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Preface

Anong the divcrse class of thc self-similar boundary-layer flows, thc flows duc to

shctching/shrinking surfaccs have bcomc morc frmiliar on account of their vast

practical ryplications that arc frcErcntly cxpericnced in various industisl ald

Gttginccriqg arcras. 'lhc flow phenonreiron, causd by thc motion of shinking cmtingoru

surfrccs hss pru'vidd a great deal of worh b the rcceurchcrs b crplue ig variors hidd€n

aslrecB, particularly the cxistrnce of non-uniquc solrfion. A lot of attcmpts havc been

nahrializcd b figurc out thc multiple solutims undcrdifrerent sinntius and iryrcssive

conchuio,ns have becn draxm regarding the physical richness of thesc flowr. A thoroggh

analpis of such kind of fndfuis rwcals that 'hon-uniqucness of solution',; lhysical

rie,hncsr"; alrd 'tnore non-lincr phenomeom" atp .aanim6rusly acccptGd intesEal

featurcs of 6e shrinting surhce flows. Itiloreovcr, some baseless frcts such as the uon-

cxistence of solutioq aud nccessity of sufficic,nt wall suction forthc exishce of solution

hsve dso becm attibuHl b thcsc flowr. Unfortunately, thc above mcmimed fac'ts are not

partioilar b a gury of studies rathcr they have bec,n established as widely admittcd

tuths about thc shhkiqg suftoe flows. This cm irnnodiately be verificd fto,m the rccent

liEnture on this topic. On the orthcr hand the shetching surface flows are tpated as an

hfertile topic with rcgard to thc above mentimed "impottant" frets. Howerrcr, the r€allty

is quiE opposite becausc the existing frcts about the shrinking surftoc flows hane not

becn drawn due b I sonoct analysis. Infa$ it is the retarded naturc of the flow that

pro'idEs the opportunity of the appcararcc of nm-unique solution. Accidently, the first

wcr study on the shrinking surfrce flowr, was conftr&td by considcring a retarded

shrirLiru wall velocity. Consoqucnfly, the abse,nce of any solution and the occqrrence of



non-uniqtrc solution duc to the provision of suffciem wall suction was an ultimate. In

actul, this was not a speidty or uniqueness of the shrinking surfroe flows, rathcr an

already and understoort frct that a retardcd borndary-layer is vulnerrble of the

oocur€nce of non-uniEre solution. But, unfortunaEly, the frndings of this frst study

wcre assumed b bc valid to dl shrfurkiqg surfroe flowr. Interrcstiagly, the involved

afihors dwzyt considered thc retardcd shfukiqg wall velocities and the accelcratod

sffiching wall vclocities in their studies beausc of which ftey wcr obtaincd a 111m-

unigc solrtrion fu thc shinking surftces while a uniErc solution for the shetchhg

surfrces. UnfortunaEly, thc suete,hing/shrinking surfrcc flowt have rarely bccn

investiSnt€d in complete with regard to their accelqated/decelemated nature. On bchalf of

the anthcntic outoomes of current study, it is humbly argucd that fre multiplicity is not

confined b the frmily of shrinking surface flows only but the 3imils kind of orrcomes

can also bc obtained forthc stetchiag surftce flows, eqrully.

The prrescnt frcsis is prcseirtcd to elaborate the conest ad trtrc undcrsanrliag of

the multiple/dual naturc of solution that has becn oherved eri4g the analysis of self-

similar bormdary-layer flowt caused by the sffihiag/shrinki4g surfaces. In thc prcs6mce

of a bulk of confirsing lite,lature regadiag thc existcnce of non-uniEre solution, thc

curre'rs efforts b pnesent the real causes behind thc cxistence of no,n-unique solution is

lilre t hard ncck to ctack Ctrptff I cwcrs flrc historical developmorE of the subjecq

relwant literature, and esscntial description of flre basic tcmninology for the better

udcrstauling of the readcrs. Since, now it has becme a crystal clear reality that the

eElity of solution can be sighted for stetching cmtimrous surfaccs too ad thc non-

uiErcncss of solution cannot be attib,uEd O shrinkiqg surfaces, o,nly. In this congt



Chepter 2 is deyoted b pr€scnt thc non-rmiquc,ness of solution steadyfunstcady viscors

flow caused by a flat stete,hiag sheet. Vahrable orfrcomcs have been rcporbd regardiag

the pescnce of non-uniquc solrtion. The exisHrce of dual solutions for sbady as well as

fu unsEady situations is showr to happcn in thc retarded flow situdions while in thc

accelc'lated flow thc solution is obscrvcd to be rmique. hdeeq the outcomes rEported in

Chrpter 2 have corutsrGd the adnittea ny{ts regardiry the cxistc,nce of non-uiqge

solutions. The conteirtr of this chaptcr arp under considcrdim for publication It is a

rcality that the shrinldng surfaoe flowr have cnjoypd a unique popularity dge to the

exisfficc of non-rmiqucness of solution, thouEh crroneously, linlrcd to thcm. The rcality

is thc, in this case too, the existEncc of non-uniquc solrrio,n is not associated to the

shinld4g nahure of the walt velocig itrstcsd thc &rality of solution in a shinking sgrfrce

flow is obscn/od only whcn fte deceleratod shrinldqg wall velocity is considered.

Therefore, Chrptcr 3 of this disscrtation aims to prtscNlt 6e tnre facts regrrding the

oocurrcncc of non-uniEre solution in steadyfunstcady shrinkiag sheet flow. It is explained

that fte euEty of solution in both, the sEady and urubady, flow situations is stictly

associatcd with the rctudcd nafire of the shtinking wall velocity. The contents prresentod

in this e,hapter havc becn publishcd in Intemetionel Jounrl of Nonlincrr Sdcncer end

Numcricd slnulrtion, m 2fr20.In pruviors two chaptc,rs i.e., ct. 2 lrrtd ct. 3 thc

plaoncr cascs of stehning/shinking surftces have bm cmsids€d. The axisyrnmctric

flow sittutions due b thc shetchiag/shinkiag surfrces have been considcred in next foru

Ctryters.

Particular to the axisynrmctric casc of stetchiag/shrinking cylindcr iryortant

resulE have bcen rGected in the next couple of chapErs. Sincg thc tasvcmse cunyahrc

lll



is atr additi@al factor attachd with the axisymmetric surfrces of cylindrical shryc. It's

important and intcresting role rcgarding thc cxistcnce of duality of solution, not only in

the shinkiag cylindsr case hil dso in the sffiching cylindcr case, has becn cxplorcd in

dctail which arc novel findi4gs of its owa naturc. Fu this pu{x}'re, steadyfunstcady flow

situations due to sffie,hiag cytindcr are investigated for the possibility of multiple

solutiotts in Chepter 4. Thc stcady flow fue to a sfietching cylindcr is cxamincd by

considcring thc powcr-law form of stretching wall velocity and the dual solutions are

captured not only for the sttction/injection eftcB hf dso in the abscnce of any of these.

Such t)"cs of findings are actrully duc to the prresence of surhcc tusvcrse curvature

and are 8 comequcnoe of the supportivc role of fiansvcrse curvature in thc retarded flow

situations. The flow situdion infrrcd by the unsteady shetching cylinder is studied for a

lincarly wrying wall velocity, whcrein the similar type of results, as in the casc of stcady

sffichiag cylinder, are noticed for a retardcd flow sitrution. The rcsultr figurod out for

rmsteadysfiete,hiagcylinderhavebcenpublishdinJourndof ApptiedMeclenicrrnd

Tcchricrt Phydc+ m2Un,whcreas the outcomes rEporEd for steady case of shetching

cylinder arp in the revicw prcccss forpo*rible publication. Steady and unsEady cascs of

shfuking cylinder flow have also been considcrcd to analyze the duality of solrtion. In

this case bo, a powcr-law form (of shrinkiag wrll velocity) has becn considcred in thc

stcady casc. Tte shrhking wall vclocity in the unstcady case has been considerod of

lincar nafirE. It is figrnod ort that thc non-rmiqucness of solution is ob,scrvod for thc

rchrded wall velocity whereas a unique solutim is obs€ryed for the accelerated case of

shhking cylinder. The rcsulb of urutcady shrinkiag cylinder flow have bc€n published

IY



in Eunopern Jourad of ltficchrntcr / B Huid+ ra2020,while the orilcomes reg[ding

steady shdnking cylinder flow arp undcr rwicw for possible publieation.

Anothcr inffiesting axisymmetric flow situation (rccurs on a flat circular disk of

infinite radirs. In this regar( fte cxistiqg lit€rature is nostly coryriscd of the stqdy of

rctathg disk boundary-layur rvhcreas the non-rotatiqg features have hrrdly bocn

investiSlEd ard the cxistc,occ of dual solutions is raely rceorted- Chrpter 6 consists of

fre analysis of sEadyArnsEady flow phcnomcnon stimulatcd by the sretchiag disk

surfroe, whsrein the duality of solution is scnrtinized successfully. Thc ou6omcs, Erccd

ottt fu a sffichi4g disk flow, are lnder consideratim forpossible publication. The non-

rffitiqg disk flow is ftrthcrextendcdtowards the shrinking disk floy, whercin the almost

similar information is noticed as prescribed in the case of st€tchi4g disk flow. It is

iEporhntto rciErab that the shdnldqg disk flov is not observed any interestiqg than the

sbetching disk flow. h bofr situdiotrs the &rality of solution is simply associaed trg ftc

rcdcd natute of the stetchiagitshrinking wall velocity. The resul6 figurpd out for the

skinldng disk flow are reporEd in Cheptcr 7 ard,are rmder conside,ratim for pocsible

pttblicatim. To pnescnt an ovemall conclusim of thc wholc diss€rtatioa Chepter t is

includd d thc cnd of fris dissertation Thc co,nchsions dra*n are srryposed to be

extscmely helpfirl fo,r the explotuim of thc other hidden aspccB of sretching/shrinkiag

surfroc flm regardiag the existcncc of duality of solution with regard to thc othcr

varioru phycical iagredic,ntr.

Y
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Chapter 1

Introduction and preliminaries

This chaptcr contains an overview ainod to intofuoe thc readcrs with thc

devetorprnents carid out in the field of borndary-laycr flows for Newtonian fluids

stimulaEd by *erching/shrinking oontinuou curfrcee. The literrature incorrpolatcd in this

rcscarch is relued to thc viscors fluids flowr and the existcnce of multiple soludons

thercin. This chrptcrconsisE of two paru: firstpErt inchdes the infroducbrry infqrration

of the topic along with the histodcal ta*gfound and develqprmcnt, and in the second

part smc findau,cntal lnowledge closely rclabd to the prese, Ed rescarch is gathered

for the convcnicncc ofthe r€ader.

l.l Overriew on histoly

Thc practical applications of fluid mechanics arc witnessed by thc human history

from the existence of humm life on the planct. The fluid mechanics started iB journey

from fulfilliag the sanitary/drinking requircm€nts of the inhabitant of varioru

oomrnrmitics and now it became an integral part of the science & technology which dcals

with cnginccriaS; infristry, aviation, spacc explorrtion, mertalhqgy and lot of cx,citiqg

applications y€t to be cxplored Initially, most of the applications of fluid mechanics werc

solcly related to practical lruqxrses, such as distribution syate,m for the irrigation of cmps.

For examplc, thc anciart civilizations used to scfile ncar ttre natural watcr reservoin to

fulfill their essc,lrtid dorrestic neods. Indceq krowinglyfunkrcwingly, they went through

wifi practical applicatio,ns of hydraulic . The early civilizations also rsed

wrtcr systsms for the dcvelopment of cities, for exaurplc, thc llarrypa people developed



city-wide drainage systcm b collect ninvatsr. Throughort i6 history, the fluid

mechrnics is fmwn as a field frat has bec,n constantly advanccd by every day. It is a

field that has bccn reached the point.of scicntific maturity, now. It is rcality that most of

its fimdamentals are clearly undcrstoo4 which made it a vital corrrponcnt of many

enginecring crmicula In 250 BC, a first thcorctical rcasoning about the behaviu of fluid

flow was unvcilcd by Arc,himedcs in thc form of his frmoru hrcyancy postulstes. Before,

6e invention of thc Ncxrbn s' law of viscosity, in 1687, dl att€mpts were focused to

investigde thc inviscid/ideal charactcr of fluid flows. In 1730, the Ncwbn s' coatsibution

was ornamentcd by Daniel Bcrnoulli who put forwardod the law of fluid motion yfrich

was firther renovzted by konhard Eulcr in 1755. The well-known 'Navier-stokes

cqnations" were formulatcd by Navier and Stokai, independe,rtly ta lV27 atrd 1845,

respectiwly, by intoducing the viscors Erm in thc eqntion of motion. These equations

have bccn prot/cd Eost bcncficid tool b investigafie the charae'teristic.e of the viscors

flows.

In 1904, Praodtl [] not only classifcd the viscous flow into two categuies,

namely, thc potcntisl flov and the boundry-layer flow b,ut also prrovidd an opportunity

to linlr the two divcrsc b,ranc,hes of fluid mechanics (i.c., theoretical hy&odynamics and

hydrailics). Tte flows with zcro vorticity (i.e., thc fluid particles af,c non-rortatiag thercin)

ue regudod as potqilid flows. These flows are comprtivety simple ''.n ott€tr flwt

due to rmiform flow patEn of fluid particles. Howwcr, in thc thin 6ps near the solid

surfacc, where the vorticity is not small, another type of flow is visualized which is

tcrmed as boudaryJayer flow. Snch kind of flow exist in the immediate vicinity of

leading edge of fre surfacc in conbc! where the effecE of viscosity are prorrrinent and

2



the fluid ffids b cliag to the surface. Defmibly, the idca of the boudary-layer can bc

rcgded as a ready refcrence to scnrtinize the behavim of wall Aiction more precisely.

His tU thcorctical contibrtrions motivarcd the scic,ntisE b examine the chrmrctcristics of

viscprs flows in context of boundary-laycr phcnomc,non. Indeeq ftrom micro to macro

level developme,nts are besbqrcd by tre gloriow info,rrration prescntcd by Prandtl. Thc

vzrious florr situations, within a borndary-layer in case of a flat-plate, have becn studied

by a numbcr of authors. The list of contsibubrs is sufficiently lo4g howevcr the most

vahuble co,ntribrutims have bem made by eroldsEin [2], Bate,helorr [3], and Schlichtiag

[a]. Soon aftcr the appearance of boundry-layer awarcncss, Blasiru [5], for thc frst time,

.Dalyzd the boundary-layer flow pheiromenon ovcr I flat-platc. The urthor t5] studicd

fre twodimensiotrd sEady florr within a borndary-layer formed at a scmi-ffinite body

and such tlpe of flw was regardcd as Blasirn flow. Iater on, theorctical investigations

rmdEr ccrtdn situations were carricd orrt by tte various arthors [69], while Burgen tlg]

retifid the Blasius flow experimentally. In 1931, Falkncr and Scan [ll] invcstigapd

stcady two-dimensiotrd boundaryJayer flow oycf, a wedge. Infae the ar1homs [ll]
gEncralizod the Blasius [5] flow, by hLi"g powcr-law form of pmential vclocrty, for the

sitrution when the plates are not parallel b hc flow. Tte urthors of [l] & [5] wcrc

concc,ntatcd on a flowpast a stationaryboundsry.

In 1960, SakisdiE U2-l3l reognized thc cnaracar of bormdary-layer flow oy6r a

mwiag cmtinuous flat plate whose velocity was considered as unifo,rm. Afterrvards, thc

boundrryJayer flow of viscous fluid over a continuou flat-surface moving wifr conshnt

velocrty is regarded as Sakiadis' flow. I.st€r, Tsou et al. tl4] psoyidcd uperimentrl

justification of the fndiqgs of Sakiadis. Because of ficmendous applications in the span



of engincuing and infustrial lr(roesses, thc stndy of two-dimcnsimal bondaryJayer

flow stimulatcd by staching surfrccs has bccome blmming topic for the researchcmc

since the contibutions prcsc,nted by the Blasirs and S'lriadis. It is a mattcr of inter€st that

Blasius [5] considcred the circumstances uftcn fluid is moving (rycr 8 strtionary plate

rvhilc thc $nkiadis U2-l3lchose thc vice-versa aspects as Uken by the author [5].

With the passage of time, more and more dcvcloprc,ns have been obscryed in

cngineering and inftEEial disciplincs which €nhanccd thc need to investigatc the

Sekiadir' flow under some other vuluable aspccts. In 1970, Ctane came forward and

invlstigaedfre Sakiadis'flowunderthe influence ofvariable linearwall velocity. Ctanc

[5] excogitated the twodimcnsional stcady yiscous flow originaEd by continuors

shetchiag sheet moving with a variablc lincuwall velocity and also succccdcdto erplore

a closcd-form solution- Duc to this marvelors ac,hievemc,n! Crane is considcred as the

ptoueer of stetching shct flw. A larye numbcrr of wcll-tnowu invcstigators inspired

by the farbulous contibrilim of Ctane [5] dsr/oted their effort to analyze the shetchiag

shcct flow undcr fte influe,nce of different typcs of velocities and bourdary-conditions.

For inshncc, corcidErable crffort were made by thc renmrcd authors who sort out the

fluid flowphenonnenon stimulatedbythe stctching surhoe fornon-liner andporver-law

wall velocities under the influcnces of varioru kinds of physical parametems like

sttction/injection, potosity, and heat fransfer etr. Thc eftcB of heat and mass transfcr, in

the pnesence of nrctim/blowing on the sffiching shcct has bccn amlyzed by Cnryta and

Gtryta [16]. In 1979, Ctahabarti [l7] studied the hydromagnetic flow undcr the influe,ncc

of heat hansfcr, over 8 stetching sheet. Latcr, in 1983, the wort of Crane was cxt€nded

b,y Banh [18] for powcr-law velocrty where he formd similarity solution of the
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boundry-layer flow ovcr a sffiching wall, whilg in 1999, cxponcntial wall velocitywas

intenogated by lvlagyad ud Kellcr [9], whoe the effecE of heat and mass hansfer were

invcstigrted by thc,m. Similarly, the sffiching surfroe floun also ath&'tcd nrmbcr of

investigilon 120-267 who analped the cffccts of snctio,n/injection dong with heat

tansf€r oyer tou0ary-tayer flows and found a similarity solutim by using

rumcricaUanalyical tochniqucs. Aftenvads, Crae's rvo,rkwas cxffidcd forthc situation

of three'dimc,nsional flow by lllang [2fl whuein hc succecdcd to sort ort the qact

similarity solution of the problcm.

The studies citcd above are relatcd to the steady strtc viscors flows over

continuors stetching surhces. Howevctr, in daily life weryone has to undcrgo the

circumstances wheir the flow bccorres unsteady. It is a rcality that the unsteady behavior

of variety of fluid flows has gaind significant inportance duc to theh blooming p&actical

importance. Althougt, normally a steady behcvior is iryortant during the invcstigUios

of fluid flow phcnmc,uon, howwer, it is well cxpcrienccd frct that rmsteady strE

situatio,ns might also be of practical imporrtancc. that is, nnsEadincas may h caused by

self-induction of the object, inconsistcnt Dsturc of the flow undcr considcratior4 and

somctimc an ustcady aspect is a peroquisiE for prticular devices to exccub thcir

firnctions. A dctaild oonvc,rsation, in this rcgir4 crn be consultcd in valuable

nanuscript prescnEd by tvtcCtos€ky [28]. Morcover, to invcstigate tte effecrts of

unstcadiness, ample effo,rt were madp by a nrmber of well-knovm anthors [2]39] who

analyzed the unsteady sffiching sheet flow phenomcnon rrndcr the influence of variors

physrcal parameterr.



Thc bpic of sclf-similar flows has bccn Foved to bc more gcncrrtive fqr higtly

spiritd rcseuchers who utilized thcir best abilities to iuvestigate the bondry-layer

flowr stimuhted by stctching surfaces. At the sanrc time, therc €xists anothcr significmt

class of sclf-similar flows whie,h is now Ermd as shrinking surfrce flowr. This class

dcak with the circumsunccs vfrere the wzll velocity is takcn wittr oposiE srgR as

chosc,lr in thc case of stctchittg surhce flows. In this c@Ext, Miklavcic and Wang are

also rcgarded as thc pionecrs of shdnlcing surfacc flows, who initially intoducd thc flow

phenmcnon stimulated by a shrinkiag shect. In 2fi)5, MiHavcic and Srang [a0]

oonsiderod a trvodimeosional shrinking sheet flow wifr an interesti4g conlchuion of

non-existenoe of solutiou- ltey rcported that the cristrrce of sohrtim rcquircs sufficicnt

wdl suction and that the soludm is non-unique whenevcr it Gxistr. Conscquently, thcir

idea of shrinking surfacc flw was immediately adopt€d by a number of above

researcners. The frnhsy as prresented by Miklavcic and lVang prcyidcd a goldcn

oeeortunity to the amlysb who cnthrsiastically dcalt with this imovative class of self-

simihr flowr. Likc thc stetching sheet, this nemr-frngled also possessed a broadcr span

rvhcrein a lot of rcsearchcrs contibutd a huge litcrature. By gctting inspired from the

urcrt [40], a large uumbcr of publications, addressurg the effect of various physlcsl

paramctefis tmder ditrcrcnt cirwnstanccs, haye becn fumishd by well-lmwn

researchers attd th€ similr cfforb are still gomg on. To illushrE all the €xisting literanne

undcr otrG cov€r is like a lmg row b hoe, howevcr, some valuablc but most relcvant

findin5 can be seen in the refcrcoces [alaS]. Ihe study of Miklavcic and Wang I40I

was relatcd to stcady staE of shri*i4g shcet flow which was exteirdcd to unstcady

scenario by Fang ct d. [49]. Duriqg ttre analysis, the authoru of [a9] compqted the drul



solutims for ccrtain range of the involved paranctcrs undcr the impact of heat hansfcr

md also claimcd that the flow cansod by unstcady shrinking shcct is quitc diftrcnt frgm

thd of unstcady sfietchiag shect flow. The worh of Fang et al. t49] wzs fi5ther sjtldicd by

various anthqs fc diftrent aspects, for cxample, power-law fluid (yacob et al. [50]),

nanofluid flow (Rohai ct al. [51]), stagnation point flow (Snsli8 et el. [52]), nanofluid

flow u$ng Buo4giomo's modcr (Rohd ct at. [53]), efrccts of shp and hcat

gcnematiorn/absorption on MHD strgnation point flow (Nandy and Mah4afia t54]).

Bcsidcs thesc, there arp numbcr of researcher papcrs einrilable in li661atur€ that s6ied a

shrhking surfrc€ flow and prrescncd the duality of solutio,n as an ultimatc oubome.

Reccntly, Mchmood and Uman t55l presened a comparative strrdy reg3rding the

exisEnce of multiple solrtions for shetchiag/shrinking sur&cc flowr and mathematically

jttstified that the similar situations of drulity of solution do also qist for the shetchi4g

$rfrces as noticed in the shinking sufroc flow. Fruther, the arthors t55] nsd' it clear

ffrat the froasy of the exisHrce of non-uniqucness of solrtrion as wcll as exhibition of the

non-lincr pheoomcnm linlrcd with the shrinking surfrcc flows is perhaps bryond the

rcality.

Although, the sEadyArnstcady fcatues of shrinking shcet flows arc still charmiag

and whie'h arc cmstutly magnetizing the studcnts of sclf-similar florvr that's why it is

diffcult to address all such publicatims hscin. Ftrther, it is wortt noti4g that frc most

of the auftors, rvho focus€d on the shdntdqg sheet flow, have conclrdcd thc non-

uiErcness of the solutiol is a phenomenon totrlly opposite to the stretching sgrfrce

flows' Infacg they exhac'ted their conctrsions due b the utilization of incorrect similarity

fransfomatio'ns. An inspoction of the qisting liErature on shrinki4g sruface flows
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r€veals that neither the shinking surfroe flows have been investigaEd completrly nor

corectly. Althoryb, thcre is a bulk of publicdions available on thc accognt of

steadyfunstcady shrinki4g shct flow and it is constanfly itrcrcasing but neither the claims

nade by Miklavcic and Wmg [40] prescnt tue picture nor thc similarity ransformations

ttEd by t40] ad Fang et d. [49] are constnrcted correctly. Since, the findings of [a0] &

[49] have bccn sdoptod as a rcady refereircc for any kind of study relabd to the shrintdqg

surftce flows, therrefore, nobody drc to put a banicr thcrein b€casc of thc cxisMce of

well acocpted and published vohrme of liEature. Kcephg in thc vicw a rvell sayiag

'topc is bcing able to sce flrat there is a light despite all of thc dartncss (Demo6d

Tutu)", Mchmood devotrd himself to scrutinize and reconcile tre cxisting litqatur€

relatcd b shrinking surface flowr. Initially, he rcceivod no positire rcsponse from the

joumals md his arEumen6 were tseaEd as aa unheard drum. It is a universally prwcNr

frct that the tnrth alwayr p,revails" and the sane happcned hcre vftcn Mehmood t56I

dcrived his monogrryh namely, 'viscoru flowr: sffichi4g ud shrinldng Eufroe,,,

whcrein he rmbosonrod the frct in a comprehcnsive way. Ttc author t56] aoslyrpd the

existing liEatrue published in frc domain of shetching/shinking srufaces and not only

pointed out the disc,rrepancies eristod in the literatrre but also prrescntrd a dctailcd and

practical way-foruard to recti$ thc ambiguities pcrtained in the litcratrre. Mehmood t5q

PrEs€ntcd the correct similarity tsaruformations for tre shinking sgrface flows, in dctail.

Moteovcr, he also discusscd fre existeirce/non+xistroce of the suetchiag/shrinking

sufrce flows. This was not mly the Mchood [56] but Paullet and prEyitc [57] also

rcported that the flow phenomenon caused by thc stetching sheet a&nits an uncorntable

numbcr of solutions for thc case of nonlinear (powa-law) wall rrclocity, whenever the



pou/Gr-law cxponcnt m talres the values -U3 s m s 0; no solution fur m < -U3;
and uniquc solutim for m ) 0.

Sinilar to the planncr casc of thc strebhiag/shdnking surfrcc flows, their

axisymmcfiic casc has also shorm great poEntial b aflnct the sci€ntisE in the field- Thc

prEscnc€ of immcnsc litcrature, in the sphcre of axially+ynmetric flws is m obviors

widcnoe of widcr acoeptance. h 1961, Satiadis prescnbd his marvelou thooretical wod(

in thc form of his procious el.cidatims U2l &, [13]. The anthor [12-13] was

concenfirEd to unveil the sccreB of axially*ymmctric sc€nario of viscous flow dgc to

movittg continuous surfrces. In thc continuation of these strdies Sakisdis [5S] considerod

ftc sEady strb of boundaryJayer flow over a continuou cylinder moving with gniforn

velocrty for the frst time. Thc wort prresenEd in [58], was *tsndod for ttre case of nm-

uniform velocity by Ctanc t59] in 1975. The seady flow causcd by a sfttching cylinder,

Eoying with rmiform velocity, also p,roved iEelf a fertile area of rpsearch. In l9tg, Wang

[60] daerminod thc effects of hcat Eansfq on a flow ovcr a shetchi4g cylinder and

adoeted a shootiag be,hniquc to obtain a mrmerical solutim. He also rcportcd ar

asymffic solution and gave a cmparison with thc numcrical rcsul6 for a largs

RqEol& nruurber. After that, Burdc t6U figlnod out an exact solution for an

incoryressible fluid flowtrGar an infiniE circularcylinder sfietching linearly in the axial

direction- Ishah a aL 162l autyzed thc cffects of unifum suction/blowing on thc

sffiGhi4g cylindcr flow under the influcnce of heu firnsftr. l-aut,Ishak and Nazar [63],

concentated on a nrmerical solution of a laminar boundary-layer flow along a srachi4g

cylindcr and claimed frat the sirnilsiff solution is only possible if the cylinder is

stetchc4 in the axial direction, with lincar velocity. Fang and yao [6f], invcstigatcd the
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viscotts flow caused by the stustching and brsional motion of steady cylinder and

rceorcd m analytical solution. Mufhqadhyay [65], investigated the efrec6 of uniform

magnctic fcld on an axisymmetric, sEadytounaary-tayeryiscous flow due to shetchi4g

cylinder, whcrein he rcportcd analytic solution and numerical solutim. Althongh, a bulk

of litsraturc is available rcgurdiag sffiching cylinder moving with linear velocity,

however the non-lincr case was still unaddre*red. This dcficiency was filled by

Mchmood [56] in his recentlypublished monograph, u,tcrch he clarified that the crrrss-

sec{ion of the cylindcr should bc Ekcn of nariable form for the noa-lincar nafine of a

sfttchi4g wrll vclocity Ocring thc pattcrn of power-law or cxponential form) in odtr

b obtain a similarity solutim. Morewer, it is worrth noting frct that bcfore the

apPcsrance of cerrernonisl Yrclt of the author [56], non-uniqucocss of thc solgtion had

becn considcrod for boundary-layer flowt stimulatcd by shrinking surfrce flows only.

Aftcr a dccP andysis of thc qistftE litrmafrne on viscoru flovlq Mefumood t56] slso

concludcd that, lillc the shrinkiqg sttrfrccs, the sfietchi4g surfaces also bear the capacity

for thc oscurlcnoe of multiple solutions which was later prrorred by Mehmood and Usman

in their roccntly publishcd paper t551.

The study of borndary-layer flows invigorated by shetchiag surfrces has become

a frscinating field becausc of its prodigiors aplications in indnstial and cngincering

disciplines. For hstance, spinning of filamcntJstipcs, manufacturi4g of glass,

pollmer/nrbber extnrsim, wire &rwing cable eoating fiber Echnolory, hot rolling

papcr goduction etc., alE somc rvorrthwhile 4ptcations of the steadyArnsteady flow

phcnmeoon induced by sfietching surftces. That is why an abrundant litcrature caa be

sightod regarding unstcady prospective of sraching cylindm flo*s. In this contqt a
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rrarrclous wo* has been done by Fang st al. [64 during the analysis of uruteady yiseoug

flows caused by stetching cylindcr. The author [67] assumed a variable radius (varying

wi6 tinc) of thc cylinder crpandi4g in a statimary fluid and calculaEd an cxact solution

trGrcin- f,rith a quic*glance overthe cxisting literature, it is rprealcdtlut all eftrE wcre

n dc b analyze thc unique/single solution for steadyfunstcady ffietchfuU cylinders. The

rGason behind this frct is that it fu una,rrimously accepted by tho rescarcncrs that the

uniquc,ncss of solution is confincd to thc sffiching surfrce flows, only. Furthcr, it is also

a reallty that, capffiing multiple solutims is a bo muc.h tedious .ark which dcurands

Gxhaodinary conccntsation. Hovrwcr, being motivated from thc findingF prresentcd in

[56] ad [55], we have succeeded to brcak the hanl nut and ultimatcly r€ported multiple

solutims for unsteady sEcehing cylinderwhich will be disqured in the oo,ming scctions

ofthis thesis.

lte boudary-layer flow, stirulabd by the s,hrinking axisymnctric surfrces, is a

continrutim of frc most appealiEg thc,me asccrtrined by Miklavcic and Wang [,10],

wherein thcy Gnli8hhd the possibility of non-uniquc,Dcss of the solrtrion Therc can be

sGcn atr abundance ofp,ractical ryplicadons of shrinking surfacc flowr in the prrocc*res of

nan@io,n ofartificial film, metalhqgl, petrolarn, plama sfirdies,

etc. It is also a rvortt noti4g aspest that maaipulation of rde of cooliag playc a vitrl rule

in the qulity of final prro&rcts. Kccei4g in vicrw the exploratiotrs cotrtained in the cxistiag

litrmrturc regrding planner shrinkiag surfrces, multiple solutims for yiscous,

inco'mpressible self-similar flows causcd by thc axisymmctic sgrfrces havc been

analped by a lot of rescuchcrs. In this context rrk and pop tdtl figured out triple

solutions during the study of incomprressiblg viscous, stagnation point flow carscd by a
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stcady shhki4g cylinder. Tte urthon I6t] adoptd a numcrical Echniquc to cryhre the

solution for ocrtain rangs of invohred paramctrrs. InEresting ftercs of unsEady

viscors flw, with mass transfer, over a shitrkitrg cylindcr wcre studicd by Zaimi et d.

[69] where thcy rcportcd &ral solutions by the manipulation of suction and unseadiness

paramctcrs. The ortcomes presented in [69] wcre finther scrutinized numcrically, for

nanofluid flov by choosing the Buo4giomo's model, W Zrfirni ct al. [70] where they

again rceorted multiple solutioas. Misrr a{ $ingh [71] also obs€nrcd the multiplicity of

solution while shdying thc efu of variors kinds of slip conditions on a viscous flow

ovcr a pcrmcable shrinking cylindcr. Similarly, shinking cylhdcr flow was also

iwestigilcd with thc help of an analytic tcchniEre known as OIIAM (optimal homotopy

asymptotic mcthod) by Muinca and Ene U21 d the duality of solrtrion was reported-

Tte laminar flow carued by a puors, stctching/shrinkitg cylinder undcr the infhrenccs

of heat transfcr, suctioa and prtisl slip puurcters was cxrmined by Abbas ct al. [73],

wherein thcy obsavod &ral solutions for shrinking case o,aly. The boundary-layer flow

fue to an crpo,neirtially shdnking cylinder wrs analyzed by Najib et NL l74!,where they

dso csrid ort a stability analysis (usiqg hrp4c solver) to rcctiry their result. Rcccntly,

Ali et al. [75] considcrod a sffichiag/shrinking cylindcr of a non-rmiform radius;

hovvcver, they did not claim ftc &rality of solution. To sort out thc hiddcn aspccts of

shinldng cyliDdcr, undcr the effecs of vuious paramctcrs, cfrofts are still gor4g on (for

instances sec the rcfcrenccs UG7}l).It is a mstter of great inErcst that the autho,rs who

rceorted &al behavior of the solution for a shdtrking cylinder, claimod that an adequate

suction is a prerequisite for the exist€nce of multiple solutions, which is, howwer, not

tuc asperresults rcported in this thesis.
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Although, contiruous circular cylindcr and disk belong to a fnnily of

axisymmetric objectr but both have becn sMied sepantely duc to thc involvement of

surface cltrvzturc in the case of cylin&ical surfaces. It is due to the rcss(m that the flow

characteristics, within thc boundary-layEtr, art primrily aftc.ted by the leading role of

surface tansverse ctrvature. F\rther, the cylindrical surfrcer admit sinilarity solutions

for both pourer-law and exponcntial wall vclocities, b,ut in the case of cirurlar dis1,

sinilarity solrtions are possible mly fu pourcrJaw form of thc wall velocity.

FurthermoTe, cylindcr and dislc surfaccs also havc differclil geometrical aspec6.

Iherefore, it is assumcd neccssarily inporEnt to investigatc thc flow phe,norrenon

stimulated by a disk scparately. To exprore the flow due b sretchiag/shinkiag disk,

motivatims have been providcd by Crane t59] erc to his investigUion of the boundary-

layer flow for axislmmcric casc. Kecping in vicw the ouEomes of Wmg's [60] rcsearch

rcgrding threedinensional stretchiqg shoet flow, Fang [79] odginrtod the sfrrdy in

rEspect of flow cansd by a stretchable disk and rcported an cxact solution for it. Iater,

the work of [79] wrs crtsNded by Hussain et al. tt0] whcre thcy figured out a numcrical

solution of it. Altbough, the tit€matup is quite rich rcgardiag t1c rotating

stetchiag/shrinking disk flow, discussiag the various aspects of physical parametcrs but

the boundary-layer flow due to a stetching/shrinkiag disk only have rarcly becn

investigatcd- Howwer, in this strrdy on primary objective is to invcstigatc non-

uiqucness of solrtrion in a borndaryJaycr flow stimulatod by a non-rotrting

sfietchiag/shrinking disk

From the above citEd liuature aad the rest of the r€levant publishcd liErature it is

evidcnt that the no'n-uniqueness of solution is ganerrlly believed to be a rmiqge featgre of



shhking surfrce flowr. Moreover, thc nceessity of sufficic,nt amormt of wall suc,tion for

the existcnce of soMon Gurely no,n-unique) is also a well admitcd frct Brr we claim

that thc above mcntimed frcts arc ncithcr gpncrally tnrc nor parti@lar to the shriukiqg

sufrce flowr. We claim that the non-uniErmess of solution can equally be obscrvcd in

fte stethiag surfroe flows, also. Morcorm, thcre exist sitrutions rvteir thc non-

unlqucoess of solution can also be obsenrcd in thc ahcncc of any wall nrction; or evcn itr

the prescnee of affo,rdablc wall injcction. To provc these frcr variors flry sitrations

(ranging frorn planner to the axisymmetric geomcfiies) have bm consid€rcd in thc

subsequent chrytErls. Finally, the overrll conchsions regurding the occgrcnce of multiplc

solutions for the flows dre o stctc,hing/shrinking surfrces havc bccn drawn in Chepter

t ofthis disscrtrtio,n

1.2 Pretiminaries

This scctim contrins a nGoessary aescriptlon and basic information about the

Eminologics ltscd in the ruhcqucnt chaptas. It also addresses thc firndamcntal laws,

Sovcming cqutions and the solution EchniEre for the usc of rubsequent chap@rs.

12.1 Fluid mechenicr

It is a b'tranch of scicnce which has spocific oonoErn with thc properties and

behavior of fluids undcr thc influence of smc stedfqcc. The fluids, und€r Ercstiom,

may be at rest m mwing with some velocity. The basic principles of fluid mechanics are

invoh'ed in almost all the cnginecftrg disciplincs and the list of fluid engineering

applications is length€ncd with wcry morniag It is a unique field of mcchanics which

€ncomlrassct a vzst anay of prrobleurs that may rary from micro to maso lwel. For

example, flow of blood in thc capillaries b the flow of unater through canals is all studied
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in the dortain of fluid mechanics. All b'ranchg of cnginecring are bcnefited from fluid

mechanics. IE principles arc hclpful to undersbnd why airplanes are manufacfired

sfieamlincd with smooth surfrces. Morewcr, renemrable €ne[gD/, p,roduction of elecrtrical

€nc,rgy form wind power, wind-pumps for wzfier pumping; sails to prropcl ship+

finctioning of turtincs, automobilcs, sirplanca, missiles, apoeriaE {6igning of modes

of hrnsportation, atrd constuction of dams and canals etc., att all bascd on fluid

mochanics principles. This subject is eqndly beneficcnt in medical sciences. Thc dcsign

of rtificial hearB, blood substitutes, heuts-trmg machincs, MRI, brcathing aids, atrd

other such tpe of devica dcPcods on thc frmdamcntal principles of flqid mechanics.

Fluid mochanics is €xhcmely helpful in weaflrcr fo,recasti4g mechanism. Rcccnfly,

'qE r,+o" is also considcrod as a scicNrce. Scientific rules are uscd to develop equipmentr

as well as sports kitr. AthleEs and swimmcrs use spocial tpes of kits to rcfucc the drag

forccs. Inpmoved dcsign of swimsuiB is bascd on Ests in a waffi fl,me aad o,n

comgUatlonat fluid dynanics (CFD) anal),BiE. The fgrbric has becn modifie( bascd on

wind tunnel tcsts, to rcdttoe drag based on the airflow direction. Ttc ncry o.ffits also

cliEitutc most of thc frbric vibmation (a rnajor source of drag). For summcr ad win6r

qports' thc facility of pcrfornriag cxperincntrl ad thcoretical fluid dynamics anatysis

cnables one b pnoposc changes in the sportr kits which rcsurt in imprroved o,tromes by

scvcral perc€nt. Thcre arc numcrors intcrcstiag questions wtrich can be answered by

uiqg relatively simple fluid mechanics idcas. hdceq the fluid mcchanics is a vcry

impoffirt ad Frctical subject.
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122 [Iuid

Fluid is a substanoe frst t€nds b dcform c modi$ ib shape contiruously undcr

the inftrcnce of somc Lind of stuess. It docs not matEr that how surall thc rnagnitude ef

the applied strress would be. Both liquids and gascs ue rcgiardcd as fluids. Onc can also

see that fluid has no fixed shapc as it has the ability to mold itself according to ftc ahapc

of vcsscls. Ftuids can be classified, on the bosis of viscosity, as ideal fluids and real

fiuids. A fluid for which viscosity is considercd as zero is Erned as idcal fluid and in a

florv sittution srch type of fluids havc no tcndcncy to provide any resisbncc or the

sheariqg fuce- Although, idcal fluids arc not fornd in natur€ at all, howwcr, .,d.r
specific cnginecring rylicatims sonre fluids rctain alnost negligiblc viscosity cffect

and cmsideired ar€ as idcal fluids. While 8ll othcr fluids that possc$r nm-zgro viscosity

and ofrerrcsistance during the fluid motion are known as real fluids. For comprehc,nsivc

malysis, thcse Auids are firther zubdivided as Newbnian fluids and non-Newtonian

ffuids- The fluids ftd obey the Neunon's law of viscosity (shear sftgs is diroctly and

lincarlyproeortlonat to nrc of dcformatim) such as au, water, min€mal 04 a1d gasolinc,

eE., arc calld fre Nerwbnian fluids. on thc other hao4 all fluids that do not prrescrc the

Neurbnian's law of viscoctty (in such fluids thc sher ste*r is directly but non-lincarly

Poportionsl to the rate of dcfqnation) are oo,nsidercd in the domain of uon-Ncrybnian

fluids- Exarylcs of nqr-Ncryhnian fluids arc ger, shampoo, pasE, porlmer sorrtions erc.

Nerwtonian fluids generally havc simple molesular structurw and low molecglr weight

rvhile non-Newtonian fluids ar' compFesscd of corylex mixt,res.
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1.23 Flow

A fluid trDds b prsvcot acformation, whcncvcr cxErnaUinEnal shess is applied

on it, howcvcr, numally rcmdns incapable to avoid dcformation. If sue,h dcfonnation

cxcecds bryond 8 ccrtdn limit then this phenuncnm is termed as a flow. A flow can bc

catcgerizd in many w?ys on the basis of differrent featrcs, hryerrer, in contcxt to the

'confining boundarics" flow phenomoon can be na*cd as ex6rnal flow (fluids flow

ottEidc/over a surfroe) ad inErnal flowr (fluids flow through co,nfined spaccs). A flow

may also be classified in terms of iB properties (i.e., velocity, prcssur€, density) and

Pattrm attrind dudng the course of motion. Fm example, steady flow (flw ptoecrties

arc tino-indepcndent), unsteady flow (flowpopcrtics are time-d4endent), uniform flow

(flow with coasbil velocity), non-ruriform flow (flow with variable velocity),

comprcssible flow (variablc fluid dcnsity), incompressible flow (constatrt fluid dgosity),

rctrtional flow (fluid particles havc sme angulr velocity), rcn-rotrtiooal flow (fluid

particles don't have my angular velocit5r), laninar/stcmlined flow (fluid flows in

ponllel layers), ad hrfuilcnt flow (fluid flows randomly).

12.4 Boundely-Ieyer theoty

The beginniag of twentieth century will almys r€mdn imovative and rcmartablc

in thG prrospective of fluid moe,hrnics history. Itr Arrylrst, 1904, a scicntific meeti4g with

title'Third htcmational Cmgress of llfiathematiciatr" was held at Heidclbcrg; Gcrmaay.

Lttdlig Pnlnfrl, a Crcrmrn Physicist, presented hir idca'On the motion of fluid with ,cry

small viscosiy' in hi8 ciSht minutcs of demonsnafion and plroposcd the notion of
boundry-laycr. This concept ma*ed as qoch in fluid mechanics history by opcning the
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new way of undcrstandi4g thc motion of real fluids. No onc had suggcs6d likc fris

beforc and cvcn scientific community of that timc did not follow this idea cxcept

Prandtl's stdcnb for almost two decades.

Although, the equatims of rnotion for viscous fluids had becn modeled in the first

half of ninctieth century by Navier (1t23) ad Sbkes (1345) ad had dtai1cd the form

now called Navier-Sbkcs equations. The cxact solrtion of these eqrutions was

impo*rible to deEmine. No one has succeedcd to solve the coryleE Navicr-Stokes

eqntions b dst€ because of nonlincr tcrns appearcd in their viscogs pa16. Sbkeg

obtaincd the cxact solutions ofthese equatims by confming himself to so,me special cases

whcre thc nonlincar tcrmE could be eithcr negtigrbly snrall or idc,ntically vanishing.

However this had not becn thc case in most of the problems dealt in practice. Itcrefore,

there was a need to esublish some idcas or apprordmations for solution. The siroplest

way wrs no doubt to ignore thc fluid viscosity aDd this way lod about nothi4g bgt the

d'Alerabert paradox wtich strtec 'h solid body of any shapc placed in a gniform stEam

experiences no resistance".

The mathcmatical difficulties to solvc full Navicr-Sbkes equatims madc it

compellfurg to disapPear thc non-linear terms. It was jutificd only for slow motion floq,s

but this qproximatim wrs also adoptod for frst€r flowr. It was almost gnivcrsally

accceEd about the conccpt of no-slip at thc solid surfrrc in the case of slow motion

flowr. ltrowwcr the opinion diyidod in the case of faster flows. Mcanurhile, huge ngmbr

times, etrofts were dcvotrd b constihte an e,mpirical fqmula for the law of fiction

ryhich could be acceptrble forboth slow as well as fastcr flows.
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Ptandl pointcd out the behavior of flrc fluid of small viscosity at the surfacc of thc

solidboundary. He explainodthatvariation in the fluidvelocrty hkesplacc onty fro,m the

conesponding vzlue of irotrtional flow b zerc velocity duc to noslip when fluid floalg

dmost ncr to the wall and all this hapcns within a thin layer adjacent to the wall of the

solid bomdary. Although the layer is thinner for small viscosity b'ut the velocity gradicots

yield significant eftcts. lhis showr that viscors effecE are prromincnt only insidc the

thin lryEr rvhich is callcd rte bourdary layer. OrBide of the boundary layer, thc flow

rEmains iNiscid ard inotational, and itr bchavior can be dc$dbed frour Euler,s

oqurions of motion. Further, thcre is a most attactive class of laninr bonrdary-layer

flowr that is tcmnd as sclf+imilr flowr. These flowr have adurissibte solutims of the

most vzluablc Navier-stokes equations in unbormded dmains. The small thickness ofthc

boundary layer allom some assunptioms for the Navicr-stokes eqrutions within the

boudary layer: the varicion in thc velocity atong the solid wall is m.c,h smallcr in

coryatson with ib variation nomral to thc wall, and the variation in the pressgre normal

b the solid wall is much maller in comparison with i6 variation along the wall.

Futher, at the edge of the donain, the borodary cunditions effecs arc supposcd

practically limited/locat, while self-simitar solutim wilt be effectivc/authcntic in most of
the fluid doEain' this class has the ability to cotrvcrt partial difreten6al cqgations to

odioary differential oqutions, snoothly and easily, by using suitrblc siniladty

tansformations- It frcilitaEs the investigators to greatly/comptetcly sirplifr the

govErning eqrutions in the form of a single nmlincar oncdimasionat pdes (or odes for

sEady flow pheiromcna) atrq without some kind of ap,roximatim, qf,tct solutions of the

Navicr-stokes equations caa bc obtained. Moreover, these flows are exfiernely helpful



fc corylete undcrshding of flw mcchanism in a p'rescribed boundary-layer. In fluid

necfadcsr exact or similarity solutims ofthe'Navicr-Stokes equatims'have significant

prrctical as well as theorctical imporbnce which bcars grcat attractiv€ness for the

rcscarchen.

125 Self+imilar flows

Thcre is a most athactive class of laminarboundary-tayer flows that is tcrmcd as

sclf'similar flows. These flows have admissible solutions of the most valuable Navicr-

Sbkes cquations in unbormded do,mains.

1.2.6 Reynolds numbcr

The Rcpolds number (Re) is frequeirtly rsed in fluid mechanics as it mainly

chractcrizcs the flow 6s larninr 66 nubulent. It is nmed after a British scicntist Osborne

ReFolds. This is a dimensionless number and dctcrmincs the ratio of inertial forces to

viscors forces, which can be writh as:

Re =Wlf*"Ybcous forccs'

-9v

whefie, U is the refereirce velocity, d is the characteristics lcngth, and v is viscosity.

12.7 Skin-friction coeficicnt

(l.r)

It Fovidca a measruc of friction urd drag betrveen a fluid and the surface of sotid

objcct morred through it. The skin-friction coefficieirt (Cy) increascs wift the sErare of

wall velocity urd is diroctly FoportioDrl to surfrce area contactcd to the fluid.

Itrlathematically, it can bc intcrpret as:

20



cr =#, (1.2)

nftcre t, is a sheu smess, p dcmotcs fluiddcnsity, ad U dcnotes chanc,teristic velocity.

l.zt Multiplicity of sotutionr

Sincc 6c last coplc of dccadcs, in the erpluation of variors aspects of self-

similar florvl, a significaat proapctive of solutions Emed as 'multiple sohfiions"

hspird a huge number of enthruiastic se,holars who have been cqrtimrorsly engagpd to

sort oril it utrdcr difrerent circrunstances. This nw-fuglcd of solutions received a

noticeable prcstige &rc to iB maflrcmatical aspecB. Although in the eristi4g literatle it is

frcqucntly claimed that this b,Erch of solution has no physical significance, howevcr, o
pesent a oompleE p,rofile of thc flow phenomenm, it really demands a duc care to be

investigatcd fruoughly. Particulrly, for the situation ofretuded flows, the flow velocity

Gxhibitr complex cnaractedstie duc to which unEy€Nr scenario mry be obscrvd an(

consequcnfly it boosts tP thc pmobabilrty for thc exismce of multiple solutius. At the

same timc, it is also 8 mstE of great oonoern thd ttis ncw t1rye of solution is normally

secn to qist for spocific range of the involved param@s), and Eftcr that a rmiqle

solution nay h pqtrinod. Further, there appear some cfuuurstances where the flow

phenmcnon becomcs morp and more sc,nsitive. To explore nrch situations it demaods

erhrordinry afrcntion and devotim. Therefore, to prresent a comprrehcnsivc picfine of

fte flow phc,nomenon, dcfmitcly it fu mandetorry to touch all axes of thc problern undcr

considsatim-

13 Objectiver

The current study is devotcd to investigate the reasons b€hind the non-gniqgcness

of solution of the self-similar borndry-layer flow phc,nomenon caruod by
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sfttchhgshrinking continuous surfrces. A bulk of literature is availabte whie,h has

cxplored thc various aspects of borndaryJayer flows regprding the existcnce of multiple

solutims. Besidcs the availablc reasoning about the multiplicity of solution, thcre arc

smc other ftcts which dcErmine the truc Datur€ of non-rmiquc solutim. In this regiud

thc efro,rts have ben put into &is matEr and thc oubomes of this rescarc,h have bccn

pcscnbd in this dissertrtion. Ctepter 2 contrins frc strdy of steadyfunsEady aspccts of

viciors flow stimularcd by a flat sffichiqg sheet, u,hcrcin intcr€Eting information is

obtainod in respoct of existrnce of drul solutious. The flow phe,rmcnon initiated by

shhking sttrfrces has become more popular duc to thc &ulity/rtrultiplicrty of solution

sqposed b bc cotrfud thcrcin, only. xoepiag in vierw fris cmmon puccption,

Ctrp0er 3 is devotod b aoalyze the shrinkiag sheet (sEadyAmstcady) flow fgr the

existcnce of drul solution in thc prcscncc of involvcdphysical parameErs. The ortcomes

of Chepter 3 have bceo published in Inhraetionrl Joumrl of Nonltneer Sdencer rnd

Numericel Simuleffon, in VU20, t8U. It is qtrermely dcsirable that the ftrdings of

planncr surfaces shorld be extcndcd towards axisynrncfiic surfrces case. Fo,r this

plrposc' thc tntc frcts for the possible occur€noe of drul solutions for stcadyAuutcady

sffiching cylinder havc bcen capfiued md compiled in Ctephr,f. The s6ady aspccts

ue studied for power-law velocity while lincar nature of wall velocity is t*En to

invcstigafie the unsteady sffiching cylindcr. Thc multiple solutions that are figured out

for unsEady flow duc b a stetching cylinder have becn publishcd in Joumel of Applied

Mechrnie end Tcchnlcd Phyric+ m2V2O,[t2], while the rwul6 compgrca for steady

strGtchi4gcylindcrareundcrrwiewforpossiblepublication. Theoutcomespresentedin

Chepter 4 are fi[thcr cxEndod by tau"g shrinking rvall velocity. Obviorsly, dgal
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solutions ue cryturcd therein for both steady and unstcady sittrations. The outcomes

figurd ort regarding unsteady shdnking cylind€r have been publishod in the Eurupern

Journd of Mcchrnicr / B Fluld+ in 2020, [t3], wlrcrreas thc frndinp in respect of

stcady shfuki4g cylindcr are in rwiewprcccsr.

The axisymetric surfrc€s also bcar anothcr imporhnt shapc nanred as thc dish

shryc. The disk surfrcc, diftrrcm ftom thc cylindrical surfrce, involves no surface

curvaturc cftcts due to which itpossesses differ€nt flowpheno,mcnon. In Chrptcr q wc

have focusod to figrne out the steadyfunstcady chanc.ter of shetching disk flow. The

information gathaed duriag thc study is udcr co,nsideration for possiblc publication.

FllrthEr, Chrpter 7 contains the investigatims of sEadyfunstcady cases of shrinking disk

flow for the investigation of the cxisHrce of &rality of solution. During the

investigation, dual solutims are so,rEd out and have becn prescnEd in this chapter. The

contcntr of this chryEr are also in rwiew process for possible publication

1.4 Goveming equetions

The firndamcntrl laws (i.e., the law of cmservation of mass and law of

conscrvation of momc,lrnrrr) thst dcfitrc thc mechanism of fluid flow at€ as gnrally

Ermd as the govcrniag equations. On the bosis of thcsc basic lawr, gpv€rnfuU eqgations

are also loowtr as thc equation of cmtinuity, urd thc equation of motion. Dctailcd

derivatio'n of thesc laws can be found in any good bmk conccmrirU the dynamics of

fhidq such as, Schlitching t4]. In this sectim frcir final and convenicnt foms havc bcen

given forthe ue ofncxt chaptas.
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1.4.1 Continuity equetion

Thc prtial diftrential eqrution which is basd rrym the law of conservation of

mass is tcrmd as cqrution of continuity. Mathcmatically, in Cutesian coordinatcs, it her

the following form:

ff+v.pv = o. (1.3)

Lr case of incmprressible flui4 # = 0 and Eq. (1.3) bkes a form:

ht-0c-dw
i;+6*;; = ,. (1.4)

Frrtbcr, in cytitr&ic8l coordfuEtcs, thc eqution of aontinuity fu incomp,ressiblc flows

rcsembles as:

:ry*:?i**=o. (r.5)

1.4.2 Momentum equation

Thepartial difrelentid equdionpertains the law of conservation of momenhrm (a

dircct conscqlt€Nlcc of Ncrytorn's third law of motion) is known as mmentum cqlation

It ilhcmaticslly, it has trree courponcnE whie,h in cartrsisn coorrdinates (withort body

forces) have thc following fo,rm:

r - comlnnent:

p#*"#*"#*uh = -fi+ p#*#*b,
y - coryonent:

pH * "#* " # * u?) = -fi + offo + ffi + fi>,
z - oompmclrt:

ff + "* * "# * oa.u) = -fi + offi + ffi * ?),

(1.6)

(r.7)
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whcre (u,v, w) uc thc velocity componcntr in CartEsi& eoordinatcs, and p dcnotes the

precsure function.

Similarly in cylindrical coordinatcs, iB throe cmponcnts arp rvrificn as:

radid cmponcot:

o(*+%**7*-{+u,bu,) = -*+ p#*:*-ft+i#- i?i*
o'+-
l2Z )t

circumfcrential compmcnt:

,(*+,+*+?e;i+ff+",?) = -:#+ p#*:*-ft+ i#*
, o?c,,'-,t6), (1.10)

axial componcd:

p(*+o,**7*+o,ee) = -*+ r#*:**i#+b (r.u)

whcre (t+,ve,zr) dcnote the velocity componenB in cylin&ical coo,rdinafies.

1.5 Solution methodolory

During ilrc cunc,ut study, wc have to dcal with the sclf-similar borndary-laycr

Yiscotts flowr stimulaEd by smetching/shrinking continuous surftca. Sincc, tlrc rcsultiag

gevcrning equations involve sfiong non-lincrity ad freir cxact solutions are usually

impossible. lte p,roblems cmsidcrod in this dissertation are of sclf+imilr nature for

which thc governing partial ditrGr€ntial cquations are fiansformed to odinary diffcrential

equtions. DuE b the developmeirt of hi$ performance conrputing machines it has now

became possiblc to inEgnb the corylicatcd non-linear equations mmerically with high

degree of accruacy. The Echniques ar€ so cmpatiblc that the crytgred solntions are

(l.e)

2fu
i0e
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uually considercd as cxact solutiotrs and are knovm as'humerical cxact soluti@s". To

sfit ortr thc solutions of the dsrivcd s€E+imilar cquations of this thesis, nrmcrical

mctho4 nmely, thc shooting method is utilized Thc availability of high specd

computittg machincs as well as the flavm of authcntic softcnrcs like MATLAB and

MATHEIT{ATICA are equally facilitrting fre rcscarchcn to solve the nuious prroblems

invohred in their rcsearch.

To obtain a nrmcrical solution, the 4torder RK shooting techni+re has becn

codd in most efficicnt c,otrptiling softrvare MATIIEMATICA. As the pre-requisite of

the said numcrical m€thoq urc convert thc govcraiag higher oder odinary ditrcrcntial

equation to a system of ftst orrdcr ordinary ditrorcntid eqrutions. For inshnce, we reduce

thc Eqs. (5.6)-(5.7) (which arc obtained fu self+imilar bouudaryJayer flow induced by

thc sEadyshinking cylindcr) hb thc followiag form:

(t.t2)

Het€,weEr&e f(q)=y, f'(q)=yt f,,(q)=yz and f,,,(4)=yc.

Now, thc shooting method is used to obtain thc nurrerical solutim of the systcms similar

to Eq. (1.12). lVith the hclp of this numcdcal bchniquc, we wcr€ Gnabled b caphre not

only thc first solution brtr also the sccond one, in vcry prrecise nny with dcafucd lcvel of

acqmcy aod ruthcnticity. During thc prroce&tc of corryuting the solutions, it is obviogs

that fte first solution can be sighEd quite quickty, while to captnrc tte sccond solution,

time uki4g eflorts with uErost devotions havc to be made. It is a ftct that thc second

solution is assured aftcr sweral rurs aod crpcrimcrilations.
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Chapter 2

Duelity of solution for e stretching sheet flow

Itr this chrytcr we coosider the steady as well as unsteady character of the

boudary-layer flow stimuld by a continuors stuetching sheet It is assumcd that the

shct is shetching continuorsly in x - directiom, with a rnariable vclocrty. The governiag

eqrutions obtained for stcadyfunsteady cases arc solrred numerically by ruing thc

shootittg method. During thc ctnent analycis, &ral solutions are also cqturd for both

cascs. the currcnt ch4tcr hrs bccn dividd ino two major parc to cmsidcr steady and

ustcady cascs scparaEly.

2.1 Steedy boundrry-leyer flow due to e shetching rheet

In this scctio,n we cmsider a sEady twodimensional viscous flow dre b a

ffichi4g shect. This problem has already becn cmsidcred by Mehmood and Usman [55]

but it is includd in this chtptEr for thc sakc of completion of the pictne ptescrrted in this

dissertctio,L Ttcrreforre, thc teork p,rcsentcd in this scc.tion should be considcred as a

rwiery of the rvorh published h [55].

YA 7t=u-=O,
I p=const'

#=0, #= o

w@)

Scheinatic of trvodimensional sffiching

associatcd coordinate system.

r=0=rI

Hg. 2.1:
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2.1.1 Methemeticel formulrtion

Cotrddcr an incomp,ressible, twodimcnsional, sbady, borndaryJayer flw

fudttcd by apcrmcable stretching sheet in a viscous fluid- The fluid under considc,lation

is supposed to be strtionary. The sheet is issuing outward fto,rn tho slit with a velocity

W@) in the r - dircction- Furfter, bet/otrd the vicinity of boundary-layer thc vclocity of

fluid is zcro, whcltas Fcssure is regardcd as aonstrnl In vicry of above mcntimed

assumpions, thc continuity cquation (1.3) and the equation of motion (1.6) for the

considcred sEady flow talc thc fo[owing forms:

**?,= o,

0r - AL Azrlud+o6=tTr,"'

u=W(x), o=t4t(x),
rt=0,

ctY=91
otY=ol'

whcrr, u and u are the velocrty compone,nts which arc takcn almg r- and y- axes,

rcspectively, whilc v is tcrmd as kincmatic viscosity. Mehmood 156] rcported that a

similrity solutim of thc abovc systeur is possible if one chooses w@) = a,x- (of

powcr-law form) as rcported by Banls [8], initially. Concspmding to this partiarlar

form of wall velocity let rrs inMrce the simitarity hrnsfonnatims

Ii ^-,4=,1;xzt' u = azmf'(q), o = -,\fr# (T r +ffnt,), (2.4)

due to which F4. @.1) is satisfiod ide,ntically and the Fas. (2.2)ad (2.3) are ransforrred

b a form givenby

f"' = mfz -^X' ff",

(2.r)

(2.2)

(2.3)

(2.s)

f(o) = -#, .f,(-) = o,

28

f'(o) = L, (2.6)



ss
\
r".,

N

whcrq c > 0 is a coDstant stetching r&,m is a real mrmbcr and is called the powcr-law

indcr$ and S =h dcsignatcs the wall snctio,n/inicctim vclocity. Positive vrlucs of

S (> 0) conespona to wall tnjcctioa and thc negativc values of S (< 0) rcplccnt the

wall suction rclocity. To ennre the self+imilarity of thc solution Wk) is choscn of the

form r4r(r) = ar#;d bci4g a cmstant.

2.12 Numerical rolution

Thc numcrical solution of the considcred prroblcm is obtained by usirU a reliable

method Erned as shooting mcthod. During the current strrdy well-loowa and freEre,ntly

used mathcmatical coryutatlonrt softwaE 'MATHEIIA'IICA" is adoptcd- The

availability of such tpcs of softrvares madc thc numerical solutions as authentic as the

exact solutions atc. The mcthod is testified fur a number ofproblems, particulrrly rcsults

ryolted in the Table 6.1 of [56], fm stcady stuetchiqg sheet (both for power-law and

crponcntial form of wall velocitics), arc recoryrfea ad found in exoellcnt agrpencnt

frercin. Thc rcsulE figurcd out forthe present invcstigation are rrferred in Table 2.1.

Table 2.lz A cmparism with the regurtr r€pofted in Table 6.1 of [56], for

f"(O) in thc case of steady sfttching sheet flow.

m Me.hmood 156l Presmt results
ba*r buffil Pqa*p bonatul

-t13 0.0000 0.0000
-Us -0.23426 -0.23426

-ttto -0.35026 -0.35026
0.0 -0.4,'375 -o.44375uto -0.52353 -o.2870 -0.52353 -0.2870u2 -0.77037 -0.64{t9 -0.77037 -0.6'109
1 -1.00000 -0.906'l -1-00000 -0.906,[
2 -1.3M -12818 -,-.34846 -t.zata
5 -2.O6l8fn -2-O26t -2.068fn -2.U267

10 -2.89fi7 -2.8662 -2.89607 -2.8662
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Teble 22: Sme uumcrical values of thc skin-friction coefficicnt at S = -3.

tn
Mehmmd ud Uman t55I hes€ntrcsults

7'SoL f SoL 1'SoL rtuL
-2 -2.5233 1.322+ -2.5233 1.322+

-1.5 -2.6830 9.7166 -2.6830 9.7166

-0.7 -2.906f, 215.5061 -2.9069 215.5061
0.0 -3.0805 -3.0805
1.5 -3.tfisz -3.4052
2 -3.5029 -3.5029

25 -3.5964 -3.5964

-2.2

- 
lst bl*ion

--E 2nd Sol*ion

s5
\

0

fr,,2.22 skin-frictim coefficicnt of the sffiching shect flow plotted agEinst s at

diffcrcm values of m.
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XIg. 2.4: Velocity profile of the stetching sheet flow at ditrcr€Nlt nalucs of the

powerJawindcx, m,alS = -3.0.
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2.13 ResulB end dircurrion

The self+imilar systsur of cqudims Q.5)-Q.6) acquired for borndary-layer flow

infttcd by a steady non-linearly stehhing sheet is soh,ed numerically. Since, during the

prcscot study our kccn dcsir€ was to investigatc thc possibilrty of dual solution.

Mehmood and Usman t55l also cotrsidcrGd this problem for the samc purpose. They

qortod thc fualityof solution in the sffichiqg sheet flows, follwi4g a non-linear fgrm

of the wall vclocity. Thcy clcarly cxplained the reasons for thc eristence of drnl solution

in this case. The dudlty of solution was captured fq m ( 0 which corcsponds b the

sitrution of rctardcd wall vclocity. the duality of solrtim has been rqortcd in Tablc 2.2

and Fig. 2.2, awtdi$y, rvhile drul velocity prrofiles are poruayed in Fip. 2.3-2.4. For

furtlrcr informatio,n about this flow the rpader is refcrred to follow [55].

22 unrteedy boundery-'leyer flow due to I strctching sheet

Simil8r b the stcady case, the unstcady flow is also an impoffint characteristic of

the sclf+imilar boundary-layer flow stimulded by a continuors moviqg surfrc€. The

ustsady mtur€ of the flow depends rryoa various aspects. For, exampte, somctipcs it

may be origfuabd by the object iEclf and somctimcs it is dcvelopcd because of

inconsistent fedurcs of fluid uDdcr inrrcstigltion. In this regad an anrple analysis is

gvcn by McCloseky [2t] whcrein the author made a cdticsl suryey of the unsEady fluid

flows patticularly involved in Gqginccring and bchnology domain A valuable matedal is

availablc on the desk of unsbady borndary-layer flows. In this cmtcx! Sgrma eJ d.l2gl
ertendod the Wang's l27l wolJx md qanined the role of unstcadhcss in the wall

velocities duri4g the study of stagnation point flow. lhe agthu [29] fourd a sclf-similr

rumerical solution for the involved prroble,m. l;ltr;r, Wang [30] investigaed liquid fitn



flow phcnomcnon passd over an rmstcady stretching surface and found an asyoptotic as

well as numcrical solution thcrcin. A pulseJike motion of tbc unstcady shetching surfsce

was discrssed by Smith t3U by thc same gpomctry as hken by Wang [2fl,

and rcpo,rEd an exact solution Pop and Na [32] calculded perhrbation solutim for

unstcady flowpast a sfietchiry shcet by td.ing the Shank fiansformation. The effects of

heat transfcr wtre ualpcd in an rmsteady shetching surmc€ flow by the arthors t33-35].

Mchood ad Ali [36] investigrted thc unsteady boundary-layer flow curscd by a fld

plate which is set imo motim impulsively with a constrnt velocity. The authus [36]

figured out an aoalytic solrnio,n The effecE of porosity vrcre also a@lyzod by Mchnood

and Ali [37] during the study of unsteady borndary-laycr flow cansed by impulsively

startedmovingplatc. Heat tansfcraspecb onan rmsEady stretching surfrce wre stqdied

by Tsai et d. [38]. l-ilrr,, Mutfiopadh1lay [39] canied ort a d@iled investigation of

usteady flow mechanism on apotuuE sffie,hing surfacc embeddcd in a porous medilm.

Tte current analysis is conduc'ted b scarch out the cxisetcc of multiple solutions for

fluid flowprospoctivc induced byrmstcady strr*chi4g sheet

2.2.1 Methemetical formuletion

In this soctim we erEnd€d the steady casc of continuoru shetching shcet to

unsEady scenrio by assumiag a flat sheet shrted inpulsively t t = 0. Thc ditrercnce

betc/ccn the current study and that prescnted in Sec. 2.2, is the spontancors shrt of the

shect ryon which tre fluid flows. All other assnrmptions of the case of shetchi4g sheet arc

sttpposed b be the same herpin The wall unsteadyvelocity, inthe r - directiom, is hken

of the form nr(a t) = #to ensurE the self-similarity of solution. Thc impulsive sbrt

ofthe sfietchi4g sheet has no effect on thc continuity equation (2.1), howwcr, requires an
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cxta t€rm # * the left hand sidc of Eq. (2.2) udalso modifics tlre axiliry data (F4.

(2.3)) as prcscnted bclow:

#*"#*"#="#, e.lt

u(x,y,t=0)=O V(r,y))
u(x,y,t ) 0) = W(x,t), u(x,y,t > 0) = W(x,t), at y = 01. (2.t)
u(x,y,t>O)=O aty=o)
By consulting the self+imilarity crit€rion, pr€senffi by Mehmood [54], the followiag

similarity trrnsformations, un?nirnonFly satisfying the continuity equatio,n, ue adopned O

obain thc self+imilar equations:

n= ffit, u=fif,(n), o=_ (2.e)

The utilization of Eq. (2.9)taEqs. (2.7) ad (2.t) enables one to rcach tre foltowing set

ofequatims:

f", + ff,,-f,' - p (f, +f,f,,) = o,

f'(0) = l, f(0) = -S, f,(o) = 0.

ffirat.

(2.10)

(2.11)

Herc, P =lo E unsEadiness parametcr concsponAing to accele,rrtod and decelcratod

cases according to P > 0 and p <0,respcctively. By consideriag F = 0,thc F4. (2.10)

rcduccs b Eq. (2-5), for fr = l,that is, the steady case of linearly stetching wall velocity

is recoverpd- In ordcr to cnsure the self+imilar solution the walt suctiorn/injection

velocity is chosc,lr offre fum q, = #whcrre d being a conshnt. Dime,nsiontess form

of d is sycn by s = h, s > 0 corueond to wall iqiection while s < 0 corespond to

wall suctionvelocrty.
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222 Numericel rolution

The solution of the nonJincar self+imilar odinary ditrerential equations has

bccme bo easy fuc to the availability of built-in numerical packagcs frequcntly nsed in

diffEment softrvares. In this study the rcsulting equdms (2.10) &, e.ll) are solved

numcrically to figure ort the possibility of multiple solutions. As per rcquiremcnt of the

shooting tochniErc, the obtained non-lincr third ordcr diftrential cquatims (2.10) &

(2.1l) are converted inb a s]rstem of first ordcr odinary ditrenential equations. In conrcxt

b ourproblcm @qs. (2.10) & (2.11)), the initial valucproblm hkcs the following fomr:

lE = lrz -Zwz+ F (yr+Xyz), yr(0) = 1, y(0) = -S, /r(o) = 0. (2.12)

Hcre, weuse f(tD = y, f'(q) = yr f,,(q) = yz and f,,,(q) = yt.

To sort out the dual solution, thc syatem (2.12) is solved numerically by rsrng the

shooti4g Ecthod. The dual solutions are capturcd and are rEeorted in the succeeaing

Tables, and graphs.

Table 23: The vahrcs of skin friction coefficicnt, f" (O),for unsteadine$ parameter p.



Teble 2{zTfuvalucs of slrin frictioncocfficient f"(0),forsuction/injcctionparame@rS.
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Fig. 2.5: Dual solutions shown W f"@) for sorc selected values of unsteadiness

pwamatsr, p, against suctio,n / injection paramdcr S.
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Fig,,2J: Velocity prrofiles fu sorne choscn valucs of usteadiness pwtrrrrcirsr, p,

in the abscnoe of suctiorn/injectionparanreter, S.
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2.23 Rerultr end dircrurion

An inspoction of the sytsm (2.10)- (2.11) rweals thc presc,ncc of two

Inrlrmctcm, namcly, p the unstcadiness paranctcr aod S thc suction/injectio porameter.

Clearly, the natur€ of boundrry-layer is attibuted to the

parueter P. DuEl solrrions for unstcadincss paramcter, p, at smc selected values of

suction/injction parameter, ,S, arE figured out &ring the prrercnt analysis. It is well

observed trat thc &ul solutions can casily bc cryturcd for dccelcrabd flow not only for

both suction and injection psranctcrs brut also in the absence of frese. Howcver, in the

case of accelcratcd flow only a rmique solution is possible. From the nrmerical solution

rcportod in Tablc 2.3, ia is noEd that there cxisB large rmiation in the scco,nd solution,

for increasi4g Eag[itudcs of suction parametcr, as comparcd to the first solution.

Hotrrcv€r, by rc&cing the guction par@et€r both solutions teld to come closcr and

clos€r. The dual solutions have beeir pescntod not only for suction velocity brut also for

injection velocity. Intuestingly, the duality is also cryhred for the case of a non.1xlrtnrs

sffiching sheet From thc computcd data it is dc?icted that as the effccts of injec{ion are

intcrsifio( both the solutions oonverge more rapidly and ultirnately overl4 at somc

critical poim. Such conrrcrge,nce is displ@ in Table 2.1, fsr some chosen values of

unstcadincss par@cEr F. As the flow is more dce€lerate{ morc suc'tion is rcquired to

obtrin thc solution. Moreovcr, thc solution cxisE in a fintherrEstrict€d injectiondomaia

the corcspotding rcsulb arc portaycd in thc Fig. 2.5. Rfihsr, from the rcsults displayed

in Fig. 2.6,it is observcd thd both solutions cxhibit more variance for suction parameter

and no oonvergcnce is reportod thcrcin.
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To see thc effects of unsteadiucss parametcr on the velocity prrofiles in the

absclrce of suctio,n/injcction as well as in the presc, oe of thcc, the Figp. 2.7-2.9 ue

drawn. From these figures, it is rwcald that thc second solution has dmost similar

behaviorrvhile thc first solutionpresents relativcly ditrercnt attitude, partiorlarly thc first

solutions arc vcry close to erch ofrer (Fig. 2.9). To cxaminc thc velocity prrofilcs

compleEly, the effects of suctiorn/injcction panmeEr * F = -1 ad F = -2, rp

prcsorcd in Fig 2.10 &Fig. 2.1l, whercin a smooth varidion is notcd in borth casGs.

23 Condruion

Thc exishce of dtral sofutim is srryposed to be a rmique feature of thc shrhking

sttrfioc flows and for sfietchiag surfrces only a singleftrnique solution is assumed b
cx.ist. Furthcr, thc prrovision of sufficicnt wall suction is rcgiardod as an integral part for

the existrnce of duaUmultiple solrtions. ltower/Gr, in the cur€nt investigation quitc

diffErent frcts are forud forthc exigtcnce of dral solutions. Dudng the current sMy, wc

have figru,ed out fual solutions for borth srrctiodinjection velocitics as well as without any

of these velocities. Moroover, it is obscrved that dral solutions exist for dooelcraM flow

while o'nly a rmiquc solution prcvrils for thc cascs of accele,lated situations. It is also

noEd that thc dual solution is not possible f$ m2 0, whefrer potsnsy of tre qtcrnal

agelffi (sttction/injection etc.) msybe inhsifid. In the dsoeleratcd case (rn <0 or F <

0) dtulity of solution is a sure which has becn r€porrcd with the aid of trbutatcd data and

graphical rcsults. Finally, it is concludod that the dnslity of solution is not a uniquc

feature of the slrinldng surfrce flows rather it can also be obscrved for sffiching surface

flowl, eqrully. The firndame,otal rcason bchind the occurreirce of dual solution is the

retaded natue of the boundary-layer flow.
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Chapter 3

Dudity of solution for a shrinHng sheet flow

Theviscous fluid flows ducto mwiag continuow surficcs bearuothcrimpo,rtant

class of self-similar flowr uftich is knorvn as "shrinki4g surface flowt". Unlike thc flwr

causd by ffietching surfrces, the shrinking surfrcc flows have afiained gufficient

attentim ftom the scientists. There exisB an abrmdant litrrduc in the domain of

shiDldng srr&ce flows and thc relevaot oonributions are bei4g Esdc tom known

rescarchers to sort out iB variow aspecb. The reason behind the inclinations of the

researchers towards thc faotasy of shrinking surfacp flws was just due to the claim made

by Mklavcic and Wang t40]. On thc basis of their analysis the involved aufrus made the

followiag renrarks:

a) Sufficicnt momt of nrction is rrandamry forthc exisEnce of solution(s)

b) rte shrinking surfrce flows patained storng nonJinearphenomcnon

Followiag the above mqrtimcd claims, a brulk of litcrature has bccll contibuted

by thc repuublc reseuchers which made these claims as well-established fr&ts.

Consoqucntly every new oomcr usod such findiqgF as ready referencc. Howevrr, the

authors [55] mrdc it crystal cler that dl such claims about shrinlcing surface flowr are

totrlly baseless and ue frr beyond the reality. On a dcep aud dctailed analyais, Mchmood

md Usman t55] put forwarded a correct self+imilar formulation for the flowr stimulated

by codinuous shrinking surfrccs. The currnrt study is eanied out in thc light of ftrdingt

presc,nted by thc authors [55] and [56] in their rocc,ntly published rescarches. The flow

carsed by the cmtinuou moving surface beers a lot of significant aspects in the
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cxtusion procesr. Ite shdnkiag sheet has a uniquc prospcctive bei4g to open a new tlpc

of solution i.e., duaUmultiplc soluions. To invcstigatc this nery class of solutions, for

bofr steadyftmsteady mechanisms, thc shrinking surfaces have alwrys bm proved

attractivE field for rescarchers. Dnring the current strrdy, we will sort out the possibility of

the existc,ncc of dul solrtions by utiliziqg the corrcct self-similr formulation suggesEd

by Mehmood [56]. It is rvorth noting that before thc author's [56] marvclou rvorh it was

tmanirnorrs[y bcliwed that the drul solutions ue only csist€nt fo'r pemneable shrinking

surfaces. However, the author [56] devotcd himself to cormEr the prevailing assurnptions

fiegcntly circulated in thc liEatrc and succercdcd in his atEmpt. The curreirt

investigation is thc continuation of ruthor's [56] contribrutions.

3.1 Steedy boundaty-Ieyer flow due to e shrinking rheet

In this section we inte,ndto investiglb asteadytwodimc,nsional viscous flow duc

to a shinkiag sheet. As said in the p,ruviors chaptcr (i.e., CtapEr 2), this p,roblem has

already bcca amlyzed by Mchmmd and Usman [55] but it is rcferred hae in order to

qhibit a comprehensive picture prescned in this thesis. Therefone the ctrrcd anatysis is

just a rwierw of the work rEported h [55] rqgardi4g the flow phcnomenon carsed by a

stcady shrhki4g shcet

3.1.1 Methematical formulrtion

Cmsider an incomprressible, twodimcnsional, steady, boundary-layer flow

causod by a permcable shrinkirU sheet in a strtionary viscors fluid. The sheet is

shrinldlg inward ftom some kind of slit with a velocity t+(x) in thc r - direction. Also,

velocity of the fluid is reglrdcd as zen, bqond the vicinity of boundary-layer, whilc
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pre$surc is ta&cn as coruEnt Ia the lig[t of assumptions statd abovc, the continuity

equation (Eq. (2.1)), as well as thp equation of motion (5.q. (2.2)) will rcmain the samc,

the similrity criErion usd hcrein is dso the samc as nanated for thc

sffichittg wall velocity. Howevctr, it is obviots that ttrc only diffcrcnce bctwe€n the two

case (i.e., steady sffie,hing shect flow and sEady shrinking flow), is the oppositc sign of

the wall velocitics usd thqein. In vicry of abovc, we aE taking fo[owi4g similarity

hansfqmdions:

o= E#r, u=-aumf,(q), o=,!--ayff(Tf +ffnt,), (3.1)

duE to which Eq. (2.1) is satisfied identically ud the F.qs. Q.2) and (2.3) are transfqmed

to a form

f"' =ff11" -mf2, (t.2)

f,(o) = t, 11o1 = fi, /,(o) = 0, (3.3)

whetE, a < O is a oonstail shrinking t&,m is r€fcr€d as the porvcr-law indcrr, which is

a real number, Ed S = #is 6e dimcnsionlcss wall suction/injectim velocity. posifive

values of s (> o) oonespond to wall injcction and the aegative sign of s (< 0)

represents thc wall suction velocity. To cnsurc the sclf*imilrity of the solution qr(r) is

hkc,n oftre form r4r(r) = AxT;d bcing 8 oonshnt
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T
il=uo=0
p = cotlst.

r=0=

Hg. 3.1: Schernatic of twodimensional shrfurking sheet flow and the relatcd coordinate

systcm.

3.12 Numericd rolution

To solve the system (3.2)-(3.3), similar numerical method is adopted as utilized

in the case of sfietching sheet flow, to obtain tbc numerical solution of the

problem. To avoid thc repetition wc go ahead to sc,rutinizc thc poblcm udor

considcration- A comparison of the cur€ffi solution with that of [55] is given in

Table 3.1. Obviouly, an excellent agrcemcot is cvidcfr which authcnticates the

solution prrescntod in this chapter.

Teble 3.1: Some ruE€ricd vsluca of thc skin-friction coeffrci€Nil at S = -3.

m
Mehmood and Usman [55' hesent results
rs,l, T SoL rs0/,, f SoL

-2 -3-3783 -3.3783
-1.5 -3.2727 -?.2727
-o.7 -3.0903 -3.0903
0.0 -2.9133 -2-.r1??
1.5 -2.4Ji08 -0.1335 -2.+4!08 -0.1335
2 -2.2285 -0.3445 -2.2285 -0.3++5

2S -1.!1460 -0.6s87 -,^.9#o -0.6587

0o 0o*=0, *=0ox oy
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Fig. 3.2: Skin-frictio,n cocfficient (shhking sheet) plotEd at difrcrcnt m as

firnction of suction praocter S.
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Ftg 33: Velocity prrofile of the shrinkiqg surfrce flow for differeirt values of the

power-law indcx m, at S = -5.
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FIg 3.4: Vclocity profilc of the shrinking surfrae flw fu ditrGrfr values of tte

suctionPramcterS, at m = 5.

3.13 Rerultr rnd discutsion

The self+imilr systcrn of equations (3.2)-Q.l), obtained for the tounary-tayer

flow due to a sEadynon-linerly shrhking shect is sohrednumcrically, forfrepossibility

of existencc of non-rmiEre solutim. Mehmood and Usman [55] alrcady scruthiz€d thc

same prroblem for the same goal and succceded to strt orrt the &tality of solution in the

shrinkiqg sheet flow by t"Ling a nonlinear form of the wall velocity. The authus [55],

triefly oplained the details fo,r the occur€noc of nm-rurique solution, thcrein Thc

ediry of solution wrs captrned fq m > 0 which rcfcrs to the case of rctarded wall

velocity. lhe drality of solution has been rcpo,red in Table 3.1 aod also in Fig.3.2,

accoraingty, whereas the velocity prcfiles are prcseired in Fip. t.l-3.4. To cxplorc thc

othcr hiddcn aspcctr as well as more infumation on thc dualrty of solution for seady

shfuking shee[ one car consult ref. [55].
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32 Unrteedy boundery-leyer flow due to a rhrinking rheet

h this section s1a'ain is to analyzc thc rmsteady self-similar flow stiuuledby a

pcrmeatte shdtrkhg sheet. The motivation of cuneirt investigation has received

motiwdon frorrr the alrcady avrilable libfirture on this topic whcre thc cotttib'utiag

arthors heve ncithcr formulated frc flow corectly nor invcstigatcd rightly. It is worth

trotiry aspcct thd most of the authors utilized an unsteady (acceleraed/dccclcraH)

shinkhg wall velocity of thc form ur(r, i = # (c > 0) &rc b which non-

uniqucness of solutim is re,portcd- HoweryEr, it is also a frct that the similarity

fransfcmations adoptd thcrcin are incorect The reason behind the udlization of

incorrect sinilarity tsmsfornation is duc to the misbkc eonducted bythe pionecr authors

[tl0], &ri4g thc p,rocess of nondimensionalization It is wo,rth mcntioni4g aspect that thc

foilowers of [40] madc thc litemature, related b sEadyfunstcady shrinking surfrccs, too

much voluminors rvhich crcatcd snfrcient p,roblems fm the researchcrs who dcsircd to

reconcile the mistalce msdc thcrcin. Therefore, no suooessful attc,mpt could be

nabrialized. Rcccntly, Mehmood and Usman [55], ad Mehmood [56] have ultimarcly

succceded in his strugglc andp,reccned the dctails abortrthe mishaps exisd in the realm

of stretching/shrinkiag surfrce flows. The anthor [56] has not only figucd out the

ambiguity pcrtaind in thc existing liEllaturc but dso sqted out the mater by prescnting

corcct formulation of thc problem. Tte coffiibutions of [56], Foyid,e an aple

oeportunity fo,r the scientistr to investigatc the flow mechrnism in a corroct manner. It is

noted that thc nature of the wall velocity (u.(x,t) =? o, # (a < 0)) is assumed o

be retarded (in r) and tlrc utilization of this kind of wall velocity assrred the existcnce of

dual solutions. It is also a fact that the retarded wall velocity requires sorne kind of
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assistancc in thc shryG of wall suction/iqicction velocity so that a meaningful solution

couldbe captur€d-

32.1 Methematicd formulrtion

In the curcnt sttrdy wc assume an unstcady, inco,rrpressible, twodimensional

hmAry-tayer flow stinulatcd by a permeable shrinking shect, which is flerible in

traturc. The sheet is sqposcd to be startod inb motion, in negative r -directim, at time

t = 0 in a statimary fluid with a vclocity W(r,t). Furthcr, the arnbient conditions arc

pre/aild orrBidc &e boudary-layer rcgoq ufiich implies ftat fluid has zcro velocity

ed unifom pressurc there. Thc r -axis is considered to coincide with thc shitrking

sheet in positive r -diroction whercas the y -axis is assumed to be no,rmd to thc

r -direction. In vierw of above assrmptions, flow schcmatic is shorrn in Fig. 3.1,

whcrcas the continuity equation has the sme form as p,rescnted in E4. @.1), while ths

oquation ofmotion is similar to F4. (2.7), gvrn by

?nL- At- 0t Azu

T;+ udn o6= 1t-ry2,

rvhilc the concspording initial audboundaryconditions rcad as

u(r,y,t) = g, d,t = 0, forall (x, y),

ud

(3.4)

(3.s)

u(x,y,t > 0) - vn(r,t), o(x,y,t > 0) = W(x,y), at y - g, (3.O

u(x,y,t)0)=[, ?'tl=o. (3.7)

Rcccntly, Mchmood [56] pointed out that thc self-gimilr flow, in the case of an unstcady

shrioking surfrce, pruvails if the wall velocitypertains the following form:

u = w(r,t) =i: t = at ,
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rvhcrc c is a conshnt rcfcred to the shrinking rde rvhcn one choses its negative

behavior. It is also a rvorth mentioi4g aspect that wall velocity of thc form ur(r,r) =

ffi is atso adopted by most of the authors and same form of wall velocity was utilizod

by Fang et d. [49] eriqg the analysis of unstcady shrhking surface flow. Correspondi4g

b the said forms ofwall velocity, the followiag similaritytansfo,rnations arc intoduced:

, = ffr, u = tt*(x,t)f'(7), aod v= (3.e)

(3.1 l)

values dcsig[atc b unstcady

The uniquc feafine of above similarity hansformations is the appearauce of negative sign

thcrEin, which distinguishes it from the similarity tansformations exisEd in the litcrature.

ftis frct has also been mentioned by Batchelor [3] in his book In the cunsrt strdy, the

uansformation Eq. (3.9) is a key for firther cxploration- The use of Eq. (3.9) merges the

initial cmdition F4. (3.5) ad thc boudary condition F4. (3.7) into a singte one as givcn

by

f'=0, At [=ss. (3.r0)

The sclf+imilr nsturc of thc flow rmdcr question as well as the wall vclocity presented

in F4. €.8) demmds that thc normal wall velocity w(x,i must be of the form (for

dctdld studyone nayconsult [5G])

W(r,c) = fis-lz.

Hcre d is t conshtrt aod itr positive/negative

injection/s;uction velocities, respectively.

In vicrw of Eqs. (3.t), (3.9) and (3.11) the boundary conditions detrned in Eq. (3.6) at

! = 0 htc the forur

f'=1, f =5, at 4=0,
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rvhere S = # rcpr€scnts the nrction/injcction pramacr, whcrEas, its positirre/negative

values detcrminc thc wall injection/swtioq accordingly. Furtlrer, the adoption of sheaur

fimction in the similrity. hansfomrdions (3.9) id€ntically satisfics thc continuity

oquation (Eq.(2.1)) while Eq. (3.1) (i.e. momcoilm coDscrvation equation) develops in a

self-similarfonm as:

f,,, = f f" _ f," _ (f, +Xf,,). (3.13)

Notice thst Eq. (3.13) rocoyers the Eq. (6) of tagl $or F = 1) if me replaces futr;tn f",
W -f"' in it. Udlizatim of the correct similarity transformations (i.e.,Eq. (3.9)),

modified the p,roblem considered in [49] as given by

f"' = ff" - f'" + p(f' +Xf"),

while the corespondfu borndryconditions are givcnby

f(0) = S, f'(0) = l, f'(o) = 0.

(3.r4)

(3.15)

IIerc S = # d P = I whereas the conesponding wall suction/injection velocity is

ta&e,n as W(x,t) = # Positivc values of p repmesent an accelcrabd case while iB

rcgative vahres referto thc deceteratcd nsturc of flow.

32.2 Numericel solution

In ord€r to solve thc rcsulting equations (3.13), aloag with bond8ry conditions

Eqs. (3.11) a, Q.l2) ad F4. (3.14), zubject to boundary conditio,ns Eq. 3.15, we

hansform thcrn into a s]rstcm of first oder odinary diffcrential eqrations, givcn by

ls=ZWz-!r2 -(tr+Xy2), y1(0) = 1, y(0) =S, /r(o) =0, (3.16)

ls = 2Wz - lrz - F (t, +ljyz), /r(0) = 1, y(0) = s, /r(o) = 0.
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Here,wcU&e f(4)=y, f'(q)=yr f"(q)=yz and f"'Qt)=ys.

To sort out thc dual soltrtio,n, Eqs. (3.13) are solved nrucrically by uing the

shooting tcc,hnique. Thc &al solutiotrs arc figured ot$ which are presenH in Table 3.2.

An cxcellc,nt agrG€mclt ensur€s the correctness of solution scheme.

Teble 3.2: Coraparison of the values of f"(0) wifr thosc of Mchmood [56] and the

listing of socond solutim for diftment valucs of S.

s Mehmood t56I Prescnt Results
rs,/: rs,,,; f SoL

-2.O7$n9052 -0.50{3 -0.5043
-3.0 -z-ltts -2.4tts 2.5881

-4.0 -3.5930 -3.5930 5.9590

-5.0 -L6li4l6 -4.68M 13.5S28

-5.0 -s.7+11 -5.7111 2?.115?

-7.O -6,7801 -6,,780{ 35.4671

-&0 -7.80!10 -7.8090 s2.2331
-90 -8.8309 -8.8309 72.6507

-10.0 -9.W2 -9.W2 97.5{r1

Teble 33: Numerical valucs of f" (0) against p for different nalucs of S.

F
S = -2.1 S = -2.15 S = -2.2 .S = -2.5 S = -3.0F.t t, r&r. FW

'.g,r.
FW ,rf,,r. t!st f&t I'.9r1 Ftht

o0 -13701 -o.721n -1.,169+ 45qr5 -L5582 -o.il17 -ztxto0 -o#r,n -izslao {r3819

-0.5 -L0!r!r3 -M262 -,^2312 0.2859 -L34'n -o.tgr6 -1.8558 0,'277 -12s1+7 1.5505

-lJt -o.1ut, -t 21t 3 {r.!r893 ofi232 -L1329 -02m0 -17112 1.0518 -2ttts 2.5881

-t.5 -(t4029 -notnz -0.1336 o.Trot -M692 05901 -Ls/'tiiz 1.6209 -23081 3.177t

-2.0 -tH5S0 05250 -o;6,,!t7 0r295 -t12W 2.1391 -220ir7 L29t2

-25, 4tvr6 o.7:xn -o.#12 1.111{ -L27!i? 2.63U -2.1013 5.0559

-3.0 -o.227A 13769 -tt?g$ 3.1u22 -L!,!ilA 5.74fi

-35 -tI983{ 3.5589 -1.89{E 6Nr7
-5.0 -u5tr?7 l.Mt -ts&r7 &{r03

-65 {t1021 5.1015 -127i28 10.3777

-7.O -11692 1(t9888

-&0 - 09618 12.1895

-10 -lL5{58 t+s217
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323 RerulB end dircurrion

Investigation of the existence of dual solutions for unsteady shrfurking sheet flow

is the keen dcsire of frc prcs€ot study which has become cfficicntly ftrctified with lhc aid

of present numcrical mcthod. The dual solutions cryturd during thc prrescnt

investiSltioq for so,me chosen valucs of sustion parancter, arc poffiayed in Fig. 3.5,

whcrein it is obscn/ed that there is a smooth vari*ion in thc first solution; howwcr, the

secod solution has brcodcr span. Further, thc solution is not possiblc beyond a certain

vduc of suction paramctcr. Ttis critical valuc S" is sorEd out aftcr a great deal of

att€mpts and it is rcported ts ,S" = -2.074199052. Earlicr to this critical valuc no

solution is po*sible which irylies that the provision of sufficicnt wall suction is

necessary for the Gxistcnce of solrtrio,n, in this case. It is also observed that as the solutim

Agroactes the critical vEluc,5 '+ Sc, the cxisErce of dul solutions dcmands more and

more attcntion. The reportod Yalue, i.e., S = S", is thc leost amount of suction at which

the retarded boudary-layer surviye4 howwer, the skin-Aiction coerfrcient docs not

bcc@lc zcro whie,h means thst thcrc is no prrescnce of revemc flow as well as the

separation point thcrein. Fig. 3.5 prescnt thc rcgions wherein the dualfunique,/no-

solutions pruvail. The completc analysis of the study also dcmandcd that the velocity

profilc bc inrerpreted with clear visibitity, ard this has been done in the Fig. 3.C where

the velocity plofile is displayed for some chos€,n valucs of nrction parametcr and dual

solutions arc figurcd out duriqg thc analysis. It is also ohlerved that as the magni6c of

suction is cnhanced the span of velocity prrofile amplifies rccordiagly. Alnost same

patffin is notcd for both bmanches of solution-
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To rcpott the cqrect analysis of [a9] thc formulation usd in the curre,nt strdy is

also applied b thc problcm considered by I49] and r€sultantly Eqs. (3.14)-(3.15) arc

obtainod On compariso,4 it is noted that the F4. (3.13) can be by jnst tetring

F = -l in thc Eq. (3.14). For fiuthcr analyss, the systc,m of Eqs. (3.14)-(3.15) has becn

solved and sme graphs (for variors fi of Fgl are re-plottcd fm some choscn values of

S. The dual solutions are crytured for ccrtain values of S against P d 4 vrtich are

prtescmed in Fig. 3.8 and Fig. 3.[ respectivcly. Frum Fig. 3.t-3.9, it can be secn that

both grryhs are the ruversc images of the graphs rceorted by Fang ct al. t49] in their Figs.

la. 4 & 5 during his strdy. From ftcsc fndings it is clearly obscrved that the mrgni6e

of skin-ftictim cnhances with thc increasing valucs of suction velocity. This implies that

boundary-layer sficngthens as thc availability of suction is arylified. Consequeirtly, flow

behavior €xhibitr more stability. By choosing F = -!, thc velocity profile poffiaycd in

the Fig. 3.7, which is as same as drrum in the Fig. 3.6. Furthcr, thc vclocity p,rofiles for

Eqs. (3.14)-(3.15) (obtained by utili+ng the correct formulatim) are already presented

in Figp. 2 &3 of P9l, are also re'prcsentcd here in Fig. 3.10 (ofpresent sMy), whcrein it

is dcpic'tcd that the second solution bccomcs more stnengthened with p. Althorgh, it is a

fact thlt only first solution is a meaai4gful solution and second solution has no nrch

ability. Howwcr, the cxistence of sccond sohtion camot be ignored and it has to be

studied for conplae analycis of thc flow phenomenon.

33 Conclurion

In asfidyshrhki4g sheet flow, whc,nthe shrinkingwall vclocityfollorvr apow€r-

law form, both sccnarios, namely, the existence of uique and non-gniqqc solution have

becn obscryed. Tte boundary-laycr flow is of accele,raEd naturc fq m< 0 and of
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dooeleratd natur€ fq m > 0. Thereforc, the duality of solution has becn crytued for thc

case of m ) 0. Thc current analyais is an atMpt to study the variors aspects of the

ustcady, tlo-dinensional self*imilar flow stimilsted bV a shrinking shect and to sort

out the possibility of the existcllce of &al solution in the prescnce/absc,ncc of suction

porameter. The correct refcrcncc velocity as zuggsstcd by Mehmood [56] is choseir for

sclf+imilar formulation of the problem. The rcsulting equations have bccn solved usi4g

an efficicnt numcrical schcme. Critical vzlues of the suctim velocity are also crytrnod

with due care which emablcdus to rcctiry the results already rceortd in litcratrrc. Dudng

the cuncd analyais it is noted that the shinldng sheet must be permeable in ndure as

wcll as the provision of adcquate amount of suction is mandatory for the cxistence of

mcaniagful solution. Furthcr, the dual sohfiion is only possiblc if sufficicnt wall suction

is prrovidcd, whcrpas the solution prevails for a certain limit (critical valuc !S"!) of suction

urall velocity, ad it disappeam b exist after the critical poiil i.e., lSl < lS"l. The

presc,lrce of wall suction velocity dctrnitcly afrEcts the skin-friction coefficient and the

vclocity p,tofilc in a noticeable way. Herc, it is obscrved that thc span of skin-friction

coefficicnt Grpmds with the increasing valucs of suction paamctcr urd the duality of

velocrty p,rofile is also afrEctcd by thc suction parametcr in the samc patErn as noted in

thc case for skin-fric'tion coefficient. The effect of suction paramctcr on velocity firnctio,n

is sccmedmore prominent forsecond solution as corrpared to the first solutiotr.

As a final rcmst, it is obviors that in both the Geady and unstcady) cascs of

shdnldng sheet flow, dudity of solution haE becn capttned in only thosc scc,Darios wh€Nl

fre boundry-layer flow is of rctaded naturc. In the accelemated case of shinking sheet

no suc;h drnlity of solution has becn noticed.
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Chapter 4

Axi:ymmetric flow due to e non-linesrly stretching cylinder:

non-uniqueness of solution

In the previots tlo chapters, steady and unsteady charactcristics of the two-

dimensional planncr cascs of stretching and shrinldng sheet flowr have becn anslyzd in

details whcrcin ptescnce of dual solutions is not only reportcd for shrinking sheet flow

but also observed fo,r suetching sheet flow. It hd bcen a well mcmioned frct that the

availability of drul solutions is oonsiderod a special feature of shrinking surfaoe flows

whercas the suretching surfrce flows wcrc snpposd to be infertile regarding the cxistence

of dual solutions. Aryle etro,rts arc madc, in chaptcr 2 to andyre the st€adyAnsteady

stuetchi4g sheet flow and thc qist€nce of dual solutions in this case has b,rokcn ou thc

estrblishcd frcts about the non-rmiqueness of shdnkiag surfrce flowt, only. The resultr

tEporEd in chryter 2, stimulabd us to search out thc possibility of drulity/multiplicity of

solution for the axispmefiic cases. In the cur€nt chapter, our entirp consideiation will

be limitd b investignrc the stcadyArnsEady characteristics of sfietchi4g cylindcr in

co,ntcxt of the prescnce of dual solutions.

The &ral solutiotrs arc rc,porte4 not only, in the prcscnce of wall suction/injection

effcctr b,ut also obscwed withorrt these effcsts. Furtho, the continuous cylinder choscn

dttri4g 6e cuncnt analysis is of variable radius, which also involves effccE of surface

@nature on the flow phcnomcnon. l}e surface tansverse curyaturc has appeared as an

intEmesting and inftuclilid i4gredient on the borndary-layer flow duc to movi4g
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continuots surfrce. Intcresting eftcts of the surfroe hansvcrse ctrryafirrc with rcgnrd o

6e captuing of nm-unique solution have bcen reeorted in this chaptcr.

4.1 Steedy boundery-leyer flow pert e rtretching cylinder

The boudary-layer flow phenomenon cartsd by the moving continuoru surfaces

is regardod as an imporhnt class of self-similar flows. Lilce the tuodincnsional, self-

similar planncr boundry-layer flowr, the axisymmetic flowr also athac,ted a wider

commrmity of rescarchers. In the cmtinudio,n of theoretical investigations of the

boundary-layer flows due to continuors moving surfrcca, Sakiadis ll2-ltlalso cxtended

his work for axisymmefric soenario, wherein Sakiadis tst] anal,,,zcd thc self-similar

boundry-layer flow over a continuous cylindEr moving with conshnt velocity. l}e flow

&tc to variable velocity was investigatcd by Clane t59] durhg the analysis of boundary-

layer flow inducd by sffiching cylhder. A number of attemprts can bc seen [60-65],

vfrcre the authors ae remained focnsd upon linear nature of sfietchiag velocrty.

Howet/er, there is uErost need to investigatc the non-linerprospoctns of the flow relatcd

b stuetchi4g cylindcrr. ftis gep has be€n recently be€n filtcd by Mchmood t56] dgring

thc study of viscous flows causcd by sffiching/shrinkiag surfrccs. Aftcr a dccp analysis,

the arltor [56] concluded that the cross-section of the cylinder should bc of vuiablc

naturE for $ryporting thc different fonus (powerJaw tr clponcntial) of non-linear

sffichiag wall velocity in o,rder b cmsure a similarity solution. This nery vision regarding

non-lincar behavior of the wall velocity motivabd rs to explore the diffcrrent hiddcn

fcatures of stetching surfroe flows, partiorlarly to scarch ort the possibilrty of dual

solutions fm the self-similar flowr stimulated by thc moving cmtinuors surfrces.

AlthoEb, there is a brulk of liErature avzilable for shrinki4g surface flowr regurrli4g the



existcnce of duaUmultiple solrtions drc to wtich fuallty of solufion is assumed to bc

confnd b thc shrfurkhg surfaces only, whilc the stetc,hiag surfaces arc usrully knovm

for pertaining the unique solution. ltcsc accc,ftd frcts in respect of prescnoe of &ral

solutions were countered by Mehmood and Usman [66], yftercin fte authors rnadp a

claim that the duality of solution is not the charactsristics of shrinki4g sufrccs onty brt

the strctrhing surfaces do also ber a capacity of cxhibiting drul nature of solution. The

claim made by the arthors [66] came into r€ality in the form of Tabassum et al. tS2l

whcrein the antho,rs reeortd dral solutions not only in fre prescnce of suctiorn/injection

situatio,ns brut also in the absence of thcsc. During the prescnt analysis, the &rality of

solution has becn cxplored for the self-similar borndry-layer flow caused by stcady

sffiching cylinder. The presencc of dual solution has been obacrved with aod without

pruviding the wall suction/r4iection velocity. These findiagp madc the cur€ot s6y a

valuable rcfcrcocc for forrdrcoming rescarches.

4.1.1 Methematicel formulrtion

We cmsider a sEady, self-similr bormdary-layer flow carsed by a continuors

permeable stetching cylindcr of variable radirs of the form R(z). It is supposed that the

flow is two.dimcnsional, nm-rctrtiotr l, and haviqg symm€try abortr z -axis. ThG

schcmatic diagram cxhibits the flow geomctry and the corresponding coodirstc syctc,m

is rsferod in Fig 4.1. The body forces as well as thc pressrregndient are assumed to be

abscnt In the light of abovc assurytion the boundary-layer equations in cylindrical

coottdinatcs are given as

ff+*=0,

6l
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At - iltt l0 - A!^ud+ vd= v;;lr;),

subject to fre followiag boundary conditims:

u=W(z), o=W(z),
z=Q

at r=R(z))
at r=o l'

(4.2)

(4.6)

(4.3)

uftere u and o ue the velocity componcrrB takcn along z - and, r -dfuectims,

rcspoctivcly, and v is termed as kine,matic viscosity. For the naturc of the cylindcr

considcred herein dcmads that the similuity variables shoild bc of flre fonns

rn-1
q =rzT, 0 = zf(tD. (4.4)

Tte abovc similrityuarsformatiors have becn dcrived forthe case uften

uy=42m, n=Rozi#, (4.5)

whcre Rs is the refcrelrce radiru of thc cylindcr having conshnt radiru r€fcrred to linear

(m = 1) wall velocity, whercas, for non-lincar wall velocity (m * l) the cylinder radiru

obeys fte porver-law form given in Eq. (a.5). Thc sheam fimction (U) is relatcd b the

velocity componens z and u in the form u =:#,and u = +# Usiqg Eqs. (a.a)-(a.s)

in Eqs. (4.1)-(4.2), we get the following form of eqrurims:

^(+)" ='ih!fr(#)),

f' = aRo, 1 = -ffino, at Z =Rol
f'=0, at q=-)'

-\fi:-!:\a\a nzl

(4.7)

thereby, satisfying the eqrutim of oo,ntinuity, identically. Here, it is also a noteg/orthy

Espcct that, in the case of sEady stneteniag cylindcr, for thc existcnce of setf*imilarity

solutiotr 6e radirs of cylinder must rary in the same marn€r as does the boundary-layer

1-ttr
thiclrness (i.e,zT). Moroover, the suction/injection wall velocity also follourc the
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powcr-law form givenby W@) = d,zT whcre the constant d is a dimensional conshnt

md designatcs the normal wall velocity as srction/injection conespmding to its -ve/*ve

Yalues, respectively.

The syrtcm (4.6)-(4.7) can be put in dimcnsionlcss form by modi&ing thc

hansformations (4.4) as

a= Sr#, , r=*f'et), o=-@r?(+fff,1.

Cmsequcml,V, thc sysEm @.q-(47) in dimensionless form reads as

(4.r)

(4.e)

(4.r0)

(4.11)

(4.12)

(4.13)

^ (+)" - K; - #) = i*(, *G)),

f' = Reno,

f'=0,

f = iRe*o,

f = -ftRr*o, at 4 - *r"o),
at 4=@ )

where, Relo=tr is the Rgnrolds number bascd on the referencc radirs Ro. Ees.

(4.9) and (4.10) can bc sirylified by removing the variable coefficicnts from most of the

tcrms and the constant Repo from the boundry conditions by rsing thc following ncw

variables:

, _?'-Rczno't 2Rcao t

due to which the resultiag s)Etsm after dropping the bars rcads as

nf'z - f f, = ((t+zrrDf),,

f'(O) = l, f(O) = -#r, .f'(o) = o,

where *=# is the curvature pararnetcr, ad.S =#deiroEs the dimcmsionless

sttction/injection puameter. NoE that the larga nalues of Repo coneseond to the
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cylindcrs of largE radius whosc surface tansversc crrwature is rclatively small which

concsponAs to small valuc of r. Similarly, large yalucs of r conespond b largc

hansycrsc curvafiuc. Ttc dcfinition of zuction/injcction paramcEr S rsflcc$ that ncgrtive

valucs of S corespond to the wall suction situation while the pooitivc values of S

oorespond to wall injection sitrution

It=74o=0, ?=CO1SI.

?=0. ?=o02 0?

-rr->u=W

XIg. 4.1: Se,hemdic ofthe axisymmefiic flow and the a$ociatcd coordinate sytt€m.

4.12 Numericel solution

The syste,m of self-similar Eqs. (4.12)-(4.13), obtained dudng 6e cunent

investigation beconc more cmpatible to be solved numcrically. As pruvioru, shooting

mcthod is utilized b sort ort the solution. During the p,rcscnt analysis, drul solutions are

rEportd u/hich uc prrescntcd in the tfiulr form as wpll as portsyca grryhically. A

ooryarism of thc cuncnt resultr with the alrcady cristing dat8 in liffiattrre has bccn

cadd out in Table 4.1. An excellcnt agrccmcnt is obvious which cnsurcs the accuracy

and validity of the qrrEnt solution.
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Teble 4.1: A compuison ofpresent analysis with the rcsults rceortd in [56].

m r = O.25 r=0.5 x=2.0
Ihtaof t56l Prcscntshtdv Ihtaof 156l Prcscnt sttrdv Ihtaof 156l Prcscnt studv

10 -2.t?36 -2.7335 -2,,21N -2.8289 -33596 ,,t
7 -2322+ -23223 -2.+t72 -2.1170 -2.9393 l3

5 -2J001 -2.0000 -2.09l/! -2.0938 -2.6077
3 -LJ.t20 -1.6119 -17l,/,,2 -t7l0/l2 -2.20+7 -22lJ,a
1 -1.0!105 -1.0905 -1..1774 -,^1777 -1.il86 -1.6485
0 -0.7055 -0.7055 -o.7826 -o.7825 -12078 -,.-2lJ6/t

-o.2 -0.5057 -0.1 -1.0832 -1.0809
-o_4 -0.4925 -O. '6. 4
-03 -o.2021 -o2020 -o-2?7? -o-23t? -0. -0./
-1_O 0J000 0.0000 -o-otT2

* ifrihtbatrymistab.

Table 42: Numerical valucs off"(0) against S for varioru vrlucs of r at m -- l.

s r = 0.25 r=0.5 r=1.0 r=2.O
1'S0/,; trsd ,"s,/,, rsd F Sot trsd ,"s,/,; rsd

10.0 -0-1575
9I' -0.1390 -0.1835

-0.161{ -0.1889 -o.26?9 -o.26ir9
-o.2630 -0.2938 -0.5342 -0.534!'

3.5 -0.298S -o3359 ,.1202 -05110 -o.6t2t
2.5 -0.4014 -o.aBE7 -o.tss7 -0.8071 -0.8096
1.-1 -0.5985 -o.5985 -o578 -05?sl -0a23+ -oe2, -1_ -1.11

-o-7',49 -o.7050 .78qt -0.7883 -o.9+62 -o.1r+71 -1-2.,JS
,L'

0.0 -1.0!ro5 -t oota -L4792 -1.3433
-t nnno

-13172 -,,ffi -,^66?a
-1.0 -1.6815 -Lfiil -1 7tlf,f, -1-7555 .4997 -2.1693 -2.[xn
-rl-O 4.2416 -+3206 4.2ilt 43111 -{3001 -{3!

-6-2i
-4.533

-5.0 -5.11 -5.350 -at750 -6369 -&192L -6",/17
-&0 -&1: -a .13(B -&522 -&13!r!' -8551 -&1619
-10 -1ILlll1'l -1ll ,1041 -10.8 -10.1097 -lo_a -1,J742.' -10.913

Teble 43: Numerical valucs off"(0) agdrst S for various values of r at m = 3.

s r = 0.25 r=0.5 r=1.0 x=2.O
1'SoL rsd t!sd T SoL f SoL f SoL f SoL rsd

1{.0 -o-6.
13.0 -o. -o.67t6
7.O -1 It -tttTt
6.0 -0.9727 -,.2267

,0 -O-r -Lo'no -r..ot7,D -1 ?a 3M
-1.0954 -l-l il .334 -,.3347 -1 63e?

2.O .L u -L3251 -1_Azs,a -r.+928 -1f,062 -1-8089
1.0 -1_aoaa -1.5000 -1.5002 -1-6'r?'

-1.1
-19952 -t!,,t92

-1.6119 -1612t -1.-7M2 -,.7048
-1 0L2'

-1.8795 -2- -z.2to7
-1.0 -1.3526 -1.85+2 -l-9.l1n -2.L138 -2.116 -2.4'3t ,4451
-5.0 -3.2001 -33t.67

-1-6200
-32{8/5 -3.2842 -3.3565 -33818 -3.5011

-5.0 -3.510S -3.6500 -3.t1* -3.7393 -3.77W -3.9526 -+no17
-&0 -+.{806 -8-4150 .5071 -{.5806 -1.5575 -4.5596 -172t1 -4.8083
-I 

II -53933 -11.9872 -5.8570 -5.4535 -5.63,11 -5.5508 -s.7070
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Table 4.4: Numerical values off"(0) agEinst of m for variors valucs of r at S = -t.

m
r = 0.25 r=0.5 r=1.0 rc, =2.0

,"Sd. rsd rsol, tr Sol rs,l, f SoL t!sd trsd
10 -2.8105 -2.8106 -2.ln6t -2.9063 -3.0902 -3.0908 -3.1375 -3.{395
9 -2.6892 -2.69t3 -2.7U6 -2.t848 -2.9680 -2.9687 -3.3135 -3.3159
I -2.5628 -2.5630 -2.657ft -2.6582 -2.8406 -2.8,13 -3.1840 -3.1867
7 -2.1?lO -2.1312 -2.5256 -2.5260 -2.7073 -2.7082 -3.0'[84 -3.0514
6 -2.293? -2.29?6 -23471 -23A79 -2.5678 -2.5690 -2.9060 -2.9097
5 -2.1197 -2-tso2 -2-2129 -2.2135 -2.1217 -2.12?0 -2-75(t2 -2.7610
4 -2.OOt2 -2.OOzt -2.l,,t31 -2.Ut40 -2.261t1 -2-2712 -2.5990 -2.6052
3 -LAsZ5 -,^.a54z -1-!r'l1A -t-9+32 -2.1138 -zjtffi -2-1363 -2.1151
2 -,,7208 -1.7238 -1.80{O -LaO6A -1.9671 -t-9725 -2.2776 -2.2917
1 -1.6815 -1.6861 -1.748,8 -1_7550 -Laaag -18997 -2.16t3 -2.1990

0.5 -17965 -1.w9 -1.9591 -2.2030
o.2 -1.99t13 -2.0301 -2.1151 -2.3190
0.1 -2.lot6 -2.1321 -2.2062 -2.3915
0 -2.2+03 -2.2658 -2.3278 -2.$rt7

-o.2 -2.6601 -2.675+ -2.7131 -2.8254
-0.'[ -3.4255 -3.4326
-0.6 -5.0+12 -5.0'13{

Teble 4.5: Numcrical vducs of f"(0) against m fuvariors values of r at S = 1.

m r = 0.25 r=0.5 r=1.0 x=2.O
rs?,,, rsd rs,/,; tr SoL tls,/,; rsd f SoL rsd

10 -2.5592 -2.751:3 -2.75t*1 -2.9377 -2.9379 -3.2831 -3.2849
9 -2.5222 -2.5222 -2.6170 -2.6171 -2.7995 -2.7999 -3.1134 -3.1152
8 -2.?7il -2.3765 -2-1710 -2.+7tt -2.6527 -2.6531 -2.9915 -2.99il
7 -2.2201 -2.2202 -23113 -2.311* -2.4950 -2.4955 -2.8?13 -2.A365
6 -2.050s -2-0506 -2.1#3 -2.t14 -2.3238 -2.3243 -2.6602 -2.6626
5 -13,6?7 -1.8638 -1.9569 -19571 -2.1350 -2.1356 -2.#77 -2.4706I -1_6S?a -1 6535 -L715,A -1.7460 -1.9219 -l-922(t -2.2501 -2.2531
3 -t_4044 -1.'l$r0 -1.5000 -tsooz -1.6732 -1.6710 -t_9952 -trn92
2 -1_104n -1_1089 -1.1976 -11979 -1.3662 -1.3672 -l_6787 -1.68't0
1 -0.7049 -0.7050 -0.7880 -0.7883 -0.9462 -0.9+71 -7_21n5 -1.2479

0.50 -0.1302 -0.5053 -0.6s05 -0.9250 -0.9346
0.20 -0.2292 -0.29t9 -0.4230 -0.6718
0.10 -0.1559 -0.21S0 -0.3357 -o.5762

0 -0.0802 -o.t32l -o-2119 -o'4678
-o.2 0.0699 0.uos -0.035,f -o.2159
-0.4 o.tazt 0.1913 o.1741

-0.5 0.1699 o.2127 o.2918
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Teble 4.6: Numerical values off"(0) against m for vuious vzhres of r at S = 0.

m
r = 0.25 r=0.5 r=1.0 tc =2.0

,.S0l, trs,,,. rs,,,, rsd rsol, f SoL rs,/,, rsol'
10 -2.7335 -2.8289 -3.0127 -3.0131 -3.3596 -3.3613
9 -2.60?8 -2.6991 -2.8823 -23,828 -?.2271 -3.229?I -2.1673 -2.5622 -2.7M7 -2.7152 -3.OA77 -3.0899
7 -2.t221 -2.?22+ -2.t1t2 -2.rl72 -2-5q46 -2.5992 -2-939:3 -2.1417
6 -2.1673 -2.1675 -2-2617 -2262n -2.&22 -2.+4,30 -2.7802 -2.7832
5 -2.0001 -2.OOO2 -2.0940 -2.O912 -2.2731 -2.27+O -2.6078 -2.6111I -18167 -1.8169 -1.9099 -1.9104 -2.0875 -2.Offi6 -2.1181 -2.1226
3 -1.6119 -1.6123 -1.7lD42 -1.7w -1.8795 -1-4410 -2.20'a -2.2107
2 -L3762 -1.3768 -1.#fi -1A677 -1.6397 -1_5ato -1.gsil -1-9551
1 -1_0905 -1.091{ -1.1778 -1.1792 -1.3433 -7_?172 -r 6aa5 -1 663R

0.50 -0.9162 -1.0000 -1_1595 -l_165?- -1_4540 -1.1777
o.2s -oat67 -o3977 -1_O52S -1-OS97 -t-3392 -t-3725
020 -0.7955 -0.8758 -1-0295 -7.O?71 -1.31/t3 -1.3518
0.15 -0.7738 -0.853'[ -t_oosa -,..2aa7 -1.3379

0 -0.7056 -o.7825 -0.9306 -,.-z,Jil
-o.2 -0.5057 -os778 -oa179 -1.0809
{r.4 -0.1925 -05575 -0.6855 -0.92tx
-0.6 -03608 -0.41,t8 -0.s232 -0.7347
-0.8 -o.2020 -o-237? -0.3104 -0.,[593

Table 4.7: Numerical valucs off"(0) agninst.S for various values of m at r = 0.25.

s m= -2.O rt = -3.0 m= -1.O rn = -5.O rn = -6.0rt.sr f SeL 7sor- F.Srl rht rw rM fw ^SrL
-L7'1:2

2 -3ffi -t34ro 33.306:t
3 -s9130 -2J.1A6 1{',f.OEl8 -0-71r3t 5.mTz
+ -7.91t[it -3.7i26 37921 -,.9529 20.9230
5 -9.9,fit 47462 785A -2.8M7 &mol -1.30rE 6t202
6 -ttt 57l -5M2 1tl0.5 -3.5788 901A1 -2.1393 1{.1883 0.1297 o.il'n
7 -13.95it6 -6"8507 2300 -1itt,f, 152.80 -25tta 2$.tm7 -1.#?7 5.21+2
8 -15.9582 -74702 tilz -5.0301 237.67 -?J,219 12.3Tr7 -2.1598 to.tflt
10 -19!n# 1.st70 m29 -6,,zca a9ll.1 -+5582 92.008 -3.25{3 2S.tt?A

Teble 4.t: Numcrical values of f " (0) against S for various vahrcs of m atr = 0.50.

s m= -2.O rn = -3.0 m= -1.O lr = -5.O rn = -6.0FW ,.s,tr rs,,, rs,,, trSaL r..IrL ,'tfl rw
I -,.6ffi
2 -:t3571 -1.1816 15.5450

-5.9l,!r0 -2.574' 9446
I -7.g?at -3.7057 242.57 -1-8255 11-427
5 -9.tvlza -+.7738 625.A -2-7{a5 30.73+3 -0'8020 1..6107
6 -t t-eseE -5A160 117L5 -3-S.I2 &-oza -1.9936 7.3871
7 -7l-.*r.q -6.W t9666 -L2911 11{.546 -2.7325 15.9955 4.9214 ,.2673
8 -ta%n -7.8558 3057 -5.0133 185A6 -33703 2&StA7 -L9711 !i.0021
10 -19.1nil;t -94943 6:11S -5.{1891 +05.r -L5304 68518 -a.tatz 16152
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r = 0.25,0.5, 1.0, 2.0
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Fig. {2: Drul solutions slrown by /"(0) for some selec'ted valucs of curvature

parametcr r against snction/injection paramcter S at m = 1.
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XIg. 43: Ilual solutions shown by f"(0) for sonre selectcd values of r as a

firnction of snction/injection parameter S rtm = 3 (nonJinear case).

s
\

r - 0.25,0,50, 1.0, 2.0



= 0.25,0.5, 1.0,2.0

9-,,

-J

123456789fi)
m

IIg. {.4: Dual solutions shown for /"(0) as a firnction of rn for various valucs of

r atS = -!.
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XIg. 4.5: Dual sohrtions shown for /"(0) as a fuirction of rn for variors values of

ratS=1.
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Ftgi 4.6: Dual solutioms shown forf"(0) as a function of n forvariow values of

ratS=0.
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frg,1.72 Dual solutions of //(0) for some selectcd values of m as a fimctio,n of

suction parameter S at r = 0.25.
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Fig.4.t: Dual soluti@s of f"(0) for some selected nalues of m as a frmction of

snction parameter.S at r = 0.50.
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Eig. 4.72 Velocity profilc for different valucs of curvature parameter at S = -1,

for linear wall velocity.
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Fig; 4.t: Velocityprofile for ditrerent vzlues of curvature parrmetcr at S = 1, for

lilcarwall velocity.
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Velocity p,rofile for diftrent vatrcs of curyature parameter in the

ab$Dce of suction/injection for lincar wall velocity.
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Fig. {.10: Velocrty profile for diffcrcnt values of srrction/injectim prameffi at

r = 0.25, for linear wall velocity.
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IIg. 4.11: Velocrty profile for differqrt values of suctio,n/injetion parrmeter at

r = 0.50, fo,rlinearwall velocity.
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4.13 Rerultr end discussion

During fte cunent analysis the dual solutions have becn figud out in context to

the involved physical paruretcrs, whcre wcr possible. In the while aftcr figures, solid

liDcs iDdicaE first solution whercas second solution is represented by brokcn lincs. Fig.

4.2 dcpicts the dualityof solution for the ease of lincar ffiching wall vclocity (m = 1).

It is d€picted th* thc &ul sohrtions occur fm both suction and injection cases. It is

clerly noted that for chosen vzlues of rg fre magnitudc of f"(0) stars dccrcasing by

changing the domain fro,m suction b injec'tion rcgime whcre both the solutions become

closer and closer to each other and ultimately becomc idcntical at somc critical value of

S (= S"). Snch critical valucs havc been coryutd very carcfully bct/ond which the dual

solufions scize to cxist After frat a uique solution prevrils to some cxtent by enhancing

the injection ctrects as well as by magnifying the cunature parameter, which defmitcly

rcflect the sugportive role of thc surface fiamversc curvature (sees Tables 4.2 & 4.3).

Obviorsly, for increasiag vrlues of thc rnjection prameter, magnitude of cocfficicnt of

skin-fricion also decreascs, which is of coursc a well-known fact It is also obrscrycd that

there are slight vriances in both b,ranches of thc solution and o,ne has to put lot of effortr

to cryhrc the second solutio,n" This migh bc the r€ason duc to which vcry rcar dtcmpts

were madc in thc past to figure out thesc sohfions. The most interestirU aspe$ noted

&uing the curremt investiptio,A is th* thc dual solutions are not only available for wall

swtiom/i4icction cascs but can also bc scc,n in thc case of no wall suctior/injection

velocity (i.e., S = 0). This is a big achieve,meirt becanse it was a well-eshblished fact that

the dulity of solution is possiblc only when a sufficient amormt of wall suction is

puvidcd.
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The duality of solutim is dso obscrved for powcr-law wzll velocity, fu cx"'nplc,

by t'lrinE m = 3 (as displaycd in Fig 4.3). A sinilar behavior of two solutions can bc

obaervcd as it was in the case of linear wall velocity, howwer, both solutio,n brmchcs

oonyelge mo,re rapidly in this casc as compared to linear wall vclocity case. Intercstiagly,

frc domain of solution has bccn cxhdod in this case (see Fig. a3) bccarse of more

accelerated nsturc of the flow. Now, 6c two solutions have bccome possiblc fu somc

strongpr wzll injection vclocities, as depicted in F g. 4.3 and Tablc 4.3.

The infonnation depic'ted in Figp. 4.2 & 4.3 and the data reported in Tables 4.2 &

4.3 prcyid€ an opportunity to makc important fudings towards the understanding of the

frcts bchind the p,rcsc,noc of non-unique solutions errcn for thc wzll injection case and no

wall suctio,n/injection. Frcm Fig. 4.2 it is obvious that for increasing vzlues of sur&ce

curvaturc panmet€r x the critical values of the injcction paraureter are dso inseascd.

That is, for fre cases of large suface curvaturc thc soMon snvives for sme fintlrer

largcr values of the wall injection prameEr. lte samc fact can also be secn and

oonfirocd from Fig. 4.3. This Ecaot that thc curmfinc por,ameter, r, scnyes as a

frvuable prt$rlte gradietil which assiss thc boundry-lapr to zustain agdnst s666

finther increased values of the injection velocity. Such an assistive role of r has already

bem r€portd by Probstein and Elliott [57]. Anothcr furyqtant obscrvation noted from

Figs. 4.2 & 4.3 and Tables 4.2 & 4.3, is that nfien thc valuc of power-law exltoned 'tn'

for sffiching wall velocity is increascd then solution becomes possible to exist for somc

increased values of the injection paramcter. Obviorsly, rcason b€hind this frct is th* fo,r

highcr values of n the sfietching wall velocity becorres higher accordi4gly nfiich

consequently sfengttens thc flow within the boundary-layer. Because of this sfeqgth the
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flow becmes able to sustrin against firfter highcr valucs of the injcctim velocity. In

this reg3rrd the effects of lincar and non-lincar (accelcrated) rvall vclocitics, fu some

choscn values of S, ovcr skin-fric{ion coefficicnt arc calculatod for various values of r. In

Figs. 4.4-4.6 ftc solutions have been plottcd against m f$ varid vahres of r by

choosing some sclecEd vzlucs of S (i.e., -1,0,1). From thcse Figrnes it is obyious frat

tbc &rd solutions are sighEd in ttre plescnce of suctiorn/injection effects, horvever, only

unique solution bccomcs possible for sufficicmfly small valucs of m. Thc rumerical data

corEseonding to thcse situatio,ns is reporEd in Tables 4.4-4.6. From fis data onc can

again see that the diffcrence b*utoe,n thc two solutio,ns is quite small which poses a

serious enalenge towards thc capnriag of second solu6on- Fo,r urall suctiorn/injection

cascs the second solution disqpears for m( 1, whcreas in the absc,nce of rvall

sttction/injection sitrutions (i.e., S = 0), it is possible to ceturc dual solrtions, to somc

€xtclrq agairut sufficie,ntly small values of zr by eotancing the values of curvanne

par,ameter, r. ltis is again because of the assistive role of the crnvafrre parander in

rveakly acccleratcd flow. Thc cur€Nrt study also included an analysis regiurding

dcoelcrdcd nafilre of wall velocity. In this regard, EriE intcresting info,rmation has bccn

cqtured about the flow caused by steady strretchi4g cylind€r with retarded nature of wall

velocity. In this cmtcxt, dual solutions are reported in Fip. 4.7-4.t and tbe

ooncspondiag rumerical rezulb arc pre prescnted in Tables 4.7-4.8.

Velocity cuwcs, especially for the second solution have been plotted fm selected

values of r in the abseirce as well as in thc prcscnce of swtio,n/injection in Figs.

4.9-4.11, whilc the behavior of velocity prrofiles for so,me chose,n vahrcs of S, is

displayed in Fip. 4.12-4.13. All the Figrnes ensurc the existcnce of dual solutions;



Eoreover smooth potffins arc notcd for both branches of sohtiotr therein. From Figs.

4.9-4.11, one car easily observe that thc borndary-laycr thicloess anplifies for highcr

vzlncs of currrature parameter. In Fip. 4.12-4.13, it is noticed that as the role of S is

shiftcd fronn uction b injection velocity; the boudrry-layer thickncss anrplifies

significanfly.

4.2 Unsteady boundaryJayer flow pert I rtretching cylinder

Since thc prcsc,ntatim of fre duallty of solutim for axisynmcfic flow due to a

stetchiag cylindcr is fre primary focus of this chapter, therefore, in the continuation of

abovc section, this scction investigates the exisEnce of duaUmultiple solutions for the

unsteady sclf-similr flow duc to a sffiching cylindcr. It is fonDd that conesponding to

difr€rqt values of the crrvafire paramcffi dual solutions exist with md withort the

sttction/injection eftcts. This showr that the surhcc clrrvaturc is served as a supporti4g

agEnt for thc existence of dual solutions. The dual solutions are captured numcrically and

portayea in the form of graphs and Tables. It is worth noting aspcct that the pres€,nt

investigation is uniquc because of significant outoomes about the stete,hing cylinder that

have nevcr becn visualized. Important frdinge of this strrdy are beliet/ed to bc hclpful in

firther ufcrsanaUg aborr the nature of flow and as well as the associatcd nonJinear

flow phenomc,non, thcrcin.

4.2.1 Methematicel formuletion

Consider a long continuotu circular cy'indcr, placcd horizontally ia an

incotryrussible yiscous fluid. It is supposed that the syste,m is at rest, initially, i.e., for

t < 0, both the fluid and cylindcr arc strtimary. For admissibitity ofnormal wall velocity

the rylinder surface is takcn as p(lrrrus. Duriqg the c,ntire flow phenomc,lro,n, there is no



inllueirce of body force and pressure-SFadiEttt, at dl. Under thc role of above

assumptions, thc equation of continuitywill rcmain the srme as givcn in steady casc (Eq.

(4.1)), while the equation of motio,n, in cylin&ical coordinatcs, is dcscribcd by the

following form:

At- 0u- 0r l0.iltL
T;+ud+ vi= v;61t6). (4.14)

Due to a sudden motion (linear sfictching) of the cylinder, tlrc unstcady shetching wall

For such kind of wall velocity, similarity solution exisb if the cylinder'g ndftrs expands

continuously follouring a fo,rm glen by

R(z,t) = Rorrl2. (4.16)

The flow stimulad bV stetching cylindcr of time aeeendent radius (expanding with

time), was also investigated by Fang et al. [64. The corresponding initid conditions,

which are also thc ambient conditions, for the flow undcr considcration are given by

d tS0: tt=O, v=0, V (r,z) (4.r7)

The impulsive start of thc cylinder resultr in a suddcn motion of the fluid ad

conscqucntly boundary-layer derelops in tino acmrdiqg to the relation "-rllf which is

also similar to the classical Rayleigf's problem. Since thc surface of the cylindcr is takc,n

as permeable that c,nables the nornal flow though itself. For thc time t > 0, the resultant

velocity is assumed ofthe form

W@,i =1; o) O; t = ot.

boundaryconditio,ns canbc hken as

u=W(z,t), y-ir(z,t), at z=R(z,t),

ll+O, as z)@.

(4.15)

(4.18)

(4.Ie)
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Herc, it is a worth mc,ntioniag frct that for the existence of sclf+imilr solution, thc

normal wall velocity should be of thc ferrmu,r(z,t) = f,7-Llz (where d is a corcht od

iB positivr/negativc vrlucs designaE the time dcpendent injection/suction vclocity,

rcspoctively). A mcticnlors dcscripion regilrding this fact can be secn in [56], rvtcrein

fre anthor also presentcd a dctailed critcrion of sclf-similar formation of fre problem. Thc

similarity vtriables for an unsEady shfuking cylindcr, considered durhg the currcnt

investigation, are ofthc form:

,t =#r, u= fif,h), v = -#;rrrr. (4.20)

Obvioruly, the aborrc similaritytaasformations satisry thc oontinuity cquation idcntically

od ttteh utilizatim in F4. (4.14) and Eqs. (4.17)-(4.19) enables onc to obtain the

followiagfomr:

;(+. f") * (+)' - iff - #) = ;*Q hG)),

f' = Reno, 1= -f;nea, at ? = Rero)-

f'=0, at 4=o )

(4.21)

$.n)

Here it is intuestittg to noE that the initial oondition and the bomdary condition rcfcrcd

in Eq. (4.17) and F4. (4.19), arc mqged to a single ong i.e., f'(-) = 0. lVith the aid of

fiansfqoation tf-= (n" -Re2a)l(2Reno) as well as some apgopriate scaling of the

firnction (i.e., i = Ef),the system of equations (4.21)-@.n) can be co,nverted in a more

compatible fcrr so that numcrical solution bccomes quit€ feasible. The above mcntio,ned

tansfomation not only rcshapes the domain from [Repo, o) to [0, o) but dso models the

Eqs. (4.21)-@n) to the fonn (after dropping the bars):

((1+ zrdDf"), = f,(f, - 1) - fr*ft +znD + nf,, (4.23)



f'(0) = 1, f(0) = -S, f'(-) = 0, (4.24)

whcre * = #, p?no = tr dcnotes the surface curvaturc parameter, and s =h

dcnotes the suction/injectim panmeter. The values S > 0 cor€spod to wall ir{ection

yfrile tlrc vrlues S < 0 rcfcr to wall suction sifiration. The small valucs of r dcfine larger

radirs while the greaEr vdues of r rcp,resc,nt the cylindcr with small radius. ltereforc,

by cmsideriag thc largErvzlucs of r (i.e r > 1) an qact undcrstanei4g of the efu of

surface curvafine canbe ac,hiwed-

4.22 Numerical solution

The goal of current study has achiwo4 by solving the system of Eqs.

(4.23)-(4.A) with 6c aid of Runge-Kuta shmt"ng method. The rcsulb caefrrcd &ring

thc preccnt analysis are given in Tables 4.74.t end ar€ also displaycd graphically in

Figs. 4.12-,4.15.

Teble 4J: Values of -f"(0) as a firuction ofS at various valucs of r.
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Teble 4.10: Valucs of -f'(0) as a fitnc'tim of r at variors values of .S.
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Xlg 4.lf: Dual solutions domain of f"(0) fq differeirt values of curvatre

parmeter r as firnction of suction/injection parmeffi S.
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Hg 4.15: A zoom-in portim of Fig. 4.14 showing thc cmvcrgence of both

sohrtions.
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Flg. 4.16: Dual solutions dornain of/il'(0) for difrerent rnlues of suctiorn/injection

parameter against cruvattrrc parameter r.
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XIg {.17: Velocity prrofilc undcr diftrent values of suction/injection poramcter at

r=1.

423 Recul6 end dircusion

The present study also higilighB the effects of surface curvahuc as well as

nrction/injection prameErs upon thc flow caused by unseady stetching cylindcr.

During the analysis, it is noEd that thc solution is possible for all valucs of r i.e., r ) 0.

Further, for suction/injection paraneter, thc solution is not possible for all valucs of

S(i.eS€R) and cxisE only for ccrtain mnges of S, which rc calculated for some

chosclr valucs of r. the mrmerical rcsultr ue prescntcd in bbulsr form and porhayed

grryhically in the upcomi4g figures, whcre solid lines conespond to frst solution and

broke,n lines rcpreseirt the second solutim. Fig.4.l4 is plotted against S for some selec.ted

values of curvature parametcr, r, wherre it is clearly obscrved that, for both bmanches the

magnitude of skin-friction coefficient, f'(0), becomes highcr and higfer with thc

increasing values of r. The effects of curvature paramcter arc morc prminent for second
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solution. To illusffic it morp clcrly Fig. 4.15 is drawn, which is a zom-in part of Fig.

4.14 whcrcin it is also d4icted that thc dual sohilions exist not only fu suction velocity

but slso undcr the injection effects. Intcresting cnaracter of thc injection velocity is also

highlighted in Fig. 4.15, wherein the situation has bcconc morc visible. lVith the

increasing efrects of injectioq the two branches of solution come closer and closer and

exhibit minor variations. The situation becomes more interesting whcn, for a particular

value of r, both solutions get corrleryed at some critical point (S") and present a unique

solutio,n, no firther solution is possible for lSl > lS"l. The critical yalues, d which both

solutions oterlry to each other, ue obtainod with duc care urd presented in Tablc 4.9. ft

is also noEd that as surfrcc crryatur€ incrcascs more injection is required fm achiwiag

the critical point. It is obsErycd thst, by incrcasiag the surfrce curvatup cffccE, the flow

separation canbc delayedto sonre exhg howwer, borth solutions ultindcly ovcrlry and

&ul solution oease O cxist rmder firthcr increasing cftcB of wall injection. Similar

fmdhp were also rceorted by Tabassum €t al. [82]. From the rcsultr prescntcd in Table

4.10, it is twealed that thcre uc less vrriations bctwecn the solutims for the casc of

injcstion; howevcr, for suction donain thc diftrencc betweeir thc two branches bccomes

widcr and significant Fig. 4.14-4.15 porhay thesc aspecs with concrerc visibility.

Furthcrmorc, the magnitudes of both solrtio,ns are amplified as the effects of sgction

becomc sfuongEr and stongsr. Howerrcr, as thc vslucs of surhce qnvaturp prameter

increase the magnifrdcs of both solutions ue ro&rced accortingty.

Ilue b dominrnt role of the surfrce curvature, its efu are also innestigated at

some selected valucs of .S, and the conesponding resulB arp mcntioncd in Tablc 4.10 and

ue displaycd in Fig. 4.16. It is realized that for some fi:red value of S the -agnitude of
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f"(0) dccreascs with the increasiag valuc of surfrcc curyrturc. In case of suction, this

situation is scen to h4pen much earlier ''an injection casc. A more valuable finding of

the cunent sHdy is the cxistc,ncc of dual solutims in thc abscNrce of suctio,n/injection

praocter. the prescnce of &ral solution for S = 0, is a uiquc featre of fris

investigilion, as, it is commonly believed that a sufrcicnt amount of suction is

mandatory for thc Gxis&ncc of dual solutions. During the qtire study it is well pcrceived

that although the magnitude of f"(0) apmoachcs to tero as S + Sc but it never become

positive. lYith firther enhancc,rnc,nt of injection effectr, the bomdary-layer thickncss

becomes too smallerad ultinatclyrcsultcd in disrypearuce ofbomdary-layer flow.

To corylete the undcrctanding of flow behavior, velocity profiles are plottcd

against 7 frr some sclectcd values of S in Fig.4.l7.It is clearly observed that with the

enhanccment of 6e injection velocity the borndary-laycr thieJocss rnagnifies to a great

extcnt. Althougt, a prominc,nt incremcnt in boundary-laycr thicLness is noted for both

brancnes of solutioru howerrer the second sohilion bmanch shows magnificent change in

iB behaviu. It is dc,pic'ted that, within thc boudary-layer thc sccond solution shows the

prescncc of rwerse flow fq every valuc of S. Further, the cxishce of rwcrse flow

beghs from thc lower-half an( with the increasing efrects of suction it Ends b be closer

to the stetching bondlry.

43 Conclusion

Dlul solutions found during this study are a uniquc fcature of the curcnt ualysis

which confiadicts the well-eshblished fact that the multiple solutions exist for shrinking

surhce flows only. The currcnt strdy also discloses that the presc,Doe of suction/injection
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vclocity is not ncccssary for thc oocuilGnoe of dual solutions. It is also shown that the

dual solutions are also possiblc in the casc of wall injection velocrty. Thc outcomcs of

this investigptim are cxpccted to inspirc the researchcrs in this area to fiuther explore thc

hidden aspecb of thc Uoundary-taycr flows of this naturc. Nuncdcal data r€port€d in

rumbcr of Tables is bcliwed to scrve as a good reference for firfrcr shdics in this

direction. On the basis of current resulE it is jrutified to strte that the drulity/muldplicity

of solution of boundary-layer florw induced by continuors surfaccs is ncith€r a rmiqrc

fcaffie of slninkiag surfacc flows, nor it can be attribntcd to the wall suction velocity,

mly. Hcnce, dualityfnultiplicity of solution is po*sible for shrinlcing surfrcc flows as

well as for the stsrcEhing surfacc flows, eqnlly. This can possibly appear in the presc,nce

of wall zuction; or wall injectim, or EvGn in the abse,nce of wall snction/injection

velocity.

In thc casc of unsteady shetching cylinder flow, thc preseoce of nom-rmique

solution is a rmigre fcaturc of this sMy. It is a frct thrt the cxisting litcraturc on the

shctching gurfacc flows did not cxpericncc the existence of dual solution. However, thcre

is bulk of studies rvhich openly neglect any possibilrty of dual solutions for the flow

stimulated by sfietching srufrccs. In view of above this study is cxrpccEd to scNve as a

milc stonc in firthcr rcfmiag the invcstigatim of boundary-layer flowr caused by

axisynmcfric stctching sufrces.
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Chapter 5

Existence of multiple solutions for a shrinking cytinder flow

It has alrcady been discrsscd in thc plamer case that the multiplicity/dtulity of

solution is not confmed b shinking surfaccs only and the prruvision of stctio,n/injection

is not obligatory for thc cxistrncc of such solutions. In tbe ctlncnt chlptcr, we shall foctls

o investigate the axisymmctric steady/unsteady flow phenomenon caused by shrinking

cylindcr md thc possibility of dual solutions thcrcin. Similar to planncr case of self-

similar flowr carsed by tbc shinking surfrces, the axisynurefiic flow is also studied

rmder thc consideration of various physical fcatures. In the sttrdy of axisymmeffic flows

bo, non-lincar (pow€r-lcsr) wall velocity has b€Gn consider€d for the stcady casc md

linear wall vclocity is in thc rmstcady casc. In both cases &Elity of solutim has bcen

witnessd undcr varioru cirqmstanccs.

5.1 Steedy boundery-layer flow over e rhrinking cylinder

The purpoac of ftis invcsdgation is the steady flow due to a permcable shrinking

cylinder rsiag the conoct mathmatical formulation p,roposed by Mehmood [56]. The

ctrects of the shrinking parameter as wpll as the suction and curvature par@€ers ar€

studied- As usual, sinilarity tusformations are used to cmvcrt thc gwcrning partial

ditrcreNtial equations to a sct of nmlinear odinry Gimilarity) difrcrential equations

which are the, solved numerically by usiag the shooti4g metlrod for various values of the

invohred poramctcrlc. It is observed that both the rmiquc md multiple (&El) sohrtions arc

present for the flow phcnomenm induced by a shrinking cylinder.
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11,=llo=o, p=const.

FIg 5.1: Sc,hcmatic ofthe axisymmetric flow md the associatcd coodindc systEm.

5.1.1 Methematicd formulrtion

Cmsider a sEady, incomprcssible viscous fluid florv caused by a contiruou

cylinder of radirs R(z). It is srryposed that the flow phenomcnon, undcr consideratiorn,

experiurces no circrrlar rotdion ud has syrrnretry abortr z -axis. It is dso assumcd that

there are no body forces as wcll as no pre*nne-gradiqrt therein. The gpvcrning syatcm of

this flow is thc samc as was for the sffichiag cylindcr case given by Eqs. (4.1) -(4.2).

Moreovcr, the similarity critcrion for the shrinkiqg wzll velocity is also the same as for

ftc snetching wall velocity. Thc only diffcreocc betrveen these two flows is the oppositc

sign of wall velocities. For this case the sinilrity tansfonuations are defmed as

,= ftrT, , !=Tf'Or), v=,Fav#4*Tf'>, (5.1)

drc o which the eqrution of continuity (4.1) is satisfied identically and thc mom€ntum

boundary-layer equation (4.2) and the boudry data sc tmsformed as

K+ - #) - ^ (;)" = ih(, frG)),

f'=Reno, f=^r?nn"o,
f'=o,
wherre !/ is thc dimcnsionless sfieam function, gven by
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(5.3)



*=#tfQD' (5.4)

(5.6)

(s.7)

In above systcm peno = tr is the Rcynolds nrmberbascd o'n the refcrcnce radius Rs,

rc, = URenois regardcd as thc surfacc transverse ctrrvafirc parameter, and S = tfi is tt

dimensionless suction/injection param€ficr: S > 0 conesponds to wall injection ad S < 0

conesponds to wall suction velocity. To comply with the self-similarity criterion of this

ln-,.
floy the wall suction velocity is choscn of the fum a,"(z) = dzT. Durhg the study of

flow phenmenm causd by shrinking surface, thc shtinkiag ratc is taken as @= -d

rvhere A>O is the cmstart sfficning rate. E$. (5.8) ad (5.9) cm be siryli$by

eliminating the invohred variable 4 therein ad thc Rrynolds number Repofrom the

bormdsry conditions by using the followiag nerw vriables

- t?-Rc.nn
ll=-'' zRcno ' 1= fnea. (5.s)

Aftcr &opping the bars the rcsulting cquations can be prcscntcd as:

f t" - mf2 - ((t + zdDf )' ,

f'(o) = I' 1101=fi, f'(-) = o-

Teble 5.1: Numerical valucs of -/"(0) ag3inst .S for various values of r at m = l.

s r = 0.10 r = 0.25 r = 0.50 r = 0.75 r=1.0
fw rst F.Sal f ltoL I..SoL ,-f,,/L ,rf,,L IlSrL ,.bt

-2.1 1.8111 ,^788t
-2.5 1.9589 1.9350 1.8645 18256

-3.0 2.5989 2.S6St 2.5il7 2.5259 2.fi07 2.1176

-3.5 3.1713 3.1255 3.ts1t 3.1026 3.1131 3.0480 .0543 z.96ts
-,L0 3.7238 3.6557 3.71O3 3.6408 3.68{1 3.5036 .6510 3.5522 3.6071 3.1791

-5.0 1.7865 +6652 4.7749 L6607 1.7ilg +.6342 +748,8 1.6072 L7299 4.5681

-5.0 s-42s2 .624 s-8203 5-5338 5.8115 5.6198 5.8016 5.5951 5.7905 5.S664

-8.0 7-4712 .131 7.171 7.8il1 7.479 7.es92 7.ffi 7.8539 7.#t
-10 9-8979 9.067 9.8963 9.17? 9.8935 9.213 9.8905 9.212 9.8871 9.196
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Teble 5.2: Numerical vahres of -f " (0) agpinst S for various valucs of r d m = 2.

s
r = 0.10 r = 0.25 r = 0.50 r = 0.75 r=1.0

fw f*t rtscr t'*t I..srr t'*t ltrsel f*t fw f*t
-3.7 1.{189 01771

-4.0 l,ilttl ot237 t.ilA -1.175t
-5.0 2.7867 -0.7345 2.7138 -2.ilO( 2.il23 2.5+28

-5.S 3.1888 -16fil7 3.1589 -3.4231 3.0956 2.9899 3J001 2.8579

-6.0 3.5737 -2,,205 3.5511 -33731 3.5050 3381{ 3.#62 3.3125 33558 3.1718

-7.0 {3138 -6.2l|{i5 1.2991 -{.0001 +.2719 {.0894 +2391 +.o709 +.L982 +.ot7s

-8.0 5.0311 -1L12t 5.0209 -4.538a 5.0020 +73il 4.980{ 1.7527 +.9552 +.7305

-10 64306 -26l75 6^1216 -53002 6.t139 5.8879 6,]o2t 5.9900 5.3890 6.0141

Table 53: Numerical values off"(0) against S forvariors vducs of r at m = L.

x,
S = -3.0 S = -4.0 S = -5.0

,.S,tr rM. r,srl r$t PS,,., rs,[
0.01 -2.6162 -2.5791 -3.7312 -3.6504 -1.7908 -4.6380
0.05 -2.6087 -2.571{' -3.7280 -3.6573 -L788,' -1.6fi6
0.10 -2.5989 -2.5651 -3.7238 -3.6556 -4.7865 -4.6G2
o.20 -2.5770 -2.ilU -3.7150 -3.il67 -L7815 -+.6635
0.30 -2.5513 -2.5098 -3.7055 -3.6344 -1.7763 -1.6571
0.'lO -2.5203 -2A7tO -3.6953 -3.6200 -1.7708 -1.W
0.50 -2.M7 -2.1176 -3.6841 -3.6036 -4.764,ft -4.6382
0.60 -2.4238 -2.3308 -3.6719 -3.5850 -4.7588 -1.6267
o.70 -3.558,[ -3.5639 -+.7522 -+6t1/,
1.00 -3.6070 -3.4791 -L721n -4.5581
t.2s -+7071 -4.519

Teble 5.4: Numcrical valucs of f"(O) against S forvzrious vahres of r at m = 2.

r S = -4.0 S = -5.0 .S = -6.0r.sl ,-s,tr r,sl F Sor- Fs,l, ,.fuI.
0.01 -t9t4I 0.1408 -2.80W 1.8261 -3.5859 L5973
0.05 -1.9879 -0.1213 -2.7991 13275 -3.5806 3.7990
0.10 -t.wx -0.4237 -2.7867 0.7315 -3.5737 2.8205
o.20 -1.7+O2 -0.9336 -2.7591 -0.,1810 -3.5590 o.6329
0.25 -1.il34 -1.1758 -2.7138 -2.6406 -3.5511 -?-?7?t
0.3( -2.7272 -2-6i325 -3.5,t30 -3.3880
0.! -2.il23 -2.512A -3.5060 -3.3814
0_60 -3.4814 -3.360/t
1_00 -3.3558 -3.1718
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Teble 5.5: Numerieal values of f"(0) as a function of S for various values of m at
r = 0.25.

Teble 5.6: Numerical valucs of f"(0) as a fuirction of S for varioru values of m at
r = 0.50.

s m= -2.O m= -3.O m= -4.O m = -5.0 rn = -6.0
lst sol. 2ndso lstsol 2ttd,sol, t.stsol" 2ttdsol t.sJsol. 2ndsol, t'stsol. 2ttd,sol.

I -2.2A57 -t-4664 -1_4664 -l_9?77. -1_9?12 -2.O572 -2.[W
2 -/t-1333 -2.5151 -36.3802 -2.2800 -2.z8,lDtr -2.2951 -2.2951 -2.3756 -2.3756
3 -6.0869 -3.3481 -1'19-057 -2.7111 -9.1835 -2.5717 -2.5734 -2.5776 -2.5778
4 -8.0e[5 -1.2601 -3W.22 -3.2259 -25.+07t -2.8919 -5.0285 -2.8033 -2.811+
5 -10.o512 -s.2074 -7tn8t -3.7885 -53.7569 -3.25t2 -10_639t -3.05'16 -3.8911
6 -12-,J125 -6.1721 -1121.6 -4.3820 -97.820 -3.ffi? -19.4'[13 -3.330{ -6.1971
7 -14_O361 -7.1+70 -2313.6 -{.9951 -761-l6C 4.Oil7 -?2.t3fia -3.6276 -to-17LsI -16.0318 -8.1283 -3517.5 -5.6210 -217.36 -1.1!il -19'4731 -3.9123 -I5-9t[40
9 -14-oza3 -9.1138 -so79 -6.2557 -359.95 -1.9#3 -72-1952 -1.2711 -23.1112
10 -20.ozss -7,J_7,I22 -71'44 -6.8967 -soz.s2 -5.403{ -101.O51 -4.6113 -32.2851

s m= -2.0 m = -3.0 m= -4-O m = -5.0 m= -6.Or.hl rw rifl rsd ,.ctrL I'.tol rM. FW ,.sL
-2.3334 -t9s7s -1.9s76 -2.Oi217 -2.02+7 -2.tst1 -2.tst4 -2.2892 -2.2912

2 -4.1128 -2.5770 -17.726i -2367e -2.3ffi1 -2.3880 -2.3882 -2-17,J1) -2.1701
3 -6.0909 -3.3789 -9&888 -2.78?1 -3.S187 -2-658{ -2.5593 -2.ffir? -2.6700
4 -8.0666 -1.2778 -288.57 -3.2741 -11.s7 -2.9661 -2.9713 -2.8!100 -2.8912
5 -10_o52t -5.2185 -633.85 -34220 -35.192 -3.313( -5.6588 -3.1325 -3.1381
6 -12_,J13/ -6.1797 -1181.5 -410/62 -7O-O7lt -3-6f139 -11.7676 -3.3981 -3.7798
7 -14-O371 -7.1s26 -197a.3 -5.0131 -127-3rn -4.1014 -21.1969 -3.5851 -6.1601I -16-oiJzi -8.1325 -3071 -5.53, -194.55 -1.5287 -34.6606 -3.9908 -9.9950I -14-O2aI -9.1171 -1507 -6.2667 -291.57 -1.9707 -52.903 -1.3122 -t5-3356

10 -20.ozst -10.10,t -6333 -6.9056 -416";52 -s.4235 -76,;671 -1.ffiz -223A66
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S.l2 Rerult end discusrion

The sys@ (5.6)-(5.7) has be€n solved numerically with the aid of RK-shooting

ec,hniquc similar to the previors chaptcrs. During curcnt analysis the resulg cryhrcd

for lincar aud non-lincar wall velocitics under thc influcnce of diffcre,nt involved phycical

parameters rc displayed in tabulatcd form (tables 5.1-5.6) and also presenEd

graphically in Figp. 5.2-5.13. Fig. 5.2 rcprescots the iryact of surfrce tansv€rse

curvature on the wall skin-Aictio,a for lincar case, when plotted agnirut the suction

paranctcr. It is dcpictcd that at sme chosen valucs of curuture parameEr the drul

solutions pre nail for higher magnitudes of S and these solutims disrypear as the suction

cffects becorte weakcr and rveakcr. Fig. 5.3 is drarm to analyze thc inpact of crrvature

parametcr for thc case of non-lincar shhking velocity (m = 2).It is observed frat fo,r

high€r values of r, almost similar patErn is notice( i.e., with the pruvision of sufficient

wall nrction &ral solutions are sighEd and thc (rccurrense of any solution tclds to

disappear duri4g the weaker effests of suctim. Howwer, one aspect socms prormineirt

hcre that at r = 0.10, for highcr suction eftcts, dual solutions shw wider ditrerrence

among the two bmrnchcs ad this gap becomes narrow with the reductim of suction.

Here, it is a worrth mc,ntioning fact thst (in this case) both first & sccond solutions dm't

get conveagd howwcr, they come clos€r and closer and ultinately reach the valucs

-1.0828 & -1.0823, rcspectively, at a critical point 'iS = -3.6112L432". Howwer,

this is not the case with wcry corple of solutiom, as is widc,nt trom Figs. 5.2-5.3. From

these figures, it is clear that dthorgh dual solutims exist thcrein bt4 despite the tedious

efforts, no critical points werre observod at rvhich both the solutions could overlap. To

tace out the wall skin-friction distribtrtion against r, Fig. 5.4 is dratm at sorne spccific
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values of S. From frc Fig. 5.4 it can be observed that at smsllcr values of suction

parameter dual solutions do cxist nDdcr thc smaller qtndure impacts and the solutions

disaepcar as thc qrvature influc,nccs are strengltc,ncd- Rcsultantly, sufficiclrt amormt of

snction is obseryed nsndatoryto c4turc the solution there.

In above discnssio,n, it is clearly dEscribd that the dual solution is possible for

dccelcrded wall vclocity with the provision of sufficicnt wall suction vclocrty. To see thc

role of acceleraEd wall nelocity, Figs. 5.5 & 5.6 rc plotbd and numerical data is

pres€nted in Tables 5.5 & 5.6, accorrdingly, wherein it is observed that dual solutions are

only possible for injection wall velocity, while, thc prresc,nce of wall suctiotr docs not

guaraDtcc for thc existcoce of any kind of solution- Althorryh, it is a well knorvn fact thst

the wall suction stryportr the blowing UouAary-tayer while the wall injcction vclocity

cause thc bondary-layer b blow, in coffiast But zuch an opposite behavim has

rypcarcd due b thc occurrence of a frctor mt I itr ftc dEnominator of second boundry

condition *4 = 0. Duriqg the analysis, it is noticed that for larger rqiection effects, both

hanches of solutim shorv more ud morp differrences aod by duciqg the injection

cffccE the borth solutions comc closer ud closer and ultirrately get convcrgpd- Thc

oonvergEnoe of both solutions, in this case, is a rmiquc Espect as this tpc of findinp is

not obscrved for thc case of dccelcrated natuc of wall velocity.

For furftcr unAesanding thc dual nafirc of solution, the velocity profiles for

linear as well as non-linear shrinking velocities ae displayed in thc Figs. 5.7-5.11,

rvhercin, it is clear that both the solution brane,hes unanimors[y satisry the far field

bottdsry conditions, asymptotically. Velocityprofile for the case of linear wall velocity,

at difrereirt valucs of r, and S are prresemed in Figs. 5.7-5.9, wherreas smooth and
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unifom vuiations are observed fq both solutions thcrein. All figures dcscribe that thc

fu of currrature parameter and wall suc,tion velocrty are orpposite on both the

solutions. The effectr of ctrvature ud suction parunetcrs in fre case of non-linear wall

velocity (m=2) are plottcd in FiS. 5.10-5.11. Fig.5.l0 indicates the impact of

difrEled valucs of currnture parametcr on the velocityprofile at S - -6,while Fig. 5.ll

shows the vrition duc b somc chosen values of S at r = 0.10. From thesc figures, the

dral naturc of the solrtion is also sighEd which is obviors for power-lew wall velocity.

Almost similar behavior of flow phe,nomcnon is notcd as it occurred in the case of linear

wzll velocity. Hovvcvcr, amvcrgcnce of both solutions can be obtrincd more quickly as

cormpared to linear wall velocity case. It is also obscrved that with thc incremcnt in the

inpact of suction pammeter the boudary-laycr thieJoc*s is boosted up accordiagly. It is

noticed that thc prcscnoe of dul solution is possiblc mly for decelemated wall velocities

under the impacE of involved ph)rslcal parameter. The vclocity prcfilcs for accelcrated

naturcofwallvelocityhavebecnd€pictcdinFigs. S.l2&5.13 for rc=O.25 andr = 0.5,

respectively. It fu mticd that, as usual, first solutioa b,nanchcs exhibit sramth variations

while second solutionbmane,hes pornry an abrupt an rmusual behavior.

32 Unrteedy boundaly-leyer flow over e shrinHng cylinder

In this soc:tim the steady aspects of shrinking cylinder arp cxtcndod towards

unsteady cirqurctarca. Sincc, the appcararc€ of an attractivc cmcept about

multiplicity/duality of solution in the ficld of shinking surfaces flow, literahre reguding

these flows has becme voluminow due b numbers of publicatims rendcrcd by the

involved rcsearchers. A valuable literature can bc cited in [68]-[7t], whcrein flows

causd by the axisymnretric shri*ing cylinder have been studied und€r the consideration
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of dilf€rcnt circunsEnces. In vierw of available lit€mrtrup, it is conchrdcd that thc

xishce of multiplddual solrtions is linkd wifr the p,rovision of sufficicnt wall snction

or some otrcr nryporting intunaUextcrnal ingrcdicnts. It is also noticed that almost not a

single fuiftl cfrort has bcen canied out, so fu, in comection to the cxistence of dual

solutions in the abseirce of wall srction or Ev€,n in thc prc.eencc of wall injcction.

Howevcr, the cxistence of dual solutims cannot be connected, putiorluly, to the

provision of suction/injection u other agsnB. Dnri4g thc ctrrent investigatiorn, it is

reported wittt stong GvidElrc€s that the condition of provision of sufficient wall suction

socms unnocessary fu the existence of &al solutiors as it is noted that dral solutions are

also po*sible in thc absence of wall suction or €ven in thc lrres€nce of wall mjection

veloctty. Dudng thc qrreit analysis it is rcflec'ted tbat for the existence of duality of

solutim there is no nced of anywall suctim" Such kind of findings regarding drul nanrc

of solution in contert to a shrinking surfrce flw without the provision of wall guctim u
even in the prescncc of wall injection can be regardcd as impresrive outcomes in this

domain of flow. It is also obaenrod that thc tansr/€rs€ surfrcc qnyrturc ofthe cylinder's

surfrce paid a srryporting role for the cxistcncc of dral solutions.

5.2.1 Methemeticel formulation

Consider a continuou slim cylinder of infinitc length, hayi4g a uniform cross-

soctiott- The cylindcr is placed horizontally in a viscoru, incomlressible fluid so that no

body forcc is actiag there. There is no prressurcgndicd therein and the cylindcr is

initially supposcd to bc at rcst. The flow in the stationary fluid is causd by tlre impulsive

start of the cylinder's motim (unsteady shrhking). In view of abovc assrmptions, the

continuity eqrutim for the pres€nt case is the same as refcrred in F4. (4.1), while the
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gpycrnirry equation of motion with the additim of an qta tenn (duc b ttnsteadiness) to

the L.H.S of Eq. (4.2), takes the fo[owing form:

ht - ht - ht ,.0 - iltt^
i;+ufr+ oE= v;61r.6).

Since, thc cylinder is supposed initially at rest, so that the ICs are read as

(5.8)

t<0, tt=p=O, Y(r,z). (s.e)

To allow for the no,rmal wall velocity, the cylindcr is nrpposed to be porous and with the

possagc of time (t > 0) it is set into motion (shrhkitrg towards orign, i.e., z = 0) with

some suitable velocity. As a result of this suddcn mo6on, thcre dcvclo,ps a borndary-

layer flow in the vicinity of shrinkiag cylindcr. Therefore, the suitfile borrndary

conditiotts for such an impulsive motim (t > 0) of the cylinder are takeir of the form:

u=W(4t), e-q"(z,t),
u+O,

at r-n(t)).
as r)@, (s.r0)

Iluc to the unsteady natur€ of the crrred flow, thc wall velocitics n* and W te

sqposed to bc fiee to wry in z and t, while the radiru of the cylindcr is considcrod as

rmifomr but to dcecnd rpur time. The natrure of considered flow rcquires that the ambient

flnid ouEidc the bondary-laycr rcarains at rest for all time (-o < t < @). A dgtaild

similarity critcrion for the wzll velocitier W, W and radius R(t) can be sccn in [56],

according to which (for a shinking cylind€r case):

W(z,t) - -Y, W(z,t) -- dt-112, R(t) = Rollz; t = dt, t > 0, (5.11)

wherc E dcErmincs thc conshnt shrinking ratr,, d shnds for constant rpfcreirce

suction/iqiection velocity, while R, rcfers to thc constaat rpference radiru of the

shrfutking cylinder. A more significant &ct is that the cylinder, undcr cusidcration, is
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swallowing in timc and for the sake of self-similarity of the solution borth the wall

velocities (u* and rfr) decay in time as thc cylhdcr swallows. It is necessary to

nnderstrnd that the above staEd forms of the ftmctio,ns W, W, and R ue esscntial for

similarity solution to exist. Further, the similarity vuiablcs in casc of an unsteady

shrinking cylinder, as rcported by Mehmood [56], ue of thc forms:

(s.12)

Tte above similarity variables obviously satisfy the continuity oqrution (Eq. (4.1)),

idcntically and F4s. (5.8)-(5.10) are transformed as

'rff - #) - (+)' - f,(t " * fl = ifrb# gJ)' (5.13)

,= Er, u=vf'(rt), "= ff;fOl.

f'=Reno, 1=!*nea, it ?=Rero).

f'-0, as q)@ )
(s.14)

Hcrc f rcprcscn$ thc dimensionless sfeam firnction md'refcrs the differcntiation w.r.t.

4, whcrre peno = 1ffi i8 thc Rq,uoldl' n.mber bascd upon the cylinder's rcfcttnce

radftE, Rs. At6orgh, the system (5.13)-(5.14) is in self-similar fqm which is ready to

solvg howwer, to assist the numerical cormputations mse cfficiently, the equations can

bc msde mathcnratically morc compact by ttsittg

- B?-ncznntl=-', Zn"^o ,
and f=rcf. (5.15)

By the utilization of Eq.(5.15) the currcnt donsin of interest [Repo,o) dso leads to

[0,-).Consequently, thc systc,m (5.17)-(5.13) simply talces the form, after c€rtain

algebraic manipulations, as
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tt - fio + hoD)f' - f'(r t f') = ((t * Zq)f ")' ,

f'(O) = 1, f(0) = $, /'(o) = 0,

whcre r=URe4- is tErmed as cundurc paraneter, and S =h designates the

snctiom/injcction parameter. The values of S ) 0 comcspond to the wall injcction whilc

the values S < 0 ue referred to wall suction sce,nrio.

(s.lo

(s.17)

Teble 55: Numerical valucs of f"(0) d vuiorrs values of r and.S.

s r = O.2t r=0.5 r = O.7S r=1.0
Fd fn. Fd FnL F sr. Ter- rd feL

0.3 -0.4995 -0.0651
0.1 -1.0935 0.6266
0.0 -1.2775 0.8760

-1.0 -2.6086 3.56'15 -1.0000 -0.0845
-2.0 -3.7232 7.5848 -2.5632 2.1#9 -2.0538 0.5435 -1.5715 -0.,1999
-3.0 -1.7W 13.4546 -3.7020 5.0638 -3.3028 2.5432 -3.0673 1.2227

-'L0 -s.8231 21.5343 -4.7721 9.2820 -4.t030 5.3{81 -4.2030 3.2900

-5.0 -6.8502 32.1456 -5.8151 15.0590 -5.4591 9.2353 -s.2725 6.1359

-40 -7.8698 15.5876 -6.W3 22.6324 -6"i952 11.3667 -6.3153 9.9074

-7.0 -8.88,[9 62.1401 -7.865+ 32.1413 -7.5206 20.8519 -7.3411 11.6944

-&0 -9.8!r68 82.Oilz -8.8815 13.7291 -8.5393 28.7718 -8.3655 20.550,f

-9.0 -10.9065 tos.6026 -9.8!r,11 57.{,,12 -9.5538 3&1681 -9.3815 27.SOtt
-10.0 -11.9145 132.9775 -10.9043 73.5001 -10.5653 49.0480 -10.3941 35.S511

Table 5.6: Numerical rnalues off"(0) at vrrious vahres of r and S.

r S=-1 S = -0.5 S=0 S=0.5 S= 1.0
Fd f 0r. I'rlL f0L rd f0L FnL fnL Fd 7d.

0.01 -50.9m 9958.0 -50.{80 9586.0 -19.g'.n 9{1&0 -49.+79 9155 -14979 8898
oJt5 -10.908 1395871 -r0.403 123.:t88 -9.8989 10&+591 -9.393! 9+.7520 -8387S 82.2L85
0.10 -5r280 26.8ffi' -5.3115 215357 4.7911 1d9322 -+.2665 13.0042 -3.73{5 9l,998
0.15 4J,870 10.9250 -3.5510 8J281 -3.0019 s.ils7 -2.+302 3.7[m -tat21 2.1732
o.20 -3.1816 5.8554 -2l.,.66 ?.92?6 -2.0135 23fi7 -1310' 1.0785
025 -2r,086 35646 -2.0000 2.to7t -,.2775 o37@
0.30 -2.1981 2.29t+ -1.5178 t0728
035 -147+2 r.1730 -1.0+55 03094
0.40 -15943 0.8803
0.45 -1.3239 0.3957

0.50 -1.0000 -0.0845
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,c s" F0L fnL
o.25 0.3t57Vn5,0/ -0.2853 -0.2853
0.50 -0.926035063 - 0.5490 -0.5490
0.75 -1.493430711 -0.7960 -0.7960
1.0 -1.887497733 -1.0301 -1.0301

Teble 5.7: Tte criticrl values of suction paramcter S calculaH for somc chosen values

of qrvaturcparancer.

Teble 5J: Tte critical vrlucs of currrature parlameffi r calculated for some choscn

valucs of suction parameter.

s

Ilg. 5.11: Dual solution d f"(O) fq diffcment vdues of surface flrvatur€

parametcr r as a fimction of a suction/injection parameter S.

l5

t0

s1
-\- f

\
0

.J

s f- I-rll fnl
1.0 0.190451504 -0.2t97 -o.2197
0.5 0.23D04846t -0.2643 -0.2643
0.0 0.29m9s1501 -0.3289 -0.3289

-0.5 0.38t0827y2 -o.4259 -o.4259
-1.0 o.525946169 -0.5753 -0.5753

-51-J-2-tilt
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r- 0.381M2792- ' '

= -2,0, -1.0, -0.5,0,0.5, 1.0

0 0.t 0.2 0.3 0.4 0.5 0.6 0.7

r
Fig 5.12: Dual solution of f'(0) for differeirt vahres of suction/injection

paramder plotted against ctrvatrure parameEr r.
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Fig. 5.13: Velocityprofile for different valucs of curvature parmetcr at S = -2.
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-0.5

-l .- '.t. S=-1.0,4.5,0,0.5,t,0l. \ \ ,
,!;' ::-' > i$-.
!!): j -- Z< i -'1.1'..)___-.j.i!it.:

"t-i\

S = -I.4 -0.5,0,0.5, 1.0

0.5 J.J

Fig; 5.1{: Velocity prrofile for differcnt valgcs of sgction/injection parameter at

r = 0.15.

5.22 Rerulb and discursion

The self-sinilar systcrn of Eqs. 5.16-5.17, obtainod rs a result of rnatheuratical

formulation crrid out duriqg the crrncrrt analysis, is solved with thc aid of a compatible

numerical mcthod that is known as 4fr order Runge-Kutta shooting ncthod- By utiliziag

this numerical Echniqre, it becomes possible to caphrc drul solutions forvzriors valucs

of crrvature paraoeter, r, and suction/iqiection parametcr, 
^S, which are reported in

trbular form as well as p,resenbd in thc gr4hical form, where the first solution is showr

by solid lines while b,roken lines designatc the sccond solutio,n

Fig. 5.ll is &axm for thc numerical data captured in conErt of skin-friction

coefficient f"(O), at rnrioru values of r against S. From the graphical rcpresenation, it

can bc secn easily that dual solutions are po*sible, in the pr€scnce of wall suction, for all

1.5 2.52
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assumcd valucs of r. As frr as thc ndure of first solution is co,nccrnd it rcmains

negative thong[ort thc process and its magniEde incrcascs as the suction effecb arc

amplified. Howwer, the bchavior of second branch of solution rcmsins almost positine

but changes iB behayior for a rvhile for smallcr values of S. These frcts can bc rGalizd

more clcarly for small values of r (r = 0.25), whcre thc solution is re,ported not only

without $rction but dso for injcction parameter, too, Further, with the increasing effects

of injection the second solution changes itr behavior from positive to ncgrtive. It is also

noted that as the influence of curvature is e,nlargsd the existence of dual solutions

treeomcs impossible to shorh thc character of suction parameter. Such type of

infonnation can be seen in Table 5.5. ft is also noted that, with the hsEasing msgnihd€

of ,S, thc frst solution slightly diffcrs ufiile the second solution €rhibiB proninm

v;riations thcrein. Furthcr, as thc cffects of suction pamancter arc reduced bofr thc

bmanches of solution tENd to conycrgc. With rcducing the magnitude of S, we rcac,h a

point, S = S., where both the solutims ultimately gst ovcrlapped and on orrcrlappiag

solution is obtainod. It is also leand that the drul solution is possible only for S ( S.

and no solution is obscrved bcltond the critical point i.e., S ) S". To cxplore the point of

oonve(gENroe (critical point), timp t"Ling efforts have bec,n madc and ultimately we

succeedcd to fircc out the relwant critical poiffi whic,h arc also shown in the Fig. 5.1I as

well as glvENr itr a trbulatd fqm in Table 5.7.\t is an intcresting fact that the Fig. 5.1I is

a miror image of the resultr rEportcd W 7ilrli et al. [69] whcre thc urthors t69] utilized

wrong self+imilar fomrulation.

To cxplore thc curvatrure effets, numerical ,lata is collected for some selectcd

values of S, which is refencd in Table 5.6 and is also d€,pic'ted in Fig. 5.12. From the
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graphical rcpresentation, it is clearly noticcd that thc variation in the sccond solution is

mue visible in contast to the first solution. At some spccific values of curvatrure

paranreter, thc nagnitttdc of skin-friction coefficicnt inc,rcascs with the incrc,ment in

sustion cffccts, brut decrcascs with thc incrcment of injectio,n parametcr. Firthcr, it is

rwealed thd thc roduction in the magnitudc of f"(0) remains to continue with the

increme,nt in crnvafrue prmeter. The magnitude of thc first solution stay€d negative

throughout the prrocess, while thc secood solution almost persisted a positivc outlook,

horvuver, for highcr rnalues of r, at S = -1.0, it chmges itr bchavior frrom positivc to

negative. Howwer, such types of findiqgs are obscryed for suction soenario, only. By

cnluncing the ctrrdure effects, thc solrtion disappears mue rapidly as the domain of

solution shifts ftom suction m injcction regime. It is worth mentioni4g that the solution is

also rcported witrout suctio,n (S = 0). Hcre, it is noticed that the both solutions cornc

closer and clocer as the cfrect of surftc,c curvature is int€nsificd- LJltimaEly, for wcry

assumed valuc of S, a critical poiil (r") is figurcd out, acco,rdingly. It is a fact that no

solution is possible beyotd the critical point (i.e., rc ) r"). No doubL such critical pointr

are cxplored after a great dcal of plenEors efrorts and erercise. Thc critical vzlues of r
for some chosen values of ,S are pcrtaind in Table 5.8 and Fig. 5.12 is also ornarrented

with thcm, acco,rdingly.

For co,rylerc undcrstauding of the flow phcnomenou, the velocity prcfilg

f'(4), is drawn in Fip. 5.13-5.14 wherp Fig. 5.13 is plotted for some chose,n valucs of

r by chooslng S as fixed (i.e., .S = -2.0) and Fig. 5.14 is porrtaycd for some selected

valucs of S, by talring currahrre panameter as fixed (i.e., r = 0.15). Here, it is obviogs

that the tclo branches of the solution cormpletely agree with the fu field boundary
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conditions, aslqbtically. It is illuminated ftom Fig. 5.13 that thc bondary-layer

thie;lmess is boosted as the qrvafirc parameter is enlarged. It is also obvions, that the

secmd solution bcam widcr span of borndary-layer, whcrEas, und€r thc samc

cirqmsbtrc.cs, thc first solution displays comporatively small variations in the boundary-

layer thickness. ltc role of suction/injection porametcr, at ,G = 0.15, in thc pattern of

velocity profile is described in Fig 5.14. It is observed that suction/injestion parameer

plays opporitc role on the velocity profiles, i.e., by inueasing thc suction effects

boundary-layer thicJrness docreases, howevcr, it boosE up as fre injection effects are

magnified- Another iryortmt fact is that the solution is also noEd without fre prrovision

of suction wall velocity. Capturing the solutions in the absace of wall suction or eve,n in

the pcscnce of wall injcction, is deftritely a big achiwement of the currcot study, as the

existiag litcrature scems quite in this rcglrds. Infact, thc findiags of crncnt study negarc

the wcll-estrblished claims made about the cxistcncc of dual solutions. Now, it became

crystal clear reality that the solution can be figur€d out with and without suctio,n/injection

influe,lrce. During the cunreirt study, it is dso observed that the solution pattcril porrtayod

in Figp. 5.13 & 5,14, is the reflection of fte resulb displayed in Figr. t & 4by the authors

[69]. Thc orEomes of the present study are pc,rccivcd to serve a helping tool to cxplore

the hidden aspccts ofthe multiple mturc of solution formovi4g continuors surfrces.

53 Conclusion

Duriqg the cunrcnt investigatioq thc possibility of drul solutions is sortcd out, for

linear as well as non-linear shrinking wall velocity. The prrescnoe of suffici€nt amount of

wall suction prcvidcd an assistivc role regarding the existence of these solutions. Further,

the tmpact of surfroe curvature for soliciting the non-unique solution is wcll noticed
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drrring thc analysis. Thesc orscomes are the impoftail fcaturcs of this shrdy and are the

valuable findingF for this flow. A comprehensive numericd data has bccn capturcd

reguding &ral solutions of this flow and pescntcd in hbular fo,rm, rvhic,h is dcfinitely

expec'ted b help as most suitable reference for fuurrc studies. The oubomes of the

prescnt study shall dcfinitcly inryirc the researchers to further disclose the hiddcn

featur€s ofthe boudary-layer flotrr, ofthis naturc.

During the current sttdy dual natuc of solutims for ursteady viscous flow

stinulaEd by an iryulsively stafied shrinking cylindcr has becn analyzd. ThE fscnt
malysis cxposes various faschating rmiquc conclusions, partiorlarly relatcd to thc topic

of shrinking surftce flows. The prime feature of the cur€nt investigation is the Gxistcocc

of dul solution not mly in thc case of wall suction brut also fo,r thc cases of wdl injection

as well as in the absence of wall suctim, too. It is also noEd that the dual solutions are

possible evcn for sufficiently wcak injection nelocities. l1ese two outcomcs arc

definitely innovative and uniErc which have never been rcporEd in the litcraturc,

previottsly. Definitely, suc,h a rmique outcome will stimulate the scicntisE to scnilinize

the multiplicity/dualrty of solutio,n for shrinking surfrce flows in the abscnoe of wall

suction and in the prasenoe of wall injectim vclocity.
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Chapter 6

Duality of solution for a stretching disk flow

In the curcnt enrytcr we intend to dcal with stcadyArnseady characteristics of the

self-similr boundary-layer flow caused by a flat circular disk of infinite radius. J[s dislr

is assum€d to be non-rotatiry and of flexible naturc and shetching in thc radiEl direction

The litetatre available in the realm of stetchiag disk is mostly relabd to the circular

motion rvhcreas iE non-rotational perspectives are rarely investigatcd. The axisymmetric

surfrce flows were dso sildid fc the cxploration of a new tpe of solutiorn, called

multiple/&ul solutim. The currcnt shrdy is devoEd to uplorre the possibility of dual

solutions for the flow phenomcnon initiated by a stetching dislq in thc absence of any

circular motion. Both the sEady and unsteady aspects of a stetching disk flow are

considercd in this chapter for the cxploratim of duality of sohilion. The govcrning

equations, obtained for the flow rmdcr considcration, arp solvcd numcricatly with the aid

of a trusturorthy shooting Echniquc. During the present study, dual solutions are cqfrued

fu involved paranreters.

6.1 Steedy boundery-leyer flow due to a rtretching dirk

In the farnily of axisymmctric flows the circular disk geomcry is cmsiderod as

thc nert of circular cylindrical goometry. The axisymmctric borndry-layer flow due to a

radially srreEhing disk was first sfirdid by Fang [79]. Thc author F9] utilized a linearly

varying sfretching wall velocity forthis flow. Consequently, an exact self-similar solution

was reportcd- A quick litcrature suney rweals that though the stetchi4g disk flow has

been iuvestigatod by a huge numbcr of rcsearchers but the sfretchiqg wall velocity had
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strictly becn linitd to a linear form. Rcccntly, Mehmood t56] dacrninod a similarity

critcrion fq 6c sffiching wall vclocity for the disk casc and r€poftcd the possibility of a

(non-liner) wall vclocity, also. This section intcnds to considcr the said

porvcr-law (non-linear) fonn of radially sfretchiry wall velocity to strt out the

possibilitics with regird to the qistencc ofnon-unique solution.

6.1.1 Strtement of the problem

Consider a flat circular disk of infinitc radius whose flexible gurfrce is being

sffichd with variable velocrty in radially outcrud direction. A schematic of the flow is

showr in Fig. 6.1 with the associated system of coorrdinrtes. Such a stretching disk

induces a turedimensional borndary-la1m flow for which the govcrning equation are

gvenby

ff+T=o,
0u - At A.tufr+wE=!fr,

subject to the borndary co,nditio,ns

u=W(r), w=w.(r),
It =0,

at z=0,1
at ,=-l'

(6.1)

(6.2)

(6.3)

wherc u and le arc the velocity componenE trken along the radial (r-) and the axial

(z-) directions, respcctively, and v is termed as kinematic viscosity. Mchmood [56]

daermined that thc above syatem admiE an cxact similarity solution if thc wall velocities

follow a form gven

w(r) = orn,
lrl.l

W(r) = drT (6.4)
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whcre c > 0 denotes a uiform sfictc,hi4g rate, and d is a constrnt srch trat: d > 0

cortcspona b wall injection velocity, ud d < 0 co,nespond b wall suction velocity.

Mchmood [56] intodncod thc followi4g similarity nursformations:

,t = f;#r, u= armf'(4), * = -@TtTf +ffnf),

&te b ruhich Eq. (6.1) is satisfied idcntically, rvhilc the system (6.2)-(6.3) hansforms as:

f"' =mf'z - (Tff". (6.6)

f'(0) = t, /(o) = -#, f,(-) = O (6.7)

where S =# dcnotes dimensimless suctio,n/injection: ,S > 0 concspmd to wall

injection while,S < 0 conespond to wall suction-

IIg 6.1: FIow geometry and associated coordinates.

(6.5)
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Teble 6.1: A co,mparison of frc dda rEpofted in [55] with the cur€nt rresults for some

selGctedvahrcs of m at.S = 0.

Tlvo-dimensional case The disk casc

-s, )""',0, -(a#) "",'ro,
m

Datareported
in t56I

Presetil
results m

Data reported in
ts6l

Plescnt
resulE

0 0.6276 0.6276 0 0.6276 0.6276l ll5 o.7668 o.7668 3ts o.7668 0.7668
IR 0.8299 o.8299 I 0.8299 0.8299
I 1.0000 1.0000 3 1.0000 1.0000

A3 !.Lfi4 t.1484 I L.t4l,4 tL4f,1
-t17 0.4645 0.4645 -317 0.4645 o.4645
-tls 0.3404 0.3404 -"ts 0.3404 0.3404
-u2t 0.5816 0.5816 -1.17 0.5816 0.5816

Teble 6.2: Vahres of f " (O) agrinst rz for some selcc,ted values of .t.

tn S=0.0 S=1.0 S=2.0 ,S = 3.0rd f rlr. rd fol Fd f wr. Fd 7nL
-4 -2.3690 -2.3697 -3.4486 -4.0674 -4.954L -11.113 -6.6906 -2A_12?
-5 -19025 -1.9047 -2-106,J -2.5186 -3.0567 -3.9421 -3-8224 -7.0049
-6 -L.7L97 -17233 -2.0464 -2.0994 -2.4{165 -2.7&7 -2.9LLB -3.9027
-7 -7-62,JA -1..6254 -18625 -t8976 -2-1478 -2.2982 -2.4743 -2.92L7
-8 -1.5586 -1.5639 -1.7503 -17775 -t97to -2.0655 -2.2196 -2.472L
-9 -1.5158 -t.s2t7 -1.6747 -L.6976 -1.8541 -1.92L9 -2.0s37 -2.2L83
-1( -tfil,4ls -L.4909 -16201 -L640,4 -t77Lt -1.8239 -L.9373 -2.OSS4
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rrr;

S = 3.0 2.0. 1.0,0.0

R
-t.5

-2

^--2.Jv
I

.J

.J.J

-4
-t0 -9 -8 -7 -6 -J _4

m

IIg. 62: Dual solutions shown by f"(0) for some sclected vrlues of S ag3inst zt.

6.12 DueHty of solution

An inspoction of the systenrs Q.5)-(2.6) ud (6.6)-(6.7) revcals that thc

bomdary data of the two sytt€ms are identical nfiile thc sclf-similr eqrutions of the two

systc,ns, namely, Eqs. (2.5) ud (6.6) differ by little. A carcful eotrpadson of the two

equdions rsvcals that both thc equatims are intcr+mvertible. Partiorlarly, Eq. (6.6) can

simply be rccovered by replacing '\n" by "3tT-, in Eq. (2.5). This fact has also bcen

cxplained by Mehmood [56] wtcrc the author rocoverod self+imihr solution (in the

accelcrated case m > 0) fm the disk fio,E thc sclf+imilar solution of tu/o-dimc,nsional

sffichiag shcct flow. This indicates the possibility of recwering a self-similar solrtion

(in the decelcrrtcd casc, ,n < 0) for the shrinking disk flow from that of the shrinking

shcct solution, if available.
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Interestingly, duality of solution for a shrinking sheet flow has already been

rcported by Mchnood and Usmrn [55]. Itcrefore, it is not rcoessary to solve the cuneirt

poblenr, sc,paratel;t nthcr the solution of the cuncot pnoblc,m can simply be recovered

from that rcported in [56] by replacing "m" W 
u3m" in the data of [56]. By doitrg so thc

rEsulE fm a steady stretching dish flow have been rEeorted in Tables 6.1-6.2 and Fig.

6.2. Obviously, dtulity of solution has been sorbd for thc case with m <-O, frat is thc

dccclcratcd case of stctching wall velocity. Ttis frct Gnsurw thc prescnoe of drul

solutims in thc case of sffichitrg disk proyidd that the shrinking wall velocity is of

de@lcrdod naturc.

6.2 Unrteedy boundrry-teyer flow due to e rtretching dirk

The chararteristics of flow phenomcnon duc to a movi4g cmtinuous sylindcr

Grctcning/shrinking) havc becn discussed in the pl,eceding chaeters 6ft t s).

Morcover, the sEady flow &rc to a stretchi4g cirqrlar disk has bccn prcsentcd in

Pnccding scctim of this ch4m with rcgard to the oocurr€Nrce of dual soludons. Ile
ptltposc of this section is b investigate the varioru aspccts of uruteady flow due to a flat

cirsular sfietchi4g disk fc thc eristence of dual sohilions. Hcre we ue focuscd on the

analysis of unsteady flow causcd by a non-rffiting flcxible sfietchiag disk It is a fact that

most of the litsmatur€ on account of flows stinulaEd by sfietching disk surface are relatcd

to rctatiotrsl aspec'ts, while non-roffiional characffiistics have bee,n given a very few

considclrrtion. Further, with thc appearance of multiple/dual solutions, there is a need to

sort out the possibility about the occuneirce of multiplicity/drality of thc flow

phcnomcnon initiated by a smetching disk surfrce. h this regards, the prescnt effort is

made to investigae the unsEady features of thc self+imilar borndry-layer flow
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stimulatedby shctchitrg dislq pafticularlythe existence of &ral solutions has becn giveo a

prime focus.

62.1 Methematictl formu]rtion

Cmsider a flcxiblc flat circular disk of an infinie radius placed in aa

incourpressible, strtionrry yiscous fluid. The nature of the disk is stryposd b be porous

so that thc normal unall velocity across thc disk surfrce is permittcd. Further, the porcs are

regidcd as of rmiform width and equally disfiibutEd o,n the disk surface. The disk is

hkco, initially, d rcst aod d time t ) 0 a suddcn motion/shetching is alloved (in radial

direction) with a velocity W(r,t). Such kind of wall velocity crcaEs rmsteady, two-

dimcnsimal, axiEmmcfiic boudrry-layer flow in thc ncighboring fluid. The sfietching

patt€rn and the associatcd coordinate systcm are p,resented in Fig. l. In view of abovc

assumpions the boundary-layer eqution of continuity in this casc remains unaltered (i.e.,

Eq. (6.1), while the equation of motion referred in Eq. (6.2) trlcs the following frrm:

#*"#+*#=n#. (6.8)

As thcre is no circular motion ftcrcfore the angular compon€d of velocity is chosc,n as

zcro. Thc most suitable initid ad boudary cmditims arp talren as:

u=W(r,t), w=w.(r,t),
rt=O,

at z=O,l
at r=*l (6.e)

where u and w arE the velocity compon€ntr hken along the radial (r-) and the axial

(z-) dircc'tions, respectively, and v is tcrmed as kincmatic viscosity. The disk is being

shetchcd in the radid dircction with the velocity of thc form:

w(r,t) = #r

l18
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wherp c (> 0) is a consEnt and is rcfcrrcd aE s constrnt sffiching rate. The wall vclocity

mentimcd in Eq. (6.10) ensurEs fu the existence of a sclf+imilar solutio,n. In vicw of the

wall velocity (F4. (6.10) the foflowiqg similarity hansformdions (in dimcmsionless

fontr) are introduced as,

Er un=,ti-,142, u=G @td w =-z IE{ r-rtf'(tD,

f,,, = f,2 _2f f" + F(f, +x f,,)

f'(0) = l, f(0) = -S, f'(-) = 0.

f(tD, (6.11)

wtelE, 7 is a prameter describing the unsteadiness of the flow phcnomcnon undcr

considemation. Eq. (6.11) satisfies the continuity equation (i.e., Eq.(6.1)), idcntically, and

hansforms Eqt. (6.8)-(6.9) to thc following set of equations:

(6.12)

(5.13)

Hqc, F =l it deign t€d as rmsteadiness parameter nfrcre iE positive and negative

valucs characterize the acceler&d and decelentcd casGs, respectively. Further by talring

I = -1, the above Eq. (6.12), rGoovers the form of Eq. 8.52 formulad by Mehmood

t56l for unsEady stetching disk For the prrescnt stqdy, we suppose the decelcrding

stuetching disk with P = 0. Furtlrermore, it is that for thc above

mcntioned self-similar sysEm, the nonnal velocity must be of thc form w*(r,r) =

#ad it can be writtcn in dimcnsio,nless fqm *;fr(= S). Positivc values of S

correspmd to wall injection sccnario while ncgative valucs of it refcr to wall suction

situation
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622 Numericd solution

A co,mparison of Eq. (6.12) with F4. (2.10) reflects that the unsEady case of

sffiching disk cannot be recovered fronr the comcsponding casc of sffichiag shect,

diftrcnt from the sEady casc. llcrcfore, thc sysEm (5.12)-(6.13) has becn solved

numerically with the aid of 4t+,rder Runge'Kutta shoofing tcchniquc as did in peviors

chrytem. Drulity of solutio,n has been captrrcd in various situations.

Table 63: Numerical values for/"(O) for some selestcd vzlues ofp as a function ofS.

Teble 6.4: Valucs off"(O) as a firnction of p for some selec.ted valucs ofS.

s f = -3.0 B = -2.0 R=-1,0 B=0.0 B=L0
F^sd. r sd. I-.Srl rht ,.S,tr f Sol Fh, r'.fcl rb,

o.2il2
01 0.1390 0.1398
il 0.184it 0.18:il -0.000, -o.ooot

2-A o.2677 o.2+59 -0.0098 -otl26 -0-2119
1.0 o-s172 0.0010 -0.1603 -0.20!r8 -0.17fi
0.0 -03400 -1 6tlaa -04994 -12638 -l_7747

-1.0 -2.O57It -5.7950 -222 -2. 4.tt+7 -2.5703
-{.0139 -13-62lJ7 -112:,4 -17'1614 -1. -9.5536 -+3+2+ -.1.4519
-10J011 -65.6L72 -10.0{,991 -ss.?ili -1ll o.txi -11-7 -l II raTr -to_1ttf,
-12.00tx
-1e0002

42tAOt -12.o+t6l -77t12i -t2.l,/a2a -s6.121 -4, a7?. -lz.LA
-8-O -15.0312t -127.8' -t&o621 -8&85!r[ -16.09311 -L6t21
-1tl-r -20_000, -2,l_o2.{, -18627 -20.oi{ra -12&265 -2lJ.07#t -20.-oqrl
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623 Resultr end discurrion

The information collected during the curent analysis is prescribed in Tables

6-3-6.4 and is also ilhstated through Figs. 6.3-6.9. Fig. 6.3 is plottcd to analyze the

rolc ofunsteadiness parameter, p, against suction/injection parameter. From the grryhical

rcercs€,Dtatio4 it is dcpic'ted that the dual solution is possible not ornty for suction case,

brut also for i4iection casc. Further, the solutio is also sightod withorr the provision of

sttction/injection effcctr. It is notiaed that with the increasing values of suction parameter

the vuidion in the frst solutim is smallcr as cornpared to the secod solution. As the

valucs of suction parameter are reducpd both solutims expr€ss minff deviations with

cachother. Rcsultantly, both solutions are ovcrlapped at some critical points as shown in

Fig. 6.3. It is worth mcntioning thst the s€cond solution is po*riblc for only decelcratcd

case (, < 0), while no second solution is rcpfited for acceleraEd cirstmshncg EyEn

tu



aftcr uhost efforts. At a putiorlr valuc of injection parameter, both thc solutims gst

convcrged. Futhcr, Fig. 6.4 is &mm at somc chosen values of 5, egrinst p, whcrein

small variations are noted in the skin-friction cocfficient (for insunce see Table 6.4).

Und€r thc influcnce of srctim parameter, both solutions comprisc of negative values

which increase as the flow bocomcs more and more rctardcd. However, as we enter in thc

domain of injcction flow, both solutions attain positivc attihrdc with the increasing

nagnitude of p. In thc case of no suction effects, the second solution rcmains negative

througltott the process while first solutim changcs its bchayior from positive to negative

as thc magnitudc of p dccreases. ltese frcts can be sighed in Table 6.4, wherein also

noEd that a rmique solution exists fu p = 6.

Thc velocity profilcs fq vuious values of p and S are drawn in Fip. 6.5-6.9,

where dul solutims have been notcd whie,h obviosly satisfy the far field boundary

cottditions, aqtnptoticatty. At some choscn values of S, the vclocrty profiles are

presented in Fip. 6.5 & 6.6, for F = -l d P - -2,rcspectively, where almost similar

behavior is dc,ptcd in both situdions. The sccond solutions, in both cirurmstances, havc

more bomdary-layer 6ickness as conryared b first solution. Fi$. 6.7 & 6.9 are plottcd

to see the effects of suctio,n/injection parametcr on velocity, rvhile Fig. 6.9 exprresses the

velocity profile without the involvcmernt of my suction influence. It is noticcd that the

bouodary-laycr thickness increases with thc incrcment in the rctardcd nstrrre of the flow.

In all sittutions, the sccond solution has widcrspan as conrpred to thc first solution.

63 Conclurion

Thc tc/odimcnsion l, unsteady, self-iimilar boundary-layer flow due to a flat

flexible sfretching disk rmder the influcnccs of wall suction/injection md unsteadiness

t2s



paramctcr has ba cxamined- During the coursc of cunent analysis following facts hwc

bce,n noticed:

a) The dual sohtions are po*sible not only in the prrese,nce of suction/injcstiotr paancter

but dso rEeorted without p,rovision ofthesc ingredie,nE.

b) l}c remrdcd nsturc of flow has 6e potency to qhihit the dual sohfions while

accelc,rrted flow doesn't express any eulity ard contains only si4glc solutim.

c) Ttc msgEitudc of skin-fricion cocrfficicn! f"(0), cnhmces as the suction cfrec6

maplry md similar behavio,r is observed for unsteadincss parueEr, howwcr, the

magnitude of f"(0) beconca lowcr rs the influence of injection increascs.

d) The velocity profiles for secmd solution, at higher values of suction and unsEadincss

poramcte,rs, areboostcd-up as compared b the first solution.

126



Chapter 7

Duelity of solution for a shrinking disk flow

This chapter is dcvoted to scnrtinize the steady as well as unstcady featurcs of thc

self+imilr tounaary-taycr flow caused by a flat flerible circular disk of infmirc radigs.

Tte sEady ud unsteady cascs of shrinki4g disk flow havc bcc,n cmsidered separately.

Intercsti4g findi4gs with regrd b the dualityof solution havebeeir rceorted.

This chryter is a continuation of the pruviors one where the duality of solution for

6e sftrchiqg disk flow has becn sorted out for the stcady and unstcady flow situations.

Similar b the stretching disk case the shrinkiag disk flow has also not bec,n explored

corylctely. Partiorlarly the porvcr-law fr,rm of the shrinkiag wall has nsvcr becll

considered before, to the bcst of or knowledge. Mormver, most of the available sfrrdies

on stctching/shinking dish flow involve the considcration of rotational effects.

thercfore, the prime aim ofprresent analysis is to scnrtinize the ditrcrmt charactcristics of

flat circula nm-rctating shrinkhg disk for the p,rescnce of dual solutions. IIrc to thc

non-availability of guffcient litcmature regarding mmotationsl charac.tcr of shrinlcing

disk flows, thc presc,nt study socms to be a rmiquc effo,rt made to fill thc eristing gap.

Since, thc idca of multiple/drul solutions hasprovoked vuriors fuiftl atternpE to figrre

otrt the multiplicity of thc flow phenomenon originatcd by the shrinking disk surfaces. trn

this cont*t the curreirt rvo,rt is nadc b cxplore thc steady and unstcady charac.teristics

of the self+imilar borndary-layer flow indrced by shrinldng disk; mainly the exploration

of dual solutions is the key fea[re.
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u=w

Xlg 7.1: Flow gsometry urd associatrd coodinatcs.

7.1 Steady boundety-leyer flow due to e rhrinking dirk

In this soctioa nature of axisymmctric flows due to a steady shrinking disk is

consid€rcd. FanS [79] was initiated the investigltion of st€tching rlisk flow by takiqg

linearly varying sfietching wall velocity md reported an exact sclf+imilar. Iike the

sffichi4g case of the disk flow, is shinking feafires are studied fo,rrotrtional effects of

linerlyraryingrvall velocities andnon-rotrtional situations arerarelydcalt FortrmaEly,

a similarity criterim for thc povrcr-law (non-linear) of shrinking wall velocity for the disk

case wEs descdbed by Mehurood [56] in his recently published monogrryh. Lr this

scction, the existrnce of dual solution has becn mdyrcd for porverJaw (non-linear) fcm

of radially sfuinking wall velocity.

7.1.1 Statement of the problem

Cmsidcr a nm-rotrtilg flexible cirsular disk which is shrinking in radially

direction. In this casc all the assumptions arE samc as bei4g considcred fo,r the steady

stretching prospective, cxcept of the negative sign with the wall velocitics, which is

obviotls. A schematic of the flow is slrown in Fig. 7.1 with the associatod systcm of
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coqdimtc.e. Due b quitc rcscrnblances with stuetching the continuity cquafiion and 6e

equdion arc samc as givcn in Eqs.(5.1)-(6.2), however, wall velocities ( as ifuucd
b,y Mehmood [55] for fre undcr consideration proble,rn) are of the form givcn by

(7.r)

Q.3)

Q.4)

w(r) = -utn,

whcre c denotes a uniform shinkiag nte, and d is a constant such ftafi d>o

correspona to wall injectim velocity and d < 0 conespond to wall suction velocity.

Mehmood [56] intnoduced the followiag similarity hansformations:

li ^-,a = f,irTz, u= -u^f'(rt), , =Fo-T#f +ffnf), Q.2)

duc to which continuity eqrution @. (6.1)) is satisficd identically, while 6c equation of

motions along with borrdary conditions (i.e., (6.2)-(6.3)) tansform as:

f,,, = (w)f f" _mf,z

f'(0) = L, f(0) = ;S, f,(-) = 0,

m-l
W(r) = dtT,

wherc S = #dcnotcs dimcnsionless suctiou/injectim: S < 0 correspond to yall suctim

while S > 0 r€fcned b wall injection.

A comparison ofthe syatems (3.2)-(3.3) and (7.3)-(7.4) showr that thc boundary

datr of the two syttc,ms ue idcntical while thc sclf-similar oquations of thc two sysms,

namely, Fqs. (3.2) and (7.3) with little bit variations thcrcin. Agaiq herre it is also noticed

that Eq. (7.3) can easily recwcrred by replacing '1n" by..3m,, h Eq. e.2). A dctsiled

infomatio,lt can be seeir in [5{1, wherc the athor hrs given a consolidaEd critcrion

regmdiag rccovoing self+imilar solution (in thc accelcrated case tn > 0) for the disk

ftom the self+imilar solution of tc/odimc,lrsional stetching sheet flow.
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Teble 7.1: Vdues off"(0) against m for somc selected values ofS.

m S = -7.0 S = -8.0 S = -10.0 S = -12.0
lstsot 2trdsol lstsol 2ttdsol,, lstsot 2nd.sol lst sol 2ndsol-

-10 -7.8725 -8.7797 -lo.ilo1 -12.54t1
-5 -7.4098 -8.3622 -10.293i -12.2#t
-1 -7.0000 -8.0000 -10.000( -12.000(
0 -6.8905 -7.9047 -9.9242 -11.937(
I -6.7778 -7.8073 -9.8474 -11.873S
2 -6.6615 -7.7076 -9.7694 -11.8093
3 -6.5413 -7.6055 -9.6904 -11.7&!.
4 -5.4168 3.1457 -7.5008 6.5805 -9.6101 17.6026 -11.6791 35.1808
5 -6.2873 2.9059 -7.3932 6.1791 -9.5286 16.7238 -11.6121 33.5970
6 -6.1s21 2.4278 -7.2825 5.4239 -9.44.57 15.1533 -11.5461 30.8172
7 -aottz 1.9247 -7.1685 4.6407 -9.3615 13.5335 -11.478t 27.9528
I -5.8629 1.ffig -7.0508 3.9109 -9.2758 12.0263 -11.410: 25.284,{,
I -s.7062 1.0105 -6.9290 3.2527 -9.1886 1o.6696 -lt.34ti 22.8779
10 -5.5396 0.506{ -6.8027 2.6il4 -9.0998 9.4619 -11.2711 20.7316

40

30

s-
-VLlo

- -S= -12,i10,-8,-l

_tttr

]--t-r
S = -7, -8, -10, -12

tIr_-:;

-t0-,j44-202468t0
m

fr,,7.22 f,lual sohilions shown W f"(0) for some seleced values of s agninst

Powcr-lawindcx, m.

-t0
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IIg. 7.3: Vclocity profile for diffcrent values ofporver-law itrdor, m * S = -1.

7.12 Duelity of rolution

Rocently, Mchmood and Usman [55] providcd congrenensive information

rcgarding the qistence of dual solutions for shctching/shrinking surhoe flowr, wbcrein

frc antors [55[, akcady reported the drulity of solution for a shrinking sheet, thcrefore,

it is notneedsdto uplainthermderconsidcratimprobleq scparael; ratherthe solution

of the prescnt problcm can easily be recovered from that prescnted in 156] by jr15t

rcplacing porvcrJaw indsr( 'ln" byt"Smn in the data of t56]. By fo[owing previors

pactioe the outromcs formd out for the case of steady shdnld4g disk flow are prescnted

in Table 7.1, and displayed in Figs. 7.2-7.3. During the shrdy, dual solutions have been

figured out for m> 3, while after that a rmiquc solution is sighted till m = -t. Furthcr,

it is also noted that the solution persist in the presclrce of adequatc amount of suction

velocrty. The first bmanch of solutions rcflects smooth bnrt minor vriations and having

t.50.5 2.5
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negEtivc valucs in €ntirc domain of solution. Howcv€tr, the second brach of solrfions has

a diffcrernt sttitndc that rcporEd for fint solution-

72 Unrteedy boundrry-leyer flow fue to e rhrinking dfuk

Sincc regardiag the existcnce of multiple solutions, b,ulk of litelrature has bccn

Foduced by many authors tou/ards shrinking surfrce flmr. Mcanwhile ample cfforts

were made to analyzc the fluid flow cirqrmstances causod bccausc of dish surfrcee

rotating wifr spocific angular velocity. Howvner, onty few cfforE werre carriod ogt to

scn[inize the disk flow be,havior in the absence of rotational motion. Itcrcfore, the non-

rotational shrinking disk flow is also requircd to be explored for the cxistence of dual

solutions. The inspiration of the rccent investigation is obtained from the contibutions

renderod by thc authm [56], wherein the wall velocity ofthe form r+(r,t) = #ta > 0

is suggested, in casc of radially shinking disk having infidte radiru, for the existeirce of

self-similar boundry-layer flow. Thc proposed retarded shdnking wall

velocity (WQ,t) = # conribrutes to est6lish a retarded bourdry-layer and enrbles

mc b figue out sonrc meaniagful solution with the prrovision of mass sqctio

7 .2.1 lvlnthemeticd formuletion

For the mathcmatical modcliag of the prroblem of unstcady shrinking disk flow,

almost all assumpions ut analogous as narat€d in the case of unsEady stretching disk

(w 6.2), &rc to whie,h the equation of continuity as well as the equatim of motion

rmain the same as refcrr€d in Eq. (5.1) & F4. (6.2). Thercforc, ther€ is no need to

r€,prdttr,€ them, herein- The only differc,nce is the choice of shrinking wall velocity of the
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form r+(at) = -#, which modifies thc similarity trnsformatio4 given h Eq. (G.5),

as under:

lE 7.4=,1;ffi2, u=#f'o), @td *=rffif (tD. (7.s)

Eq. (7.5), obviously sdisfies the continuity equation (Eq. (6.r)), identically, and iE

utilization converts the equation of motion @. (6.2) and tho associatcd borrndary

cmditios b the foltowing fom:

f"' =2ff"-f2 + F(f'+x f\,
f'(O) = t, f(0) = S, f'(o) = O,

Q.6)

0.7)

cfdagfflzo the accelqatcd md decclematcd cascs, rcspectively. Further, by choosing

F = -L, the govenring F4. (7.6) yrelds the Eq. t.52 ftaned by Mehmood [56] for

unstcady shrinking disk Furthcrmore, fc the above mentimed self-similu syste,m, the

normal wall velocity must be of the fomr wr(r, 
"1= fuand its dime,nsionless form

reads as fi=*tov.$. A cmparison of the two equations, namely F4. 0.6) and F4. (d.6)

r€flects that both are the samc havi4g oppositc scalar coefficicn$. Moreovcr, F4. e.6)

rcsembles to Eq. (3.14) by a lot involviqg a littlc differcncc in its constant coefficient.

Thcrreforc, a[ such prroblcms ue differrent fiom each other and have bcen given attentiorl

seerAety.
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Teble 7.2: Numcrical wlues of S, for sme selected values of the parmctcr p.

B s- f SoL f SoL
-1.0 -,^3468a6407 -1.1532 -1_1532
-2.O -1.3552841G' -0.7659 -0.7659
-3.0 -t-?741027422 -0.3812 -0.3812
-4.0 -1.3879697533 0.0000 0.0000

-5.0 -1.-39594577iJ67 0.3779 0.3779

Teble 73: Numerical vahres of p" for sme setcctd valucs of suction parameter S.

s B. rs0l; tr SoL
-1.35 -1.1'100095 -1.0990 -1.0990
-1.36 -7-ffi71i229 -0.8947 -0.8!,47
-1.38 -3.174917+3 -o.3112 -0.31+2
-1-40 -5.5762158 0.594 0.59't
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7.22 Rerul6 end discusgion

The solution of the govcrning Eq. (7.6), zubject to thc borndary-condition given

in Eq. (7.7), B chalked-out with the aid of an authe,ntic numcrical tccnniErc uscd in

perios chaptcrs. The outromes of thc prres@t study are ditrerent with thc finding

rEeorted (in Chepter O forunstcady sEretching disk in thc scnse that here &rat solutions

ue possible ttndcr thc prro'visim of sufficiqrt wall suction mly, whilc, presc,nce of

injection effec6 play no role in thc cxistcocc of solution. Du€ to such kind of facts, the

c,haract€r of suction parametcr is discussed in vicw of unstcadiness parametcr (p). It is

noticed tlut, under the infhrencc of wall suction, drnl behavior of the solution is sighted

only for rEtardd nahtre of flow p(< 0), while, inspite of uhost efforb, iB accelcrded

soeoario is see unable to contibute torvards dnality of the solution. The numcrical daq

for involved paranreters, obtrinod durirU the couse of present investigations, is presented



in graphical fcm in Figs.7.4-7.t, and also displayed in tabular fomr in Table 7.2-7.4.

Thc coefficie,nt of wall skin-friction, f"(O),is plotE4 agairct S at somc sclected values

of p, in Fi5.7.4, itr zom-in portim can be seen in Fig. 7.5. Frm Fig. 7.4,itis

cleuly observed that thc cxistc,nce of duality is only confincd to retadd flow situation in

the prescnce of suction effccts. Meanwhile, aftcr making pcrsistent attcmp6, it is also

petceivod that thcre is no duality of solution for injoction parameffi as wcll as in the

abscnce of suction effects. Futher, the cxisffice of dual solution, with thc increasiqg

fu of p, is totrlly d4cndEnt upon the prres€nce of suction pranreter and this frct catr

also be visualized in Fip. 7-4-7.5. Thc two solutions arc seen to cmvcrge with the

reduction of suction efu and ultimately an werlapping solution is observed at some

criticEl naluc of S (sce Fig 7.5), whereas these critical values (Sr) have been obtainod

with grcat devotion as well as afterpayiag utnost efforts and are prrese,ntcd in Table 7.2.

Figs. 7.6-7.8 arp dnawn for vuiors vahrcs of S against P d there have becn

experic,nced valuable outcomes. Fig 7.6 is poffiryed b reprresent ttre behaviq of skin-

friction coefrcicnt; conpantivety for smaller values of .S, wherein it is dcpictod that the

intErval of p is expended with the hcrcasi4g effecE of suction paraeffi. Hcre it is also

nod that for a specific/f:td value of S, the gry betc/Ecn both solutions becomcs namrw

and narrow as thc nagnihrde of p reduees and as the process coffinues an werlryping

solution is siglrted. Futunatcly, we wef,€ able to find ort critical poiffi against each

sclected valucs of S, whcrcas the informatio,n obtaincd for thc c:ritical poinE are

einrmcrded in Table 7.3.Hae, it is dso a fact that the conve4gencc of both sohsions, as

nanatcd in Fig. T.6,ispossible for smaller values of S while for the casc of highcr efrccts

of suction paranreter, the meqging situatims of both solutions could not be matcrialized
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suen d the oost of diligcnt atreurpts. The rcasm bchind this frct is the leading rolc of

suction prametcr which e,nables the solution b bc pcrtaind for specific range of

rctuded flow. As the reffided nstrp of thc flow exceeds fro,m a ccrtain limit (i.c., for

highcr vzlucs of p) the solution disappcars, acpomAingty. Tte critical vzlucs rEporEd in

Table 7.3 to clearly dcscribc the range fc which the solution is available. To see the

efrects of highcr values of S, for deoclcmatcdhooelcrated flow, Figs. 7.7-7.8 are plotEd,

whcrcin almost similr featres havc bccn noticcd as observed in Fig. 7.6. Howcvcr,

some othcr intcresting infonnation abortr fte cxistencehonqistence of solution is atso

expericnced. Fu exarylc, it is dcpictcd that the dominant chractcr of suction parameter

rcsults in the vanishing of second solution we,n for smallcr valucs of p. This is thc

Fimary difference betrvecu the resultr rceortd fm smaller valucs of S (Fig. 7.6) and

onEomcs fiErtr€d out for larger nahres of S (Fi$. 7.7-7.8).It is alrcady describd in

Table 7.4,frrfr, for small valucs of S (i.e., S = -1.40, -1.38, -L.36,-1.35) thc solution

is possiblc for all F < O,howevcr the solrtion sbrts decaying for furthcr highcr values of

S. From Table 7.4,it is noticed that at.S = -1.50, the sccond solution disappears in the

inten/al -L < P ( 0, howevcr, thc first solution is secn for some positive vrlrrcs of p. It

is worth noting aspect that for thc rctarded naturE of flow, the presence of dual solutions

is linlcd with thc prrovision of some extcrnal agcnts, i.e., suction/injection, pre$ure-

gradient or surfacc qrrvrtur€ etc. In the present analJris, the suctim psranctcr plsys a

supporti4g role in the cxistmce of dual solutions.

The behavior of velocity profile undcr the influence of S and p is preseirtcd in

Figs.7.9-7.1O wherein it is we[ noticd that the boundary-layer thickness reduces, in

casc of first solution, with thc increasing effects of suction. lVhertas, unsteadiness
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prameter crcrE almost insignificmt afrects hqein. Such kind of inforrration is agr€cd

wift the alrcady rcpoft€d findingp. Compantively, to thc first branch of solutim, thc

s€cond solution cxperic,nces prrominent ctranges in the borndary-layer charactcr with the

variations of both S ad p.

73 Conclurion

During the qrn€Nil analysis, usEady flow stimulaEd by sudden motion of a

shinking disk is discu$d. The analysis reveals that thc duatity of solution is not an

essc,ntial ftafrrc of shrinkiag surfroe flows. DuftE the course of prresent sMy, it is

noticed that the existence of dual solutions could not be sightcd for alt values of p, wcn

in the pr€seoce of sufficied wall zuction. It is rwealed thEt for the existence of drul

solutions the flow should be of retarded ndurc, otherwise ncithcr the shinking surfrcc

nor the provision of suffici€,nt wall swtion grrararEe for the existence of duality of

solution. The flow phenomcnon undcr consideration, is cdegorizod in nvo phases, i.e.,

the accclerated flow situations (p > 0) and the deccle,lated circunstances (p < 0),

whepas for p = 0, the stcady character of the flow is achiwed. It is clearly assessed that

accelc'lated flow does not play any role in the existence of drul solutions and only a

unique solution is obtaincd und€r the prrovision of sufficient wall suction- On flre other

han4 for the case of retarded flow, dual solutions exist with the assishnce of sufficient

wall suction velocity. Further, undsr the modcrrtc effccts of suction velocrty, the solution

is reported for all value of P < 0, whc,rreas for higher values of suction the domain for

the cxistence of sohilim roduccs to P < -1. On the basis of above discnssion, it has

bccome clear that the retarded nature of flow is the kcy for the existence of duaUnon-

uique solution.
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Chapter 8

Conclusions

The current study malyzed thc sclf-similr boundary-layer flows stimulabd by

continuou sroching/shrinking surftces, particularly to scarch out the cxistence/non-

existcnce of multiple solutions. trlith the appcarance of a ncw conccpt rcgarding the non-

uiquc ndurc of thc shrinldqg surfrce flws, the bpic of multiplicity of solution has

athae'tcd a mmber of rcsearr,hcrs who did their bcst b investigdc the viscors flom for

the possibility of non-rmiquc solrtrion. However, thcre are some misintcrp,retations

dtibtilod b the existc,nce of multiple solutions frrom very first day. That is, possibility of

multiplicity is assumed fq the shrhking surfrce flow rmdcr the provision of sufficieiil

wall suction. That is wty; vcry rare fruitful effo,re were made to search out thc non-

unique solutions for fte cascs of sftrchi4g surhce flows.

The steadyfunsteady aspccts of cominuous shetching and shrinlcing sheet have

becn andyzcq fu thc existcnce/non-existcnce of drul solutims, in the presenoe as well

as abncnce of wall sttction/injectim velocity. For a ste.ady flow duc to a stetchi4g sheet

when the wall velocity follorvs a (nonJincar) power-law form the rmiqucncss and non-

unique'ncss of solution has equally bec,n observcd- The matEr of fact is that such a

stetching shet flow admit a unique solution when thc sffic,hing wall velocity is of

accele,latcd nature and admits multiple solutions when the wall velocity is of dselcrated

ndurc. Definitcly, for thc retrrdcd ndurc of sfttching wall velocity the blowing

boundary-layer is assisEd by thc provision of sufficient amount of wall suction. Besidcs

the stcady flow due b a shetchiqg sheet thc unsteady aspects of thc shetching sheet flow

have also been given a full co,nsideration Inportant infonuation is obtaincd in
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cormection to the fuality of solrtrion The existcnce of non-rmiErc solrtion is cxpcricnced

not mly in the prescnce of wall snction/injcction velocity but is also figuredout in thc

absence of aoy of these. 11 fu egain a rrorth-mcntioning frct frat the duality of solutim

has been sighH fo,r thc dGcel€mited uture of wall vclocrty. The outcmes of the

investigation of stcady/unsEady sffiching shcet flow are exclusive in the context of

wcll-esublishd facE about the existence of multiple solutions in such flows. Earlicr, the

enrrac'teristic of non-rmiqn€nc$! of solution had be€n assumcd to be an integnl put of

thc skinkiag surfacc flows (oaly) undcr the provision of sufficicd wall zuction

Hovrwcr, the ftcts reported in this Ossertatloq with regiard to the stretching surfrcc

flowt, have simply neglcctcd tte well-esbbliEhed rmrcalistic frcm and prutige of

shrinldqg surfacc flowr. Morewer, thc provision of sufficicnt wall suction for thc

q.istEncc of dual solution h8s dso bccn neglec'ted as the dual solutio,ns have bec,n

rcpoftcd for the dceclqaEd flow in the pcsence of suctio,n/injcction as well as in the

absence of these ingrcdients. These frcB clearly indicate ttat thc oocunEnce of dual

solution is jrut becarue of the retrrded nafirc of fre flow.

Accoding b thc rnassive liffiature on the erdity of shrinking srrface flows, the

most attractivc feafires of the shrinldng surhc€ flows arc beliwed b be the existence of

multiplc solutions subject b the provision of adcquate amount of wall suction velocity.

Mucovcr, thc shrinking surface flwr are admitEd to cxhibit more no,n-lincar

phc,lromenon. On this basis the shrinkhg surface flowr had been belicved to be richer in

physics than tlrc sfietchi4g surfroe flowr. This chapter offcrs a rmiquc opportmity to

oomparc the two flows (due to sfietchi4g and shrinkiqg surfaces) in this rcgiud. Sirnilar to

the shctchi4g shcct flow, the steady and unsteady cases of the shinking sheet flow have
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dso bcm inrestigated in full dctail, in this dissc,rtatim.Our analysrs reflects thm thsrc

exisB nothing especid or specific to the shrfurking sheet flow. All thc fcatures, regildiag

the occurrence of &ral solutions, obscrved in the shetching shcct flow have equally becn

obsented in fte shrhldng shect flow. For the shrinking slrcet flow too, the dlrality is

simply reportod bccausc of the dccelcratcd nature of the wall velocity. For the acceleiated

natur€ of the wall vclocity the shrinking sheet flow admits a uniErc solution, similar to

the strctchi4g sheet flow, which has nevcr bccll rcalized. It is a matt€r of frct that neither

fte sffiching shcet flowr had becn investigiatcd for thc cristeirce of dual solutims northe

shittki4g shect flows had beGn investigEtcd for the €xishcc of rmique solution- Ttd is,

in the prodtced litcratue, the bpic of srete,hing sheet flow had always bee,n studied for

thc accclcrded case while the shrinking sheet flow had ahvayc been studied for thc

dcoel€rated casc. Cmscquenfly, non-rmique solutions was assumcd to be the salicnt

feature of the shrinking shcct flow rvtilc 6e shetching shect floy wrs believed to admit a

uniqrc soMon.

Lilre thc plamcr casc of viscors flows due to sffichiqg/skitrking surfroes, their

axisymmefric aspcctr hayc dso well inspiring motivations. In this regard the

stcadyfunsteady cases of the flow due b a st€fichiqg cylinder have becn co,nsidcrod in

dctait. Thc existence of non-rmique solution for the case of tc/odim€nsional sffichi4g

sheet gives a tivial motivation b investigatc fo,r the cxistcnce of &ral solutions in

axisymmefiic case. During this malysisb it is noted that dral solutions arc cxistent in the

prEscDcc of suction/injection velocity. ft is intcrcsting to note that for sfietchiag cylinder

flow (when the wzll vclocity follows aporvcr-law form) fre duslltyhas also been sightcd

in the accelc,lated case. This appratly sGcrtrs to be the oonsequcnoe of the involvemcut
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of suction/injection vclocity and the surfrce transverse curvature prametcr whie,h infact

disffib the flow in a variety of ways. It is thcrcfore reported that the case of stetching

cylindcrrcquircs fifihcr careful analyais in ordcr b dsvclop a complete understanding of

thc associate flow phcno,mc'nm. A is Elso rema*ed that, to frc bcst of our knowledge, thc

casc of no,n-linear sffiching cylindEr has nevEr bee,n inrestigatcd for thc cxisEnce of

duality of solution- Sinilarly, the drulity of solutim has also been sigbtcd for the

usteady sffichiag cylindcr, not only duc to thc prrovisim of wall guctio velocity but

also due to the p,rovision ofwall injection velocity, and more inercstiagly, in thc absence

of these two.

Similar to the casc of sfietching cylinder flow, duality has also been captured for

the shrinking cylindcr flow. Dtul solutio,ns have been observed fo,rthe dccelcmatcd naturc

of wall velocity in the sEady and unsEady cases. Ovcmall, duality of solution has bccn

observed in the pmescnoe of unll nrctio,n/injcctim and evcn in the abscnce of these two.

MotEovcr, the involvc,rucnt of surfroe hansverse crnvature paranctcr also plays an

inffi€sti4g role regarding the mnipuhtion of flow in viery of the nm-uniqucness of

solution. Thru in this case too, it has beco rn.dc cvidcnt that the duality of solrtion is not

a uniEre fcaturc of the shrinkiag surfroe flows. Morcwer, thc drulity of sohtion is not

simply connec"tod to the provisim of sufficicnt wall suction rather it ean also bc sighted

for othcr socnarios, such as in tre pr€scnce of mll injection or eygn in thc abse,nce of

wall suction or injection vclocity.

thc axisymmefiic sufrces arc oornposed of cylin&icEl and disk geometries,

whereby the involvement of surfrce crnvztrp has dminant chanctcr in flw situations

causd by the motion of continuors nwing GmcnirU/strinting) cylind€r. The disk
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$rfrow, howcyer, ue frree frrom the influencc of surfrcc olvaturc, thorgh cxhibitiag an

axisymmctic flow. The flow phcnome,non carued by the continuoru motion of steady

and usteady sfrctchiqg disk has dso becn investigaEd for the possibility of drul

solutions. In thc stcady cases of stetchiag or shrinking disk, awilability of sccond

solutim has bcen witncssd for the rctardcd nafir€ of the wall vclocity. In these cascs the

solution can simply be recovercd from thc corresponding cases of twodimcnsional

sfietchi4g or shrinking shect flow. In thc rmsEady case of stetching or shinking disk

flow, dual solufios hrve also been figured out In the unsteady case thcre appearod no

possibility ofrccweriag thc solution frrom the con€sponding twodime,nsional flow. In all

these cases the fundamental reasm for tbc cxistence of a non-rmique solution is the

rfirded nature of thc corresponding boundry-layer flow.

The behavior of solution cunves of unstcady shrinking disk case is Erite different

fiom that of unstcady sfietchiag disk case. Tte dual solutions for shinkiag rlisk flow are

possible fc dcceleratod flow only undcr the prrovision of sufficicnt wall suction amoutrt,

whilc for thc sffic,hing disk flow duality has also bccn captnrod in the p,rescnce of

snction; in the prescnec of wall injectioa and we,n in the abse,ncc of the two.

In this dissertation, three catcguies have, mainly, beqr investigated for the

existcnce of nm-uniEre solution, namcly, ftc steadyAmstcady two-dimensional planner

case; thc twodimeosimal axisymmetric case iuvolving circular cylindcrs; and the two

dincnsio,nal axisymmctic caso of non-rotating disk by considcriag stetching as well as

the shrinking naturc of the disk surfrce. Intcrcstingly, dnslity of solution has cqlufly be€n

witnessed in dl thcse six different flow situations. It is, overall, concludcd that neither thc

existc,nce of non-uniquc solution could be regarded as a uniEre feature of the sbrinking
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surface flows mly, nor it could bc solely attrihfred to the povisim of sufficicnt wall

nrction velocity. The existe,nce of fuality of solution can, howwcr, be afrributd to thc

retaded nfinG of flrc on-goi4g flow ufrich is somctimes EriE a wcak

and is supputed with thc prwision of sufrcie,nt wall suction velocity u duc to the

$rfrc.c tansverse otndurc; aud which is sorrctimes not that weak ad sustains ag3inst

sufficienfly shong vall injection too. In btal thc retardcd boundary-layer is appeared to

be a quitc vulncrablc of pro&rciag a non-rmiquc sohilion. With thcse outcomes it is

crpecrcd that most of thc misconccptions about the exisence of dual solutions fq the

shinting surfrce flom have been cleared, ntrw. In this regard, the current study urd the

datrrqorbdhcr€in ue expectcd to serve as a goodrefcreirec for future sMies.
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