Rampelli et. al.,

the proposed system is compared quantitatively to it. Table 7-3 shows the quantitrtive comparison

betrveen PUGP and PPS. The method zuggesEd by Rampelli et al [57] is applied b the MG
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community structut€ to see the comparison with our proposed method. Table 7.3 depicts the

improvernents in each casg where the nondynamic method's PUGP is limited to 26.5314 kW,

22.6328kW,U.5415 kW, and 25.0750 kW for cases l-4, respectively. For Cases l*4, PUGP is

resticted to 19.9321kw,23.545 kw, 20.3317 kw,nd23.73l4kw, respectively, in the suggested

method. This means that the proposed approach has a lowq peak utility grid connrmption than [57]

in all cascs. The improvement in PPS of proposed method is because of the incorporation of

DHEIVIS basd stage I that leads to rcduction of load profile PA& initially. Moreover, the

modification of additional CHIIII in the proposed scheme also utilizes available distibuted Glrergy

rcsources effectively. Althougb, the refere, ce case is not exactly comparable with our proposod

sfratcgy due to the considemation of differeirt data sets. But we have performed the simulations to

comparc the results to see if there arc any improvements. The majority of the cases e.g., Case2,

Case 3 and Case 4 shows an improveme,nt of 6.650/o,14.76% and.5.27o/o in PPS as comparod to

reference approach. Case I shows an overall PPS of 43.55% which is good e,oough for a community

bases HEMS. But it is l2.l l% less than the refqence Echnique. The reason for this lag is the timing

of the peak load appearance. For the refemence case study, the peak load ap,pears in the PV available

houn' therefore it is easier b direcfly shave off the peak with PV. Wlrereas, in the prcposd

sce,nario, the load peals for all the cases ar€ away frrom the PV availability time slots. The ratio of

PV power taken for proposed method is dso lesser as compared to the refercnce techniqtre. This is

because only a little pcrc€ntage of PV penetratim is considered as per the real sceoario h Pakisho.

Desplte of the differaces, the improvements in the proposed scheme validates its applicability for

community-based MG netrrorks. Higherpercmtage ofPV and Bf,$ sizing can improve the scenario

firther.
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Table 7- 3 Quantiative Comparison of Suggested Toclrnique wittr the Previors Work

Schemer

Refqucc

llrlthout Dynemlc-
HEMS

rl{th Dynemlc-HEMS

PUGP(kW)

fuc2 CoscS

2.437 2.853

24.s4t5 25.Vt50

fuscl Cuc I
2.852 55.66

26.5314 33.29%

PPS(7.)

Cw2 e,e3 C.4sG1

37.18 28.67 28.7

27.59% 30.230/o 26.18%

30.53% 43.41% 33.9't%

C-GC I

t.?2

22.6328

t9.t32t 23.54/,5 20.3317 23.7714 43.55%

7 .4.2. Qualitative Comparison

Table 7.4 shows a qualitative comparison of the prcposed method with prwious wo*. The

d€maod and feed-in restrictions, as well as the dynamic prc-processiqg step, are not taken into

aocoutrt in the available lirerature. Howwer, the proposed solution talces inb accormt both d€mand

and fed-in constrainB, aswell as adynamic clustering-basedpre-processing HEI\,IS scheme, while

maintaining the systemrs floribility on a day-to{ay bosis.

Table 7- 4 Qualitative comparison of suggestod technique with the prwious work

Paramctq Rcfcrcnccs

[s8-60] t6u t62l

Dynamic Not Not Not
Optimization considercd considqrd considcrod

D€matrd Limit Fixcd Fixed Not

Fccd in limit Not Not

considcrcd

Dynamic
concidcred considcrcd

Day-to-day Not Flcxible Not
meaagqnGflt considcrcd considcncd

Proposcd

t63l t64l

Not Not Dynamic
conridcrcd considcrcd

Dynamic Dynamic Dynamic

Not D56amic Dynamic
consider€d

Not Flqible Flcxiblc
considered
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Furthermorg de,mand and fed-in restictions are assurred to be dynamic. It means that the

demand and fed-in restrictions change d€eending on the PV power and load demand forecasts

forhe day.

7.5. Summary

This chapter zuggests a dynamic clusterod community-based HEMS. It dso helps detennine

the optimized dynamic feed-in and d€mand limits for a community MG with integration of

distibuted €n€ryy souroes such as PV source using a battery. The clrapterpraseirts an optimal rule-

basd peak shaving management method. The algoritbm limits the utility grid power within the

estimatod feed-in and demand limitations. The suggested contol algorithm is put to test for a variety

of PV power aod dcmand profile scenarios. The collected data show that the feed-in powers and

utility gdd d@aod are consfiainod to the da/s feed-in and d€mand limitations in all scenarios.

Furthermorg for flexible and daily managemenf, the SoC at the end of the day is kept to be the

same as the beginniag of the day. The srggested contul algorithm is comparod to prwious work

both qualitatively aod numerically. This srggests that the zuggested contnol algorithm outperforms

priorworlc in terms ofpercentage peak shaving.
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Chapter 8

Conclusion and Future Directions

E.l. Summary of simulation results

This study presents a novel dynamic dwice clustcring scherne in a community home en61gy

managcm€nt system for improved stability and resilieirry of MGs. The strdy pr€s€Nrts atr

anange' ent of DR implementation that enables resourse sharing in MGs. The proposed system

desigtrd a novel two-phase HEMS optimization shategy, which can be sumnarizcd as follows:

l. Phase l: Inad Scheduling

This pluse dealt with the application ofa dynamic clustemod community home enerry menag€rncNrt

syst€m (DHEII{S) scheme to the residential community. It focused onresideirtialpowuscheduli'g

targeting electricity cost roduction for consumss and load profile PAR curtailmmt for a relatively

large consrmcr population with non-homog€ncors loads. Demonstrated resulb validate the

improvcrnents in PAR and electicity cost for the prcposed technique. The rwtrlts have been

comparcd wrth Azi,z et. al. Ther€ ig an imprcvement of 2lo/o in PAR. The electicity cost is also

improved by 4o/o with a supplementary beirefit of smooth power consumption pattan 19%

improvement is achiwed in variance to meao ratio.

