Peristaltic Transport of Realistic Materials
in Curved Configurations

A LY
='_§' [}
~

r
A
CTh T L
$te CaRY By
+ ISLtaMakAp

Farhat Bibi

Supervised By
Dr. Ambreen Afsar Khan

Co-Supervised By
Prof. Dr. Tasawar Hayat

Department of Mathematics and Statistics
Faculty of Basic and Applied Sciences
International Islamic University, Islamabad

2022



——

]..H.;Z-_é_. 1£2

T
frgagrit) Mes

PAD

Siq.2%

FAP



LIV

Peristaltic Transport of Realistic Materials

in Curved Configurations

By
Farhat Bibi

A Thesis
Submitted in the Partial Fulfilment of the
Requirements for the degree of
DOCTOR OF PHILOSOPHY
IN
MATHEMATICS

Supervised By
Dr. Ambreen Afsar Khan

Co-Supervised By
Prof. Dr. Tasawar Hayat

Department of Mathematics and Statistics
Faculty of Basic and Applied Sciences
International Islamic University, Islamabad

2022



L4

\/

Aythor’s Declaration

I, Farhat Bibi Reg. No 90-FBAS/PHDMA/S17 hereby state that my Ph.D. thesis
titled: Peristaltic Transport of Realistic Materials in Curved Configurations is
my own work and has not been submitted previously by me for taking any degree
from this university, International Islamic University, Sector H-10, Islamabad,

Pakistan or anywhere else in the country/world.

At any time if my statement is found to be incorrect even after my Graduation the

university has the right to withdraw my Ph.D. degree.

Name of Student: (Farhat Bibi)
Reg. No. 90-FBAS/PHDMA/S17
Dated:31/01/2022



\

Plagiarism Undertaking

I solemnly declare that research work presented in the thesis titled:
Peristaltic Transport of Realistic Materials in Curved Configurations is solely
my research work with no significant contribution from any other person. Small
contribution/help wherever taken has been duly acknowledged and that complete
thesis has been written by me.

I understand the zero tolerance policy of the HEC and University,
International Islamic University, Sector H-10, Islamabad, Pakistan towards
plagiarism. Therefore, I as an Author of the above titled thesis declare that no
portion of my thesis has been plagiarized and any material used as reference is
properly referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above
titled thesis even after award of Ph.D. degree, the university reserves the rights to
withdraw/revoke my Ph.D. degree and that HEC and the University has the right to
publish my name on the HEC/University Website on which names of students are

placed who submitted plagiarized thesis.

Student/Author Signature: Qﬁq’}c\'/
Néme: (Farhat Bibi)




LES

Certificate of Approval

This is to certify that the research work presented in this thesis, entitled:
Peristaltic Transport of Realistic Materials in Curved Configurations was conducted
by Ms. Farhat Bibi, Reg. No. 90-FBAS/PHDMA/S17 under the supervision of
Dr. Ambreen Afsar Khan no part of this thesis has been submitted anywhere else
for any other degree. This thesis is submitted to the Department of Mathematics &
Statistics, FBAS, IIU, Islamabad in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Mathematics, Department of Mathematics &
Statistics, Faculty of Basic & Applied Science, International Islamic University,
Sector H-10, Islamabad, Pakistan.
Student Name: Farhat Bibi

Signature: ?‘ﬂ{wf‘

Examination Committee:
P

Signature: ML—"“

a) External Examiner 1:
Name/Designation/Office Address
Dr. Meraj Mustafa
Associate Professor
Department of Mathematics,

School of Natural Sciences, NUST, Islamabad
b) External Examiner 2:

Name/Designation/Office Address)  Signature: AL

Dr. Muhammad Ayub

Professor

Department of Mathematics,

Quaid-e-Azam University, Islamabad, Pakistan. . .
Signature: @[W

¢) Internal Examiner:
Name/Designation/Office Address)
Dr. Khadija Magbool
Assistant Professor

Supervisor Name:
Dr. Ambreen Afsar Khan

Co-supervisor Name:

Signature: &W_C an

Prof. Dr. Tasawar Hayat Signature:
Name of HOD:
Dr. Ambreen Afsar Khan Signature: éi‘é

Name of Dean:
Prof. Dr. Muhammad Irfan Khan

==\



w

Declaration

I hereby declare that this thesis is my work which has been done after admission for the degree
of Ph.D. I confirm that 1 have developed this document on my efforts under the supervision of
my supervisor and co-supervisor. This dissertation, as a whole or as a part has not been copied

or submitted by others in this or any other university or institute for the completion of the

degree.

Signature: T
L

Farhat Bibi

PhD Scholar (Mathematics)



L W

Dedicated to
my kids (Fatima, Ibrahim & Qasim)



\V

Acknowledgements

My first and foremost gratitude and thanks goes to Almighty Allah for making me
enable to proceed in this dissertation successfully. Sure all prays is for Him who
created us as best of His creations and granted us strength, health, knowledge,
ability and opportunity to achieve our goal. I also extend all affection and devotion
to our Holy Prophet Muhammad (PBUH) - the beloved of the Almighty and a source
of guidance for entire mankind.

Deepest thanks to my valued supervisor Dr. Ambreen Afsar Khan who has always
been there to help me whenever I needed. This thesis would not have been
completed without her sincere and invaluable suggestions, guidance and supervision
during the course of my research. Undoubtedly, I learnt a lot from her as she was
always ready to extend her sincere help to me. I am also extremely inspired by her
as she judiciously maintained the balance in our relation of being ex-class fellows and
the supervisor.

I am enormously grateful and indebted to my co-supervisor Professor Dr. Tasawar
Hayat who has always been a source of inspiration and guidance for me. Without his
help and kind support, it would have been impossible to undertake my research. I
could start my PhD after a huge gap of 15 years only because of his encouragement
and guidance. Despite his extremely busy schedule, he always gave time and provided
me the required guidance and his personal support in my academic endeavors.

I am also grateful to Mr. Asif Iqbal who was always forthcoming to facilitate me
during my PhD. He provided me time and space to do the research despite hectic
office routine.

My deepest thanks go to my children - Fatima, Ibrahim and Qasim as they provided
the necessary environment to complete my PhD. A very special gratitude for their
love and utmost cooperation as I utilized their valuable time for my research. I am
particularly obliged to my loving husband Nigah Ali for his untiring support at all
levels. At the same time, I am extremely grateful to my highly respected parents



for their prayers and well wishes that kept me working smoothly through all the
hard times. I am also thankful to my brothers, sisters and dearest friends Sara and
Naheed for their encouragement and moral support.

I would like to offer my special thanks to my fellows especially Sidra Shaheen and
Hira for their untiring support and an exquisite company throughout. I would like to
extend my sincere thanks to all the faculty members specially Dr. Khadija Magbool,
Dr. Sajida Kausar, Dr. Maliha Rashid and Dr. Akbar Zaman for their assistance
at every stage of my course work.

Farhat Bibi



L)

Preface

Peristaltic is an important mechanism in which fluid is transported through successive waves of
expansion and contraction propagating together with channel boundaries. This mechanism has
widespread applications in physiology and industry. Peristaltic is one of the major mechanisms
for transportation of fluid in various biological processes. This is helpful in food swallowing
through esophagus, motion of chyme in the gastrointestinal, transportation of urine from
kidney to bladder, blood motion in small blood vessels, blood pump via heart and in other
reproduction systems etc. In industry, mechanical equipments are designed on this mechanism
in order to avoid contamination of outside environment. Its few examples are roller and finger
pumps, toxic liquid transport in nuclear industry, tube pumps and hose pumps etc. Many
modern medical devices also work on the principle of peristalsis such as the blood in a heart-
lung machines and dialysis machines etc. Due to immense application of peristalsis in
diversified fields, many researchers explored the peristaltic flow problems while taking into
account different conditions and geometries. Maximum work in this field available for straight
channels seems not realistic for all situations. Clearly, major chunk of glandular ducts and
pipes are found for curved shapes in industrial and physiological systems. This makes it quite

attractive and imperative to study the peristalsis in curved configuration.

Further the combined effects of heat and mass transfer result in very complicated mathematical
expression between the driving potentials and the fluxes. In these situations the energy flux can
be brought not only by the temperature gradient but by composition gradient as well. In view
of the above mentioned applications this thesis is organized by taking features of magnetic

field, mixed convection, porosity, Soret-Dufour effects, thermal radiation, entropy generation,
v
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variable physical properties of the fluid and electroosmotic effects through curved channel.
Boundary conditions for curved channel walls are via physical constraints. This thesis consists

of eight chapters and organized in the following fashion.

Chapter one contains brief introduction of peristalsis, literature survey and fundamental

equations.

Chapter two addresses the mathematical model of inclined magnetic field for curved
geometry. The magneto peristaltic movement of Jeffrey liquids with variable physical
characteristics in curved geometry is investigated. Accordingly, the energy expression involves
viscous dissipation and variable thermal conductivity. In addition the entropy generation in
magneto peristaltic movement of Jeffrey materials together with variable (depending upon
temperature) thermal conductivity/ viscosity for curved configurations has been modeled and
analyzed. Velocity, heat transfer coefficient, temperature and entropy generation are computed
numerically. The graphical analysis is analyzed for pertinent variables. Contents of this work
are published in Part E: Journal of Process Mechanical Engineering (2021)

p.09544089211041278.

Chapter three contains heat and mass transfer in peristalsis of magnetohydrodynamic (MHD)
third grade material through curved configuration. Variable characteristics of thermal
conductivity and viscosity are taken. Effects of Soret and Dufour are examined. Chemical
reaction with activation energy is attended. Compliant properties are subject to channel
boundaries. Slip aspects are considered for velocity, temperature and concentration at channel
boundaries. Large wavelength and low Reynolds number are invoked. Resulting expressions

are computed numerically. The detailed physical interpretations of all the flow quantities are
vi



analyzed for various pertinent parameters. Temperature increases for Dufour parameter
whereas concentration reduces for Soret variable. The contents of this chapter are published in

Journal of Thermal Analysis and Calorimetry 143 (2021) 2749-2760.

Chapter four examined peristaltic transport of Sutterby liquid with temperature dependent
thermal conductivity in curved configurations. Inclined magnetic field is considered. Energy
expression is modeled with effects of viscous dissipation, non-linear thermal radiation, variable
thermal conductivity, Joule heating and heat source/ sink. Lubrication approach in formulation
has been implemented. Irregularities are discussed by entropy in the process of heat transfer.
Numerical method has been used for velocity and energy equations are solved numerically.
Quantities of interest via important parameters are graphically analyzed. Irregularity is
minimum via entropy for enhanced thermal conductivity and radiation parameters. Heat
transfer rate increases for increased values of Brinkman number. These observations are
published in International Communications in Heat and Mass Transfer 122

(2021):105009.

Chapter five addresses non-Darcy resistance in peristaltic transport of Sutterby liquid in
curved configuration. Variable characteristics of material (i.e. thermal conductivity and
viscosity) are taken as temperature-dependent. Soret and Dufour features have also been
retained. Problem is modeled by using conservation laws. Long wavelength and small
Reynolds number have been invoked. Resulting problems have been solved numerically.
Entropy optimization analysis is made. Axial velocity, temperature, concentration, entropy,
Bejan number and heat transfer rate are examined for influential variables. Opposite behavior
of mass and energy is noted for Soret and Dufour parameters. Entropy enhancement is noticed

vii



for Soret and Dufour parameters. This analysis is published in Journal of Thermal Analysis

and Calorimetry 143 (2021) 2215-2225.

Chapter six examines entropy generation via thermal radiation, heat absorption coefficient and
variable thermal conductivity under magnetic consideration. Third grade material flow by
peristalsis in curved configuration has been considered. Modeled problem has been simplified
by the lubrication approach. Momentum equation is solved through regular perturbation
method and energy equations is solved numerically. Furthermore, physical investigation of
pertinent parameters on temperature, velocity, Bejan number, total entropy and pressure
gradient has been scrutinized through graphical results. