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Preface

Among the diverse class of the self-similar boundary-layer flows, the flows due to
stretching/shrinking surfaces have become more familiar on account of their vast
practical applications that are frequently experienced in various industrial and
engineering arenas. The flow phenomenon, caused by the motion of shrinking continuous
surfaces has provided a great deal of work to the researchers to explore its various hidden
aspects, particularly the existence of non-unique solution. A lot of attempts have been
materialized to figure out the multiple solutions under different situations and impressive
conclusions have been drawn regarding the physical richness of these flows. A thorough
analysis of such kind of findings reveals that “non-uniqueness of solution”; “physical
richness”; and “more non-linear phenomenon” are unanimously accepted integral
features of the shrinking surface flows. Moreover, some baseless facts such as the non-
existence of solution; and necessity of sufficient wall suction for the existence of solution
have also been attributed to these flows. Unfortunately, the above mentioned facts are not
particular to a group of studies rather they have been established as widely admitted
truths about the shrinking surface flows. This can immediately be verified from the recent
literature on this topic. On the other hand the stretching surface flows are treated as an
infertile topic with regard to the above mentioned “important” facts. However, the reality
is quite opposite because the existing facts about the shrinking surface flows have not
been drawn due to a correct analysis. Infact, it is the retarded nature of the flow that
provides the opportunity of the appearance of non-unique solution. Accidently, the first
ever study on the shrinking surface flows, was conducted by considering a retarded

shrinking wall velocity. Consequently, the absence of any solution and the occurrence of



non-unique solution due to the provision of sufficient wall suction was an ultimate. In
actual, this was not a specialty or uniqueness of the shrinking surface flows, rather an
already observed and understood fact that a retarded boundary-layer is vulnerable of the
occurrence c;f non-unique solution. But, unfortunately, the findings of this first study
were assumed to be valid to all shrinking surface flows. Interestingly, the involved
authors always considered the retarded shrinking wall velocities and the accelerated
stretching wall velocities in their studies because of which they ever obtained a non-
unique solution for the shrinking surfaces while a unique solution for the stretching
surfaces. Unfortunately, the stretching/shrinking surface flows have rarely been
investigated in complete with regard to their accelerated/decelerated nature. On behalf of
the authentic outcomes of current study, it is humbly argued that the multiplicity is not
confined to the family of shrinking surface flows only but the similar kind of outcomes
can also be obtained for the stretching surface flows, equally.

The present thesis is presented to elaborate the correct and true understanding of
the multiple/dual nature of solution that has been observed during the analysis of self-
similar boundary-layer flows caused by the stretching/shrinking surfaces. In the presence
of a bulk of confusing literature regarding the existence of non-unique solution, the
currents efforts to present the real causes behind the existence of non-unique solution is
like a hard neck to crack. Chapter 1 covers the historical developments of the subject,
relevant literature, and essential description of the basic terminology for the better
understanding of the readers. Since, now it has become a crystal clear reality that the
duality of solution can be sighted for stretching continuous surfaces too and the non-

uniqueness of solution cannot be attributed to shrinking surfaces, only. In this context
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Chapter 2 is devoted to present the non-uniqueness of solution steady/unsteady viscous
flow caused by a flat stretching sheet. Valuable outcomes have been reported regarding
the presence of non-unique solution. The existence of dual solutions for steady as well as
| for unsteady situations is shown to happen in the retarded flow situations while in the
accelerated flow the solution is observed to be unique. Indeed, the outcomes reported in
Chapter 2 have countered the admitted myths regarding the existence of non-unique
solutions. The contents of this chapter are under consideration for publication. It is a
reality that the shrinking surface flows have enjoyed a unique popularity due to the
existence of non-uniqueness of solution, though erroneously, linked to them. The reality
is that, in this case too, the existence of non-unique solution is not associated to the
shrinking nature of the wall velocity; instead the duality of solution in a shrinking surface
flow is observed only when the decelerated shrinking wall velocity is considered.
Therefore, Chapter 3 of this dissertation aims to present the true facts regarding the
occurrence of non-unique solution in steady/unsteady shrinking sheet flow. It is explained
that the duality of solution in both, the steady and unsteady, flow situations is strictly
associated with the retarded nature of the shrinking wall velocity. The contents presented
in this chapter have been published in International Journal of Nonlinear Sciences and
Numerical Simulation, in 2020. In previous two chapters i.e., Ch. 2 and Ch. 3 the
planner cases of stretching/shrinking surfaces have been considered. The axisymmetric
flow situations due to the stretching/shrinking surfaces have been considered in next four
Chapters.

Particular to the axisymmetric case of stretching/shrinking cylinder important
results have been reported in the next couple of chapters. Since, the transverse curvature
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is an additional factor attached with the axisymmetric surfaces of cylindrical shape. It’s
important and interesting role regarding the existence of duality of solution, not only in
the shrinking cylinder case but also in the stretching cylinder case, has been explored in
detail which are novel findings of its own nature. For this purpose, steady/unsteady flow
situations due to stretching cylinder are investigated for the possibility of multiple
solutions in Chapter 4. The steady flow due to a stretching cylinder is examined by
considering the power-law form of stretching wall velocity and the dual solutions are
captured not only for the suction/injection effects but also in the absence of any of these.
Such types of findings are actually due to the presence of surface transverse curvature
and are a consequence of the supportive role of transverse curvature in the retarded flow
situations. The flow situation induced by the unsteady stretching cylinder is studied for a
linearly varying wall velocity, wherein the similar type of results, as in the case of steady
stretching cylinder, are noticed for a retarded flow situation. The results figured out for
unsteady stretching cylinder have been published in Journal of Applied Mechanics and
Technical Physics, in 2020, whereas the outcomes reported for steady case of stretching
cylinder are in the review process for possible publication. Steady and unsteady cases of
shrinking cylinder flow have also been considered to analyze the duality of solution. In
this case too, a power-law form (of shrinking wall velocity) has been considered in the
steady case. The shrinking wall velocity in the unsteady case has been considered of
linear nature. It is figured out that the non-uniqueness of solution is observed for the
retarded wall velocity whereas a unique solution is observed for the accelerated case of
shrinking cylinder. The results of unsteady shrinking cylinder flow have been published
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in European Journal of Mechanics / B Fluids, in 2020, while the outcomes regarding
steady shrinking cylinder flow are under review for possible publication.

Another interesting axisymmetric flow situation occurs on a flat circular disk of
infinite radius. In this regard, the existing literature is mostly comprised of the study of
rotating disk boundary-layer whereas the non-rotating features have hardly been
investigated and the existence of dual solutions is rarely reported. Chapter 6 consists of
the analysis of steady/unsteady flow phenomenon stimulated by the stretching disk
surface, wherein the duality of solution is scrutinized successfully. The outcomes, traced
out for a stretching disk flow, are under consideration for possible publication. The non-
rotating disk flow is further extended towards the shrinking disk flow, wherein the almost
similar information is noticed as prescribed in the case of stretching disk flow. It is
important to reiterate that the shrinking disk flow is not observed any interesting than the
stretching disk flow. In both situations the duality of solution is simply associated to the
retarded nature of the stretching/shrinking wall velocity. The resuits figured out for the
shrinking disk flow are reported in Chapter 7 and are under consideration for possible
publication. To present an overall conclusion of the whole dissertation, Chapter 8 is
included at the end of this dissertation. The conclusions drawn are supposed to be
extremely helpful for the exploration of the other hidden aspects of stretching/shrinking
surface flows regarding the existence of duality of solution with regard to the other

various physical ingredients.
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Chapter 1

Introduction and preliminaries

This chapter contains an overview aimedlto introduce the readers with the
developments carried out in the field of boundary-layer flows for Newtonian fluids
stimulated by stretching/shrinking continuous surfaces. The literature incorporated in this
research is related to the viscous fluids flows and the existence of multiple solutions
therein. This chapter consists of two parts: first part includes the introductory information
of the topic along with the historical background and developments, and in the second
part some fundamental knowledge closely related to the presented research is gathered

for the convenience of the reader.

1.1 Overview on history

The practical applications of fluid mechanics are witnessed by the human history
from the existence of human life on the planet. The fluid mechanics started its journey
from fulfilling the sanitary/drinking requirements of the inhabitants of various
communities and now it became an integral part of the science & technology which deals
with engineering, industry, aviation, space exploration, metallurgy and lot of exciting
applications yet to be explored. Initially, most of the applications of fluid mechanics were
solely related to practical purposes, such as distribution system for the irrigation of crops.
For example, the ancient civilizations used to settle near the natural water reservoirs to
fulfill their essential domestic needs. Indeed, knowingly/unknowingly, they went through
with practical applications of hydraulic engineering. The early civilizations also used
water systems for the development of cities, for example, the Harappa people developed
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city-wide drainage system to collect rainwater. Throughout its history, the fluid
mechanics i8 known as a field that has been constantly advanced by every day. It is a
field that has been reached the point of scientific maturity, now. It is reality that most of
its fundamentals are clearly undetstood, which made it a vital component of many
engineering curricula. In 250 BC, a first theoretical reasoning about the behavior of fluid
flow was unveiled by Archimedes in the form of his famous buoyancy postulates. Before,
the invention of the Newton s’ law of viscosity, in 1687, all attempts were focused to
investigate the inviscid/ideal character of fluid flows. In 1730, the Newton s’ contribution
was ornamented by Daniel Bernoulli who put forwarded the law of fluid motion which
was further renovated by Leonhard Euler in 1755. The well-known “Navier-Stokes
equations” were formulated by Navier and Stokes, independently in 1827 and 1845,
respectively, by introducing the viscous term in the equation of motion. These equations
have been proved most beneficial tool to investigate the characteristics of the viscous
flows.

In 1904, Prandt]l [1] not only classified the viscous flow into two categories,
namely, the potential flow and the boundary-layer flow but also provided an opportunity
to link the two diverse branches of fluid mechanics (i.e., theoretical hydrodynamics and
hydraulics). The flows with zero vorticity (i.e., the fluid particles are non-rotating therein)
are regarded as potential flows. These flows are comparatively simple than other flows
due to uniform flow pattern of fluid particles. However, in the thin area near the solid
surface, where the vorticity is not small, another type of flow is visualized which is
termed as boundary-layer flow. Such kind of flow exist in the immediate vicinity of

leading edge of the surface in contact, where the effects of viscosity are prominent and



the fluid tends to cling to the surface. Definitely, the idea of the boundary-layer can be
regarded as a ready reference to scrutinize the behavior of wall friction more precisely.
His (1] theoretical contributions motivated the scientists to examine the characteristics of
viscous flows in context of boundary-layer phenomenon. Indeed, from micro to macro
level developments are bestowed by the glorious information presented by Prandtl. The
various flow situations, within a boundary-layer in case of a flat-plate, have been studied
by a number of authors. The list of contributors is sufficiently long however the most
valuable contributions have been made by Goldstein [2], Batchelor [3], and Schlichting
[4]. Soon after the appearance of boundary-layer awareness, Blasius [5], for the first time,
analyzed the boundary-layer flow phenomenon over a flat-plate. The author [5] studied
the two-dimensional steady flow within a boundary-layer formed at a semi-infinite body
and such type of flow was regarded as Blasius flow. Later on, theoretical investigations
under certain situations were carried out by the various authors [6-9], while Burgers [10]
rectified the Blasius flow experimentally. In 1931, Falkner and Scan [11] investigated
steady two-dimensional boundary-layer flow over a wedge. Infact, the authors [11]
generalized the Blasius [5] flow, by taking power-law form of potential velocity, for the
situation when the plates are not parallel to the flow. The authors of [1] & [5] were
concentrated on a flow past a stationary boundary.

In 1960, Sakiadis [12-13] recognized the character of boundary-layer flow over a
moving continuous flat plate whose velocity was considered as uniform. Afterwards, the
boundary-layer flow of viscous fluid over a continuous flat-surface moving with constant
velocity is regarded as Sakiadis’ flow. Later, Tsou et al. [14] provided experimental
justification of the findings of Sakiadis. Because of tremendous applications in the span



of engineering and industrial processes, the study of two-dimensional boundary-layer
flow stimulated by stretching surfaces has become blooming topic for the researchers
since the contributions presented by the Blasius and Sakiadis. It is a matter of interest that
Bla.;.ius [5] considered the circumstances when fluid is moving over a stationary plate
while the Sakiadis [12-13] chose the vice-versa aspects as taken by the author [5].

With the passage of time, more and more developments have been observed in
engineering and industrial disciplines which enhanced the need to investigate the
Sakiadis’ flow under some other valuable aspects. In 1970, Crane came forward and
investigated the Sakiadis’ flow under the influence of variable linear wall velocity. Crane
[15] excogitated the two-dimensional steady viscous flow originated by continuous
stretching sheet moving with a variable linear wall velocity and also succeeded to explore
a closed-form solution. Due to this marvelous achievement, Crane is considered as the
pioneer of stretching sheet flow. A large numbers of well-known investigators inspired
by the fabulous contribution of Crane [15] devoted their efforts to analyze the stretching
sheet flow under the influence of different types of velocities and boundary-conditions.
For instance, considerable efforts were made by the renowned authors who sort out the
fluid flow phenomenon stimulated by the stretching surface for non-linear and power-law
wall velocities under the influences of various kinds of physical parameters like
suction/injection, porosity, and heat transfer etc. The effects of heat and mass transfer, in
the presence of suction/blowing, on the stretching sheet has been analyzed by Gupta and
Gupta [16]. In 1979, Chakrabarti [17] studied the hydromagnetic flow under the influence
of heat transfer, over a stretching sheet. Later, in 1983, the work of Crane was extended

by Banks [18] for power-law velocity where he found similarity solution of the



boundary-layer flow over a stretching wall, while, in 1999, exponential wall velocity was
interrogated by Magyari and Keller [19], where the effects of heat and mass transfer were
investigated by them. Similarly, the stretching surface flows also attracted number of
investigators [20—26] who analyzed the effects of suction/injection along with heat
transfer over boundary-layer flows and found a similarity solution by using
numerical/analytical techniques. Afterwards, Crane’s work was extended for the situation
of three-dimensional flow by Wang [27] wherein he succeeded to sort out the exact
similarity solution of the problem.

The studies cited above are related to the steady state viscous flows over
continuous stretching surfaces. However, in daily life everyone has to undergo the
circumstances when the flow becomes unsteady. It is a reality that the unsteady behavior
of variety of fluid flows has gained significant importance due to their blooming practical
importance. Although, normally a steady behavior is important during the investigations
of fluid flow phenomenon, however, it is well experienced fact that unsteady state
situations might also be of practical importance. That is, unsteadiness may be caused by
self-induction of the object, inconsistent nature of the flow under consideration, and
sometime an unsteady aspect is a prerequisite for particular devices to execute their
functions. A detailed conversation, in this regard, can be consulted in valuable
manuscript presented by McCroseky [28]. Moreover, to investigate the effects of
unsteadiness, ample efforts were made by a number of well-known authors [29-39] who
analyzed the unsteady stretching sheet flow phenomenon under the influence of various

physical parameters.



The topic of self-similar flows has been proved to be more generative for highly
spirited researchers who utilized their best abilities to investigate the boundary-layer
flows stimulated by stretching surfaces. At the same time, there exists another significant
class of self-similar flows which is now termed as shrinking surface flows. This class
deals with the circumstances where the wall velocity is taken with opposite sign as
chosen in the case of stretching surface flows. In this context, Miklavcic and Wang are
also regarded as the pioneers of shrinking surface flows, who initially introduced the flow
phenomenon stimulated by a shrinking sheet. In 2006, Miklavcic and Wang [40]
considered a two-dimensional shrinking sheet flow with an interesting conlclusion of
non-existence of solution. They reported that the existence of solution requires sufficient
wall suction and that the solution is non-unique whenever it exists. Consequently, their
idea of shrinking surface flow was immediately adopted by a number of above
researchers. The fantasy as presented by Miklavcic and Wang provided a golden
opportunity to the analysts who enthusiastically dealt with this innovative class of self-
similar flows. Like the stretching sheet, this new-fangled also possessed a broader span
wherein a lot of researchers contributed a huge literature. By getting inspired from the
work [40], a large number of publications, addressing the effects of various physical
parameters under different circumstances, have been furnished by well-known
researchers and the similar efforts are still going on. To illustrate all the existing literature
under one cover is like a long row to hoe, however, some valuable but most relevant
findings can be seen in the references [41-48]. The study of Miklavcic and Wang [40]
was related to steady state of shrinking sheet flow which was extended to unsteady
scenario by Fang et al. [49]. During the analysis, the authors of [49] computed the dual



solutions for certain range of the involved parameters under the impact of heat transfer
and also claimed that the flow caused by unsteady shrinking sheet is quite different from
that of unsteady stretching sheet flow. The work of Fang et al. [49] was further studied by
various authors for different aspects, for example, power-law fluid (Yacob et al. [50]),
nanofluid flow (Rohni et al. [S1]), stagnation point flow (Sualia et el. [52]), nanofluid
flow using Buongiorno’s model (Rohni et al. [53]), effects of slip and heat
generation/absorption on MHD stagnation point flow (Nandy and Mahapatra [54]).
Besides these, there are number of researcher papers available in literature that studied a
shrinking surface flow and presented the duality of solution as an ultimate outcome.
Recently, Mehmood and Usman [55] presented a comparative study regarding the
existence of multiple solutions for stretching/shrinking surface flows and mathematically
justified that the similar situations of duality of solution do also exist for the stretching
surfaces as noticed in the shrinking surface flows. Further, the authors [55] made it clear
that the fantasy of the existence of non-uniqueness of solution as well as exhibition of the
non-linear phenomenon linked with the shrinking surface flows is perhaps beyond the
reality.

Although, the steady/unsteady features of shrinking sheet flows are still charming
and which are constantly magnetizing the students of self-similar flows that’s why it is
difficult to address all such publications herein. Further, it is worth noting that the most
of the authors, who focused on the shrinking sheet flow, have concluded the non-
uniqueness of the solution is a phenomenon totally opposite to the stretching surface
flows. Infact, they extracted their conclusions due to the utilization of incorrect similarity
transformations. An inspection of the existing literature on shrinking surface flows



reveals that neither the shrinking surface flows have been investigated completely; nor
correctly. Although, there is a bulk of publications available on the account of
steady/unsteady shrinking sheet flow and it is constantly increasing but neither the claims
made by Miklavcic and Wang [40] present true picture nor the similarity transformations
used by [40] and Fang et al. [49] are constructed correctly. Since, the findings of [40] &
[49] have been adopted as a ready reference for any kind of study related to the shrinking
surface flows, therefore, nobody dare to put a barrier therein because of the existence of
well accepted and published volume of literature. Keeping in the view a well saying
“hope is being able to see that there is a light despite all of the darkness (Desmond
Tutu)”, Mehmood devoted himself to scrutinize and reconcile the existing literature
related to shrinking surface flows. Initially, he received no positive response from the
journals and his arguments were treated as an unheard drum. It is a universally proven
fact that the “truth always prevails” and the same happened here when Mehmood [56]
derived his monograph namely, “Viscous flows: stretching and shrinking surface”,
wherein he unbosomed the facts in a comprehensive way. The author [56] analyzed the
existing literature published in the domain of stretching/shrinking surfaces and not only
pointed out the discrepancies existed in the literature but also presented a detailed and
practical way-forward to rectify the ambiguities pertained in the literature. Mehmood [56]
presented the correct similarity transformations for the shrinking surface flows, in detail.
Moreover, he also discussed the existence/non-existence of the stretching/shrinking
surface flows. This was not only the Mehmood [56] but Paullet and Previte [57] also
reported that the flow phenomenon caused by the stretching sheet admits an uncountable

number of solutions for the case of nonlinear (power—law) wall velocity, whenever the



power-law exponent m takes the values —1/3 € m < 0; no solution for m < -1/3;
and unique solution for m > 0.

Similar to the planner case of the stretching/shrinking surface flows, their
axisymmetric case has also shown great potential to attract the scientists in the field. The
presence of immense literature, in the sphere of axially-symmetric flows is an obvious
evidence of wider acceptance. In 1961, Sakiadis presented his marvelous theoretical work
in the form of his precious elucidations [12] & [13]. The author [12—13] was
concentrated to unveil the secrets of axially-symmetric scenario of viscous flow due to
moving continuous surfaces. In the continuation of these studies Sakiadis [S8] considered
the steady state of boundary-layer flow over a continuous cylinder moving with uniform
velocity for the first time. The work presented in [58], was extended for the case of non-
uniform velocity by Crane [59] in 1975. The steady flow caused by a stretching cylinder,
moving with uniform velocity, also proved itself a fertile area of research. In 1988, Wang
[60] determined the effects of heat transfer on a flow over a stretching cylinder and
adopted a shooting technique to obtain a numerical solution. He also reported an
asymptotic solution and gave a comparison with the numerical resuits for a large
Reynolds number. After that, Burde [61] figured out an exact solution for an
incompressible fluid flow near an infinite circular cylinder stretching linearly in the axial
direction. Ishak et al. [62] analyzed the effects of uniform suction/blowing on the
stretching cylinder flow under the influence of heat transfer. Later, Ishak and Nazar [63],
concentrated on a numerical solution of a laminar boundary-layer flow along a stretching
cylinder and claimed that the similarity solution is only possible if the cylinder is

stretched, in the axial direction, with linear velocity. Fang and Yao [64], investigated the



viscous flow caused by the stretching and torsional motion of steady cylinder and
reported an analytical solution. Mukhopadhyay [65], investigated the effects of uniform
magnetic field on an axisymmetric, steady boundary-layer viscous flow due to stretching
cylinder, wherein he reported analytic solution and numerical solution. Al-though, a bulk
of literature is available regarding stretching cylinder moving with linear velocity,
however the non-linear case was still unaddressed. This deficiency was filled by
Mehmood [56] in his recently published monograph, wherein he clarified that the cross-
section of the cylinder should be taken of variable form for the non-linear nature of a
stretching wall velocity (bearing the pattern of power-law or exponential form) in order
to obtain a similarity solution. Moreover, it is worth noting fact that before the
appearance of ceremonial work of the author [56], non-uniqueness of the solution had
been considered for boundary-layer flows stimulated by shrinking surface flows only.
After a deep analysis of the existing literature on viscous flows, Mehmood [56] also
concluded that, like the shrinking surfaces, the stretching surfaces also bear the capacity
for the occurrence of multiple solutions which was later proved by Mehmood and Usman
in their recently published paper [55].

The study of boundary-layer flows invigorated by stretching surfaces has become
a fascinating field because of its prodigious applications in industrial and engineering
disciplines. For instance, spinning of filaments/stripes, manufacturing of glass,
polymer/rubber extrusion, wire drawing, cable coating, fiber technology, hot rolling,
paper production etc., are some worthwhile applications of the steady/unsteady flow
phenomenon induced by stretching surfaces. That is why an abundant literature can be

sighted regarding unsteady prospective of stretching cylinder flows. In this context a
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marvelous work has been done by Fang et al. [67] during the analysis of unsteady viscous
flows caused by stretching cylinder. The author [67] assumed a variable radius (varying
with time) of the cylinder expanding in a stationary fluid and calculated an exact solution
therein. With a quick glance over the existing literature, it is- revealed that all efforts were
made to analyze the unique/single solution for steady/unsteady stretching cylinders. The
reason behind this fact is that it is unanimously accepted by the researchers that the
uniqueness of solution is confined to the stretching surface flows, only. Further, it is also
a reality that, capturing multiple solutions is a too much tedious task which demands
extraordinary concentration. However, being motivated from the findings presented in
[56] and [55], we have succeeded to break the hard nut and ultimately reported multiple
solutions for unsteady stretching cylinder which will be discussed in the coming sections
of this thesis.

The boundary-layer flow, stimulated by the shrinking axisymmetric surfaces, is a
continuation of the most appealing theme ascertained by Miklavcic and Wang [40],
wherein they enlightened the possibility of non-uniqueness of the solution. There can be
seen an abundance of practical applications of shrinking surface flows in the processes of
manufacturing/refining/extrusion of artificial film, metallurgy, petroleum, plasma studies,
etc. It is also a worth noting aspect that manipulation of rate of cooling plays a vital rule
in the quality of final products. Keeping in view the explorations contained in the existing
literature regarding planner shrinking surfaces, multiple solutions for viscous,
incompressible self-similar flows caused by the axisymmetric surfaces have been
analyzed by a lot of researchers. In this context, Lok and Pop [68] figured out triple

solutions during the study of incompressible, viscous, stagnation point flow caused by a
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steady shrinking cylinder. The authors [68] adopted a numerical technique to capture the
solution for certain range of involved parameters. Interesting, features of unsteady
viscous flow, with mass transfer, over a shrinking cylinder were studied by Zaimi et al.
[69] where they reported dual solutions by the manipulation of suction and unsteadiness
parameters. The outcomes presented in [69] were further scrutinized numerically, for
nanofluid flow by choosing the Buongiomo’s model, by Zaimi et al. [70] where they
again reported multiple solutions. Misra and Singh [71] also observed the multiplicity of
solution while studying the effects of various kinds of slip conditions on a viscous flow
over a permeable shrinking cylinder. Similarly, shrinking cylinder flow was also
investigated with the help of an analytic technique known as OHAM (optimal homotopy
asymptotic method) by Marinca and Ene [72] and the duality of solution was reported.
The laminar flow caused by a porous, stretching/shrinking cylinder under the influences
of heat transfer, suction and partial slip parameters was examined by Abbas et al. [73],
wherein they observed dual solutions for shrinking case only. The boundary-layer flow
due to an exponentially shrinking cylinder was analyzed by Najib et al. [74], where they
also carried out a stability analysis (using bvp4c solver) to rectify their results. Recently,
Ali et al. [75] considered a stretching/shrinking cylinder of a non-uniform radius;
however, they did not claim the duality of solution. To sort out the hidden aspects of
shrinking cylinder, under the effects of various parameters, efforts are still going on (for
instances see the references [76-78]). It is a matter of great interest that the authors who
reported dual behavior of the solution for a shrinking cylinder, claimed that an adequate
suction is a prerequisite for the existence of multiple solutions, which is, however, not

true as per results reported in this thesis.
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Although, continuous circular cylinder and disk belong to a family of
axisymmetric objects but both have been studied separately due to the involvement of
surface curvature in the case of cylindrical surfaces. It is due to the reason that the flow
characteristics, within the b.oundary-layer, are primarily affected by the leading role of
surface transverse curvature. Further, the cylindrical surfaces admit similarity solutions
for both power-law and exponential wall velocities, but in the case of circular disk,
similarity solutions are possible only for power-law form of the wall velocity.
Furthermore, cylinder and disk surfaces also have different geometrical aspects.
Therefore, it is assumed necessarily important to investigate the flow phenomenon
stimulated by a disk separately. To explore the flow due to stretching/shrinking disk,
motivations have been provided by Crane [59] due to his investigation of the boundary-
layer flow for axisymmetric case. Keeping in view the outcomes of Wang’s [60] research
regarding three-dimensional stretching sheet flow, Fang [79] originated the study in
respect of flow caused by a stretchable disk and reported an exact solution for it. Later,
the work of [79] was extended by Hussain et al. [80] where they figured out a numerical
solution of it. Although, the literature is quite rich regarding the rotating;
stretching/shrinking disk flow, discussing the various aspects of physical parameters but
the boundary-layer flow due to a stretching/shrinking disk only have rarely been
investigated. However, in this study our primary objective is to investigate non-
uniqueness of solution in a boundary-layer flow stimulated by a non-rotating
stretching/shrinking disk.

From the above cited literature and the rest of the relevant published literature it is

evident that the non-uniqueness of solution is generally believed to be a unique feature of
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shrinking surface flows. Moreover, the necessity of sufficient amount of wall suction for
the existence of solution (surely non-unique) is also a well admitted fact. But we claim
that the above mentioned facts are neither generally true nor particular to the shrinking
surface ﬂow.s. We claim that the non-uniqueness of solution can equally be observed in
the stretching surface flows, also. Moreover, there exist situations when the non-
uniqueness of solution can also be observed in the absence of any wall suction; or even in
the presence of affordable wall injection. To prove these facts various flow situations
(ranging from planner to the axisymmetric geometries) have been considered in the
subsequent chapters. Finally, the overall conclusions regarding the occurrence of multiple
solutions for the flows due to stretching/shrinking surfaces have been drawn in Chapter

8 of this dissertation.
1.2 Preliminaries

This section contains a necessary description and basic information about the
terminologies used in the subsequent chapters. It also addresses the fundamental laws,
governing equations and the solution technique for the use of subsequent chapters.

1.2.1 Fluid mechanics

It is a branch of science which has specific concern with the properties and
behavior of fluids under the influence of some stress/force. The fluids, under question,
may be at rest or moving with some velocity. The basic principles of fluid mechanics are
involved in almost all the engineering disciplines and the list of fluid engineering
applications is lengthened with every moming. It is a unique field of mechanics which
encompasses a vast array of problems that may vary from micro to macro level. For

example, flow of blood in the capillaries to the flow of water through canals is all studied
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in the domain of fluid mechanics. All branches of engineering are benefited from fluid
mechanics. Its principles are helpful to understand why airplanes are manufactured
streamlined with smooth surfaces. Moreover, renewable energy, production of electrical
energy form wind power, wind-pumps for water pumping, sails to propel ships,
functioning of turbines, automobiles, airplanes, missiles, appropriate designing of modes
of transportation, and construction of dams and canals etc., are all based on fluid
mechanics principles. This subject is equally beneficent in medical sciences. The design
of artificial hearts, blood substitutes, hearts-lung machines, MRI, breathing aids, and
other such type of devices depends on the fundamental principles of fluid mechanics.
Fluid mechanics is extremely helpful in weather forecasting mechanism. Recently,
“sports” is also considered as a science. Scientific rules are used to develop equipments
as well as sports kits. Athletes and swimmers use special types of kits to reduce the drag
forces. Improved design of swimsuits is based on tests in a water flume and on
computational fluid dynamics (CFD) analysis. The fabric has been modified, based on
wind tunnel tests, to reduce drag based on the airflow direction. The new outfits also
eliminate most of the fabric vibration (a major source of drag). For summer and winter
sports, the facility of performing experimental and theoretical fluid dynamics analysis
enables one to propose changes in the sports kits which result in improved outcomes by
several percent. There are numerous interesting questions which can be answered by
using relatively simple fluid mechanics ideas. Indeed, the fluid mechanics is a very
important and practical subject.
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1.2.2 Fluid

Fluid is a substance that tends to deform or modify its shape continuously under
the influence of some kind of stress. It does not matter that how small the magnitude of
the applied stress would be. Both liquids and gases are regarded as fluids. One can also
see that fluid has no fixed shape as it has the ability to mold itself according to the shape
of vessels. Fluids can be classified, on the basis of viscosity, as ideal fluids and real
fluids. A fluid for which viscosity is considered as zero is termed as ideal fluid and in a
flow situation such type of fluids have no tendency to provide any resistance or the
shearing force. Although, ideal fluids are not found in nature at all, however, under
specific engineering applications some fluids retain almost negligible viscosity effects
and considered are as ideal fluids. While all other fluids that possess non-zero viscosity
and offer resistance during the fluid motion are known as real fluids. For comprehensive
analysis, these fluids are further subdivided as Newtonian fluids and non-Newtonian
fluids. The fluids that obey the Newton’s law of viscosity (shear stress is directly and
linearly proportional to rate of deformation) such as air, water, mineral oil, and gasoline,
etc., are called the Newtonian fluids. On the other hand, all fluids that do not preserve the
Newtonian’s law of viscosity (in such fluids the shear stress is directly but non-linearly
proportional to the rate of deformation) are considered in the domain of non-Newtonian
fluids. Examples of non-Newtonian fluids are gel, shampoo, paste, polymer solutions etc.
Newtonian fluids generally have simple molecular structures and low molecular weight

while non-Newtonian fluids are compressed of complex mixtures.
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123 Flow

A fluid tends to prevent deformation, whenever external/internal stress is applied
on it, however, normally remains incapable to avoid deformation. If such deformation
exceeds beyond a certain limit then this phenomenon is termed as a flow. A flow can be
categorized in many ways on the basis of different features, however, in context to the
“confining boundaries” flow phenomenon can be marked as external flows (fluids flow
outside/over a surface) and internal flows (fluids flow through confined spaces). A flow
may also be classified in terms of its properties (i.e., velocity, pressure, density) and
pattern attained during the course of motion. For example, steady flow (flow properties
are time-independent), unsteady flow (flow properties are time-dependent), uniform flow
(flow with constant velocity), non-uniform flow (flow with variable velocity),
compressible flow (variable fluid density), incompressible flow (constant fluid density),
rotational flow (fluid particles have some angular velocity), non-rotational flow (fluid
particles don’t have any angular velocity), laminar/streamlined flow (fluid flows in
parallel layers), and turbulent flow (fluid flows randomly).

1.2.4 Boundary-layer theory

The beginning of twentieth century will always remain innovative and remarkable
in the prospective of fluid mechanics history. In August, 1904, a scientific meeting with
title “Third International Congress of Mathematician” was held at Heidelberg, Germany.
Ludwig Prandtl, a German Physicist, presented his idea “On the motion of fluid with very
small viscosity” in his eight minutes of demonstration and proposed the notion of

boundary-layer. This concept marked as epoch in fluid mechanics history by opening the
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new way of understanding the motion of real fluids. No onc had suggested like this
before and even scientific community of that time did not follow this idea except
Prandtl’s students for almost two decades.

Although, the equations of motion for viscous fluids had been modeled in the first
half of ninetieth century by Navier (1823) and Stokes (1845) and had attained the form
now called Navier-Stokes equations. The exact solution of these equations was
impossible to determine. No one has succeeded to solve the complete Navier-Stokes
equations to date because of nonlinear terms appeared in their viscous parts. Stokes
obtained the exact solutions of these equations by confining himself to some special cases
where the nonlinear terms could be either negligibly small or identically vanishing.
However this had not been the case in most of the problems dealt in practice. Therefore,
there was a need to establish some ideas or approximations for solution. The simplest
way was no doubt to ignore the fluid viscosity and this way led about nothing but the
d’Alembert paradox which states “a solid body of any shape placed in a uniform stream
experiences no resistance”.

The mathematical difficulties to solve full Navier-Stokes equations made it
compelling to disappear the non-linear terms. It was justified only for slow motion flows
but this approximation was also adopted for faster flows. It was almost universally
accepted about the concept of no-slip at the solid surface in the case of slow motion
flows. However the opinion divided in the case of faster flows. Meanwhile, huge number
times, efforts were devoted to constitute an empirical formula for the law of friction

which could be acceptable for both slow as well as faster flows.
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Prandl pointed out the behavior of the fluid of small viscosity at the surface of the
solid boundary. He explained that variation in the fluid velocity takes place only from the
corresponding value of irrotational flow to zero velocity due to no-slip when fluid flows
almost near to the wall and all this happens within a thin layer adjacent to the wall of the
solid boundary. Although the layer is thinner for small viscosity but the velocity gradients
yield significant effects. This shows that viscous effects are prominent only inside the
thin layer which is called the boundary layer. Outside of the boundary layer, the flow
remains inviscid and irrotational, and its behavior can be described from Euler’s
equations of motion. Further, there is a most attractive class of laminar boundary-layer
flows that is termed as self-similar flows. These flows have admissible solutions of the
most valuable Navier-Stokes equations in unbounded domains. The small thickness of the
boundary layer allows some assumptions for the Navier-Stokes equations within the
boundary layer: the variation in the velocity along the solid wall is much smaller in
comparison with its variation normal to the wall, and the variation in the pressure normal
to the solid wall is much smaller in comparison with its variation along the wall.

Further, at the edge of the domain, the boundary conditions effects are supposed
practically limited/local, while self-similar solution will be effective/authentic in most of
the fluid domain. This class has the ability to convert partial differential equations to
ordinary differential equations, smoothly and easily, by using suitable similarity
transformations. It facilitates the investigators to greatly/completely simplify the
governing equations in the form of a single nonlinear one-dimensional pdes (or odes for
steady flow phenomena) and, without some kind of approximation, exact solutions of the

Navier-Stokes equations can be obtained. Moreover, these flows are extremely helpful
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for complete understanding of flow mechanism in a prescribed boundary-layer. In fluid
mechanics, exact or similarity solutions of the “Navier-Stokes equations” have significant
practical as well as theoretical importance which bears great attractiveness for the
researchers. |
1.2.5 Self-similar flows

There is a most attractive class of laminar boundary-layer flows that is termed as
self-similar flows. These flows have admissible solutions of the most valuable Navier-
Stokes equations in unbounded domains.
1.2.6 Reynolds number

The Reynolds number (Re) is frequently used in fluid mechanics as it mainly
characterizes the flow as laminar or turbulent. It is named after a British scientist Osborne
Reynolds. This is a dimensionless number and determines the ratio of inertial forces to

viscous forces, which can be written as:

__ Inertial forces
= Viscous forces 1.1

Re

where, U is the reference velocity, d is the characteristics length, and v is viscosity.
1.2.7 Skin-friction coefficient

It provides a measure of friction and drag between a fluid and the surface of solid
object moved through it. The skin-friction coefficient (C) increases with the square of
wall velocity and is directly proportional to surface area contacted to the fluid.
Mathematically, it can be interpret as:
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G =% (12)
where 7, is a shear stress, p denotes fluid density, and U denotes characteristic velocity.
1.2.8 Multiplicity of solutions

Since the last couple of decades, in the exploration of various aspects of self-
similar flows, a significant prospective of solutions termed as “multiple solutions”
inspired a huge number of enthusiastic scholars who have been continuously engaged to
sort out it under different circumstances. This new-fangled of solutions received a
noticeable prestige due to its mathematical aspects. Although in the existing literature it is
frequently claimed that this branch of solution has no physical significance, however, to
present a complete profile of the flow phenomenon, it really demands a due care to be
investigated thoroughly. Particularly, for the situation of retarded flows, the flow velocity
exhibits complex characteristics due to which uneven scenario may be observed, and,
consequently it boosts up the probability for the existence of multiple solutions. At the
same time, it is also a matter of great concern that this new type of solution is normally
seen to exist for specific range of the involved parameter(s), and after that a unique
solution may be pertained. Further, there appear some circumstances where the flow
phenomenon becomes more and more sensitive. To explore such situations it demands
extra-ordinary attention and devotion. Therefore, to present a comprehensive picture of
the flow phenomenon, definitely it is mandatory to touch all axes of the problem under
consideration.

13 Objectives

The current study is devoted to investigate the reasons behind the non-uniqueness

of solution of the self-similar boundary-layer flow phenomenon caused by

21



stretching/shrinking continuous surfaces. A bulk of literature is available which has
explored the various aspects of boundary-layer flows regarding the existence of multiple
solutions. Besides the available reasoning about the multiplicity of solution, there are
some other facts which determine the true nature oi‘ non-unique solution. In this regard
the efforts have been put into this matter and the outcomes of this research have been
presented in this dissertation. Chapter 2 contains the study of steady/unsteady aspects of
vicious flow stimulated by a flat stretching sheet, wherein interesting information is
obtained in respect of existence of dual solutions. The flow phenomenon initiated by
shrinking surfaces has become more popular due to the duality/multiplicity of solution
supposed to be confined therein, only. Keeping in view this common perception,
Chapter 3 is devoted to analyze the shrinking sheet (steady/unsteady) flow for the
existence of dual solution in the presence of involved physical parameters. The outcomes
of Chapter 3 have been published in International Journal of Nonlinear Sciences and
Numerical Simulation, in 2020, [81]. It is extremely desirable that the findings of
planner surfaces should be extended towards axisymmetric surfaces case. For this
purpose, the true facts for the possible occurrence of dual solutions for steady/unsteady
stretching cylinder have been captured and compiled in Chapter 4. The steady aspects
are studied for power-law velocity while linear nature of wall velocity is taken to
investigate the unsteady stretching cylinder. The multiple solutions that are figured out
for unsteady flow due to a stretching cylinder have been published in Journal of Applied
Mechanics and Technical Physics, in 2020, [82), while the results computed for steady
stretching cylinder are under review for possible publication. The outcomes presented in
Chapter 4 are further extended by taking shrinking wall velocity. Obviously, dual
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solutions are captured therein for both steady and unsteady situations. The outcomes
figured out regarding unsteady shrinking cylinder have been published in the European
Journal of Mechanics / B Fluids, in 2020, [83], whereas the findings in respect of
steady shrinking cylinder are in rev1ew process.

The axisymmetric surfaces also bear another important shape named as the disk
shape. The disk surface, different from the cylindrical surface, involves no surface
curvature effects due to which it possesses different flow phenomenon. In Chapter 6, we
have focused to figure out the steady/unsteady character of stretching disk flow. The
information gathered during the study is under consideration for possible publication.
Further, Chapter 7 contains the investigations of steady/unsteady cases of shrinking disk
flow for the investigation of the existence of duality of solution. During the
investigation, dual solutions are sorted out and have been presented in this chapter. The
contents of this chapter are also in review process for possible publication.

14 Governing equations

The fundamental laws (i.e., the law of conservation of mass and law of
conservation of momentum) that define the mechanism of fluid flow are as usually
termed as the governing equations. On the basis of these basic laws, governing equations
are also known as the equation of continuity, and the equation of motion. Detailed
derivation of these laws can be found in any good book concemning the dynamics of
fluids, such as, Schlitching [4]. In this section their final and convenient forms have been
given for the use of next chapters.



14.1  Continnity equation

The partial differential equation which is based upon the law of conservation of
mass is termed as equation of continuity. Mathematically, in Cartesian coordinates, it has
the following form:

ap =
3?+ V.pV =0. (13)
In case of incompressible ﬂuii%:—’ = 0 and Eq. (1.3) takes a form:

ou v A ow
3;+3+8_2-0' (14)

Further, in cylindrical coordinates, the equation of continuity for incompressible flows
resembles as:

Ia(rv,-) 1dvy av.
v or T30 Y ox = 0. (1.5)

14.2 Momentum equation

The partial differential equation pertains the law of conservation of momentum (a
direct consequence of Newton's third law of motion) is known as momentum equation.
Mathematically, it has three components which in Cartesian coordinates (without body
forces) have the following form:

X — component:

pat+u—+75+v -—%f+ua—"+:;',‘+:%‘), (1.6)
y — component:
pat+u—+v—+v )—— +u az=+ay= g;;), .n
Z — component:
pat+u—+v—+v )———+ua" :y‘: a":) (1.8)

24



where (u, v, w) are the velocity components in Cartesian coordinates, and p denotes the

pressure function.
Similarly in cylindrical coordinates, its three components are written as:

radial component:

p(ren e a2 = e A A
:’T‘;), 19

circumferential component:

(a"+ a"+'r'%?+""+ 'av. __§%+ (av,+1av, r: :22::4_
L2t + 200 (1.10)

axial component:

p(reneaien) - Rudaeiniadn o

where (v, vg, v;) denote the velocity components in cylindrical coordinates.

1.5 Solution methodology

During the current study, we have to deal with the self-similar boundary-layer
viscous flows stimulated by stretching/shrinking continuous surfaces. Since, the resulting
governing equations involve strong non-linearity and their exact solutions are usually
impossible. The problems considered in this dissertation are of self-similar nature for
which the governing partial differential equations are transformed to ordinary differential
equations. Due to the development of high performance computing machines it has now
became possible to integrate the complicated non-linear equations numerically with high

degree of accuracy. The techniques are so compatible that the captured solutions are
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usually considered as exact solutions and are known as “numerical exact solutions”. To
sort out the solutions of the derived self-similar equations of this thesis, numerical
method, namely, the shooting method is utilized. The availability of high speed
computing machines as well as the flavor of authentic softwares like MATLAB and
MATHEMATICA are equally facilitating the researchers to solve the various problems
involved in their research.

To obtain a numerical solution, the 4™-order RK shooting technique has been
coded in most efficient computing software MATHEMATICA. As the pre-requisite of
the said numerical method, we convert the governing higher order ordinary differential
equation to a system of first order ordinary differential equations. For instance, we reduce
the Egs. (5.6)—(5.7) (which are obtained for self-similar boundary-layer flow induced by
the steady shrinking cylinder) into the following form:

yo = ZEER, y ) =1, YO =2 n)=0 112

Here,wetake f(n) =y, f'M=»n, "M =y, ad ") =y,

Now, the shooting method is used to obtain the numerical solution of the systems similar
to Eq. (1.12). With the help of this numerical technique, we were enabled to capture not
only the first solution but also the second one, in very precise way with desired level of
accuracy and authenticity. During the procedure of computing the solutions, it is obvious
that the first solution can be sighted quite quickly, while to capture the second solution,
time taking efforts with utmost devotions have to be made. It is a fact that the second

solution is assured after several runs and experimentations.
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Chapter 2

Duality of solution for a stretching sheet flow

In this chapter we consider the steady as well as unsteady character of the
boundary-layer flow stimulated by a continuous stretching sheet. It is assumed that the
sheet is stretching continuously in x — direction, with a variable velocity. The governing
equations obtained for steady/unsteady cases are solved numerically by using the
shooting method. During the current analysis, dual solutions are also captured for both
cases. The current chapter has been divided into two major parts to consider steady and
unsteady cases separately.

2.1 Steady boundary-layer flow due to a stretching sheet

In this section we consider a steady two-dimensional viscous flow due to a
stretching sheet. This problem has already been considered by Mehmood and Usman [55]
but it is included in this chapter for the sake of completion of the picture presented in this
dissertation. Therefore, the work presented in this section should be considered as a
review of the work published in [55].

y U=Ugp =0,
p = const.

nv

x=0=y Uy (x)

Fig. 2.1: Schematic of two-dimensional stretching surface flow and the
associated coordinate system.
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2.1.1 Mathematical formulation

Consider an incompressible, two-dimensional, steady, boundary-layer flow
induced by a permeable stretching sheet in a viscous fluid. The fluid under consideration
is supposed to be stationary. The sheet is issuing outward from the slit with a velocity
U, (x) in the x — direction. Further, beyond the vicinity of boundary-layer the velocity of
fluid is zero, whereas pressure is regarded as constant. In view of above mentioned
assumptions, the continuity equation (1.3) and the equation of motion (1.6) for the
considered steady flow take the following forms:

%+%=m @.1)
ud v 2= v:'T';, 22
u=u,(x), v=n,0(), aty=0

u=0, aty= oo}’ 23)

where, u and v are the velocity components which are taken along x — and y — axes,
respectively, while v is termed as kinematic viscosity. Mehmood [56] reported that a
similarity solution of the above system is possible if one chooses u,,(x) = ax™ (of
power-law form) as reported by Banks [18], initially. Corresponding to this particular
form of wall velocity let us introduce the similarity transformations

1=y umamrm),  o=—vERT(r+%r) 4

due to which Eq. (2.1) is satisfied identically and the Eqgs. (2.2) and (2.3) are transformed

to a form given by
" =mf? —Z2ff, @5)
FO®=1 fO=-=. f(=)=0, @6)
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where, a > 0 is a constant stretching rate, m is a real number and is called the power-law
index, and S = == designates the wall suction/injection velocity. Positive values of

S (> 0) correspond to wall injection and the negative values of S (< 0) represent the

wall suction velocity. To ensure the self-similarity of the solution v,,(x) is chosen of the

form v, (x) = dme-l; d being a constant.

2.1.2 Numerical solution

The numerical solution of the considered problem is obtained by using a reliable
method termed as shooting method. During the current study well-known and frequently
used mathematical computational software “MATHEMATICA” is adopted. The
availability of such types of softwares made the numerical solutions as authentic as the
exact solutions are. The method is testified for a number of problems, particularly results
reported in the Table 6.1 of [56], for steady stretching sheet (both for power-law and
exponential form of wall velocities), are recomputed and found in excellent agreement
therein. The results figured out for the present investigation are referred in Table 2.1.

Table 2.1: A comparison with the results reported in Table 6.1 of [56], for
£"'(0) in the case of steady stretching sheet flow.

m Mehmood [56] Present results
Power-law Exponential Power-law Exponential

-1/3 0.0000 —_— 0.0000 —_—

-1/5 —0.23426 ——— —0.23426 —_——

-1/10 —0.35026 —_— —0.35026 —_—

0.0 —0.44375 —— —0.44375 -_
1/10 —0.52353 —0.2870 -0.52353 —0.2870
1/2 —0.77037 —0.6409 -0.77037 —0.6409
1 —1.00000 —0.9064 -1.00000 —0.9064
2 —1.34846 —-1.2818 —1.34846 ~1.2818
5 —2.06894 —2.0267 —2.06894 —2.0267
10 —2.89607 —2.8662 —2.89607 —2.8662
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Table 2.2: Some numerical values of the skin-friction coefficient at § = —3.

Mehmood and Usman [55] Present results
m 1" Sol. 2™ Sol. " Sol. 2 Sol.
—2 —25233 43224 —2.5233 43224
-15 —2.6830 9.7166 —2.6830 9.7166
0.7 —2.9069 215.5061 ~2.9069 215.5061
0.0 —3.0805 Jp—— —3.0805 p—
15 —3.4052 p—— —3.4052 —_—
2 —35029 —_— —3.5029 pp——
25 —3.5964 pp—— —3.5964 s
10 rf\\ ——
N2 -1.5 .
-2.2
= \‘
S of > N -
- 1st Solution \\ N ‘-\
~ ] M N
=== 2nd Solution ~

Fig. 2.2: Skin-friction coefficient of the stretching sheet flow plotted against S at
different values of m.
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Fig. 2.3: Velocity profile of stretching sheet flow for different values of S, at

m=-2.

1st Solution

1.5

L ) * = == 2nd Solution
’ b m=-2-3 -4
!

0 1 2 3 4

Fig. 2.4: Velocity profile of the stretching sheet flow at different values of the
power-law index, m, at § = —3.0.
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2.1.3 Results and discussion

The self-similar system of equations (2.5)—(2.6) acquired for boundary-layer flow
induced by a steady non-linearly stretching sheet is solved numerically. Since, during the
present study our keen desire was to investigate the possibility of dual solution.
Mehmood and Usman [55] also considered this problem for the same purpose. They
reported the duality of solution in the stretching sheet flows, following a non-linear form
of the wall velocity. They clearly explained the reasons for the existence of dual solution
in this case. The duality of solution was captured for m < 0 which corresponds to the
situation of retarded wall velocity. The duality of solution has been reported in Table 2.2
and Fig. 2.2, accordingly, while dual velocity profiles are portrayed in Figs. 2.3—2.4. For
further information about this flow the reader is referred to follow [55].

22 Unsteady boundary-layer flow due to a stretching sheet

Similar to the steady case, the unsteady flow is also an important characteristic of
the self-similar boundary-layer flow stimulated by a continuous moving surface. The
unsteady nature of the flow depends upon various aspects. For, example, sometimes it
may be originated by the object itself and sometimes it is developed because of
inconsistent features of fluid under investigation. In this regard, an ample analysis is
given by McCroseky [28] wherein the author made a critical survey of the unsteady fluid
flows particularly involved in engineering and technology domain. A valuable material is
available on the desk of unsteady boundary-layer flows. In this context, Surma et al. [29]
extended the Wang’s [27] work and examined the role of unsteadiness in the wall
velocities during the study of stagnation point flow. The author [29] found a self-similar
numerical solution for the involved problem. Later, Wang [30] investigated liquid film
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flow phenomenon passed over an unsteady stretching surface and found an asymptotic as
well as numerical solution therein. A pulse-like motion of the unsteady stretching surface
was discussed by Smith [31] by considering the same geometry as taken by Wang [27],
and reported an exact solution. Pop and .Na [32] calculated perturbation solution for
unsteady flow past a stretching sheet by taking the Shanks transformation. The effects of
heat transfer were analyzed in an unsteady stretching surface flow by the authors [33-35].
Mehmood and Ali [36] investigated the unsteady boundary-layer flow caused by a flat
plate which is set into motion impulsively with a constant velocity. The authors [36]
figured out an analytic solution. The effects of porosity were also analyzed by Mehmood
and Ali [37] during the study of unsteady boundary-layer flow caused by impulsively
started moving plate. Heat transfer aspects on an unsteady stretching surface were studied
by Tsai et al. [38]. Later, Mukhopadhyay [39] carried out a detailed investigation of
unsteady flow mechanism on a porous stretching surface embedded in a porous medium.
The current analysis is conducted to search out the existence of multiple solutions for

fluid flow prospective induced by unsteady stretching sheet.

2.2.1 Mathematical formulation

In this section we extended the steady case of continuous stretching sheet to
unsteady scenario by assuming a flat sheet started impulsively at t = 0. The difference
between the current study and that presented in Sec. 2.2, is the spontaneous start of the
sheet upon which the fluid flows. All other assumptions of the case of stretching sheet are
supposed to be the same herein. The wall unsteady velocity, in the x — direction, is taken
of the form u,(x,t) = 1;&” to ensure the self-similarity of solution. The impulsive start
of the stretching sheet has no effect on the continuity equation (2.1), however, requires an
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extra term 2= on the left hand side of Eq. (2.2) and also modifies the auxiliary data (Eq.

(2.3)) as presented below:

BrulioR=viy, @7
u(x,y,t=0)=0, vV (x,y)

u(x,y, t > 0) = uy(x,t), v(x,y,t >0) =n,(xt), aty=0) (2.8)
u(x,y,t>0) =0, at y=o0

By consulting the self-similarity criterion, presented by Mehmood [54], the following
similarity transformations, unanimously satisfying the continuity equation, are adopted to

obtain the self-similar equations:
n= V(i‘:yt)y’ u= f‘wf'("): vV=- %f("). (2_9)

The utilization of Eq. (2.9) in Eqgs. (2.7) and (2.8) enables one to reach the following set

of equations:
e+ -f2 - (F +117) =0, 2.10)
Q=1 f0)=-s  f'(o)=0. 2.11)

Here, B=£-is a unsteadiness parameter corresponding to accelerated and decelerated
cases according to # > 0 and f < 0, respectively. By considering 8 = 0, the Eq. (2.10)
reduces to Eq. (2.5), for m = 1, that is, the steady case of linearly stretching wall velocity

is recovered. In order to ensure the self-similar solution the wall suction/injection

velocity is chosen of the form 1, = ==, where d being a constant. Dimensionless form
ofdisgivenbys=‘,-%:S>0correspondtowallinjectionwhile$<0¢orrespondto

wall suction velocity.
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2.2.2 Numerical solution

The solution of the non-linear self-similar ordinary differential equations has
become too easy due to the availability of built-in numerical packages frequently used in
different softwares. In this study the resulting equations (2.10) & (2.11) are solved
numerically to figure out the possibility of multiple solutions. As per requirement of the
shooting technique, the obtained non-linear third order differential equations (2.10) &
(2.11) are converted into a system of first order ordinary differential equations. In context
to our problem (Egs. (2.10) & (2.11)), the initial value problem takes the following form:

Ya=y2-2yy,+8 (}'1 +g}'z)- 10 =1 y0)=-5 n(@)=0 (212

Here, weuse fm) =y, f'M=y. f'M=y. ad ["() =,

To sort out the dual solution, the system (2.12) is solved numerically by using the
shooting method. The dual solutions are captured and are reported in the succeeding
Tables, and graphs.

Table 2.3: The values of skin friction coefficient, " (0), for unsteadiness parameter S.

B =-3 B=-2 =-1 B=0 g=1
S I"Sol. | 2™Sol | ISol | 2™Sol | I"Sol | 2"SeL | I"Sel s.,_j I"Sol. sju
74 | 0.2914 | 0.2914 | ——— - -——= ——= | == 1= -==1-=-=
61 | 03698 | 03688 | 0.1744 | 0.1744 | ——— —— | === =1 === ==
50 | 04793 | 04703 | 02199 | 0.2189 - ——— | === [ == | === [ ==
48 | 05050 | 04923 | 02307 | 02292 | 0.0000 | 00000 | ——— | —= | ——= | —=
40 | 0625¢ | 05804 | 02828 | 0.2747 | —0.0005 | —0.0008 | ——— | —— | ——= | ——
| 30 | 07859 | 06217 | 03571 | 03122 | 00071 | —eomn [ ——— | —— | ——— | ——
0 | 08526 | 03980 | 03773 | 02058 | —0.0510 | -0.0801 | 04142 | —— | ——— | ——
14 | 07762 | 00376 | 03072 | —00212 | —0.1307 | —0.2071 | —0.5206 | — = | ——= | ——
10 | 06538 | —03196 | 02044 | 02739 | 02238 | 03583 | 0e180 | —= | ——= | —=
00 | 00669 | -16963 | —0.2950 | —1.3565 | —0.6516 | —1.0962 | —1.0000 | —= | ——— | ——
—10 | —0.8289 | —40545 | —1.0928 | —33197 | 13559 | —25635 | —16180 | —— | ——— | ——
[ —20 | —1.8403 | —7.9269 | —20317 | —6.6178 | —2.2230 | -5.1983 | 24142 | —= | ——= | ——
—30 | —28681 | —13.8175 | —3.0130 | —11.7299 | —3.1579 | —9.3745 | —3.3027 | —— | —34476 | ——
—40 | 38914 [ —22.1756 | —4.0063 | —19.1024 | —4.1212 | —15.5437 | —4.2360 | —— | —43509 | ——
=50 | —49089 | —334369 | —5.0034 | —29.1697 | —5.0080 | —24.1299 | —5.1925 | —— | =5.2871 | ——
—80 | -7.9398 | —88.9549 | —80009 | —79.8099 | —8.0620 | —68.5494 | —6.1231 | —— | —8.1841 | ——
100 99512 | —1483378] —10.0004¢ | ~134.7987] —10.0497 | —117.7787] —10.0990] —— | —10.1 -




Table 2.4: The values of skin friction coefficient, £’ (0), for suction/injection parameter S.
B S=2 S=1 §=0 S=-1 S=-2
"Sol. | 2~ Sol | I"Sol | 2°Sol | I"Sol | 2°Sol | I"Sol | 2~ Sol | I"Sel | 2" Sol
050 | ——= | ——— | ——= | =——= [ === 1 —=—— | === | ——= [ -25097 | ——-
0.40 —_—— ——— - - - —-——— | =17224 | ==~ | =24906| ~—-—
0.10 —— === | 06544 | ——— | -10341]| ——— | -16441 | ——— | —24333 | ———
005 | 04302 | ——— | 06363 | ——~ | ~1.0170 | —~— | ~16310 | ——— | —24237 | ———
0.003 —04151 | ——-— | —-0.6191] -0.6191] —-1.0010 | ——— | -16188 | ——— | ~24147 | ~~—-—
0 ~04142 | ——-— | —0.6180 | —-0.6182 | — ——— | =16180 { ——— | =24142 | ——=-—
—=1/10° | —04142 | —~-— | —0.6180 | —0.6182 | —0.9999 | —1.0056 | —16180 | ———~ | —24142 | ———
—1/10° | 04142 | ——— | —0.6180 | —0.6182 | —0.9999 | ~1.0060 | —1.6180 | —1.6855 | —24142 | ———
-1/10" | —04142 | —~—— | —0.6180 | —0.6182 | —0.9999 | ~1.0065 | —1.6180 | —1.6914 | —2.4142 | —2.7656
~005 | —0.3979| —0.3979)] —0.5995 | —0.6012 | —0.9828 | —1.0141 | —1.6049 | —1.8487 | —2.4046 | —3.4027
-10 -0.0510 | —0.0801 | —0.2238 | —0.3583 | —0.6516 | ~1.0962 | -1.3559 | —2.5835 | —2.2230 | —5.1983
-2.0 03773 0.2058 | 0.2044 | —0.2739 | —0.2950 | —1.3565 | —1.0928 | —33197 | —2.0317 | —6.6178
-3.0 0.8526 0.3980 0.6538 | —0.3196 | 0.0669 | —1.6963 | —0.8289 | —4.0545
—4.0 1.3629 04946 1.1179 | —04481 | 04327 | —2.0742 | —0.5643 | ~4.7848
=5.0 1.9003 0.5116 15933 | —0.6270 | 0.8014 | —2.4723 | —0.2993 | —5.5100
—=6.0 24595 | 04689 20775 | —-08369 | 11725 | —-2.8819 | —0.0338 | —6.2300
-7.0 3.0366 0.3839 25690 | —1.0664 | 15455 | —3.2984 | 0.2319 | —-6.9453
-8.0 3.6289 0.2696 3.0666 | —13087 | 19203 | —3.7192 | 0.4981 | —7.6561
=90 4.2342 0.1350 35694 | —-1.5598 | 22964 | -4.1428 | 0.7645 | —8.3630
-10.0 48508 | —0.0136 | 40767 | —18170 | 2.6739 | —4.5681 | 1.0312 | —9.0663

4
’l [ 4
y f ]
I::’IS ~~g=.30,-20,-10
_1.5 L {‘ 'l L | A A 4 .
4 0 1 2 3 4 5 6 71 &

)
Fig. 2.5: Dual solutions shown by f"'(0) for some selected values of unsteadiness

parameter, f, against suction / injection parameter S.
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Fig. 2.6: Dual solutions shown by f”(0) for some selected values of

suction/injection parameter S against unsteadiness parameter, /.

b Y -
D B=-1.0,-2.0,-3.0, 4.0, 5.0
0 I 2 3 4 5 6
7

Fig. 2.7: Velocity profiles for some chosen values of unsteadiness parameter, B,

in the absence of suction/injection parameter, S.
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Fig. 2.8: Velocity profiles for some chosen values of unsteadiness parameter, 8,

in the presence of injection parameter (S = 1).
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Fig. 2.9: Velocity profiles for some chosen values of unsteadiness parameter, f,

in the presence of suction parameter (S = —1).
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Fig. 2.10: Velocity profiles for some chosen values of suction/injection parameter

Satp=-1.

>
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Fig. 2.11: Velocity profiles for some chosen values of suction/injection parameter

Satf =-2.
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2.2.3 Results and discussion

An inspection of the system (2.10)— (2.11) reveals the presence of two
parameters, namely, § the unsteadiness parameter and S the suction/injection parameter.
Clearly, the accelerated/decelerated nature of boundary-layer is attributed to the
parameter 8. Dual solutions for unsteadiness parameter, B, at some selected values of
suction/injection parameter, S, are figured out during the present analysis. It is well
observed that the dual solutions can easily be captured for decelerated flow not only for
both suction and injection parameters but also in the absence of these. However, in the
case of accelerated flow only a unique solution is possible. From the numerical solution
reported in Table 2.3, it is noted that there exists large variation in the second solution,
for increasing magnitudes of suction parameter, as compared to the first solution.
However, by reducing the suction parameter both solutions tend to come closer and
closer. The dual solutions have been presented not only for suction velocity but also for
injection velocity. Interestingly, the duality is also captured for the case of a non-porous
stretching sheet. From the computed data it is depicted that as the effects of injection are
intensified, both the solutions converge more rapidly and ultimately overlap at some
critical point. Such convergence is displayed in Table 2.3, for some chosen values of
unsteadiness parameter B. As the flow is more decelerated, more suction is required to
obtain the solution. Moreover, the solution exists in a further restricted injection-domain;
the corresponding results are portrayed in the Fig. 2.5. Further, from the results displayed
in Fig. 2.6, it is observed that both solutions exhibit more variance for suction parameter

and no convergence is reported therein.



To see the effects of unsteadiness parameter on the velocity profiles in the
absence of suction/injection as well as in the presence of these, the Figs. 2.7—2.9 are
drawn. From these figures, it is revealed that the second solution has almost similar
behavior while the ﬁrst.solution presents relatively different attitude, particularly; the first
solutions are very close to each other (Fig. 2.9). To examine the velocity profiles
completely, the effects of suction/injection parameter at § = —~1 and B = —2, are
presented in Fig. 2.10 & Fig. 2.11, wherein a smooth variation is noted in both cases.

2.3 Conclusion

The existence of dual solution is supposed to be a unique feature of the shrinking
surface flows and for stretching surfaces only a single/unique solution is assumed to
exist. Further, the provision of sufficient wall suction is regarded as an integral part for
the existence of dual/multiple solutions. However, in the current investigation quite
different facts are found for the existence of dual solutions. During the current study, we
have figured out dual solutions for both suction/injection velocities as well as without any
of these velocities. Moreover, it is observed that dual solutions exist for decelerated flow
while only a unique solution prevails for the cases of accelerated situations. It is also
noted that the dual solution is not possible for m 2 0, whether potency of the external
agents (suction/injection etc.) may be intensified. In the decelerated case (m < 0 or B <
0) duality of solution is a sure which has been reported with the aid of tabulated data and
graphical results. Finally, it is concluded that the duality of solution is not a unique
feature of the shrinking surface flows rather it can also be observed for stretching surface
flows, equally. The fundamental reason behind the occurrence of dual solution is the
retarded nature of the boundary-layer flow.
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Chapter 3
Duality of solution for a shrinking sheet flow

The viscous fluid flows due to moving continuous surfaces bear another important
class of self-similar flows which is known as “shrinking surface flows”. Unlike the flows
caused by stretching surfaces, the shrinking surface flows have attained sufficient
attention from the scientists. There exists an abundant literature in the domain of
shrinking surface flows and the relevant contributions are being made from known
researchers to sort out its various aspects. The reason behind the inclinations of the
researchers towards the fantasy of shrinking surface flows was just due to the claim made
by Miklavcic and Wang [40]. On the basis of their analysis the involved authors made the

following remarks:

a) Sufficient amount of suction is mandatory for the existence of solution(s)

b) The shrinking surface flows pertained strong non-linear phenomenon

Following the above mentioned claims, a bulk of literature has been contributed
by the reputable researchers which made these claims as well-established facts.
Consequently every new comer used such findings as ready reference. However, the
authors [55] made it crystal clear that all such claims about shrinking surface flows are
totally baseless and are far beyond the reality. On a deep and detailed analysis, Mehmood
and Usman [55] put forwarded a correct self-similar formulation for the flows stimulated
by continuous shrinking surfaces. The current study is carried out in the light of findings
presented by the authors [55] and [56] in their recently published researches. The flow
caused by the continuous moving surface beers a lot of significant aspects in the
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extrusion process. The shrinking sheet has a unique prospective being to open a new type
of solution i.e., dual/multiple solutions. To investigate this new class of solutions, for
both steady/unsteady mechanisms, the shrinking surfaces have always been proved
attractive field for researchers. During the current study, we will sort out the possibility of
the existence of dual solutions by utilizing the correct self-similar formulation suggested
by Mehmood [56]. It is worth noting that before the author’s [56] marvelous work it was
unanimously believed that the dual solutions are only existent for permeable shrinking
surfaces. However, the author [56] devoted himself to counter the prevailing assumptions
frequently circulated in the literature and succeeded in his attempt. The current

investigation is the continuation of author’s [56] contributions.

3.1 Steady boundary-layer flow due to a shrinking sheet

In this section we intend to investigate a steady two-dimensional viscous flow due
to a shrinking sheet. As said in the previous chapter (i.e., Chapter 2), this problem has
already been analyzed by Mehmood and Usman [55] but it is referred hare in order to
exhibit a comprehensive picture presented in this thesis. Therefore, the current analysis is
just a review of the work reported in [55] regarding the flow phenomenon caused by a
steady shrinking sheet.

3.1.1 Mathematical formulation

Consider an incompressible, two-dimensional, steady, boundary-layer flow
caused by a permeable shrinking sheet in a stationary viscous fluid. The sheet is
shrinking inward from some kind of slit with a velocity u,,(x) in the x — direction. Also,
velocity of the fluid is regarded as zero beyond the vicinity of boundary-layer, while
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pressure is taken as constant. In the light of assumptions stated above, the continuity
equation (Eq. (2.1)), as well as the equation of motion (Eq. (2.2)) will remain the same,
moreover, the similarity criterion used herein is also the same as namated for the
stretchinsl wall velocity. However, it is obvious that the only difference between the two
case (i.e., steady stretching sheet flow and steady shrinking flow), is the opposite sign of
the wall velocities used therein. In view of above, we are taking following similarity
transformations:

—a M1

n=JTxz1y, u=-ax"f'(), v= N ("'Tﬂf +==nf ')- G.D

due to which Eq. (2.1) is satisfied identically and the Egs. (2.2) and (2.3) are transformed

to a form
" =" - mf?, (2
F@=1 fO==5  f(a)=0, G3)

where, a < 0 is a constant shrinking rate, m is referred as the power-law index, which is
a real number, and § = J—LTv is the dimensionless wall suction/injection velocity. Positive
values of S (> 0) correspond to wall injection and the negative sign of S (< 0)

represents the wall suction velocity. To ensure the self-similarity of the solution 1, (x) is

taken of the form 1, (x) =dme-1;dbeingaconstant.



Fig. 3.1: Schematic of two-dimensional shrinking sheet flow and the related coordinate

system.

3.1.2 Numerical solution
To solve the system (3.2)—(3.3), similar numerical method is adopted as utilized
in the case of stretching sheet flow, to obtain the numerical solution of the
problem. To avoid the repetition we go ahead to scrutinize the problem under
consideration. A comparison of the current solution with that of [55] is given in
Table 3.1. Obviously, an excellent agreement is evident which authenticates the

solution presented in this chapter.

Table 3.1: Some numerical values of the skin-friction coefficient at § = —3.

Mehmood and Usman [55] Present results
m 1" Sol. 2™ Sol. 1 Sol 2™ Sol.
-2 —3.3783 —_——— -3.3783 —_——
-15 -3.2727 _—— -3.2727 —_——
—0.7 -3.0903 ——— —-3.0903 —_—
0.0 -2.9133 ——— —-29133 —-——
15 -2.4408 -0.1335 —2.4408 -0.1335
2 —2.2285 —0.3445 —2.2285 —0.3445
25 -1.9460 -0.6587 —1.9460 —0.6587
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Fig. 3.2: Skin-friction coefficient (shrinking sheet) plotted at different m as a
function of suction parameter S.
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Fig. 3.3: Velocity profile of the shrinking surface flow for different values of the

power-law index m, at S = —5.
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Fig. 3.4: Velocity profile of the shrinking surface flow for different values of the
suction parameter S, at m = 5.

3.1.3 Results and discussion

The self-similar system of equations (3.2)—(3.3), obtained for the boundary-layer
flow due to a steady non-linearly shrinking sheet is solved numerically, for the possibility
of existence of non-unique solution. Mehmood and Usman [55] already scrutinized the
same problem for the same goal and succeeded to sort out the duality of solution in the
shrinking sheet flow by taking a non-linear form of the wall velocity. The authors [55],
briefly explained the details for the occurrence of non-unique solution, therein. The
duality of solution was captured for m > 0 which refers to the case of retarded wall
velocity. The duality of solution has been reported in Table 3.1 and also in Fig. 3.2,
accordingly, whereas the velocity profiles are presented in Figs. 3.3—3.4. To explore the
other hidden aspects as well as more information on the duality of solution for steady
shrinking sheet, one can consult ref. [55].
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3.2 Unsteady boundary-layer flow due to a shrinking sheet

In this section our aim is to analyze the unsteady self-similar flow stimulated by a
permeable shrinking sheet. The motivation of current investigation has received
motivation from the already available literature on this topic where the contributing
authors have neither formulated the flow correctly nor investigated rightly. It is worth
noting aspect that most of the authors utilized an unsteady (accelerated/decelerated)

shrinking wall velocity of the form u,,(x,t)=§(a>0) due to which non-

uniqueness of solution is reported. However, it is also a fact that the similarity
transformations adopted therein are incorrect. The reason behind the utilization of
incorrect similarity transformation is due to the mistake conducted by the pioneer authors
[40], during the process of non-dimensionalization. It is worth mentioning aspect that the
followers of [40] made the literature, related to steady/unsteady shrinking surfaces, too
much voluminous which created sufficient problems for the researchers who desired to
reconcile the mistake made therein. Therefore, no successful attempt could be
materialized. Recently, Mehmood and Usman [55], and Mehmood [56] have ultimately
succeeded in his struggle and presented the details about the mishaps existed in the realm
of stretching/shrinking surface flows. The author [56] has not only figured out the
ambiguity pertained in the existing literature but also sorted out the mater by presenting
correct formulation of the problem. The contributions of [56], provide an apple
opportunity for the scientists to investigate the flow mechanism in a correct manner. It is
noted that the nature of the wall velocity (i (x,t) = Zor % (a < 0)) is assumed to
be retarded (in x) and the utilization of this kind of wall velocity assured the existence of

dual solutions. It is also a fact that the retarded wall velocity requires some kind of
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assistance in the shape of wall suction/injection velocity so that a meaningful solution

could be captured.
3.2.1 Mathematical formulation

In the current study we assume an unsteady, incompressible, two-dimensional
boundary-layer flow stimulated by a permeable shrinking sheet, which is flexible in
nature. The sheet is supposed to be started into motion, in negative x —direction, at time
t = 0 in a stationary fluid with a velocity u,,(x, t). Further, the ambient conditions are
prevailed outside the boundary-layer region, which implies that fluid has zero velocity
and uniform pressure there. The x —axis is considered to coincide with the shrinking
sheet in positive x —direction whereas the y —axis is assumed to be normal to the
x —direction. In view of above assumptions, flow schematic is shown in Fig. 3.1,
whereas the continuity equation has the same form as presented in Eq. (2.1), while the
equation of motion is similar to Eq. (2.7), given by

du, du, du__ _d%u
T Ut Vs = Vo 64

while the corresponding initial and boundary conditions read as

u(x,y,t) =0, att = 0, forall (x, y), (3.5)
and

u(x,y,t >0) =u,(x,t), v(x,yt>0)=n,(xy), at y=0, (3.6)
u(x,y,t > 0) =0, aty=o. G.7

Recently, Mehmood [56] pointed out that the self-similar flow, in the case of an unsteady
shrinking surface, prevails if the wall velocity pertains the following form:

u=uw(x,t)=-4't£; T=at, (3.8)
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where a is a constant referred to the shrinking rate when one choses its negative
behavior. It is also a worth mentioning aspect that wall velocity of the form u,,(x,t) =

;—fyit,isalsoadoptedbymostoftheauthorsandsameformofwallvelocitywasutilized _

by Fang et al. [49] during the analysis of unsteady shrinking surface flow. Corresponding
to the said forms of wall velocity, the following similarity transformations are introduced:

n= ’_w, w = u, (% 0)f"(n), and v=["EP f) (39)

The unique feature of above similarity transformations is the appearance of negative sign
therein, which distinguishes it from the similarity transformations existed in the literature.
This fact has also been mentioned by Batchelor [3] in his book. In the current study, the
transformation Eq. (3.9) is a key for further exploration. The use of Eq. (3.9) merges the
initial condition Eq. (3.5) and the boundary condition Eq. (3.7) into a single one as given

f'=0, at n=oo, (3.10)
The self-similar nature of the flow under question as well as the wall velocity presented
in Eq. (3.8) demands that the normal wall velocity 1,(x, t) must be of the form (for
detailed study one may consult [56])

Be(x,7) = dt 72, (3.11)
Here d is a constant and its positive/negative values designate to unsteady
injection/suction velocities, respectively.

In view of Egs. (3.8), (3.9) and (3.11) the boundary conditions defined in Eq. (3.6) at
y = 0 take the form

/=1 =S at n=0, (3.12)
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where S = == represents the suction/injection parameter, whereas, its positive/negative
values determine the wall injection/suction, accordingly. Further, the adoption of stream
function in the similarity transformations (3.9) identically satisfies the continuity
equation (Eq. (2.1)) while Eq. (3.1) (i.c. momentum conservation equation) develops in a
self-similar form as:

=" =" ="+ 3. (3.13)
Notice that Eq. (3.13) recovers the Eq. (6) of [49] (for 8 = 1) if one replaces the term f'"
by —f™ in it. Utilization of the correct similarity transformations (i.e.Eq. (3.9)),
modified the problem considered in [49] as given by

" =ff"=f"+ B¢ + 1", (3.14)
while the corresponding boundary conditions are given by

f@=s fO=1 fi(=)=0. (3.15)

Here § = ‘,-_¢=.v, and 8 =£- whereas the corresponding wall suction/injection velocity is
taken as u,(x,t) = J%? Positive values of # represent an accelerated case while its

negative values refer to the decelerated nature of flow.

3.2.2 Numerical solution
In order to solve the resulting equations (3.13), along with boundary conditions

Egs. (3.11) & (3.12) and Eq. (3.14), subject to boundary conditions Eq. 3.15, we
transform them into a system of first order ordinary differential equations, given by

Y3 =2yy; —n? - (}'1 +%}'z)u 10 =1 y0)=S, y(x)=0, (3.16)

Ys=2yy:~n*—p (y1 + %yz). 10 =1 y0=S y=)=0 @317
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Here, we take f(n) =y,

shooting technique. The dual solutions are figured out which are presented in Table 3.2.

f/m)=

1 M=y

An excellent agreement ensures the correctness of solution scheme.

Table 3.2: Comparison of the values of f”(0) with those of Mehmood [56] and the

listing of second solution for different values of S.

and ") =ys.

To sort out the dual solution, Eqs. (3.13) are solved numerically by using the

s Mehmood [56] Present Results

1" Sol 1*Sol. 2* Sol,
-2.074799052 —0.5043 —0.5043

-=3.0 -2.4115 —2.4115 2.5881
—4.0 -3.5930 -3.5930 6.9590
-=5.0 -4.6846 —4.6846 13.6528
—6.0 —5.7414 —5.7414 23.1453
-=7.0 -6.7804 —6.7804 35.8671
-8.0 -7.8090 -7.8090 52.2334
-=90 —8.8309 —8.8309 72.6507
-10.0 —9.8482 —9.8482 97.5194

Table 3.3: Numerical values of " (0) against 8 for different values of S.

B S=-21 S =-2.15 S=-22 §=-25 _§=-3.0
I"Sol | 2 Sol | 1% Sol. Sol | 1*Sol | 27 Sol. | 17Sol | 27 Sol | I"Sol. | 2 Sol
0.0 | —13701 | —0.7298 | —1.4694 | —0.6805 | —1.5582 | —0.6417 | —2.0000 | —0.4999 | —2.6180 | —0.3819
—05] —1.0933 | —0.4262 | -1.2342 | 0.2859 | —-1.3479 | —0.1696 | —1.8558 | 0.4277 | 25147 | 1.5506
-1.0| -0.7849 | —02103 | —0.9893 | 0.0232 | —1.1329 | —-0.2000 | -1.7112 | 1.0618 | —2.4115 | 25881
-1.5] —0.4029 | —0.0942 | —0.7336 | 0.2901 | —0.8692| 05901 | ~1.5662| 1.6209 | —2.3081| 34777
-20| -—- ——= | -04650| 05250 | —0.6897| 0.8295 | —1.4209| 21391 | —-2.2047 | 4.2912
-25| —-—~- ——= | 01796 | 0.7298 | —0.4612| 11114 | —1.2753| 2.6304 | -2.1013 | 5.0559
-30] ——-— - - —-—— | =02278] 13769 | —1.1295| 3.1022 | —1.9978 | 5.7860
-35| ——-- —_—— - —— - —-——-— | —09834| 3.5589 | ~1.8943 | 6.4897
-50| ——-— _— - - —_— -—— | —05437 | 48641 | —1.5837 | 8.4903
-65| === —— _— - - -—-= | 01021 | 6.1016 | —1.2728 | 10.3777
-70] —-—- _— ——— - _— —_— -— -——= | =1.1692 | 10.96888
-80) —--- - ——— - —_— - - -——= | —=0.9618| 12.1895
-10| ==~ —-_— —— ——— - — - —-—= | —0.5468 | 14.5217

52




20 [ | LI L L] L ] [ L
h \
15 o \ . -1
\
> ~
10F S . .
:@ i S . S= -2.0{4799052J
~ 5 S~ - {
- ~. i
0 = = - <
-5 - -
- L ] o . 1 L | [
-6 3.5 5 45 4 -3.5 -3 -2.5 -2 -1.5

M
Fig. 3.5: Skin-friction coefficient as a function of suction parameter S.
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Fig. 3.6: Velocity profile of dual solutions for some values of S.
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Fig. 3.7: Velocity profile of dual solution at # = —1.0 for some values of §
(obtained due to Egs. (3.14)—(3.15)).
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Fig. 3.8: Dual solution of the wall skin-friction coefficient plotted against g for

some values of S (obtained due to correct formation Eqs. (3.14)—(3.15)).
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Fig. 3.9: Dual solution of wall shear stress at § = —1.0 for some values of §

(obtained due to Egs. (3.14)—(3.15)).
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Fig. 3.10: Dual velocity profile at S = —3.0 for some values of 8 (obtained due to
Egs. (3.14)—(3.15)).
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3.2.3 Results and discussion

Investigation of the existence of dual solutions for unsteady shrinking sheet flow
is the keen desire of the present study which has become efficiently fructified with the aid
of present numerical method. The dual solutions captured during the present
investigation, for some chosen values of suction parameter, are portrayed in Fig. 3.5,
wherein it is observed that there is a smooth variation in the first solution; however, the
second solution has broader span. Further, the solution is not possible beyond a certain
value of suction parameter. This critical value S is sorted out after a great deal of
attempts and it is reported as S, = —2.074799052. Earlier to this critical value no
solution is possible which implies that the provision of sufficient wall suction is
necessary for the existence of solution, in this case. It is also observed that as the solution
approaches the critical value, S — S, the existence of dual solutions demands more and
more attention. The reported value, i.e., S = S, is the least amount of suction at which
the retarded boundary-layer survived, however, the skin-friction coefficient does not
become zero which means that there is no presence of reverse flow as well as the
separation point therein. Fig. 3.5 presents the regions wherein the dual/unique/no-
solutions prevail. The complete analysis of the study also demanded that the velocity
profile be interpreted with clear visibility, and this has been done in the Fig. 3.6, where
the velocity profile is displayed for some chosen values of suction parameter and dual
solutions are figured out during the analysis. It is also observed that as the magnitude of
suction is enhanced the span of velocity profile amplifies accordingly. Almost same
pattern is noted for both branches of solution.
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To report the correct analysis of [49] the formulation used in the current study is
also applied to the problem considered by [49] and resultantly Egs. (3.14)—(3.15) are
obtained. On comparison, it is noted that the Eq. (3.13) can be retrieved by just taking

= —1 in the Eq. (3.14). For further analysis, the system of Egs. (3.14)—(3.15) has been
solved and some graphs (for various f) of [49] are re-plotted for some chosen values of
S. The dual solutions are captured for certain values of S against # and n which are
presented in Fig. 3.8 and Fig. 3.9, respectively. From Figs. 3.8—3.9, it can be seen that
both graphs are the reverse images of the graphs reported by Fang et al. [49] in their Figs.
1a, 4 & 5 during his study. From these findings it is clearly observed that the magnitude
of skin-friction enhances with the increasing values of suction velocity. This implies that
boundary-layer strengthens as the availability of suction is amplified. Consequently, flow
behavior exhibits more stability. By choosing g = —1, the velocity profile portrayed in
the Fig. 3.7, which is as same as drawn in the Fig. 3.6. Further, the velocity profiles for
Egs. (3.14)—(3.15) (obtained by utilizing the correct formulation) are already presented
in Figs. 2 & 3 of [49], are also re-presented here in Fig. 3.10 (of present study), wherein it
is depicted that the second solution becomes more strengthened with £. Although, it is a
fact that only first solution is a meaningful solution and second solution has no such
ability. However, the existence of second solution cannot be ignored and it has to be
studied for complete analysis of the flow phenomenon.
33 Conclusion

In a study shrinking sheet flow, when the shrinking wall velocity follows a power-
law form, both scenarios, namely, the existence of unique and non-unique solution have

been observed. The boundary-layer flow is of accelerated nature for m <0 and of
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decelerated nature for m > 0. Therefore, the duality of solution has been captured for the
case of m > 0. The current analysis is an attempt to study the various aspects of the
unsteady, two-dimensional self-similar flow stimulated by a shrinking sheet and to sort
out the possibility of the existence of dual solution in the presence/absence of suction
parameter. The correct reference velocity as suggested by Mehmood [56] is chosen for
self-similar formulation of the problem. The resulting equations have been solved using
an efficient numerical scheme. Critical values of the suction velocity are also captured
with due care which enabled us to rectify the results already reported in literature. During
the current analysis it is noted that the shrinking sheet must be permeable in nature as
well as the provision of adequate amount of suction is mandatory for the existence of
meaningful solution. Further, the dual solution is only possible if sufficient wall suction
is provided, whereas the solution prevails for a certain limit (critical value |S,|) of suction
wall velocity, and it disappears to exist after the critical point i.e., |S| < |S.|. The
presence of wall suction velocity definitely affects the skin-friction coefficient and the
velocity profile in a noticeable way. Here, it is observed that the span of skin-friction
coefficient expands with the increasing values of suction parameter and the duality of
velocity profile is also affected by the suction parameter in the same pattern as noted in
the case for skin-friction coefficient. The effect of suction parameter on velocity function
is seemed more prominent for second solution as compared to the first solution.

As a final remark, it is obvious that in both the (steady and unsteady) cases of
shrinking sheet flow, duality of solution has been captured in only those scenarios when
the boundary-layer flow is of retarded nature. In the accelerated case of shrinking sheet
no such duality of solution has been noticed.
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Chapter 4

Axisymmetric flow due to a non-linearly stretching cylinder:

non-uniqueness of solution

In the previous two chapters, steady and unsteady characteristics of the two-
dimensional planner cases of stretching and shrinking sheet flows have been analyzed in
details wherein presence of dual solutions is not only reported for shrinking sheet flow
but also observed for stretching sheet flow. It had been a well mentioned fact that the
availability of dual solutions is considered a special feature of shrinking surface flows
whereas the stretching surface flows were supposed to be infertile regarding the existence
of dual solutions. Ample efforts are made, in chapter 2 to analyze the steady/unsteady
stretching sheet flow and the existence of dual solutions in this case has broken out the
established facts about the non-uniqueness of shrinking surface flows, only. The resuits
reported in chapter 2, stimulated us to search out the possibility of duality/multiplicity of
solution for the axisymmetric cases. In the current chapter, our entire consideration will
be limited to investigate the steady/unsteady characteristics of stretching cylinder in
context of the presence of dual solutions.

The dual solutions are reported, not only, in the presence of wall suction/injection
effects but also observed without these effects. Further, the continuous cylinder chosen
during the current analysis is of variable radius, which also involves effects of surface
curvature on the flow phenomenon. The surface transverse curvature has appeared as an

interesting and influential ingredient on the boundary-layer flow due to moving
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continuous surfaces. Interesting effects of the surface transverse curvature with regard to
the capturing of non-unique solution have been reported in this chapter.
4.1 Steady boundary-layer flow past a stretching cylinder

The boundary-layer flow phenomenon caused by the moving continuous surfaces
is regarded as an important class of self-similar flows. Like the two-dimensional, self-
similar planner boundary-layer flows, the axisymmetric flows also attracted a wider
community of researchers. In the continuation of theoretical investigations of the
boundary-layer flows due to continuous moving surfaces, Sakiadis [12-13] also extended
his work for axisymmetric scenario, wherein Sakiadis [58] analyzed the self-similar
boundary-layer flow over a continuous cylinder moving with constant velocity. The flow
due to variable velocity was investigated by Crane {59] during the analysis of boundary-
layer flow induced by stretching cylinder. A number of attempts can be seen [60-65],
where the authors are remained focused upon linear nature of stretching velocity.
However, there is utmost need to investigate the non-linear prospectus of the flow related
to stretching cylinders. This gap has been recently been filled by Mehmood [56] during
the study of viscous flows caused by stretching/shrinking surfaces. After a deep analysis,
the author [56] concluded that the cross-section of the cylinder should be of variable
nature for supporting the different forms (power-law or exponential) of non-linear
stretching wall velocity in order to ensure a similarity solution. This new vision regarding
non-linear behavior of the wall velocity motivated us to explore the different hidden
features of stretching surface flows, particularly to search out the possibility of dual
solutions for the self-similar flows stimulated by the moving continuous surfaces.
Although, there is a bulk of literature available for shrinking surface flows regarding the
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existence of dual/multiple solutions due to which duality of solution is assumed to be
confined to the shrinking surfaces only, while the stretching surfaces are usually known
for pertaining the unique solution. These accepted facts in respect of presence of dual
solutions were countered by Mehmood and Usman [66],. wherein the authors made a
claim that the duality of solution is not the characteristics of shrinking surfaces only but
the stretching surfaces do also bear a capacity of exhibiting dual nature of solution. The
claim made by the authors [66] came into reality in the form of Tabassum et al. [82]
wherein the authors reported dual solutions not only in the presence of suction/injection
situations but also in the absence of these. During the present analysis, the duality of
solution has been explored for the self-similar boundary-layer flow caused by steady
stretching cylinder. The presence of dual solution has been observed with and without
providing the wall suction/injection velocity. These findings made the current study a
valuable reference for forthcoming researches.

4.1.1 Mathematical formulation

We consider a steady, self-similar boundary-layer flow caused by a continuous
permeable stretching cylinder of variable radius of the form R(Zz). It is supposed that the
flow is two-dimensional, non-rotational, and having symmetry about z —axis. The
schematic diagram exhibits the flow geometry and the corresponding coordinate system
is referred in Fig. 4.1. The body forces as well as the pressure-gradient are assumed to be
absent. In the light of above assumption the boundary-layer equations in cylindrical

coordinates are given as

A _ g, @.1)
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u—+ a—"—v-—(r“) 42)
subject to the following boundary conditions:

=uy(2), v=1,(2), at r=R(2)
: =0, at r=00 }’ (43)

where u and v are the velocity components taken along z— and r —directions,
respectively, and v is termed as kinematic viscosity. For the nature of the cylinder
considered herein demands that the similarity variables should be of the forms

n=rri,  $=zf(). (4.4)

The above similarity transformations have been derived for the case when

1-m

u, = az™, R=Ryz 7, 4.5)
where R, is the reference radius of the cylinder having constant radius referred to linear
(m = 1) wall velocity, whereas, for non-linear wall velocity (m # 1) the cylinder radius
obeys the power-law form given in Eq. (4.5). The stream function (y) is related to the
velocity components u and v in the form u = i-';—'f, andv = —E Using Eqgs. (4.4)—(4.5)

in Egs. (4.1)—(4.2), we get the following form of equations:
r Ll _ry_,1af a(r

m(@) -LE-5)=v:2(r2 () 49

, 2d
f =aR°. f=—";;Ro, at 7,=Ro} (47)
=0, at n=o)
thereby, satisfying the equation of continuity, identically. Here, it is also a noteworthy
aspect that, in the case of steady stretching cylinder, for the existence of self-similarity
solution the radius of cylinder must vary in the same manner as does the boundary-la

1-m

thickness (i.e,z"7 ). Moreover, the suction/injection wall velocity also follows the
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power-law form given by 1, (2) = dzmT_1 where the constant d is a dimensional constant
and designates the normal wall velocity as suction/injection corresponding to its -ve/+ve
values, respectively.

The system (4.6)—(4.7) can be put in dimensionless form by modifying the

transformations (4.4) as
n= J%z“T"r , u==f), v= —\/a_vz'"‘T‘(§+ 2. 4.8)
Consequently, the system (4.6)—(4.7) in dimensionless form reads as

n() -1E-5)-12(56) &
; N :en.. f =~ Ren, :: '1":‘::‘“}, 4.10)

where, Reg, = I“—:"—z is the Reynolds number based on the reference redius R,. Egs.

(4.9) and (4.10) can be simplified by removing the variable coefficients from most of the
terms and the constant Reg, from the boundary conditions by using the following new
variables:

2_Rep

F=1""R f = fReg,, @.11)

due to which the resulting system after dropping the bars reads as

mf'? - ff" = (1 + 2emf"), 4.12)
F@=1  fO)=-=-, f'(=) =0, (4.13)

where x=-‘;::; is the curvature parameter, and S=‘,% denotes the dimensionless

suction/injection parameter. Note that the large values of Reg, correspond to the
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cylinders of large radius whose surface transverse curvature is relatively small which
corresponds to small value of x. Similarly, large values of x correspond to large
transverse curvature. The definition of suction/injection parameter S reflects that negative
values of S cormrespond to the wall suction situation while the positive values of S

correspond to wall injection situation.

» Z

\

Fig. 4.1: Schematic of the axisymmetric flow and the associated coordinate system.

4.1.2 Numerical solution
The system of self-similar Eqgs. (4.12)—(4.13), obtained during the curmrent

investigation become more compatible to be solved numerically. As previous, shooting
method is utilized to sort out the solution. During the present analysis, dual solutions are
reported which are presented in the tabular form as well as portrayed graphically. A
comparison of the current results with the already existing data in literature has been
carried out in Table 4.1. An excellent agreement is obvious which ensures the accuracy
and validity of the current solution.



Table 4.1: A comparison of present analysis with the results reported in [56].

x = 0.25 x=0.5 k=20
™ [Dataof [56] | Presentstudy | Data of [56] | Present study | Data of [56] | Present study
10 —2.7336 —2.7335 —2.8290 —2.8289 —33596 —3.359%4
7 —23224 —23223 —2.4172 —2.4170 —2.9393 —2.9393
5 —2.0001 —2.0000 —2.0940 —2.0938 —2.6077 —2.6078
3 ~1.6120 -1.6119 —1.7042 —1.7042 —2.2047 —2.2048
1 —1.0905 —1.0905 -1.1778 -1.1777 —1.6486 —1.6485
0 —0.7056 —0.7056 —0.7826 —0.7825 -1.2078 —1.2064
—0.2 —0.6057 —0.6057 —0.6779 —0.6778 —1.0832 —1.0809
—0.4 —0.4925 —0.4925 —0.5576 —05575 —0.5576* —0.9294
-08 —0.2021 —02020 —0.2373 —0.2373 —0.4698 —0.4593
-1.0 0.0000 - 0.0000 -——= —0.0172 -——=
* Might be a typo mistake.

Table 4.2: Numerical values of " (0) against S for various values of x at m = 1.

S x = 0.25 x =05 k=10 k=20
1%Sol. | 2 Sol. | I"Sol. | 2 Sol. | 1"Sol. | 2 Sol | I"Sol | 2™ Sol,
10.0 —— —_— ——— ——— -_—— — -=0.1575 -
9.0 —— —_ - ——— —=0.1390 —_—— —-0.1835 —_——
7.0 —— ——— —=0.1614 ——— -—0.1889 ——— —0.2639 | —-0.2639
4.0 —0.2630 ——— -=0.2938 ——— —0.3653 — —0.5342 —0.5349
3.5 -(.2985 ——— -0.3359 ——— -0.4202 | —-0.4202 -0.6110 -0.6121
2.5 -~0.4014 ——— —-0.4557 | —0.4557 —-0.5701 -0.5704 —0.8071 -0.8096
1.4 —=0.5985 | —0.598S —0.6749 —0.6751 —0.8234 —0.8242 -1.1057 -1.1113
1.0 —0.7049 —0.7050 -~0.7880 —=().7883 —0.9462 —=0.9474 —1.2405 —1.2479
0.0 -1.0905 =1.0914 -1.1778 -1.1792 —1.3433 —1.3472 —-1.6486 —1.6638
-1.0 | -1.6815 —1.6864 -=1.7488 —=1.7555 —1.8889 -—1.8997 -2.1693 -2.1990
—40 | —4.2496 —43206 42647 -43411 —4.3001 —4.3926 —4.3982 4533
—6.0 | —6.1688 -6.360 —6.1760 —6.369 —6.1921 —-6.407 —6.2344 —6.510
—-80 | —8.1269 —8.531 -8.1309 —8.522 —8.1399 —8.551 —8.1619 —8.651
-10 | -10.1014 -10.84 —-10.1041 =108 -10.1097 -10.8 -=10.1229 | -10.913

Table 4.3: Numerical values of f*(0) against S for various values of x at m = 3.

P x = 0.25 k=05 x=1.0 x=2.0
| 1%Sol. | 2™ Sol. | 1°Sol. | 27 Sol. | I"Sol. | 2** Sol | I°SoL | 2™ Sol.
14.0 —_—— - — -——— ——— —_— — —0.6247 -
13.0 —— _—— ——-— ——— —-—— —-—— -0.6736 | —0.6736
7.0 _——— ——— - ——— —_—— —_——— -1.1176 -1.1179
6.0 - —_— -—— - — -0.9727 —— -1.2261 —=1.2267
5.0 - ——— -0.9411 - -1.0770 | -1.0770 -1.3478 —1.3486
3.0 -1.0954 —_——— -1.1764 —— -1.3344 -1.3347 —~1.6363 -1.6382
2.0 —1.2384 | —1.2384 -1.3254 —1.3254 -1.4924 ~1.4928 -=1.8062 -1.8089
1.0 —1.4088 -1.4090 -1.5000 —-1.5002 —=1.6732 -=1.6740 -1.9952 —1.9992
0.0 =1.6119 -1.6123 —-1.7042 -1.7048 —1.8795 -1.8810 —2.2048 —2.2107
-1.0 | —1.8526 —1.8§2f -1.9418 -1.9432 -2.1138 —-2.1166 —2.4363 —2.4451
=50 | —-3.2001 -3.3167 —3.2486 —3.2842 —3.3565 -=3.3818 -3.6011 —3.6372
—-6.0 -3.6105 —4.6200 —3.6500 —3.7134 -3.7393 —3.7798 —3.9526 —4.0017
-8.0 | —4.4806 -~8.4150 —4.5071 —4.6806 —4.5675 —4.6596 —4.7211 —4.8083
-10.0] -5.3933 —14.9872 -5.4118 —5.8570 —5.4535 -5.6341 —5.5608 -5.7070




Table 4.4: Numerical values of f” (0) against of m for various values of x at S = ~—1.

| k=025 k=05 k=10 k=20
™ "1%Sol | 2 Sol | I"Sol | 2 Sol | I"Sol. | 2 Sol. | I"Sol. | 2 Sol.
10 —2.8105 | —2.8106 | —2.9061 | —2.9063 | —3.0902 | —3.0908 | —3.4375 | —3.4396
9 —-2.6892 | —2.6893 | —2.7846 | —2.7848 | —2.9680 | —2.9687 | —3.3135 | —3.3159
8 —2.5628 | —2.5630 | ~2.6579 | —2.6582 | —2.8406 | —2.8413 | —3.1840 | —3.1867
7 —2.4310 | —-24312 | —-2.5256 | —2.5260 | —2.7073 | —-2.7082 | —3.0484 | —3.0514
6 —2.2933 | —2.2936 | —2.3874 | —2.3879 | —2.5678 | —2.5690 | —2.9060 | —2.9097
5 —-2.1497 | —2.1502 | —2.2429 | —2.2435 | —2.4217 | —-2.4230 | —2.7562 | —2.7610
4 —2.0012 | —2.0021 | —-2.0931 | —2.0940 | ~2.2694 | —2.2712 | —-2.5990 | —2.6052
3 —1.8526 | —1.8542 | -19418 | —1.9432 | —2.1138 | —2.1166 | —2.4363 | —2.4451
2 —1.7208 | —1.7238 | —1.8040 | —1.8068 | —1.9674 | —1.9725 | —2.2776 | —2.2917
1 -1.6815 | —1.6864 | —1.7488 | —1.7550 | —1.8889 | —1.8997 | —2.1693 | —2.1990
0.5 | —1.7965 —_—— —1.8469 - -=1,9591 - —2.2030 -———
0.2 —1.9943 - -2.0304 _— —-2.1154 ——— -2.3190 -———
0.1 | —-2.1016 _—— —2.1324 _—— —-2.2062 —_—— -2.3915 -_———
0 —2.2403 —— - -2.2658 ——— —-2.3278 - — —-2.4917 -_———
—0.2 | —2.6601 _— —2.6754 —_—— -2.7131 _— -2.8254 - —
—0.4 | —3.4255 _— —3.4326 —_——— - _—— _—— _———
—0.6 | —5.0412 _—— -=5.0434 _—— - - ——— _———
Table 4.5: Numerical values of f"(0) against m for various values of x at S = 1.
K = 0.25 k=0.5 x=1.0 k=20
™ "7%Sol. | 2 Sol. | I"Sol. | 2 Sol | I"Sol. | 2*Sol. | ISoL | 2™ Sol
10 | —2.6592 —— —2.7543 | —2.7544 | —29377 | —2.9379 | —3.2834 | —3.2849
9 | -2.5222 | —2.5222 | —2.6170 | —2.6171 | —2.7995 | —2.7999 | —3.1434 | -3.1452
8 —2.3764 | —2.3765 | —2.4710 | —2.4711 | —2.6527 | —2.6531 | —2.9945 | —2.9964
7 —2.2201 | —2.2202 | —2.3143 | —2.3144 | —2.4950 | —2.4955 | —2.8343 | —2.8365
6 —=2.0505 | —2.0506 | —2.1443 | —2.1444 | —2.3238 | —2.3243 | —2.6602 | —2.6626
5 —1.8637 | —1.8638 | —1.9569 | —1.9571 | —2.1350 | —2.1356 | —2.4677 | —2.4706
4 —1.6534 | —1.6535 | —1.7458 | —1.7460 | —1.9219 | —1.9226 | —2.2501 | —2.2534
3 —1.4088 | —1.4090 | —1.5000 | —1.5002 | —1.6732 | —1.6740 | —~1.9952 | —1.9992
2 —1.1088 | —1.1089 | —1.1976 | —1.1979 | —1.3662 | ~1.3672 | —1.6787 | —1.6840
1 —0.7049 | —0.7050 | —0.7880 | —0.7883 | —0.9462 | —0.9474 | —1.2405 | —1.2479
0.50| —0.4302 _—_— -0.5053 _——— -0.6505 - —0.9250 | —0.9346
0.20| —0.2292 _——— —-0.2939 _——— -0.4230 ——— —0.6748 —_——
0.10]| -0.1559 _——— —0.2150 —_——— -0.3357 —_—— -0.5762 —_———
0 —0.0802 —_——— —=0.1321 _—— —0.2419 _—— —0.4678 _———
=0.2] 0.0699 ——— 0.0405 _— —0.0354 —_—— -0.2159 —_——
-0.4| 0.1821 —_——— 0.1913 —_— 0.1784 - — - _———
—-0.6] 0.1699 —_—— 0.2127 _—— 0.2918 —_——-— - —_




Table 4.6: Numerical values of f”(0) against m for various values of x at S = 0.

k= 0.25 k=05 k=10 x=20
™ "7Sol | 2 Sol | I"Sol | 22 Sol. | I"Sol | 2 Sol | I"Sol. | 2™ Sol.
10 | —2.7335 —_—— -2.8289 ——— —3.0127 | —3.0131 | —3.3596 | —3.3613
9 —2.6038 —_— - —-2.6991 _——— —-2.8823 | —2.8828 | —3.2274 | —3.2293
8 —2.4673 —_— —2.5622 _——— —2.7447 | —2.7452 | -3.0877 | —3.0899
7 —2.3224 | —2.3224 | —2.4172 | —2.4172 | —2.5986 | —2.5992 | —~2.9393 | —2.9417
6 -2.1673 | —2.1675 | —2.2617 | —2.2620 | —2.4422 | —2.4430 | —2.7802 | —2.7832
5 -=2.0001 | —2.0002 | —2.0940 | —2.0942 | —2.2731 | —2.2740 | —2.6078 | —2.6114
4 —18167 | —1.8169 | —1.9099 | —19104 | —2.,0875 | —2.0886 | —2.4181 | —2.4226
3 -1.6119 | —1.6123 | —1.7042 | —-1.7048 | —1.8795 | —1.8810 | —2.2048 | —2.2107
2 —1.3762 | —1.3768 | —1.4668 | —14677 | —1.6387 | —1.6410 | —1.9564 | —1.9651
1 —=1.0905 | —1.0914 | -1.1778 | —1.1792 | —1.3433 | —1.3472 | -1.6485 | —1.6638
0.50 | —0.9162 —_—— -1.0000 _—— —=1.1595 | —1.1652 | —1.4540 | —1.4777
0.25 | —0.8167 —_— -—0.8977 _—— —1.0525 | —1.0597 | —1.3392 | —1.3726
0.20 | —0.7955 _——— -0.8758 _——— -1.0295 | —1.0371 | —1.3143 | —1.3518
0.15 | —0.7738 _—— -0.8534 —_—— -1.0058 —_—— —1.2887 | —1.3379
0 —0.7056 _—— -(.7825 _—— —0.9306 _——— —-1.2064 _———
-0.2| —0.6057 —_—— —0.6778 ——— -0.8179 _—— —1.0809 ———
-0.4] —04925 -——— —0.5575 —_——— —0.6855 _— —-0.9294 -
-0.6| —-0.3608 - —0.4148 _——— —0.5232 _—— —0.7347 ———
-0.8| —0.2020 —_—— —=0.2373 _——— -=0.3104 _—— —0.4593 —_———

Table 4.7: Numerical values of f'(0) against S for various values of m at x = 0.25.

s m=-2,0 m=-3.0 m=-40 =-50 m=—6.0
[ T%Sol | 2 Sol. | "Sol. | 27 Sol. | I°Sol | 2 Sol | I"Sol. | 2° Sol | I"SoL | 2* Sol
1 |12 ] ——= | ——= [ === ] === | === | === [ === | === [ ===
2 | -38666 | ——— | 13490 [ 333063 | ~—= | ——= | === | === | === | ===
3 -5.9130 — -2.6186 | 144.038 | —0.7931 5.7072 —_—— —-_— - -
4 -7.9354 ——— -~3.7266 37921 ~1.9529 | 20.9230 —_— - —_—— -
5 -9.9487 - -4,7862 785.8 -2.8067 | 48.0201 | —1.3043 6.1202 ——— ———
6 -119574| ——~-— =5.8242 1410.6 -3.5788 90.781 -2.1393 | 14.1883 0.1297 0.8472
7 -139636] —--— -6.8507 2300 —4.3144 152.80 —2.8118 | 259917 | —1.4537 5.2142
8 =159682| —-—-— -7.8702 3502 =5.0301 237.67 —3.4219 | 423797 | -2.1598 | 10.1649
10 | —-199746] —-- -9.8970 7029 -6.4289 490.1 —4.5582 92.008 —3.2543 | 25.1124

Table 4.8: Numerical values of £ (0) against S for various values of m at x = 0.50.

s m=-2.0 =-3.0 =—4.0 m=-50 m=—6.0
| 1*Sol. [ 2 Sol | 1°Sol. | 2 Sol | I"Sel. | 2™ Sol | I"SoL Sol. | 1"Sol. | 2 Sol.
1 -1.6666 —— —_—— - ——— - - - —_——— - —
2 -=3.8571 — -1.1816] 156450 | —-—-— —_——— ——— _— —— _—
3 -5.9090 —— —2.5749| 94.86 —— _—— -—— —— _— _——
4 -=7.9333 - -=3.7057| 282.57 | -1.8255| 11.0237| —--- ——— -_—— ——
5 —9.9473 - —4.7738| 625.8 —2.7485] 30.7343 | —0.8020] 1.6107 - ———
6 -=119565| ——-— ~5.8160] 11715 | —3.5442| 64.028 | —1.9936| 7.3874 — ———
7 -139629| ——-— —6.8448| 1966.6 | —4.2911| 114.546 | —2.7325| 159955 | —0.9213 | 12673
8 -15.9677| ——-— -7.8658| 3057 -5.0133] 185.86 | —3.3703| 28.5387 | —1.9741 | 5.0021
10 | —199743| ——-— -98943| 6315 —6.4189| 405.1 —4.5304| 68.618 | —3.1812 16.152
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Fig. 4.2: Dual solutions shown by f£”(0) for some selected values of curvature

parameter k against suction/injection parameter S atm = 1.

Fig. 4.3: Dual solutions shown by f''(0) for some selected values of x as a

function of suction/injection parameter S at m = 3 (non-linear case).
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Fig. 4.6: Dual solutions shown for ' (0) as a function of m for various values of

xatS=0.
500 1 ] 1 [ 4 | |} | | | ) |}
/
= - - Z rmem- -
o0k m=-3.0,-4.0 -50, -6.0\, 10 ]
AN
” k o ow o o m e =
sk p ‘\ 0 |
$ )’ , -10km =-3.0,-4.0,-5.0, 6.0
N2y ,’ N\ 6 6.05 6.1

Fig. 4.7: Dual solutions of f''(0) for some selected values of m as a function of

suction parameter S at k = 0.25.
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Fig. 4.8: Dual solutions of f"(0) for some selected values of m as a function of

suction parameter S at x = 0.50.
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Fig. 4.7: Velocity profile for different values of curvature parameter at S = —1,

for linear wall velocity.
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Fig. 4.9: Velocity profile for different values of curvature parameter in the

absence of suction/injection for linear wall velocity.
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Fig. 4.10: Velocity profile for different values of suction/injection parameter at

x = 0.25, for linear wall velocity.
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Fig. 4.11: Velocity profile for different values of suction/injection parameter at

x = 0.50, for linear wall velocity.
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4.1.3 Results and discussion

During the current analysis the dual solutions have been figured out in context to
the involved physical parameters, where ever possible. In the while after figures, solid
lines indicate first solution whereas second solution is represented by broken lines. Fig.
4.2 depicts the duality of solution for the case of linear stretching wall velocity (m = 1).
It is depicted that the dual solutions occur for both suction and injection cases. It is
clearly noted that for chosen values of x, the magnitude of f'(0) starts decreasing by
changing the domain from suction to injection regime where both the solutions become
closer and closer to each other and ultimately become identical at some critical value of
S (= S;). Such critical values have been computed very carefully beyond which the dual
solutions seize to exist. After that a unique solution prevails to some extent by enhancing
the injection effects as well as by magnifying the curvature parameter, which definitely
reflect the supportive role of the surface transverse curvature (sees Tables 4.2 & 4.3).
Obviously, for increasing values of the injection parameter, magnitude of coefficient of
skin-friction also decreases, which is of course a well-known fact. It is also observed that
there are slight variances in both branches of the solution and one has to put lot of efforts
to capture the second solution. This might be the reason due to which very rear attempts
were made in the past to figure out these solutions. The most interesting aspect, noted
during the current investigation, is that the dual solutions are not only available for wall
suction/injection cases but can also be seen in the case of no wall suction/injection
velocity (i.e., S = 0). This is a big achievement because it was a well-established fact that

the duality of solution is possible only when a sufficient amount of wall suction is
provided.
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The duality of solution is also observed for power-law wall velocity, for example,
by taking m = 3 (as displayed in Fig. 4.3). A similar behavior of two solutions can be
observed as it was in the case of linear wall velocity, however, both solution branches
converge more rapidly in this case as compared to linear wall velocity case. Interestingly,
the domain of solution has been extended in this case (see Fig. 4.3) because of more
accelerated nature of the flow. Now, the two solutions have become possible for some
stronger wall injection velocities, as depicted in Fig. 4.3 and Table 4.3.

The information depicted in Figs. 4.2 & 4.3 and the data reported in Tables 4.2 &
43 provide an opportunity to make important findings towards the understanding of the
facts behind the presence of non-unique solutions even for the wall injection case and no
wall suction/injection. From Fig. 4.2 it is obvious that for increasing values of surface
curvature parameter x the critical values of the injection parameter are also increased.
That is, for the cases of large surface curvature the solution survives for some further
larger values of the wall injection parameter. The same fact can also be seen and
confirmed from Fig. 4.3. This means that the curvature parameter, x, serves as a
favorable pressure gradient which assists the boundary-layer to sustain against some
further increased values of the injection velocity. Such an assistive role of x has already
been reported by Probstein and Elliott [S7]. Another important observation noted from
Figs. 4.2 & 4.3 and Tables 4.2 & 4.3, is that when the value of power-law exponent ‘m’
for stretching wall velocity is increased then solution becomes possible to exist for some
increased values of the injection parameter. Obviously, reason behind this fact is that for
higher values of m the stretching wall velocity becomes higher accordingly which
consequently strengthens the flow within the boundary-layer. Because of this strength the
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flow becomes able to sustain against further higher values of the injection velocity. In
this regard the effects of linear and non-linear (accelerated) wall velocities, for some
chosen values of S, over skin-friction coefficient are calculated for various values of x. In
Figs. 4.4—.4.6 the solutions have been plotted against m for varied values of x by
choosing some selected values of S (i.e., —1,0, 1). From these Figures it is obvious that
the dual solutions are sighted in the presence of suction/injection effects, however, only
unique solution becomes possible for sufficiently small values of m. The numerical data
corresponding to these situations is reported in Tables 4.4—4.6. From this data one can
again see that the difference between the two solutions is quite small which poses a
serious challenge towards the capturing of second solution. For wall suction/injection
cases the second solution disappears for m < 1, whereas in the absence of wall
suction/injection situations (i.e., § = 0), it is possible to capture dual solutions, to some
extent, against sufficiently small values of m by enhancing the values of curvature
parameter, x. This is again because of the assistive role of the curvature parameter in
weakly accelerated flow. The current study also included an analysis regarding
decelerated nature of wall velocity. In this regard, quite interesting information has been
captured about the flow caused by steady stretching cylinder with retarded nature of wall
velocity. In this context, dual solutions are reported in Figs. 4.7—4.8 and the
corresponding numerical results are pre presented in Tables 4.7—4.8.

Velocity curves, especially for the second solution have been plotted for selected
values of x in the absence as well as in the presence of suction/injection in Figs.
4.9—-4.11, while the behavior of velocity profiles for some chosen values of S, is

displayed in Figs. 4.12—4.13. All the Figures ensure the existence of dual solutions;
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moreover smooth patterns are noted for both branches of solution therein. From Figs.
4.9-4.11, one can easily observe that the boundary-layer thickness amplifies for higher
values of curvature parameter. In Figs. 4.12—4.13, it is noticed that as the role of § is
shifted from suction to injection velocity; the boundary-layer thickness amplifies
significantly.
4.2 Unsteady boundary-layer flow past a stretching cylinder

Since the presentation of the duality of solution for axisymmetric flow due to a
stretching cylinder is the primary focus of this chapter, therefore, in the continuation of
above section, this section investigates the existence of dual/multiple solutions for the
unsteady self-similar flow due to a stretching cylinder. It is found that corresponding to
different values of the curvature parameter dual solutions exist with and without the
suction/injection effects. This shows that the surface curvature is served as a supporting
agent for the existence of dual solutions. The dual solutions are captured numerically and
portrayed in the form of graphs and Tables. It is worth noting aspect that the present
investigation is unique because of significant outcomes about the stretching cylinder that
have never been visualized. Important findings of this study are believed to be helpful in
further understanding about the nature of flow and as well as the associated non-linear

flow phenomenon, therein.

4.2.1 Mathematical formulation

Consider a long continuous circular cylinder, placed horizontally in an
incompressible, viscous fluid. It is supposed that the system is at rest, initially, i.e., for
t < 0, both the fluid and cylinder are stationary. For admissibility of normal wall velocity
the cylinder surface is taken as porous. During the entire flow phenomenon, there is no
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influence of body force and pressure-gradient, at all. Under the role of above
assumptions, the equation of continuity will remain the same as given in steady case (Eq.
(4.1)), while the equation of motion, in cylindrical coordinates, is described by the
following form:

Brustv=viz(ra). (4.14)
Due to a sudden motion (linear stretching) of the cylinder, the unsteady stretching wall
velocity is assumed of the form

uy(2,t) = %; a>0; T =at. @4.15)
For such kind of wall velocity, similarity solution exists if the cylinder’s radius expands
continuously following a form given by

R(z,t) = Ryt*/2, (4.16)
The flow stimulated by stretching cylinder of time dependent radius (expanding with
time), was also investigated by Fang et al. [67]. The corresponding initial conditions,
which are also the ambient conditions, for the flow under consideration are given by

at t<0: u=0, v=0, vV (r.2) 4.17)
The impulsive start of the cylinder results in a sudden motion of the fluid and
consequently boundary-layer develops in time according to the relation “~vv” which is
also similar to the classical Rayleigh’s problem. Since the surface of the cylinder is taken
as permeable that enables the normal flow through itself. For the time t > 0, the resultant

boundary conditions can be taken as
u=1u,(z,t), v=u,(z1t), at z=R(z,t), (4.18)
u-_0, as z - oo, 4.19)
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Here, it is a worth mentioning fact that for the existence of self-similar solution, the

normal wall velocity should be of the form 1,(z,t) = dr~ /2 (where d is a constant and
its positive/negative values designate the time dependent injection/suction velocity,
respectively). A meticulous description regarding this fact can be seen in [56], wherein
the author also presented a detailed criterion of self-similar formation of the problem. The

similarity variables for an unsteady shrinking cylinder, considered during the current

investigation, are of the form:
n=ggr u=gf'@), v=- [T ). (420)

Obviously, the above similarity transformations satisfy the continuity equation identically

and their utilization in Eq. (4.14) and Egs. (4.17)—(4.19) enables one to obtain the

following form:

’ "2 ' ’ ’
G )+ 6 -16-5)-32(26) w2
fl = Reno, f = —‘,%Reno, a = Reno}. (422)
f'=o0, at n=o

Here it is interesting to note that the initial condition and the boundary condition referred
in Eq. (4.17) and Eq. (4.19), are merged to a single one, i.e., f(c0) = 0. With the aid of
transformation 7 = (? — Re?,)/(2Reg,) as well as some appropriate scaling of the
function (i.e., f = xf), the system of equations (4.21)—(4.22) can be converted in a more
compatible form so that numerical solution becomes quite feasible. The above mentioned
transformation not only reshapes the domain from [Reg,, ®) to [0, ®) but also models the
Eqgs. (4.21)—(4.22) to the form (after dropping the bars):

(1 +2emf"Y = £/(f' = 1) = G (1 +2:) + N, (4.23)
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f@M=1 f(@=-S, [f(o)=0, (4.29)

d
where x=;“1—n°; Reg, = - denotes the surface curvature parameter, and s=7=

denotes the suction/injection parameter. The values S > 0 cormrespond to wall injection
while the values S < 0 refer to wall suction situation. The small values of x define larger
radius while the greater values of x represent the cylinder with small radius. Therefore,
by considering the larger values of x (i.e x > 1) an exact understanding of the effects of
surface curvature can be achieved.
4.2.2 Numerical solution

The goal of current study has achieved, by solving the system of Egs.
(4.23)—(4.24) with the aid of Runge-Kutta shooting method. The results captured during
the present analysis are given in Tables 4.7—4.8 and are also displayed graphically in

Figs. 4.12—4.15.

Table 4.9: Values of —f"(0) as a function of S at various values of k.

s k=0.25 x=0.5 k=0.75 k=10 k=1
7 soL | 7= ool | 1% 3oL | 7 3oL | 7 sol | 7= sol | P sol | 2 sol | P sol | 250l
10.4443

=10.0_ | 120842 | 156.8071] 11.0939 | 95.1697 | 10.7659 | 70.0250 | 10.6034 | 56.1938
=9.0 120842 | 127.4717| 10.1035| 77.1900 | 9.7766 | 57.1571 | 9.6151 | 46.1532 | 9.4577 | 34.4830
-8.0 10.1009 | 101.9822| 9.11522 | 61.4704 | 8.7899 | 45.8007 | 8.6297 | 37.2398 | 84747 | 28.1710
=70 9.1121 | 80.1185 | 8.1298 | 47.9521 | 7.8067 | 35.9506 | 7.6483 | 22.8042 | 7.4969 | 22.6201
| _—60 8.1259 | 61.6415 | 7.1485 | 36.5430 | 6.8286 | 275750 | 6.6729 | 22.80.42 ) 6.5267 | 17.8264
=50 7.1435 | 462945 | 6.1733 | 27.1190 | 5.8581 | 20.6134 | 5.7064 | 17.2314 | 55683 | 13.7715
—4.0 6.1665 | 338051 | 52072 | 19.5262 | 4.8995 | 149753 | 4.7544 | 12.6874 | 4.6292 | 104190
-3.0 5.1979 | 23.8854 | 4.2561 | 13.5842 | 3.9608 | 10.5425 | 3.8266 | 9.0844 | 3.7220 | 7.7138
=2.0 4.2427 | 162356 | 3.3307 | 9.0899 | 3.0567 | 7.1709 | 29407 | 63134 | 28683 | 5.5824
ot . 33103 | 10.5436 | 24515 | 5.8207 | 22143 | 4.6958 | 21271 | 42461 | 2.0994 | 3.9366
0.0 24194 | 646881 | 16563 | 3.5407 | 14767 | 17299 | 14281 | 2.7427 | 1.4497 | 2.6857
10 16064 | 37411 | 1.0000 | 2.0150 | 08958 | 1.7299 | 08820 | 16772 | 0.9422 | 1.7537
1.043 04849 | 09367 | 05000 | 09545 | 05768 | 1.0851 |
3.0 04540 | 09259 | 02434 | 04776 | 0.2367 | 04587 | 02605 | 05004 | 0.3333 | 0.6330
0.1043 02024 | 0.1251 | 02413 | 0.1822 | 0.3483
5.0 00593 | 0.1181 | 0.0338 | 0.0662 | 0.0415 00806 | 0.0557 | 0.1075 | 0.0945 | 0..1815
9.2493 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0003 | 0.0006 | 00008 | 0.0016 | 0.0034 | 0.0067

9.6204 0.0000 0000 | 0.0001 | 00003 | 00005 | 00010 | 0.0025 | 0.0048
10.5683 0.0000 | 0.0000 | 0.0001 | 0.0003 | 0.0010 | 0.0020
| 11.6210 0.0000 | 0.0000 | 0.0004 | 0.0008
13.7621 0.0000 | 0.0000




Table 4.10: Values of —f"'(0) as a function of k at various values of S.

x §=2.0 §=1.0 §=0.0 =-=1.0 §=-2.0
[ T7Sel. | 27Sol. | I"Sel | 2°SeL | 1"Sol | 27Sol | I"Sel | 2= Sol | I"Sol | 2™ Sel |
0.009 | 535742 | 11551.16] 54.5738 | 12165.573] 55.5735| 12800.9569| 56.5732 | 13457.600| 57.5729| 14135.850
0.010 | 48.0208 | 84932221 49.0204 | 8006.4913] 50.0199] 9518.8541 | 51.0196 | 10060.609] 52.0192] 10622.116]
0.025 | 18.0554 | 578.7834] 19.0524 | 667.0329 | 20.0498] 763.7360 | 21.0475 | 869.2564 | 22.0453| 983.9553 |
0.050 | 81229 | 769417 | 9.1097 | 100.6221 | 10.0990| 128.8128 | 11.0902 | 161.8987 | 12.0828| 200.2598 |
0.075 | 48709 | 248957 | 58376 | 360585 | 68134 | 503174 | 7.7951 | 68.0626 | 8.7807 | 89.6781
0.100 | 3.2989 | 11.8384 | 4.2351 | 185316 | 51927 | 27.5855 6.1627 | 39.3875 | 7.1406 | 54.3186
0.25 09311 1.9804 | 1.6064 3.7311 | 24194 64881 33103 | 105436 | 4.2427 | 16.2356
05 04983 1.0435 | 1.0000 20150 | 1.6563 3.5408 24516 5.8207 | 3.3307 9.0898 |
1.0 0.5000 0.9546 | 0.8820 1.6771 1.4281 2.7427 2.1271 4.2460 2.9407 63134
20 0.6727 1.2527 | 1.0355 1.9031 1.5243 277117 2.1429 3.8951 | 2.8778 53231
3.0 0.8775 1.6114 | 1.2451 22520 | 1.7167 3.0591 2.2976 40518 | 2.9834 5.2555
4.0 1.0846 19716 | 1.4591 2.6118 19231 3.3885 2.4818 43135 | 3.1339 54016
5.0 1.2896 23262 | 1.6705 2.9682 2.1308 3.7268 2.6746 4.6100 | 3.3022 5.627
60 14917 26751 | 18764 33199 23365 4.0668 2.8700 4921 3.4789 5.891
70 1.6912 3.0205 2.0830 3.668 25401 4.408 3.0655 5.243 3.6603 6.179
8.0 1.8886 3.3663 | 2.2852 4,018 2.741 4.753 - - - -
9.0 2.084 3.715 2485 4372 2.942 - —— - - -
10 2.280 4.071 2.685 - - - - - - -
) ] 1 L L] L) L] LI
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Fig. 4.14: Dual solutions domain of f”(0) for different values of curvature

parameter x as function of suction/injection parameter S.
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Fig. 4.15: A zoom-in portion of Fig. 4.14 showing the convergence of both
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solutions.
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Fig. 4.16: Dual solutions domain of f"(0) for different values of suction/injection

parameter against curvature parameter x.
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Fig. 4.17: Velocity profile under different values of suction/injection parameter at

k=1

4.2.3 Results and discussion

The present study also highlights the effects of surface curvature as well as
suction/injection parameters upon the flow caused by unsteady stretching cylinder.
During the analysis, it is noted that the solution is possible for all values of x i.c., x 2 0.
Further, for suction/injection parameter, the solution is not possible for all values of
S (i.eS € R) and exists only for certain ranges of S, which are calculated for some
chosen values of x. The numerical results are presented in tabular form and portrayed
graphically in the upcoming figures, where solid lines correspond to first solution and
broken lines represent the second solution. Fig. 4.14 is plotted against S for some selected
values of curvature parameter, x, where it is clearly observed that, for both branches the
magnitude of skin-friction coefficient, f”(0), becomes higher and higher with the

increasing values of k. The effects of curvature parameter are more prominent for second
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solution. To illustrate it more clearly Fig. 4.15 is drawn, which is a zoom-in part of Fig.
4.14, wherein it is also depicted that the dual solutions exist not only for suction velocity
but also under the injection effects. Interesting character of the injection velocity is also
highlighted in Fig. 4.15, wherein the situation has become more visible. With the
increasing effects of injection, the two branches of solution come closer and closer and
exhibit minor variations. The situation becomes more interesting when, for a particular
value of x, both solutions get converged at some critical point (S;) and present a unique
solution, no further solution is possible for |S| > |S.|. The critical values, at which both
solutions overlap to each other, are obtained with due care and presented in Table 4.9. It
is also noted that as surface curvature increases more injection is required for achieving
the critical point. It is observed that, by increasing the surface curvature effects, the flow
separation can be delayed to some extent; however, both solutions ultimately overlap and
dual solution ceases to exist under further increasing effects of wall injection. Similar
findings were also reported by Tabassum et al. [82]. From the results presented in Table
4.10, it is revealed that there are less variations between the solutions for the case of
injection; however, for suction domain the difference between the two branches becomes
wider and significant. Figs. 4.14—4.15 portray these aspects with concrete visibility.
Furthermore, the magnitudes of both solutions are amplified as the effects of suction
become stronger and stronger. However, as the values of surface curvature parameter
increase the magnitudes of both solutions are reduced accordingly.

Due to dominant role of the surface curvature, its effects are also investigated at
some selected values of S, and the corresponding results are mentioned in Table 4.10 and
are displayed in Fig. 4.16. It is realized that for some fixed value of S the magnitude of
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£"'(0) decreases with the increasing value of surface curvature. In case of suction, this
situation is seen to happen much earlier than injection case. A more valuable finding of
the current study is the existence of dual solutions in the absence of suction/injection
parameter. The presence of dual solution for S =0, is a unique feature of this
investigation, as, it is commonly believed that a sufficient amount of suction is
mandatory for the existence of dual solutions. During the entire study it is well perceived
that although the magnitude of f"(0) approaches to zero as S — S, but it never become
positive. With further enhancement of injection effects, the boundary-layer thickness
becomes too smaller and ultimately resulted in disappearance of boundary-layer flow.

To complete the understanding of flow behavior, velocity profiles are plotted
against 7 for some selected values of S in Fig. 4.17. It is clearly observed that with the
enhancement of the injection velocity the boundary-layer thickness magnifies to a great
extent. Although, a prominent increment in boundary-layer thickness is noted for both
branches of solution, however the second solution branch shows magnificent change in
its behavior. It is depicted that, within the boundary-layer the second solution shows the
presence of reverse flow for every value of S. Further, the existence of reverse flow
begins from the lower-half and, with the increasing effects of suction it tends to be closer

to the stretching boundary.

4.3 Conclusion

Dual solutions found during this study are a unique feature of the current analysis
which contradicts the well-established fact that the multiple solutions exist for shrinking

surface flows only. The current study also discloses that the presence of suction/injection
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velocity is not necessary for the occurrence of dual solutions. It is also shown that the
dual solutions are also possible in the case of wall injection velocity. The outcomes of
this investigation are expected to inspire the researchers in this area to further explore the
hidden aspects of the boundary-layer flows of this nature. Numerical data reported in
number of Tables is believed to serve as a good reference for further studies in this
direction. On the basis of current results it is justified to state that the duality/multiplicity
of solution of boundary-layer flows induced by continuous surfaces is neither a unique
feature of shrinking surface flows, nor it can be attributed to the wall suction velocity,
only. Hence, duality/multiplicity of solution is possible for shrinking surface flows as
well as for the stretching surface flows, equally. This can possibly appear in the presence
of wall suction; or wall injection, or even in the absence of wall suction/injection

velocity.

In the case of unsteady stretching cylinder flow, the presence of non-unique
solution is a unique feature of this study. It is a fact that the existing literature on the
stretching surface flows did not experience the existence of dual solution. However, there
is bulk of studies which openly neglect any possibility of dual solutions for the flows
stimulated by stretching surfaces. In view of above this study is expected to serve as a
mile stone in further refining the investigation of boundary-layer flows caused by

axisymmetric stretching surfaces.
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Chapter 5

Existence of multiple solutions for a shrinking cylinder flow

It has already been discussed in the planner case that the multiplicity/duality of
solution is not confined to shrinking surfaces only and the provision of suction/injection
is not obligatory for the existence of such solutions. In the current chapter, we shall focus
to investigate the axisymmetric steady/unsteady flow phenomenon caused by shrinking
cylinder and the possibility of dual solutions therein. Similar to planner case of self-
similar flows caused by the shrinking surfaces, the axisymmetric flow is also studied
under the consideration of various physical features. In the study of axisymmetric flows
too, non-linear (power-law) wall velocity has been considered for the steady case and
linear wall velocity is in the unsteady case. In both cases duality of solution has been

witnessed under various circumstances.

S.1 Steady boundary-layer flow over a shrinking cylinder

The purpose of this investigation is the steady flow due to a permeable shrinking
cylinder using the correct mathematical formulation proposed by Mehmood [56]. The
effects of the shrinking parameter as well as the suction and curvature parameters are
studied. As usual, similarity transformations are used to convert the governing partial
differential equations to a set of nonlinear ordinary (similarity) differential equations
which are then solved numerically by using the shooting method for various values of the
involved parameters. It is observed that both the unique and multiple (dual) solutions are

present for the flow phenomenon induced by a shrinking cylinder.
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Fig. 5.1: Schematic of the axisymmetric flow and the associated coordinate system.

5.1.1 Mathematical formulation

Consider a steady, incompressible viscous fluid flow caused by a continuous
cylinder of radius R(z). It is supposed that the flow phenomenon, under consideration,
experiences no circular rotation and has symmetry about z —axis. It is also assumed that
there are no body forces as well as no pressure-gradient, therein. The governing system of
this flow is the same as was for the stretching cylinder case given by Eqs. (4.1) —(4.2).
Moreover, the similarity criterion for the shrinking wall velocity is also the same as for
the stretching wall velocity. The only difference between these two flows is the opposite

sign of wall velocities. For this case the similarity transformations are defined as
=BT, u=Epm), v=vET C+EEf, 6.1

due to which the equation of continuity (4.1) is satisfied identically and the momentum
boundary-layer equation (4.2) and the boundary data are transformed as

" or r 2 d d (r

LE-5)-m(E) -22(12(0) (52)
f'=Rer, f=oRen = Re""}: (53)
f'=0, at n=o

where ¥ is the dimensionless stream function, given by
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@ = 2 rrn). 54)

In above system Reg, = ’"’Tj is the Reynolds number based on the reference radius R,,

X = 1/Reg, is regarded as the surface transverse curvature parameter, and § = - s the
dimensionless suction/injection parameter: S > 0 corresponds to wall injection and § < 0
corresponds to wall suction velocity. To comply with the self-similarity criterion of this
flow the wall suction velocity is chosen of the form 1,(z) = dz'mz;l. During the study of
flow phenomenon caused by shrinking surface, the shrinking rate is taken as a = —a@
where @ > 0 is the constant stretching rate. Eqs. (5.8) and (5.9) can be simplify by
eliminating the involved variable 7 therein and the Reynolds number Reg from the

boundary conditions by using the following new variables

"z -R‘IRQ

T Remy * f = fReg, X))
After dropping the bars the resulting equations can be presented as:

ff"—mf? = (1 + 26", .6)
ro=1 fO== f'() =0. )

Table 5.1: Numerical values of —f " (0) against S for various values of x atm = 1.

s x=0.10 x = 0.25 x = 0.50 x = 0.75 x=1.0
Sol_| 27 Sol. | I"Sol._| 2* Sol. | I"Sol. Sol | I"Sol | 2 Sel | I"Sol | 2 Sol
—24|18111 17881 | — == | === === | === [ —== [ === [ === | ===
~2.5]1.9589 [ 1.9350 | 1.8645 | 18256 | ==~ | ~—— | ——= | === | === | ==~
—3.0]| 25989 | 2.5651 | 2.5647 | 2.5259 | 2.4807 | 24176 | ——— | —— = | ——= | — ==
—3.5]| 3.1743 | 3.1255 | 3.1544 | 3.1026 | 3.1131 | 3.0480 | 3.0543 [ 29615 | ——— | ———
—4.0] 3.7238 | 3.6557 | 3.7103 | 3.6408 | 3.6841 | 3.6036 | 3.6510 | 3.5522 | 3.6071 | 34794
—5.0 | 4.7865 | 4.6652 | 4.7789 | 4.6607 | 4.7649 | 4.6382 | 4.7488 | 4.6072 | 4.7299 | 45681
—6.0] 5.8252 | 5.628 | 5.8203 | 5.6338 | 5.8115 | 5.6198 | 5.8016 | 5.5961 | 5.7905 | 5.5664
—8.0| 7.8712 | 7.434 | 7.8687 | 7.474 | 7.8641 | 7.479 | 7.8592 | 7.464 | 7.8539 | 7.441
—10 | 9.8979 | 9.067 | 9.8963 | 9.173 | 9.8935 | 9.213 | 9.8905 | 9.212 | 9.8874 | 9.196
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Table 5.2: Numerical values of —f" (0) against S for various values of x at m = 2.

x=0.10 x =025 k= 0.50 x = 0.75 k=10

S | 1"SoL | 2SoL | 1"SoL | 2™Sol | I"Sol | 2™ Sol | 1°Sol | 2" Sol | 1"Sol | 2" Sol
37[1m|ormn| ———] ———- [ == === | === [ —== | === | ===
—-4,0] 1.8494 | 04237 | 1.6434 | ~1.1758| ——-— —_——— ] ——— —_— —_—- —-_———
-5.0] 2.7867 | —0.7345| 2.7438 ~2.6406] 2.6423 | 25428 | ~—- —_— —_— -
—5.5 | 3.1888 | —1.6317] 3.1589 | —3.0234] 3.0956 | 2.9899 | 3.0001 | 28579 | - — - | ———
—6.0| 35737 | —2.8205| 3.5511 | —3.3731| 3.5060 | 33814 | 3.4462 | 3.3125 | 33558 | 3.1718
—7.0| 43138 | —6.2046] 4.2993 | —4.0001] 4.2719 | 4.0894 | 4.2391 | 4.0709 | 4.1982 | 4.0175
—-8.0| 5.0311 -11.1ﬁ| 5.0209 | —4.5386] 5.0020 | 4.7364 | 49804 | 4.7527 | 4.9552 | 4.7305
—-10 | 64306 -26.475[ 6.4246 —5.3002[ 64139 | 58879 | 64021 | 59900 | 6.3890 | 6.0141

Table 5.3: Numerical values of f” (0) against S for various values of x at m = 1.

X =-3.0 S=-40 = —5.0

" Sol 2" Sol 1”Sol. 2" Sol I*Sol. 2 Sol
001 -26162 | —25791 | -3.7312 | -3.6504 | —47908 | —4.6380
0.05]| —26087 | —25749 | -37280 | -3.6573 | —4.7889 | —4.6606
0.10| -—25989 | -25651 | —3.7238 | —3.6556 | —4.7865 | —4.6652
020 | -25770 | —25404 | -37150 | -3.6467 | —4.7815 | —4.6635
030 -25513 | —25098 | -—3.7055 | —3.6344 | -—47763 | —4.6571
040 | -—25203 | -24710 | -3.6953 | —3.6200 | —47708 | -—4.6484
050| —24807 | —24176 | -—3.6841 | —3.6036 | —4.7649 | —4.6382
0.60| —24238 | -23308 | -—3.6719 | —35850 | —4.7588 | —4.6267
070 -——-— - —3.6584 | -—35639 | —47522 | —4.6140
100 —-- - —3.6070 | —3.4794 | —4.7299 | —4.5681
125 --—- —— - - —4.7074 —4519

Table 5.4: Numerical values of £"(0) against S for various values of x at m = 2.

x __S=-40 S=-=50 S =-6.0

1" Sol. 2 Sol. 1%Sol. 2% Sol, 1" Sol 2™ Sol,
0.01] —19144 0.1408 —2.8086 1.8261 —~3.5859 45973
0.05] -1.8879 —0.1243 —2.7991 1.3275 —3.5806 3.7990
0.10] —1.8494 —0.4237 —2.7867 0.7345 —3.5737 2.8205
0.20] —1.7402 —0.9336 —2.7591 —0.4810 —3.5590 0.6329
025 —16434 —1.1758 —2.7438 —2.6406 —3.5511 —3.3731
030] ——-— ——— —2.7272 —2.6325 —3.5430 —3.3880
050 ——— —— = —2.6423 —2.5428 35060 —3.3814
060 ——— g ——— ——— —3.4844 —3.3604
100] ——— ——— —— e —3.3558 —3.1718
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Table S5.5: Numerical values of f”(0) as a function of S for various values of m at

x = 0.25.

S m=-2.0 m=-—3.0 m=-—4.0 m = —5.0 m=—6.0

1st sol. | 2nd sol 1stsol. | 2nd sol. | 1st sol. | 2nd sol. | 1st sol. | 2nd sol. | 1st sol. | 2nd sol.
1 | —2.2857 | ——— | —1.8668 | —1.8668 | —1.9312| —1.9312 | —2.0572] ——— | —2.1947| —-—-—
2 | —41333 | ——— | —2.5154 | —36.3802| —2.2800| —2.2804 | —2.2951| —2.2951 | —2.3756]| —2.3756
3 | —60869 | ——— | —3.3481 | —149.057| —2.7141| —-9.1835 | —2.5717| —2.5734 | —2.5776] —2.5778
4 | —8.0645 | ——— | —4.2604 | —386.22 | —3.2259| —25.4071| —2.8919] —5.0285 | —2.8033]| —2.8114
5 | —10.0512] ——— | —=5.2074 | —794.81 | —3.7885| —53.7569| —3.2532| —10.6390] —3.0546| —3.8911
6 | —12.0425] —— -~ | —6.1721 | ~-1421.6 | —4.3820| —97.820 | —3.6467| —19.4413| —3.3304| —6.4974
7 | —14.0364] ——— | —7.1470 | —2313.6 | —4.9951| —161.166| —4.0641| —32.1386] —3.6276] —10.4715
8 | —-16.0318] ——— | —8.1283 | —3517.5 | —5.6210| ~247.36 | —4.4988] —49.4734] —3.9423| —15.9480)
9 | —18.0283] —~—— | —9.1138 | —5079 | —6.2557| —359.95 | —4.9463| —72.1952| —4.2711]| —-23.1412
10 | -20.0255 ——— | —10.1022| -7048 | —6.8967| —502.52 | —5.4034| —101.054] —4.6113| —32.2857

Table 5.6: Numerical values of f”(0) as a function of S for various values of m at

x = 0.50.

¢ [_m=-20 =—3.0 =—40 = =50 = —6.0

| 7Sol [ 27Sol | I"Sol | 2"Sol | I"Sok | 2Sol | I"Sol | 2°Sol | I"SoL | 2 Sol
1 | -23334 [ ——— [ -19575| —19576 | —2.0247| —2.0247 | —2.1514] —2.1514 | —2.2892| —2.2892
2 [ -4.1428 [ ~—— | -25770 [ -17.7262] —2.3678| —2.3684 | —2.3880| —2.3882 | —2.4700] —2.4701
3 [-60909] ——— [-33789] —98.8688 | —2.7834| —3.5187 | —2.6584] —2.6593 | —2.6697| —2.6700
4 | -8.0666 | ——— | —42778| —288.57 | —3.2741] —14.5722| —2.9664] —2.9743 | —2.8900| —2.8912
5 [—10.0526 ——— | -5.2185 —633.85 | ~3.8220[ —354921] —3.3130] —5.6568 | —3.1326] —3.1381
6 | -12.0434 ——— |-6.1797 | —11815 | —4.4062| —70.076 | —3.6939] —11.7676 | —3.3981| —3.7798
7 [ -14.0370] — -~ |-7.1526] —1978.6 | -5.0131] —121.90 | —4.1014] —21.1969| —3.6851| —6.1601
8 |-160322] — —— | -8.1325] —3071 | —5.6349| —194.55 | —4.5287| —34.6606 | —3.9908| —9.9950
9 | -18.0285] ——— |-0.1171] —4507 | —6.2667| —291.57 | —4.9707] —52.903 | —4.3122| —15.3366
10 [ -200256] —— - [ -10.104f —6333 | -6.9056] —416.52 | —54235 —76.674 | —4.6462| —22.3866
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Fig. 5.2: Dual solutions domain of f'(0) for some selected values of curvature

parameter x as function of suction parameter S atm = 1.
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Fig. 5.3: Dual solutions domain of f(0) for some selected values of curvature

parameter k as function of suction parameter S at m = 2.
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Fig. S4: Dual solutions domain of f”(0) for some selected values of suction

parameter S as function of curvature parameter x atm = 1.
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Fig. §.5: Velocity profile for some selected values of m at x = 0.25 for § = 5.
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Fig. 5.8: Velocity profile for different values of suction parameter at x = 0.25 for

linear case (m = 1).
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Fig. 5.9: Velocity profile for different values of suction parameter at x = 0.50 for
linear case (m = 1).
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Fig. 5.10: Velocity profile for different values of curvature parameter at S = —6
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Fig. 5.11: Velocity profile for some selected values of S at x = 0.10 form = 2.
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Fig. 8. 12: Velocity profile for some selected values of m at x = 0.25 for § = 5.
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Fig. 5.13: Velocity profile for some selected values of m at x = 0.50 for S = 5.
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5.1.2 Results and discussion

The system (5.6)—(5.7) has been solved numerically with the aid of RK-shooting
technique similar to the previous chapters. During current analysis the results captured
for linear and non-linear wall velocities under the influence of different involved physical
parameters arc displayed in tabulated form (Tables 5.1-5.6) and also presented
graphically in Figs. 5.2—5.13. Fig. 5.2 represents the impact of surface transverse
curvature on the wall skin-friction, for linear case, when plotted against the suction
parameter. It is depicted that at some chosen values of curvature parameter the dual
solutions prevail for higher magnitudes of S and these solutions disappear as the suction
effects become weaker and weaker. Fig. 5.3 is drawn to analyze the impact of curvature
parameter for the case of non-linear shrinking velocity (m = 2). It is observed that for
higher values of «, almost similar pattern is noticed, i.e., with the provision of sufficient
wall suction dual solutions are sighted and the occurrence of any solution tends to
disappear during the weaker effects of suction. However, one aspect seems prominent
here that at x = 0.10, for higher suction effects, dual solutions show wider difference
among the two branches and this gap becomes narrow with the reduction of suction.
Here, it is a worth mentioning fact that (in this case) both first & second solutions don’t
get converged, however, they come closer and closer and ultimately reach the values
—1.0828 & —1.0823, respectively, at a critical point “S = —3.61121432”. However,
this is not the case with every couple of solution, as is evident from Figs. 5.2—5.3. From
these figures, it is clear that although dual solutions exist therein but, despite the tedious
efforts, no critical points were observed at which both the solutions could overlap. To

trace out the wall skin-friction distribution against x, Fig. 5.4 is drawn at some specific
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values of S. From the Fig. 5.4 it can be observed that at smaller values of suction
parameter dual solutions do exist under the smaller curvature impacts and the solutions
disappear as the curvature influences are strengthened. Resultantly, sufficient amount of
suction is observed mandatory to capture the solution there.

In above discussion, it is clearly described that the dual solution is possible for
decelerated wall velocity with the provision of sufficient wall suction velocity. To see the
role of accelerated wall velocity, Figs. 5.5 & 5.6 are plotted and numerical data is
presented in Tables 5.5 & 5.6, accordingly, wherein it is observed that dual solutions are
only possible for injection wall velocity, while, the presence of wall suction does not
guarantee for the existence of any kind of solution. Although, it is a well known fact that
the wall suction supports the blowing boundary-layer while the wall injection velocity
cause the boundary-layer to blow, in contrast But such an opposite behavior has
appeared due to the occurrence of a factor m + 1 in the denominator of second boundary
condition at 7 = 0. During the analysis, it is noticed that for larger injection effects, both
branches of solution show more and more differences and by reducing the injection
effects the both solutions come closer and closer and ultimately get converged. The
convergence of both solutions, in this case, is a unique aspect as this type of findings is
not observed for the case of decelerated nature of wall velocity.

For further understanding the dual nature of solution, the velocity profiles for
linear as well as non-linear shrinking velocities are displayed in the Figs. 5.7—5.11,
wherein, it is clear that both the solution branches unanimously satisfy the far field
boundary conditions, asymptotically. Velocity profile for the case of linear wall velocity,
at different values of x, and S are presented in Figs. 5.7—5.9, whereas smooth and
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uniform variations are observed for both solutions therein. All figures describe that the
effects of curvature parameter and wall suction velocity are opposite on both the
solutions. The effects of curvature and suction parameters in the case of non-linear wall
velocity (m = 2) are plotted in Figs. 5.10—5.11. Fig. 5..10 indicates the impact of
different values of curvature parameter on the velocity profile at § = —6, while Fig. 5.11
shows the variation due to some chosen values of S at x = 0.10. From these figures, the
dual nature of the solution is also sighted which is obvious for power-law wall velocity.
Almost similar behavior of flow phenomenon is noted as it occurred in the case of linear
wall velocity. However, convergence of both solutions can be obtained more quickly as
compared to linear wall velocity case. It is also observed that with the increment in the
impact of suction parameter the boundary-layer thickness is boosted up accordingly. It is
noticed that the presence of dual solution is possible only for decelerated wall velocities
under the impacts of involved physical parameter. The velocity profiles for accelerated
nature of wall velocity have been depicted in Figs. 5.12 & 5.13 for x = 0.25 and x = 0.5,
respectively. It is noticed that, as usual, first solution branches exhibit smooth variations
while second solution branches portray an abrupt an unusual behavior.

5.2 Unsteady boundary-layer flow over a shrinking cylinder

In this section the steady aspects of shrinking cylinder are extended towards
unsteady circumstances. Since, the appearance of an aftractive concept about
multiplicity/duality of solution in the field of shrinking surfaces flow, literature regarding
these flows has become voluminous due to numbers of publications rendered by the
involved researchers. A valuable literature can be cited in [68]—[78], wherein flows
caused by the axisymmetric shrinking cylinder have been studied under the consideration
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of different circumstances. In view of available literature, it is concluded that the
existence of multiple/dual solutions is linked with the provision of sufficient wall suction
or some other supporting internal/external ingredients. It is also noticed that almost, not a
single fruitful effort has been carried out, so far, in connection to the existence of dual
solutions in the absence of wall suction or even in the presence of wall injection.
However, the existence of dual solutions cannot be connected, particularly, to the
provision of suction/injection or other agents. During the current investigation, it is
reported with strong evidences that the condition of provision of sufficient wall suction
seems unnecessary for the existence of dual solutions as it is noted that dual solutions are
also possible in the absence of wall suction or even in the presence of wall injection
velocity. During the current analysis it is reflected that for the existence of duality of
solution there is no need of any wall suction. Such kind of findings regarding dual nature
of solution in context to a shrinking surface flow without the provision of wall suction or
even in the presence of wall injection can be regarded as impressive outcomes in this
domain of flows. It is also observed that the transverse surface curvature of the cylinder’s
surface paid a supporting role for the existence of dual solutions.
S.2.1 Mathematical formulation

Consider a continuous slim cylinder of infinite length, having a uniform cross-
section. The cylinder is placed horizontally in a viscous, incompressible fluid so that no
body force is acting there. There is no pressure-gradient therein and the cylinder is
initially supposed to be at rest. The flow in the stationary fluid is caused by the impulsive
start of the cylinder’s motion (unsteady shrinking). In view of above assumptions, the

continuity equation for the present case is the same as referred in Eq. (4.1), while the
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governing equation of motion with the addition of an extra term (due to unsteadiness) to

the L.H.S of Eq. (4.2), takes the following form:

Ol B 10 du (5.8)
Since, the cylinder is supposed initially at rest, so that the ICs are read as

t<0, u=v=0, Vv (r,2). (5.9)

To allow for the normal wall velocity, the cylinder is supposed to be porous and with the
passage of time (t > 0) it is set into motion (shrinking towards origin, i.e., z = 0) with
some suitable velocity. As a result of this sudden motion, there develops a boundary-
layer flow in the vicinity of shrinking cylinder. Therefore, the suitable boundary
conditions for such an impulsive motion (t > 0) of the cylinder are taken of the form:

u=u,(zt), v=1u(z0), at r=R(t) (5.10)
u-0, as r-»oof '

Due to the unsteady nature of the current flow, the wall velocities u,, and 1, are
supposed to be free to vary in z and t, while the radius of the cylinder is considered as
uniform but to depend upon time. The nature of considered flow requires that the ambient
fluid outside the boundary-layer remains at rest for all time (—o < t < o). A detailed
similarity criterion for the wall velocities u,,, 1, and radius R(t) can be seen in [56],
according to which (for a shrinking cylinder case):

u,(z,t) = —g, n(@ 1) =dr 2, R(t)= R,x/2; t=at, t>0, (5.11)
where @ determines the constant shrinking rate, d stands for constant reference
suction/injection velocity, while R, refers to the constant reference radius of the
shrinking cylinder. A more significant fact is that the cylinder, under consideration, is
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swallowing in time and for the sake of self-similarity of the solution both the wall
velocities (u,, and 1,) decay in time as the cylinder swallows. It is necessary to
understand that the above stated forms of the functions u,,, 1, and R are essential for
similarity s-olution to exist. Further, the similarity variables in case of an unsteady
shrinking cylinder, as reported by Mehmood [56], are of the forms:

n= J,E,r. u= "T“’f'(n). v= E%f(n). (5.12)
The above similarity variables obviously satisfy the continuity equation (Eq. (4.1)),
identically and Egs. (5.8)—(5.10) are transformed as

£ _r'y_(r'y wo N _1daf aqr

LE-8)-E) -3 +5) =22 (n ) 513
f'=Res, f=rgRen, at 7 =R%}- (5.14)
f' Y 0, as 7o

Here f represents the dimensionless stream function and ’ refers the differentiation w.r.t.

n, where Rey, = ’"T"’ is the Reynolds’ number based upon the cylinder’s reference
radius, Ry. Although, the system (5.13)—(5.14) is in self-similar form which is ready to
solve, however, to assist the numerical computations more efficiently, the equations can
be made mathematically more compact by using

=T Rer and  f=xf. (5.15)

2R¢n° ?
By the utilization of Eq. (5.15) the current domain of interest [Rej , ) also leads to
[0, 0). Consequently, the system (5.17) —(5.18) simply takes the form, after certain

algebraic manipulations, as
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f - (L +2e))f" = 'L+ £1) = (1 + 20)f"Y',

'@ =1, f(0)=S, f'(x) =0,

(5.16)
(5.17)

where x =1/Rep, is termed as curvature parameter, and S=‘,%_v designates the

suction/injection parameter. The values of S > 0 correspond to the wall injection while

the values S < 0 are referred to wall suction scenario.

Table 5.5: Numerical values of £/ (0) at various values of x and S.

s x=0.25 x=0.5 xk=0.75 k=10
Fsol | 29sol | I"sol | 2750l | I"sol | 29sol | I"sol | 2" sl

03 | —04995 | —00651 | — — — — J— —
01 | -1.0935 [ 0.6266 J— — — — — —
00 | —1.2775 | 0.8760 — — — — — —_
—-1.0 | —2.6086 | 35646 | —1.0000 | —0.0845 | — — — —
—20 | —3.7232 | 7.5848 | —2.5632 | 2.1469 | —2.0538 | 0.5435 | —1.5715 | —0.4999
—3.0 | —4.7846 | 13.4546 | —3.7020 | 50638 | —3.3028 | 2.5432 | —3.0673 | 1.2227
—4.0 | 58234 | 21.5343 | —4.7721 | 92820 | —4.4030 | 53481 | —4.2030 | 3.2900
—5.0 | —6.8502 | 32.1456 | —5.8151 | 15.0690 | —5.4591 | 9.2353 | —5.2725 | 6.1359
—6.0 | —7.8698 | 455876 | —6.8443 | 22.6324 | —6.4952 | 143667 | —6.3153 | 9.9074
—7.0 | —8.8849 | 62.1401 | —7.8654 | 32.1413 | —7.5206 | 20.8549 | —7.3444 | 14.6944
—8.0 | —9.8968 | 82.0642 | —8.8815 | 43.7291 | ~8.5393 | 28.7748 | —8.3655 | 20.5504
—9.0 | —10.9065 | 105.6026 | —9.8941 | 57.4942 | —9.5538 | 38.1681 | —9.3815 | 27.5011
—10.0 | —11.9145 | 132.9775 | —10.9043 | 73.5001 | —10.5653 | 49.0480 | —10.3941 | 35.5511
Table S.6: Numerical values of £ (0) at various values of x and S.
X S§=-1 §=-0.5 §=0 §=0.5 §5=10

| I®sol | 2soL | 1"sol | 2" soL | I"s0l | 250l | I"s0l. | 27 s0L | I" 50l | 7~ sol
001 | -50.980] 9958.0 | —50.480] 9686.0 | —49.979] 9418.0 | —49.479] 9156 | —48.979] 8898
0.05 | —10.908] 139.5873 ~10.403{ 123.3884 —9.8989| 108.4597 —9.3935 94.7520 | —8.8875| 82.2185
0.10 | —5.8280] 26,8649 | —5.3115] 215357 | —4.7914| 16,9322 | —4.2665| 13.0042 | —3.7345| 9.6998
0.15 | —4.0870| 10.9250 | —3.5510 8.0281 | ~3.0019| 5.6457 | —2.4302| 3.7190 | —1.8124| 2.1732
0.20 | —3.1816] 5.8554 | —2.6166] 3.9236 | —2.0135| 2.3687 | —1.3101 1.0785 | — | —
025 | —2.6086] 35646 | —2.0000] 2.1071 | -1.2775] 08760 | — | — | — | —
030 | —2.1981] 22914 | -15178] 10728 | — | — | — | — | — | —
035 | —1.8742] 14730 | —1.0455] 0309%¢ | — | — | — | — | — | —
040 | —15943] 08803 | — | — | — | — | — | — | — | —
045 | ~13239] 03957 | — | — | — | — | — | — [ — | —
050 | —1.0000] —00845] — | — | — | — | — | — [ — | —
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Table 5.7: The critical values of suction parameter S calculated for some chosen values

of curvature parameter.

K S, 1" sol. 250l
0.25 0.3157822504 —0.2853 —0.2853
0.50 —0.926035063 — 0.5490 -0.5490
0.75 —1.493430711 -0.7960 —0.7960

1.0 —1.887497733 -1.0301 —1.0301

Table 5.8: The critical values of curvature parameter x calculated for some chosen

values of suction parameter.
S K 1 sol. 2" s0l.
1.0 0.190451504 —0.2197 -0.2197
0.5 0.2309048468 —0.2643 —0.2643
0.0 0.2900951501 —0.3289 —0.3289
—0.5 0.381082792 —0.4259 ~0.4259
-1.0 0.525946169 —0.5753 —0.5753
2 0 | ) L L L} | | )
N J= 0.25, 0.50.0.75, 1.0
5« . et ]
N
~ ’ §=-1493430711

£=0.25,050,075.1.0

§=0.3157822504

§=-0.926035063 -

L

4 3

-2

M

!

Fig. 5.11: Dual solution of £ (0) for different values of surface curvature

parameter x as a function of a suction/injection parameter S.
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Fig. 5.12: Dual solution of f"'(0) for different values of suction/injection

parameter plotted against curvature parameter x.

Fig. 5.13: Velocity profile for different values of curvature parameter at § = —2.
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Fig. 5.14: Velocity profile for different values of suction/injection parameter at

x = 0.15.

5.22 Results and discussion

The self-similar system of Egs. 5.16—5.17, obtained as a result of mathematical
formulation carried out during the current analysis, is solved with the aid of a compatible
numerical method that is known as 4 order Runge-Kutta shooting method. By utilizing
this numerical technique, it becomes possible to capture dual solutions for various values
of curvature parameter, x, and suction/injection parameter, S, which are reported in
tabular form as well as presented in the graphical form, where the first solution is shown
by solid lines while broken lines designate the second solution.

Fig. 5.11 is drawn for the numerical data captured in context of skin-friction
coefficient, f"(0), at various values of x against S. From the graphical representation, it
can be seen easily that dual solutions are possible, in the presence of wall suction, for all
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assumed values of x. As far as the nature of first solution is concerned, it remains
negative throughout the process and its magnitude increases as the suction effects are
amplified. However, the behavior of second branch of solution remains almost positive
but changes its behavior for a while for smaller values of S. These facts can be realized
more clearly for small values of x (x = 0.25), where the solution is reported not only
without suction but also for injection parameter, too, Further, with the increasing effects
of injection the second solution changes its behavior from positive to negative. It is also
noted that as the influence of curvature is enlarged the existence of dual solutions
becomes impossible to shorten the character of suction parameter. Such type of
information can be seen in Table 5.5. It is also noted that, with the increasing magnitude
of S, the first solution slightly differs while the second solution exhibits prominent
variations therein. Further, as the effects of suction parameter are reduced both the
branches of solution tend to converge. With reducing the magnitude of S, we reach a
point, § =S, where both the solutions ultimately get overlapped and on overlapping
solution is obtained. It is also learned that the dual solution is possible only for S < S,
and no solution is observed beyond the critical point i.e., § > S.. To explore the point of
convergence (critical point), time taking efforts have been made and ultimately we
succeeded to trace out the relevant critical points which are also shown in the Fig. 5.11 as
well as given in a tabulated form in Table 5.7. It is an interesting fact that the Fig. 5.11 is
a mirror image of the results reported by Zaimi et al. [69] where the authors [69] utilized

wrong self-similar formulation.

To explore the curvature effects, numerical data is collected for some selected

values of S, which is referred in Table 5.6 and is also depicted in Fig. 5.12. From the
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graphical representation, it is clearly noticed that the variation in the second solution is
more visible in contrast to the first solution. At some specific values of curvature
parameter, the magnitude of skin-friction coefficient increases with the increment in
suction effects, but decreases with the increment of injection panmeter Further, it is
revealed that the reduction in the magnitude of f’/(0) remains to continue with the
increment in curvature parameter. The magnitude of the first solution stayed negative
throughout the process, while the second solution almost persisted a positive outlook,
however, for higher values of x, at S = —1.0, it changes its behavior from positive to
negative. However, such types of findings are observed for suction scenario, only. By
enhancing the curvature effects, the solution disappears more rapidly as the domain of
solution shifts from suction to injection regime. It is worth mentioning that the solution is
also reported without suction (S = 0). Here, it is noticed that the both solutions come
closer and closer as the effect of surface curvature is intensified. Ultimately, for every
assumed value of S, a critical point (k) is figured out, accordingly. It is a fact that no
solution is possible beyond the critical point (i.e., k > k). No doubt, such critical points
are explored after a great deal of plenteous efforts and exercise. The critical values of x
for some chosen values of S are pertained in Table 5.8 and Fig. 5.12 is also ornamented
with them, accordingly.

For complete understanding of the flow phenomenon, the velocity profile,
f'(n), is drawn in Figs. 5.13—5.14, where Fig. 5.13 is plotted for some chosen values of
x by choosing S as fixed (i.e., S = —2.0) and Fig. 5.14 is portrayed for some selected
values of S, by taking curvature parameter as fixed (i.e., k = 0.15). Here, it is obvious

that the two branches of the solution completely agree with the far field boundary
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conditions, asymptotically. It is illuminated from Fig. 5.13 that the boundary-layer
thickness is boosted as the curvature parameter is enlarged. It is also obvious, that the
second solution bears wider span of boundary-layer, whereas, under the same
circumstances, the first solution displays comparatively small variations in the boundary-
layer thickness. The role of suction/injection parameter, at k = 0.15, in the pattem of
velocity profile is described in Fig. 5.14. It is observed that suction/injection parameter
plays opposite role on the velocity profiles, i.e., by increasing the suction effects
boundary-layer thickness decreases, however, it boosts up as the injection effects are
magnified. Another important fact is that the solution is also noted without the provision
of suction wall velocity. Capturing the solutions in the absence of wall suction or even in
the presence of wall injection, is definitely a big achievement of the current study, as the
existing literature seems quite in this regards. Infact, the findings of current study negate
the well-established claims made about the existence of dual solutions. Now, it became
crystal clear reality that the solution can be figured out with and without suction/injection
influence. During the current study, it is also observed that the solution pattern portrayed
in Figs. 5.13 & 5,14, is the reflection of the results displayed in Figs. 3 & 4 by the authors
[69]. The outcomes of the present study are perceived to serve a helping tool to explore

the hidden aspects of the multiple nature of solution for moving continuous surfaces.
5.3 Conclusion

During the current investigation, the possibility of dual solutions is sorted out, for
lincar as well as non-linear shrinking wall velocity. The presence of sufficient amount of

wall suction provided an assistive role regarding the existence of these solutions. Further,

the impact of surface curvature for soliciting the non-unique solution is well noticed
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during the analysis. These outcomes are the important features of this study and are the
valuable findings for this flow. A comprehensive numerical data has been captured
regarding dual solutions of this flow and presented in tabular form, which is definitely
expected to help as most suitable reference for future studies. The outcomes of the;
present study shall definitely inspire the researchers to further disclose the hidden
features of the boundary-layer flows, of this nature.

During the current study dual nature of solutions for unsteady viscous flow
stimulated by an impulsively started shrinking cylinder has been analyzed. The present
analysis exposes various fascinating unique conclusions, particularly related to the topic
of shrinking surface flows. The prime feature of the current investigation is the existence
of dual solution not only in the case of wall suction but also for the cases of wall injection
as well as in the absence of wall suction, too. It is also noted that the dual solutions are
possible even for sufficiently weak injection velocities. These two outcomes are
definitely innovative and unique which have never been reported in the literature,
previously. Definitely, such a unique outcome will stimulate the scientists to scrutinize
the multiplicity/duality of solution for shrinking surface flows in the absence of wall

suction and in the presence of wall injection velocity.
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Chapter 6

Duality of solution for a stretching disk flow

In the current chapter we intend to deal with steady/unsteady characteristics of the
self-similar boundary-layer flow caused by a flat circular disk of infinite radius. The disk
is assumed to be non-rotating and of flexible nature and stretching in the radial direction.
The literature available in the realm of stretching disk is mostly related to the circular
motion whereas its non-rotational perspectives are rarely investigated. The axisymmetric
surface flows were also studied for the exploration of a new type of solution, called
multiple/dual solution. The current study is devoted to explore the possibility of dual
solutions for the flow phenomenon initiated by a stretching disk, in the absence of any
circular motion. Both the steady and unsteady aspects of a stretching disk flow are
considered in this chapter for the exploration of duality of solution. The governing
equations, obtained for the flow under consideration, are solved numerically with the aid
of a trustworthy shooting technique. During the present study, dual solutions are captured

for involved parameters.

6.1 Steady boundary-layer flow due to a stretching disk

In the family of axisymmetric flows the circular disk geometry is considered as
the next of circular cylindrical geometry. The axisymmetric boundary-layer flow due to a
radially stretching disk was first studied by Fang [79]. The author [79] utilized a linearly
varying stretching wall velocity for this flow. Consequently, an exact self-similar solution
was reported. A quick literature survey reveals that though the stretching disk flow has

been investigated by a huge number of researchers but the stretching wall velocity had
112



strictly been limited to a linear form. Recently, Mehmood [56] determined a similarity
criterion for the stretching wall velocity for the disk case and reported the possibility of a
power-law (non-linear) wall velocity, also. This section intends to consider the said
power-l;w (non-linear) form of radially stretching wall velocity to sort out the
possibilities with regard to the existence of non-unique solution.
6.1.1 Statement of the problem

Consider a flat circular disk of infinite radius whose flexible surface is being
stretched with variable velocity in radially outward direction. A schematic of the flow is
shown in Fig. 6.1 with the associated system of coordinates. Such a stretching disk
induces a two-dimensional boundary-layer flow for which the governing equation are

o) | 3wy _ ©.)
oWl 2 62)

subject to the boundary conditions

= ( )l = W( )l t =on
?‘:1;:,1' w=wy(r :t zz=°°}’ 63)

where u and w are the velocity components taken along the radial (r—) and the axial
(z—) directions, respectively, and v is termed as kinematic viscosity. Mehmood [56]
determined that the above system admits an exact similarity solution if the wall velocities

follow a form given

m-1

Uy(r) = ar™, Wo(r) =dr, 6.4
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where a > 0 denotes a uniform stretching rate, and d is a constant such that: d > 0
correspond to wall injection velocity, and d < 0 correspond to wall suction velocity.
Mehmood [56] introduced the following similarity transformations:

n= J- S u=arf'@),  we=—Vawr s C2f +2r), (65)
due to which Eq. (6.1) is satisfied identically, while the system (6.2)—(6.3) transforms as:
" =mf? - ("‘T”)ff". (6.6)
FO=1 fO=-7 f=0 67
where S =-= denotes dimensionless suction/injection: 5> 0 correspond to wall

injection while S < 0 correspond to wall suction.

Fig. 6.1: Flow geometry and associated coordinates.
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Table 6.1: A comparison of the data reported in [56] with the current results for some

selected valuesof m at S = 0.

Two-dimensional case The disk case
Y, m+3\ 72,
-(7) 1o () ro
Daa-reported Present Data reported in Present
m in [56] results m [56] results
0 0.6276 0.6276 0.6276 0.6276
T 15 0.7668 0.7668 3/5 0.7668 0.7668
173 0.8299 0.8299 0.8299 0.8299
1 1.0000 1.0000 1.0000 1.0000
A3 1.1484 1.1484 1.1484 1.1484
-1/7 0.4645 0.4645 -3/7 0.4645 0.4645
—1/5 0.3404 0.3404 -=3/5 0.3404 0.3404
-1/21 0.5816 0.5816 -=1/7 0.5816 0.5816
Table 6.2: Values of £ (0) against m for some selected values of S.
§$§=0.0 $§=10 §$§=2.0 §=3.0
M T sl | 29sol | I"sol | 2%sol | Fsol | 279s0L | Pl | 2%sel
—4 | —2.3690]| —2.3697| —3.4486| —4.0674]| —4.9541] —11.113] —6.6906| —28.423!
-5 | —1.9025| —1.9047| —2.4060| —2.5186| —3.0567| —3.9421| —3.8224 | —7.0049
-6 | —1.7197| —1.7233| —2.0464| —2.0994| —2.4465| —2.7447]| —2.9118| —3.9027
—7 | —1.6208| —1.6254} —1.8625]| —1.8976| —2.1478| —2.2982| —2.4743| —2.9217
—8 | —1.5586] —1.5639| —1.7503| —1.7775] —1.9710| —2.0655| —2.2196| —2.4721
-9 | —1.5158| —1.5217| —1.6747| —1.6976] —1.8541| —1.9219| —2.0537| —2.2183
—-101 —1.4845| —1.4909| —1.6201| —1.6404| —1.7711| —1.8239| —19373| —2.0554

115



§=30,20.1000

1 L 1 1 L

10 9 3 7 6 5 4

Fig. 6.2: Dual solutions shown by £’ (0) for some selected values of S against m.

6.1.2 Duality of solution

An inspection of the systems (2.5)—(2.6) and (6.6)—(6.7) reveals that the
boundary data of the two systems are identical while the self-similar equations of the two
systems, namely, Egs. (2.5) and (6.6) differ by little. A careful comparison of the two
equations reveals that both the equations are inter-convertible. Particularly, Eq. (6.6) can
simply be recovered by replacing “m” by “3m” in Eq. (2.5). This fact has also been
explained by Mehmood [56] where the author recovered self-similar solution (in the
accelerated case m > 0) for the disk from the self-similar solution of two-dimensional
stretching sheet flow. This indicates the possibility of recovering a self-similar solution
(in the decelerated case, m < 0) for the shrinking disk flow from that of the shrinking

sheet solution, if available.
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Interestingly, duality of solution for a shrinking sheet flow has already been
reported by Mehmood and Usman [55]. Therefore, it is not necessary to solve the current
problem, separately; rather the solution of the current problem can simply be recovered
from that reported in [56] by replacing “m” by “3m” in the data of [56]. By doing so the
results for a steady stretching disk flow have been reported in Tables 6.1—6.2 and Fig.
6.2. Obviously, duality of solution has been sorted for the case with m < 0, that is the
decelerated case of stretching wall velocity. This fact ensures the presence of dual
solutions in the case of stretching disk provided that the shrinking wall velocity is of
decelerated nature.

6.2 Unsteady boundary-layer flow due to a stretching disk

The characteristics of flow phenomenon due to a moving continuous cylinder
(stretching/shrinking) have been discussed in the preceding chapters (4% & 5%).
Moreover, the steady flow due to a stretching circular disk has been presented in
preceding section of this chapter with regard to the occurrence of dual solutions. The
purpose of this section is to investigate the various aspects of unsteady flow due to a flat
circular stretching disk for the existence of dual solutions. Here we are focused on the
analysis of unsteady flow caused by a non-rotating flexible stretching disk. It is a fact that
most of the literature on account of flows stimulated by stretching disk surface are related
to rotational aspects, while non-rotational characteristics have been given a very few
consideration. Further, with the appearance of multiple/dual solutions, there is a need to
sort out the possibility about the occurrence of multiplicity/duality of the flow
phenomenon initiated by a stretching disk surface. In this regards, the present effort is
made to investigate the unsteady features of the self-similar boundary-layer flow
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stimulated by stretching disk, particularly the existence of dual solutions has been given a
prime focus.
6.2.1 Mathematical formulation

Consider a flexible flat circular disk of an infinite radius placed in an
incompressible, stationary viscous fluid. The nature of the disk is supposed to be porous
so that the normal wall velocity across the disk surface is permitted. Further, the pores are
regarded as of uniform width and equally distributed on the disk surface. The disk is
taken, initially, at rest and at time ¢ > 0 a sudden motion/stretching is allowed (in radial
direction) with a velocity u,,(r,t). Such kind of wall velocity creates unsteady, two-
dimensional, axisymmetric boundary-layer flow in the neighboring fluid. The stretching
pattern and the associated coordinate system are presented in Fig. 1. In view of above
assumptions the boundary-layer equation of continuity in this case remains unaltered (i.e.,
Eq. (6.1)), while the equation of motion referred in Eq. (6.2) takes the following form:

du du du ﬂ (6.8)

As there is no circular motion therefore the angular component of velocity is chosen as
zero. The most suitable initial and boundary conditions are taken as:

u =u,(r,t), w =w,(r,t), at z=0,
u=0, at z=o) (6.9)

where u and w are the velocity components taken along the radial (r—) and the axial
(z-) directions, respectively, and v is termed as kinematic viscosity. The disk is being
stretched in the radial direction with the velocity of the form:

u(r,t) =1 (6.10)
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where a (> 0) is a constant and is referred as a constant stretching rate. The wall velocity
mentioned in Eq. (6.10) ensures for the existence of a self-similar solution. In view of the

wall velocity (Eq. (6.10)) the following similarity transformations (in dimensionless

form) are introduced as,
n= SJT;-?Z' u= %f'(ﬂ), and w=-2 '%f(ﬂ), (6.11)

where, y is a parameter describing the unsteadiness of the flow phenomenon under
consideration. Eq. (6.11) satisfies the continuity equation (i.e., Eq. (6.1)), identically, and
transforms Eqgs. (6.8)—(6.9) to the following set of equations:
" =fr-2ff" +BU +3 ) 6.12)
fl0=1  f(0=-S, [f'(=)=0. (6.13)
Here, B =£ is designated as unsteadiness parameter where its positive and negative
values characterize the accelerated and decelerated cases, respectively. Further by taking
= -1, the above Eq. (6.12), recovers the form of Eq. 8.52 formulated by Mehmood
[56] for unsteady stretching disk. For the present study, we suppose the decelerating
stretching disk with # < 0. Furthermore, it is worth-mentioning that for the above
mentioned self-similar system, the normal velocity must be of the form w,(r,7) =

ﬁ—"ﬁ,mditcanbewﬁuenindimensiom“sfomu%

correspond to wall injection scenario while negative values of it refer to wall suction

(= S). Positive values of §

situation.
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6.2.2 Numerical solution

A comparison of Eq. (6.12) with Eq. (2.10) reflects that the unsteady case of

stretching disk cannot be recovered from the corresponding case of stretching sheet,

different from the steady case. Therefore, the system (6.12)—(6.13) has been solved

numerically with the aid of 4®-order Runge-Kutta shooting technique as did in previous

chapters. Duality of solution has been captured in various situations.

Table 6.3: Numerical values for f"(0) for some selected values of g as a function of S.

s =-3.0 Iaﬁ ==2.0 B=-1.0 B =0.0 =10
Sol_| 2* Sol Sol. | 2 Sol. Sol_| 2™ Sol. Sol | 275l | 1" Sol. | 27 Sel
4105/ 02642 [0.2642 | ——— | ——— | ——— | ———- " ———[———-T———"T——_
38 0.2905 02901 | 0.1398 | 0.1398 -—— - -_—— =] === ] ===
30 | 03922 | 03863 | 0.1843 | 0.1834 | —0.0001]| —0.0001] ——— | ~—— | —~—— | ———
20 0.5819 0.5099 0.2677 0.2459 | —0.0098 | —00126 | —0.2499 | ——— | ~—= | ==~
1.0 0.5472 0.1483 0.1833 0.0010 | —0.1603 | —0.2098 | ~04766 | ——— | ——— | ==~
00 | —0.3400 | —1.6332 | —0.6211 | —1.41686 | —0.8994 | -1.2638 | —1.1737 | ~ == | ——= [ ===
-10 | —2.0579 | —5.7950 | —2.2288 | —4.9828 | —2.3996 | —4.1147 | —25703 | ~~— | === ]| ==~
—-2.0 | —4.0139 | —13.6207| —4.1234 | —11.7614] —4.2329 | —9.5636 | —4.3424 | ——— | —4.4519| — — ~
=5.0 | —10.0011] —65.6172| —-10.0499| —55.7642] —10.0987| —-41.7180| —-10.1475}{ ——— | —10.196] — — —
—6.0 | —12.0006] —92.4302 —LZMIGI =77.4122| —12.0826) —56.&23[ —12.1235| - —— | —12.164] — — -
—8.0 | —16.0002] —157.097] —16.0312] —127.899| —16.0621| —88.8698] —16.0931] — — — | —16.124] — — =
=10.0 —20.0001] —233.125| —20.0249] —186.27 | —20.0498] —126.265] —20.0746] — — — | —20.099{ — — —
Table 6.4: Values of f"(0) as a function of # for some selected values of S.
B S=20 §=10 S =00 S =-10 S=-20
[ 1" Sol | 2°Sol | I"Sol | 2°SoL | I"Sel. | 2°SoL | I"Sol | 2* Sol | 1" SoL Sol
0.1 - - —— - -=1.2008 - —2.5873 - —4.3435 ———
0.05 - - — -0.4914 —— —-1.1872 —-—— —2.5788 - —4.3479 -
0.0 —0.2499 —— —-0.4766 - —1.1737 ——— —~2.5703 —— 43424 ———
—=0.0000] —0.2499 —-_——— —0.4765 —— -1.1737 | ~1.1737 | —-2.5703 —_—— —4.3424 —_—
-0.0002] —-0.2498 —_ —0.4765 | —0.4765 | —1.1731 | -1.1786 | —2.5702 - —4.3424 -
=0.001 | —0.2496 —- —04763 | —04764 | —1.1734 | —1.1768 | —25701 | —2.5933 | —4.3423 -
—0.005 | —0.2488 —_— —04751 | —0.4754 | —-1.1723 | —-1.1825 | —25694 | —2.6439 | —4.3419 | —4.5467
=0.1 —0.2275 | —0.2275 | —04465 | —0.4485 | —11465 | -1.2033 | —2.5532 | —3.0529 | —4.3315 | —5.9059
-1.0 =0.0098 | —0.0126 | —0.1603 | —0.2098 | —0.8994 | —1.2638 | —2.3996 | —4.1147 —4:2329 | —9.5636
—2.0 0.2677 0.2459 0.1833 0.0010 —0.6211 | ~1.4186 | —2.2288 | —4.9828 | —4.1234 | —-11.7614
-3.0 0.5819 0.5099 0.5472 0.1483 —0.3400 | -16332 | —-2.0579 | —5.7950 | —4.0139 | -13.6207
—4.0 0.9297 0.7654 0.9266 0.2360 —0.0567 | —1.8844 | —1.8868 | —6.5794 | —3.9044 —=15.3217 |
=5.0 1.3074 1.0023 1.3185 0.2717 0.2283 =2.1591 | —1.7157 | —7.3456 | —3.7949 | —16.9257
—6.0 1.7116 1.2138 1.7208 0.2646 0.5149 —=2.4493 | —15445 | —8.0984 | —3.6853 | —18.4623
|_-70 2.1392 1.3961 2.1319 0.2231 0.8028 =2.7500 | —-13732 | —8.8406 | —3.5758 | —19.9484
8.0 2.5876 1.5476 2.5506 0.1546 1.0918 =3.0582 ) —1.2019 | —9.5740 | —3.4662 | —21.3950
=9.0 3.0546 1.6683 29758 0.0651 1.3818 =3.3717 | -1.0305 | —10.3000 | —3.3567 | —22.8093
-10.0 3.5383 1.7595 3.4068 —=0.0405 1.6727 ~3.6892 —0.8590 | —11.0196 ] —3.2471 | —24.1966




S
Fig. 6.3: Dual solutions shown by f”/(0) for some selected values of

P against suction/injection parameter S.

Fig. 6.4: Dual solutions shown by f”'(0) for some selected values of
suction/injection parameter S as a function of p.
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Fig. 6.5: Velocity profile for different values of S at § = —1.
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Fig. 6.6: Velocity profile for different values of S at f = —2.
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Fig. 6.7: Velocity profile for different values of # S at § = —1.
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Fig. 6.8: Velocity profile for different values of S at S = 1.
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Fig. 6.9: Velocity profile for different valuesof # S atS = 0.

6.23 Results and discussion

The information collected during the current analysis is prescribed in Tables
6.3—6.4 and is also illustrated through Figs. 6.3—6.9. Fig. 6.3 is plotted to analyze the
role of unsteadiness parameter, 8, against suction/injection parameter. From the graphical
representation, it is depicted that the dual solution is possible not only for suction case,
but also for injection case. Further, the solution is also sighted without the provision of
suction/injection effects. It is noticed that with the increasing values of suction parameter
the variation in the first solution is smaller as compared to the second solution. As the
values of suction parameter are reduced both solutions express minor deviations with
eachother. Resultantly, both solutions are overlapped at some critical points as shown in
Fig. 6.3. It is worth mentioning that the second solution is possible for only decelerated

case (f < 0), while no second solution is reported for accelerated circumstances even
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after utmost efforts. At a particular value of injection parameter, both the solutions get
converged. Further, Fig. 6.4 is drawn at some chosen values of S, against 8, wherein
small variations are noted in the skin-friction coefficient (for instance see Table 6.4).
Under the influence of suction parameter, both solutions comprise of negative values
which increase as the flow becomes more and more retarded. However, as we enter in the
domain of injection flow, both solutions attain positive attitude with the increasing
magnitude of #. In the case of no suction effects, the second solution remains negative
throughout the process while first solution changes its behavior from positive to negative
as the magnitude of B decreases. These facts can be sighted in Table 6.4, wherein also
noted that a unique solution exists for 8 = 0.

The velocity profiles for various values of g and S are drawn in Figs. 6.5—6.9,
where dual solutions have been noted which obviously satisfy the far field boundary
conditions, asymptotically. At some chosen values of S, the velocity profiles are
presented in Figs. 6.5 & 6.6, for # = —~1 and B = —2, respectively, where almost similar
behavior is depicted in both situations. The second solutions, in both circumstances, have
more -layer thickness as compared to first solution. Figs. 6.7 & 6.9 are plotted
to see the effects of suction/injection parameter on velocity, while Fig. 6.9 expresses the
velocity profile without the involvement of any suction influence. It is noticed that the
boundary-layer thickness increases with the increment in the retarded nature of the flow.
In all situations, the second solution has wider span as compared to the first solution.

63 Conclusion

The two-dimensional, unsteady, self-similar boundary-layer flow due to a flat

flexible stretching disk under the influences of wall suction/injection and unsteadiness
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parameter has been examined. During the course of current analysis following facts have

been noticed:

a) The dual solutions are possible not only in the presence of suction/injection parameter
but also reported without provision of these ingredients.

b) The retarded nature of flow has the potency to exhibit the dual solutions while
accelerated flow doesn’t express any duality and contains only single solution.

c) The magnitude of skin-friction coefficient, f"(0), enhances as the suction effects
magnify and similar behavior is observed for unsteadiness parameter, however, the
magnitude of f'(0) becomes lower as the influence of injection increases.

d) The velocity profiles for second solution, at higher values of suction and unsteadiness

parameters, are boosted-up as compared to the first solution.
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Chapter 7
Duality of solution for a shrinking disk flow

This chapter is devoted to scrutinize the steady as well as unsteady features of the
self-similar boundary-layer flow caused by a flat flexible circular disk of infinite radius.
The steady and unsteady cases of shrinking disk flow have been considered separately.
Interesting findings with regard to the duality of solution have been reported.

This chapter is a continuation of the previous one where the duality of solution for
the stretching disk flow has been sorted out for the steady and unsteady flow situations.
Similar to the stretching disk case the shrinking disk flow has also not been explored
completely. Particularly the power-law form of the shrinking wall has never been
considered before, to the best of our knowledge. Moreover, most of the available studies
on stretching/shrinking disk flow involve the consideration of rotational effects.
Therefore, the prime aim of present analysis is to scrutinize the different characteristics of
flat circular non-rotating shrinking disk for the presence of dual solutions. Due to the
non-availability of sufficient literature regarding non-rotational character of shrinking
disk flows, the present study seems to be a unique effort made to fill the existing gap.
Since, the idea of multiple/dual solutions has provoked various fruitful attempts to figure
out the multiplicity of the flow phenomenon originated by the shrinking disk surfaces. In
this context, the current work is made to explore the steady and unsteady characteristics
of the self-similar boundary-layer flow induced by shrinking disk; mainly the exploration

of dual solutions is the key feature.
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Fig. 7.1: Flow geometry and associated coordinates.

7.1 Steady boundary-layer flow due to a shrinking disk

In this section, nature of axisymmetric flows due to a steady shrinking disk is
considered. Fang [79] was initiated the investigation of stretching disk flow by taking
linearly varying stretching wall velocity and reported an exact self-similar. Like the
stretching case of the disk flow, its shrinking features are studied for rotational effects of
linearly varying wall velocities and non-rotational situations are rarely dealt. Fortunately,
a similarity criterion for the power-law (non-linear) of shrinking wall velocity for the disk
case was described by Mehmood [56] in his recently published monograph. In this
section, the existence of dual solution has been analyzed for power-law (non-linear) form
of radially shrinking wall velocity.
7.1.1 Statement of the problem

Consider a non-rotating flexible circular disk which is shrinking in radially
direction. In this case all the assumptions are same as being considered for the steady
stretching prospective, except of the negative sign with the wall velocities, which is

obvious. A schematic of the flow is shown in Fig. 7.1 with the associated system of
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coordinates. Due to quite resemblances with stretching, the continuity equation and the
equation are same as given in Eqs. (6.1)—(6.2), however, wall velocities ( as introduced

by Mehmood [56] for the under consideration problem) are of the form given by

m-1

U, (r) = —ar™, w,()=draz, 7.)
where a denotes a uniform shrinking rate, and d is a constant such that: d > 0
correspond to wall injection velocity and d < 0 correspond to wall suction velocity.
Mehmood [56] introduced the following similarity transformations:

n= Jgfz;—lz, u= —ar"‘f '(ﬂ), w= awz;_l(mTﬂf +mT-3nf ’)’ (72

due to which continuity equation (Eq. (6.1)) is satisfied identically, while the equation of
motions along with boundary conditions (i.e., (6.2)—(6.3)) transform as:

= (L"ZL:’,) ff"-m 2 (7.3)

f[@=1  fO)=—S, f'(o)=0, (7.4)

m+3" "’

where § = ‘,—%— denotes dimensionless suction/injection: S < 0 correspond to wall suction

while S > 0 referred to wall injection.

A comparison of the systems (3.2)—(3.3) and (7.3)—(7.4) shows that the boundary
data of the two systems are identical while the self-similar equations of the two systems,
namely, Egs. (3.2) and (7.3) with little bit variations therein. Again, here it is also noticed
that Eq. (7.3) can easily recovered by replacing “m” by “3m” in Eq. (3.2). A detailed
information can be seen in [56], where the author has given a consolidated criterion
regarding recovering self-similar solution (in the accelerated case m > 0) for the disk
from the self-similar solution of two-dimensional stretching sheet flow.
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Table 7.1: Values of £"(0) against m for some selected values of S.

m =-7.0 =-8.0 S =-10.0 =-12.0
1st sol. | 2nd sol.| 1st sol. | 2nd sol.| 1st sol. | 2nd sol.| 1st sol. | 2nd sol.
-10| -78725| —~— | —87797| ——— | -106404 ——- |-125419 ——-—
-5 | -74098| —--- |-83622| ———- |-102933 - -- |-122460 - - -
-1 |-70000| -—~ |~-8.0000] ——-- |-10.00000 —-- |-12.00000 —--—
0 [-68905| ——— | -79047| - —- | —99242| - -- |-11937 - -—-
1 [-67778| ~—-- | -78073] ——- | —98474| - -— |[-11873§ ——-
2 |—66615| ——— |-7.7076 | ——- | —97694| — -~ |-118093 ---
3 [-65413| ——- | -76055] ——— | —9.6904 | ———- |-11.7445 —— -~
4 | -6.4168 | 3.1457 | —7.5008 | 6.5805 | —9.6101 | 17.6026 | ~11.6791| 35.1808
5 |-—6.2873 | 2.9059 | —7.3932 | 6.1791 | —9.5286 | 16.7238 | —11.6129 33.5970
6 | —6.1524 | 2.4278 | ~7.2825 | 5.4239 | —-9.4457 | 15.1533 | ~11.5461] 30.8172
7 | —6.0112 | 1.9247 | -7.1685 | 4.6407 | —9.3615 | 13.5335 | —11.4784 27.9528
8 | —-58629 | 1.4489 | —7.0508 | 3.9109 | —9.2758 | 12.0263 | —11.4103 25.2844
9 |-57062| 1.0105 | —6.9290 | 3.2527 | —9.1886 | 10.6696 | —11.3412 22.8779
10 | -5.5396 | 0.6064 | —6.8027 | 2.6644 | —9.0998 | 9.4619 | -11.2714] 20.7316
40 ] | | | 1 ] ) | | | L]
< S=-12.-10.-8-7
-
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Fig. 7.2: Dual solutions shown by f”(0) for some selected values of S against

Power-law index, m.
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Fig. 7.3: Velocity profile for different values of power-law index, m at § = —7.

7.12 Duality of solution

Recently, Mehmood and Usman [55] provided comprehensive information
regarding the existence of dual solutions for stretching/shrinking surface flows, wherein
the authors [55], already reported the duality of solution for a shrinking sheet, therefore,
it is not needed to explain the under consideration problem, separately; rather the solution
of the present problem can easily be recovered from that presented in [56] by just
replacing power-law index “m” by “3m” in the data of [56]. By following previous
practice the outcomes found out for the case of steady shrinking disk flow are presented
in Table 7.1, and displayed in Figs. 7.2—7.3. During the study, dual solutions have been
figured out for m > 3, while after that a unique solution is sighted till m = —1. Further,
it is also noted that the solution persist in the presence of adequate amount of suction

velocity. The first branch of solutions reflects smooth but minor variations and having
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negative values in entire domain of solution. However, the second branch of solutions has
a different attitude that reported for first solution.
7.2 Unsteady boundary-layer flow due to a shrinking disk

Since regarding the existence of multiple solutions, bulk of literature has been
produced by many authors towards shrinking surface flows. Meanwhile, ample efforts
were made to analyze the fluid flow circumstances caused because of disk surfaces
rotating with specific angular velocity. However, only few efforts were carried out to
scrutinize the disk flow behavior in the absence of rotational motion. Therefore, the non-
rotational shrinking disk flow is also required to be explored for the existence of dual
solutions. The inspiration of the recent investigation is obtained from the contributions

rendered by the author [56], wherein the wall velocity of the form 1, (r, t) = 1:_‘—;; a>o
is suggested, in case of radially shrinking disk having infinite radius, for the existence of
self-similar boundary-layer flow. The proposed retarded shrinking wall

velocity (u,, (7, t) = ﬁt) contributes to establish a retarded boundary-layer and enables

one to figure out some meaningful solution with the provision of mass suction

7.2.1 Mathematical formulation

For the mathematical modeling of the problem of unsteady shrinking disk flow,
almost all assumptions are analogous as narrated in the case of unsteady stretching disk
(sec 6.2), due to which the equation of continuity as well as the equation of motion
remain the same as referred in Eq. (6.1) & Eq. (6.2). Therefore, there is no need to
reproduce them, herein. The only difference is the choice of shrinking wall velocity of the
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form u,, (r,T) = — % , which modifies the similarity transformation, given in Eq. (6.5),
as under:
n=Pden  u=Zrm,  od w=z[Z i) .3

Eq. (7.5), obviously satisfies the continuity equation (Eq. (6.1)), identically, and its
utilization converts the equation of motion (Eq. (6.2)) and the associated boundary

conditions to the following form:
" =2ff"~f?+B(f' +1 f"), (7.6)
=1, f(@®=s, f'(o)=0, (7.7

where, £ =E is the unsteadiness parameter: whereas its positive and negative values
categorize the accelerated and decelerated cases, respectively. Further, by choosing
B = —1, the governing Eq. (7.6) yields the Eq. 8.52 framed by Mehmood [56] for
unsteady shrinking disk. Furthermore, for the above mentioned self-similar system, the

normal wall velocity must be of the form w,, (7, 7) = 71%5, and its dimensionless form

reads as ;j—ﬁ (say S). A comparison of the two equations, namely Eq. (7.6) and Eq. (6.6)
reflects that both are the same having opposite scalar coefficients. Moreover, Eq. (7.6)
resembles to Eq. (3.14) by a lot involving a little difference in its constant coefficient.
Therefore, all such problems are different from each other and have been given attention,

separately.
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Table 7.2: Numerical values of S, for some selected values of the parameter 8.

8 S. 1 Sol. 2 Sol.
-1.0 -1.346886807 -1.1532 -1.1532
—-20 —1.365284109 -0.7659 —0.7659
-3.0 —1.3781027822 -0.3812 —0.3812
—4.0 —1.3879697533 0.0000 0.0000
—5.0 —1.39598577367 0.3779 0.3779

Table 7.3: Numerical values of 8. for some selected values of suction parameter S.

S B: I* Sol. 2™ Sol.
-1.35 —1.1400095 —=1.0990 —1.0990
-1.36 —1.66710229 —0.8947 —0.8947
-1.38 —3.17491743 —0.3142 -0.3142
-1.40 =5.5762158 0.594 0.594
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Fig. 7.4: Duality of solution shown through f£°(0) against S at some selected

values of unsteadiness parameter £.
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Fig. 7.5: A zoom-in portion of Fig. 7.4 showing the convergence of two solution
branches.
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Fig. 7.6: Duality of solution shown through f£"(0) plotted against 8 at some

selected values of suction parameter S.
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Fig. 7.7: Duality of solution shown through f"(0) plotted against 8 at some

moderate values of S
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Fig. 7.8: Duality of solution shown through £ (0) plotted against f at some

higher values of S.
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Fig. 7.9: Velocity profile for different values of suction parameter S at § = —1.
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Fig. 7.10: Velocity profile for different values of § at S = —5.

7.22 Results and discussion

The solution of the governing Eq. (7.6), subject to the boundary-condition given
in Eq. (7.7), is chalked-out with the aid of an authentic numerical technique used in
previous chapters. The outcomes of the present study are different with the findings
reported (in Chapter 6) for unsteady stretching disk in the sense that here dual solutions
are possible under the provision of sufficient wall suction only, while, presence of
injection effects play no role in the existence of solution. Due to such kind of facts, the
character of suction parameter is discussed in view of unsteadiness parameter (8). It is
noticed that, under the influence of wall suction, dual behavior of the solution is sighted
only for retarded nature of flow §(< 0), while, inspite of utmost efforts, its accelerated
scenario is see unable to contribute towards duality of the solution. The numerical data,
for involved parameters, obtained during the course of present investigations, is presented
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in graphical form in Figs. 7.4—7.8, and also displayed in tabular form in Table 7.2—7.4.
The coefficient of wall skin-friction, f"(0), is plotted, against S at some selected values
of B, in Fig. 7.4, whereas its zoom-in portion can be seen in Fig. 7.5. From Fig. 74, it is
clearly observed that the existence of duality is only confined to retarded flow situation in
the presence of suction effects. Meanwhile, after making persistent attempts, it is also
perceived that there is no duality of solution for injection parameter as well as in the
absence of suction effects. Further, the existence of dual solution, with the increasing
effects of A, is totally dependent upon the presence of suction parameter and this fact can
also be visualized in Figs. 7.4—7.5. The two solutions are seen to converge with the
reduction of suction effects and ultimately an overlapping solution is observed at some
critical value of S (see Fig. 7.5), whereas these critical values (S.) have been obtained
with great devotion as well as after paying utmost efforts and are presented in Table 7.2.
Figs. 7.6—7.8 are drawn for various values of S against # and there have been
experienced valuable outcomes. Fig. 7.6 is portrayed to represent the behavior of skin-
friction coefficient; comparatively for smaller values of S, wherein it is depicted that the
interval of B is expended with the increasing effects of suction parameter. Here it is also
noted that for a specific/fixed value of S, the gap between both solutions becomes narrow
and narrow as the magnitude of # reduces and as the process continues an overlapping
solution is sighted. Fortunately, we were able to find out critical points against each
selected values of S, whereas the information obtained for the critical points are
enumerated in Table 7.3. Here, it is also a fact that the convergence of both solutions, as
narrated in Fig. 7.6, is possible for smaller values of S while for the case of higher effects

of suction parameter, the merging situations of both solutions could not be materialized
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even at the cost of diligent attempts. The reason behind this fact is the leading role of
suction parameter which enables the solution to be pertained for specific range of
retarded flow. As the retarded nature of the flow exceeds from a certain limit (i.e., for
higher values of f) the solution disappears, accordingly. The critical values reported in
Table 7.3 to clearly describe the range for which the solution is available. To see the
effects of higher values of S, for decelerated/accelerated flow, Figs. 7.7—7.8 are plotted,
wherein almost similar features have been noticed as observed in Fig. 7.6. However,
some other interesting information about the existence/non-existence of solution is also
experienced. For example, it is depicted that the dominant character of suction parameter
results in the vanishing of second solution even for smaller values of f. This is the
primary difference between the results reported for smaller values of S (Fig. 7.6) and
outcomes figured out for larger values of S (Figs. 7.7—7.8). It is already described in
Table 7.4, that for small values of S (i.e., S = —1.40, —1.38,—1.36, —1.35) the solution
is possible for all 8 < 0, however the solution starts decaying for further higher values of
S. From Table 7.4, it is noticed that at S = —1.50, the second solution disappears in the
interval —1 < B < 0, however, the first solution is seen for some positive values of 8. It
is worth noting aspect that for the retarded nature of flow, the presence of dual solutions
is linked with the provision of some external agents, i.e., suction/injection, pressure-
gradient or surface curvature etc. In the present analysis, the suction parameter plays a
supporting role in the existence of dual solutions.

The behavior of velocity profile under the influence of S and g is presented in
Figs. 7.9—7.10, wherein it is well noticed that the boundary-layer thickness reduces, in

case of first solution, with the increasing effects of suction. Whereas, unsteadiness
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parameter exerts almost insignificant affects herein. Such kind of information is agreed
with the already reported findings. Comparatively, to the first branch of solution, the
second solution experiences prominent changes in the boundary-layer character with the
variations of both S and S.
7.3 Conclusion

During the current analysis, unsteady flow stimulated by sudden motion of a
shrinking disk is discussed. The analysis reveals that the duality of solution is not an
essential feature of shrinking surface flows. During the course of present study, it is
noticed that the existence of dual solutions could not be sighted for all values of £, even
in the presence of sufficient wall suction. It is revealed that for the existence of dual
solutions the flow should be of retarded nature, otherwise neither the shrinking surface
nor the provision of sufficient wall suction guarantee for the existence of duality of
solution. The flow phenomenon under consideration, is categorized in two phases, i.e.,
the accelerated flow situations (f > 0) and the decelerated circumstances (f < 0),
whereas for # = 0, the steady character of the flow is achieved. It is clearly assessed that
accelerated flow does not play any role in the existence of dual solutions and only a
unique solution is obtained under the provision of sufficient wall suction. On the other
hand, for the case of retarded flow, dual solutions exist with the assistance of sufficient
wall suction velocity. Further, under the moderate effects of suction velocity, the solution
is reported for all values of B < 0, whereas for higher values of suction the domain for
the existence of solution reduces to # < —1. On the basis of above discussion, it has
become clear that the retarded nature of flow is the key for the existence of dual/non-

unique solution.
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Chapter 8

Conclusions

The current study analyzed the self-similar boundary-layer flows stimulated by
continuous stretching/shrinking surfaces, particularly to search out the existence/non-
existence of multiple solutions. With the appearance of a new concept regarding the non-
unique nature of the shrinking surface flows, the topic of multiplicity of solution has
attracted a number of researchers who did their best to investigate the viscous flows for
the possibility of non-unique solution. However, there are some misinterpretations
attributed to the existence of multiple solutions from very first day. That is, possibility of
multiplicity is assumed for the shrinking surface flows under the provision of sufficient
wall suction. That is why; very rare fruitful efforts were made to search out the non-
unique solutions for the cases of stretching surface flows.

The steady/unsteady aspects of continuous stretching and shrinking sheet have
been analyzed, for the existence/non-existence of dual solutions, in the presence as well
as absence of wall suction/injection velocity. For a steady flow due to a stretching sheet
when the wall velocity follows a (non-linear) power-law form the uniqueness and non-
uniqueness of solution has equally been observed. The matter of fact is that such a
stretching sheet flow admits a unique solution when the stretching wall velocity is of
accelerated nature and admits multiple solutions when the wall velocity is of decelerated
nature. Definitely, for the retarded nature of stretching wall velocity the blowing
boundary-layer is assisted by the provision of sufficient amount of wall suction. Besides
the steady flow due to a stretching sheet the unsteady aspects of the stretching sheet flow

have also been given a full consideration. Important information is obtained in
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connection to the duality of solution. The existence of non-unique solution is experienced
not only in the presence of wall suction/injection velocity but is also figured-out in the
absence of any of these. It is again a worth-mentioning fact that the duality of solution
has been sighted for the decelerated nature of wall velocity. The outcomes of the
investigation of steady/unsteady stretching sheet flow are exclusive in the context of
well-established facts about the existence of multiple solutions in such flows. Earlier, the
characteristic of non-uniqueness of solution had been assumed to be an integral part of
the shrinking surface flows (only) under the provision of sufficient wall suction.
However, the facts reported in this dissertation, with regard to the stretching surface
flows, have simply neglected the well-established unrealistic facts and prestige of
shrinking surface flows. Moreover, the provision of sufficient wall suction for the
existence of dual solution has also been neglected as the dual solutions have been
reported for the decelerated flow in the presence of suction/injection as well as in the
absence of these ingredients. These facts clearly indicate that the occurrence of dual
solution is just because of the retarded nature of the flow.

According to the massive literature on the duality of shrinking surface flows, the
most attractive features of the shrinking surface flows are believed to be the existence of
multiple solutions subject to the provision of adequate amount of wall suction velocity.
Moreover, the shrinking surface flows are admitted to exhibit more non-linear
phenomenon. On this basis the shrinking surface flows had been believed to be richer in
physics than the stretching surface flows. This chapter offers a unique opportunity to
compare the two flows (due to stretching and shrinking surfaces) in this regard. Similar to
the stretching sheet flow, the steady and unsteady cases of the shrinking sheet flow have
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also been investigated in full detail, in this dissertation. Our analysis reflects that there
exists nothing especial or specific to the shrinking sheet flow. All the features, regarding
the occurrence of dual solutions, observed in the stretching sheet flow have equally been
observed in the shrinking sheet flow. For the shrinking sheet flow too, the duality is
simply reported because of the decelerated nature of the wall velocity. For the accelerated
nature of the wall velocity the shrinking sheet flow admits a unique solution, similar to
the stretching sheet flow, which has never been realized. It is a matter of fact that neither
the stretching sheet flows had been investigated for the existence of dual solutions nor the
shrinking sheet flows had been investigated for the existence of unique solution. That is,
in the produced literature, the topic of stretching sheet flow had always been studied for
the accelerated case while the shrinking sheet flow had always been studied for the
decelerated case. Consequently, non-unique solutions was assumed to be the salient
feature of the shrinking sheet flow while the stretching sheet flow was believed to admit a
unique solution.

Like the planner case of viscous flows due to stretching/shrinking surfaces, their
axisymmetric aspects have also well inspiring motivations. In this regard the
steady/unsteady cases of the flow due to a stretching cylinder have been considered in
detail. The existence of non-unique solution for the case of two-dimensional stretching
sheet gives a trivial motivation to investigate for the existence of dual solutions in
axisymmetric case. During this analysis, it is noted that dual solutions are existent in the
presence of suction/injection velocity. It is interesting to note that for stretching cylinder
flow (when the wall velocity follows a power-law form) the duality has also been sighted

in the accelerated case. This apparently seems to be the consequence of the involvement
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of suction/injection velocity and the surface transverse curvature parameter which infact
disturb the flow in a variety of ways. It is therefore reported that the case of stretching
cylinder requires further careful analysis in order to develop a complete understanding of
the associate flow phenomenon. It is also remarked that, to the best of our knovt.rledge, the
case of non-linear stretching cylinder has never been investigated for the existence of
duality of solution. Similarly, the duality of solution has also been sighted for the
unsteady stretching cylinder, not only due to the provision of wall suction velocity but
also due to the provision of wall injection velocity, and more interestingly, in the absence
of these two.

Similar to the case of stretching cylinder flow, duality has also been captured for
the shrinking cylinder flow. Dual solutions have been observed for the decelerated nature
of wall velocity in the steady and unsteady cases. Overall, duality of solution has been
observed in the presence of wall suction/injection and even in the absence of these two.
Moreover, the involvement of surface transverse curvature parameter also plays an
interesting role regarding the manipulation of flow in view of the non-uniqueness of
solution. Thus in this case too, it has been made evident that the duality of solution is not
a unique feature of the shrinking surface flows. Moreover, the duality of solution is not
simply connected to the provision of sufficient wall suction rather it can also be sighted
for other scenarios, such as in the presence of wall injection or even in the absence of
wall suction or injection velocity.

The axisymmetric surfaces are composed of cylindrical and disk geometries,
whereby the involvement of surface curvature has dominant character in flow situations

caused by the motion of continuous moving (stretching/shrinking) cylinder. The disk
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surfaces, however, are free from the influence of surface curvature, though exhibiting an
axisymmetric flow. The flow phenomenon caused by the continuous motion of steady
and unsteady stretching disk has also been investigated for the possibility of dual
solutions. In the steady cases of stretching or shrinking dis..k, availability of second
solution has been witnessed for the retarded nature of the wall velocity. In these cases the
solution can simply be recovered from the corresponding cases of two-dimensional
stretching, or shrinking sheet flow. In the unsteady case of stretching or shrinking disk
flow, dual solutions have also been figured out. In the unsteady case there appeared no
possibility of recovering the solution from the corresponding two-dimensional flow. In all
these cases the fundamental reason for the existence of a non-unique solution is the
retarded nature of the corresponding boundary-layer flow.

The behavior of solution curves of unsteady shrinking disk case is quite different
from that of unsteady stretching disk case. The dual solutions for shrinking disk flow are
possible for decelerated flow only under the provision of sufficient wall suction amount,
while for the stretching disk flow duality has also been captured in the presence of
suction; in the presence of wall injection, and even in the absence of the two.

In this dissertation, three categories have, mainly, been investigated for the
existence of non-unique solution, namely, the steady/unsteady two-dimensional planner
case; the two-dimensional axisymmetric case involving circular cylinders; and the two
dimensional axisymmetric case of non-rotating disk by considering stretching as well as
the shrinking nature of the disk surface. Interestingly, duality of solution has equally been
witnessed in all these six different flow situations. It is, overall, concluded that neither the

existence of non-unique solution could be regarded as a unique feature of the shrinking
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surface flows only, nor it could be solely attributed to the provision of sufficient wall
suction velocity. The existence of duality of solution can, however, be attributed to the
retarded nature of the on-going boundary-layer flow which is sometimes quite a weak
and is supported with the provision of suﬁcient wall suction velocity or due to the
surface transverse curvature; and which is sometimes not that weak and sustains against
sufficiently strong wall injection too. In total the retarded boundary-layer is appeared to
be a quite vulnerable of producing a non-unique solution. With these outcomes it is
expected that most of the misconceptions about the existence of dual solutions for the
shrinking surface flows have been cleared, now. In this regard, the current study and the
data reported herein are expected to serve as a good reference for future studies.
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