2. Phase 2: Peak Shaving

The second phase prcposed a dynamic rule-based peak shaving manag€trlent method for the

photovoltaic (PV) systems and batt€ry eneryy storage (BES) systeins tbat are connected to the

gnd. In this phase, the research hae been extcnded to the incorporation of reirenrable energy



rEsources zuch as PV and BES systems. Dpamic HEMS based optimal peak shaving algorithm is

implementod for effective utilization of available power to generate balance in demand and supply.

An improvemeirt ofnearly ls%isachiwed forpeak shaving in different cases.

Tbe detailed description of the prcposd shategy is presated in variow chrytus of the

dissertation. ctapter 3 presents the concept ofhome area network in energ:r menagement systems.

Chapter4 presents the proposod dynarric chutered commrmity home ene4ggr mrnagem€Nrt s]rst€m

(DCHETUS).

Chapter 5 preseirts the idea of coordinated distibuted €nergy resource managernent in an

MG. The presmted peak load shaving coordination scheme highlights the shortcomings of the

rnanagemeirt syst€m. The requirement of dynamic feed-in and demand limitr for utility grid pow€r

is mphasizd with the help of simulation resul$. It is also eoncluded that for reliable aod stable

maosScment of E[dS, SoC of BES shorld be monitorcd and regutated for day-today menegement-

Ctapt€r 6 presents an optimizod rule-based demandpeak shaving contol algorithm gsing

dpamic fed-in and d€mand limitations. The oprating modes of BES along with a set of defined

rules for each mode are presented. The method of estimation of optimal inputs for the rule-based

d€mard peak shaving confiol is discussed in detail. Results of case studies are discussed in detail.

The issue of using monotonous load profiles that limits testing of a few defined

charging/disc,harging rules is hi ghtigfu6d.

Ctapto 7 presenE the proposed dpamic HEX\ds-based optimal peah shaving conhol in an

MG systenr. Differeirt loadp,rofiles forwinters and summers are incorporated along with distinct

ruerprefereirces entertained against the contollable dwices. The significance of impnoveinent of



pcrcmtage peak shaving by involviag a pr€-proccssing stage to the nrle-based pcak shavhg

algorithm is also highlighted with the help of r€sults. As mentioned previously, thoroug[

coryarison with other techniques is not feasible due to incompatible simulation paraureters.

Howwer, r€sulE are comparod with Rampelli et al. [54. Th€re is an improvemeirt of almost 14%

PPS in diffqEnt cases which validates the applicability of the proposed scheme for community-

basedMGs.

8.2. Future Dinections

Basod on the limitations id€ntifid itrthis dissatatioq theprese,ntcd study canbe extended

into some more directions in the futrrc, whie,h are describod as follows.

l. Abalance in elecficity gc,nuationand consumption canbe targeted bV applyrng home elreqg5l

menagem€nt systems while incorponating multi-objective version of newly inhoduc€d

metaheuristic computation techniqtres. These include techniques of grey wolf and crow searc,h

algorithm (GIVCSA), bald eagle search opimization algorithm (BESOA) and etc. The

application of metabsuristic versions of automatization techniques can lead to bett€r optimal

solutions of load schduliog for residential @nsumers. Further improvments in daily

electricity cost reduction, peak to avemge ratio roduction and increase in consumer comfort

canbc'achiwed.

2. HEI\{S can be sMied with smart homes and smart appliances in the context of COMD-I9

pande,mic. Smart home manegEnent syste,m with rencwable €,nffry disEibut€d rGsounees can

play an imporbnt role for reliability and subility enhance,ment of microgrids by managing



4.

the irmensely increasod residential consumerload during the pandemic. Various case strdies

presented in the proposed sEategy can be reviewed in the COVID-I9 framerrork for various

classes of consumers.

The deinand aod feed in limis determined by our proposed dynamic-HEl\ds-bascd p€ak

shaving algorithm is dynamic for various days b,ut fxed for a single day. It can be made

firthq dynamic by calculating the dcmand limit for each hour or quarterly over a day. This

can enhance the reliability of thc power gnd in case of unexpected peak loads e.g., due b

br€aki4g news or utratrnouncod president spech broadcasted on telwisio& etc.

Curreitl5 community based large scale imple,rrentation of IIEMS is an active area ofresearch

aowadays. Consequeirtly, we implanted the load scheduling algoritbm that we oamed as

DCCHEI\{S for a large population of 1000 houses and a duration of 90 days. But the Dynamic-

HEMS based peak shaving algorithm that we proposed is performed for a smallq cornmunity

of 40 horses for 24 hours. Like DCHEIvIS, it can also be tested for a bigger population of

1000 houses for 90 days.

Microgrid can consist of DC, AC, or hybrid loads as well as battcry sbrage systems. The

proposed idea of HEItdS optimizntion can be applied on a university campus load t1pe. Such

campus basd microgrids can have loads basod on distibuted generation, clrergy storage as

well as electric vehicles. Eloctric vehicles can be utilizod for the vehicle to gfid and grid to

vehicle power transfer for better optimization of powu utilization
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