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Preface

Robust regession provides an alrcrnative to least squarcs regression that works with

less rtstrictive assumptions. Specifically, it provides much better rcgrssion coefficient

estimates when outliers arc pnesent in the data. Outliers violate ilre assumption of

normality of residuals in least squarcs regression. They tend to misrepresent the least

squarcs coefficients by having morp influence than they deserve. Tlpically, you would

expect that the weight attached to each observation would be about L/n in a dataset

with n observations. However, outlying observations may receive a weight of 10, 20,

or even 50o/o, This leads to serious distortions in the estimated coeflicients. Because of

this distortion, these outliers are difficult to identify since their residuals arc much

smaller than they should be. When only one or two independent variables arc used,

these outlying points may be visually detected in various scatter plots. However, the

complexity added by additional independent variables often hides the outliers from

view in scattcr plots. Robust regression down-weights the influence of outliers. This

makes residuals of outlying observations larger and easier to spot. Robust rcgression is

an iterative procedule that seeks to identify outliers and minimize their impact on the

coeflicient estimates. Randomized rcsponse technique (RRT) allows respondents to

mark their actual response by giving a scrambled response which makes the rcsearpher

at later to unscramble at an aggregate level but not at an individual level. In this thesis,

we focus on generalized quantitative scrambled rcsponse methods and some

generalized ratio-type estimatorc, which have been proposed for a finite population

mean of a sensitive variable based on RRT by using sensitivc auxiliary variable. These

estimators have been proposed under different sampling designs, such as simple

random sampling, stratified random sampling, systematic random sampling and trno

phase sampling.
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chapter I is the introductory ohapter in which detailed explanations of robust

regession tools is provided. Furthermore, we also discussed the concept of simple

mndom sampling, stratified random sampling, systematic sampling and fwo phase

sampling.

Chapter 2 presents the theoretical study of proposed robust regression estimators for

sensitive study variable. The proposed robust rcgrcssion estimators require less

supplementary information as compared to robust ratio type estimators. The mean

squar€ error (MSE) equation for the estimators are also obtained. The superiority of the

proposed class has been evaluated by simulation study utilizing bottr ttreoretically and

empirically. One real and one artificial population is utilized for this purpose. The

proposed class is rpcommended for survey practitionem as it strength expand the

probabitities of getting increasingly eflicient results of unknown population mean of

sensitive study vaqiable.

The results of this chapter arc published in Communications in Statistics'Theory and

Methods. DOI: 10.1080/0 3610926.2019.1645857.

Chapter 3 proposes two classes of estimators whenever data is contaminated with

outliers under systematic random sampling scheme. At first we develop ratio type

estimators based on robust regression tools. Secondly, we develop regression type

estimator based on regression tools. It is seen that proposed estimator perform better as

compar€ to ratio estimators. The results of this chapter are published in Fnesenius

Envinon mental Bulletin (IT,B).

Chapter 4 Delivers a class of robust- regession type estimators for mean estimation

under simple random sampling and two- stage sampling schemes when quantitative

supplementary information is available. We also find MSE and minimum MSE

expressions of the proposed class. The proposed class of estimators has been compared

(j
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with prevailing ones. Based on empirical and theoretical percentage relative efficiency

(PRE) results, it is clear that the proposed class perform better as compared to

traditional mean estimator, traditional regression estimator.

The results of this chapter are published in, The Electronic journal of Applied

Statistical Analysis (EJASA).

Chapter 5 is based on the information related to two auxiliary variables. A novel class

of robust regression estimators for mean estimation is suggested. The proposed

estimators atre an extension of Abid et al. (2018) work and rely on robust regression

tools. Three real life data sets in the presence of outliers have been considered in the

numerical illustration. It is observed that the values of the PRE of the proposed

estimators arc much higher than those for the existing estimators.

The results of this chapter are submitted for publication in Journal titled PLOS ONE-

Chapter 6 focuses on modifying the combination of combined ratio and product

estimators to estimate the population mean under stratified sampling scheme. For this

purpose, different new estimators ane proposed and eompared with the existing

estimators in stratified random sampling. Numerical results of the suggested and

existing estimators are based on the MSE. All results indicate that the mean square error

of tfte suggested modified estimators is lower than the MSE of existing estimators.

Thenefore, the suggested modified estimators arc the better and more eflicient

estimators as compared to the existing ones. The results of flris chaptcr are published in

The Journal of Science and Arts (JOSA).
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a Chapter I

Introduction

l.l Background

We are Iiving in an "information era". By using this term, we need not onty the

sufficient information but also speedy work of data collection. So, the question is this,

if we necd information on urgent basis, then how it possible that our collecrcd

information is accurate? Also that gathered information is also useful for the future

decision-making processes. We arc facing these types of challenges on daily basis, e.g.

government tasks, business decisions, clinical investigations, etc. This is not surprising

for us that how minimal information, can be useful for these tasks. For all these required

information, sampling is the corc field in research literature. For instance, the European

Union Labor Force Survey (EULFS) provides the labor strength on quarterly basis,

which conducted by Euro stat, to understand the market share behavior, the profiling

Segment Survey (PSs), provides us very rclevant information. Also, to assess the level

of anxiety, the National Co-morbidity Survey (NCS) gives very useful information.

Finally the main objective of the sampling is to estimate the prevalence featurps of the

popu lation parameters.

Most of the time information about a study variable is difficult to collect but it can be

with the help of another correlated variable (supplementary information). In statistical

Ianguage, the additional or extra information, which is uscd for morp efficient rpsults

of the study variable, usually called auxiliary variable. The early evidence to use an

auxiliary variable as a helper variable, for morc information, someone can consult to

Lohr (1999), where he discussed how Laplace used auxiliary variable to estimate the

0
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total population of France in lEscentury. Specifically, Laplace stated that how one can

determine the total population of great empire by just maintaining the birtfi rpcord.

Wright (1928) provided us another interesting example that how can we used the

auxiliary variable to estimate the import ariff of butter with vegetable oils, whercas

dairy area used as auxiliary information in Unircd shtes. Some time, we have very low

information about study variable and then in this situation, King d al. e007) suggestcd

that how an auxiliary information can be helpful in the analysis of aggregah data. In

sunvey sampling, the mean estimation is the prime concerns and this can be improved

by using auxiliary information's, see, for exampre, Koyuncu and Kadirar (2009);

Koyuncu (2012); shahzad et ar. (2019) and Hanif and shahzad (2org).

In survey sampling, the outliers are frequently occuned and crcate problem to estimate

the population parametets, especially in highly skewed economic populations. For

simplicity, we can define the outliers as those sampling units which have large

deviations fnom their respective expectations. If there are outliers in the data, then they

can be misleading from the tnre estimates. For example, one or more sample

observation can be contributed a large proportion to estimate total population. The

prcsence of outlier even mild outlier can be de- track the original population total

estimates' Hence for ultimate estimates, someone can use some robust based

approaches to control the estimates which effecrcd due to outliers.In classical multiple

regession analysis, the ordinary least square (OLS) estimates are best one basic

assumption arc fulfilled. on the other hand, when one or morE assumptions arc not

fulfilled then oLS estimates arc not usually accurate. Especially, the normality

assumption can be violates in the presence of outliers. ln general, the results are affected

when outliers involved in the study variable or in the auxiliary variables. In the present
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study, we will also discuss that how handle the outliers throughout the estimation of

mean.

1.2 Sensitivevariables

In simple wotds, the sensitive survey is the survey where the respondent feels unsecur€

t'o provide hiVher information. This types of survey, usually comes across the social,

personal and health related phenomena. For example, if we put a question to a student

about hiVtrer marks based on cheating? Similarly, suryey related to drug uses, abortions

and assaulting someone arc also sensitive in naturc.

There arc survey studies in literature that rcsponse rate is between 40 to 50 percent can

be considered as an excellent output. Someone can consult to some of the related

studies, such as, Fan and Yan (2010) and Miller and Dillman (201 l). But if few or mone

sensitive questions are the part of the survey questions, then it is really difficult to get

rcsponses from the respondent.

In literature, therc are a lot of approaches have been used to deal with the problem of
non-rcsponse or false'rcsponse. Herc, rcsealthers are just happy when t6ey have a non-

rcsponse than a false-response. Reynolds (1982) suggested l3-points based SDB scale

to quantiS the strength about the rtsponse by respondent. This scorp is very much

imporant to use for group comparisons. One of the well-known approach is also used

with the help of psychologists ie Bogus pipeline (BPL). sigall (lg?t)reviewed about

BPL, l'e' a fake lie detector test based on machine, where respondent,s figurc touches

on the machine to get information from respondent. This fear complex may be the

sounce to get accurate information.

a
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Warner (1965) suggested a most scientific approach bascd on probabilistic phenomena.

This approach is called Randomized Response Techniques (RRT) and we will discuss

it with details in next section. In simple words, these models give enough privacy to the

respondent to overcome the false rcsponse rate. On the other hand, a study about

measurcment en:or is still important in the models of RRt wherc we need morc

accurate confidence intervals for unknown parameters like population mean and

proportion etc.

1.2.1 Randomized nesponse techniques

Randomized rcsponse techniques (RRT) build the rcspondent confidence about hiVlrer

privacy and allow an altprnative way to show his/her responses through random

devices. The basic purpose of RRT is to mask the respondent with rpsponses.

For perconal or sensitive questions, it is difficult or even impossible to take r€sponse

from the respondent. For this tlpe of survey, some time, and the respondent do not feel

to r€sponse or if by forpe take hiVher nesponse, then proportion of false rcsponses may

be increases. Initially, warner (1965) proposed this RRT in a very simpre but in

meaningful way and after that therp a lot variants in literature. Some of them arp:

Greenberg et al. (1971); Gupta et ar. (2006,2010) and Huang et ar. (2010), etc.

Basically, the RRT model was based on binary rcsponse phenomena. lt was done by

directly asking a question to a randomly selected pcrson. Few rcspondents arp asked

'did you put on a wrcng income tax return in previous yeafl'In this scenario, the

rcsearcher does not judge that which rcply come from which responden! because of
scrambled or randomized base rcsponses. For compiling atl these responses can be

unscrambled as a whole but not at individual level. Hence, one can easily estimate that

a
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how much proportion ofthe tax payers involved with accurate taxcs during the last year

without knowing their identities.

In lircrature, there are many vercions of RRT but we can easily differentiate it into nrro

major branches, such as, quantitative and qualitative. In qualitative nesponse, we need

to collect the information based on binary nesponses or simply estimate the proportion

for some specific behaviors. For example, we want to estimate the proportion of the

people, who drink coffee today. For this, wc put two questions to the respondent based

on RRT phenomena.

The quantitative lEsponse models are being used to tackle the expected value for some

population's behavior. They are mostly divided into two major Ctasses: additive and

multiplicative models. For example, the standard deck of cards can be used to estimate

"daily consumption for average number of cups of the coffee". For this rcsponse the

respondent pick a card randomly and provide hiVtrer rcsponse by using the sum of card

value based on additive models and use product of card value for hiVher response based

on multiplicative models. In this resealch, we only focus quantitative response based

randomized rcsponse models. For how can use multiplicative scrambling models,

someone can consult to Eichhorn and Haye (19g3).

1.3 Simple random sampting

The simplest design in probability sampling designs is simple random sampling wherc

all units have equal probability for selection. In this procedurc, the sample may be

dravm in two different ways: simple random sampling with replacement (SRSWR) and

simple random sampling without rcplacement (sRswoR). In sRSWR, a sample with

unis of n be chosen fiom the target population one by one and the selected unit is

replaced before the next trial. In this situation, the probability of drawing any unit in

0
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SRSWOR, the unit is not being replaced for ttre next trial and probabilities aref '

I 
ana * for the first" second mdfidraws, respectively etc. Hence, !

lv-l (N-r-l) 
rg 4tnl srew', rvsrvvr"r'r -*'---- --' jV

is the probability to draw a specified unit at any draw f, is inctuOed in the sample' We

will focus on SRSWOR throughout the thesis'

1.3.1 Non+ensitivevariable

In a finite population with size N, we draw a sample of size n by using SRSWOR' If,t

b,,x,) Ue tfre selected values from a bi-variate population(f,,X,)'

Let S, and S| bethevariances, C, and Cx ucoeffrcientofvariation,and prrbe

the coeffrcient of correlation for the study variable (I) and the auiliary variable (,Y).

13.2 Stldy variable as sensitive and auxiliary variable as non'oensitive

Suppose, we have a bivariate population where study variable I is sensitive and

auxiliary variabte X is non-sensitive variable with a positive correlation. lrt we have

another scrambting variable,s , which is also independent with our study and auxiliary

variables. The respondent is asked to reply his/her response through Z =Y + S along

a true rcsponse for variable X , see, for example, Gupta et al. Q002).

For this, we can choose a random sample with size n by using SRSWOR from a

population with sizc iV . The observed values are in the form of (y,,x,,2, ) whercas,

(Y,,X,,2,\ arp the true values for the study, auxiliary and scrambled variables. The

i'|*o for a sample of size z will bt# ' On the other hand' for

O
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population variance of scrambled variable is denoted by S2 along coefficient of

variation witlr C, .

1.4 Stratified random sampling

The main objective in the problem of estimation is to choose an accurate or reliable

estimator for the population pararneter, which is used to keep all the desired features of

the population as well. When all the units in the population are homogenous with

respectto a specific characteristic, then simple random sampling (SRS) yielding a good

estimate to estimate the population, etc. In this situation, the sample by using simple

random sampling is free of non-sampling error. On the other hand, when units arp not

homogeneous under a specific study, then SRS gives biased rcsults due to highly non-

sampling emor. In this situation, an alternative sampling design, i.e. stratified random

sampling, can be used to avoid the above mentioned rcview problems due to SRS. The

stratified random sampling is used in the following way:

o First a haerogeneous population is divided into subgroups based on the

homogenous characteristics. Thc groups are called strata, wherc the term

stratum is used for a single group.

o In simple wotds, the units within group arc homogenous and hetercgeneous

when comparing to other group's units.

o Each single stratum is used as a separat€ population and sample can be drawn

by using SRS approach.

The following are the notations, which are used throughout the thesis for stratified

random sampling.

/V: Population size

a
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L i No. of strata

ilr, Population of hh stratum, wherc, h =1,2,...,L.

ni Sample size

nri Sample sizpofh'h stratum,wherc, n=fnr.
h=l

Advantages of stratified sampling:

l. This design is useful when population is hetencgeneous.

2. Suatified sampling is not only helpful to estimate the population parameters but

also estimates the subpopulations.

3. Most of the cases, the sampling frame is different for the whole population but

after dividing into subpopulation, then it may be available.

4. For a large population, it is not an easy task to handle i! but after splitting the

population, it can be convenient to handle it.

1.4.1 Non-Sensitive variables

Consider again a population of size iv and divided this into z strata, wher€, tr, =,
h=l

. Now, a simple random sample of size z, fiom stratum h md fnh = il .Let (y^,,x^,)
t=l

be the selected pair of values on the behalf of true values of (yr,,x^,), where rand

X are the study and auxiliary variables, respectively from the i,, unit of the selected

/r" stratum.

Also, ,Sr|, Cr and Sh, Co are the variances and coefficient of variation of study and

auxiliary variables, respectively artd pw be the correlation coefficient in h,h stratum.

I
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1.4.2 Study variable as sensitive and auxiliary variable es non-sensitive

If study variable, Iz is sensitive but the auxiliary variable, X is non-sensitive and has

strong conrelation betnreen them. For RRT, we assume a scrambling random variable

.S with known distribution but zerc mean. The respondent use an additive scrambled

rcsponse to report hiVher rcsponse for study variable, as Z = f +,S, but on tlre other

hand, hiVlrer true nesponse about auxiliary variables is required. Here, we supposc

(!1,,xs,,21,) are the observed values and (Fr,,x1,,zs,) are the accurate values for

study, auxiliary and scrambled variables, rcspectively, associated with i'r unit of flre

lz'r stratum.

slr and s.i, are variances, C4 and Co are coefficients of variations with pz* is

denoted as the coeflicient of correlation between scrambled and auxiliary variables in

f i stratum.

1.5 Systematic random sampling

Systeinatic sampling is also a type of ra,ndom sampling. In this approaches. firct select

a random unit of the population then after a fixed or periodic interval, the second unit

is selected and so on to complete the required sample size, i.e. z. It can be used when

a low risk of data manipulation. It can also be preferred than SRS when morc study area

needed to be coverpd.

In survey, the systematic sampling is a statistical procedure to select the units from an

ordered sampling frune. The one of the most common method in this approach is

equiprobability approach. In this method, progression through the list is used circularly.

This approach is started with a randomly picked element and then after each K,,

O
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element, select the every next unit as l( = { with Kas sampling interval,/Vas
n

population size and z as sample size.

Using this procedurc each element in the population has a known and equal probability

of selection. Through this approach, the systematic sampling works exactly similar to

SRS. But actually this is not happened because not the each possible outcome has an

equal probability to of being chosen.

logically, the systematic random sampling can only be applied when the target

population is homogeneous. Before using this, ttre rpsearcher should awar€ about any

pattem because, it happens then he/she should it will not possible to take desired rpsults.

1.6 Two-Phase Sampling

In ratio and regression estimatorc, someone use the knowledge of auxiliary variable to

estimate the required parameters for the study variable. It is not possible to collect the

information about auxiliary variable, then one of the following two options can be

adopted. One of them is very simple and straight forward select a sample only on the

behalf of study variable and its estimator is used for the population parameter. The other

one can be used when someone has an enough budget to collect the information about

auxiliary variable on large scale and find a good estimator for the auxiliary variable.

The second approach is appropriate when the collecrcd information is not in tabulated

but in file cards only. After a large preliminary sample size n, choose a subsample of

size n from this selected sample to collect the information for study variable. After

this, these two estimates ane used to find the population parameter for study variable.

This whole procedure is called double sampling or two-phase sampling. It is useful

when cheap and quick rrcsults recorded but a high comelation required between study

I
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and auxiliary variables. Because of a large sample is required preliminary, the two-

phase sampling is a cost-effective design.

1.7 The robust regression

In general the ordinary least square (OLS) gives optimal estimates in rcgression

estimation when its basic assumptions are fulfilled. On the other hand, when one or

morc assumptions are invalid, then OLS gives poor estimates. To diagnose the

breakdown in assumptions, someone can plot its residuals. The residual diagnostics are

sometime difficult to capturc as well as time consuming procedure. The alternative

approach which is less restriction about OLS assumptions is robust regession method.

This approach is provided a better bit in most of the cases when data contain outlierc'

even mild cases. One of the simplest approaches to estimate the parameters through

robust methods is the least absolute deviations (LAD). The LAD is less sensitive in the

prcsence of outliers, but they can put a significant impact in the model. It may lead us

to search more useful robust approaches.

In the mid of 1960s, Huber (1964) provided M-estimation for rcgression, where M

stands for"maximum likelihood type" estimation. This method is robust in the prcsence

of outliers in ttre response variable only but not gives any resistance when outliers arp

in explanatory variables. To tackle this problem, in literaturc severat alternative

approaches have been proposed for M-estimation, for example, Rousseeuw and Ryan

(199?,2008).

Theil (1950) and Sen (1963) proposed a Theil-Sen estimator which is popular and

statistical eflicient but has lower breakdown points than least trimmed square (LTS).

Another approach has been proposed in the litenature with the name of S-estimation.

By using this approach, someone finds a line on a plane or hyper plane which minimizes

I
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the robust estimate of the residuals. It is more likely to resistant in the leverage points

with a robust behavior to tackle the outliers in the rcsponse. However, this approach

has been declared as an inefficient in litcrature.

Another method, which is called MM-estimation carries to retains the robustness and

gaining efficiency of M-estimation, whilst resistance of S-estimation. It proceeds by

gaining a highly robust and resistant S+stimate which minimizes an M-estimate in

rpsidual's scale. The estimated scale is considered as constant.

The robust regrcssion is an ircrative process to tackle the problem with outlier's data

and reduces their impact in the rcgression coeflicients. The basic objective is to use

robust regression to locate reliable estimators of the parameterc when outliers af,€

pr€sent in the data. By using robust techniques, the sum of squared residual, are handled

through some functional observations instead ofordinary approach by using OLS. First

of all, therp methods directly apply on data to fit the rcgession and then locate the

outliers. The robust techniques are required the basic three properties, i.e. efficiency,

breakdown point and bounded influence. Here, the breakdown point is the least fraction

of the outliers to bears the tendency by an estimator. The bounded prope$ provides a

rcsistance against outliers by the estimator. This gives opporhrnity to the OLS by

allowing the leverage point to exhibit a grcat influence.

1.7.1 Least absolute deviation method

The least absolute deviation (LAD) regrcssion was pnoposed Boschovish (1757), which

is still used as an altemative of least squares approach. LAD was improved by

Edgeworth (1887), which minimizes the sum of absolute error in the following way:

minilel.
r=l
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LAD is helpful to decrease the influence of outliers in the prospective of y -variable by

OLS. On the other hand, it can be sensitive to detect outliers from the auxiliary variable.

This is happened because of the low breakdown point of LAD with ratios I and
n

lim 1= 0.
t)@n

1.7.2 Least median of squares method

To detect the outliers, another rcbust approach called least median of squarcs regression

(LMS) can be used. For morc about this approach, someone can consult to Rousseeuw

and Leroy (2005). In general, this method is using the median as enor squarcs instead

of mean as:

min.median(e!).

This method is declared as robust in the presence of outliers in the direction of both t
and X with 0.5 as a breakdown point see, for example, Rousseeuw and kory (2005).

1.73 Least trimmed squarc method

In least trimmed squarts method (LTS), the square etrcr term is sorted in ascending

order, then sum of the firx Z -observations are taken and minimized the following

equation:

- P, - B,r,f .

1.8 M- Estimatorc

For the parametric estimation in regression model, Huber (1964) introduced another

estimations appoach, i.e. M-estimation. This approach is based on maximum

o
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likelihood estimate but with efficient performance than OLS. Fox (2002) extended this

estimation technique and suggested an alternative method which is mostly used in

ncbust regression nowadays. In the pEsence of outliers or even mild outliers, this

approach gives good estimates of parameters. We can obtain the parametric estimates

by using the minimizing the residual function. Hence, the objective function of M-

estimarc can be written as:

Bn = minll!, p(Yt-Ef*xilFi) (l.l)

The above function gives a system of normal equations which is required to be solved.

For solving this system, someone can differentiate this normal equation by using partial

derivatives with equating them to zerc. The following is the final form ofthis estimation

technique:

Bu = @'wX)-L(x'wy),

wherc, w is the matrix having diagonal values of the weight matrix.

(r.2)

a

l.t.l Huber-M estimation function

Theclass ofM-estimationwas suggested Huber(1973). Which is based on anyfi,rnction

of outlier rather than the enor square? Also, these methods are robust only when outliers

in the direction of y -variable. The objective function of M+stimator is:

*inln(e),
r=l

which is symmetric.

Huber's function p canbe written as:
2,

t4



a

t,'
ok)=l' t2 lrl < t.

144-+

f.t.2 HampleM estimation function

The Hample- M estimation function was prcposed by Hample (l9zl) and can be

as:

v'
2

p(v)=
Arl-l

ib?-v)'*l(o*"-o)
itt*c-a)

wherc, a = 1.7, b = 3.4and c=8.5.

1.t.3 Tukey-M estimation function

It was proposed by Tukey (1977) and can be written in the following way:

a

pLu) =
*[, [,-(*)']'] , tyt<x

1
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1.9 Objectives of the Study

The main pupose of this study is to develop randomized responsemodels and estimator

population means of sensitive characteristics using non-sensitive auxiliary variables.

The main objectives are:

the population characteristic using robust regression tools.

estimating the population characteristic using robust regression tools.

sampling scheme for estimating the population characteristics using robust

reglession tools.

study and real life applications.

estimatorc.

l.l0 Literature suryey

In literature, a lot of rcchniques have been developed for the estimation of rcgression

coefficients. The most basic and popular method is known as the name of ordinary least

squar€ (OLS) and coined with nuo well-known researchers, Carl Friedrich Gauss and

Adrien Marie Legendre in the first decade of 1800s. The basic theme to use this

approach is to minimize the sum of squared of emors. Since then because of its

authenticity and explicit naturc, it became the onty choice in regrcssion analysis for

many decades.

o
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After using the Gaussian distribution as the enor dishibution by Guass, it became

optimal with very useful mathematical rpsults. Tillto date, the OLS procedure is being

used on popular basis because of ease of its computation. The otlrer method which is

called least absolute deviation (LAD) was proposed by Edgeworth (1887). According

to his views, the enots squared by OLS method have a significant effect on the

parameter estimatols, so LAD is better choice in the prcsence of outliers. In current

literatule, the other apprcaches are being utilized as the alternatives of OLS and I-AD

methods. The difficulty to ackle the real-life data and advancement of computer

technologies, rcsearchers arp developing some rcasonable approaches.

In lircrature, a lot of methods have been proposed to tackle the problems of outliers.

Huber (2009) suggested a family ofregression estimator, i.e. M-estimators with the aim

to minimize, irfu,), whereas p(u,) is some symmetric function of emors.
t=l

Rousseeuw (1984) proposed another class of estimators known as least median of

squares (LMS). The LMS is a similarto OLS instead of mean deviation because in this

approach median is used for squared deviation. The LTS has also developed by

Rousseeuw (1984), which is used to minimize the ft-ordered square residuals with Ir

is consistent which is essential to be determined. In this all those summation arc

included which have largest squared residuals.

For efliciency and high breakdown point Yohai (1987) proposed another approach,

which is called MM-estimation. After almost one and half decade, Gervini and yohai

(2002) suggested another class of estimatorc which are called robust and efficient

weighted least squares estimatorc (REWLSE).

O
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In rccent past, Li et al. (201l) suggested a class of robust techniques which depend on

the regularization in the desired pararneterc for each r€sponse. Their study frrrther

verified that M+stimation is the special case of the suggested approach. In ttris

prospective, someone can find another estimator in Marona et al. (2006). Another study

related to robust measur€ through regression analysis is known as, the rpbust coeflicient

of determination, was proposed by Renaud and Victoria-Faser (2010).

A comparison study is available in literahrre between four ncbust rcgression approaches

and OLS method conducted by Alma (201l). The four used methods in Alma (201l)

study werc LTS, M-cstimate, S-estimate and MM-estimate. In their conclusion

rcmarks, the S-estimate and MM+stimate perform best with thc prsence of outliers.

Mohebbi et al. (2007) also compared two robust methods, i.e. Huber M-estimate and

LAD with some nonparametric methods. They concluded that LAD and Huber M-

estimate are suitable in the heavy tailed distribution whercas nonparamefiic and LAD

regession apprcaches arc the good choice in the presence of skewed data.

Al-Noor and Mohammad (2013) compared some nonparametric techniques with three

robust methods in simple linear rcgression models. In their study, they suggested ttrat

LAD and M-estimation are good approaches when need to compare with nonparametric

and OLS methods in presence of outliers.

Since the introduction of RRT, a lot of vercions have been proposed by several

rcsearchers in both setups, l'.e. quantitative and qualitative. Throughout this study, we

focused on the quantitative randomized rcsponse models, only. These models are used

to handle the sensitive chamcteristic by the respondents. These approaches give an

opportunity to provide their rcsponses without showing ttreir identity. They atso provide

I
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a random behavior betrueen asking the question and the individual's response. In this

context, Warner (1965) provided thc following model:

z =Yp+(r -p)(l - r). (1.3)

The quantitative additive vercion of Warner (1965) for full randomization model is

specified by Warner (1971). It was complaely rurdomization model with respect to

their rcsponses based on random device with known mean and variance.

Mathematically, in additive model, let Z and Y are used as reported response and

sensitive variables, with both 14 fid ol are unknown, wherpas S is scrambling

variable (independent of f ) with known true mean #s md known varianceal. The

model is in the following form:

Z =Y +5.

Taking expectation on both side,

E(z)= r(r) + r(s)
= lUt fis

(1.4)

(l.s)

By solving equation (1.2), we can obain the following unbiased estimator of mean as:

0

ltrw =Z -F*

The variance is given as,

Yar(fin)=rtar(Z)=4-,
n

rtar(h*)=+.+.

(1.6)
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Kumar et al. (2016) provided some ratio type estimators with sin few modifications in

the mean by using non-conventional measurcs of dispersion, such as Gini's mean

difference, Downtown's tcchnique and moments based on probability weights

suggested by Abid et al. (2016). These are with linear combination of skewness and

kurtosis of auxiliary variable. In this study, up to first order of approximation of the

large sample properties ar€ studied for bias and mean squared error. A ttroroughly study

of the newly developed estimators along with the comparison with competition as well.

Abid et al. (2016) evaluatpd conventional measurcs of location which are commonly

used in the development of ratio estimators. We attempt to use some non-conventional

location measures, for example, Hodges-Lehmann, tri-mean and mid-range of the

auxiliary variable in this study. To improve the efliciency of the newly proposed ratio

estimators for population mean, the coefficient of variation, the correlation coefficient

with the linear combinations of auxiliary variable is also exploited. For tlris, the

underline assumptions which are also associated with newly developed estimators are

evaluated with the help of bias and MSE.

Subzar et al. (2020) suggested that the robust regrcssion methods for simple random

sampling without rcplacement (SRSWOR) by using the Boweley's coefficient of

skewness as supplementary information. For these newly developed estimatorc, the

authors used the simple OLS, Mallows GM-estimate, Huber-M, SIS GM-estimarc and

Schweppes GM-estimate techniques for estimation of population parameters.

In rccent past, Shahzad et al. (2021) suggested a quantile-based regncssion by using

MCD based parametric location measu€s etc. In tlreir study, they have also provided

the mean squaned elronl for all the suggested estimators. Other than theory percpective,

we also conduct a simulation study to measure the performance oftheirnew estimators.

a
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Zamanaal.(202l)improvedthe Shahzadetal. (2021) estimators byusingalotofnew

robust regrcssion approaches. They compared their estimators with the several

a
competitors' estimators which are prcsented in literature.

By the rpviewed robust regression coefficients, we will also develop some new

estimators for effrcient estimation of population mean. Further, Additive and Bar-Lev

models will be used for the case of sensitive study variable.
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a Chapter 2

Robust regression type-estimators for sensitive variables.

2.1 Background

In surueys concerning delicate inquiries, for example, betting, liquor addiction, sexual

conduct ta,r avoidance, illicit wage and else, coondinate procedures for gathering data

may pompt talked with individuals to give unruthful or deceptive reactions

(responses). To decrease non-rcspondents rates and one-sided reactions emerging from

sensitive, humiliating, thrcatening questions, a few statistical pnccedures might be

utilized to guarantee inrcrviewee anonymity or, a higher level of certainty. Such

procedures, known as randomized response strategies or techniques, utilize a

randomization gadget, for example, a die or a deck of cards, instead of a hre reaction

to gather solid data on sensitive issues. Based upon the result cteated by the

randomization gadget, the interviewee gives an answer concerning hiVher actual status.

Since the questioner is unconscious of the aftereffect of the gadget, the utilization of

these strategies guarantees that respondents can't be identified based on their answerc.

Warner (1965) was the first one who introduced a randomized response method. After

that many authors extend their work such as Pollock and Beck (1976) and Bar-Lev et

al. (2004).

In case of sensitive rcsearth, estimation of mean is a major concern in survey studies

and regression estimators utilizing taditional regncssion coeflicient arp the most

favored choices for it. Recently, Zaman and Bulut (2018) suggested a new class of

ratio-type estimators for the mean estimation of non-sensitive variable utilizing rcbust

rcgression coefficients. In this Chapter, we have generalized their family of estimatorc

C)
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to the case where the study variable rpfers to sensitive issues which produce

measupment erors due to non-tesponses and/or untruthful reporting. These erors may

be reduced by enhancing respondent cooperation through scrambled r€sponse methods

that mask the true value of the sensitive variable. Hence, two scrambled response

models by Pollock and Beck (19?6) and Bar-Lev et al. (2004) are discussed for the

pur?oses of this research. In case of sensitive research, we developed a new family of

robust regression-t1pe estimators. Some estimators belonging to the class are shovvn

and the mean squarc errorc are determined. Theoretical and empirical illustration is

done through real and artificial data sets for assessing the performance of adapted and

proposed class.

Many authors, such as Koyuncu Q0l2); Shahzad (201 6) and Shatrzad et al. (201?) have

developed a family for simple random sampling's estimators by involving auiliary

information when study variable is non-sensitive. Similarly, Shatrzad et al. (2018) have

studied ratio, exponential and traditional regression estimators for meut estimation

when study variable is sensitive. [n case of positive conelation, ratio-typc estimators

are suitable for mean estimation. But when outliers are presented in data, these

traditional estimators ane not suitable and hence not provide much efficient nesults.

Keeping this fact in mind, Zrnan and Bulut (2018) introduced robust ratio type

estimators for non-sensitive study variable. Taking motivation from ttreir work, we

have generalized their estimatorc defining a mor€ general class of robust-ratio-t1pe

estimators for the sensitive setup. After that, we also contibuted a new family of

robust-regression-t1pe estimatorc for sensitive sefirp under simple random sampling

scheme.

The rcmaining part of this chapter is constructed as follows: In Section2.2, we have

inroduced the basic terminology and generalizedZunanand Bulut (2018) robust-ratio-

I

}



a

type estimators for the sensitive setup in prrsence of supplementary information. [n

Section 2.3, we have proposed the new family of robust regrssion-type estimators with

MSE up to first-order of approximation. In Section 2.4, we have discussed the

efficiency of proposed class over the adapted estimators through a real and an artificial

data set. For sensitive setup, Pollock and Beck (1976) and Bar-Lev et al. (2004)

randomized techniques are used. Both, theorctical and empirical illustrations are

performed for assessing the efliciency ofproposed class. Conclusion ofthe whole study

is provided in Section 2.5.

2.2 Generalized family of estimators

In current section, following Zaman and Bulut (2018) we try to define a morc general

class of ratio-type-estimators utilizing robust regression methods namely: LAD, LMS,

LTS, Huber-M, Hampel-M, Tukey-M, and Huber-MM forthe estimation ofpopulation

mean of sensitive study variable Z utilizing supplementary variable X under simple

random sampling scheme. The most popular method for estimating the parameters is

the least squarcs (LS). One of the simplest robust alternatives to the LS is the least

absolute deviations (LAD) method which was introduced in 1757 by Roger Joseph

Boscovich. Huber-M technique developed by Huber (196t) which was the next step

towards nobust regression.

Huber (1973) extended his own work and utilized this technique in regression

modeling, hence a new robust regession estimate developed. The main therne of this

technique is to replace squared errcr in ordinary least square by p , whert p is some

symmetric function. Many authors extended the work of Huber (1973)such as, Hampel

(1971) named as Hampel-M estimate, Tukey (1977) named as Tukey-M estimate and

Yohai (1987) named as Huber-MM estimate. We also utilize TLS, which is known as

o
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Trimmed Least Squares nobust regression method in presence of outliers, introduced

by Rousseeuw and Yohai (1984).

The last robust regression technique included in this study is LMS, which is known as

"Least Median of Squares" developed by Rousseeuw and Leroy (1987). This method

based on minimization of median of enor squarcs rather than mean of error squarEs.

For details about all these robust regression methods, readcrs are referred to Zaman and

Bulut (201E). Utilizing these measurcs Zaman and Bulut (2018) constructed a class of

estimators when study variable was non-sensitive. Now we arr considcring Zaman and

Bulut (201E) wor* for randomized rcsponse or sensitive setup. Randomized response

methods are utilized to diminish refusal rates and one-sided rcactions to delicarc

inquiries. Warner (1965) pr€sented the scrambling device for the extent of a population

portrayed by a delicate/threatening variable, which was based on the issues related to

sex, xenophobia, abortion, drugs etc. The purpose of these devices to get truthful

answers from respondents.

Quantitative randomized rcsponse techniques are utilized to estimate different

measurcs of descriptive statistics such as mean, variance, mode etc., in a population.

However, our study is limited to mean estimation. For instance, the delicate

investigation variable might be the aggr€gate number of premature births a lady has

had, the normal week after week liquor utilization, yearly income of individuals etc.

These Randomized response methods are categorized as additive or multiplicative

models. In additive model, the scrambling variable S (say) is added in the tnre rcsponse

of respondent. The distribution of S is known such as Normal, Weibull, and Uniform

etc. Similarly, in multiplicative model, the scrambling variable is multiplied with the

true response of respondent. The whole procedure is done for avoiding rcfusal rates

and getting morp truthful responses from respondents. For morc details, interested

e
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rpaders are rcferred to, Warner (1971); Pollock and Beck (1976) and Bar-Lav,

Bobovitch and Bouloi (2004). So we get here a motivation and extend the work

utilizing rcbust rcgression measues for mean estimation in sensitive setup.

We have generatized Zamanand Bulut (2018) class forthe case when study variable is

sensitive in natup as

z +b.(R -tl
Z . =- :-'\" : ' (4X +c,1, for, i = L,2,...,35 (2.1)-4 (rp +G,'1

wherp, 6, is slope or rcgression coefficient, calculated from the above mentioned

robust regession mettrods. Constants, 4*0 and G, are either (0' l) or known

characteristics of the population such as,C,, ttte coeffrcients of variation, pr(x),the

coeflicients of kurtosis from the population having iV identifiable units. We can

generate many new estimatorc using suitable variables forb,, 4 and G, s given in

Table (2.1).

Further, (X,Z)are population means, (f, Z) are their corresponding sample mean fiom

the finite population with simple random sample. Some members of the family which

are generated from 7* arepresented in Table (2.1).

Let, f , =' 
*!!! 

=r) 
.' " F,i +G,

a

Hence,

z* =?,(4X +c,\.

Now we find MSE of V*through Taylor series, defined as:

)
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n@,2)=h(R,z\+t-94] r.,F-r\.1ry\, (2.3)

HerE,

h(=,2)=i, and h(f<,Z)=?,,

llo,

i, = r*lryf 
r.,r, 

- r).lryl 
r.,r, 

- rr,

i 
= 
- r 

= 
=lrylr.,r, - r).1ry)r,,r, - rr,

,[z+4, 
(x-=))']

+le_rt
)r,

Now, partially differentiating ltt term w. r. t. x- and 2nd term w.r.t. V .

i, - r, =l-6 ffi]r,r, - r).[#]- 
-(, - 

z) e 4)

Now first squaring and then applying expectation. After that putting, i-X,V-2,

and 4 = B, . We get MSE of generalized family of estimators in comprcssed form as

given below:

) wr(Z*)=(Y)fs,,+nls,, +28,R*s!+nisi-2R4s--zrs=]. (2.5)

hJ

a

frfz+4,(x-;)]l
?=-r==l 

"t 
*.o ,, I tr-r).,L""l*
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for, i = L,2,...,35.

wherc,

_FN
R* = =-=-, for, I = Lrz, ,,, r35.il'l 

\i +G,'

Further,

Lv,-z)' LF,-r)'
Sl =k, S,'=fu=-, ane the unbiased variance of Z and X

respectively.

iv

Z?,-z)(*,-N)
S- =\11-, is the covariance between (x,z).

2.3 Proposed class of robust regression-type estimatorc

Motivated by Zaman and Bulut (2018) fiaditional ratio estimators, we prcpose a new

class of robust rcgression type estimatots for sensitivity issue as:

Zn, =v +b,(X -l), for, i = 1,2,...,7, (2.6)

The proposed class of estimators require less amount of information except V*,, l*r,

l*,,, 1,4", 1,4,, Vrrn, alrd 7+,.Asweknowfromlircraturethatmeanofthesensitive

study variate is unknown so the information of z is collected through sample. Two

scrambled response models:

(i) The (Pollock and Beck model, 1976), 12 = I + Sl

O

f
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(i) The @ar Lev et al. model, 2004), Z = Yl(L - P)S- + Pl are utilized for collecting

information about scrambled rcsponse. Our proposed class of estimators is bqsed on

simple the ratio (mean per unit) tyrye component. All the seven proposed estimators

rely on M, Tukey-M and Huber-MM methods for i(i =L,2,.-,7), respectively,

adaptrng Zaman and Bulut (2013). Interesrcd rcaders may refer to Zurnm and Bulut

(20r8).

for, ! = L; bro = Robust-tpgression coeflicient computed from LAD method

for, i = 2; bu, =Robust-lpgression coefficient computed from LMS method

for, i = 3; D,o =Robust-rcgression ooefftcient computed from LTS method

for, [ = 4i bm,= Robust-rcgression coefftcient computed from Huber-M method

for, i = 5; b,*, = Robust-tpgr€ssion coeffioient computed from Hample-M method

for, i = 6i b,+=Robust-rcgression ooefficient computed from Tukey-M method

for, i = 7i bn =Robust-rpgression ooefficient computed from Huber-MM mettrod.

Note that all the notations used inZ* already described in previous section. Further,

our new oonstnrcted class can be arranged in the framework of Mukhopadtryay (1998).

But we are implementing their frame work in case of sensitivity. Thercfore, taking the

benefit of known results with some simple algebra, avoiding tedious or fnritless

calculations, we mention the MSE exprssions ofthe purPose class of estimators, up to

order n-l as:

i,6E (Z N,) =1, (r) - 2B,Cov (i,z) + nir (t)).

$
o

\o
irl
I

a\N
a
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Now substituting,

C Y (z)=(#)tr, cov(r,z)= pos,s,, Y (i)=Yt:

And get final expression for MSE as follows,

MsE(zN,l=(#)t Z'ci -2e,fr p=c,c,+ aiX'ci), for i=1 2,...,'t (2.8)

where, C, is coeflicient of variation, p- is the coeffrcients of corelation between X

andZ,ln Table (2.2),we present all the members of the proposed class. Note that the

notations of descriptive measurcs (mean, variance, coefficient of variation etc.)

provided in previous section are based on general franre work. So, in this section, we

are providing the theoretical descriptive measurcs, keeping the fact in mind that data is

collected through two randomized methods as mentioned above.

9 In case of Pollock and Beck (1976)model,

V=Y+S

Sr' = Sr'+Sr'

Cr=r[ffi

^s,,,P'=ffi'
wherc,

tv iY

tt, -4(,,-x) io,-r)' :(o -t)'+,,=ffi, Jr=71, J,=71'
)
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In case of Bar Lev et al. (2004) model,

Z =71(r-P),s-+P],

s,, = f,(cl + r)[1r - r)S, (r + c,, )+ r)- 2,,

(2.e)

(2.r0)

(r-r)5'(r+ci)+r]-z'

e

(t-r)5+r (2.1l)

P== (2.t2)

Note that these, theoretical measurcs are also valid/applicable for generalized famity,

which we construct on the lines of Zaman and Bulut (2018).

2.4 Elliciencycomparisons

In cutrent section, regarding the amount of benefits which can be achieved utilizing ttre

proposed robust-regression estimatorc, we move towards simulation study. One real

(Pop- I ) and one artificial (Pop-2) population is considerpd for the purpose of this study.

Popl is taken from Singh (2003) p. I I I l,

wherc

X = Amount of non-real estat€ farm loans during l97T and,

I/ = Amount of real estate farm loans during 1977.

We consider this real population because it contains outliers. The size of population is

il = 100. We take a sample of size n = 20

)

s" L(t - P)s- + P

(r -r)S'z(t +c,')+rf-Z'
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Pop-2 contains artificial daa adapting Shahzad et al. (2018), having size of population

lV = 1000 generated from bivariate normal distributions for (f,x) with mean vector

(?,X)=(2,2) and variance-covariance matix given by Pop-2.

Itz 3lI=l^ ^1.LJ Z)

From both real and artificial populations, K'=6000 samples of sizr-n = 150 are

selected according to SRSWOR and for the t'tft sample the estimate d'(t')of Z lmean

of sensitive studyvariable) is compund A =Zq-Z*,Zn,-2n,. foreach adapted and

proposed class of estimators, both theoretical and empirical MSEs are obtained.

Following Koyuncu et al. (2014), the scrambling variarc, $ * N(zerqo), where, O is

the standard deviation equal to l0% of the standard deviation of auxiliary variable is

utilized. Note ttrat sarne scrambling device is used in bofl\ (D The (Pollock and Beck,

tg76) lz =r + Sl; (ii) The @ar Lev et al., 2OO4) lz =(t- ,)rs + pr] models. The

steps of simulation by adaping Kadilar, Candan and Cingi Q007) and Abu-Dayyeh et

al. (2003) are as follows:

Step l: A SRSWOR selected of size n from both data sets.

Step 2: Use the data of above step to find the value of mean.

Step 3: Step (l) and (2) is repeated f = 6000 (say) times.

Step 4: Empirical MSE is computed for each up-to /( and then averaged as:

MSE =zf-'erzf .

Step 5: Theoretical MSE is computed for each up-to f and then averaged as:

32
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MSE =E['(y-ss(zD'1, wherc z1 shows estimated mean of sensitive study variable for

i = L,2, -.,k nd Z is thc population mGan. It is worth mentioning that the values of

z1 calculated from equation (2.1) and (2.6). Note that Zaman and Bulut (2018) also

followed above mentioned simulation steps for onpirical MSE in case of nonsensitive

study variate. However, we have followed these steps for sensitive study variarc. For

theoretical MSE(z) we adapted Koyuncu, Gupta and Sousa (2014) in sensitive setup.

The rcsults of simulation study are provided in Tables (2.3 - 2.5).

2.5 Summary of the chapter

In this chapter, beginning from some recent utilization of robust rcgression on

design-based sampling from finite populations, we generalize Zaman and Bulut

(2018) family of ratio estimators to the case in which the study variable is thought

to be delicate/ sensitive issue and its values are gathered on survey units by means

of scrambled responses in order to secup rcspondent protection, improving

participation and diminishing nonrcsponse rate or potentially untruthful answers.

For this purpose, two scrambled response models namely Pollock and Beck (1976)

and Bar Lev et al. (200a) have been considered for pcrturbing thc appropriate

responses. Also, we develop new rcbust-regrcssion tlpe estimators(Z]7,) for

delicate study variable. The proposed new robust-regression tlpe estimators require

less supplementary information as comparcd to robust-ratio tlpe estimators. The

MSE equation for the new estimatorc are also obained. The superiority of the

proposed class has been evaluated by simulation study utilizing both tlreoretically

and empirically. One real and one artificial population is utilized for this purpose.

The numerical examinations well underline the predominance of the proposed class

a
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in sensitive setting, at least for the experimental circumstances considered. Thus,

the proposed class is rccommended for survey practitioners as it might expand the

odds of getting progressively eflicient rpsults of unknown population mean of

sensitive study variable.

Table 2.1: Generalized familv of estimators.

btl F,

-.-2,-lr- --_--- 
o'*' I o

,. Tt*l- ---i -- - - e

€)
Zzb'o Fr(*)

g,(r)

2zb" lc.
;---k(4 -

I c,

I)

Pr(*)

9r(*)
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Table 2.2: Family member prolo_sed class with_!4s_E!
MSE

9

Zn,=i*{(x-*\--
MsE(z *,) =(*)b' r, - 2B,*E p =c,c, + al, x, cll
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Table 2.3: MSE Pop-l (real) and Pop-2 (artificial) using the Additive scrambled
rcsponsemodel,Z=7+5

a
17475.68 226s6.98
17437.0 22578.42
t?33t.95 22366.09

0.05641

0.04882 0.05052
0.04442 0.04590

4750.66 22639.92 0.04365 0.05374
17359.14 22420.9 0.04379 0.04s25
t7346.il 22475.48 0.05269 0.05478
r7308.15 22397.43 0.04768 0.04937
t7203.62 22186.49 0.04386 0.04534
4726.71 0.04326

Ztzn 17230:67 22?-40.94 ., 0.04337
2,, 44090.08 60247.65 0.05285

44023.t7 60077.99 0.04779 0.04948
43E4t.22 596r9.16 Zn 0.0439r 0.04539

a

-4t--Zrr-
Zs

ls6l6.5s _692_l_0_:8!_ _ za_-" 
+ries.r4 ---- siiTi.al-- z;-

0.04330
0.04340

lr_0__ _. _9!0l2lt_ _
0.04486

z 18463.22 24046.42 0.05494 0.05710
t8423.13 23963.99 0.04930 0.05101

__1fi-
Z,o

t8314.24 2374t.t7 0.04467 0.04615
4950.638 24028.52 0.04384 0.05435
t8342.42 23798.68 0.04399 0.0454s
r82E4.16 23794.4 0.05508 0.05724
t8244.33 23712.t1 0.04940 0.05r l l

zu_ _ _.._.1_8_!Q.96_ ___?]ssu! 0.0492I 0.05092

_ . -z^ .___tw,lp-__ lt:tt n 0.04463 0.0461I

18084.72 23513.79 0.05483 0.05698
18045.17 23432.E4 0.04921 0.0s093
17937.t3 23214.01
4870.s98
17965.54 23270.5 Zo. 0.04395 0.0454t
4360.634 0.04/.t9- -0.0443i
4365.726

4400.2t 42t0.tt 0.04292 0.04430
4342.96 4t37.782 0.04279 0.044r6
4343.4il 413E.975 0.04270 0.0441r
4344.36t 4t40.28 0.44271 0.04410

- -1lt-- -.-.
Zn-

)
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Table 2.4: MSE Pop-l using the Bar-Lev scrambled rcsponse model,

P{.80
Theorctical

46645.32 48279.29
46638.24 48260.43 4370.02 4679.27

46619.01 48209.37 4368.62 4674.19

48275.2 4301.4 4680.75

48222.56 4368.99 4675.50

45833.83 48ss4.47 4359.23 4il9.27
4358.70 4il7.4t
4357.26 4il2.3s

4390.95

- -''74-Z,o

46353.69 47846.31

4633s.36 47798.17

4426t.62 47860.23

47776.56 49933.46

47768.51 49910.85

47746.63 49849.65

-ggt._._ _ ._+7.1!.6p _._ _

4390.U 47t2.76
4389.05 4707.58

4224.31 4714.26

4389.4t 4708.92
4759.06 5263.55

4758.58

4757.28 5254.04

4609.& 5262.99

4757.62 5255.83

s348.63 61t4.77
s348.18 6l l l.l5

52t3.2 6l13.99
5347.26 6103.87

5321.08 6075.23

5320.62 607t.65
5319.39

lqsJ_!__ .._.. -q1L4l
5319.7t 60il.48

O

. -Jrr- 763V'.0.1 tptszs5
48417.51

--zr, - -. .!A7Pss
. zzs _____ M3t95t .._.48485.13
Zon 46767.43 48431.05

47s40.92 49588.46

47533.04 49s66.59

4471t.00 49583.7t
47517.18 49522.68

)

46340.11 47810.6r

475tt.il 49507.39
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Table 2.5: MSE Pop-2 using the Bar-Lev scrambled rcsponse model,

a
- Theoretiel EmPirical = Theorrctical 

-E-mIF 
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0.00894 0.00902 0.03755 0.03749

_h__o008212" 0.00763

0.00822
0.00759

0.03324 0.03302

0.02929 0.02898
0.03555

0.02831

0.03138
0.02858

0.02663
0.030r2

9,.02q!4
0.03458

0.03083
0.02768
0.03294

?n oWsB 0.00753 0.02755 0.02722

0.0091I 0.00920 0.0345r 0.03442

o ---Zzz-- 0.0083-1

2,, 0.00770
0.00835

.._.Zrr. .o_.oqUqg. ... . __9.901.62._.-_ .Zrr.-. __9,027?1_._. .._0.0.2763__. .

Z,o 0.00756 0.00E72 Z,n 0.02741 0.03282

0.007s2
0.00902 0.00910 0.03455 0.03446
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)
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Tables (2.3 - 2.5) report the MSE for the estimators involved in the empirical and

theorctical illustation, some major observations are highlighted here.

In Table (2.3) all the estimators ofproposed class have minimum MSE as compared to

generalized class of estimators. Zprhrs the least MSE in population -l while Z]rrhas

the least MSE in population-2.

Table (2.4) and Table (2.5) reveal that all the estimators of proposed class have

minimum MSE as compared to generalized class of estimatoo. Zn*has the least MSE

in population-l at P = 0.40 while Zn t rt the least MSE in population-l at P = 0.80.

Similarly, Zy, and Zp"have least MSE with the same values of P in Table (2.5) for

population-2.

According to the simulation rpsults, we observe that in both populations, the new

proposals outer perfonn as compancd to adapted ones. [n Bar-Lw model, real data set

(Pop-2), we observe that by incrcasing P, MSE also incrpased. However, MSE rpsults

werc opposirc relative to artificial data sa in (Pop-l) on Bar-Lev model. Motteover,

new pnoposals performing out class as compared to adapted ones. Hence, we say'

according to tabulated rcsults, new proposals arp the best ones for estimating Z

because, every adapted estimator utilize the morc or same supplementary information

can be less efficient as comparc to proposed robust-regression-t1pe estimators.

O
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p Chapter 3

Mean estimation in systematic sampling: robust estimators

3.1 Baclground

To address the difliculty of accomplishing increasingly precise estimators, one of the

most useful techniques is the mindful utilization of auxiliary information. The

utilization of auxiliary information can be seen in a significant work of wright (1928)

to describe the import levy on margarine and vegetable oil in the United States, wherc

the normal participation in dairy region was oonsidercd as auxiliary information to

appraise the sfiong harmony sought after and supply of dairy ircms. Mean estimation is

one of the prime wony in rwiew examining. The mean estimators can be improved by

using helper daA (see, e.g., Oral and oral, 201 l; Abid et al., 2016; Subzar et al., 2019

and Shahzad et al., 2019).

In this chapter, we initially adapt ratio tlpe estimators by replacing fiaditional OLS

ncgrssion coefficient with their robust altematives. After thal we proposc robust

regession tlpe estimatorc for the estimation of population mean of the subject variable

utilizing ttre supplernentary informotion under systernatic random sampling scheme by

eliminating ratio part from robust ratio type estimators. We also obtain the MSE

exprcssions for proposed estimatorc. The purpose of proposed estimators is to provide

effrcient estimate of population mean under systematic random sampling in presence

O
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of outliers. For this, we perform numerical illustration and find the superior results of

proposed robust regression tlpe estimators over adapted ones.

In literature, suoh as Kadilar and Cingi (200a); Koyunou Q0l2) and Shahzad (2016)'

developed a family of estimators, which contains the supplementary information, when

using simple random sampling design. In prcsence of outliers, these traditional

estimators arp not efficient so Kadilar et al. (2007) utilized robust technique namely

Huber-M method for mean estimation. Further, Zman and Bulut (2019) constructed

some new estimators based on some different robust regtssion measuts. Taking

motivation fircm these studies, we define Kadilar et al. (2007) and Zaman and Bulut

(2019) under systematic random sampling scheme. After that, we have also defined a

new family of regression estimatorc based on robust-Ipgession tools.

3.2 Adapted estimatorc in systematic sampling

In cument section, following Zaman and Bulut (2019a) we attempt to characterize a

progressively broad class of ratio type-estimators using robust rcgession techniques to

be specific: LAD, LMS, LTS, Huber-M, Hampel-M, Tukey-M and Huber-MM forthe

estimation of population mean of objective variable I using supplement, variable X

under systematic random sampling design. The most mainsfieam technique for

evaluating the parameters is the least squares (LS). One of the most straightforward

vigorous option in confiast to the LS is the least absolute deviations (LAD) technique

which was presente din 1757 by Roger Joseph Boscovich. Huber-M strategy created by

Huber (1964) which was the subsequent stage towards powerful relapse.

a

)

4l



a

Huber (1973) e:rtended his own work and used this procedure in robust regression. Thus

another vigorous robust regression technique created. The primary concern of this

technique is to squared residual in Ordinary least squarc by p, where p is some

symmetric/(x/. Many rcsearchers extend the idea of Huber (1973) for example. Hampel

(1971) named as Hample-M, estimate. Tukey (1977) named as Tukey-M estimate and

Yohai (1987) named as Huber-MM estimate.

We likewise use TLS, which is known as Trimmed Least Squares robust regression

strategy, prrsented by Rousseeuw and Yohai (1984). The last robust regression strat€gy

consider for this study is LMS, which is known as "L€ast Median of Squanes" crpated

by Rousseeuw and Leroy (1987). This stategy dependent on minimization of median

of residual squarcs as opposed to mean of residual squares. IGdilar et al. (2007) and

Zamanand Bulut (2019a) utilized these tools and developed ratio ffi estimators in

simple random sampling. We are adaping their estimators in systernatic random

sampling design in upcoming lines.

Taking motivation from Kadilaret al. (2007). We develop the following class of robust

ratio type estimator:

(3.1)

O

'.r--l.tt?/sdi
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r :t,.+br=*(r ,-i,l6* c"11x)tbz=-EI

r _ y, +br_*(x .-\)(x *o^\X\tt'=WJ

rut=-ffiil(c,x+c"Wl

ras=-ffi(c,r+c,\x\

Let we find MSE of 7t', Suppose

n V, tbr-,n(X - e )ra=@'

Hence,

T*, = i*(r,F,+ Gr, ) .

Now we find MSE of T*, through Taylor series, defined as:

h(t,, r,) = h (R,4 . [P],,,,r - \ *lh(i!,v') 
l, _ tr, - 

tt .

(3.2)

(3.4)

(3.3)

(3.5)

e

)

Her€,

h(i,,V,)=i* and n(*,I)=i"

iu = T a.[ry]_,,,," -\+lh(ii,Y,)]_,,r" -v),
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?a - rr"=[ry],,,r - r;.[o('= v'l], 
_ 
(r; - rl

y"+tr-,*(X -t,)
Fri,+Grn

v,

V,+.b*-,n(X-r,)lF;l-," I (4 -7)-

)r.,

f a.'fu= (v" -4.
-x,l

e

Now differentiating both terms w. r. t I, and /" respectively, squaring and then

applying expectation. After that putting 7, - X and ," - F and b^-,n = Br-,n

usz(r,,,) = (Y)[ t,si +(x*, * B^-,*\' t,s! -z(x*, + B^-,*)t,,'t,1 ,

whenc, t, =t+(n-l)t , ty =t+(n-l)rr, t' = 
F, 

Further (sr', s,') are the

unbiased variances of (,8, P) and .S', in representing covarianc 
" 

(r,, ,r) are the

intra-class conplations of (.f,, 7)respectively. Similarly, the MSE ofl

*rr(rr)= (#)[ t,s', +(x*,* B,-,*)' t,s! -z(xo+ nn-,*)ts's,),

*rr(r*,)= (Y)[r,s; +(r- ,* Bu,n)' t,s! -z(x*,+ B,-*)t,,'to 
J,

*sr(r*; = (Y)[ t,si +(x*, * Br-,*\' t,s! -z(K*, + a,-,*\ts's,),

*rt(r*,) = (Y)[r,si +(r*, * Bu,*)' t,s! -z(x*,t B,-*)r,r's,],

where

)



fOt i= i=L,2,.,,,5

a
Taking motivation from Zaman and Bulut (2019a) we prcpose the following class of

estimators,

o

for i = L,2, -.,5 (3.7)

f or i = L,2,.-,5 (3.E)

for i=1,2,,-,5 (3.9)

for i = l, 2,...,5 (3.10)

f or i = L,2, .-,5 (3.11)

for i =L,2,.,,,5 (3.12)

Allthe thirty family members of Zaman and Balut (2019a) are provided in Table

(3.1).

Note that inTs1^toT2s,", where, j = L,2,3,4,5;

br-,n = Huber regression coeflicient,

) b*-*= LAD regression coeffrcienf,
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b^-,n= LTS regression coefficient,

b*-,n= LMS regression coefficient,

b,n -*= Hample regression eoefficient.

bb,-,n= Tukey regression coefficient,

bh,-,n= Huber-MM regression coefficient,

G. = Coeffrcient of variation,

4= Coefficient of variation.

The MSE of [5 family as given below:

Iv6 E (r,,,,) = (Y) 
[ 
t,si + (K *, * B * -,*)' t,s! - z(x *, * B * -,n) r,,'so ],

*rt (r*,,) = ( Y) [ 
t,sl + (x *,, + B,o-,n)' U,' - r(* *,, + B,*,*) t,t'to ],

l,,rsr(r*,,)= (Y)[ t,si +(x*,,* B*-,*)'r,s,' - ,(**,,+ B*-,*)t,r't,1 ,

*rl(r*,,) = (Y)[ qsl +(x*,, * B*-,*)' 4s', -z(x*,, + B*-,*)t,r-tn,J ,

*rr(r*,,)= (Y)[ t,si +(xu,,* B*-,*)' r,,s,' - ,(**,,+ B,*,*)t,t't,],

*rst(r*,")= (Y)[ t,si +(xn,"* B*,*)' 4s! -z(xu,"+ 8,,*,,-,*)r,r'sry],

e
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3.3 Proposed estimators in systematic sampling

Taking motivation from [, and T,r,wedefine the fotlowing class of estimators under

systematic random sampling.

T*,=f,+br-*(x -i,),

Tn, =f,+b*-*(x -l),

T*, =fl +b*-*(V -i,),

Tn, =i, +b,n-nr1V -ir),

Tn, =1,+b*-*(V -i,),

T*" =1, +ba**(V -7,) ,

Tn, =i,+b,^-*(V-I").

The MSEs of In are given below:

MSE(TN,)=llry,)-2Br-,oCw(i,,y;+nl,-*Y(1)f ,

Ii,fi E(TN,)=lV1y,1-ZB,*-,oCov(i,,y;+afu -*lr(i)),

Iufi E(TN)=lv1-y,'1-zB,o-,oCw(i,,i,1+81,,-,*lr(i)),

fu$E(TN,l=lVti"'l.28*-nCov1x",y,1+Bl*-*,Y(i)),

Iufr ;E(TN)=lrg;-zB*-,*Cw(i,,1,;+afu -*Y(i)],

O
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MilE(TN")=lv1-y,'1-zB*-*Cov(1",I")*a'*-*,vt*,\f ,

L6E(TN.,)=ln<r,>-28,*,-n"Con(1,,y)*A',*,-,*v(d).

Now putting tlre values of Z(I,), VG) and Cov(x,,i), to get finalized MSE

formulas as given below:

MsE (r N,l = (Y) t 
t,si - 2 B r- *'' t't' s' + Bl'-'*t'sl),

*sn(rn,l= (Y)t trsl -28,*-,*'r,r',su, + nl*-*t,s!f,

usn(r*,1 = (Y)t t,.sl -za*-*,'t,t'so+ Blo-*t,sll,

trn (r n,l = (T) f 
t,si - zn *-*! t,t' s o + Bl*-*t,sl),

usr (r *,1 = (Y) t 
t,sl, - z n * -*,2 t,t' s o + nfu 

- *t,slf ,

usz (r n"l = (T) t 
t,si - zn * - *,' t,t' s, + n,z"-,*t,slf ,

*s t (r n,l = ( Y ) t 
t,si - z n *,- *,' t,t' s o + n',^- s,sif .

3.4 Elliciency comparison

In current section, one real (Pop-l) population and one artificial Gop-2) population is

considered for efficiency comparison.

Popl is taken from Murthy (1967),wherp,

48
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X= Strip length

I= Volume of timber

The size of population is IV = 176. Note tlrat Murttry (1967) also provided some

values of intra-class corelation i.e. r, = ry =r. (say) with respect to different sample

size as follows:

r", = - 0. I 5 I 0, r, = - 0. I I 06, r,= - g .0522, r*= - 0.0435

So in this rpsearch we comparc the estimators in light of all the above mentioned values.

Pop-2 contains simulation study. where a mndom variable x - G(2.66,3.88) wherc,

G denotes Gamma distribution and random variable Y, is defined as

\=4+R X,+eXl ,HercweassumethatthevariablesQ=1.6,4=5, Rr =2 and has

normal distribution. The size of population is iV=1000. Here, Systematic random

sampling is considerpd for drawing samples with n = 150. The procedure of drawing

samples replicated I =1000 times. After that empirical MSE's of existing estimators

arp calculated as follows:

.MSE -zL.qo-vt'.

All rcsults of MSE relarcd to Pop-l and Pop-2 available in Tables (3.2 - 3.11). These

rpsults confirm the superiority of proposed estimatorc over existing ones.

3.5 Summary of the chapter

In this chapter, we prcpose two classes of estimators whenever data is contaminated

with outliers under systematic random sampling scheme. At first we develop ratio tlpe

estimators based on robust regtession tools. Secondly, we develop regression tlpe

e

<\
J
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estimator In based on regession tools. [t is seen ttrat ?i, estimators performing bettpr

as comparE to ratio estimators.

Teble 3.1: Zaman and Bulut (2019a) adapted estimators.

Estimetoru b1 GflFn

Tzbtt b,od-r""

Ttb2t bhd-r", I Go

-'biro-r*' t c;Ttbst

Tzb+t blod-r"" G6

t*rr" b;-; - -- b;'--
Gp

Gc

Tzbt2 bt^r-rr"

Tzb22 bt^r-r",

Tzbt2 br^r-r"" Gc

Tzblt2 bt^r-r", Gg G6

Tzb32 bt^r-rr" Gg

G6

Gc

i--
-t ---Ttbtt btu-r*

bt*-r""Tzb7zl

Tfii3 btu-r"" I Gc

GtO Tfi+3 bur-r"" G6

Tzb33 btu-r* Gc Gs

Tzbl+ bhpFr""

Tzbz+ blpl-rcc G6

Tzb?4 bhpr-r", G6

T26a bhpt-r* G6G5

Tzbtt bnpbrcc GcGs

Tzbti brky-r",-"' itbzs ' -'irrr-r",
l0
lG6

Tzb35 brky-r",

TzDrii' brky-r", G6 G6

Tzbil5l bh^ -rr" Gs Gs

Tzb36 bh^ -r"" Gc

) Tzlrls bh^ -r", Gg G5

bhd,-r"" GcTzbS6
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Teble 3.2: MSE of adapted and proposed estimators with n = 4 and ht = -0.1 5 l0 h

I{-M To,

2613.49t0

Tb, Th

r646.002s 949.7094

T*, Tn,

1200.6353 783.t179
Tb

24Q6.2492a LAD T,q,

2558.4698

74, T*,,

r608.3463 933.3642 1r74.5552 784.7374

T+,

2354.4593

T14, Tn,

LTS T4, Th
2747.9525 2533.0126

T4 Th
1739.0946 992.0309

Th T*,

r266.t4E7 7E2.il10

LMS T,\, Th
2709.7629 2496.98t9

Th, Tb'

t7t2.5068 979.6814

T4 Tn,

1247.2952 782.2941

HPL T,\, T4
2653.2651 2443.7175

Tr, Tn

t673.3Es7 961.8858

Th Tn,

1219.7581 782.4754

TKY 74, Tfu

26t7.344E 2409.8785

T* Th
t64E.6499 950.8762

Th T*"

1202.4784 783.0366

H-MM 74" T4
2610.7097 2403.630t

Tfu Tfu

t644.0927 948.8691 1199.3064 783.1?92

T* Tn,

Table 33: PRE of adapted and proposed estimatom with n = 4 and r* = -0.1 5 l0 in
Pop-I.

H.M T*, Tb,

t24.0161 134.6972

Th T*, To, Tn,

196.9103 t4t.27BO 269.9529 413.8776o
LAD Tq, T4,

t26.6831 137.6600

T*r, T4, Tn,

347.2545 275.9469 4t3.0234

Tr4,

201.5206

LTS 74" Th
t17.9478 121.9563

T_h T* Tn,

326.7186 255.9849 414.1298

T%

r 86.3699

LMS 74, T*,

l 19.610l 129.8027

T4 T,,, Tn,

330.8371 259.8542 4t4.3134
T*,,

t89.2634

HPL 74, Th
122.1570 t32.63t9

T4 T4 Tn,

336.9578 265.7207 414.2174

T4
193.6881

TKY 74, Th
123.8335 134.4943

Ttu T* T*,

340.8592 269.5391 413.9205

T4
t96.5942

H-MM 74" T4
124.1482 134.8439

Tu* T* Tn,

341.5802 270.2520 4t3.8452
T4

197.t391

)
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Table3.4: MSE of adapted and proposed estimators with n = 8 and /, = -0.1106 in

I
H-M T*, T4 Tr",

526.8760 485.0964 331.8318

To,

19r.460r

Th

242.0464

T*,

r 57.8755a
LAD T4, Tun

sI5.7839 474.6556 124.2403 188.1649 236.7887 158.2019

Tr4, T*,Tr4,Trh,

LTS 74, Tb
s53.9833 510.6517

Th Tq, Th
350.s990 199.9920 255.2538

Tn,

rs7.7793

LMS T,4, 74,,

548.6821 505.6498

Th Tou Th,

346.905E t9E.2723 252.6326

Tn,

157.123t

HPL 74., Th
534.8944 492.6500

T4 Tu, T4
337.3522 193.9148 245.9015

T*,

t57.7459

TKY T,\, Th
527.6530 4E5.8281

Th Tu,, T4
332.3655 191.6953 242.4179

Tn"

157.8591

H-MM T,\" T*
526.3156 4E4.5686

T* Ttu T4
33t.4469 t91.2907 241.7786

Tn,

157.8878

Table 3.5: PRE of adapted and proposed estimatorc with z = 8 and /v = -0.1106 in

H-M T*, T*,

124.0161 134.6972

T4 To, T4 Tn,

196.9103 341.2780 269.9529 413.8776

Tn,T*,,T^,O LAD 74,
126.6831

Tr"r,

137.6600

74,
20t.5206 347.2545 275.9469 413.0234

LTS T4,

117.9478

Th
r27.9563

Th Tu,, Th Tn,

r86.3699 326.7186 255.9849 414.1298

LMS 74,
I19.0874

74,
129.222t

Th Th T,h, T*,

188.3540 329.5524 258.6408 4t4.2773

HPL 7 ,,
t22.1s70

T4
t32.6319

Th Tu, T4 T*,

193.6881 336.9578 265.7207 414.2174

TKY 74,
123.8335

Th
134.4943

74, T4 T4 Tn,

196.5942 340.8592 269.5391 413.9205

H-MM T4,

t24.1482

T4
t34.8439

T4 T4 T* T*,

197.1390 341.5801 270.2518 413.8452
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Table3.6: MSE of adapted and proposed estimatorc with n= 16 and r, = -0.0522 in

l.
H-M Tr", Tn,

24t.11540 22t.99570

T^n T*,

151.85687 87.6t827

T*,

I10.76819

Tn,

72.24888a
LAD 7,4, Th,

236.03926 217.21767

Tu,,

148.38278 86.11029 r08.36209 72.39E29

74,,Tu,, Tn"

LTS Tn"

2s4.40678

T4

234.52707

Th

1t7.25257

Tn,

72.2t828

T+, Th

161.06400 91.81300

LMS T4, T_h

25t.754s9 232.02425

Tn, Th

t59.2145? 90.94878

7,.,,

l15.93831

Tn,

72.r8456

HPL 74, Th

244.7E488 225.45245

Th Th

154.38319 88.74164

T4

1t2.53242

Tn,

72.18960

TKY 74, T4

241.47095 222.33053

T4 T*u

l52.r0l I I E7.72592

T4

I10.93823

Tn"

72.24t38

H-MM 74, T+

240.85892 221.15416

Th T4

r 51.68075 87.54078

T*
I10.64565

Tn,

72.25453

Table 3.7: PRE of adapted and proposed estimators with n = 16 and rw = -0.0522in
l.

T*,

269.9529
H.M T*, Trh

124.0t61 134.6972

T*, Tn,

196.9103 341.2780

Tn,

413.8776

T*,T4,o LAD TA, Tq,

t26.683r 137.6600

T+.

201.5206 347.2s45 275.9469 413.0234

T4,

LTS Tr4, Th
fi7.5369 127.5000

Th T,\,

185.6541 32s.6858

Th
zss.0237

Tn,

414.0529

LMS TA, Th
118.7752 128.8753

Th T*,,

187.8106 328.7805

Trq,

257.9t46

T*,

4t4.2463

HPL TA, Th
122.1570 132.6319

Th Ttu

r93.6881 336.9s78

Th Tn,

265.7207 4t4.2174

TKY 74, T4
123.8335 134.4943

Th, Te T*,

196.5942 340.8592 269.539t

T*,

413.9205

H.MM Tq, Th
124.1482 r34.8439

Th T4
197.1390 341.5801

T*
270.2518

Tn,

413.8452

)
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Table 3.E: MSE of adapted and proposed estimators with n = 22 utd r" = -0'0435 in

H-M Tr", Th Tr",

42.37297

Tn,T*, T*,

67.27898 61.94396 24.44832 30.90790 20.15977a LAD 7,4, 74,,

65.E6257 60.61074 41.40358 24.02755 30.23652 20.20146

T4, T4, Tn,T*,,

LTS 74, 74,,

71.29765 6s.73320

Th T'h

4s.r5867 25.72087

Ttu Tn,

32.87165 20.15675

LMS 74, Th
69.75730 64.27969

Th T,q,

44.08498 25.21989

Th Tn,

32.10906 20.13856

HPL 74, Th
68.30288 62.90851 43.07789 24.16178

Ttu Tn,

31.4001E 20.14323

Th, T**

TKY T4, 74,
67.37818 62.03739

Ttu Tn,

42.44t12 24.47836

Th Tno

30.95535 20.t5767

H-MM 74, 74,
67.20739 61.87655

Th, T,0,,

42.3238t 24.42670

Tt Tn,

30.87370 20.16135

Table 3.9: PRE of adapted and proposed estimators with n = 22 and r, = -0.0435 in

l.
T*,

413.8776

H.M Tfu,

t24.0161

Tb. c

3$.;7SO 26e.es2e
T*,

134.6972

T*,

196.9103

T4,T*,,o LAD 74,

t26.6831

74,

137.6600

74, Tn,

413.0234201.5206 347.2545 275.9469

LTS T4,

117.0259

Th
126.9324

T4T,,,, T*,, Tn,

4t3.9395184.7635 324.3932 253.8259

LMS T4,
I l9.610l

74,,

129.8027

74", T*r, T*,

189.2634 330.8371 259.8542

T*,

414.3t34

HPL 7,,,,

122.1570

Th
132.6319

T-h T** Th
193.68E1 336.9578 265.7207

Tn,

414.2t74

TKY 74,
123.8335

T4
t34.4943

TfuTh, T*u T*,

413.9205196.5942 340.8592 269.539t

H-MM T,q,

124.1482

74,,

t34.8439

74,, Tu,, Th,

197.1390 341.5802 270.2519

T*n

413.8452

)
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Table 3.1Q: YlP of ?daq$ a$,Pr.oqoge$ estinPtor.s witl simYlgtigT OoP-21-
-EM- ?t, To, Th To, T*, Tn,

0.89621 0.26751 0.05208 0.06416 0.04551 0.04144

o LAD T^, 7,., T*,,

0.90294 0.27098 0.052E4

T*r, Th, Tn,

0.06527 0.04599 0.04139

LTS T4, T,4, T4

0.93925 0.28990 0.05737

Ttu T4 Tn,

0.07163 0.04899 0.04154

T4,T*,7d.,,T*,LMS T4,

0.90717 0.273t6 0.05334 0.06598 0.04630 0.04t37

Tn,

HPL Th, T**

0.88715 0.26286 0.05109 0.06270 0.04490 0.04156

Tn,T*74,,74,,

Tn"T4,74n,TA,TKY T4, Tn,

0.88904 0.26383 0.0s129 0.06300 0.04502 0.04153

H.MM T4, Tro*

0.EE9s0 0.26406 0.05134 0.06307 0.0450s 0.04153

Table3.11: MSE of adapted and proposed estimators with simulation(Pop-2)'

H-M Tb, T4 T4 T*, T4 Tn,

9.55632 32.0t597 1il.45267 133.49513 188.208s6 206.6483E

Tn,T*T4T4,

O
T*,T4,T*,,T*,,74,LAI)

Tn,T4,T*o74,T*,,

T*"74,T^,74,,Th,

T4,

9.48507 31.60608 162.06970 131.22365 186.23868 206.92378

LTS Tr\, Th T=h, T,tu T4 Tn,

9.fi847 29.54314 149.29140 119.57253 174.80349 206.17127

LMS T4,

9.44086 31.35321 160.57213 129.81399 184.97252 207.02929

HPL T*,, Th Th T*n T4 T*,

9.65394 32.58224 167.65079 136.60322 190.76093 206.06869

TKY TA, T,h, Tr\, T*,, 7,,, Tno

9.63341 32.46272 166.98505 135.95025 190.23857 206.20941

H.MM T^.

9.62839 32.43348 166.82t46 135.79030 190.10948 206.24236

)
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g Chapter 4

Robust-regression-type estimators : simple and two-stage

sampling for mean

4.1 Baclrground

Nowadays, a widely utilized phrase that we are living in the age of information.

Utilizing this phrase, we are not just featuring the volume and speed of existing

information yet in addition underlining the need of its exaot sfieam. The later part of

the above comprchension is legitimately connected with the tnre intention of the urge

of gathering information. The intention is to empower ourselves of absolutely profiling

our environment and in ilris way supporting the optimal decision making pnrcess. In

fulfilling the need of multidisciplinary rcquest interlocking govenrment issues, business

basic leadership, clinical examinations and mental profiling and so on, it is of nothing

unexpected if the sampling theory and method rcmains at the core of applied research

literature.

One of the most significant goal of practices in sampling stays with the estimation of

mean of study variable. To meet the challurge of achieving morc precise estimate of

population mean, ratio method of estimation is the highly praised way utilizing

supplementary information. Laplace in eighteenttr centuty, as an early client/user of

supplementary information in the estimation of total population of France, gave the

method of utilization of supplementary information in an effrcient way. Specifically, he

referrnced, "The rcgister of births, which are kept with care in order to assurp the

condition of the citizens, can serve to determine the population of great empire without

a
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r€sorting a census of its inhabitants. Other than that, it is essential to know the ratio of

the population to birth in an annual, see, e.g., Lohr (1999).

Mean is the most basic center of gravity of the data. Ratio and regression methods are

significant tools for the estimation of the population mean. However, the mean

estimation through ratio and regrcssion based estimators arp not suitable when oufliers

exist in data. Zaman and Bulut (2019a) provided the solution of ttris issue by utilizing

some robust regression tools and develop a class of ratio type estimators under simple

random sampling scheme. Recently, Zalnwr (2019), have suggssted by extending the

work of Zaman and Bulut (2019a) with a new class of ratio-type estimators.

This chapter proposed a new family of robust regrcssion type estimators applying

robust regression tools (LAD, LMS, LTS, Huber-M, Hampel-M, Tukey-M, and Huber-

MM). The class is subsequenfly extended forthe situation of two stage samplingwhere

mean of the study variable is not available at first stage. So, we also developed reviewed

and suggested some new estimatorc under two stage sampling scheme. It is worth

mentioning that we consider two cases under two stage sampling scheme: (a) when

second stage sample depends upon first stage sample and, (b) when second stage sample

is independent of first stage sample. The mean squa^re exprcssions of the proposed

estimators have been determined through Taylor series method. A real life application

and the simulation study are also provided to assess existing and proposed estimators.

In the light of numerical rcsults, someone can see that proposed findings are more

efficient then existing techniques.

A huge lircrature is available about ratio and regression-type estimators. For example,

Oral and Oral (201l); Koyuncu (2012); Abid et al. (2016a, 2016b); Shatrzad el al.

(201S); Hanif and Shahzad (2019); Bulut andZaman(2019); Naz et al. (2019) and Irfan

O

t
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et al. (2019) have suggested a family of estimators, that contain auxiliary information

under simple random sampling design. For morc about ratio estimatols see, Jernain et

al. (2008); Al-Omari * al. (2008); Al-Omari et al. (2009); Al-Omari and Jaber (2010);

At-Omari (2012);Al-Omari and Bouza (2015); Bouza etal. (2017) and Al-Omari and

Al-Nasser (2018). For positive conelation, the ratio estimators perform better for

population mean estimation. For negative correlation, the prcduct estimator is better for

the estimation of population mean. The conventional regression estimator solves the

issue rclated to the sign (positive/negative) of conelation and provides better rcsults as

compared to the ratio and product ffi estimators.

Note that conventional regression estimators based on oonventional regression

coeflicient, i.e. known as Ordinary Least Square (OLS) regression coeflicient. For

example, OLS, but they are ineffrcient when data oontain outliers. To handle this

problem, Kadilar et al. (2007) incorporated Huber-M robust regrssion technique

instead of OLS.

After that, Zaman and Bulut (2019a) extended the idea of Kadilar et al. (2007) and

developed a class of ratio t)?e estimators, utilizing some other robust regtssion tools

namely: LAD (Least Absolute Deviations), LMS (Least Median of Squares), LTS

(Least Trimmed Squares), Hampel-M, Tukey-M and Huber-MM. The basic purposes

of LAD and LMS ane to minimize enor by incorporating absolute residual and squared

median rpsidual, respectively. The squared erors aIE aranged in LTS method and OLS

is run by utilizing observations based on the first (smallest) z enors.

The purpose of M- estimation is to minimize the 4 functions with satisfring the

necessary assumption, see, e.g., Zaman and Bulut (2019). There ar€ many q functions

are available in lircrature see, Huber (1964, 1973); Hampel (1971) and Tukey (1977).

a
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Finally, Yohai (1987) presented MM robust regrcssion tool which has high statistical

efliciency and breakdown point. For morc knowledge about these robust rcgrcssion

tools, interested readers may refer to Zaman and Bulut (2018) and Ali et al. (2021).

Morcover, Zaman and Bulut (2019) defined another class utilizing robust regression

estimates under stratified random sampling scheme. Zaman (2019) developed another

class of estimators in the same context and achieved the results equivalent to traditional

regression estimator. So in this researph, taking inspiration from Zaman and Bulut

(2018) and Zaman (2019), we infioduce a new and improved class ofrobust-rpgression-

ffi estimators forthe mean estimation when response/study variable contaminated by

outliers.

Outliers anc those observations that misleading someone to a wrong track. When these

are prcsent in data, the mean estimation gives inappropriate rcsults. Other than that, the

mean estimation is the most useful choices for estimation purposes. With outliers, the

rpsults adding some wrong information. Hence, for population mean i.e. (t),based on

OLS may indicate weak performance. Kadilar et al. Q007) and Zaman and Bulut

(2019a) provided the solution of this issue by incorporating robust regression

coeflicients in this context. Robust rcgression is used when OLS assumpions are

violarcd. In such cirpumstances, rcbust-rpgression tools such as, LAD, LMS, LTS'

Huber-M, Hampel-M, Tukey-M, Huber-MM provide better rpsults because they give

less weight to outliers. Tanrrm and Bulut (2019a) introduced the following class of

estimators utilizing robust regression tools for the estimation of mean as given by,

O

)
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Where, (X,f) and (=,y) are population and sample means, rcspectively after using

simple random sample to select a sample sizen.The variances ofthese unbiased sample

means, (Z,y) areV (t)= es:,and V(j)= 052. Further, c and dtake the values fiom

(0, l) or any given population information, Le. C,, the coeffrcient of variation of X,

Pr$), the coefricient of kurtosis of X, and 6t)* the robust regression coefftcients.

The family members of V+ are provided in Table (4.1).

MSE of Zaman and Bulut (2019a) family of estimators is given below

MsE(y,r,)= a[s; + gis: +28,g,s2, + ais'z, -2g,s. -zB,sD,), for, i = !,2, "',35

(4.2)

cY 
and, 0= fU). Further, ,Sr2 and Si ,r" the unbiased variancesWhere, g, =;E;e \ n )

a of YandX, rcspectively. Note thrt V*,,-Va belongs to IGdilaretal., (2007) in Table

(4.1). Zaman (2019) introduced another class of estimatorc utilizing robust regession

tools for the estimation of mean as follows:

,,, = offi @? + a) + (, - q+#f @r + d),

wherc, K is a constant such that it provides the minimum MSE(riz),the l/SE of !,,

is as follows:

t6E (y,,) =, [sr' - 25 s q,+ d'.s,' ].

where,, =[*(r,,, +s,)+(r-r)(q, -" )]
l
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Zaman (2019) (d = B)in above MSE expression, and get minimum MSE of 7,. as

follows:

itsE(Y,)=eti(r- r'), (4.4)

which, is the MSE of raditional regression estimator, i.e. 9,q=y+bgy (.P-x-). ttre

rest of the chapter is constucted as follows: In Section 4.2,we have proposed a new

class of robust-regression-typc estimators. The theoretical mean squared error (MSE)

of proposed class is also derived. Section 4.3 has been dedicated to trro stage sampling

scheme. We also provided some pnoposed estimators by using two-stage sampling

design with their theoretical MSE exprcssions in Section 4.3.2. Results and discussion

are provided in Section 4.4. The manuscript is ended with some ooncluding remarks in

Section 4.5.

4.2 Proposed class of robust-rcgrcssion-typeestimatorc

Taking motivation fiom Zaman (2019) andZaman and Bulut (2019a), we propose

the following class of estimators as given below:

Vx, = \lV *tn (X -")) + r,(X -t), f or i = L,2, ...,7 (4.5)

wherc, k1 and kz ffi rcal constants. Further i,l and Dqg have their usual meanings

as defined in Section 4.1. The family members of proposed available in Table (4.2).

To obtain the MSE of equation (4.2),lerus define 1- =(l+Zo)I and t =(t+ttr)*

. Utilizing these notations4 (i = 0,1), we can write:

E (q,) = E (q) = o, n (qi) = eci, E (rf ) = e"i and E (n 04,) = 0c,.

o
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Now expanding Vr, in terms of 4o and ?r s:

A yn, =*r?{t+40-R'brrnrl-*r[^.

V*,-Y =4f {t+ao-R'b1,fl,1-k Z^-?. (4.6)

By taking squarc of equation (4.6), ignoring higher order terms and applying

expectation, the MSE of Vn, is given below:

l/BE(yN,) =Y' + ,\uru 
^ 

+ klrD rn +2k,\Q"n -2\@ *, (4'7)

where,

o,,, = f' [r 
* elcj + n'q,r(n'q,rcl- r"r)]],

Oa,r, = OI,C!,

ocr = etfln't ,rc', -zcr),

O Qo* --f"
n'=2.

Y

The MSE is minimized when,

hqt =f o",orn 
= l.n -Lorror,_o3,rl,

By substituting ktr nd k{ in equation (4.7), we get minimum MSE of Vx, 6 given

\ below,
a
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MSEtu(r; ): [t'-- ],
(4.8)

Remarks

By replacing (tr = l, bo = O, kz= 0), rr, becomes unbiased mean estimator.

By replacing (tr = l, bO =O, kz =0), Vt, becomes regression estimator, and will

be equally important as V,,or V*.

In light of above two points, we can say that V, l*, and V,,, ffi the special cases

of 7*,.

4.3 Ttrvo stage sampling scheme

At the point whenever the required information about population mean of auxiliary

variablc isn't accessible, one can utilize the two-stage sampling plan in acquiring the

improved estimator as opposed to the past ones. Neyman (1938) was the first one, who

suggested to estimating the parameters for population in two-stage sampling design.

This design is financially understandable and simpler too. Also, it is utilized to get the

information through auxiliary variable effrciently by selecting a greater sample from

the initial or in stage one and a suiable size (oomparatively small sample as compare

to first stage) at stage two. Sukhafine (1962) utilized two-stage inspecting devise a

general class of ratio-t1pe estimators. For more details about two- stage sampling,

interested rpaders may refer to Cochran (1977).

With trno-stage sampling design, first we select a sample of size n1 at stage-one by

using SRSWOR. After this select another sample of size n2 firom the selected sample.

Qr*QLnffi,
a

a

)

63



a

It is wortft mentioning that we arp considering two cases for second stage sample as

follows:

Case I: The second stage sample of size, n2is a part of the fust stage sample of size n1.

Case II: The second stage sample, n2 is independent of tlre frst stage sample i.e.n1.

For more details about these cases, interested readers may refer to Zunanand Kadilar

(201e).

4.3.1 Adapted estimators: two stage sampling design

In this section, we have adapted the family of estimators of Kadilar et al. (2007) and

Zaman and Bulut (2019a) for two-stage sampling plan as:

wherr, (tr,rr)denoting the means at stage-two wherp I at stage-one. Whereas, c

and d are described in prcceeding section. The family members of y'*, arc same as

.rr1a, available in Table (4.1).

o

Zaman and Bulut (2019a) have used Taylor series method for h(|,i)=yland

obtained theoretical MSE. In cument section, we a^re adaptrng their methodology for

h(Yr,-*r,-\)=Tandobtaining MSE for case-l as follows:

IoISE(/,,+)I =dEd' ,

Where,

(4.10)

]
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o=lffF* Wl''r Wlt'"]'
a=lt (s,*8,) -(s,*a)]

I v (y,) cov(y2,l) cw(Y.tr))
2=lc*(t,,yr) v(t,) cov(r,,rr) l,

lc*1t*yr) cw(*r,tr) v (tr) l

with,

Y (!r)= r,s','
Y(i')=r$','
y(ir)=rrSj,

cov (V 2,4) = cou (i,,V r) = r,s o,
cov(tz,iz) = cov(i2,Vz) = rrs ,,
Cov (t,-a) = Cov (4,I,r) = rrS',.

O By using the defined notations of the variane,e with co-varianoe, we substituting the

values of d in equation (4.9), and get the MSE expressions of 7u, for case-I as:

ust(yn)r = y,sl *1r,-r)l(s, + 8,)' sl -2(s,* 4 )s,]. (4.1 1)

To obtain MSE for case-Il, all the notations will rpmain same except,

cov(Vr,-n) = cov(it,Vz) = 0 and cw(t,-4) = cov(iz,I,r) = o . Hence the MSE of

la for case-Il is given by

*ra(yL)r,--r,(sj-z(s,*4)s,")*(s,+8,7'(r,+r,)sl. $.t2)

+)
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As the minimum MSE of Zaman (2019) class of estimators is equal to taditional

rcgression estimator. So we alp considering here traditional rcgession estimator for

!-'*=!r+01,y(E --d. (4.13)

Note that, Pradhan (2005) only provide MSE expessions for l*, case-[I. So, we

incorporated their MSE expressions for case-ll. We also find the MSE expressions for

fl*,case-I. The MSE of y]*,for case-I and case-ll respectively, as given below

usn (V*) , = s.3 lr, - (r, - r,) p'),
(4.14)

MsE (y-'*) II = sjlr, + (r, - rr) p').

where, 

"=(i,-+) 
*u 

" 
=(*-+)

o 43.2 Prcposed estimators: two-stage sampling design

In this section, we pnesent a family of estimators by using two-stage sampling design

as under:

/n, =k,lVr*ur,r(t'-')) +kr(t,--,1J' f or i = l'2""'7 (4'15)

The family members of fn, is same as y4 , available in Table (4.2). To obtain MSE

for case-I. Let us definc ,* =-+,qo =# 
"nrd 

4,, ="Ef .

Utilizing these notations, we can write,

E(nr,) = E(n*,) = 0, e(rh) = vzci, e(q?,) = Ytcl, e(q?,) = fzcl,J
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E(qrr4r,) = y1cyx,

with

t(nnnn)=rrc*,

and

e(nrn*)=r,c\.

Now, expending y'n, int€nns of y's as given below:

fn,=k,{t$*n,)+tur*(n,,-r")} +*,X(nn-q). (4.16)

rt, - ? = \ {f (t +, n) + our* (n n - q,,)l + *,X (n n - ry ) - ? .

Taking the expectation after squaring on both sides of eq. (4.12), up to the ordern-r ,

v and we get

use(rt,)=?'+lilcrn+4t*+Zlqk cr*'Zlqt,rv, (4'17)

where

i

,^n=l?,(t+yrc,r\+(rr-r,\apr?prkci-zftcrl),

tex = Z2 (rr-rr)cl,
,"* = (r, - y ) Xl?c, - oorkcil,

tat =f2

which is minimum for

kr=1ffi),
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and

? rr* =l '*'* ,1.
Ltutex-ta J

r , tr*c'* Iusn(V*,)r=l r'--1.
L 9 AN9 BN "CT,T J

lust(/*,)=I' *,rr-Y * * klY * -2hY DN,

whelp

y ty =lI, (r+y,cj)+ofrr?, (r,*r,)cl -zbr,rxty,c,),

Yar = x'(rr+r,)C',,

or Yciv = Nlor,r?(r,+rr)c1-trrco),

Y on --7''

whioh is minimum for

-,-=[ffi],
and

e* =f Y"rYr, - l.' LY-Yrn -Yi, J

(4.r8)

To obtain MSE for case-Il, all the notations will remain sarne except,

Z(nnnr) = O = e(nnno). ftence the MSE of y-n, for case-Il as given below:

(4.re)
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4.4 Numericalillustration

For the assessment of the proposed and existing estimatorc. We consider a real life

application as Pop.-l and an artificialpopulation as Pop.-2.

4.4,1 Real life application

In this section, we utilized data set available in Singh (2003 p. I t t l). This data set is

recently utilized by Ali et al. (2021) for sursitivity issue by adding scramble r€sponse

in it. Here, we arp considering this data in absence of sensitivif. As there is a non-

negative conelation exist between the study and auxiliary variates, also, Fig. (4.1) and

Fig. (a.2) prcsent a graphical trends of non-normality data with presenting the outliers,

respectively, by using the robust-regrcssion tools. Results of Perc€ntage rclative

effrciency (PRE) are provided in Table (4.3). Some major characteristics of the

population atE as given below:

X = Amount of non-real estate farm loans during 1977 and

Y = Amount of real estat€ farm loans during 1977.

X =81821624

S, = 1084:678

o

N=50

n=20

P = 0:804

nr= 16

nz=20

Y = 55524345

Sy = 584:826

C, = 4:617048

C,= l:235168

C, = l:052916

b(*t=0:3484253

b(rn)=0:4123359

b1o,"1=024334034 bV*)=0:4267937

b(^t=0:3937749 b(,ol= 0:4187815

)
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4.4.2 Simulation study

In Section (4.2),anassessment of proposed and existing estimatorc performed with the

assumption that all the population parameters arp known. But in numetous genuine

circumstances, these parameters are mosfly obscutp and can't be speculated based on

past information assumption. Subsequently they should be evaluated. In such

circumstances, an additional variability is presented in the evaluations that could invalid

the hypothetical examinations. So in this sub-section, we a.re paying our attention

regarding the PRE examinations at the point when obscutp population parameters arE

assessed from the selected sample. For ttris purpose we are performing Monte Carlo

simulation.

The simulation design is organized as follows: A random variable y ' (2.6, 3.8) and

random Variable Y, is defined as Y,=h+R)(,+eX!. Here we assume

p --1.6,h= 5,R =2ande has standard normal distribution. We consider the population

of size N=1000, Hcre, simple random sampling (SRS) is considered for n : 200.The

SRS sampling has been replicated 1000 times. We e:ramine empirical MSE's of

\\I
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L'

LQ,_Z)'
Va,!* and 1l-4, aS MSE=T. using the results of empirical MSE we

calculate PRE of each estimator, available in Table (4.4).

We consider same simulation design fortwo stage sampling. A sample of size u :200

is selected from 6,' I/ at first stage and sample of size nz = 160 is selected at second

stage. The Second stage sample is selected differently for case-I and case-ll as per

requirernent of no-independence and independence with respect to initial stage sample

i.e. nt, respectively. Fig. (4.3) and Fig. (4.4) clearly show the applicability of robust-

regression tools. The rcsults of PRE for case-I and case-Il are provided in Table (4.4).

Note that PRE for each estimator is calculated with rcspect to ,t(f) as:

PREGI = 
,or(llx 

loo .\ / MSEI?)

ll.blrlrofy

9r
I

11

(4.2t)

a

8

oo

o

Fig 4.3: Histogram Pop-2.
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Fig. 4.4: Scatter Plot Pop-2.

)

7t



!

4.5 Discussion

The rpsults of numerical illusration are provided in Table (a3) and Table (4.4). Our

findings are highlighted as given below:

. V^,, has the mo<imum PRE as compare to all the rpviewed ratio tlpe estimatorc

under SRS and two stage sampling schemes.

. V*, has the maximum PRE as comparE to all the reviewed ratio t)?c estimators

under SRS and firct case of two stage sampling schemes. However, I=4 is

performing better than the usual rcgrssion estimator in case-Il of two stage

sampling scheme.

o By ignoring fractional values in proposed class, we observe that all the members of

proposed class arp equally important under SRS and first case oftwo stage sampling

schemes. However for case-Il, y]r, is performing outclass among the proposed class

of estimators.

o All the estimators of proposed class have maximum PRE over sample mean

estimator, V,o,, |,,and l* under SRS and two stage sampling sohemes.

According to the real life application and simulation rcsults, we observed that, the new

proposals out-perform over existing and adapting ones. Which clearly showed ttre

supcriority of proposed class over rpviewed estimat,ors?

4.6 Summary of the chapter

We havc suggested a family of robust regrcssion-type estimators for mean estimation

under simple mndom sampling and nrro stage sampling schemes when quantitative

supplementary information is available, in this chapter. We also frnd MSE and

e

(\
)
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minimum MSE expressions ofthe proposed class. The proposed class of estimators has

been compared with existing ones. Based on theorctical and empirical PRE results, it is

clear that the proposed class performs better as compare to sample mean estimator,

traditional regession estimator, Zarmn (2019) estimators and Zaman and Bulut

(2019a) estimators. Hence, it is rpcommended to utilize the pnoposed class of estimators

in real life applications. In future sfirdies, we hope to extend the proposed robust-

regrcssion class of estimators presented in this article to the sensitive issue, in light of

Ali et al. (2021).
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a Chapter 5

An extension of robust regression techniques for two

auxiliary variables

5.1 Background

For future developmen! each community needs careful planning to manage its affairs

efriciently. Successful preparation or planning requires many tlpes of data that are

reasonably accurate. Everything is changing rapidly in this modern envircnment,

requiring the regular collection of up-to-date information. It is possible to collect data

in two ways, which arc a complete survey of the enumeration and a sample surYey.

Since data collection is subject to time and cost constraints, regular data collection by

full enumeration is typically not feasible. The only solution then is sample suweys.

Through surveying part of a population as a sample, more effort can be made to gather

morc accurate data ttrrough hiring by better-trained workers, organization, monitoring,

etc. comparEd to full deails\enumeration, see, Chand (1975).

Abid et al. (2018) have suggested a new family of estimators with utilizing variables in

simple random sampling. Their study shows by involving the non-conventional

location mea$rEs for mean estimation provides morc efficient results than the

conventional location measulEs. It is worthy to note that their estimatorc are based on

generalized vercions of regression-t1pe estimators with non-traditional rcgressions

weight. These estimatorc provide better ncsults in presence of extreme values. This

study, prcposes a new family of estimations by using ncbust regressions tools. We have

extended the idea by replacing the ordinary least regtssion coeffrcient with different

functions of robust regression functions available in the literatune. firese functions are

o
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highly robust in presence of exfieme values. The general form of the MSE of the

proposed class of estimator is also derived. The real-life data sets related to polio,

taxation, and agriculture have been considered for measuringthe efliciency of proposed

estimators over existing ones. We have drawn the scatter plots and box plots for all

these daa sets. All these figures have shown that the data sets have ttre issue of exfreme

observations. Hence suitable for existing and proposed estimators. The theorptical

outcomes are being supported by realJife data sets.

In survey sampling, it is regular to make utilization of auiliary\supplementary

information to acquire enhanced designs and morp effective estimators. This

information might be utilized at the planning phase of the study, in the estimation

methodology, or at both stages. The huge amount of sampling literature porhays a

varicty of techniques for using supplementary information (see, e.g., Searls, 1964;

Sarndal et al., 1992; Oral, 2}ll;Koyuncu, 2012; Shahzad A al., 2019 and Irfan et al.,

2018, 2Ol9). At the estimation stage, in many sampling situations of the suwey,

estimators of ratio and regression are commonly used when using supplementary

information. These estimators are nearly identical, if relationship between the two

variables (study and auxiliary) is a sraight line that moves through the neighborhood

of origin and the study variable's variance is p,roportional to the auxiliary variable(s).

In practioe, traditional ratio estimators are less efficient than regression estimators if

this crircrion is not met. In order to address this issue in the suvey sampling literature,

substantial rcsearch has been carried out to impncve ratio estimators by providing

different modified\adjusted ratio tlpe estimatorc. In addition, if the study variable and

the auxiliary variable(s) have a positive connection, the ratio estimator is used quite

effectively. Therp art numerous pttctical instances (medical, biological, economical,

and industrial sectors) when a positive comelation between two or more variables (one

O

)
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is the study variable, and the other are auxiliary variables) exists. Some real-life

examples of positive correlation betneen the study variable and two auxiliary variables

are:

(a) The sale of a particular commodity rises with the increase in the region's

population and average per capita income.

(b) The productivity of the employee imprcves with both his previous experience

and his educationalor intelligence level.

(c) The human body's immunity increases from the risk of certain diseases by

following healthy diets and paylng attention to fitness, etc.

However, when the information related to two or more supplementary variables

available, a vast amount of literature can be found in Olkin (1958); Raj (1965); Rao and

Mudholkar (1967); Abu-Dayyeh et al. (2003); Lu and Yan (2014) and Abid * al.

(2018). This chapter is based on the class of estimators developed by Abid et al. (2018).

We have made an attempt to extend Abid et al. (2018) work and suggest a new and

improved class of population mean estimators of a study variable.

The rest of the chapter is organized as follows. In Section 5.2 we provide a detail

description of existing estimatorc, attributed to Abid et al. (2018). In next Section 5.3,

we pncpose a nelv class of estimators and show some conceivable estimators having a

place with the class. We show expressions of large sample properties, through mean

squar€ with minimum mean square error. In Section 5.4, to rcveal insight into the

productivity of the proposed class, various numerical illustations are done with

competitive estimators on the premises of reallife data sets. Finally, the conclusion is

givcn in Section 5.5.

g
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5,2 Abid et tl. (201E) family of estimatons

Suppose O = [1,2,...,N1 is a set of IV bivariate units where (xr > 0, n > 0)

representing the objective variable (Y) and the supplementary variable (X)'

respectively.Nowwe choose a sampleof siz,enfrom the population byusing SRSWOR

and let y = C- f). eAaitionally, let 7 and f be the means of population for f and X

respectively. The quantity of interest is the unknown population mean 7. On the other

hand, it is assumed that mean of the supplementary variable f is known. Under the

SRSI,TOR configuration, Abid et al. (2018) proposed a family of estimators for mean

estimation. I.et we introduce this class in generalize form as follows,

fa(i) = r,, (ffi * azj(ffi) for = t,2,s,...,t6 (s.1)

whut, (or<t>, Fr<r>, a,ze), FzG)) representing knov,rn non-conventional and conventional

measures of location of X such as mid-range(MR), Hodges-Lehmann(Ht), fri-mean

(fM)and decile-mean (Dtl),coefficient of variationCr, coeflioient of kurtosis 0z@)

and conelation prr. The sample avcrage of the variable of interest Y denoted by 9.

Further, & *d *z be the population means of first auxiliary variable and second

auxiliary variable, r€spectively. Two weights, al1 and o4 attaahd for minimizing the

mean square error (MSE) of !o<rl.All membem of Abid et al. (2018) family provided

see Table (5.1). The MSE of 1"111 is given by,

a

M s E (9 oG) = y72 (Cj + alel c!, + alel c!, - 2a 10 1p, *,c rC *, - 2a 20 2py *"c y c *,
I 2a 1a 20 10 2 p a ry rC a rC a r)

where, optimum value of at1 is:

(s.2)

)
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0 1' C2 ar+. 0 2' C' r"-20 r97P*rzzCxtCxz

By using the condition of weights, oi * roi = t.

T"!le 5.1: Fatlly_!4ernbers of Abid a al. (2018L-----n"G, -@--- Fxo uzg)
T-M.R, t

?a@) T.Mr

(s.s)

a

0zo
M.Rz

T.Mz

?a(r) H.Lr H.Lz

loG) D.Mr D.Mz

?a{o) 9z@) M.Rr 9z@z) M,RZ

?do Fzk) T.Mt 9z@z) T,MZ

?a(t) Fz@) H.Lr Fz@z) H.Lz

?c(s) Br@) D.Mr Fz@z) D,MZ

7oO) cr, M.Rr C*z M.Rz

?aoo) Cxt T.Mt c4 T.Mz

?a|r;[ Cxt H,Lt Cxz H,LZ

O

?4tz) cr,, D.Mr C*z

?arrsl, ltz
Pyr,

M.Rr Pv*,

T.Mt Py*"?a|rr+)

D,MZ

M,RZ

T.M;

?c(rs) Pyr, H,LI Pvr" H.Lz

\tJ

?aoo) Pv*, D.Mr Pvr. D.Mz

5.3 Proposed families of estimatorc

In regression analysis, ttre ordinary least squares (OLS) are the furttrermost common

taditional parametric method usually used for estimating model parameterc due to its

simplicity of computation and nice property. Agreeing with the theorcm of Gauss-

Markov, the OLS estimators arp the best linear unbiased estimator. EYen so, the OLS

estimators arc easily influenced by the existence of unusual observations (outliers) and

will yield inaccurate estimat€s. The breakdown point of the OLS estimator is zero

which indicates that it affecrcd by only one unusual observation (single outlier). So
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robust methods as alternative method put forward which arc not or less affected by such

observations. For more deails about robust regression and their tools, see e.g., Huber

(1964,1973); Hampel et al. (1986); Yohai (19E7); Rousseeuw and Leroy (1987); Birkes

and Dodge (1993); Bassett and Saleh (199a); Al-Noor and Mohammad (2013) and Ali

et al. Q02l). With robust rcgrcssion, numerous ratio estimatorc are introduced, see,

e.g., Shahzad et al. (2019); Zunaurr and Bulut (2019a,2019b); Shahzad and Hanif

(2019); Bulut and Zaman (2019) and Zaman (2019), using single supplementary

variable. So, traking motivation from their work, we popose the following family of

robust regression estimators with nvo auiliary variables, through using four robust

estimatorc that are: the least absolute deviations (LAD) regrcssion, Huber'M (HbM)

Hampel-M (HpM), and Tukey-M (ftY) as given by,

fo, = rarli + by-rrgaal(*t- fr)l + ri,zli I byx2eoa)(X, - zr)1, (s.4)

9o" = rorlg + byrr11r6^1(X1- *'r)] + ,rW * byx2(hbm)(*" - ir)|,

jr" = rarll + by.xr1np6(Xr - x-r)l + rrE * br*"(no*l(Xz - i)1,

(s.s1

O
(s.6)

(s.7)

)

9o, = totlj + by*r1sry1(Rt- r-r)] + azlj * bvsr(t*v)(Xz - r)l'

In its general form, ttre proposed family of estimators can be written as:

9or= ,rW + by*,11'1(*t- r?] a rr} t bya"61(Xz'i)1. for i = L,2,..4 (5.8)

The LAD regession is known to be the first step to achieving robustness towards the

influence of outliers in fdirection. It proposed and improved respectively by

Boscovich (1757);Edgeworth (lSS7) and Al-Noorand Mohammad (2013). The aim of

this technique is to provide a robust estimator that minimizes the total of absolurc
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residuals. A good method for dercrmining the optimal line among all lines that passing

through a particular data point say (rs,ys), described by Birkes and Dodge (1993).

The M-estimatorc technique was prcposed and extended by Huber (19&, 1973) to

achieving rcbustness towards the influence of outliers in Y-dircction. This technique is

based on the idea of putting a non-negative symmetic function of the residuals, say

0(r), instead of the squared residual in OLS (see, Huber 1964,1973, l98l; Hampel

l97l; and Tukey 1977), among several authors, designed formulae for the objective

function as follows:

Huber-M estimator (HbM) considered the objective function, viav = 4.685 or 6, as,

0(r)=
!r,,
2'-
, (1.,1 -;r)

f or lril < v,

forlrl>v.
(5.e)

I
Hampel-M estimator (HpM) considered the objective function, via. g - t,7,h = 3.4

andv=8.5,as,

(f,,f ,

o@,) =l'-(ff T).* + 1(h * u - s),

[*rn* v-s)'

for 0< lrilsg
for g <lrrl <h

for tt< lril < u 
(5'lo)

forv < lrrl.

ou,)=[ +[,-[r-(T)'f],
(+

Tukey-M estimator Cn(D considerpd the objective function, via v = 4.685 or 6, as,

for lrl < v

for lrl<v
(s.l l)

To get MSE, let us exprcss ! = (t + at)Y, fu = (L * ?rr)& and
)
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z, = (l * 1rr)Xr. Utilizing these notations {i (i = y,xr,x2),we can write:

A e(qr) = E(q,t) = E(4*z) = o,ejf) = yCi, E(qtr) = yChe,?z) = rClz,

eltynrz) = yCjxr , E(nrnrr) = yCj72 and E(?rr?rz) = TCrrxr. Now expending

9r, h terms of 4y,4xr and 7r2 as:

9r, = [arrP(r + qy) - by,,rs1E11*tl + larl(t + qy) - by*zq)*zq,zl. (5.12)

By taking expootation after sequring the eq. (5.9), up to the Order n-l , we get:

MSE(iie) = Y2 + rill6^ + @f6s + 2li,la,26s - 2oi,16p - @26s, (5.13)

wherc,

6 a = lY 
2 + y {Sj + B, *rrrr(B y.rt(,) Sr r - Z p S r) S * r'11,

6 s = 172 + ytsS * By azgl(B y*zg1S *2 - 2 pSy)S*zll,

6 6 = l?2 + y{Sj I B y *zg)py xz1i.1S yS n - B y.xte)S xfl y.xt()S yS xt

* B y arQ)B y *zQ) P xt.xzS xrStz )1,

do = 6r =?2.

By partially differentiating equation (5.1 0) w.r.t. ar1 and a 2, we obtained the optimum

values as given by

.lP' =[#* ] and rSo' = [ffi, ]

Substitution of alet and alet in equation (5.10) provides the minimum MSE of io,

ast

a

\
-
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MSEfun(
6s6oz-zdc6oas+0edr2l

G.- 6a0s-0c,' l'
(s.r4)

5.4 Numerical illustrations

5.4.1 Real life applications

For performance evaluation between proposed and existing estimator, we used three

real-life data sets. The necessary information about the data, which is used for this

study, is given below:

First Population (Pop-f): We consider this daA from Cochran (1977). Wherc, Y is

taken as'Number of placebo children", Xlis taken as'Number of paralytic polio cases

in the inoculated group" and X2 is taken as 'Number of paralytic polio cases in the not

inoculated group".Fig. (5.1a) depicts non-normality. Box-plots with Soatter-plots are

in X'igurcs. (5.2(a), 5.3(a) and 5.4(a), Iocating the outliers, separately and oombine in

Y, X1 and X2 respectively.

Second Population @op-2): We consider the data set of Sarndal a al. (1992). Where,

Yis taken as "P85 i.e. 1985 population in thousands", X1 is taken as "RMT85 i.e.

nevenues from 1985 municipal toration (in millions of kronor)" and X2 is taken as

"SS82 i.e. number of Social-Democratic seats in municipal council". Fig. (5.1b)

displays non-normality. Box-plots with Scatter-plots are in Figures. (5.2(b)' 5.3(b) and

5.4(b)), pointing out the outliers, individually and combine in

Y, X1 and X2 respectively.

Third Population (Popi): We consider the data set of Sukhafine and Sukhatne

(1970). Wherc, Y is taken as "area (acres) under wheat in 1937", Xlis taken as "alca

(acres) under wheat in 1936", and X2is taken as "total cultivated area (acres) in 193 I ".

Fig. (S.fc) displays non-normality. Box-plots and Scatter-plots in Figures. (5.2(c)'

ir,) = [r'-
g

I

)
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5.3(c) and 5.4(c)), pointing out the prcsence of outliers, individually and combine in

Y,Xr and X2 respectively.

llarrr,
, ;--l

Fig.5.1: Histogram Pop-I, Pop-2 and Pop-3.
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Fig. 5.2: Box plot Pop-I, Pop-2 and Pop-3.
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Fig.5.4: Plot (x2, y) Pop-I, Pop-2 and Pop-3.

All the rpfereirced populations, see, Figurcs. 5.1(a, b, and c), are a non-normal

behaviors with ttre prcsence of outliers, so these ar€ suitable for non-taditional

measu€s as shown by Abid et al. (2018), and for the proposed class containing robust

tr

. ., rl

(c)(a)
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r€grEssion tools. All the left characrcristics for these thrce population are given in Table

(s.2).

Table 5.2: Characrcristics.of Populations.
Char. Popl Pof2 -PoP:]---

,v 34 2E4 34

tl035l0
7 4.923529 29.36268 307.2941
-x.. 2.58E235 245.088 2lE.4l lE

______Ez 2.ett76s _?2_-1999?. 76tr3s2.e. . -_c, 1.023331 1.75586 2.176777
- --_---L-

. _.c_qr. ____r?.332?.9__._._2.433t36_ 0.7678.14E

c-- 1.148006 0.3267727 0.6169129
-_----_-a- 0.7328235 s 0.9606978 0.4143947

0.6426412 0.4748835 0.3906281on.- v.o+zvllz u..l ,+6oJJ u.Jrvozor
----:-f =t---p*x, 0.6837759 0.4007188 0.8307546

0zLqi 1.t56713 87.74826 0.527455t

Br(xr) 2.950253 0.4405829

Iil.Rr 5.5

M.Rq

9

T.Itt.. 1.5 131.25 162.25

T.Mt 2.25 21.5 705.25

fl.L, 2 144.5 190

21.5 7r8.5

D.M, 2.133333 w4.3333 206.4222

_____D.Mz 2.488889 2t.76667 749.3333

Brr,(lod) t.357t43 0.1122449 0.9305556

)

-- --fu,WL-.--- 0'86 r.5 0.2821589

. B,o(!y\y) t.T42e___. 0'l!10843 . -..--0.e6463E
%,rlaP)- 0'w?L-,-.1:-8!-6-sa3 .----0.t2qe?9!?

. _lyr(Wm)_._.. ... .!301q2q- - .-0:12-9?18-l - 
0.e88888e

Brrr(hum) 0.t4E955.- 1.814633... 0.2803501

0.121492 0.9697517

__ ByrzLtW) 0.5862744 t.t77127 0.2773t34

To indicate the domination of the proposed estimators over the existing estimatorc, we

have found the percentage relative effrciency (PRE) for the three considered

populations. The results (PRE) of proposed class w.r.t. the numerical findings of Abid

et al. (2018) in Tables (53 - 5.5). It is clearly show, the relative effrciency of the

proposed estimators higher than Abid et al. (2018). With the first population, see, Table
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(5.3), the proposed estimators 
olo,i i = L,... ,4 achieve morc eflicient and appears -yo

to be the best. Also, by examining the PRE values w.r.t. S6y, we find that:

p RE (ii p) > p RE (9p") > p RE (9e) > p RE (9e).

The proposed estimator i, achieve high efficiency wittr all 941, and the five largest

value of the efficiency wert associated, respectively, with it,rl,9"(,1 ,%(s) ,%(ro) ,

ard irsl. In addition, these rpsults of the highest effrciency are stable with other

proposed estimators( flru jor, 9or).

Table 5.3: The PRE of and, in Pop-l.

I'r,r 140.0776 13E.1485 139.2744 r38.4545

9ilzr 104.rs46 t02.7203 103.5574 t02.9478

ioiogrs9xo 107.274E t05.7974 106.6597

a 9a(l) t0E.2625 106.7716 107.641t 107.0081

__LsL _ lls.le6s 113.610l __rraj1L- tt_1.89tJ 
.

102.4832

102.6522 10t.2385 102.0636 101.46279^o

ixo..
9a(g)

102.3520 100.9425 10t.7652 10l.166l
--irr.szss --t2s.7tii'- iionti--- - tgo.bots

_ .&,p:. _ _ _!yr707-t0y.3ss4 --to'zj1I
101.5799

90r,,, 103.t5r0 t02.4208 103.2556 t02.6477

105.r3E6 103.6907 1U.5358 103.9204

1su6t4z 
-l4b^s4tt0-HeTscia- -'-i+T.soDt -

9.q('e_ I0e.45r3 :07-!!!! _)y8:y3?.__ _l9!ltlLt_.-_ .

With the second population, see, Table (5.4), the proposed estimators ir, I i = L, . . . ,4

achieve more effrcient and irris ttre best among all. Also, by examining the PRE values

w.r.t. /a1q we find that:

-!*s- --.
9"r,.,

)

90



U

p&E(fiPJ > pRE(ie,) > PRE(iie)> PRE(flq).

The proposed estimator ip3 achieve high efliciency with all iog1, and the five highest

values of efficiency were associated respectively with io111, flo1iJl, fro4rl), iofrl md

flo4). In addition, these rpsults of the highest effrcienoy are stable with other proposed

estimators (ip r, jrr, 9o r).

Tabte s$.It r !-!e "I_y1,, 
?rrl lnglsal .r4 ro_p-?..__' - di' --: --5r---'v-0"-- -.iur-- - -?r*----'---o*; --g9736s1 gog^sg6l 9t7.8452 893.1003

_-_-----rt-2--
942) . - --.. 

tt?.?9:.8 lt4'682t lls'8s08- t2'727s

0-,o' 115.9237 117.3733 118.5694 115.3728
_ _1_:.1-tgaar 115.8495 117.2982 I 18.4935 115.2989

---a--

_.--fusa-
?a,rr

r09.2186 I10.5E43 ltt.7ll2 108.6995

107.4210 108.7642 109.8726 r06.9104

9aL(n t07.42il 108.7697 109.8781 106.9158

p

r07.4681 108.8119 109.9208 106.9573

177.8697 180.0939 181.929t 177.0244

?-,,n 109.t424 I 11.2159 112.3493 109.3204
- - - ----!:L-:t--?-,,,, 1 10.0201 111.3958 112.5310 109.4972

_r-!-Lr!r--
7-,,,, 110.3018 l l l.68l l 112.8192 109'7776

-%

0-,..' 575.6524 582.8505 588.7902 5729165
----_--ltE:fr--- i-,,,^, 112.9E70 I14.399t I 15'5656 I 12'4500
g

O-,.=' I13.65t7 I15.0799 116.2527 ll3.l185
!-:v!J---gir"t 114.6674 I 16.1012 117.2E43 114.1224

With the third population, see, Table (5.5), the proposed estimators flpri i = 1,...,4

achieve morp efficient and flr.is ttte best among all. Also, by examining PRE values

w.r.t. f319 we find that:

IRE(fl"") > pRr(fle)> PRE(fl,)> PRE(iie).

The proposed estimators fps achieve high effrciency with all i361and the five highest

)
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values of efliciency wer€ associated respectively with 9o1.11,9o1),i.o9),9a111o), snd

flo$s).In addition, these results of the highest efficiency are stable with otherproposed

estimators( fror, 9o", 9or).

Overall, this numerical illustration can support to shed light on the assets of the robust

rcgrssion tools in mean estimation. In fact, it offers a clear indication that more

alternatives estimators than the rwiewed estimators can be valuable if a positive

correlation exist between the study and two auxiliary variables and small or moderate

samples are drawn from the population in prcsence of outliers.

Table 5.5: The PRE of and, in Pop-3.

?o6) 135.0121 135.3746 135.7115 r35.5t67" -?;o, -rzg'.iz.:--rE.dai{-rse,rizi tro.oos+

?c(c) 130.t204 l3l.l7t6 131.4980 131.3093p
?qe --. ----2t!7-19 :?t's?11-13-t'8131 --. 

t.3J-:963.e.

... . _ _?_lts). _. __tr3iltl !._ rr3.sl\s_ _.:?yt:t
?0,|(i) 123.3469 123.6780 123.9858

t23.6414

123.8079

?s(t) t23.2933 t23.6z.3 123.9320 123.7541

?c(s) 123.2793 123.6103 t23.9179 123.7400

?,rrs) 135.3704 135.7339 136.0717 135.8764

?c(10) 129.3495 129.6968 130.0196 129.8329

Tso;r, 130.57s6 130.9261 t31.2s20 131.0636

?412) l3l.l128 13t.4649 131.7920 131.6029

?c(r3)

?o$+)

140.4524 t40.8295 141.1800

t32.t696 t32.5244 t32.8542

140.9773

t32.6635

?c(rs) 134-1787 134.5389 134.8737 134.6801

?aeo) t34.9917 135.3541 135.6910 135.4962

)
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5.4.2 Simulation study, Pop-{

SIe present the efliciencies of the estimatorS tp1 - tp+ upon the estimators tc(r) -
ta(16) , by conducting the simulation sfudy. Herc, S is used of the comparisons two

multi-variate normal dishibutions (ND) for (Y,X1,X2) with means (P,X1,Xr; =

(4.9,4.9,a.9) and covariance maEices given respectively by

r9.9 2.9 2.81
z =lz.g t.e 1.ol ,

[z.e 1.0 l.eJ
Pyr,, = 0'651 , Pyr, = 0.669.

o

For tlre utilization of robust tool, and add noise in Y, Ali et al. (2021). From these

population of 8000 , SRSWOR with size n - (250,300) are selected for the Ktr

sample, the estimatos (t ,, tor) are computed. In this way, for each (tp,trr), the MSE

is determined as (MSE(o) = E[=t(a@l -?)I/x,Where lptr) is denoting (tpr,ta1)

estimators. For comparison purposes, PRE is computed. The PRE nrsults are provided

Tables (5.6 - 5.t).

Table 5.6: Simulation rcsults r = 100
aIp, lpz lp" lpa

?a(rr) 169.6223 169.0531 169.7314 169.0095

9aQ) 168.0350 167.47n 168.1430 167.4279

7s|rl)

i"io
171.5989 t71.0230 17t.7092

i6so68 - "rli}iel .. 
roi.tzoe'.

170.9788

rct.+sst 
' -

?qq')...
7aG)

200.0640 t67.4984 200.1926

\wzsii -' 
ts5-ss27 rqs.rdtd

r99.3412

r98.s338

?a(7) 199.2s37 198.5E5r r99.3E18 t98.5338

?a(s) 199.5578 r98.8881 199.6861 198.8367

?oo) 199.0180 198.3501 199.1459 t98.2989

?a(clo) 197.7t78 r97.0s43 197.84p,9 197.0034

?aot) 200.3690 t99.6967 200.4978 199.6451
) 197.7679 197.1043 197.8950 197.0533?s,orz)

?e{ot) 179.0312 r7E.4305 179.1463 178.3844



?a(o+) 177.4091 r76.E138 177.5232 t76.76Et

?c(15) 1E0.9s75 180.3503 181.0739 180.3037

7aoro) 177.4460 176.8505 177.5600 r76.804E

a

Table 5.7: Simulation rpsults for n = 150.

167.4462 167.0432 t67.6674

?o@) 16s.8972 t65.4979 166.fiU 165.4621

?o@) 169.4416 169.0338 t69.6654 168.9972

?oG) 165.9139 165.5145 166.1330 165.4787

?c(s) 199.4046 t9E.9247 r99.66E0 198.E816

198610l lTS"Bn tsSst-24 rsS0tsi--?o$)
9o(t) r9t.6101 198.1320 t98.8724

.7o1ol_-.
r9E.E770 198.39t3 199.1397 198.3553

?ao) t96.34r9 195.8693 196.6013 195.E269

?c(10) r95.0il3 r94.61l8 195.3390 194.5696

198.0891

?oiot) t97.78s0 197.3089 r98.0463 t97.2662

?o(o2) 195.1085 194.6389 t95.3663 194.59680
?a|rrt) 176.7075 176.2821 t76.9409 176.2440

flal+) 175.1244 174.7029 175.3558 174.6651

?c(15) 17t.6755 178.2454 178.91l5 178.2068

7a(or6) 175.t469 174.7253 t75.3782 t74.6875

Table 5.t: Simulation rpsults for n = 200.
Est.

aaalpr lpz lp, lpa

?aQ) 172.068t t71.7234 172.4609 171.6853

fiutsgt tTd.1t:rc ru.s476-- tn-.ou---?a@)

?c(s) 174.2228 173.E73t 174.6199 173.8346

7aG) t70.4636 t70.t2t4 170.8521 r70.0837

2"llt
?oG)

206.6926 206.2777 207.t636 206.2320

z-ris.s66s 
-- zos.,i*gi ioo'.sw- 20s.4078

r\d 9aQ) 205.8665 205.4535 206.3357 205.4078

{oa.Ttn -z0i.zrsT - -icii.aliu-'' 
zos.alt{?c(s)

?ae)

94

202.2088 201.8029 202.6696 201.7582



?c(ro) 200.9173 200.5140 201.3752 200.4696

?a(o[ 203.8269 203.417E 204.2914 203.3727

?s{or2) 200.9219 200.s186 201.3798 200.4742

o ?c(19

9a|o+)

tEt.7720 rEl.407r t82.1862 t8r.3669

r80.r319 179.7703 180.5424 179.7305

?c(ffi) rE3.9r0r rE3.5409 184.3292 183.5002

Il,

?aos) r80.1391 179.7775 180.5496 179.7377

5.5 Conclusion of the chapter

Usually, in suruey sarnpling, it uses additional information to obtain enhanced designs

and further accurate estimators. In this papq, based on information related to two

auxiliary variables, a new class of robust regression estimators forpopulation mean has

been proposed getting motivation from ratio ffi estimators of Zaman (2019), Zaman

and Bulut (2019a) and Bulut and Zaman (2019). The proposed estimatorc ar€ an

extension of Abid et al. (2018) work and rely on robust rcgression tools. Three real-life

data sets attributed to Sukhatme and Sukhafine (1970); Cochran (1977) and Sarndal et

al, (1992) pointing out the prEsence of outliers, have been considerpd in the numerical

illustration. It is observed that the values of the PRE's of the proposed estimators are

higher than those for the existing estimators attributed to Abid et al. (201 8) for all three

reallife data sets. This means that ttre proposed estimatorc are morc efficient than the

ones under comparison. In addition, rcbustness to outliers is an additional feature ofthe

proposed estimators. Consequently, we rccommended using the proposed estimators

over the existing estimators attributed to Abid et al. (2018), especially in the prcsence

of unusual data observations.

)
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Chapter 6

Mean estimation under stratilied sampling with some

transformations

6.1 Background

Estimation of population mean in lircrature is done by different sampling techniques.

In modern surveys, SEatifid sampling is used to improve the precision in estimation.

Statified sampling can be done by combined and separate ratio estimators. Our cument

rcsearch is based on the modification of the combination of ratio and product

estimators, for estimating the population mean under Stratified random sampling

scheme. We used auxiliary information to improve precision of estimates and get mort

efficient results. Some known parameters of auiliary variable X such as coeffrcient of

variation, q, coefficient of kurtosis, frr,r, etc. has used for purposes of the research.

Different existing ratio and produot ffi estimators in Stratified Sampling have been

considered for comparison with the proposed estimators. The numerical rpsults of the

real-life data set support the theonetical findings.

In this chapter, we have proposed some estimators of finite population mean by using

the transformations of coeffrcient of variation, C,, cocffrcient of kurtosis, fzsand

some real numbers in Stratified random sampling without rcplacement scheme. The

bias and MSE of the proposed estimator arp also obtained up to first order

approximation. It is observed that the proposed estimators are effrcient than the

traditional mean, ratio, Bahl and tuteja (1991); Koyuncu and Kadilar (2009) and Singh

a

)
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and Solanki (2013), estimators. We have applied a real data set using Shatified random

sampling technique for measuring the efficiency of the estimators considered here.

Use of auxiliary information imprcves precision of estimates and efficiency of

estimatorc in estimation prccess. Some ncsearcherc used different transformations for

some known parameters of auxiliary variable ,{ such as coeflicient of variation,

standard deviation, correlation coeffrcient, coefficient of kurtosis, skewness, etc. For

traditional mean estimators see, Batrl and tuteja (1991), traditional rcgression, Koyuncu

and Kadilar (2009); Singh and Solanki (2013) and Solanki and Singh (2014) estimators

are given below.

Suppose a finirc population S =lui,ui,ui,...,u'nfof size /V. Ilet Y be Aken as study

variable and X be taken as auxiliary variable having values h mdrs in unit ui 1i =

L,2,,-,il). A nx random sample drawn wittrout rcplacement from IVl population in

stratum h, (h=L,2,...,L). Wherc T,Vare the population means of x and y

respectively, Assuming population of sizeN, is divided into I strata containing 4 units,

g

wherp (h = 1,2,...,L)suchas ir.=,

with,

and 
h,,=,,

7,=f4i, and i,=f*rrr

4=+, E(4)=o'

L=+, E(4)=0,

E(tn')=fw^'Ir's$=n",

E(l")=fw:fi'#=r,,
)
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E(x,h)=twr27r'fu =4o,,

o Ir=fr, f;=(+)

O

Some other notations art used in estimators as given below:

LLL
e=I4s*, e =lYrC*, q=Zvrf"(r)

t.l l.l hl

q=fna,G), q=fw,o,, q =fza.(r)'

Mean estimatorc under stratified random sampling

,*=f*rr,
t-l

where,

I .I\tr=;Lrn'

Variance of unbiased sample mean is

,*(r,) =V'q,.

Ratio estimator under stratified random sampling

_ (T\
Gx1a1=!,t[*J

The expressions of bias and MSE of Ratio estimators are

oias(o^r,r) =V (rro - r1,l

(6.1)

)
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,usr (Qo 
) = Y' (qo + qr -24u) .

Traditional rcgression estimator under stratified sampling as:

G".<,,1 =ln+bo(T-;").

The expession of MSE of regression estimator arp:

(6.2)

U Bahl and Tuteja (1991) combined ratio exponential estimator under stratified random

sampling as:

- (7-'**\-
uelr; =.traxplE] (6.3)

The expressions of bias and MSE of Bahl and Tuteja (1991) exponential estimator arp

a,ias(c^r) = n(ir, -i*,) . (6.4)

rrrsr(cr,, 
) =V' (r,* i * - *, ) 

. (6.5)

(6.6)

O

)

usr (cor, | =i',1,(r - p,'l . (6.7)

wherE,

p"=$
,l4o,l4t

Family of ratio estimators of Koyuncu and Kadilar (2009) in stratified random sampling

r-18*,=or,lffil' for'i=L'2'3""'s (6'8)

For the family of estimatorc in table, MSE and bias can be expessed as:
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Drzs(K) = O-rlgi d, v, q, - so w,,]*v @ - r) . (6.e)

v

e

(6.10)

where ,

n = (t' + g) a'v'1, - 2gaw1o, + 2,

B =40*(ZS' + g)a'v'qr-4gaw1o,+1.

Table 6.1: Family of ratio estimators of Koyuncu and Ifudilar (2009) in stratified

---trnqg.eerylile-ratio estimators
g=1, a=l

4t g+- 
--.-{|z--Ll_- nz -- Qr -K.lOt

Ka Or
R, O" Or

KelOs
KolOe

.\
J

Minimum MSE is

MsE*(r)= n'lr-#).

Family of estimators of Singh and Solanki (2013) in stratified random sampling

,*{*',{Wf*{ffi}'] $t2)

(6.1l)

for r:1,2, 3, ..., 17 and (g:1,6=0, a=I)
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For the family of estimatorc in table, MSE and bias can be expressed as:

? ,,4sck)=i[ A{r*oaa,,*6(T\ ,',s^1.*{r-,o,,t,,**o','r}-,], (6'13)

wherc,

u=38-'
anX +bo

MsE'(zk) =V'lr+62c+628+2ggrD-26a-z45ef, (6.14)

wherc,

,* = 
[, 

- ,,s,4or * ff.'u'r,)

Bo = [l + 7o - 4aguqo, + g (2g +l) a' u'4r],

e
Css = [, * r, + Aago4o, + g (2g - l) o' u'qrf ,

r
ao = 

fr 
* ao * zz (o - sluao,.(#)r-exa - g - r)a 

],

a.* =[t-oar*, *p, o'u'q,1.D L '"' 2 ")

Differentiating MSE partially, with rcspect to 01and 0z and equating to zeno, we get

the following optimum values of Qlmd 02.

i,(*-ffi , h*t= 
tff-k 3fi''

)
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_IqD!g-(.2r F*r-ty-of estir.brs oDry _- !!gg.__
Estimato,rs ast bsf Estimators asr- Bst

---E,t- 

I o T""1o 
-l 

-- or
f,rz I O, T""r' ie-----!2-

Y -b-- or-.
T..^ O, fu
Trss----- I (l' 

----Tssl^t--_----gl---.-.{lc-
T.-. O. O, Tlers Oe O5

--&rz

fu Or Tcsrr Os {L
..-ir-.

I"tl---

MsE 
^(z:" ) = r" 

[, 
- tr"r: 

uif_ :ri i 
r: 

"" I 

]

Minimum MSE is

(6.15)

Family of estimators of Solanki and Singh (2014) in statified random sampling

'*=*r,l, l'.*;*rl€#]
(6.1o

wherc, V' =(aoV +bo) , x', =(aoi, +bol f or q = !,2,3,...,17

and (g:0,6=l)

For the family of estimators in table, MSE and bias can be expressed as:

,,a,cr* ) = r 
[ 

*{,.(#)^(ou s * 11 - zf 
)}. 

* 
t 

. (*)' (,, . 4 -, #)} 
-'] . to. r a

lvtilE(T*)=t'lt+6'rto,+h'Cn+4hDn-2ABn-ZhEn7' (6'18)

Table 6.3: Family of estimators of Singh and Solffi $Nr--
bst Estimators ast

c

) - Ttr,o

t02



wherE,

C 
zr* =[t +4o+e2u'(zs'*s)qr-+agueorJ,

'o, 
=ft*'''' 

(g' *t) 
r,- oruro,l'

Lzl

c"* =ft*70 * 
u' (a' +a) 

4,-zau4o,),
Lt'l

a,* = 
[r*zo 

*(#), -zu(zag + o)ao,),

*=[,_{ep,},,.(?)",],

where,

g i =10"s+tf +z(za'zg+al).

Differentiating MSE partially, with respect to 01and 0z and equating to zeto, we get

the following optimum values of Ofifi 02.

{*,=ffi' h*,=ffi'
Minimum MSE is,

MSE16p(r5*)=Y2lL-W. (6.1e)

{I
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6.2 A Proposed class of estimators for the estimation of population

mean

ln this section, some impoved estimators for finite population mean in sratified

random sampling arc prcposed, which are based on first order approximation.

Formulation of the proposed estimators are explained step-by-steP as follows:

6.2.1 Fitrt proposed estimator

For the formulation of our first poposition, follows Rao (1966). The average of rafio

o

product estimator is:

- -l- -\ln*=Sj+flqlx -*).

The average of ratio and product estimators is

By replacing [wittr ], in equation (6.15)

yo = fiy*+h(I-4.

(6.20)

(6.21)

(6.22)

(6.24)

By replacin E ju in Bhal and Tuteja (1991), we suggest the following estimator:

,o=i.*r[T-+). (6.23)

)

We used transformation of o=fwrco , 6=fwrprr(*).
l-l t-l

tias (u o) = qt(r - ff . an,)* * x ! -t,

104
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wherc,

o.=l*3# and ,=E ,
a 28 aX+b

urr(uo)=7'+fi'(J^kt+62urnr+26hur*l-24urr1,1-2hur,1,1. $.26)

usr-(u")=7' -u'*'u'n" 
r!'of*'1*r'u^'u'n' . (6.27)

The exprcssions of above pncof anc explained in appendix A.

6.2.2 Second prcposed estimator

For the formulation of second proposed estimator our motivation from

Ihe average of exponential ratio and product estimator is:

.=i{'*[#).*[#)] (62s)

J

By replacing !r, with i*,in Uor,we prcpose the following estimator:

un=i^-r(#*) (6.2e)

We used transformation of o=fwrc*, t=fwnpr,(rl.
l-l l'l

bias(un)=6r(r-*.",n)-*z!-t , (6.3r)

wherc,

)
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*=:-+ and -aXfl=-'
aX +b

MS E (u p,) =V' * A" u r4,1 t $2(J rr(,t + 2Ah(1 c"o - 2fru ort y - 2hlJ ro,r' (6.32)

MsE*(u)=V'-
2 +(J (6.33)

U r4,1U r4,y-U"4,1

The expressions of above proof arc explained in appendix A.

6.2.3 Third proposed estimator

For the formulation of third proposed estimator our motivation from, by replacing /

withf*, inUpr,we propose the following estimator:

2

J

and

(6.35)

(6.36)

.\
tt

Ivfi E (u, ) = V" + 0r' u 
^rr,t 

+ h' (J 
rr<,1 + 2SrSrIJ 

" 
*, - Zfiu n t l - 2O2lJ E r(,,1'

MsE.,n (u n) =v' -u ̂ t'tu "*f 
*t'f;#gf=iyi'ktu -ttu ̂ "t .

The expncssions of above proof arc explained in appendix A.

We usedtransformation of o =fn "o, 
t=fw*prr(rl.

t-l

ttas (u 
^) 

= dY(r - la + qa,)+ OrT ! - r,

whert,

7 392t.=-+-'8 8

-aXfl=-.
aX +b

106

(6.37)



U

6.2.4 Fourth proposed estimator

Forthe formulation offourth proposed estimatorour motivation from Usman and Hanif

(2018) andUpr, we propose the following estimator:

"(7-i\ I

-1.

alx -x")+u )

for a=0

(6.38)

andb =L

(6.3e)

. (6.41)

s=L.
aX +b

a

)

(2018) andUo",we propose the following estimator:

,^ = 
[* + {*,[*f). *,[#)].,' -2il(x -..;t]-{ffi]

for, a =0qnd,b =L

t07

, . =l^ +l*.+J. t, - za lti - A] * 
[

ti^, (u,,) = ilt(r - ff . +n). $ - U)O * -n,

wherE,

I 39'd,=-+-'2 t

rfi E (ur. ) = ( l *V a, - x t e4,l + q'u 
^n 

+ fizu *t + ZAhu r *t - 24u o*t - 4u *kt, (6.40)

rrrsc^ (ti. )= (7' +7'q,-74sn,l-!

The exprcssions of above proof are explained in appendix A.

6.2.5 Fifth proposed estimator

For the formulation of fiftlr proposed estimator our motivation fi,om Usman and Hanif

(6.42)



ttas(u^)=6i(r-**n ,).gz*1x!-r' (6'43)

J wherc,

o.=2*3f and ,= 4'8 t zX+b

,tct(u. 
) = (f +7' 4, - xYsa,l+ 4'u 

^n 
+ Sztl rn + qhu 

"*t 
-24(t oq1 -2$u r*,y, $.44)

MsE-(r^)=(7' +7'4,-Tlsr,)- ' (6'45)

The expressions of above proof are explained in appendix A.

6.2.6 Sixth proposed estimator

For the formulation of sixth proposed estimator our motivation from Usman and Hanif

(2018) and Up", we propose the following estimator:

,^=b+(,,_--?){-,[H)-*[H)}<,-,*Xr-il]'-,[ffi].to.oel

for c=Oandb=l

bios(u*)=6t(r-!.*n,)+g-247r*-u , G'47)

wherc,

- 7 .tg' and C= 4
"=r*T ax+b

) 
,rase(u*)=(l'+V'r1,-VYsa,\+6'u^*r+g2lt^.+24ltzu"qt-241J,44-24usq1, (6.48)

o
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lrsa- (u^ )= (r' +T'4,-Tl'sr,)-Y
U rr(,lU rql-Uc()

. (6.4e)

The exprcssions of above proof are explained in appendix A.

6.2.7 Scventh prrposed estimator

For the formulation of seventh proposed estimator our motivation from Bhal and Tuteia

(leel).

By replacing L in j**,inBhal and Tutejq we pn posed the following estimator:

By adding 9* in flnoo, we develop the following class of estimator:

jn=Y**Y**,

,"=li(+.i).^,.*1--4]

trn=ln-r[#=)

We used fiansformation of o=fr..cr, *fnp,r(r).

t,, (u 
^) 

= y(- +. + - *. +). 
^r(, 

- +. +. Y'). s* lt,

wherE,

s=L.
aX +b

(6.s0)

(6.s1)

(6.s2)

(6.s3)

(6.54)

J

)

,^=l+(*.1).^n.*(7-t)

*=r-+ and

r09
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rct(u^l=t'(r,.*-tzr)*{'ur,,,,* h'u,st+2hl\u*r,t-24u,nto;24zunp1' (6'55)

,nsr,"(u,)= u'(^.*-r,)- . (6.s6)

The expressions of above proof are explained in appendix A.

6.2,8 Eighth prcpooed estimator

For the formulation of eighth proposed estimator our motivation comes from, By

replacing !, with j"*,in Upr,'wa prcpose the following estimator:

u^ =f+{*,[H).*[H)].- x*tu(* -i)]-{#+] (6 s7)

We used tansformation of o=fwrcn, t=fwrflue).

t*{u^)=v(r-*."*).c-"(,. +-+)-0,*!-t, (6'58)

wherc,

tt#d.=-+-.8, *d t=#'

we(u^l=?'("-*'t",)+A'u^n +62u^r+z4l5uo,1-2'AUuq1-2lzu*1' (6'59)

wEn (u 
^) 

=r'(n,.*- tr,)-u ^qY "4i 
+!-_yry!i-!Y..9 q''u'*t' (6'60)

) The exprcssions of above pncof are explained in appendix A.

J
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6.2.9 Ninth proposed estimator

For the formulation of ninth proposed estimator our motivation from, By repeating

!

(6.62)

*=;.+ and

';

)

we(u^l=l'(^-!-tn)+A'u,^,r+h'u,"tt*4lru"*t-24u,,t1-21\usq,1'

substitutions in Upr, and Upr, we propose the following estimator:

,^=l+(+'-+){",t#f)-*(#)}-l;-*1ra]-,[ffi](6.6l)

We used transformation of o=fwpo , t--fwrBrr(*).

aras(u^ ) = 7(, - * * *r,). nr(,. + -*). ** ! -t'

where,

-aX!=-.
aX +b

(6.63)

(6.64)

The expressions of above proof are explained in appendix A.

6.3 Numerical investigation

For assessing the merits of the proposed class of estimators over existing ones, we

investigate numerical results by utilizing the following real data set

Source of data: Murthy (1967),p.228
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The total sample size is n = 45 and strata art as under:

Strata I =X islessthan 100, Sfiata2=Xisbetween 100to200, Stata3 =X isbetween

200 to 500, Srata 4 = X is greater than 500.

X = Data on number of workers,

Iz = Ouhut for 80 factories in a region

Table 6.4: Descri
Strahrm Total--t;

25.00 23.00 16.00 r6.00 80.00

nh 14.00 r3.00 9.00 9.00 45

Xt 71.00 362.93 749.50 284.75r40.69

!t 3156.64-'--tJ{-- 4766.22

zie
6334.19 7795.3t 5182.il

i.6r ---- 1.90 3.53o4ir
0.94ca 0.20 0.19 0.25 0.23

'Srr
14.61 28.03 9r.38 174.46 270.49

s,r3
,Sry

740.01 sr5.69 501.39 653.09

8830.78 r r900"6L4390370 -i r rz rsoo

1835.66
'4itio1l.io

Pn 0.81 0.823 t 0.95 0.910.98

0.040.040.030.031h

0.28 0.20 0.20

Table 6.5: MSE values of Unbiased, ratio, exponential and regtssion estimatorc

under Stratified Random Sampling.
Estimators MSE

6093.68r

0.31wh

Yrt

--- 
Glt:g
Gsr*l

5550.412

2676.871

)

Glsg(!9-

tt2

2671.006



Table 6.6: MSE values of Koyuncu and Kadilar (2009) estimatots under Stratified

!.andom_ Sampling.

.. _ ___Egttmqt_qrs_ ____U.9E _E$illtFtgfs__. 

--14-S!
___4t_ ss4e.4st I{s__ tt_s_0_.yl______

t5!qJa_ _ _JQ__ _ __1s4e423_ _ _
Kt 5549.E15 Ka 5552.18t

Kt 55E4.171 Kq 5556.2t9

l[s.-- s549.533

Table 6.7: MSE values of Singh and Solanki (2013) estimators under Stratified

.-Bs,9pqlqryPlus. 
-.-Estimators MSE Estimators MSE

Tssr 2669.749 Tssro 2669.758

Tssz 2669.751 T.rrr 2669.752

Tsrg 2669.75 Tssrz 2669.787

Trs+ 2669.E35 Tsstg 2670.285

Tsss 2670.225 Tssr+ 2669.759

Trso 2670.895 Tssrs 2669.76

Tssz 2670.028 Tssto 2670.27

Trso 2669.758 Tssrz 2670.784

2669.769

Table 6.t: MSE values of Singh and Solanki (2014) estimators under Statified

.Bst&u-lqtpli$,--
Estimators

T.rr 2670359 Tskz 2670.369

Tskz 2670.36 Tska 2670.359

Tsrg

?

MSE Estimators MSE

Tskc

Tsk+
."y - . ---'u'?:10t.-2670.3s9

2670.359

26io:{6i' Tskro

T.ts 2670.6t3 Tskrr 2670.429

T.*e 2670.961 Tskrz 2670.359

)

Estimators MSE
2666.95t 2669.2001

u_pr__-- 2668.081 qP,_ 29J.47_.____

--- -- Uo. -
2662.461 Uo. 2668.348

uo. 2669.4532 Uo"

Uo.

il3

2662.918

2669.302t
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6.4 Summaly of the chapter

Ratio estimators arc biased estimatorc, which art used in under stratified random

sampling. Many rcsearchers ducted case studies to improve ratio estimatols using

various transformations. Many modifications have been made to impose the population

mean in stratified random sampling.

Our pnrsent study is also focused on modifying the combination of combined ratio and

product estimators for the estimation of population mean using stratified random

sampling. For this purpose, different new estimators werc proposed and compared with

the existing estimators in Stratified random sampling.

Our numerical results of the suggested and existing estimators based on the MSE. All

results indicate that the MSE of the suggested modified estimators arp lower than the

MSE of existing estimators. We conclude, thereforc, that the suggested modified

estimators are the better and motp efricient estimatorc as compared to the existing ones.

v
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Chapter 7

Conclusions with future suggestions

7.1 Conclusion

In survey sampling, the location parameters estimation is one of the major concern by

statisticians. For this or eyeNl more pecise rcsults, the auxiliary variables play a vital

role. When outliers ocrcur in the data set, haditional ratio and regression type estimators

arc not providing suitable rpsults. In such situations robust techniques are suitable for

effrcient estimation of population mean parameters.

In this study, we have used up to two auxiliary variables for the estimation of population

parameter i.e. mean in several sampling designs, e.g. simple random sampling,

stratified random sampling and sysrcmatic random sampling, etc. To measure the

performance, we have utilized bottr 6rpe of data sets, l'.e. real and simulated. In this

regard, we have suggested some rcbust regrcssion based estimatorc for the estimation

of mean of sensitive variable Z whEnmean of the auxiliary variable is known in SRS.

Different robust rcgrcssion methods arc used such as LAD, H-M, H-MM, LTS, LMS'

Hample-M, and Tukey-M. For all the proposed estimatorc, the MSE have been

estimated upto frrstdegree of approximation. All the proposed estimators are compared

with their existing estimators. Theoretically as well as numerically, the rcsults rcveal

that the proposed estimatorc are more effrcient than their competitors.

In similar situations, but with different sampling design, such as, systematic random

sampling, some ratio type robust estimators have been suggested in this study as well.

We have also provided a new class of estimator based on robust regression with)

ll5
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utilizingCr, 0z@) and p as known auxiliary information. These estimations arc also

compared with their competitor taken from literature and found eflicient rpsults.

Following, the most npcent studies, such as, Tarrtm (2019) and Zaman and Bulut

Q0l9a), we poposed generalized robust-regression-type estimators to estimate the

population mean in simple random sample design. As usual, the mean squared erront

are also derived up to first degree of approximation. This study is also extended for

different study scheme, i.e. two stage random sampling. Based on the numerical

findings, our estimatorc are for away in the sense of imposed performance than their

competitors.

We have extended our work and suggested a family of robust tlpe regression estimator

by utilizing two auxiliary variables in SRS. The general expessions of mean squar€

erorc are also provided. We compared our findings with the finding of Zaman (2019),

Zunurand Bulut (2019a) and the results show that the proposed estimators ane better.

We also infioduced some new estimators using transformed arxiliary variable to

estimate the population mean. We obtained the numerical nesults using real life data

sets.

7.2 Recommendation

Outliers badly affect the statistical analysis. So, robust rcgression based means

estimators are very fruit in pr€sence of mean estimation. Also these rcgession

estimators require less auxiliary information as comparc to reviewed estimators. Hence

it is rpcommended to usc ttre proposed estimators.

J

)
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7.3 X'uture direction

Someone can extend this sudy in the deviation of multivariate case and in different

random sampling designs, such as cluster and multiphase random sampling.

3
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Appendix A

e The explanation ofthe exprcssions used in above proof of proposed estimators.

ltt Estimator

Substituting values of % and t in equation (6.18).

=ln (i.+)(,*ar'+(r+r,))+6(-i4)](,-+.#) ' (Ar)

u^-?=67(r-^-*-ff.aa')-**lu-+)-, (A2)

Applying expectation

m^ (u 
^) 

= Ar(t - * * qq,)* 0,7 ! : .

(u 
^ 

-7)' =7' * A'V' (t + 4' + tt- - 2s/M + zqe.,')+ 6'x' 4'

+z66Vx(st1'-\t)-z4r'(r-Y*o,h') (A4)

-rh'z:4

Applying expectation

use(uo)=? *il"u^r1,y+hzua4;1+41hu"r1,1-2AUotrt-z4uEftr. (A5)

Wherc,

u 
^n, 

=l'(t*r*! -,ea,*2,,n)'

u rrr,, =V'1r,

t
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(Jc\,t=YX(gr,-4or) ,

ur,+l=Y'

Differentiating MSE partially, with respect to 01and 0z and equating to zerp, we get

the following optimum values of 0tarrrd 0z

^,-ffi,r4*,)=ffi. 6ov)

The minimum MSE of Uo,

MsE-(u)=?' (A6)

; 2rd Estimator

Substituting values of /, and t in equation (6.24)

=l*u(*. +){*e(-4 X2 + ,a, )-' + exp( a)(z* zo-'},. o,(-vh)f

1r-s4 ;el41 
(^7)

t. 2 8)

un-v=6?(r.^-*-Y *o,^,)-*x(r,-+)-r. (A8)

Applying expectation

taas(un)=60(t-*.+n)-**!--r. (Ae)

l3l



-

(u 
^ 

-v)' =-f * t r' (t + 4'z + lt 42- - 204h + za,\')+ ta'v' h'

+ z665VV (s4' - t \) - z6r' (, - 9# * o,4,)

_ratila

Applying expectation

*r*-ffi,fu*.ffi'
The minimum MSE of Uo,

6ay)

(Al0)

-

use (u 
^) 

=l' * il'u 
^4,1 

+ h'(J r4,1 + 26hu rr' - z6u oc,l - 2hU e*t. (Alr)

where,

u,o,, =v' (r * r, * * - 2ea o, + zqa),

uro,1=7'4r'

u"rr,r=V7(*qr-qr,),

uoo,t=f (t-**^r,),

u--,.=!-x9q'.zq.r z

Differentiating MSE partially, wittr respect to 01and 0z and equating to zero, we get

the following optimum values of Ofind 0z

2 +(J
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3d Estimator

Substinrting values of y. and ; in equation (6.29)

=ap[r*a -+)(,-+.#)-ox+(,-*.Y). (Ar3)

un-v =6v(r*4-+-ry*q+')-*r(^-Y)-, (Ar4)

Applying expectation

taas (u 
^) 

= 6r(, - *. *n,)* e * ! -, . (Al5)

(u 
^ -v)' =v' + A'v'(r *^' * e't' 

- rsh,a, + za,t')* h'v' z,'

+zS,Q,*(s4'- h1,)-zer'(r-Y**O') (A16)

-rhv7:4

Applying expectration,

asn(u 
^\=r' 

+A'(l r\,t+h'u r4,t+2fif,(tr^,r-26U o*l-zhu a,a,t (Al7)

wherc,

u,r,, = / (r * r, * ff - r, a, * zo,n,),

Ur*)=Vqr,

u,.n =V7(s4r-40,),

uun =i'(t-**r,r,),
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'on='Wr^'

,a Differentiating MSE partially, with respect to 01and 0z urd equating to zero, we get

the following optimum values of 0pnd 02

il'-'=W(q') u^r4,1ur41-IJ"r?'oo*r=ffi' 6aY)

The minimum MSE of Up,

use-,(unl=|' -u,,*!'*f 
+!r'*{ro*lr!"r*tuo*tu'xt ' (Al8)
-r{,)-rt(,) -cat)

4tL Estimator

Substituting values of /, and r" in equation (6.33)

) =lno(L.+)(r*al'+(r+,r,))+(r-r*X-74)](r-+-+)' (Are)

u^-r =ar(r-r"-+-ry+d,4')-g-r*lx(4-ry)-o' (A2o)

Applying expectation

bias(tt,,)=At(r-**o.a)*1r- 2h)7+-V. (lut)

(r^-?)'=(l'*7'4,-7?u,l*e,-f (r*4,a4-zcryr**,4')

+15'+7'4'+45fr(ztS,-ze4'l-*(t-!lU,+1r,4'*7t t^-7t4') (A22)

-zhvTs4'

Applying expectation

t34



,'
whene,

u,^,, =V' (t * q, * * - zs6o, + 2a,4,),

(l 
rrr,, = 4724r,

u"r,r=iV(zqo,-20q,)

u,,4,t =V(Y -Y *r*r, + n, - x sn,),

Urnr=178q,.

Differentiating MSE partially, with respect to 01and 0z nd cquating to zero, we get

r the following optimum values of Opnd 02

^,*, 

=W' oqqt ="y,iiiffi''

the minimum MSE of Uo,

,rase- (u,. ) = (?' +7' 11, -7ll, lqr (A24)

,t sa(u* ) = ( 7' +7' 4, -V:7 e4,) + 6'u rr,, + 62U,q,1 + 2ilhu r,q,1 .

-24Uoq-24Ue4.1

5'h Estimator

Substituting values of % and r, in equation (6.37)

= av(r * t. +)(, - +. tf) -,, -,4)r 4(, - +.Y),

6ay)

(423)

r35

(A2s)



u^-? =6?(r-^-*-Y*,,^,)-s-z*yz(^-#)-r. (^26)

,, Applying expectation

ti* (u *) = et(, - *+ a,4 
) 

+ (r - r$T + -t .

P ̂
 
-?l' = (7' +7' 4' -770r, 

) 
* 1, 7' ( r + 4, + !A- - 2et t + za,t,)

+S|i*z 4' +45r7(zt"t -ze4)-41(l -ry+-ra,4' +7tnt - *t4') @27)

-z47(ys4,-274,1

Applying expectation

asr (u 
^) 

= (7' +7" q, -VV sq,l + 6,u,n + 6,u, q,1 + z6hu 
" 

q1 . (A28)
-24Uoro-24Ur*l

where,

u,*, =?' (r * r" * ! - rrrt, * z,,,a,)'

Ur*t=47'q,,

tl"^,r=VV(2q0,-294r)

u,n = r(r -Y *l*r, *Vn, -V sq,),

(Ie*t=T(Vsa,-r-*r,).

Differentiating MSE partially, with respect to 01and 0z and equating to zero, we get

the following optimum values of 0rarrrd 0z

J
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,r*-ffi,hwrffi. 6av)

'.e The minimum MSE of Ur,

6'h Estimator

Substituting values of i, *d ,, in equation (6.40)

= [*r(i. +){,. a, ){*, (+)(' - +.+). *,(+)(, - +. +)}. 1r - z6 y(-za 
) l . ^, ^\

[,-+.#) 
' \-/\ - -' \-/\ - -t) r (A3o)

u^-t'=er(r-^-*-Y*o"h,)-s-utx(4-+)-r. (A3r)

i Taking expectation

bias(un\=qr(t-*.a,a)+(zh)T+-v . @i2)

(u^-71'=(?'+7'42-7vsr,l*s,y'(r*fi *ff -2s4+*-,4,)

+fi't724' +4Six(ztS,-ze4)-*f -fllL+la"4' +1tnt-=rr') (A33)

-47(rs4'-274')

Taking expectation

*rz(u^)=(V'*V'a,-7rea,)+62ur*r+6,uro*1+41{tcq) 
r.ql+t

-2AUo*t-2lbUe*t

wherc,

trst^ (u*l=(l' *7'n,-7ls^)-u'*tu'xi *!tful--A"#9'*Y'*t . (A2g)
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u 
^a', 

=-f (r * 
" 

* ! -'eq' * zo'a)'

'G uaa4'l=47'q"

u,n,=77(zao,-2gthl

u 

^,, 
=V(v -ff *V rrn, *7,1, -7 en,),

U"o,=7(Vsar-2xqr) .

Differentiating MSE partially, with respect to 01and 0z and equating to zero, we get

the following optimum values of 0pnd 02

6-,=W, ^. 
.=urqgrqt-u"$-ru1*t . Gay)l(ry'l- 

u^r4,yurr4,1-(J"r4,l' ''qd-W - I

The minimum MSE of Uo"

,usa- (u* ) = (Y' *7' a - x tsa (A35)

7th Estimator

Substituting values of i and r, in equation (6.47)

= [t(i. *)(r * 4 )-' + (r +,( )) + n F(r + d ) + 6 (-x,r, )](, - +. #)

u 
^ 
-t = v(t - +.'# - ry- #)- rr(, 

- 

^ 
- + - ry r + r+)

-ex+(,-*-#)

(A36)
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Y

Applying expectation

t^(u,)=t(-+-+-+.2).;t(,-u.+.+).Ar+, (A38)

(u 
^ 

- rl' =7 (t * ff - u,t 
)* s'*'(, . 

^' 
- # - zsts, + !os, 4,)* *,*' 

^,+z;hrl:lsh'-r.41-4r'(r,'-9*-9y.Y-Y.*4) (A)

__t s4r)-z6xylt a-|)

Applying expectation

(A3e)
use(v^)=r'(n,**-,r,,)*A'u^*r+h'(r,4,t+2s(qu,n,

-2AUrrti-2hUeto

wherc,

u,n =f (r * r" * ! - r,o, *1r'r,),

tlrrr,, =7'4r,

Urnr=7V(9q,-qr,),

u nn =?'(no - + -+.+ -+ * * ),

u,or=77(n,-+). 
,

Differentiating MSE partially, with respect to 01and 0z and equating to zero, we get

tfre following optimum values of Lpnd 022

**,=ffi,h*-ffffi. 6av)
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The minimum MSE of Up,

rae-(v 
^) 

=-f(n . f - rn, 
J 

- 9 (A40)

tE Estimator

Substituting values of y. and t in equation (6.51)

= 
[n 

n(i. *){cxp(-+ )(z + r, )-' + exp(,t, )(2 + r, )' } 
+ I 7(r * a I * r, (-7a )] (A4r)

[,-94-* ''9'"1"'lt 2 8)

u 
^ 

-? =?(r * 4 - + - ry * +a')* ey(t - +.\sd-. r" - !*)
-*-.(a-ff)-t

Applying expectation

oi* (u 
^) 

=?(, - *. ^r,). 
* v[' . * - *). *o ! -r,

(u^-rl'=f (a'*ff -eaa)*s'l(u^'-Y-zeu1+1e'hz)**'*'^'

+ 266fr (s4'1 - hh) - uf (^' - lY - 9Y. + - ry * o,h')

__t gr,, )-zexYlt,l--i)

Applying expectation

rutst(u^)=O'(r,.*-en,)i,'u,nt*1,'u,*t+fitu"q1

-24U,rl,l-24zUe*l

wherr,

u 
^t, 

= ?' (r * 4o * fu- - 2gq. * ls' nr)'

( 42)

(A43)

( 44)

(A4s)

'lVrr,,r(J*,r'-
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(Jrrp1=T'qp

urr,=V7(gqr-4or),

uon,=r'(o-+-+-+-+*n ), '|

ur4,t=Xr(n, +)

Differentiating MSE partially, with respect to 01and 0z md equating to zero, we get

the following optimum values of otsfIld 0z:

a,*-ffi,iwt=ffi, 6cv)

The minimum MSE of Uo"

rurst-(unl=Y'(o,*!-t",)- . (A46)

9tr Estimator

Substituting values of y. and t in equation (6.55)

=[r(i.+)r,.a,){*,(})('-+.+).*(+)('-+.f)}.rro.^).e(-xa1] 
u*47)

l,,-!4'* r'e'4"1
\ 2 t)

u^-r=r(r*^-+-ry.+t).sr(r-+.'+.h-!+) 
(A4B)

-**(^-+)-,

Applying expectation

t4t



a

a, (u^)=7(,-!.^ ).rr(,.+ -*).**!-t' (A4e)

(u^-r)'=7'l+'rff -eu,,)*s't'lr.^'*Y-2s1,x1+1s'4')t*'r'^'

+41ai7(tt4'-d+)-ur'(^'-9Y-t*.+-ry*^t) (A50)

--( gl')
-zsxtlt t-|)

Applying expectation

' ust(u^\=v'(rr.+-snr)+6'v,q1,'v+$2(tn1,v+2hhur"r. 
(A5l)

-2AUoco-2hUrq,l

where

u,^,, =7' (r * qo * ! - rr^, * 
1g r,)'

IJrr1,'1=7'4r '

u^,r=VT (9q,-qo,),

u,*, = Y' (n" - + - +. * - *. ^"),

un,=xl(n, +).

Differentiating MSE partially, with respect to Orand 0z and equating to zero, we get

the following optimum values of 0pnd02

n*tW,h@.ffi' Gav)

The minimum MSE of Up"
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ttst^(u^l=r(".*-t",)-u*tuo.i.-lg!f'ff:i#luu^uu*, (As2)

'I

f.,T-'o*,
".i;"t;Lt
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