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Preface

Robust regression provides an alternative to least squares regression that works with
less restrictive assumptions. Specifically, it provides much better regression coefficient
estimates when outliers are present in the data. Outliers violate the assumption of
normality of residuals in least squares regression. They tend to misrepresent the least
squares coefficients by having more influence than they deserve. Typically, you would
expect that the weight attached to each observation would be about 1/n in a dataset
with n observations. However, outlying observations may receive a weight of 10, 20,
or even 50 %. This leads to serious distortions in the estimated coefficients. Because of
this distortion, these outliers are difficult to identify since their residuals are much
smaller than they should be. When only one or two independent variables are used,
these outlying points may be visually detected in various scatter plots. However, the
complexity added by additional independent variables often hides the outliers from
view in scatter plots. Robust regression down-weights the influence of outliers. This
makes residuals of outlying observations larger and easier to spot. Robust regression is
an iterative procedure that seeks to identify outliers and minimize their impact on the
coefficient estimates. Randomized response technique (RRT) allows respondents to
mark their actual response by giving a scrambled response which makes the researcher
at later to unscramble at an aggregate level but not at an individual level. In this thesis,
we focus on generalized quantitative scrambled response methods and some
generalized ratio-type estimators, which have been proposed for a finite population
mean of a sensitive variable based on RRT by using sensitive auxiliary variable. These
estimators have been proposed under different sampling designs, such as simple
random sampling, stratified random sampling, systematic random sampling and two

phase sampling.



Chapter 1 is the introductory chapter in which detailed explanations of robust
regression tools is provided. Furthermore, we also discussed the concept of simple
random sampling, stratified random sampling, systematic sampling and two phase
sampling,

Chapter 2 presents the theoretical study of proposed robust regression estimators for
sensitive study variable. The proposed robust regression estimators require less
supplementary information as compared to robust ratio type estimators. The mean
square error (MSE) equation for the estimators are also obtained. The superiority of the
proposed class has been evaluated by simulation study utilizing both theoretically and
empirically. One real and one artificial population is utilized for this purpose. The
proposed class is recommended for survey practitioners as it strength expand the
probabilities of getting increasingly efficient results of unknown population mean of
sensitive study variable.

The results of this chapter are published in Communications in Statistics-Theory and
Methods. DOI: 10.1080/0 3610926.2019.1645857.

Chapter 3 proposes two classes of estimators whenever data is contaminated with
outliers under systematic random sampling scheme. At first we develop ratio type
estimators based on robust regression tools. Secondly, we develop regression type
estimator based on regression tools. It is seen that proposed estimator perform better as
compare to ratio estimators. The results of this chapter are published in Fresenius
Environmental Bulletin (FEB).

Chapter 4 Delivers a class of robust- regression type estimators for mean estimation
under simple random sampling and two- stage sampling schemes when quantitative
supplementary information is available. We also find MSE and minimum MSE

expressions of the proposed class. The proposed class of estimators has been compared

vi



with prevailing ones. Based on empirical and theoretical percentage relative efficiency
(PRE) results, it is clear that the proposed class perform better as compared to
traditional mean estimator, traditional regression estimator.

The results of this chapter are published in, The Electronic journal of Applied
Statistical Analysis (EJASA).

Chapter § is based on the information related to two auxiliary variables. A novel class
of robust regression estimators for mean estimation is suggested. The proposed
estimators are an extension of Abid et al. (2018) work and rely on robust regression
tools. Three real life data sets in the presence of outliers have been considered in the
numerical illustration. It is observed that the values of the PRE of the proposed
estimators are much higher than those for the existing estimators.

The results of this chapter are submitted for publication in Journal titled PLOS ONE.

Chapter 6 focuses on modifying the combination of combined ratio and product
estimators to estimate the population mean under stratified sampling scheme. For this
purpose, different new estimators are proposed and compared with the existing
estimators in stratified random sampling. Numerical results of the suggested and
existing estimators are based on the MSE. All results indicate that the mean square error
of the suggested modified estimators is lower than the MSE of existing estimators.
Therefore, the suggested modified estimators are the better and more efficient
estimators as compared to the existing ones. The results of this chapter are published in

The Journal of Science and Arts (JOSA).
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Chapter 1

Introduction

1.1 Background

We are living in an “information era”. By using this term, we need not only the
sufficient information but also speedy work of data collection. So, the question is this,
if we need information on urgent basis, then how it possible that our collected
information is accurate? Also that gathered information is also useful for the future
decision-making processes. We are facing these types of challenges on daily basis, e.g.
government tasks, business decisions, clinical investigations, etc. This is not surprising
for us that how minimal information, can be useful for these tasks. For all these required
information, sampling is the core field in research literature. For instance, the European
Union Labor Force Survey (EULFS) provides the labor strength on quarterly basis,
which conducted by Euro stat, to understand the market share behavior, the Profiling
Segment Survey (PSS), provides us very relevant information. Also, to assess the level
of anxiety, the National Co-morbidity Survey (NCS) gives very useful information.
Finally the main objective of the sampling is to estimate the prevalence features of the

population parameters.

Most of the time information about a study variable is difficult to collect but it can be
with the help of another correlated variable (supplementary information). In statistical
language, the additional or extra information, which is used for more efficient results
of the study variable, usually called auxiliary variable. The early evidence to use an
auxiliary variable as a helper variable, for more information, someone can consult to
Lohr (1999), where he discussed how Laplace used auxiliary variable to estimate the
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total population of France in 18" century. Specifically, Laplace stated that how one can

determine the total population of great empire by just maintaining the birth record.

Wright (1928) provided us another interesting example that how can we used the
auxiliary variable to estimate the import tariff of butter with vegetable oils, whereas
dairy area used as auxiliary information in United states. Some time, we have very low
information about study variable and then in this situation, King et al. (2007) suggested
that how an auxiliary information can be helpful in the analysis of aggregate data. In
survey sampling, the mean estimation is the prime concerns and this can be improved
by using auxiliary information’s, see, for example, Koyuncu and Kadilar (2009);

Koyuncu (2012); Shahzad et al. (2019) and Hanif and Shahzad (2019).

In survey sampling, the outliers are frequently occurred and create problem to estimate
the population parameters, especially in highly skewed economic populations. For
simplicity, we can define the outliers as those sampling units which have large
deviations from their respective expectations. If there are outliers in the data, then they
can be misleading from the true estimates. For example, one or more sample
observation can be contributed a large proportion to estimate total population. The
presence of outlier even mild outlier can be de- track the original population total
estimates. Hence for ultimate estimates, someone can use some robust based
approaches to control the estimates which effected due to outliers. In classical multiple
regression analysis, the ordinary least square (OLS) estimates are best one basic
assumption are fulfilled. On the other hand, when one or more assumptions are not
fulfilled then OLS estimates are not usually accurate. Especially, the normality
assumption can be violates in the presence of outliers. In general, the results are affected

when outliers involved in the study variable or in the auxiliary variables. In the present
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study, we will also discuss that how handle the outliers throughout the estimation of

mean.
1.2 Sensitive variables

In simple words, the sensitive survey is the survey where the respondent feels unsecure
to provide his/her information. This types of survey, usually comes across the social,
personal and health related phenomena. For example, if we put a question to a student
about his/her marks based on cheating? Similarly, survey related to drug uses, abortions

and assaulting someone are also sensitive in nature.

There are survey studies in literature that response rate is between 40 to 50 percent can
be considered as an excellent output. Someone can consult to some of the related
studies, such as, Fan and Yan (2010) and Miller and Diliman (2011). But if few or more
sensitive questions are the part of the survey questions, then it is really difficult to get

responses from the respondent.

In literature, there are a lot of approaches have been used to deal with the problem of
non-response or false-response. Here, researchers are just happy when they have a non-
response than a false-response. Reynolds (1982) suggested 13-points based SDB scale
to quantify the strength about the response by respondent. This score is very much
important to use for group comparisons. One of the well-known approach is also used
with the help of psychologists i.e Bogus pipeline (BPL). Sigall (1971) reviewed about
BPL, i.e. a fake lie detector test based on machine, where respondent’s figure touches
on the machine to get information from respondent. This fear complex may be the

source to get accurate information.



Warner (1965) suggested a most scientific approach based on probabilistic phenomena.
This approach is called Randomized Response Techniques (RRT) and we will discuss
it with details in next section. In simple words, these models give enough privacy to the
respondent to overcome the false response rate. On the other hand, a study about
measurement error is still important in the models of RRT, where we need more
accurate confidence intervals for unknown parameters like population mean and

proportion etc.
1.2.1 Randomized response techniques

Randomized response techniques (RRT) build the respondent confidence about his/her
privacy and allow an alternative way to show his/her responses through random

devices. The basic purpose of RRT is to mask the respondent with responses.

For personal or sensitive questions, it is difficult or even impossible to take response
from the respondent. For this type of survey, some time, and the respondent do not feel
to response or if by force take his/her response, then proportion of false responses may
be increases. Initially, Warner (1965) proposed this RRT in a very simple but in
meaningful way and after that there a lot variants in literature. Some of them are:
Greenberg et al. (1971); Gupta et al. (2006, 2010) and Huang et al. (2010), etc.
Basically, the RRT model was based on binary response phenomena. It was done by
directly asking a question to a randomly selected person. Few respondents are asked
‘did you put on a wrong income tax return in previous year?’ In this scenario, the
researcher does not judge that which reply come from which respondent, because of
scrambled or randomized base responses. For compiling, all these responses can be

unscrambled as a whole but not at individual level. Hence, one can easily estimate that



how much proportion of the tax payers involved with accurate taxes during the last year

without knowing their identities.

In literature, there are many versions of RRT but we can easily differentiate it into two
major branches, such as, quantitative and qualitative. In qualitative response, we need
to collect the information based on binary responses or simply estimate the proportion
for some specific behaviors. For example, we want to estimate the proportion of the
people, who drink coffee today. For this, we put two questions to the respondent based

on RRT phenomena.

The quantitative response models are being used to tackle the expected value for some
population’s behavior. They are mostly divided into two major Classes: additive and
multiplicative models. For example, the standard deck of cards can be used to estimate
“daily consumption for average number of cups of the coffee”. For this response the
respondent pick a card randomly and provide his/her response by using the sum of card
value based on additive models and use product of card value for his/her response based
on multiplicative models. In this research, we only focus quantitative response based
randomized response models. For how can use multiplicative scrambling models,

someone can consult to Eichhorn and Hayre (1983).
1.3 Simple random sampling

The simplest design in probability sampling designs is simple random sampling where
all units have equal probability for selection. In this procedure, the sample may be
drawn in two different ways: simple random sampling with replacement (SRSWR) and
simple random sampling without replacement (SRSWOR). In SRSWR, a sample with
unis of n be chosen from the target population one by one and the selected unit is

replaced before the next trial. In this situation, the probability of drawing any unit in
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any draw is 1 and for a sample of size n will be# . On the other hand, for
. _ 1
SRSWOR, the unit is not being replaced for the next trial and probabilities arcﬁ,

1
for the first, second and 7" draws, respectively etc. Hence, N

1
and (N-r-1)

is the probability to draw a specified unit at any draw 7’:{— is included in the sample. We

will focus on SRSWOR throughout the thesis.
1.3.1 Non-sensitive variable

In a finite population with size N, we draw a sample of size n by using SRSWOR. Let

(y, ,x,) be the selected values from a bi-variate population (Y,.,X ; )

Let S} and S be the variances, C; and C, as coefficient of variation, and p,, be

the coefTicient of correlation for the study variable (¥) and the auxiliary variable (X).
1.3.2 Study variable as sensitive and auxiliary variable as non-sensitive

Suppose, we have a bivariate population where study variable Y is sensitive and
auxiliary variable X is non-sensitive variable with a positive correlation. Let we have
another scrambling variable S , which is also independent with our study and auxiliary
variables. The respondent is asked to reply his/her response through Z =Y + S along

a true response for variable X , see, for example, Gupta et al. (2002).

For this, we can choose a random sample with size » by using SRSWOR from a

population with size N . The observed values are in the form of (y,,x,,z,) whereas,

(v.x ,,Z,) are the true values for the study, auxiliary and scrambled variables. The



population variance of scrambled variable is denoted by S; along coefficient of

variation with C,, .
1.4 Stratified random sampling

The main objective in the problem of estimation is to choose an accurate or reliable
estimator for the population parameter, which is used to keep all the desired features of
the population as well. When all the units in the population are homogenous with
respect to a specific characteristic, then simple random sampling (SRS) yielding a good
estimate to estimate the population, etc. In this situation, the sample by using simple
random sampling is free of non-sampling error. On the other hand, when units are not
homogeneous under a specific study, then SRS gives biased results due to highly non-
sampling error. In this situation, an alternative sampling design, i.e. stratified random
sampling, can be used to avoid the above mentioned review problems due to SRS. The

stratified random sampling is used in the following way:

e First a heterogeneous population is divided into subgroups based on the
homogenous characteristics. The groups are called strata, where the term
stratum is used for a single group.

e In simple words, the units within group are homogenous and heterogeneous
when comparing to other group’s units.

e Each single stratum is used as a separate population and sample can be drawn
by using SRS approach.

The following are the notations, which are used throughout the thesis for stratified

random sampling.

N . Population size
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n,.

No. of strata

Population of 4* stratum, where, £ =1,2,..., L.

Sample size

L
Sample size of h* stratum, where, n =" n,.
h=t

Advantages of stratified sampling:

14.1

. This design is useful when population is heterogeneous.

Stratified sampling is not only helpful to estimate the population parameters but
also estimates the subpopulations.

Most of the cases, the sampling frame is different for the whole population but
after dividing into subpopulation, then it may be available.

For a large population, it is not an easy task to handle it, but after splitting the
population, it can be convenient to handle it.

Non-Sensitive variables

L
Consider again a population of size N and divided this into L strata, where, ZN, =N

h=1

L
. Now, a simple random sample of size n, from stratum 4 and Zn,, =n.Let (y,,, 2 Xy, )

h=]

be the selected pair of values on the behalf of true values of (Y,,,,X ..) where ¥ and

X are the study and auxiliary variables, respectively from the i* unit of the selected

k" stratum.

Also, §7,, Cy, and 8%, C,, are the variances and coefficient of variation of study and

auxiliary variables, respectively and p,,, be the correlation coefficient in 2 stratum.



1.4.2 Study variable as sensitive and auxiliary variable as non-sensitive

If study variable, Y is sensitive but the auxiliary variable, X is non-sensitive and has
strong correlation between them. For RRT, we assume a scrambling random variable
S with known distribution but zero mean. The respondent use an additive scrambled
response to report his/her response for study variable, as Z =Y +.5, but on the other
hand, his/her true response about auxiliary variables is required. Here, we suppose

(Pus*u»2,) are the observed values and (¥..X,.Z,) are the accurate values for

study, auxiliary and scrambled variables, respectively, associated with i unit of the

h* stratum.

Sz, and S§7, are variances, C,, and C,, are coefficients of variations with p,, is
denoted as the coefficient of correlation between scrambled and auxiliary variables in

h™ stratum,
1.5 Systematic random sampling

Systematic sampling is also a type of random sampling. In this approaches, first select
a random unit of the population then after a fixed or periodic interval, the second unit
is selected and so on to complete the required sample size, i.e. n. It can be used when
a low risk of data manipulation. It can also be preferred than SRS when more study area

needed to be covered.

In survey, the systematic sampling is a statistical procedure to select the units from an
ordered sampling frame. The one of the most common method in this approach is

equiprobability approach. In this method, progression through the list is used circularly.

This approach is started with a randomly picked element and then after each K“



clement, select the every next unit as K = N with K as sampling interval, N as
n

population size and n as sample size.

Using this procedure each element in the population has a known and equal probability
of selection. Through this approach, the systematic sampling works exactly similar to
SRS. But actually this is not happened because not the each possible outcome has an

equal probability to of being chosen.

Logically, the systematic random sampling can only be applied when the target
population is homogeneous. Before using this, the researcher should aware about any

pattern because, it happens then he/she should it will not possible to take desired results.
1.6 Two-Phase Sampling

In ratio and regression estimators, someone use the knowledge of auxiliary variable to
estimate the required parameters for the study variable. It is not possible to collect the
information about auxiliary variable, then one of the following two options can be
adopted. One of them is very simple and straight forward select a sample only on the
behalf of study variable and its estimator is used for the population parameter. The other
one can be used when someone has an enough budget to collect the information about

auxiliary variable on large scale and find a good estimator for the auxiliary variable.

The second approach is appropriate when the collected information is not in tabulated
but in file cards only. After a large preliminary sample size n, choose a subsample of
size n from this selected sample to collect the information for study variable. After
this, these two estimates are used to find the population parameter for study variable.
This whole procedure is called double sampling or two-phase sampling. It is useful

when cheap and quick results recorded but a high correlation required between study
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and auxiliary variables. Because of a large sample is required preliminary, the two-

phase sampling is a cost-effective design.
1.7 The robust regression

In general the ordinary least square (OLS) gives optimal estimates in regression
estimation when its basic assumptions are fulfilled. On the other hand, when one or
more assumptions are invalid, then OLS gives poor estimates. To diagnose the
breakdown in assumptions, someone can plot its residuals. The residual diagnostics are
sometime difficult to capture as well as time consuming procedure. The alternative
approach which is less restriction about OLS assumptions is robust regression method.
This approach is provided a better bit in most of the cases when data contain outliers’
even mild cases. One of the simplest approaches to estimate the parameters through
robust methods is the least absolute deviations (LAD). The LAD is less sensitive in the
presence of outliers, but they can put a significant impact in the model. It may lead us

to search more useful robust approaches.

In the mid of 1960s, Huber (1964) provided M-estimation for regression, where M
stands for “maximum likelihood type” estimation. This method is robust in the presence
of outliers in the response variable only but not gives any resistance when outliers are
in explanatory variables. To tackle this problem, in literature several alternative
approaches have been proposed for M-estimation, for example, Rousseeuw and Ryan

(1997, 2008).

Theil (1950) and Sen (1968) proposed a Theil-Sen estimator which is popular and
statistical efficient but has lower breakdown points than least trimmed square (LTS).
Another approach has been proposed in the literature with the name of S-estimation.
By using this approach, someone finds a line on a plane or hyper plane which minimizes

11



the robust estimate of the residuals. It is more likely to resistant in the leverage points
with a robust behavior to tackle the outliers in the response. However, this approach

has been declared as an inefficient in literature.

Another method, which is called MM-estimation carries to retains the robustness and
gaining efficiency of M-estimation, whilst resistance of S-estimation. It proceeds by
gaining a highly robust and resistant S-estimate which minimizes an M-estimate in

residual’s scale. The estimated scale is considered as constant.

The robust regression is an iterative process to tackle the problem with outlier’s data
and reduces their impact in the regression coefficients. The basic objective is to use
robust regression to locate reliable estimators of the parameters when outliers are
present in the data. By using robust techniques, the sum of squared residual, are handled
through some functional observations instead of ordinary approach by using OLS. First
of all, there methods directly apply on data to fit the regression and then locate the
outliers. The robust techniques are required the basic three properties, i.e. efficiency,
breakdown point and bounded influence. Here, the breakdown point is the least fraction
of the outliers to bears the tendency by an estimator. The bounded property provides a
resistance against outliers by the estimator. This gives opportunity to the OLS by

allowing the leverage point to exhibit a great influence.
1.7.1 Least absolute deviation method

The least absolute deviation (LAD) regression was proposed Boschovish (1757), which
is still used as an alternative of least squares approach. LAD was improved by
Edgeworth (1887), which minimizes the sum of absolute error in the following way:

min 3’Je].
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LAD is helpful to decrease the influence of outliers in the prospective of y -variable by

OLS. On the other hand, it can be sensitive to detect outliers from the auxiliary variable.

This is happened because of the low breakdown point of LAD with ratios 1 and
n

1
lim=-=0.
n—-oo N

1.7.2 Least median of squares method

To detect the outliers, another robust approach called least median of squares regression
(LMS) can be used. For more about this approach, someone can consult to Rousseeuw
and Leroy (2005). In general, this method is using the median as error squares instead

of mean as:
min.median(e?).

This method is declared as robust in the presence of outliers in the direction of both Y

and X with 0.5 as a breakdown point see, for example, Rousseeuw and Leory (2005).
1.7.3 Least trimmed square method

In least trimmed squares method (LTS), the square error term is sorted in ascending
order, then sum of the first Z -observations are taken and minimized the following

equation:

minZ(y, 'ﬁn —B‘lxl)z .
1.8 M- Estimators

For the parametric estimation in regression model, Huber (1964) introduced another

estimations approach, i.c. M-estimation. This approach is based on maximum
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likelihood estimate but with efficient performance than OLS. Fox (2002) extended this
estimation technique and suggested an alternative method which is mostly used in
robust regression nowadays. In the presence of outliers or even mild outliers, this
approach gives good estimates of parameters. We can obtain the parametric estimates
by using the minimizing the residual function. Hence, the objective function of M-

estimate can be written as;
By = min Xic1P (Yl - zf=1 x:!jﬂi) 1.0

The above function gives a system of normal equations which is required to be solved.
For solving this system, someone can differentiate this normal equation by using partial
derivatives with equating them to zero. The following is the final form of this estimation

technique:
Bu = (x'wX)~ (x'wY), (1.2)
where, w is the matrix having diagonal values of the weight matrix.

1.8.1 Huber-M estimation function

The class of M-estimation was suggested Huber (1973). Which is based on any function
of outlier rather than the error square? Also, these methods are robust only when outliers

in the direction of y -variable. The objective function of M-estimator is:

minip(e,) ,

=]
which is symmetric.

Huber’s function p can be written as:
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1.8.2 Hample-M estimation function

The Hample- M estimation function was proposed by Hample (1971) and can be

designed as:
(¥
2
2
alyl-y7
py)=1 . "
m(c—y +5(b+c—a)
k%(b+c—a)
where, a = 1.7,

b = 3.4and c =85.

1.8.3 Tukey-M estimation function
It was proposed by Tukey (1977) and can be written in the following way

o) %{l ) [' - (%)H

. IyISK

where, K=5o0orK=6.
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1.9

Objectives of the Study

The main purpose of this study is to develop randomized responsemodels and estimator

population means of sensitive characteristics using non-sensitive auxiliary variables.

The main objectives are:

>

1.10

To develop some new estimators under simple random sampling for estimating
the population characteristic using robust regression tools.

To develop some new estimators under systematic random sampling for
estimating the population characteristic using robust regression tools.

To develop some new estimators under two stage simple and stratified random
sampling scheme for estimating the population characteristics using robust
regression tools.

To assess the merits of proposed class of estimators on behalf of simultaneous
study and real life applications.

To conduct a simulation study for the comprehensive assessment of proposed

estimators,

Literature survey

In literature, a lot of techniques have been developed for the estimation of regression

coefTicients. The most basic and popular method is known as the name of ordinary least

square (OLS) and coined with two well-known researchers, Carl Friedrich Gauss and

Adrien Marie Legendre in the first decade of 1800s. The basic theme to use this

approach is to minimize the sum of squared of errors. Since then because of its

authenticity and explicit nature, it became the only choice in regression analysis for

many decades.
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After using the Gaussian distribution as the error distribution by Guass, it became
optimal with very useful mathematical results. Till to date, the OLS procedure is being
used on popular basis because of ease of its computation. The other method which is
called least absolute deviation (LAD) was proposed by Edgeworth (1887). According
to his views, the errors squared by OLS method have a significant effect on the
parameter estimators, so LAD is better choice in the presence of outliers. In current
literature, the other approaches are being utilized as the alternatives of OLS and LAD
methods. The difficulty to tackle the real-life data and advancement of computer

technologies, researchers are developing some reasonable approaches.

In literature, a lot of methods have been proposed to tackle the problems of outliers.

Huber (2009) suggested a family of regression estimator, i.e. M-estimators with the aim

to minimize: ) p(u, ), whereas p(u,) is some symmetric function of errors.

=1

Rousseeuw (1984) proposed another class of estimators known as least median of
squares (LMS). The LMS is a similar to OLS instead of mean deviation because in this
approach median is used for squared deviation. The LTS has also developed by
Roussecuw (1984), which is used to minimize the h-ordered square residuals with A
is consistent which is essential to be determined. In this all those summation are

included which have largest squared residuals.

For efficiency and high breakdown point Yohai (1987) proposed another approach,
which is called MM-estimation. After almost one and half decade, Gervini and Yohai
(2002) suggested another class of estimators which are called robust and efficient

weighted least squares estimators (REWLSE).
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In recent past, Li et al. (2011) suggested a class of robust techniques which depend on
the regularization in the desired parameters for each response. Their study further
verified that M-estimation is the special case of the suggested approach. In this
prospective, someone can find another estimator in Marona et al. (2006). Another study
related to robust measure through regression analysis is known as, the robust coefficient

of determination, was proposed by Renaud and Victoria-Faser (2010).

A comparison study is available in literature between four robust regression approaches
and OLS method conducted by Alma (2011). The four used methods in Alma (2011)
study were LTS, M-estimate, S-estimate and MM-estimate. In their conclusion
remarks, the S-estimate and MM-estimate perform best with the presence of outliers.
Mohebbi et al. (2007) also compared two robust methods, i.e. Huber M-estimate and
LAD with some nonparametric methods. They concluded that LAD and Huber M-
estimate are suitable in the heavy tailed distribution whereas nonparametric and LAD

regression approaches are the good choice in the presence of skewed data.

Al-Noor and Mohammad (2013) compared some nonparametric techniques with three
robust methods in simple linear regression models. In their study, they suggested that
LAD and M-estimation are good approaches when need to compare with nonparametric

and OLS methods in presence of outliers.

Since the introduction of RRT, a lot of versions have been proposed by several
researchers in both setups, i.e. quantitative and qualitative. Throughout this study, we
focused on the quantitative randomized response models, only. These models are used
to handle the sensitive characteristic by the respondents. These approaches give an

opportunity to provide their responses without showing their identity. They also provide
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a random behavior between asking the question and the individual’s response. In this

context, Warner (1965) provided the following model:
=Y, +(1-p)(1-Y). (1.3)

The quantitative additive version of Warner (1965) for full randomization model! is
specified by Warner (1971). It was completely randomization model with respect to
their responses based on random device with known mean and variance.

Mathematically, in additive model, let Z and Y are used as reported response and

sensitive variables, with both 4, and o are unknown, whereas S is scrambling
variable (independent of Y ) with known true mean u; and known variance o; . The

model is in the following form:
Z=Y+S. (1.4
Taking expectation on both side,

E(Z)=E(Y)+E(S)
= Hy T Hs

(1.5)

By solving equation (1.2), we can obtain the following unbiased estimator of mean as:

Hw =2 — s, (1.6)

The variance is given as,

Var(fiy ) =Var(Z)= Tz
: (1.7)

2
Var (flyy )= T" —=

19



Kumar et al. (2016) provided some ratio type estimators with sin few modifications in
the mean by using non-conventional measures of dispersion, such as Gini’s mean
difference, Downtown’s technique and moments based on probability weights
suggested by Abid et al. (2016). These are with linear combination of skewness and
kurtosis of auxiliary variable. In this study, up to first order of approximation of the
large sample properties are studied for bias and mean squared error. A thoroughly study

of the newly developed estimators along with the comparison with competition as well.

Abid et al. (2016) evaluated conventional measures of location which are commonly
used in the development of ratio estimators. We attempt to use some non-conventional
location measures, for example, Hodges-Lehmann, tri-mean and mid-range of the
auxiliary variable in this study. To improve the efficiency of the newly proposed ratio
estimators for population mean, the coefficient of variation, the correlation coefficient
with the linear combinations of auxiliary variable is also exploited. For this, the
underline assumptions which are also associated with newly developed estimators are

evaluated with the help of bias and MSE.

Subzar et al. (2020) suggested that the robust regression methods for simple random
sampling without replacement (SRSWOR) by using the Boweley’s coefficient of
skewness as supplementary information. For these newly developed estimators, the
authors used the simple OLS, Mallows GM-estimate, Huber-M, SIS GM-estimate and

Schweppes GM-estimate techniques for estimation of population parameters.

In recent past, Shahzad et al. (2021) suggested a quantile-based regression by using
MCD based parametric location measures etc. In their study, they have also provided
the mean squared errors for all the suggested estimators. Other than theory perspective,

we also conduct a simulation study to measure the performance of their new estimators.
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Zaman et al. (2021) improved the Shahzad et al. (2021) estimators by using a lot of new
robust regression approaches. They compared their estimators with the several

competitors’ estimators which are presented in literature.

By the reviewed robust regression coefficients, we will also develop some new
estimators for efficient estimation of population mean. Further, Additive and Bar-Lev

models will be used for the case of sensitive study variable.
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Chapter 2
Robust regression type-estimators for sensitive variables.

2.1 Background

In surveys concerning delicate inquiries, for example, betting, liquor addiction, sexual
conduct, tax avoidance, illicit wage and else, coordinate procedures for gathering data
may prompt talked with individuals to give untruthful or deceptive reactions
(responses). To decrease non-respondents rates and one-sided reactions emerging from
sensitive, humiliating, threatening questions, a few statistical procedures might be
utilized to guarantee interviewee anonymity or, a higher level of certainty. Such
procedures, known as randomized response strategies or techniques, utilize a
randomization gadget, for example, a die or a deck of cards, instead of a true reaction
to gather solid data on sensitive issues. Based upon the result created by the
randomization gadget, the interviewee gives an answer concerning his/her actual status.
Since the questioner is unconscious of the aftereffect of the gadget, the utilization of
these strategies guarantees that respondents can’t be identified based on their answers.
Warner (1965) was the first one who introduced a randomized response method. After
that many authors extend their work such as Pollock and Beck (1976) and Bar-Lev et

al. (2004).

In case of sensitive research, estimation of mean is a major concern in survey studies
and regression estimators utilizing traditional regression coefficient are the most
favored choices for it. Recently, Zaman and Bulut (2018) suggested a new class of
ratio-type estimators for the mean estimation of non-sensitive variable utilizing robust

regression coefTicients. In this Chapter, we have generalized their family of estimators
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to the case where the study variable refers to sensitive issues which produce
measurement errors due to non-responses and/or untruthful reporting. These errors may
be reduced by enhancing respondent cooperation through scrambled response methods
that mask the true value of the sensitive variable. Hence, two scrambled response
models by Pollock and Beck (1976) and Bar-Lev et al. (2004) are discussed for the
purposes of this research. In case of sensitive research, we developed a new family of
robust regression-type estimators. Some estimators belonging to the class are shown
and the mean square errors are determined. Theoretical and empirical illustration is
done through real and artificial data sets for assessing the performance of adapted and

proposed class.

Many authors, such as Koyuncu (2012); Shahzad (2016) and Shahzad et al. (2017) have
developed a family for simple random sampling’s estimators by involving auxiliary
information when study variable is non-sensitive. Similarly, Shahzad et al. (2018) have
studied ratio, exponential and traditional regression estimators for mean estimation
when study variable is sensitive. In case of positive correlation, ratio-type estimators
are suitable for mean estimation. But when outliers are presented in data, these
traditional estimators are not suitable and hence not provide much efficient results.
Keeping this fact in mind, Zaman and Bulut (2018) introduced robust ratio type
estimators for non-sensitive study variable. Taking motivation from their work, we
have generalized their estimators defining a more general class of robust-ratio-type
estimators for the sensitive setup. After that, we also contributed a new family of
robust-regression-type estimators for sensitive setup under simple random sampling

scheme.

The remaining part of this chapter is constructed as follows: In Section 2.2, we have

introduced the basic terminology and generalized Zaman and Bulut (2018) robust-ratio-
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type estimators for the sensitive setup in presence of supplementary information. In
Section 2.3, we have proposed the new family of robust regression-type estimators with
MSE up to first-order of approximation. In Section 2.4, we have discussed the
efficiency of proposed class over the adapted estimators through a real and an artificial
data set. For sensitive setup, Pollock and Beck (1976) and Bar-Lev et al. (2004)
randomized techniques are used. Both, theoretical and empirical illustrations are
performed for assessing the efficiency of proposed class. Conclusion of the whole study

is provided in Section 2.5.
2.2 Generalized family of estimators

In current section, following Zaman and Bulut (2018) we try to define a more general
class of ratio-type-estimators utilizing robust regression methods namely: LAD, LMS,
LTS, Huber-M, Hampel-M, Tukey-M, and Huber-MM for the estimation of population
mean of sensitive study variable Z utilizing supplementary variable X under simple
random sampling scheme. The most popular method for estimating the parameters is
the least squares (LS). One of the simplest robust alternatives to the LS is the least
absolute deviations (LAD) method which was introduced in 1757 by Roger Joseph
Boscovich. Huber-M technique developed by Huber (1964) which was the next step

towards robust regression.

Huber (1973) extended his own work and utilized this technique in regression
modeling, hence a new robust regression estimate developed. The main theme of this
technique is to replace squared error in ordinary least square by o , where p issome
symmetric function. Many authors extended the work of Huber (1973) such as, Hampel
(1971) named as Hampel-M estimate, Tukey (1977) named as Tukey-M estimate and

Yohai (1987) named as Huber-MM estimate. We also utilize TLS, which is known as
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Trimmed Least Squares robust regression method in presence of outliers, introduced

by Rousseeuw and Yohai (1984).

The last robust regression technique included in this study is LMS, which is known as
“Least Median of Squares™ developed by Rousseeuw and Leroy (1987). This method
based on minimization of median of error squares rather than mean of error squares.
For details about all these robust regression methods, readers are referred to Zaman and
Bulut (2018). Utilizing these measures Zaman and Bulut (2018) constructed a class of
estimators when study variable was non-sensitive. Now we are considering Zaman and
Bulut (2018) work for randomized response or sensitive setup. Randomized response
methods are utilized to diminish refusal rates and one-sided reactions to delicate
inquiries. Warner (1965) presented the scrambling device for the extent of a population
portrayed by a delicate/threatening variable, which was based on the issues related to
sex, xenophobia, abortion, drugs etc. The purpose of these devices to get truthful

answers from respondents.

Quantitative randomized response techniques are utilized to estimate different
measures of descriptive statistics such as mean, variance, mode etc., in a population.
However, our study is limited to mean estimation. For instance, the delicate
investigation variable might be the aggregate number of premature births a lady has
had, the normal week after week liquor utilization, yearly income of individuals etc.
These Randomized response methods are categorized as additive or multiplicative
models. In additive model, the scrambling variable S (say) is added in the true response
of respondent. The distribution of S is known such as Normal, Weibull, and Uniform
etc. Similarly, in multiplicative model, the scrambling variable is multiplied with the
true response of respondent. The whole procedure is done for avoiding refusal rates

and getting more truthful responses from respondents. For more details, interested
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readers are referred to, Warner (1971); Pollock and Beck (1976) and Bar-Lav,
Bobovitch and Boukai (2004). So we get here a motivation and extend the work

utilizing robust regression measures for mean estimation in sensitive setup.

We have generalized Zaman and Bulut (2018) class for the case when study variable is

sensitive in nature as

7 _Z+b(X-3)

h = (F.-X.+G) (F;z\_’+G,), for, i=1,2,..,35 (21)

where, b, is slope or regression coefficient, calculated from the above mentioned
robust regression methods. Constants, F, #0 and G, are either (0, 1) or known
characteristics of the population such as, C, , the coefficients of variation, g, (x), the

coefficients of kurtosis from the population having N identifiable units. We can

generate many new estimators using suitable variables ford,, F, and G, as given in

Table (2.1).

Further, (X, Z)are population means, (¥, Z)are their corresponding sample mean from

the finite population with simple random sample. Some members of the family which

are generated from Z,, are presented in Table (2.1).

Lt z+b,(X-%)
"= TFz+G,
Hence,
z, =7,(FX+G). (2.2)

Now we find MSE of Z,, through Taylor series, defined as:
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h(i,'z')=h()_(,2)+|:6h(f’f)]n(J‘r-—)?)+[6h(f’f)] . (2:3)

Here,
h(%,z)=7, and K(X,Z)=7,
7.=". +[6hg'f)]”(f-)-()”[ahgj)]ﬁ(f‘z)’
Femt.= ah‘(;j)]n(f_)—{)+[6hg_;f):|,?z'(i—2)’
e [
. F%+G, o Ex +G, _ =
Y.—r.= 5% (x—X)+ 0% (z—Z).

Now, partially differentiating 1% term w. r.t. X¥ and 2¥term w.r.t. Z .

?,—7,=[ d —b'(E’“G')]"(E-X){_—'—] (z-2). @9

(FE+G) (FE+G)

Now first squaring and then applying expectation. After that putting, Xx—X ,Z7-Z,
and b, = B,. We get MSE of generalized family of estimators in compressed form as

given below:

= I-f
MS'E(Z,A ) =(-n—)[s3 +R,S; +2BR, S: +B'S} ~2R,, S, —2BS=:|. 2.5)
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for, i=1,2,..,35.

Y (z-Z) 3(x - %)
TSN f——'i—N—_l—, are the unbiased variance of Z and X

2
|
0

[ 7
|

respectively.

> (z-2)(x-X)
1

o m , is the covariance between (X,Z).

2.3 Proposed class of robust regression-type estimators

Motivated by Zaman and Bulut (2018) traditional ratio estimators, we propose a new

class of robust regression type estimators for sensitivity issue as:
z, =f+b,()?—f), for, i=12..7. _ (2.6)
The proposed class of estimators require less amount of information except y,,, ¥,

Yu,s Vinys Ve Vo, s @nd Y, . As we know from literature that mean of the sensitive

study variate is unknown so the information of z is collected through sample. Two

scrambled response models:

(i)  The (Pollock and Beck model, 1976), [Z =¥ + 5]
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(i) The (Bar Lev et al. model, 2004), Z = ¥[(1 — P)§ + P] are utilized for collecting
information about scrambled response. Qur proposed class of estimators is based on
simple the ratio (mean per unit) type component. All the seven proposed estimators
rely on M, Tukey-M and Huber-MM methods for i(i = 1,2,...,7), respectively,
adapting Zaman and Bulut (2018). Interested readers may refer to Zaman and Bulut

(2018).

for, i = 1; b,, = Robust-regression coefficient computed from LAD method

for, i = 2; b,

=Robust-regression coefficient computed from LMS method

for, i = 3; b,, =Robust-regression coefficient computed from LTS method

for, i = 4; b,,,, = Robust-regression coefficient computed from Huber-M method
for, i = 5; b,,, =Robust-regression coefficient computed from Hample-M method
for, i = 6; b,, =Robust-regression coefficient computed from Tukey-M method

for,i=7; b,

= Robust-regression coefficient computed from Huber-MM method.

Note that all the notations used in Z,, , already described in previous section. Further,

our new constructed class can be arranged in the framework of Mukhopadhyay (1998).
But we are implementing their frame work in case of sensitivity. Therefore, taking the
benefit of known results with some simple algebra, avoiding tedious or fruitless

calculations, we mention the MSE expressions of the purpose class of estimators, up to

order n”' as:
MSE(Z, )=[V (z)-2BCov(%,2)+ BV ()] Q2.7
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Now substituting,

V(z) =(¥)S,’,

Cov(%,Z)=p,

S.S,

xz9

And get final expression for MSE as follows,

MsE(Z, )= ('-'—f-)[zzcj ~2BXZp CC.+B!X’C!], fori=12,..,7 (28)
' n

where, C, is coefficient of variation, p_ is the coefficients of correlation between X

and Z. In Table (2.2), we present all the members of the proposed class. Note that the
notations of descriptive measures (mean, variance, coefficient of variation etc.)
provided in previous section are based on general frame work. So, in this section, we

are providing the theoretical descriptive measures, keeping the fact in mind that data is

V(f):l;nf-sj.

collected through two randomized methods as mentioned above.

In case of Pollock and Beck (1976) model,

7=Y+8§

S1=52+8?

C, = ,,Sj +8Z




In case of Bar Lev et al. (2004) model,

Z=¥[(1-P)5+P], (2.9)

st =7(C2+1)[(1-P)5* (1+C?)+ P]- 22, (2.10)

—

JY”(C},+l)T(l—P)§’(l+C,’)+P]—Z’
B F[(1-P)5 +P] ’

C

@2.11)

. S,,[(l—P).?-i’L

s [T (C+)[a-P)F(1+C2)+P]-Z* @12)

Note that these, theoretical measures are also valid/applicable for generalized family,

which we construct on the lines of Zaman and Bulut (2018).
2.4 Efficiency comparisons

In current section, regarding the amount of benefits which can be achieved utilizing the
proposed robust-regression estimators, we move towards simulation study. One real

(Pop-1) and one artificial (Pop-2) population is considered for the purpose of this study.
Pop-1 is taken from Singh (2003) p. 1111,

where

X = Amount of non-real estate farm loans during 1977 and,

Y = Amount of real estate farm loans during 1977.

We consider this real population because it contains outliers. The size of population is

N = 100. We take a sample of size n = 20
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Pop-2 contains artificial data adapting Shahzad et al. (2018), having size of population

N = 1000 generated from bivariate normal distributions for (¥,X) with mean vector

(¥,X)=(2,2) and variance-covariance matrix given by Pop-2.

5= [12 3]

3 2|
From both real and artificial populations, X' =6000 samples of size n = 150 are
selected according to SRSWOR and for the k'th sample the estimate §*)of Z (mean
of sensitive study variable) is computed &' =Z, ~Z,,,Zy, —Z,, . for each adapted and
proposed class of estimators, both theoretical and empirical MSEs are obtained.

Following Koyuncu et al. (2014), the scrambling variate, S = N(zero, 0'), where, O is

the standard deviation equal to 10% of the standard deviation of auxiliary variable is

utilized. Note that same scrambling device is used in both, (i) The (Pollock and Beck,
1976) [Z =Y +5]; (ii) The (Bar Lev et al., 2004) [ Z =(1- p)¥S + pY | models. The

steps of simulation by adapting Kadilar, Candan and Cingi (2007) and Abu-Dayyeh et

al. (2003) are as follows:

Step 1: A SRSWOR selected of size n from both data sets.
Step 2: Use the data of above step to find the value of mean.
Step 3: Step (1) and (2) is repeated K = 6000 (say) times.

Step 4: Empirical MSE is computed for each up-to K and then averaged as:

MSE = E_’é;%:-ﬁ

Step 5: Theoretical MSE is computed for each up-to K and then averaged as:
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K
MSE = E'L‘(’%E—(z—‘)z, where z; shows estimated mean of sensitive study variable for

i=1,2,...,K and Z is the population mean. It is worth mentioning that the values of
2; calculated from equation (2.1) and (2.6). Note that Zaman and Bulut (2018) also
followed above mentioned simulation steps for empirical MSE in case of nonsensitive
study variate. However, we have followed these steps for sensitive study variate. For

theoretical MSE (z;) we adapted Koyuncu, Gupta and Sousa (2014) in sensitive setup.

The results of simulation study are provided in Tables (2.3 - 2.5).
2,5 Summary of the chapter

In this chapter, beginning from some recent utilization of robust regression on
design-based sampling from finite populations, we generalize Zaman and Bulut
(2018) family of ratio estimators to the case in which the study variable is thought
to be delicate/ sensitive issue and its values are gathered on survey units by means
of scrambled responses in order to secure respondent protection, improving
participation and diminishing nonresponse rate or potentially untruthful answers.
For this purpose, two scrambled response models namely Pollock and Beck (1976)
and Bar Lev et al. (2004) have been considered for perturbing the appropriate
responses. Also, we develop new robust-regression type estimators(Z-Nl) for
delicate study variable. The proposed new robust-regression type estimators require
less supplementary information as compared to robust-ratio type estimators. The
MSE equation for the new estimators are also obtained. The superiority of the
proposed class has been evaluated by simulation study utilizing both theoretically
and empirically. One real and one artificial population is utilized for this purpose.

The numerical examinations well underline the predominance of the proposed class
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in sensitive setting, at least for the experimental circumstances considered. Thus,

the proposed class is recommended for survey practitioners as it might expand the

odds of getting progressively efficient results of unknown population mean of

sensitive stud

y variable.

Table 2.1: Generalized family of estimators.

Estimators b(') F, G,
N R
Zun Dtea ! C,
Z, R - 15
) il!u - .b(“) - _ﬂz(XE .- S c_:‘__ -
Z e B s C. B, (x)
Z, Dpme 1 0
Z,s, L 1 C,
N RO
Zn Opm A (%) C,
Zibig P C A, _(f)_ -
L, o ! 0
A L 1 C,
j:_._?'_'.'n______ .- b(,,,) ! - P (x)
7, o A (x) c,
- ...?"'15. .- ——- b(f_) —— ____C" —_— _____'_B_z (x_) —
Zbsg (g 1 0
2 ) 1 B
Zus Opm £ (x) C.
Zung Ofpsm) C. B (x)
S L L o
7, Ptvpm I C,
Dispm) I B,(»)
T, Dttpm) B, () C,
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Do) C. B (x)

—_ Ly I M A
Zabsg L 1 0
. By 1 C,
_ Zy e : £ (x)
N O B (x) C,

_ Z by B} o _ G Ak
Zobs, Bekmm) 1 0
N Bitm) I c.
Zuny Dtimn) ! B, (x)
Zo, Dt £, (%) C.
Zanys D(hmn) C, B (x)

Table 2.2: Family member proposed class with MSE's.
Estimators MSE

Zm = E+bl¢d(’?_§)

MSE(ZNI)=(¥)[22C: —ZBIaIXZ—ch\'C: +BI::IJ?2C3]

Zy,=5+b,(X-%)

)z’c2 2B, XZp_C.C. + B, X°C?]

ZN: =Z+b, (X x)

MSE(ZNJ) (1 n )[chz ZBIIJXZPBC C: + Blflx_’zcxz]

MSE(Z,,)= (' -/ J[z’c2 2B, XZp_C.C, + B, X°C?]

D selz)-(ZL V-2, .00, 4 BT

mE(ZN6)=("f )[z c?-28B, XZpo C. +B,i,X’C’]

1&4szz(2,,,)=('—)[zzc2 -28B,.XZpC,C, + B, X*C?]




Table 2.3: MSE Pop-1 (real) and Pop-2 (artificial) using the Additive scrambled

response model,Z= ¥ +§

6 _Pop-1. 6 — -
Theoretical Emplrlcal " Theoretical Emplrlcal
Z 17475.68 22656.98 Z, 0.05428 0.05641
V4 17437.0 22578.42 Z, 0.04882 0.05052
_Zy 17331.95 22366.09 Z, 0.04442 0.04590
Z, 4750.66 22639.92 Z, 0.04365 0.05374
_Zg 17359.14 22420.9 Ze 0.04379 _0.04525
_ Zg 17346.64 22475.48 Z 0.05269 0.05478
Z, 17308.15 22397.43 Z, 0.04768 0.04937
__Zg 17203.62 22186.49 z:a 0.04386 0.04534
Zg 472671 2245853 ____Z_, _ 004326  0.05231
?m 17230.67 2224094 _Z=10_ _0.04337  0.04482
AT 44090.08 60247.65 211 0.05285 0.05493
Z,, 44023.17 60077.99 Z:, 0.04779 0.04948
_Zy3 4384122 59619.16 Zyy 0.04391 0.04539
Zy, _ 1561655 6021081 7, 0.04330 ~0.05245
:,5 4388834  59737.63 Zie 0.04340 0.04486
246 18463.22 24046.42 Zi6 0.05494 0.05710
_Z49 18423.13 23963.99 Z,, 0.04930 0.05101
_Z4p 18314.24 23741.17 Zig 0.04467 0.04615
Z4 4950.638 24028.52 Z 0.04384 0.05435
Z, 18342.42 23798.68 Zy 0.04399 0.04545
Z,4 18284.16 23794.44 Z,, 0.05508 0.05724
Z,, 18244.33 23712.71 Z,, 0.04940 0.05111
_Zp3 18136.12 23491.77 Z,s 0.04473 _0.04621
Z,, 4912.264 23776.69 Z,, 0.04388 0.05447
Zy5 18164.13  23548.8 _ Zys -0.04404 0.94549
Z,6 18173.33 23638.48 Z'-‘L 70.05482 0.05697
_ Zp; _ 18133.66 23557.18 Zy 0.04921 0.05092
2y 18025.88 23337 42 Zyg 0.04463 0.04611
Zy,9 4888 969 _2[2}620.83 Zy,g  0.04381 0.05424
zan 18053.77 23394.14 Zy '0.04396 "0.04541
23 18084.72 23513.79 Zy 0.05483 0.05698
Zs, 18045.17 23432.84 Z,, 0.04921 0.05093
Zas 17937.73 23214.01 Zaa 0.04463 0.04611
_ Za4 4870.598 23496.21 Z,, 004381 0.0 05424
Zys 17965.54 23270.5 Zas 0.04396 0. 04541
_Z.V;_ 4360.634 4158825 g',,_,l 0.04281 0. 04419_ o
Zy, 4365.726 4164.278 Zy, ©0.04293 0.04432
V4 Ns 4400.21 4210.11 Z',v, 0.04292 0.04430
~ Zy, 4342.96 4137.782 Zn, 0.04279 0.04416
Z Ns 4343.464 4138.975 Z_,.,L 0.04270 0.04411
) Z N 4344.361 4140.28 Z',.,‘5 0.04271 0.04410
7,.,J 4345.403 4141.64 Z_Nz 0.04278 0.04418
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Table 2.4: MSE Pop-1 using the Bar-Lev scrambled response model,
Z=(01-P)V5 + ¥P.

6 P=040 4 __P=080
_ Theoretical Empmcal " Theoretical Empmcal
Z4 46645.32 48279.29 7, 4370.54 4681.15
_Z 46638.24 48260.43 Z, 4370.02 4679.27
Zy _ 46619.01 48209.37 Z, __ 4368.62 4674.19
_ Z, 44358.65 482752 Z, 4301.44 4680.75
_Zg _ 46623.98 48222.56 A 4368.99 4675.50
_ Zs 46833.83 48554.47 Zs 4359.23 4649.27
_Z, 46826.56 48534.94 Z, 4358.70 4647.41
_ Zg 46806.79 48482.07 Zy 4357.26 464235
_ Zo  __44339.59 48550.23 Z, 428228 464887
_Zyg 46811.91 48495.72 Zio. 435763 4643.66
_Zy 46574.73 48176.32 Zy 4366.22 4673.710
~Z,;  46567.72  48157.72 Z,, 436571 4671.83
753 4654869  48107.36  Z,; 4364.30 4666.76
Zy_ . 4423131 4817228 Zys 429643 43 467329
y 46553.62 48120.37 Zc 4364.66  4668.07
Zyg_ _ 4636044 _ 478641 _ Z,, 439095 471468
y 46353.69 47846.31 7, 439044 4712.76
_ Zg 46335.36 47798.17 Zig 4389.05 4707.58
_ Zyg 44261.62 47860.23 Z1o 4224.31 4714.26
_Zy 46340.11 47810.61 Zs0 4389.41 4708.92
Z21 47776.56 49933.46 7 4759.06 5263.55
Z2; 47768.51 49910.85 Z, 4758.58 ~5260.98
Z;3 _47746.63 49849.65 Zpa 4757.28 525404
_Za 44850.51 49928.55 Z,s ___ 4609.64 526299
235 ATTS230 4986545 Zs 475762 525583
7,6 46789.23 4848934 Zs 534863 611477
2 4678201 4846995 _ Z,;  _ 5348.18 611115
_Zpp_ 4676235 4841751 7y 5346.94 6101.34
"Zy9 4431951  48485.13 Z5q 5213.2 6113.99
Z30 46767.43 48431.05 70 5347.26 6103.87
_ Za 47540.92 49588.46 Zaq 5321.08 6075.23
_Zx 47533.04 49566.59 Zas 5320.62 6071.65
Za3 47511.64 49507.39 Zaa 5319.39 6061.98
25 44711.00 49583.71 Zs4 5185.11 ___ 6074.45 _
Zss  47517.18 49522.68 Zas 531971 6064.48
Zy, 4415197 4414270  Zy 419660 422401
_Zy,  44203.18 4419544 Zy, 417527 4189.63
Zy, 44136.59 44126.64 Zy, 4191.39 4217.66
_Zy,  44106.86 44094.36 Zy, 4220.15  4251.54
_Zy, 4419477 44590.74 Zy, 4110.23 4168.11
_ Zy,  44189.88 44181.81 Zy, 4217.65 4295.26
Zn, 44181.82 4447131 Zy, 4189.41 4266.29




T_able 2.5: MSE Pop-2 using the Bar-Lev scrambled response model,

= (1—P)¥§ + TP. e
I = § . _P=080__ _
“Theoretical Emplrlcal Theoretical Empmcal
Z, 0.00895 0.00903 Z; 0.03457 0.03447
_Z; 0.00821 0.00822 Z, 0.03098 0.03075
_Z3  0.00764 0.00759 Z, 0.02796 0.02764
Z, 0.00754 0.00866 Z, 0.02741 0.03284
_ Zs 0.00755 0.00750 Z; 0.02752 0.02718
__Zg 0.00894 0.00902 Z 0.03755 0.03749
Zy 0.00821 0.00822 Z, 0.03324 - 0.03302
__?a 0.00763 0.00759 Za 0.02929 0.02898
Zg 000753  0.00865 = Zs  0.02847 0.03555
249 0.00755 0 00749 Z; 0 02864 0.02831
_Z;,  0.00801 0.00803 7, 0. 03152 0.03138
_ 712 _____0.00761 0.00757 Z;;, ____0_9_2_884 0.02858
243 0.00749 0.00746 Zia 0.02697 0.02663
~Z;, 000746 000780  Z,,  0.02677 0.03012
_ Zs5 0. 00745 0.00737 Zis 0.0 02680 L 0 02644 s
Zyy 0. 00905 0.00913 Z6 0.03468 0 _0_3ﬁ§8__
Zy7 0.00828 0.00830 Z,, 0.03107 0.03083
Zig 0.00767 0.00763 Z,g 0.02800  0.02768
Z1 0.00756 0.00875 Z 0.02744 0.03294
Z,9 0.00758 0.00753 Z50 0.02755 0.02722
Zp 0.00911 0.00920 Z,q 0.03451 0.03442
233 0.00833 0.00835 Z5, 0.03095 0.03071
233 0.00770 _0.00766 Zp3 002794  0.02762
2,4 0.00758 0.00881 Z,, 0.02739 0.03279
Zys . 0.00760 0. 0075_§ _Zyz 002750 0.02717
2 0.00902 0.00911 Zy ~0.03455 0.03446
_Z,; 000827  0.00828 Z,, 0.03097  0.03074
Zag 0. 00766 o 0 00762 _ Zyy 0 02795 S 0 02763 o
_ Zag 0. 00756 ~0.00872 Z,g 0. 02741 _ _0_ _03382 82
_Z3p 0.00757 0.00752 Z3 0.02751 0.02718
Za 0.00902 0.00910 Za3y 0.03455 0.03446
Z3; 0.00826 0.00827 Za 0.03097 _0.03074
_Za3 0.00766 0.00762 Z33 0.02795 0. 02763 .
_Z3, __0.00756 0.00872 Z3, 0.02741 0. 0_§_282_
zas 0.00757 0.00752 2:35 0.02751 _0.02718
_ZN;_ _0.00739 _0.00736  Zn,  0.02672 0.02632
___E_N_,_ ____0.00744 0.00731 Zy, 0.02671 0.02630
EN; 0.00737 0.00733 Z_N, 0.02609 0.02634
Ly, _.__000742_____ 0.00735 2y, 002673 _ _ 0.02631
_f Ns 0.00743 0.00734 Zy, 0.02671 0.02624
_Zy, 0.00740 0.00730 ZNG 0.02674 0.02628
) Zy, 0.00741 0.00732 Z N, 0.02675 0.02629
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Tables (2.3 - 2.5) report the MSE for the estimators involved in the empirical and

theoretical illustration, some major observations are highlighted here.

In Table (2.3) all the estimators of proposed class have minimum MSE as compared to
generalized class of estimators. Zy, has the least MSE in population -1 while Zy_has

the least MSE in population-2.

Table (2.4) and Table (2.5) reveal that all the estimators of proposed class have
minimum MSE as compared to generalized class of estimators. Zy , has the least MSE
in population-1 at P = 0.40 while Zy_ has the least MSE in population-1 at P = 0.80.
Similarly, Zy, and Zy, have least MSE with the same values of P in Table (2.5) for

population-2,

According to the simulation results, we observe that in both populations, the new
proposals outer perform as compared to adapted ones. In Bar-Lev model, real data set
(Pop-2), we observe that by increasing P, MSE also increased. However, MSE results
were opposite relative to artificial data set in (Pop-1) on Bar-Lev model. Moreover,
new proposals performing out class as compared to adapted ones. Hence, we say,
according to tabulated results, new proposals are the best ones for estimating Z
because, every adapted estimator utilize the more or same supplementary information

can be less efficient as compare to proposed robust-regression-type estimators.
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Chapter 3
Mean estimation in systematic sampling: robust estimators

3.1 Background

To address the difficulty of accomplishing increasingly precise estimators, one of the
most useful techniques is the mindful utilization of auxiliary information. The
utilization of auxiliary information can be seen in a significant work of wright (1928)
to describe the import levy on margarine and vegetable oil in the United States, where
the normal participation in dairy region was considered as auxiliary information to
appraise the strong harmony sought after and supply of dairy items. Mean estimation is
one of the prime worry in review examining. The mean estimators can be improved by
using helper data (see, e.g., Oral and oral, 2011; Abid et al., 2016; Subzar et al., 2019

and Shahzad et al., 2019).

In this chapter, we initially adapt ratio type estimators by replacing traditional OLS
regression coefficient with their robust alternatives. After that, we propose robust
regression type estimators for the estimation of population mean of the subject variable
utilizing the supplementary information under systematic random sampling scheme by
eliminating ratio part from robust ratio type estimators. We also obtain the MSE
expressions for proposed estimators. The purpose of proposed estimators is to provide

efficient estimate of population mean under systematic random sampling in presence
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of outliers. For this, we perform numerical illustration and find the superior results of

proposed robust regression type estimators over adapted ones.

In literature, such as Kadilar and Cingi (2004); Koyuncu (2012) and Shahzad (2016),
developed a family of estimators, which contains the supplementary information, when
using simple random sampling design. In presence of outliers, these traditional
estimators are not efficient so Kadilar et al. (2007) utilized robust technique namely
Huber-M method for mean estimation. Further, Zaman and Bulut (2019) constructed
some new estimators based on some different robust regression measures. Taking
motivation from these studies, we define Kadilar et al. (2007) and Zaman and Bulut
(2019) under systematic random sampling scheme. After that, we have also defined a

new family of regression estimators based on robust-regression tools.

3.2 Adapted estimators in systematic sampling

In current section, following Zaman and Bulut (2019a) we attempt to characterize a
progressively broad class of ratio type-estimators using robust regression techniques to
be specific: LAD, LMS, LTS, Huber-M, Hampel-M, Tukey-M and Huber-MM for the
estimation of population mean of objective variable Y using supplement, variable X
under systematic random sampling design. The most mainstream technique for
evaluating the parameters is the least squares (LS). One of the most straightforward
vigorous option in contrast to the LS is the least absolute deviations (LAD) technique
which was presented in 1757 by Roger Joseph Boscovich. Huber-M strategy created by
Huber (1964) which was the subsequent stage towards powerful relapse.
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Huber (1973) extended his own work and used this procedure in robust regression. Thus
another vigorous robust regression technique created. The primary concern of this
technique is to squared residual in Ordinary least square by p, where p is some
symmetric f{x). Many researchers extend the idea of Huber (1973) for example. Hampel
(1971) named as Hample-M, estimate. Tukey (1977) named as Tukey-M estimate and

Yohai (1987) named as Huber-MM estimate.

We likewise use TLS, which is known as Trimmed Least Squares robust regression
strategy, presented by Rousseeuw and Yohai (1984). The last robust regression strategy
consider for this study is LMS, which is known as "Least Median of Squares" created
by Rousseeuw and Leroy (1987). This strategy dependent on minimization of median
of residual squares as opposed to mean of residual squares. Kadilar et al. (2007) and
Zaman and Bulut (2019a) utilized these tools and developed ratio type estimators in
simple random sampling. We are adapting their estimators in systematic random

sampling design in upcoming lines.

Taking motivation from Kadilar et al. (2007). We develop the following class of robust

ratio type estimator:

Th;] = y: +bh—r;() —'-x_l)(y),
s G.1)
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_y:+bh-rm(X_i.r) v+G6 {¥
Ty = 2o (T +6.)X)

Y +bh-rrc(’?-‘—x-.r) ¥+G XX
AN

Ty =

_y.r+bh-nc(’?_§:) Y v
T‘t4 - (be‘ + Gc) (GbX + Gt.' XX)'

_?x+bh-m:(2_§.l) Y Y
Th's - (Gti' + Gb) (Gt.'X + Gb XX)'

Let we find MSE of T,,,, Suppose

};; _ y.l +bh—m: (X_fl)
¥ F;lf: +Gl]l -

Hence,
T = }‘;kc (F;l’_": +Gm)-

Now we find MSE of T}, through Taylor series, defined as:

X,

3

R e R T

Vs
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-.-y-.r+bh—m(’\—’—'-x-:)- Fy1+bh—n|:£’\-’-f)-
. F X +G _ F.% +G o
oree| 2G| (g7 B | (5 )
L Ax.7 L dx, ¥

Now differentiating both terms w. r. t X, and ¥, respectively, squaring and then

applying expectation. After that putting X, - X and 5, -¥ and b,_,,, = B,_,.

MSE(T,, )= (I—;i)[t_l,sj +(Ky, + Bw.,,,)z t.52-2(K,, + B,,,,_,,,)t,;‘s,,] :

)" X

. It
where, ¢, =1+(n-1)r,, t, =1+(n-1)r,, ¢ =\[t—:.Further (2 §?) are the

x

unbiased variances of ()? , ¥ ) and S, in representing covariance (r;,, ry) are the

intra-class correlations of (z\_’ , ¥ ) respectively. Similarly, the MSE of,

MSE(T, )= (——) :t,s; +(Kyp, + By e )2 1,52 -2(K,, +B,,, )t,t‘s,,] ,

MSE(T,, )= (1—_—-) Et},Syz +(Ke, + By e )2 15! -2(K,, +B, . )11, ] .
[tysj +(Ky, + By e )z 1,82 -2(K,, + B,,_m)t,fsxy] ,

[r,sj +(K,, +B, ) 1.5 -2(K, +B, . )t,t's,,],
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FY
K, =—=— for i=j=12,..,5

F, X +G,

« :
Taking motivation from Zaman and Bulut (2019a) we propose the following class of
estimators,

y .r+blad-m.' (X - El) Y i

T, = F X+G, or j=1,2,..,5 3.7
h, (Fﬂf. +Gﬂ) ( Rl ,1) f ] 3.7
T, = AL S )( +G,)  for j=1,2,..5 (3.8)
o rzx +G z)

T, = 2o Ot (X-3 )(F X+G for j=1,2,..,5 (3.9)
b, (E,;x, + G,;) Fx) 73 1 &) ey

T, = 7"’l"""-"*(f"7')(11«" X+G,) for j=1,2..5 (3.10)
zb,, (EME' + GH) 74 j4 ) &y

Q — 5 -
Vs +biaa (X —x,) = :

T, = e F.x, +G or j=1,2,..5 3.11
b5 G}sfx +G,s) ( 15%s ;s) f ] (3.11)

Tb y.|'+bld—m:(X -X )( x +G ) for j— 1,2 5 @3 12)
LT 6 = 4y &)y .
! I _,Gx + 6) l

All the thirty family members of Zaman and Balut (2019a) are provided in Table

3.1).

Note that in Tz, 1 to Tz”: . Where, j =1,2,3,4,5:

b,_,. =Huber regression coefficient,

)} b,;_.. = LAD regression coefficient,
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b,,_,.= LTS regression coefficient,

Its—rrc
by,..-.. = LMS regression coefficient,
by, = Hample regression coefficient.
by, = Tukey regression coefficient,
b, .- = Huber-MM regression coefficient,

G, = CoefTicient of variation,
G, = CoefTicient of variation.

The MSE of T, family as given below:

1,52 +(Ka, + By o) 152 =2(K,y, + B, )t,r's,y] ,

- 1,8, + ( K, +B, . )2 tS?- 2( K, + Bu._m)',f'S.,] ,

1,52 (Ko, + By ) 152 =2(K.y, + By e )t,t's,,,],

LtyS_: (Ko, +Byy ) 157 -2(K, + B,kv_m)t,t'S,y] :

()
)
MsE(z, ) =('_;_) ,534(Kay + B ) 082-2(K 4 B )15, |,
)
()
()

-t)'S.: + (K'-'bl‘ + Blumn—m' )2 thxz -2 (K:bl, + Bllmm-rn.' )txt.sxy] ’
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3.3 Proposed estimators in systematic sampling

Taking motivation from 7, and T, , we define the following class of estimators under

systematic random sampling.
T =¥, +by (X =x1),
Ty, =¥, +by e (X —X:),

TN =I+b’u—m(}_;l)!

TN. =)7.r +blnu-n¢ (}_;')’

T, =y, + (X-%)-

y bhm—m

The MSEs of T, are given below:

MSE(T,)=[¥(3,)-2B, ,..Cov(x:,,) + By V(5]
MSE(T,,) = [V (,)~ 2B,y 1 CoVXs, y,)+ Bla oV (51)],
MSE(T,,)=[V(3,)-2B, .Cov(x:,3,)+ B .. V(x)],
MSE(T,, ) =[V (3,) = 2Bpy i CoV(%s, Y,)+ B V) ]

MSE(T,,) =[¥(3,)~ 2By CoV(x2,,) + Bl ¥ (51) ],

47



MSE(T,,) =[¥(3,) 2B, el Covx0,3,)+ Bl V (30) ]
MSE(Ty,) =[V (3,)~ 2By e CoV(%5,7,) + Bl V(EE,)] .

Now putting the values of ¥(»,), ¥(x.) and Cov(x.,y,), to get finalized MSE

formulas as given below:

MSE(T,, )= (1 ! )[z S2-2B, . trS, +BL, t.5%],
[t S2—2B,, . t'S, +Bay. ,ut,Sf],

MSE

In—rec” x~x

[t,82-2B, 2trs, +B; 18],

[4,82-2B,, . 1S, + B, 1S,

[tSz -2B,_ 1S, +B: tS’]

thy-rcec *x thy—rec”x™ ¢

[4,2-2B,,, . 1S, +B}, .15 ].

n)-(5)
()
MSB(T,, ) =( 2L 1,53 2B S, + Bl 52,
(%)
)
(%)

3.4 Efficiency comparison

In current section, one real (Pop-1) population and one artificial (pop-2) population is

considered for efficiency comparison.

Pop-1 is taken from Murthy (1967), where,
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X = Strip length
Y = Volume of timber

The size of population is N = 176. Note that Murthy (1967) also provided some

values of intra-class correlation i.e. r, =r, =r, (say) with respect to different sample

size as follows:
r,=-0.1510, ,=-0.1106, r,=-0.0522, r,=—0.0435

So in this research we compare the estimators in light of all the above mentioned values.

Pop-2 contains simulation study. Where a random variable X ~ G (2.66, 3.88) where,
G denotes Gamma distribution and random variable Y is defined as
Y, =h + R X,+e€ X*.Here we assume that the variablesg =1.6 ,5 =5, R, =2 and has
normal distribution. The size of population is N=1000. Here, Systematic random
sampling is considered for drawing samples with n = 150. The procedure of drawing
samples replicated Q' =1000 times. After that empirical MSE’s of existing estimators

are calculated as follows:

MSE = Zu0-"
. 2=

All results of MSE related to Pop-1 and Pop-2 available in Tables (3.2 - 3.11). These

results confirm the superiority of proposed estimators over existing ones.
3.5 Summary of the chapter

In this chapter, we propose two classes of estimators whenever data is contaminated
with outliers under systematic random sampling scheme. At first we develop ratio type

estimators based on robust regression tools. Secondly, we develop regression type
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estimator T, based on regression tools. It is seen that T, estimators performing better

as compare to ratio estimators.

Table 3.1: Zaman and Bulut (2019a) adapted estimators.

Estimators b, Fj; G
Trb11 biag—rec 1 0
Tzb21 biag—rec 1 Gp
Twnn  bagre 1 G
. Tzba1 biag—rec Gy Gy
 Tus1 bugree G G
Trb12 blms-rcc 1 0
Tzb22 blms—rcc 1 - Gp
o Tzb3z buns-rec 1 Gc
T1bsez bims-rec Gy Gp
Tzbs2 bims-rcc Gc_ o EC_ -
Trbss blts-rcc 1 0 )
17,;,;3 blts—rcc —]_- Gy o
B Typ33 blts—rcc ) —i ) - —GC- o
T1ba3 blts-rcc Gp Gp
Tsbs3 bies—rec Ge Gc
szu bhpl-rcc 1 0
T Trb2s - bhpl-rcc 1 B Gy
T T:b34 bhpl-rcc 1 GC
T bgere G Gy
T2bss brpi-rec Gc Gc
sz15 btky—rcc 1 0
"i':bzs S _-b;:ky-rcc o I o Gy
T:b35 btky-rcc 1 GC
 Taps Beky—rec G G
T le55 bhmm-rcc -E-(:'_ GC
T1b16 brmm-rec 1 0
Twze  bammree 1 G
Tzb36 brmm~—rec 1 Ge
Tzb46 brmm-—rec Gy Gp
Tznse bigd-rcc Ge Gc
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Table 3.2: MSE of adapted and proposed estimators with =4 and r, =—0.1510 in

Pop-1.

H-M T, T, T, T, T, T,
2613.4910 2406.2492 1646.0025 949.7094 1200.6353 783.1179

LAD T,, T,, T,, Ty, Ty, T,
2558.4698 2354.4593 1608.3463 933.3642 1174.5552 784.7374

LTS T, T, T,, Ty, Ty, T,
2747.9525 2533.0126 1739.0946 992.0309 1266.1487 782.6410

LMS T, T,, T,, T, T,, Ty,
2709.7629 2496.9819 1712.5068 979.6814 1247.2952 782.2941

HPL L. L T, L L., Iy,
2653.2651 2443.7175 1673.3857 961.8858 1219.7581 782.4754

TKY T, T,, T, T,, T, Ty,
2617.3448 2409.8785 1648.6499 950.8762 1202.4784 783.0366

HMM T, T,, T, T, Ty, T,,
2610.7097 2403.6301 1644.0927 948.8691 1199.3064 783.1792

Table 3.3: PRE of adapted and proposed estimators with n=4 and r, =~—0.1510in

Pop-1.

H-M T, T, T, T, L., Iy,
1240161 134.6972 1969103 3412780 269.9529 413.8776

LAD T, T,, T, T, T, T,,
126.6831 137.6600 201.5206 347.2545 275.9469 413.0234

LTS T, T,, Ty, T,, Ty, Ty,
117.9478 127.9563 186.3699 326.7186 255.9849 414.1298

LMS T, T,, T, T, T, Ty,
119.6101 129.8027 189.2634 330.8371 259.8542 414.3134

HPL T, T,, T, T, T,, Ty,
122.1570 132.6319 193.6881 336.9578 265.7207 414.2174

TKY T, T, T, T,, T,, T
123.8335 134.4943 196.5942 340.8592 269.5391  413.9205

HMM T, T,, T, T,. T, T,
124.1482 134.8439 197.1391 341.5802 270.2520 413.8452
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Table 3.4: MSE of adapted and proposed estimators with n =8 and r» =—0.1106 in

Pop-1.
HM T, T, T, T, T, Ty,
526.8760 485.0964 331.8318 191.4601 242.0464 157.8755
LAD Tqu T by, sz,, sz.l Eb,, T, Ny
515.7839 474.6556 324.2403 188.1649 236.7887 158.2019
LTS T, T, T,, Ty, T,, Ty,
553.9833 510.6517 350.5990 199.9920 255.2538 157.7793
IMS T, T,, T,, T,, T,, Ty,
548.6821 505.6498 346.9058 198.2723 252.6326 157.7231
HPL T, T,, T,, Ty, Ty, T,
534.8944 492.6500 337.3522 193.9148 245.9015 157.7459
TKY T, T,, T,, Ty, Ty, Ty,
527.6530 485.8281 332.3655 191.6953 242.4179 157.8591
H-MM T, T,, T,, T, T, Ty,
526.3156 484.5686 331.4469 191.2907 241.7786 157.8878

Table 3.5: PRE of adapted and proposed estimators with » =8 and r, = —0.1106

Pop-1.

HM T, T,, T, T, T, Ty,
124.0161 134.6972 196.9103 341.2780 269.9529 413.8776

LAD T, T, T, T,, T,, T,,
126.6831 137.6600 201.5206 347.2545 275.9469 413.0234

LTS 71, Ty, T,, T, T,, Ty,
117.9478 127.9563 186.3699 326.7186 255.9849 414.1298

IMS T, T,, T,, Ty, Ty, Ty,
119.0874 129.2221 188.3540 329.5524 258.6408 414.2773

HPL T, T,, T,, Ty, Ty, Ty,
122.1570 132.6319 193.6881 336.9578 265.7207 414.2174

TKY T, T,, T,, Ta, Ty, Ty,
123.8335 134.4943 196.5942 340.8592 269.5391 413.9205

HMM T, T,, Ty, Ty, Ty, Ty,
124.1482 134.8439 197.1390 341.5801 270.2518 413.8452
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Table 3.6: MSE of adapted and proposed estimators with n= 16 and r, = —0.0522 in

53

Pop-1.

H-M T;c, Tl:, Txc, Th. T, ke TN,
") 241.11540 221.99570 151.85687 87.61827 110.76819 72.24888

LAD T, T, T,, Ty, Ty, Ty,
236.03926 217.21767 148.38278 86.11029 108.36209 72.39829

LTS 7, T, T, T, T, T,
254.40678 234.52707 161.06400 91.81300 117.25257 72.21828

IMS T, T, T, T,, T, T,
251.75459 232.02425 159.21457 90.94878 115.93831 72.18456

HPL LY L, Ta, L La, Ty,
24478488 22545245 154.38319 88.74164 112.53242 72.18960

TKY T, T,, T,, T, T, Ty,
241.47095 22233053 152.10111 87.72592 110.93823 72.24138

HMM T, T,, T,, Ty T, T,
240.85892 221.75416 151.68075 87.54078 110.64565 72.25453
Table 3.7: PRE of adapted and proposed estimators with » =16 and r, = —0.0522 in

Pop-1.

H-M T, I, T, T, T, T,
124.0161 134.6972 196.9103 341.2780 269.9529 413.8776

© LAD T,, T, T, T, T, T,
126.6831 137.6600 201.5206 347.2545 275.9469 413.0234

LTS T, T,, T, T, T,, T,
117.5369 127.5000 185.6541 325.6858 255.0237 414.0529

LMS T, T, T, T,, T,, T,
118.7752 128.8753 187.8106 328.7805 257.9146 414.2463

HPL Ty, T,, T, T, T, Ty,
122.1570 132.6319 193.6881 336.9578 265.7207 414.2174

TKY T, T,, T,, T, T, Ty,
123.8335 134.4943 196.5942 340.8592 269.5391 413.9205

HMM T, T, T, T, T,, Tu,
124.1482 134.8439 197.1390 341.5801 270.2518 413.8452
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Table 3.8: MSE of adapted and proposed estimators with n =22 and r,, = —0.0435 in

Pop-1.

H-M T“‘l Th‘a T“‘: Th‘a Th‘s TN \
67.27898 61.94396 4237297 24.44832 30.90790 20.15977

LAD La, L, L., La, Ly, U
65.86257 60.61074 41.40358 24.02755 30.23652 20.20146

LTS T, T T T Lo Ty,
7129765 65.73320 45.15867 25.72087 32.87165 20.15675

LMS T, L, Lo, L, L, Iy,
69.75730 64.27969 44.08498 25.21989 32.10906 20.13856

HPL Ly, Ly, T, T L, Iy,
68.30288 62.90851 43.07789 24.76178 31.40018 20.14323

'I‘KY T:bll I;bll I;b.'li 7;b45 T'b!! TN6
67.37818 62.03739 4244112 2447836 30.95535 20.15767

H-MM Ly, T Lo Ly, Lo, Ty,

67.20739 61.87655 42.32381 24.42670 30.87370 20.16135

Table 3.9: PRE of adapted and proposed estimators with n =22 and r,, = —0.0435 in

Pop-1.
H-M Tn. I, key T, ko I, ke, c I, N,
1240161 134.6972 196.9103 341.2780 2699529 4138776
LAD T, T, T, T, T, T,

126.6831 137.6600 201.5206 347.2545 275.9469 413.0234

LTS T-'bu T’bn T"’n T'qu T'bsz TN:

117.0259 126.9324  184.7635 324.3932 253.8259 413.9395

LMS T’l’n T'bn T=5n T'bu T=bs| TN4

119.6101 129.8027 189.2634 330.8371 259.8542 414.3134

HPL T-‘bu T'bu T=bu T”u T”u TNs
122.1570 132.6319 193.6881 336.9578 265.7207 414.2174

TKY T”u T’*zs T'bss T"‘« T'%s TNs
123.8335 134.4943 196.5942 340.8592 269.5391 413.9205

H-MM sz,, Trb,; T=b|s T'bu T="u TN 5

124.1482 134.8439 197.1390 341.5802 270.2519 413.8452
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Table 3.10: MSE of adapted and proposed estimators with simulation (Pop-2).

H-M L, L, L, L, L, I,
0.89621 0.26751 0.05208 0.06416 0.04551 0.04144
LAD T-‘-bn T"’n T'bn T'bu T-'b!l TNz
0.90294 0.27098 0.05284 0.06527 0.04599 0.04139
LTS szu T‘hz T"‘u T"’u Tﬂbsz TN:
0.93925 0.28990 0.05737 0.07163 0.04899 0.04154
LMS T’bn T"‘n T"'n T'bu T-'-bs: TN (]
0.90717 0.27316 0.05334 0.06598 0.04630 0.04137
HPL T:-'bu T"’u T'bu T"’« Tiu TNs
0.88715 0.26286 0.05109 0.06270 0.04490 0.04156
TKY T"‘u Tl”zs Td’n T'bu T”‘ss TN 3
0.88904 0.26383 0.05129 0.06300 0.04502 0.04153
HMM T, L T T Ly, Ty,
0.88950 0.26406 0.05134 0.06307 0.04505 0.04153

Table 3.11: MSE of adapted and proposed estimators with simulation (Pop-2).

HM T, L, L, U L Ty
9.55632 32.01597 164.45267 133.49513 188.20856 206.64838

LAD Tﬁu lezl 7:'5u I;bu T-”’sl TN p
9.48507 31.60608 162.06970 131.22365 186.23868 206.92378

LTS T”’Iz Tﬂn T'-'bu T'bu 7:""5: TN:
9.11847 29.54314 149.29140 119.57253 174.80349 206.17127

IMS 17, T, T, T, T, T,
9.44086 31.35321 160.57213 129.81399 184.97252 207.02929

HPL T, Lo L, La L, Ty,
9.65394 32.58224 167.65079 136.60322 190.76093 206.06869

TKY T’bu leu T’bls T"’u T'b” TN:.
9.63341 32.46272 166.98505 135.95025 190.23857 206.20941

H-MM T’bn T‘bu T’bu T'b-u T'bu TN&
9.62839 3243348 166.82146 135.79030 190.10948 206.24236
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Chapter 4
Robust-regression-type estimators: simple and two-stage

sampling for mean

4.1 Background

Nowadays, a widely utilized phrase that we are living in the age of information.
Utilizing this phrase, we are not just featuring the volume and speed of existing
information yet in addition underlining the need of its exact stream. The later part of
the above comprehension is legitimately connected with the true intention of the urge
of gathering information. The intention is to empower ourselves of absolutely profiling
our environment and in this way supporting the optimal decision making process. In
fulfilling the need of multidisciplinary request interlocking government issues, business
basic leadership, clinical examinations and mental profiling and so on, it is of nothing
unexpected if the sampling theory and method remains at the core of applied research

literature.

One of the most significant goal of practices in sampling stays with the estimation of
mean of study variable. To meet the challenge of achieving more precise estimate of
population mean, ratio method of estimation is the highly praised way utilizing
supplementary information. Laplace in eighteenth century, as an early client/user of
supplementary information in the estimation of total population of France, gave the
method of utilization of supplementary information in an efficient way. Specifically, he
referenced, “The register of births, which are kept with care in order to assure the

condition of the citizens, can serve to determine the population of great empire without
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resorting a census of its inhabitants. Other than that, it is essential to know the ratio of

the population to birth in an annual, see, e.g., Lohr (1999).

Mean is the most basic center of gravity of the data. Ratio and regression methods are
significant tools for the estimation of the population mean. However, the mean
estimation through ratio and regression based estimators are not suitable when outliers
exist in data. Zaman and Bulut (2019a) provided the solution of this issue by utilizing
some robust regression tools and develop a class of ratio type estimators under simple
random sampling scheme. Recently, Zaman (2019), have suggested by extending the

work of Zaman and Bulut (2019a) with a new class of ratio-type estimators.

This chapter proposed a new family of robust regression type estimators applying
robust regression tools (LAD, LMS, LTS, Huber-M, Hampel-M, Tukey-M, and Huber-
MM). The class is subsequently extended for the situation of two stage sampling where
mean of the study variable is not available at first stage. So, we also developed reviewed
and suggested some new estimators under two stage sampling scheme. It is worth
mentioning that we consider two cases under two stage sampling scheme: (a) when
second stage sample depends upon first stage sample and, (b) when second stage sample
is independent of first stage sample. The mean square expressions of the proposed
estimators have been determined through Taylor series method. A real life application
and the simulation study are also provided to assess existing and proposed estimators.
In the light of numerical results, someone can see that proposed findings are more

efficient then existing techniques.

A huge literature is available about ratio and regression-type estimators. For example,
Oral and Oral (2011); Koyuncu (2012); Abid et al. (2016a, 2016b); Shahzad el al.

(2018); Hanif and Shahzad (2019); Bulut and Zaman (2019); Naz et al. (2019) and Irfan
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et al. (2019) have suggested a family of estimators, that contain auxiliary information
under simple random sampling design. For more about ratio estimators see, Jemain et
al. (2008); Al-Omari et al. (2008); Al-Omari et al. (2009); Al-Omari and Jaber (2010);
Al-Omari (2012); Al-Omari and Bouza (2015); Bouza et al. (2017) and Al-Omari and
Al-Nasser (2018). For positive correlation, the ratio estimators perform better for
population mean estimation. For negative correlation, the product estimator is better for
the estimation of population mean. The conventional regression estimator solves the
issue related to the sign (positive/negative) of correlation and provides better results as

compared to the ratio and product type estimators.

Note that conventional regression estimators based on conventional regression
coefTicient, i.c. known as Ordinary Least Square (OLS) regression coefficient. For
example, OLS, but they are inefficient when data contain outliers. To handle this
problem, Kadilar et al. (2007) incorporated Huber-M robust regression technique

instead of OLS.

After that, Zaman and Bulut (2019a) extended the idea of Kadilar et al. (2007) and
developed a class of ratio type estimators, utilizing some other robust regression tools
namely: LAD (Least Absolute Deviations), LMS (Least Median of Squares), LTS
(Least Trimmed Squares), Hampel-M, Tukey-M and Huber-MM. The basic purposes
of LAD and LMS are to minimize error by incorporating absolute residual and squared
median residual, respectively. The squared errors are arranged in LTS method and OLS

is run by utilizing observations based on the first (smallest) z errors.

The purpose of M- estimation is to minimize the q functions with satisfying the
necessary assumption, see, €.g., Zaman and Bulut (2019). There are many ¢ functions

are available in literature see, Huber (1964, 1973); Hampel (1971) and Tukey (1977).
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Finally, Yohai (1987) presented MM robust regression tool which has high statistical
efficiency and breakdown point. For more knowledge about these robust regression
tools, interested readers may refer to Zaman and Bulut (2018) and Ali et al. (2021).
Moreover, Zaman and Bulut (2019) defined another class utilizing robust regression
estimates under stratified random sampling scheme. Zaman (2019) developed another
class of estimators in the same context and achieved the results equivalent to traditional
regression estimator. So in this research, taking inspiration from Zaman and Bulut
(2018) and Zaman (2019), we introduce a new and improved class of robust-regression-
type estimators for the mean estimation when response/study variable contaminated by

outliers.

Outliers are those observations that misleading someone to a wrong track. When these
are present in data, the mean estimation gives inappropriate results. Other than that, the

mean estimation is the most useful choices for estimation purposes. With outliers, the

results adding some wrong information. Hence, for population mean i.e. (17 ), based on
OLS may indicate weak performance. Kadilar et al. (2007) and Zaman and Bulut
(2019a) provided the solution of this issue by incorporating robust regression
coefficients in this context. Robust regression is used when OLS assumptions are
violated. In such circumstances, robust-regression tools such as, LAD, LMS, LTS,
Huber-M, Hampel-M, Tukey-M, Huber-MM provide better results because they give
less weight to outliers. Zaman and Bulut (2019a) introduced the following class of
estimators utilizing robust regression tools for the estimation of mean as given by,

_ y+b(,)(z?—f)

Yo = 1) (X+d),  for i=12,..35 @.1)
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Where, (X,¥) and (¥,7) are population and sample means, respectively after using

simple random sample to select a sample size n. The variances of these unbiased sample

means, (X,¥) areV (X)=0S:,and ¥ (¥)=6S> . Further, c and d take the values from
(0, 1) or any given population information, i.e. C,, the coefficient of variation of X ,
B.(x), the coefficient of kurtosis of X, and b, are the robust regression coefficients.

The family members of y,, are provided in Table (4.1).
MSE of Zaman and Bulut (2019a) family of estimators is given below

MSE(5,,)=6[ S +g7S2 +2Bg,S? + B'S?~2g,5, -2BS, ], for, i=12,..,35

(4.2)

Y
Where, g, —— and, = (1 f ) Further, S? and S? are the unbiased variances
cX +d n y

of Y and X, respectively. Note that y,, —¥., belongs to Kadilar et al., (2007) in Table

(4.1). Zaman (2019) introduced another class of estimators utilizing robust regression

tools for the estimation of mean as follows:

y+hy(X-%) o

(R +d)+ (1-k)2 T *h0(X-%) ¢

V. =z va) (G +d) (X +d),

where, K is a constant such that it provides the minimum MSE(¥;,), the MSE of y,

is as follows:

MSE(y,)=6[ S -258,,+5°S?]. “43)
where, & = [k(B(,) +8,)+(1-k)(B, +5, )]
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Zaman (2019) (& = B)in above MSE expression, and get minimum MSE of ¥, as

follows:
MSE (5, )=6s2(1-p%), (44)

which, is the MSE of traditional regression estimator, i.c. 3, =7 +5, (X -X). The

rest of the chapter is constructed as follows: In Section 4.2, we have proposed a new
class of robust-regression-type estimators. The theoretical mean squared error (MSE)
of proposed class is also derived. Section 4.3 has been dedicated to two stage sampling
scheme. We also provided some proposed estimators by using two-stage sampling
design with their theoretical MSE expressions in Section 4.3.2. Results and discussion
are provided in Section 4.4. The manuscript is ended with some concluding remarks in

Section 4.5.
4.2 Proposed class of robust-regression-type-estimators

Taking motivation from Zaman (2019) and Zaman and Bulut (2019a), we propose

the following class of estimators as given below:
P, =k {7 +b, (X -%)}+k (X -%), for i=12,.7 (45

where, k; and k; are real constants. Further X,y and b have their usual meanings

as defined in Section 4.1. The family members of proposed available in Table (4.2).

To obtain the MSE of equation (4.2), let us define ¥ =(1+1,)Y and ¥ =(1+7,)X

. Utilizing these notations#, (i = 0,1),, we can write:

E(n,)=E(m)=0, E(n})=6C2,E(n?)=6C* and E(nym)=6C,,.
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Now expanding y, in terms of 7, and 7, as:

Vv, =kF {L+n, - Rbn} -k, X,.

¥y, -7 =kF {1+7,~ Rom}- kX, -F. (4.6)

By taking square of equation (4.6), ignoring higher order terms and applying

expectation, the MSE of y, is given below:
MSE(5y, ) =72 + K20 1 + K0y + 2k 5Dy —2kD sy, @.7)

where,

@, =7 [1+6{C2 + R, (R8,C-2C, )} |
®,, =0XC?,

@ =0XT| R, C2-2C,. ],

o, =7

rR=%.

Y

The MSE is minimized when,

klapl =[ (bqu)mv ]’
‘qu’mv _d’zw

k;‘" =[ d)cwd’ou :l’
d’ANq’mv _d’:w

By substituting &™ and &” in equation (4.7), we get minimum MSE of y,, as given

below,
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= \_|v2 (DBN(DzN
MSE_ ( Iy )= [Y "o on | (4.8)

Remarks

* By replacing (k, =1, b, =0, k, =0), Yy becomes unbiased mean estimator.

* Byreplacing (k, =1, b,) =0, k, =0), ¥ becomes regression estimator, and will
be equally important as ¥, or ¥,,.

* Inlight of above two points, we can say that ¥, ¥, and J, , are the special cases
of yy .

4.3 Two stage sampling scheme

At the point whenever the required information about population mean of auxiliary
variable isn’t accessible, one can utilize the two-stage sampling plan in acquiring the
improved estimator as opposed to the past ones. Neyman (1938) was the first one, who
suggested to estimating the parameters for population in two-stage sampling design.
This design is financially understandable and simpler too. Also, it is utilized to get the
information through auxiliary variable efficiently by selecting a greater sample from
the initial or in stage one and a suitable size (comparatively small sample as compare
to first stage) at stage two. Sukhatme (1962) utilized two-stage inspecting devise a
general class of ratio-type estimators. For more details about two- stage sampling,

interested readers may refer to Cochran (1977).

With two-stage sampling design, first we select a sample of size n; at stage-one by

using SRSWOR. After this select another sample of size n, from the selected sample.
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It is worth mentioning that we are considering two cases for second stage sample as

follows:
Case I: The second stage sample of size, n,is a part of the first stage sample of size n,.
Case II: The second stage sample, n, is independent of the first stage sample i.c. n;.

For more details about these cases, interested readers may refer to Zaman and Kadilar

(2019).
4.3.1 Adapted estimators: two stage sampling design

In this section, we have adapted the family of estimators of Kadilar et al. (2007) and

Zaman and Bulut (2019a) for two-stage sampling plan as:

Vv, +b., (X —X
R EREE e ieazas e
2

where, (J?z,?z) denoting the means at stage-two where X, at stage-one. Whereas, ¢
and d are described in preceeding section. The family members of y}, are same as

Y., »available in Table (4.1).

Zaman and Bulut (2019a) have used Taylor series method for h(¥,%)=7¥, and
obtained theoretical MSE. In current section, we are adapting their methodology for

k(7. %,%,) = ¥., and obtaining MSE for case-1 as follows:
MSE(y,, )I =dzd", (4.10)

Where,
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d= [sh(J:;'x"x’)I)_’,X’ Jh(j;”f"f’)w,z\_’ é‘h(yz,x,,x2 I-. _]
V2

d=[1 (g+8) —(g+8)]

V(».) Cov(3.%) Cov(7,.%)
Z=|Cov(%,5) V(x) Cov(%.5)|,
Cov(%,,5,) Cov(x,.%) V(%)

with,

V(:V—z)=7z j’

V(xl) =75,

V(%)=r5S,
Cov(y,,%)=Cov(%,,¥,) =75,
Cov(7,,%,) = Cov(%,,7,)= 7218
Cov(%,%,) = Cov(%,, %) =7S;.

By using the defined notations of the variance with co-variance, we substituting the

values of d in equation (4.9), and get the MSE expressions of Y., for case-I as:

MSE(7, ) =7, +(r,—1.)[ (8. +B) 57~ 2(g,+B)S, | @.11)

To obtain MSE for case-Il, all the notations will remain same except,
Cov(7,,%)=Cov(%,5,)=0 and Cov(%,%,)=Cov(%,,%,)=0. Hence the MSE of

Y., for case-II is given by

MSE(y,, ) I =y,(S? -2(g, +B)S,. )+(g,+B) (n+7,)S’. 4.12)
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As the minimum MSE of Zaman (2019) class of estimators is equal to traditional
regression estimator. So we are considering here traditional regression estimator for

two phase sampling as follows:
o =2 +hy (% -%,). (4.13)

Note that, Pradhan (2005) only provide MSE expressions for ¥, case-Il. So, we

incorporated their MSE expressions for case-II. We also find the MSE expressions for

Fregs case-1. The MSE of ¥, for case-I and case-II respectively, as given below

MSE (7., ) =S2[ 7.~ (r.-7) P ],
MSE (7, )1 =S [ 7, +(r-1) P’ ]

1 1 1 1
Where, y,=| ——— | and y, =| ———|.
4 (n. NJ & ("2 N)

4.3.2 Proposed estimators: two-stage sampling design

(4.14)

In this section, we present a family of estimators by using two-stage sampling design

as under:
W =k {7 +by (B -2 +k(F-%).  for =127 (4.15)

The family members of 7~, is same as Y , available in Table (4.2). To obtain MSE

_5-X _B-X
’77;,- z\_’ and 'Ix,- A_’ .

72:7
Y

for case-1. Let us define 7, =

Utilizing these notations, we can write,

E(ny,) =E(ne,) =0, E(m3,) =703  EMm2)=1C: E(n%)=rCE
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E(ny, Nx,) = ¥1Cyx
with
E(n,n,)=7C..
and
E(n,n,)=rC:.
Now, expending y), in terms of 7's as given below:

Py, =k {7 (1+n,, ) +8,X (1, -n, )} + X (7, -7, ). (4.16)

P =¥ =k {¥ (1+1,, ) +b X (n, -1, )} +k:X (n, -n,)-T.

Taking the expectation after squaring on both sides of eq. (4.12), up to the ordern™,

and we get
MSE(}-’;V. ) =Y+ Ky + K Tay + 2kky Ty — 2Kk Ty, 4.17)
where

T =[P (14 7:C2)+ (2 - 1)y X (B, XC2 -20C, |,
Tan = X (72 _7I)C:’
Tor =7 - 7,))?[170,, —b(,))_(Cf],

=Y

which is minimum for

k% = TanTon
1 = 2 ’
TavTon —Ten
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and

k2°"=|: Ten¥own ]

TnTon —Ton

2
MSE(?&)I=[Y’—E2"—]. (4.18)

T Tav —Tew
To obtain MSE for case-Il, all the notations will remain same except,
E('ly,'lx. ) =0=E ('lx,'lx, ) Hence the MSE of ), for case-Il as given below:
MSE(7, )=T? + 1 oy +I3¥ 5 — 25 ¥, (4.19)
where

¥ =[?z (l+72(";.:)'*'b(“.:)"_’2 (71 +72)C3 —Zb(')ﬁrzc"’]’
BN =1‘_’2(7'z +7|)C32:
You = X[8,X (n+7)C-Tr.C,. |,

=P

&

&

which is minimum for

kﬂﬂ_ ‘PBN\PDN
T W - |
AN * BN CN

and

kzopl =[ lI’cwlpmv ]
lPANlPBN —‘Ptz‘.w

- vy
MSE(7, )=|Y*- BN _ DN ) 4.20
( N') I: \PANlPBN—lP(z.'N:l ( )
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4.4 Numerical illustration

For the assessment of the proposed and existing estimators. We consider a real life

application as Pop.-1 and an artificial population as Pop.-2.

4.4.1 Real life application

In this section, we utilized data set available in Singh (2003 p. 1111). This data set is

recently utilized by Ali et al. (2021) for sensitivity issue by adding scramble response

in it. Here, we are considering this data in absence of sensitivity. As there is a non-

negative correlation exist between the study and auxiliary variates, also, Fig. (4.1) and

Fig. (4.2) present a graphical trends of non-normality data with presenting the outliers,

respectively, by using the robust-regression tools. Results of percentage relative

efficiency (PRE) are provided in Table (4.3). Some major characteristics of the

population are as given below:

X = Amount of non-real estate farm loans during 1977 and

Y = Amount of real estate farm loans during 1977.

=50 Y =555:4345
n=20 S, =584.826
p=0:804 C, =4:617048
m=16 C,=1:235168
=20 C, =1:052916

X =878:1624
S, =1084:678
Bousy = 0:4334034
By = 0:3937749

Bmey) = 0:3396594

By = 0:3484253

Bisom) = 0:4123359
Byupmy = 0:4267937

By = 0:4187815

b(hmm) =0:3480814
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Fig. 4.1: Histogram Pop-1. Fig. 4.2: Scatter Plot Pop-1.

4.4.2 Simulation study

In Section (4.2), an assessment of proposed and existing estimators performed with the
assumption that all the population parameters are known. But in numerous genuine
circumstances, these parameters are mostly obscure and can’t be speculated based on
past information assumption. Subsequently they should be evaluated. In such
circumstances, an additional variability is presented in the evaluations that could invalid
the hypothetical examinations. So in this sub-section, we are paying our attention
regarding the PRE examinations at the point when obscure population parameters are
assessed from the selected sample. For this purpose we are performing Monte Carlo

simulation.

The simulation design is organized as follows: A random variable X -~ (2.6, 3.8) and
random Variable Y, is defined as Y =h+RX +eX’. Here we assume
p=1.6,h=5,R =2 and ¢ has standard normal distribution. We consider the population
of size N=1000. Here, simple random sampling (SRS) is considered for n = 200. The

SRS sampling has been replicated 1000 times. We examine empirical MSE’s of
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S(e-2)
Vs,V a0d  Vy , 88 MSE="—r

. using the results of empirical MSE we

calculate PRE of each estimator, available in Table (4.4).

We consider same simulation design for two stage sampling. A sample of size n; = 200
is selected from (X,; Y,) at first stage and sample of size n; = 160 is selected at second
stage. The Second stage sample is selected differently for case-I and case-II as per
requirement of no-independence and independence with respect to initial stage sample
i.e. ny, respectively. Fig. (4.3) and Fig. (4.4) clearly show the applicability of robust-

regression tools. The results of PRE for case-I and case-II are provided in Table (4.4).

Note that PRE for each estimator is calculated with respect to V(F) as:

52 Yar(7)
PRE(a) v (é) x100. 4.21)
Histogram ofy
m !
9 | [] "
& e -
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Y
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Fig. 4.3: Histogram Pop-2. Fig. 4.4: Scatter Plot Pop-2.
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4.5 Discussion

The results of numerical illustration are provided in Table (4.3) and Table (4.4). Our

findings are highlighted as given below:

® ¥ » has the maximum PRE as compare to all the reviewed ratio type estimators

under SRS and two stage sampling schemes.

® ¥, has the maximum PRE as compare to all the reviewed ratio type estimators
under SRS and first case of two stage sampling schemes. However, y,, is
performing better than the usual regression estimator in case-II of two stage
sampling scheme.

e By ignoring fractional values in proposed class, we observe that all the members of

proposed class are equally important under SRS and first case of two stage sampling
schemes. However for case-1I, ), is performing outclass among the proposed class
of estimators.
e All the estimators of proposed class have maximum PRE over sample mean
estimator, ¥, , ¥, and ¥, under SRS and two stage sampling schemes.
According to the real life application and simulation results, we observed that, the new

proposals out-perform over existing and adapting ones. Which clearly showed the

superiority of proposed class over reviewed estimators?
4.6 Summary of the chapter

We have suggested a family of robust regression-type estimators for mean estimation
under simple random sampling and two stage sampling schemes when quantitative

supplementary information is available, in this chapter. We also find MSE and
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minimum MSE expressions of the proposed class. The proposed class of estimators has
been compared with existing ones. Based on theoretical and empirical PRE results, it is
clear that the proposed class performs better as compare to sample mean estimator,
traditional regression estimator, Zaman (2019) estimators and Zaman and Bulut
(2019a) estimators. Hence, it is recommended to utilize the proposed class of estimators
in real life applications. In future studies, we hope to extend the proposed robust-
regression class of estimators presented in this article to the sensitive issue, in light of

Ali et al. (2021).

_Table 4.1: Reviewed robust ratio type estimators. _

" Tatimator by : i
Vi L 1 0
T, Pt I C,
Zb, b("") 1 - ﬂz-zx)
T, kT B(3) c
i Ot C, B, (%)
Zq, b("") 1 0
N D 1 C.
Vi ) 1 B, (x)
Vo, Ol B (x) C,
 Va, O m C, B(x)
Vs, Duwy 1 o 0o
Vs D 1 C,
N B . B(x)
V. By B(x) ¢
Via, ) C, (%)
Fu. bwm 0
S Bwmy 1 c,
Y, B ! Bk



Vuty Olpom) B (x) C,
L 16
g _ S f""— - _;’f?;;)__ I _: 0
Va, (Apm) 1 C,
S T R
Vs B B.(x) C,
N Dtvom) C, B, ()
Tt O 1 0
Vs, L 1 C,
A by l By (x)
Vi B g(x)  c
R ™ S - Y O I
T by 1 0
Vo, b= 1 C
Y 1 B
Vo, D(honm) B, (x) C.
Van, O(hmm) C. B, (%)
@
L Table 4.2: Family member of proposed class.
SRS b('_) Two stage Sampling
_____Estimators - Estimators
Pu Dy iz o
B I, Do j'-'N, o
P, D Vi,
V. Dinim) I,
P, Dtom) 7,
W ke T ~
- ___.__}_'.".’1 S _-_.I.,("".'__) —_ ____?""z_ ..
>
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Table 4.3: PRE of Population-I.

SRS Two Stage Case-I ____Two Stage Case-II
i PRE F) PRE P PRE
y 100 y 100 y 100
- - =
RE 213271 Yl 2018.69 Vzb STL4
- - -
Va2 2137.66 Y2 2020.54 Y 572.16
- - -
V3 2151.23 Yany 2025.57 Y3 57522
- - -
Vs 8625.92 Yiba 2871.05 Vs 210824
- - -
Yabs 2147.70 Vs 2024.26 Yabs _574.42
- - -
Vs 2464.93 Yabs 2132.02 Yzbs 645.14
- - -t
s 247094 _ Vasn nnsy YW 64647 _
- - -
CYms o __amar Y aimgy Y 650.10
- - -
Yo 9252.26 Vb 2898.26 Yabo 2580.40
= =t -
Yo 28313 Yao 213767 Yo 649.16
- - -
CYmu 240664 Va1 2113.57 Yani 632.26
= =t -
sz 241246 Tz amisaq ___ Van 63355
- - -
Yab13 2428.42 Y13 212053 Yans 637.08
- - -
B 9179.14 Vb4 2895.25 Vi 251599
- - -
_Ywis _ 24u27 Vs 211921 Vs _ 63616
- - -
Yibie 2032.70 Yabie 198027 Vb1 548.39 _
- - -
jZny 3237.34 ny 1982.10 Yy 549.44
- = -
Vs 205005 Y 198709 Yo 552.33
- = =
Vins 8332.40 Vsbio 2857.09 Yabro 2077.35
- - -t
Y 204675 Ymw  wmss0 __ Ywm__ ssiss
= 1959.18 = =
Vbl Va1 1950.56 Vsba1 531.61
o mm e e — e =
_Yun 1963.60 Va2 1952.38 Yoz 532.62
- - -
Y23 1975.68 Va3 1957.34 Yoy 535.38
- = =
You 808492 Yau 284465 Yuou 198731
= = -
Vabas 1972.54 Yuas 1956.05 Yav2s 534.66
- - -
Y Y6 1967.01 Yaw | sem
= - -
Yoz 2004.01 Yun 1968.82 Yo 54185
- - -
Ymas 201693 Vs 1973.80 Vs 54468
= = =
Vi §223.43 Vb9 285171 Vwm 2036.75
- - -
Y 201320 Va0 1972.51 Vb3 543.95
- - -
Vb3 2408.89 Y 211429 Vbt 63276
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- - -
JVen_ uum  en | angae Y 634.05_

- - -
JYsuo _paeq0  Yaw s Yew  enss

- - -—
_ Ywu 9182.23 Vs34 2895.38 Vs 2518.50

= = —

s 22654 Yubs 211993 _ Yubss 63666 _
Va 9420.16 Vs 2905.02 Vree 1977.18

- -t -t

Im 9531.63 Im 3015.69 Im 18565.24
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Chapter §
An extension of robust regression techniques for two
auxiliary variables

5.1 Background

For future development, each community needs careful planning to manage its affairs
efficiently. Successful preparation or planning requires many types of data that are
reasonably accurate. Everything is changing rapidly in this modem environment,
requiring the regular collection of up-to-date information. It is possible to collect data
in two ways, which are a complete survey of the enumeration and a sample survey.
Since data collection is subject to time and cost constraints, regular data collection by
full enumeration is typically not feasible. The only solution then is sample surveys.
Through surveying part of a population as a sample, more effort can be made to gather
more accurate data through hiring by better-trained workers, organization, monitoring,

etc. compared to full details\enumeration, see, Chand (1975).

Abid et al. (2018) have suggested a new family of estimators with utilizing variables in
simple random sampling. Their study shows by involving the non-conventional
location measures for mean estimation provides more efficient results than the
conventional location measures. It is worthy to note that their estimators are based on
generalized versions of regression-type estimators with non-traditional regressions
weight. These estimators provide better results in presence of extreme values. This
study, proposes a new family of estimations by using robust regressions tools. We have
extended the idea by replacing the ordinary least regression coefficient with different
functions of robust regression functions available in the literature. These functions are
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highly robust in presence of extreme values. The general form of the MSE of the
proposed class of estimator is also derived. The real-life data sets related to polio,
taxation, and agriculture have been considered for measuring the efficiency of proposed
estimators over existing ones. We have drawn the scatter plots and box plots for all
these data sets. All these figures have shown that the data sets have the issue of extreme
observations. Hence suitable for existing and proposed estimators. The theoretical

outcomes are being supported by real-life data sets.

In survey sampling, it is regular to make utilization of auxiliary\supplementary
information to acquire enhanced designs and more effective estimators. This
information might be utilized at the planning phase of the study, in the estimation
methodology, or at both stages. The huge amount of sampling literature portrays a
variety of techniques for using supplementary information (see, e.g., Searls, 1964;
Sarndal et al., 1992; Oral, 2011; Koyuncu, 2012; Shahzad et al., 2019 and Irfan et al,,
2018, 2019). At the estimation stage, in many sampling situations of the survey,
estimators of ratio and regression are commonly used when using supplementary
information. These estimators are nearly identical, if relationship between the two
variables (study and auxiliary) is a straight line that moves through the neighborhood
of origin and the study variable's variance is proportional to the auxiliary variable(s).
In practice, traditional ratio estimators are less efficient than regression estimators if
this criterion is not met. In order to address this issue in the survey sampling literature,
substantial research has been carried out to improve ratio estimators by providing
different modified\adjusted ratio type estimators. In addition, if the study variable and
the auxiliary variable(s) have a positive connection, the ratio estimator is used quite
effectively. There are numerous practical instances (medical, biological, economical,

and industrial sectors) when a positive correlation between two or more variables (one
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is the study variable, and the other are auxiliary variables) exists. Some real-life
examples of positive correlation between the study variable and two auxiliary variables
are:

(a) The sale of a particular commodity rises with the increase in the region’s

population and average per capita income.

(b) The productivity of the employee improves with both his previous experience

and his educational or intelligence level.

(c) The human body’s immunity increases from the risk of certain diseases by

following healthy diets and paying attention to fitness, etc.

However, when the information related to two or more supplementary variables
available, a vast amount of literature can be found in Olkin (1958); Raj (1965); Rao and
Mudholkar (1967); Abu-Dayyeh et al. (2003); Lu and Yan (2014) and Abid et al.
(2018). This chapter is based on the class of estimators developed by Abid et al. (2018).
We have made an attempt to extend Abid et al. (2018) work and suggest a new and

improved class of population mean estimators of a study variable.

The rest of the chapter is organized as follows. In Section 5.2 we provide a detail
description of existing estimators, attributed to Abid et al. (2018). In next Section 5.3,
we propose a new class of estimators and show some conceivable estimators having a
place with the class. We show expressions of large sample properties, through mean
square with minimum mean square error. In Section 5.4, to reveal insight into the
productivity of the proposed class, various numerical illustrations are done with
competitive estimators on the premises of real-life data sets. Finally, the conclusion is

given in Section 5.5.
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5.2 Abid et al. (2018) family of estimators
Suppose 2 ={1,2,..,N} is a set of N bivariate units where (x; >0, y; > 0)
representing the objective variable (¥)and the supplementary variable (X),

respectively. Now we choose a sample of size n from the population by using SRSWOR

andlet y = (1 - %) Additionally, let ¥ and X be the means of population for ¥ and X,

n

respectively. The quantity of interest is the unknown population mean ¥. On the other
hand, it is assumed that mean of the supplementary variable X is known. Under the
SRSWOR configuration, Abid et al. (2018) proposed a family of estimators for mean

estimation. Let we introduce this class in generalize form as follows,

Xiayqy + Bm)) ()?zaz(z) + Bz(t))
n=wy —_—1 4w y e —— or = 112l3l ] 516 (5-1)
Ya v (x1¢1(z) + B 2 X2y + B2y f

~

where, (am), By @21y ﬁz(i)) representing known non-conventional and conventional
measures of location of X such as mid-range(MR), Hodges-Lehmann(HL), tri-mean
(TM)and decile-mean (DM), coefficient of variationC,, coefficient of kurtosis f5(x)
and correlation p,,. The sample average of the variable of interest Y denoted by ¥.
Further, X; and X, be the population means of first auxiliary variable and second
auxiliary variable, respectively. Two weights, w; and w, attached for minimizing the
mean square error (MSE) of §,(;). All members of Abid et al. (2018) family provided
sec Table (5.1). The MSE of $,(;) is given by,

MSE(ya(i)) = y?z(c;‘: + wfaizcle + wgogcxzz - zwialpyx1CnyI - zwzazpyxzcycxz
+ zwlwzolosz1xz 611 sz) (5'2)

where, optimum value of w, is:
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02°C%,,+6 CyCx,—010 Cx; Cx,~0 CyC
wj =~ af‘?z{ 1:030':,::;1;9:11:&1::?’ =, (5.3)
By using the condition of weights, w; + w3 = 1.
_ Table 5.1: Family Members of Abid et al. (2018).
270) ay (1) B az() B2
Y1) 1 M.R, 1 M'RE -
Y 1 T.M, :" 1 TM2
e e : H.Ly I HL
_Yuw ! DM, 1 DM
; ?a(S) B2(x,) M.R, Bz (x2) M. kz
?a(o) B2(x,) T.M, pz(xzj T.M;
?a(;)- B2(x;) H.L, B2(x2) H.L,
Va® B2 (x1) D.M, B2(x2) D.M;
] b0 Cx, M.R, Cx, M.R,
Ya(10) Cr, T.M, Cx, T.M,
N Vaq11) Cy, H.L, Cx, H.L,
?a(lZ) Cx, D.M, Cx; D M,
S T T T T T
N _?a(ﬂ) B Pyx, T.M, Pyx, ___I-_ M 2
_ ) _?:(15) Pyx, _ H _I:J_. L Pyx, a H . fz_
Yaaie) Pyx, D.M, Pyx, D.M;

5.3 Proposed families of estimators

In regression analysis, the ordinary least squares (OLS) are the furthermost common

traditional parametric method usually used for estimating model parameters due to its

simplicity of computation and nice property. Agreeing with the theorem of Gauss-

Markov, the OLS estimators are the best linear unbiased estimator. Even so, the OLS

estimators are easily influenced by the existence of unusual observations (outliers) and

will yield inaccurate estimates. The breakdown point of the OLS estimator is zero

which indicates that it affected by only one unusual observation (single outlier). So
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robust methods as alternative method put forward which are not or less affected by such
observations. For more details about robust regression and their tools, see e.g., Huber
(1964, 1973); Hampel et al. (1986); Yohai (1987); Rousseeuw and Leroy (1987); Birkes
and Dodge (1993); Bassett and Saleh (1994); Al-Noor and Mohammad (2013) and Ali
et al. (2021). With robust regression, numerous ratio estimators are introduced, see,
¢.g., Shahzad et al. (2019); Zaman and Bulut (2019a, 2019b); Shahzad and Hanif
(2019); Bulut and Zaman (2019) and Zaman (2019), using single supplementary
variable. So, taking motivation from their work, we propose the following family of
robust regression estimators with two auxiliary variables, through using four robust
estimators that are: the least absolute deviations (LAD) regression, Huber-M (HbM)

Hampel-M (HpM), and Tukey-M (TkY) as given by,

Vo, = [+ byx, (taa)(X1 — 55-1)] + w, [ + by, (taay (X2 — fz)]- (5.4)
Pp, = Wy [7+ By x,(nom) (X1 — )]+ ‘02[7 + by x, (hom) (X2 = %)), (5.5)
7;;, =w [7 + by, pm) (X1 — 771)] + w2[7 + byxz(hpm)()? 2= fz)]- (5.6)
Yo, = 01]F + by (eiy) Ky — £1)] + 02[F + by sy (eiey) (K2 = %2)]. (5.7)

In its general form, the proposed family of estimators can be written as:
Yo, = @1[¥ + byx, 0Ky — %) + w2 [V + by, 9Kz — %)) fori=12,..4 (5.8)

The LAD regression is known to be the first step to achieving robustness towards the
influence of outliers in Y-direction. It proposed and improved respectively by
Boscovich (1757); Edgeworth (1887) and Al-Noor and Mohammad (2013). The aim of

this technique is to provide a robust estimator that minimizes the total of absolute
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residuals. A good method for determining the optimal line among all lines that passing

through a particular data point, say (X, ¥o), described by Birkes and Dodge (1993).

The M-estimators technique was proposed and extended by Huber (1964, 1973) to
achieving robustness towards the influence of outliers in Y-direction. This technique is
based on the idea of putting a non-negative symmetric function of the residuals, say
¢(r), instead of the squared residual in QLS (see, Huber 1964, 1973, 1981; Hampel
1971; and Tukey 1977), among several authors, designed formulae for the objective

function as follows:

Huber-M estimator (HbM) considered the objective function, via v = 4.685 or 6, as,

)= %r,z for|ril <v, 59)
()= v(lril —%v) for|r| >v. .

Hampel-M estimator (HpM) considered the objective function, via. g = 1.7,h = 3.4

and v = 8.5, as,

r%ﬂz- for 0< Inl<g
1
glinl—sn?), for g<|n| <h
¢(r) = 4 ( 3 ) el ) - (5.10)
o @-m?+y(h+v-g), forh<|nl<v
L%(h+v—g). forv< |n).

Tukey-M estimator (TkY) considered the objective function, via v = 4.685 or 6, as,

2 r 233
o) = _‘;[l—{l— 7!)}] forinl =¥ .11)
"T.

for Inl<v

To get MSE, let us express ¥ = (1 +1,)¥, % = (1 +1y)X; and
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X = (1 + r),z)z\—’z. Utilizing these notations n; (i = y, 4, X3), we can write:

E(ny) = E(Mx1) = E(y2) = 0,E(n2) = yC% EMmZy) = vC4H(nZ) =vCh,
E (nyan) = YC;xl  E (nynxz) = YC;xz and E(Nx1Nx2) = ¥Cx,x,- Now expending

§p, in terms of Ny, 7,4 and 7,7 as:

Vo = [0:7(1 + 1)) = byaw&inaa] + [027(1 + 7)) = bya&ania]. ~ (5.12)
By taking expectation after sequring the eq. (5.9), up to the Order n~! , we get:
MSE(3,) = V2 + wid, + w3 + 20,w,8¢ — 20,6p — W, 55, (5.13)
where,

84 = [V2 + y{S2+By x1()(Byx1(ySx1 = 2PSy)Sx1}],

8p = [Y? + y{S; + Byx20)(Byx2(1)Sxz — 2PSy)Sx2}],

JC = [,_’Z + Y{Syz + By.zz(l)py.xZ(i)SySzz - By-xl(l)sxxpy.xl(l)sysxl
+ By x1)Byx2(Pr1.425x1522})»
JD = JE = ,72_

By partially differentiating equation (5.10) w.r.t. w; and w, , we obtained the optimum

values as given by

opt _ |880p—9cds opt __ |06a8e—0clp
“ = [ sa0e-6% | 4 @2 640502 |

opt opt

Substitution of w,"" and w,"" in equation (5.10) provides the minimum MSE of )7,,‘
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a = 8pbp2-2808pb 85°
MSEpmin(5,,) = [yz __B;J_Ji.fw_._.ﬁ.ﬂ_a] 5.14)

5.4 Numerical illustrations

5.4.1 Real life applications
For performance evaluation between proposed and existing estimator, we used three
real-life data sets. The necessary information about the data, which is used for this

study, is given below:

First Population (Pop-1): We consider this data from Cochran (1977). Where, Y is
taken as “Number of placebo children”, X, is taken as “Number of paralytic polio cases
in the inoculated group” and X, is taken as “Number of paralytic polio cases in the not
inoculated group”. Fig. (5.1a) depicts non-normality. Box-plots with Scatter-plots are
in Figures. (5.2(a), 5.3(a) and 5.4(a)), locating the outliers, separately and combine in

Y, X; and X, respectively.

Second Population (Pop-2): We consider the data set of Sarndal et al. (1992). Where,
Yis taken as “P85 i.e. 1985 population in thousands”, X, is taken as “RMTSS i.e.
revenues from 1985 municipal taxation (in millions of kronor)” and X, is taken as
“SS82 i.e. number of Social-Democratic seats in municipal council”. Fig. (5.1b)
displays non-normality. Box-plots with Scatter-plots are in Figures. (5.2(b), 5.3(b) and
5.4(b)), pointing out the outliers, individually and combine in

Y, X, and X, respectively.

Third Population (Pop-3): We consider the data set of Sukhatme and Sukhatme
(1970). Where, Y is taken as “area (acres) under wheat in 1937”, X,is taken as “area
(acres) under wheat in 1936”, and X,is taken as “total cultivated area (acres) in 1931”.
Fig. (5.1¢) displays non-normality. Box-plots and Scatter-plots in Figures. (5.2(c),
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5.3(c) and 5.4(c)), pointing out the presence of outliers, individually and combine in

Y, X; and X respectively.
oto oy Histegram of y Miskogram of y
. = * Ry
if il |
| R-1 '
ok : - ¥ -
o)l j P
) = |E B i
}LE?._:': = oo '-_]-_] - - - : - I_ s py— -
C) (b) (©)
Fig. 5.1: Histogram Pop-1, Pop-2 and Pop-3.
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Fig. 5.2: Box plot Pop-1, Pop-2 and Pop-3.
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Fig. 5.4: Plot (x2, y) Pop-1, Pop-2 and Pop-3.

All the referenced populations, see, Figures. 5.1(a, b, and ¢), are a non-normal
behaviors with the presence of outliers, so these are suitable for non-traditional

measures as shown by Abid et al. (2018), and for the proposed class containing robust



regression tools. All the left characteristics for these three population are given in Table

(5.2).

_ _Table 5.2: Characteristics of Populations.

Char. Pop-1 Pop-2 " Pop3
N .34 284 34
n 10 35 100
I 4923529 2936268 307.2941
L X, 2.588235 245.088 2184118
X, 2.911765 2218662 7653529
€ 11.023331 175586 2176177
€y, 1233278 2433136 _ 0.7678148
- C,, T 71.148006  0.3267727 0.6169129
Pyxs 0.7328235 5 0.9606978 0.4143947
Py 0.6426412 0.4748835 0.3906281
Proxe 0.6837759 0.4007188 0.8307546
 Ba(x) 1.756713 87.74826 0.5274551
_ Ba(xp) 2.950253 0.4405829 0.1002026
M.R, 5.5 3370.5 334
M.R, 7 27 933
 _TMy, 15 13125 16225
T.M, 2.25 21.5 70525
H.L, 2 144.5 190
HL, 2 21.5 ~ 7185
D.M, 2.133333 ' 164.3333 206.4222
D.M, 2.438889 21.76667 7493333
B, (lad) 1.357143 0.1122449 0.9305556
By, (lad) 0.86 1.5 0.2821589
By ., (hbm) 1241429 0.1110843  0.964638
By (hbm) 0.8374021 1836543 0.2892683
By, (hpm) 1301028 0.1207181 0.9888889
B, ., (hpm) 0.848955  1.814633 0.2803501
B, . (tky) 1.509991 0.121492 0.9697517
By, (tky) 0.5862744 11771127 02773134

To indicate the domination of the proposed estimators over the existing estimators, we
have found the percentage relative efficiency (PRE) for the three considered
populations. The results (PRE) of proposed class w.r.t. the numerical findings of Abid
et al. (2018) in Tables (5.3 - 5.5). It is clearly show, the relative efficiency of the
proposed estimators higher than Abid et al. (2018). With the first population, see, Table
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(5.3), the proposed estimators 7’,, ; { = 1,...,4 achieve more efficient and appears 7’,,
to be the best. Also, by examining the PRE values w.r.t. §(,), we find that:

PRE(Jp,) > PRE(%,,) > PRE(%,,) > PRE(%,,).

The proposed estimator ¥, achieve high efficiency with all Yoy and the five largest
value of the efficiency were associated, respectively, with ?8(13) '§-(l) Fae9) »Yaqe) »

and i‘s). In addition, these results of the highest efficiency are stable with other

proposed estimators(%,., %, ¥, )-

Table 5.3: The PRE of ¥,,, §(; and $,(;) in Pop-1.

Est. Yps Yp2 7?3 71’4

g a(l) 140.0776 138.1485 139.2744 138.4545
9 a(2) 104.1546 102.7203 103 27_4 N _1_9?._9478_
&L 107.2748 105.7974 106.6597 106.0318
9!@)_ 108.2625 106.7716 107.6418 107.0081

yam 115.1965 113.6101 114.5360 113.8617
L ya@ 103.6845 102.2567 103.0901 102.4?_3?_"__
)/ an). 102.6522 101.2385 102.0636 101.4627
o _j‘rg@" _ _ 102.35_29 _100._9425 10_1.7652 _ 101_._1661
9!(9) 131.5258 129.7145 130.7717 130.0018
o j?.“_o)_“____"__l??.7707 101.3554 102.1815 101.5799
9.(“) 103.8510 102.4208 103.2556 102.6477
. Syn T8 10807 TS TG0
2!03) 150.6142 148.5400 149.7506 148.8691 L
%o TOAT T079W0 188 TOIBI
y.(lsl 114.0503 112.4797 113.3964 112.7288
L -_Yg(l_é)___ 116.8215 “5L2_]27 _116.15__17 _115.4679_____

With the second population, see, Table (5.4), the proposed estimators fpl; i=1,...,4
achieve more efficient and flp’ is the best among all. Also, by examining the PRE values

W.Lt Pq¢p we find that:
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PRE(Ypy) > PRE(%,,) > PRE(¥,,) > PRE(3,,).
The proposed estimator §p3 achieve high efficiency with all 3,(;), and the five highest
values of efficiency were associated respectively with 3(1), Ja(13), ¥a(e)r Va(ay and

Faw)- In addition, these results of the highest efficiency are stable with other proposed

eSﬁmators(f Py 9?:' ? P4)'

Table 5.4: The PRE of Jp, 9 and $y(p in Pop-2. __

—— B Y Yoz Ty T
) 897.3651  908.5861 917.8452 893.1003
Va@ 1132658 1146821 115.8508 1127275
cm ey 1139237 1173733 1185694 = 1153728
L Sawy 1158495  117.2982 1184935 1152989
Vas)_ 109.2186 _ 110.5843 111.7112 108.6995
Fats) 1074210 1087642 109.8726 106.9104
Vucn) 1074264 108.7697 _109.8781 1069158
Vae) 107.4681 _ 108.8119 _109.9208 106.9573
j ac9) 177.8697 _ 180.0939 181.9291  177.0244
Vac10) 109.8424 1112159 112.3493 109.3204
L Yy 1100201 111.3958 1125310 109.4972
Yat12) 1103018 111.6811 1128192 109.7776
] ac13) 575.6524 _ 582.8505 588.7902 5729165
Fac1e) 1129870 114.3998 115.5656 112.4500
 Saas) 113.6587 1150799 _116.2527 113.1185
 Saae 114.6674 1161012 117.2843 114.1224

With the third population, see, Table (5.5), the proposed estimators fm; i=1,..,4
achieve more efficient and §,,is the best among all. Also, by examining PRE values

w.r.t. $a¢) we find that:

PRE($p3) > PRE($,,) > PRE(%,,) > PRE(%,,)-

The proposed estimators §ps achieve high efficiency with all §,(yand the five highest
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values of efficiency were associated respectively with ¥,(13), ¥a(1)s Yaco)s Jac16), and
¥a(1s)- In addition, these results of the highest efficiency are stable with other proposed
estimators(%,,, ¥, 9, )-

Overall, this numerical illustration can support to shed light on the assets of the robust
regression tools in mean estimation. In fact, it offers a clear indication that more
alternatives estimators than the reviewed estimators can be valuable if a positive

correlation exist between the study and two auxiliary variables and small or moderate

samples are drawn from the population in presence of outliers.

Table 5.5: The PRE of 9,,, ¥ and ¥,y in Pop-3.

Est. ?pl Yp2 Yps Ypa
Far) 1350121 1353746 135.7115 135.5167
T %a@ 1295213 129.8691  130.1923 " 130.0054
Fa3) 130.8204 131.1716 131.4980 131.3093
Facs) ~ 1311736 131.5258  131.8531 131.6639
T Yas 12308117 1235118 123.8192 1236414
" Yae 1233469 1236780 123.9858 123.8079
Var) 1232933 123.6243  123.9320 123.7541
V) 123.2793 123.6103 123.9179 123.7400
Va9) 1353704 1357339 1360717 135.8764
Yat10) 1293495 129.6968  130.0196 129.8329
Paqa1) 130.5756 130.9261 131.2520 131.0636
Yaci2) 131.1128 1314649 131.7920 1316029
Fa13) 140.4524 140.8295 ~ 141.1800 1409773
Va1e) 1321696  132.5244  132.8542 1326635
Va5 134.1787 1345389 134.8737 134.6801
B Vatis) 1349917 1353541  135.6910 135.4962
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54.2 Simulation study, Pop-4

We present the efficiencies of the estimators t;; —t,, upon the estimators tq(;) —
ta(16) » by conducting the simulation study. Here, S is used of the comparisons two
multi-variate normal distributions (ND) for (Y,X;,X,;) with means (¥,X;,X;) =

(4.9,4.9,4.9) and covariance matrices given respectively by

99 29 28
I=[29 19 10|, Pyx, = 0651, Pyx, = 0.669.
28 1.0 19

For the utilization of robust tool, and add noise in Y, Ali et al. (2021). From these
population of 8000 , SRSWOR with size n = (250, 300) are selected for the K"

sample, the estimators (tp,, to,) are computed. In this way, for each (t,,, t5,) , the MSE

1(g(k)

is determined as (MSE(8) = 2#=1%" ~T)/_ Where (8% is denoting (¢, t,)

estimators. For comparison purposes, PRE is computed. The PRE results are provided

Tables (5.6 - 5.8).

Table 5.6: Simulation results n = 100

Est. Yo o2 s Yos
Far) 169.6223  169.0531 169.7314 169.0095
N " Vi) 168.0350 167.4711 168.1430 167.4279
Fa3) 171.5989  171.0230 171.7092 170.9788
" Saw 1680623 1172982 1681704  167.4551
) T Sasy | 2000640  167.4984 200.1926 1993412
Yooy 1992537 1993927 199.3818 198.5338
Pan) 199.2537 198.5851 199.3818 198.5338
Fae 199.5578 198.8881 199.6861 198.8367
T Pato) 199.0180 1983501 199.1459 198.2989
Pac10) 197.7178  197.0543 197.8449 197.0034
Fa11) 2003690  199.6967 200.4978 199.6451
Fa12) 1977679  197.1043  197.8950 197.0533
Va1ny 179.0312  178.4305 179.1463 1783844
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Ya1e) 1774091  176.8138 177.5232 176.7681

Va(15) 180.9575 180.3503 181.0739 1803037

*Z

Fatt6) 1774460 1768505 177.5600 1763048

Table 5.7: Simulation results forn = 150.

. Est. ?pl ?pz ?ps ?l"'
Vact) 1674462  167.0432 167.6674  167.0070
Ya2) 1658972 1654979 166.1164  165.4621
Ya@3) 169.4416  169.0338 169.6654  168.9972
Vata) 1659139 1655145 166.1330  165.4787
Yas) 199.4046 1989247 199.6680  198.8816
Vae) 198.6101 198.1320 198.8724  198.0891
T Ve 198.6101  198.1320 198.8724  198.0891
T Sy 1988770 1983983 199.1397  198.3553
) Vaoy 1963419 1958693 196.6013 1958269
"Dy 1950813 194.6118 1953390 194.5696
Faai1) 197.7850 1973089 198.0463 1972662
Va12) 195.1085 194.6389 1953663  194.5968
) Va13) 1767075 1762821 1769409  176.2440
Fa1e) 1751244 1747029 1753558 174.6651
Vaais) 178.6755 1782454 1789115 178.2068
Pacie) 175.1469 1747253 1753782 174.6875

Table 5.8: Simulation results forn = 200.

——— Est. ﬁl’l ﬁl’z ﬁps §p4
Yatt) 1720687 171.7234 172.4609  171.6853
T Ve 1704591 170.1170 170.8476  170.0793
Ya3) 1742228 173.8731 1746199  173.8346
V) 1704636  170.1214 170.8521  170.0837
Ve 206.6926 2062777 207.1636  206.2320
Vae) 205.8665  205.4533 2063357  205.4078
Yar) 205.8665 2054535 206.3357  205.4078
" Ve 206.1327 2057189 206.6024  205.6733
Vo) 2022088  201.8029 202.6696  201.7582
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Fe10) 2009173  200.5140 201.3752 200.4696

Va1 203.8269 203.4178 204.2914  203.3727
T  9aazy 2009219 200.5186 2013798  200.4742
Vac13) 181.7720 1814071 182.1862  181.3669
) Vaey  180.1319 ' 179.7703  180.5424  179.7305
Fa1s) 1839101  183.5409 1843292  183.5002
Va(16) 180.1391  179.7775 180.5496  179.7377

5.5 Conclusion of the chapter

Usually, in survey sampling, it uses additional information to obtain enhanced designs
and further accurate estimators. In this paper, based on information related to two
auxiliary variables, a new class of robust regression estimators for population mean has
been proposed getting motivation from ratio type estimators of Zaman (2019), Zaman
and Bulut (2019a) and Bulut and Zaman (2019). The proposed estimators are an
extension of Abid et al. (2018) work and rely on robust regression tools. Three real-life
data sets attributed to Sukhatme and Sukhatme (1970); Cochran (1977) and Sarndal et
al. (1992) pointing out the presence of outliers, have been considered in the numerical
illustration. It is observed that the values of the PRE’s of the proposed estimators are
higher than those for the existing estimators attributed to Abid et al. (2018) for all three
real-life data sets. This means that the proposed estimators are more efficient than the
ones under comparison, In addition, robustness to outliers is an additional feature of the
proposed estimators. Consequently, we recommended using the proposed estimators
over the existing estimators attributed to Abid et al. (2018), especially in the presence

of unusual data observations.
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Chapter 6
Mean estimation under stratified sampling with some

transformations

6.1 Background

Estimation of population mean in literature is done by different sampling techniques.
In modern surveys, Stratified sampling is used to improve the precision in estimation.
Stratified sampling can be done by combined and separate ratio estimators. Our current
research is based on the modification of the combination of ratio and product
estimators, for estimating the population mean under Stratified random sampling
scheme. We used auxiliary information to improve precision of estimates and get more
efficient results. Some known parameters of auxiliary variable X such as coefficient of

variation, C,, coefficient of kurtosis, g, , etc. has used for purposes of the research.
Different existing ratio and product type estimators in Stratified Sampling have been
considered for comparison with the proposed estimators. The numerical results of the

real-life data set support the theoretical findings.

In this chapter, we have proposed some estimators of finite population mean by using
the transformations of coefficient of variation, C,, coefficient of kurtosis, f,,,and
some real numbers in Stratified random sampling without replacement scheme. The
bias and MSE of the proposed estimator are also obtained up to first order

approximation. It is observed that the proposed estimators are efficient than the

traditional mean, ratio, Bahl and tuteja (1991); Koyuncu and Kadilar (2009) and Singh
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and Solanki (2013), estimators. We have applied a real data set using Stratified random

sampling technique for measuring the efficiency of the estimators considered here.

Use of auxiliary information improves precision of estimates and efficiency of
estimators in estimation process. Some researchers used different transformations for
some known parameters of auxiliary variable X such as coefficient of variation,
standard deviation, correlation coefficient, coefficient of kurtosis, skewness, etc. For
traditional mean estimators see, Bahl and tuteja (1991), traditional regression, Koyuncu
and Kadilar (2009); Singh and Solanki (2013) and Solanki and Singh (2014) estimators

are given below.

Suppose a finite population ¢ =[u,' ,u;,u;,...,u,',,]of size N. Let Y be taken as study

variable and X be taken as auxiliary variable having values y; and x; in unit , (i =

1,2,..,N). A n, random sample drawn without replacement from N,, population in
stratum h, (h=1,2,..,L). Where X, vare the population means of x and y

respectively, Assuming population of size N, is divided into L strata containing ¥, units,

where (h = 1,2, ...,L) such as iN. =N and i,.‘ =ns
[ ]

Bl ER)=0 E(R)=EWS e

] Y

%-X Sy 2 g Sar
=, E =0, E(A%)= W:h_—ﬂ_z= 1?
A= (4) (4% .Z-l:hfx g
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E(A)= S, 2=

fn=n_‘, f"=(ﬂ).

n,

Some other notations are used in estimators as given below:

a=3ms, 0-YWC  8-IWA(R)

a-Yma)  B=2her Q=3 A ()

Mean estimators under stratified random sampling

- L -
Yu=2 W34
=]
where,
- 1
W= _iy [T
nﬁ =]

Variance of unbiased sample mean is
- =2
var(y,)=¥'m. 6.1)
Ratio estimator under stratified random sampling
-(x
GR(u) =Yu (:) :

The expressions of bias and MSE of Ratio estimators are

bias(Gyy) =¥ (10— 7701)
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MSE (Gn(n)) = ?2 (']o +17, =21y, ) . 6.2)

Bahl and Tuteja (1991) combined ratio exponential estimator under stratified random

sampling as:

G ; - ;-" (6-3)

=_ exp| wr—=— |"
Betar) Y« p(X+x..)

The expressions of bias and MSE of Bahl and Tuteja (1991) exponential estimator are

bias(G,,(,,)) = 17(%% —%r]m) . (6.4)

] l
MSE (Gm(n)) =Y (’Io + z'h ~Nu ) . (6.5)

Traditional regression estimator under stratified sampling as:

G,

ves) = Vor + b (X — %0 ). (6.6)

The expression of MSE of regression estimator are:
MSE (Gm(u)) =Yn(1-p.7). 6.7

where ,

o,

b

Family of ratio estimators of Koyuncu and Kadilar (2009) in stratified random sampling

a,X+b, . for, i=1,2,3,..,9 (6.8)
a(a,,;.. +b,,)+(l-a)(a,,X+b,,)

K,=¢y,

For the family of estimators in table, MSE and bias can be expressed as:
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e Y4

bias(K) = ¢,—,[§i_gzll) a’v’y, - gaw]o,]+ Y(g-1)- (6.9)

#'m+(9°(28° +2)-9(g* +2))av'n,

MSEK)=Y" z
~2gav(2¢* - §)my +(¢-1)

(6.10)

where,
A= (g2 + g)a’v’r), —2gavi, +2,

B=n,+ (2g2 +g)a’vin, —4gavr, +1.

Table 6.1: Family of ratio estimators of Koyuncu and Kadilar (2009) in stratified

random sampling. n
ratio estimators ast bst
L _g=1, a=l ___
K¢ 1 0
K, 1 N,
- K3 Q, Q
— Ky 17 0
K 5 1 nl
K¢ Q, Q
K, Q, 0
Kp ] Qg
Ko 1 fl,
Minimum MSE is
—2 A?
= -=1. 6.11
MSE,.(K)=Y [1 43] (6.11)

Family of estimators of Singh and Solanki (2013) in stratified random sampling

Tgﬁ[‘;"{a(a.;. +b.)+(l—a)(a..7+b,)}"+ ) { (a.X+8.) ” (6.12)

(a_f+b,,) b a(a,;.+b,,)+(l-a)(a,7+b,)

for r=1,223, .., 17 and (g=1, 6=0, a=1)
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For the family of estimators in table, MSE and bias can be expressed as:

bias(Tg) = F[ﬁ {1+ adun, + 5(‘52' ). a’u’q,}+¢, {1 —adun, + ﬂgz”—')a‘u’q,}-l] , (6.13)
where,
= a, X .
a, X+b,
MSE(Tg) =Y [1+4°C+4,'B+244,D-24E—24A], (6.14)
where,
Ay = [1 agun, + g(g+1) a’u’n,] ,

Bg = [l +n,—4agun, +g(2g+ l)a’v’r;,] ,

Cys =[1+n, + 4agum, +g(2g-1)a*v’y, |,

Dy =[l+rlo+2¢(5 ~g)vny, +(#)(5 -g)(6 -g-l)m]:

Eg= |:l —adun, + £g-ai"—lla’u’m] .

Differentiating MSE partially, with respect to @;and @, and equating to zero, we get

the following optimum values of @;and @,.

4 = (BsEss - AsDss) _(4sCs-DsEs)
I(opr) ( BSCS _ D: ) ’ ¢7-("!') ( stq“ _ D;)
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Table 6.2: Family of estimators of Singh and Solanki (2013) in stratified sampling.

Estimators ast bst Estimators ast Bst
Ton 1 0 Tes10 1 0,
Tes2 1 Q1 Tes11 Qs 1,
T_“a ﬂ4 nz Tsle n'L gﬁ_.
Tss& nL n4 T,ss13 nL ni
_— Tsss — 1 O Tssu_ ns. __._.Qﬁ -
Tss6 1y (01 Tss15 flg Qs
Tss7 Dy 0, Tes16 Qs (W)
Ty 1 05 _Tenz n, 0
Tes 1 0,
Minimum MSE is
=2|  (BoE? -244 DBy + 42Cy)
MSE,, (T5)=Y |1- s = . (6.15)
(BaCa D7)

Family of estimators of Solanki and Singh (2014) in stratified random sampling

qu=¢.;,,|:T7—'—?] +ﬁ;nﬂp[aj __J.rn)]' (6.16)

axq+(1-a) X +xa

where, X =(a,,?+b,,) \ ¥ =(a,3a+b,)  forq=1,2,3,..,17

and (g=0,3=1)

For the family of estimators in table, MSE and bias can be expressed as:
bias(Tg) =?[ﬁ {1 +(£2")q, (av(g+l)-2-"’;—')}+¢, {l+(%v-)q, (v(5+2)-4%)}—1:| . (6.17)

MSE (Ty )= [1+ 8 Age +8,'Cor + 266, Dsxc —261Bgy —26,Ee |- (6.18)

Table 6.3: Family of estimators of Singh and Solanki (2014) in SRS.

Estimators ast bst Estimators ast bst
Tek1 1 0 Tsxz 1 Qg -
Takz 1 Q Toes 1 D¢
Tsk3 Qy Q2 Tsxo Q, 0.
AR 7 S Q, Q T s . @&
e Toks _ 1 Q4 Togkan S Q5
_Tske Ly 00y Tz . D)5 Q4
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where,

Ay =[ 147, +a®0* (28 + g)m, —dagur )

azvz gz+g
By =[l+—(-2——)r],—agvr]m ’
[ 01(6’+5)
Co =|14m+ n,—26vn,, |»

[ AV
Dy =147, + = m—-2v(2ag+d)ny |

s {E2o) (%)

where,

£ =[(2ag+5)2 +2(2a’g+6)] .

Differentiating MSE partially, with respect to @,and @, and equating to zero, we get

the following optimum values of @;and @,.

¢l( = (BSKCSK _DSKESK) . ‘z( - (Ast.w "BacD.w) .
" (4xCx-D2) " (ByCyx-D)
Minimum MSE is,
. _ 72 [1 _ (BikCsk—2BskDskBsi+AskElic)
MSEpin(Ts) =Y [1 a0t )? . 6.19)
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6.2 A Proposed class of estimators for the estimation of population
mean

In this section, some improved estimators for finite population mean in stratified
random sampling are proposed, which are based on first order approximation.

Formulation of the proposed estimators are explained step-by-step as follows:

6.2.1 First proposed estimator

For the formulation of our first proposition, follows Rao (1966). The average of ratio

product estimator is:

Fam =67 + (X - %). (6.20)

The average of ratio and product estimators is

- ;(? ;). (6.21)
x X

By replacing ; with ¥, in equation (6.15)

Yu =y, +6(X-x). (6.22)

By replacing ¥ in Bhal and Tuteja (1991), we suggest the following estimator:

U, =7 exp(-::-_-+-%)' (6.23)
y(X x _ — a(X-x,
o, (152 3] ] 620

We used transformation of a=iW.C ' b=iW.ﬂu (x):

A=l

bias(U )=¢7(._fgu+a,n,)+¢;_-y. (6.25)



O

where,

—z -
AISE(UA ) =Y + ﬂzUAI(I) + ‘l-ull(u) + zﬂﬁuc“,) - ZﬂUm(,) _2¢1U EI()° (6.26)
2
MSE (U ) - UilWei) *UngVouy = Weriousl B (627)
Um(.)Un(.) 'Ua(.)

The expressions of above proof are explained in appendix A.
6.2.2 Second proposed estimator
For the formulation of second proposed estimator our motivation from

The average of exponential ratio and product estimator is:

Yo = %—{exp(gzé] + exp(f?;?;)} . (6.28)

U, =5 exp(Z:E)- (6.29)

ARG,

We used transformation of =ZWC s b= ZWA Bou(x)*

bias(U,, )= qy( ”°'+a,m) ¢,XT”-Y (6.31)

where,
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7

3 319: and 17
Q. = = o — |9=—-—— .
g 8 aX+b

MSE(U,,) =7 + 82U 1) + 62Uy + 286Uy — 28U gy ~ 26U g - (6.32)

MSE,. (U ) 7 UAZ(I)UEZ(I) +Uu(.)Upz(. =2Ucy)UpayUsay ] (6.33)
UipVsray~Veuy

The expressions of above proof are explained in appendix A.

6.2.3 Third proposed estimator

For the formulation of third proposed estimator our motivation from, by replacing ;

with ¥, in U,,, we propose the following estimator:

 xfX 5 X-3, X=X = “(’T‘Z) . (634
u, —[‘,T(f+7){exp[)_(+x_']+exp(xH')}M,(X x)]exp[ (}—_:)+2b (6.34)
We used transformation of a=zL:W,,C,, , b=ZL:Wn B ()

bias(U,, )= w(l ﬂm,m)wﬁa—;'-"--i, (6.35)

where,

a=1+3_'9_2. and .9 07
8 8 aX+b

WE(U,..) Y +¢ A3(1)+¢2 Usay + 200U ) — 20U py) —26.U s, 0 (6.36)

U,unlU

v.U.22+U. .U ()Y px B 6.37)

(U ) —2 AX(1)™ EXi) a3() m(.)
UAJ(I)UBJ(I) U(':I(r)

-2U,

The expressions of above proof are explained in appendix A.
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6.2.4 Fourth proposed estimator

For the formulation of fourth proposed estimator our motivation from Usman and Hanif

(2018) and Up,, we propose the following estimator:

)+(1 24)(% - )] [M] (638)

(X ;-)+2b

ot ||><I

> Ila“‘ I

UP4 =[¢l !;"‘-(

for a =0 andb =1

bias(U, )= ,,,,( ”°‘+a4r],)+(l -2)x 207, (639
where,
wel® and g oE
2 8 aX+bh

MSE(U, )= (?’ +X m - X¥9 )+¢,zu‘ 0 $ Vs + 268Uci) WUy - WUsgyr  (640)

U,nU

- — —_ 24U, U =2U UpunU
MSE,, (U")=(Yz+ sz_ XY-971,) A3()” E4() B4{1) m(: C4{1)™ Da(1)” Eafr) (6.4])

U“(I)Ulll(l UC4(:)

The expressions of above proof are explained in appendix A.
6.2.5 Fifth proposed estimator

For the formulation of fifth proposed estimator our motivation from Usman and Hanif

(2018) and U,,, we propose the following estimator:

for,a =0andb=1
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bias(U,, )=ﬁ(l_£;m+a,,,)+(1_z¢,)7£’ich._7, (6.43)

where,

MSE (U Py ) = (? + ?”l - 7?'9771 ) + #Uu(.) + ¢,’U,,(,) + M‘zucs(,) - ZAUD,(,) - 2¢2st.) ’ (6.44)

2
s0Uns) ~ WesyUnslUest) (6.45)

U, s(n)Uu(.) - Ut‘s(,)z

=1 — —= U, Usyr +U
MSE_ \U, )= Yz +X1"I -XY9,)- AS()~ E8(r) B
]

The expressions of above proof are explained in appendix A.
6.2.6 Sixth proposed estimator

For the formulation of sixth proposed estimator our motivation from Usman and Hanif

(2018) and U,,,, we propose the following estimator:

Un =[ﬂ %(%+§){exp(%;)+exp(i——'f%)}+(l—4)(T-Z)]exp[———a &Si}?ﬁ] (6.46)

for a =0and b =1

b,-a,(u,,)=4r(l_9g«n+a,,,,)+(1_z¢,);—{%'a-7, (647)
where,

a=l+£ and .9=_£-X__o

‘"8 8 aX+b

MSE (Uh ) = (Y'z + :"_zﬂn -XY8n, ) + ‘leAG(:) + #Uu(.) +266Ucq) ~ 28Uy~ 2%Urg (6.48)
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2 2
UssnUeay +UssUsy ~WesyUnspVnay . (6.49)
2
UAG(I)UBG(I) - U(‘d(l)

MSE,, (U,,)=(F +X'n,-XTsn,)-

The expressions of above proof are explained in appendix A.

6.2.7 Seventh proposed estimator

For the formulation of seventh proposed estimator our motivation from Bhal and Tuteja

(1991).

By adding ¥, in ¥rq0, We develop the following class of estimator:

Yir =Y Vrao (6.50)

Vi = E[Z+-E-)+(+¢, 7—;]
[“ x) ( ). 6.51)

By replacing ¥, in ¥, in Bhal and Tuteja, we proposed the following estimator:

U, = exe( 32 ) 6.52)
u[%(Z;)rqu(f—)]ml———(;(’_‘_)—)%] (653

We used transformation of , =ZL:W.C..’ =3 W (x)*
A=l [

, o 9n 39n, Omy m). .3, Sme Im  38n). ,w9In (6.54)
b‘m(uh)_y(_?*.T'_Tm*.? +‘|Y ]——2J9'+Tl+-TL +‘2“’_2L’
where,
5 -_—
-l and g aX
2 3 aX+b
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s ¥
MSE (U,, ) =7 (ﬂn + —4""" =S ] + ﬂzun(.) + ‘zzun(.) + 206.Ucry~ 28U ) - 22Uy (655)
- 2 U iUl + U U 2 =20 U U
MSE,. (U, )= 7 (% I -9%.)' ayVeny +UsUsmy’ =~ WenyUsny En) (6.56)
4 Un(:)un(:) - Ucw)

The expressions of above proof are explained in appendix A.
6.2.8 Eighth proposed estimator

For the formulation of eighth proposed estimator our motivation comes from, By

replacing ¥,, with ¥y, in U,,, we propose the following estimator:

o F D G2 e el

We used transformation of 4= ZWC ' * b= ZW.ﬂu(I)

— — z —
bias(Uh)=Y(1-L9%+a,q,)+¢,y[ 3‘1”' '9;’°')+¢,X 2" -¥» (6.58)
where,

a'=2+£ and =—£—.
8 8 axX+b

- 31
WE(UA ) =Y ('ln + Tﬂl =3 ) + ﬁzun(-) + ‘zzum) +246.Ucy, - ZAU,,,(,) ~2Up’ (6.59)
(v,)=7 (,,o I g ) UnyUsuy' *+UniyUouy’ 2“0-(')” owUon (6.60)
Uﬂ(l)Ull(l) - U(‘I(l

The expressions of above proof are explained in appendix A.
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6.2.9 Ninth proposed estimator

For the formulation of ninth proposed estimator our motivation from, By repeating

substitutions in U,,,, and Uy, we propose the following estimator:

R e R )

We used transformation of , - ZWC » b= ZW,,ﬂu. (x)-

A=)

bias(U,, )= (1 '—9-'2"-+aem)+¢.l'( 3'9;"‘—'—912"1)4,7%-?’

where,

8 8 T aX+b

MSE(U,)=F (,,,a,-’_’h_.gq,,,)m U oy +6: Uy + 286U e — 26U iy ~ 26Uy,

2 2
UiV +UnsUnsy ~2Ue ’(')Umo)un(v).

MsE,, (U, )=F(m+ L o1, |-
ma\Ypn ]=1 | Th 2 o1 U‘,(,) ) U( ,('

The expressions of above proof are explained in appendix A.

6.3 Numerical investigation

For assessing the merits of the proposed class of estimators over existing ones, we

investigate numerical results by utilizing the following real data set

Source of data: Murthy (1967), p. 228
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The total sample size is n = 45 and strata are as under:

Strata 1 = X is less than 100, Strata 2 = X is between 100 to 200, Strata 3 = X is between

200 to 500, Strata 4 = X is greater than 500.
X = Data on number of workers,
Y = Qutput for 80 factories in a region
Table 6.4: Descriptive Data.
_Stratum ___1* 2~ M Total
N, 25.00 23.00 16.00 16.00 80.00
n, 14.00 13.00 9.00 9.00 45
X, 71.00 140.69 362.93 749.50 284.75
Y 3156.64 476622  6334.19 779531  5182.64
B, ;;). 175 219 0 161 190 0 353
C., 0.20 0.19 0.25 0.23 0.94
S, 14.61 28.03 91.38 174.46 270.49
- S, 740.01 515.69 50139  653.09  1835.66
s, 8830.78  11900.60 4390370 111718.00 45403330
A 0.81 0.8231 0.95 0.98 0.91
A, 0.03 0.03 0.04 0.04
W, 0.31 0.28 0.20 0.20 T

Table 6.5: MSE values of Unbiased, ratio, exponential and regression estimators
under Stratified Random Sampling.

Estimators MSE
Yot 6093.681
B Grest) 5550412
Gaap) 2676.871 L
R _GReg(st) _.._..2671.006

)
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Table 6.6: MSE values of Koyuncu and Kadilar (2009) estimators under Stratified

Random Sampling. = . __ . _
_ Estimators MSE Estimators _ MSE
Ky 5549.451 Ko 5550.044
L K, 5550173 K, 5549.493
K3 5549.815 Ky 5552.181
K, 5584.171 K, 5556.219
~ Ks 5549533 . ___

Table 6.7: MSE values of Singh and Solanki (2013) estimators under Stratified

_Random Sampling. o L
Estimators MSE Estimators MSE
T 2669.749 Tes10 2669.758
T Tyez 2669.751 Tes11 2669.752
T Ty 2669.75 Tz 2669787
T Tees 2669.835 Teszs 2670285
Tys 2670225 = Ty 2669759
T T 2670.895 = Ty 266976
R 2670.028 Tes16 2670.27
T 2669.758 Tes17 2670.784
Tego 2669.769

Table 6.8: MSE values of Singh and Solanki (2014) estimators under Stratified

..Random Sampling. N -
Estimators MSE Estimators MSE
T T Mg 2670359 Tge 0 2670.369
B Taz 2670.36 Teks 2670.359
Tsxs 2670.359 Tsko 2670.405
" T 77 2670362 Tyqe 2670359
T T 2670.613 Tek11 2670.429
Texe 2670.961 Tagaz  2670.359

Table 6.9: MSE values of proposed estimators under stratified random sampling.

Estimators MSE Estimators MSE
Up, 2666.951 Up, 2669.2001
i U, 2668.081 Up, 2667.267
Up, 2662.461 Up, 2668.348
] u,, 2669.4532 Up, 2662918
U, 2669.3021
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6.4 Summary of the chapter

Ratio estimators are biased estimators, which are used in under stratified random
sampling. Many researchers ducted case studies to improve ratio estimators using
various transformations. Many modifications have been made to impose the population

mean in stratified random sampling.

Our present study is also focused on modifying the combination of combined ratio and
product estimators for the estimation of population mean using stratified random
sampling. For this purpose, different new estimators were proposed and compared with

the existing estimators in Stratified random sampling.

Our numerical results of the suggested and existing estimators based on the MSE. All
results indicate that the MSE of the suggested modified estimators are lower than the
MSE of existing estimators. We conclude, therefore, that the suggested modified

estimators are the better and more efficient estimators as compared to the existing ones.
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Chapter 7

Conclusions with future suggestions

7.1 Conclusion

In survey sampling, the location parameters estimation is one of the major concern by
statisticians. For this or even more precise results, the auxiliary variables play a vital
role. When outliers occur in the data set, traditional ratio and regression type estimators
are not providing suitable results. In such situations robust techniques are suitable for
efficient estimation of population mean parameters.

In this study, we have used up to two auxiliary variables for the estimation of population
parameter ie. mean in several sampling designs, e.g. simple random sampling,
stratified random sampling and systematic random sampling, etc. To measure the
performance, we have utilized both type of data sets, i.e. real and simulated. In this
regard, we have suggested some robust regression based estimators for the estimation
of mean of sensitive variable Z when mean of the auxiliary variable is known in SRS.
Different robust regression methods are used such as LAD, H-M, H-MM, LTS, LMS,
Hample-M, and Tukey-M. For all the proposed estimators, the MSE have been
estimated up to first degree of approximation. All the proposed estimators are compared
with their existing estimators. Theoretically as well as numerically, the results reveal

that the proposed estimators are more efficient than their competitors.

In similar situations, but with different sampling design, such as, systematic random
sampling, some ratio type robust estimators have been suggested in this study as well.

We have also provided a new class of estimator based on robust regression with
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utilizingC,, B2(x) and p as known auxiliary information. These estimations are also

compared with their competitor taken from literature and found efficient results.

Following, the most recent studies, such as, Zaman (2019) and Zaman and Bulut
(2019a), we proposed generalized robust-regression-type estimators to estimate the
population mean in simple random sample design. As usual, the mean squared errors
are also derived up to first degree of approximation. This study is also extended for
different study scheme, i.e. two stage random sampling. Based on the numerical
findings, our estimators are for away in the sense of imposed performance than their

competitors.

We have extended our work and suggested a family of robust type regression estimator
by utilizing two auxiliary variables in SRS. The general expressions of mean square
errors are also provided. We compared our findings with the finding of Zaman (2019),
Zaman and Bulut (2019a) and the results show that the proposed estimators are better.
We also introduced some new estimators using transformed auxiliary variable to
estimate the population mean. We obtained the numerical results using real life data

sets.

7.2 Recommendation

Outliers badly affect the statistical analysis. So, robust regression based means
estimators are very fruit in presence of mean estimation. Also these regression
estimators require less auxiliary information as compare to reviewed estimators. Hence

it is recommended to use the proposed estimators.
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7.3 Future direction

Someone can extend this study in the deviation of multivariate case and in different

random sampling designs, such as cluster and multiphase random sampling.
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Appendix A

The explanation of the expressions used in above proof of proposed estimators.

1* Estimator

Substituting values of y_,, and x_,, in equation (6.18).

=[¢,17(%+ %)((HA,)" +(l+1,))+¢,(—?2,)](l—'9—;|-+ 3—'9251) ’

U, -?=q?(1+z,, % A +a,z,’)—¢,?(a, -%‘f-)-?-

Applying expectation

, .=, On =9
bzas(Un)_w(l-—zﬂmﬂ,)mx—zl-y.
=\ =2 .o 1, A 2 12,2
(U,-¥) =7 +4°Y (1+z,, +S2 =294 + 20, )+¢; XA
2T (992 -2)- 247 (1-Bh 0’

YXI4?
2

_2¢z

Applying expectation

MSE (UA ) = Y’ + ¢|2U4|(.) + ‘zzUm(.) + ZA‘ZUCI(:) - 2¢|Um(4) - 2¢ZUEI(1) *

Where,

— 9
Ui =Y (1 +7+ 4”1 -297, + zalnlJ ’

—2
Um(:) =X 1
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(A4)
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Vo = YX ('9771 ~ Ty ) ,

UD,(, =Y (1—2'-’&+a,q,)

YX8
Upgy = ._2_’11. .

Differentiating MSE partially, with respect to @,and @, and equating to zero, we get

the following optimum values of @,and 9,

UBI(!)UDI(I Cl(l)UEl(l) UAl(l U E1(1) UCI(I)UDI(:) (S ay, )
’ 2 .
e~ UAl(l)UHl(l) I'IC'I(I)2 - UAI(I)UBI(I) Clf)

The minimum MSE of Up,

( U ) —1 Al(:)Um(:)z "’Uln(:)Um(.)z - 2U('|(,)Um(:)Um(,) . ( A6)
Um(,)Um(.) - Ucl(.)z

2"d Estimator

Substituting values of y—,, and x_,, in equation (6.24)

=[¢y(§+ﬁ){exp(-axz+ar'+exp(4)(z+4>"}+ﬁ(-?’~)]

(A7
(188,308
2
- - 9 2 —- 242\ _
Uh—Y=ﬁY(l+dn—sTj’—-%-+a,J, )+¢,X(A,—£—;"—)-Y- (A8)
Applying expectation
bias( ) QY[ r’°‘+a,r;,) g?'gz"'-?. (A9)
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(U, -¥) =7 +&7’ (m; +$-2.9z‘,,41 +2a,z,=)+¢,=7’z,’
+2¢;¢j7(.9;,=-z“z,)-zq?’(l-%im,z,’) (A10)
TR

Applying expectation

MSE(U,,) =¥’ + 87U oy + 87Uy + 288U cgy ~ 20U oy ~ 26U g - (A11)

where,

g 4"| 291, +2ay7, ) ’

U‘,(,)=)_’z(l+r;o+

-2
Upyy =X 15

Ucz(.) = y}('9'71 /" ) ’
Upuy = Y (l _‘9_’2’%*’ an, ) s

;7.977
Upyy = 2 L,

Differentiating MSE partially, with respect to @;and @, and equating to zero, we get

the following optimum values of @,and 9,

A = UBZ(I)UDZ(I) —UCZ(I)UEz(I) _ U,{z(,)UEz(,) _U('Z(I)UDZ(I) . (sa};)
) U piUsin=Upwt 2® U Uy *
A1)~ BYr) c2(1) A1)V BYi) V)
The minimum MSE of U,

2 2
Uu(r)UEz(:) +Unz(.)sz(.) 'zuc'u,)unz(:)usz(:) .

MSE,, (U, )=Y" - (A12)

2
v, z(.)Un(.) -U, 1)
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3™ Estimator

Substituting values of y, and ¥, in equation (6.29)

= 7112 _fﬁ 3!922_ —_ —& 3!922.
—ﬂY(l+1,,+—§—)(l 2+—8—'{l—) QXA,(I 2+ 3 )

TegF(144 -FA A a2 _a w1 - FA ) 7.
u, Y—AY(HA‘, > +a,,1,) ¢,X(z, 5 ) Y
Applying expectation

- — & _
bias(un)=AY(1_%+%7A)+¢1XT”'—Y-

(v, -7) =¥ +¢g=?’(1+z,,= + 32:12 ~294,4, +2a,;1,’)+¢,’?z,’

+ 244 TR (9 - 2oh) 247 (1- Lk 1 0,27
Y X 94}

—_ 2¢z
Applying expectation,
-2
MSE(U,)=Y +4U 5 +$U,,, + 260U, 4~ 28U pyy - 2V -

where,

— |9
UA’(I) =Y (l +7, + 4”1 -29n, +2a|'7|) ?

Uesy = YX(97,~10)>

-2 I9
Uu:(,) =Y (l —%"+aﬂ|)’
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(A13)

(Al14)

(A15)

(Al6)

(A17)



_YX9n,
BX)~ g

Differentiating MSE partially, with respect to @;and @, and equating to zero, we get

the following optimum values of @,and @,

‘ _UssyUoxy - Umw”ss(«) _ YUy ~UeiyVouny (say)
U Ung Uy 2 UL U, U
A1) BYr) C](l) A1) BY) cxi)

The minimum MSE of Up,

MSE.“ (U ) = ?z U‘!(,)U;](,) +U .J(:)Un]( 1) -2U, CJ(:)U DJ(,)U EX)
" UAJ(I)UIJ(l) -U,

(A18)

4t Estimator

Substituting values of y_,, and x_,, in equation (6.33)

=[q)"(%+%)((1+a,)" +(1+;,))+(1—2¢z)(-f&)](1—%+3‘%5:)' (A19)

u,, —F=¢,Y(1+A,, -‘9—;L-‘9—";‘L+a,z,’)—(1—u,)?(z, - ‘912"2)-?' (A20)
Applying expectation

bias(U, )¢;Y( "°‘+a.n.)+(1 2¢1)X L-Y. (A21)

U_-F) =7 + 2 -FT04 )+ 47 1447+ "-2.9M+2a,z,’
(Un-7) =(7 )

+44X A7+ 4 TX (24 -zs&’)-u?(i—?—’j'ﬁﬁa.mh& -?-w] (A22)

-24,YX 94}

Applying expectation
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MSE(U,,) =(x‘r’ +X'n, —7)_’.971,)+A’U“(,) Uy + 28Uy

(A23)
~20Uby) — 24Uy

where,

2

—2 I9
Uiy =Y (l ++ 4”' =291, +2a,n, ) ’

—=
Un(.) =4X 7

Uﬂ(.) = 7?(2”o| -29n,)

Uiy = ?(? - Y|92”o| + ;adﬂl + 7’7«» = 7'9% J ’

Uy = 7?.91;, .

Differentiating MSE partially, with respect to @;and @, and equating to zero, we get

the following optimum values of @;and 0,

Uu(.)um(.) ‘Uc«.)um(.) , U.«(.)Un(.) _Ua(.)um(.) . (say )

B = ) opr) )
U.«(r)UM@) - UC Y1) UM(I)Uﬂ(r) - UCl(l)

the minimum MSE of Uy,

=i e\ UilUser *UsilVoui = We aolpanlsa
WE_,(U,‘)=(Y +X ’I|‘XY'9’I|) ) W) B4(1) ~ D) ‘l«) DAG) B4 | (A24)
an,)um) - Uﬂ(.)

St Estimator

Substituting values of y_,, and x_,, in equation (6.37)

=¢,)_’(l+/l,,+3—:|i)(l—%1‘—+$:)—(l-zfz)?‘1(1‘%""'2{;&;)’ (A25)
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U, —)_’=¢,?(1+2,—%—%—‘—'+a,1,’)—(l—2¢,)7(2,—'9—2;'11)—)_" (A26)

Applying expectation

bias(u,,,)=¢?(1—'9—;’%+a,m)+(1—2¢,)?'9—2"l—_- (A27)

(v,-7) =(?z +X'32 -77.94,’)+4’7‘(|+4,’ +¥-z.91,4, +za,4,‘)

+824X A1 + 244 TX (244, - 2942) - 24?[? - E’:“—‘u YaA? + X4 - 7.94,’) (A27)
-2, X (Y94 -2X4?)

Applying expectation

MSE(U,,)=(V + X'~ X700, + 40 gy + 67Uy + 280 o,y A28

- ZAUD,(,) - 2¢,UE,(,)

where,

-2 .9‘
UAS(-) =Y (l +1, +_4r]|_ -28n, + 20:!7.) ?

-2
UBS(:) =4X /R

Uey = ?}(2'701 -29m,)
—(= Y80 - - =
Ups= Y(Y——%+Ya,r], + X1, —X-9n.)'

Upsy =X (Y9m —2Xn,).

Differentiating MSE partially, with respect to @;and @, and equating to zero, we get

the following optimum values of @,and @,
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Uns(.)Uos(.) cs(.)Uss(.) ¢m‘ UA!(-)UE!(-) UCS(I)UDS(') (say)

™ Uy Ve’ U spVssy ~Uosy

The minimum MSE of Up

U

ex' +Unsa¥osy’ ~WeUosyUssy

st ostr) s oty

UAS(I)Ul*) ch(.)

ME, (U,)= (7 + K - Fon) -2

6** Estimator

Substituting values of :v: and x_,, in equation (6.40)

O O G R oy Ve

(1-'9—:L+ﬂ]

8
Up-T=aF(144- -k o2 )-(-20) % (4 - 22 )-7-

Taking expectation

'91’l|

bias(U,, )= 4Y(1-'92’°'+a,q,)+(1 -2¢)x LY.

(U.-7) = (?‘ +X A2 - 7?.94,‘)+ a (l +A1+ "—:‘ﬁ ~292,4, + 2a,z,’)
+A1 A A+ 244, T X (24, -2.91,’)-2;,7['7'-@;35&%4' + X244 -T.u,’)
-24,X(7847 -2X4?)

Taking expectation

MSE(U, )= (Y +X'n, - X¥8n, ) U g + 6y + 2680 g
- 2¢IUD«J) - 2¢2UEq:)

where,
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(A29)

(A30)

(A31)

(A32)

(A33)

(A34)



— 9?
Uty = Y (l +17,+ 4”' =297, + 247, ] ’

-2
Upgy =4X 5

Uegy = YX (2, -29n,)

Upgy =?(7—Z§2-'-’-°-‘-+;’a,q, + Xy -}-9”,) ’
UES(I) = }(?lg”l _2}771 ) .

Differentiating MSE partially, with respect to @;and @, and equating to zero, we get

the following optimum values of @,and @,

_ Ysstooay ~YeasVsa _UssYsey ~YesyUnse) . (say)
)™y Uy U2 YTy g Ty 2
A6(1)" B6(1) c6(1) ()~ Be(r) ~ "~ col)
The minimum MSE of U,
- —1  —— UeUsitn’ +UseilUpeir: =2 UperlU
M2 (0, )-(F+ X' YRy |- 20 TR0 7t (A35)
7th Estimator
Substituting values of y_,, and ;,—, in equation (6.47)
=|:1_'(%+%)((1+1,)" +(1+1,))+¢,T(l+a,)+¢,(—-fj,)](l—-'22'-11-+ 3'98'1' ) (A36)
(A37)
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Applying expectation

bm(u,,,)=?(—'%”+3—;’L--92ﬂ+i’zl)+ﬁ(l-'9_;’m+ﬁzﬂ+ﬂ)ﬂj-9r;. , (A38)

(U.-.-’_’)z=7’(&.’+'9—‘:‘:--9M)+#7z(1+%’+£%:'2-%4+%-9'A’)+#7’A‘

+244TX(93} -M)_zﬁw(‘nz- Ih_Skh, PG, ,,1,) (A)

2 4 2
- 257?(4,3, -"—‘211)
Applying expectation

— 92
MSE (Up, ) =Y (ﬂo + Tﬂl - '97101 ) + AzUn(.) + ¢22Un1(.) + 2“¢2Uc1(,)

- ZAUD,(,) - 2¢,U,_..,(,)

(A39)

where,
=2 9? 3
Uﬂ(-) =} (l+r]o+T”'—2.97]m+-4-.9’m)’

U.1(l) =?z”| ’
Uy = l_,}('9771 M)

=2 9 9 9 9
Upny =¥ (1= 200- 200 T Tty )

== 9
Upyy =X Y(’lm "'221'] )

Differentiating MSE partially, with respect to @;and @, and equating to zero, we get

the following optimum values of @;and @,:

_ Um(.)Um(.) - Um(.)Um(.) _ U oVeny = YenyUomy . (say)

(o) 2 =
UA1(,)UH'I(|) - U("r(.) ) ) M,)U )~ U(..,(,)z
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The minimum MSE of Y,

= U Vs +VinalVorts” = WenalUonaU
MSE.(U, )=F "o"ﬁ--%l) Uy +VirgUomy (OOl 0
4 VooV ~Yeny

8t Estimator

Substituting values of :v,—, and x_,, in equation (6.51)

=[¢F(-;-+52L){exp(—z, )2+4)" +exp(A)(2+4) "} + 4T (1+ 4) + (- X4, )]
(-222)

U, —)_’=)_’(l+/1,,—%é-—ﬂiﬁ-+a,4’)+ﬂ7(l-%+%l‘:+dn—%ﬁ)

2
_ﬁf( A _ﬁ)_?
2
Applying expectation

- - 2 _q? -

(v.-7) =T"(z,’ +"—z:'i-.91,.4,)+q'?’(1+4,’ +:'z—:li-z.91,.1, +%.9‘A,’)+¢,’Y‘A,’

+2MTY(M’—M)—2AT"(A:— Bk b, Th +a.4,’)

-24,??(4.4-%1)
Applying expectation

= &
MSE(U,_) =} (”o + —T”L -9, ) + 87U gy + ' Unagyy + 266Uy

- zﬂum(.) - 2¢1Uz|(.)

where,

= g 3
U = Y (l +7+ T”l -29n, + 2 slﬂl) ’
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(A40)

(A41)

(A42)

(A43)

(A44)

(A45)



—2
Uy.(,) =Xn,
ch.) = ,_’y(‘g'h ~T ) ’

—_ 2,
Upy = y’(ﬂo_ﬂ’.ﬂl___‘g_'_"'_'.pﬂl._%l_.,.aﬂl)s

2 2 4 2
== 8
Uggy =X Y(’/ol - _2’11_) .

Differentiating MSE partially, with respect to ®;and @, and equating to zero, we get

the following optimum values of @;and @,:

by =220 Ve Uy by )=UA«')U:-(-)‘ com) (say)
opl opt 2
UA“I)UBl(I) UC‘I(: UAI(I)UMI) (4 0]

The minimum MSE of Uy,

of & U aerUsstn? + UsaUatr® = UeowaU paelUsns
4 Uy ~Ueny'

9t Estimator

Substituting values of y_,, and ;c-,: in equation (6.55)

Jligerof(3-4 4 (g 4 foararnnm]

(A47)
(-422)
U,-Y= )(1+z, 54 _‘L+ ll’)_'_‘ly( 94 3-9’1,’”“ .91,1,)
2,2 (A48)
AX(A.-'“')
Applying expectation
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bm(v.)=?[1—1’-2’“+a.m]+q?(1+1§’i-="gu)+¢,79—’2"4-?' (A49)

+z«,77(m,'—z..&)-w"’(%‘ R s};_ mé'i*""") (A30)

-24.7?(&4—’—‘2"1]

Applying expectation

—2 9
- MSE(U,)=7 (,,o+T”'—.9r;.,l)+¢i’ud,(,,+¢,’u,,(,,+2¢¢,UC,(,, .

—20U py,) — 26Uy,

(AS51)

where

Uy =7’1(I+r’n+%—29%,+%9’r’,)’
—2

UMI) =X >

Ucs) =YX(81,~1),

Uiy =?7(n,,. —%) *

Differentiating MSE partially, with respect to @;and @, and equating to zero, we get

the following optimum values of @,and @,

" )=U,,(,)U,,,(,)—U‘ WUty | 4 )=Ua(n)Un(n)‘Uno)Umo) _ (say)
) — 2 apt ~ 2

UsssUssty ~Uesty U syUssty ~Uosy
The minimum MSE of U,
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_ UlUswi +UnstUnsty’ = 2U coUomi Ui
Msgm(uh)ﬂ’(,k,,%l_g%)_ )V s) T a5ty oar) o)V o)V e | (AS2)

]
U.sa Uty =Uews
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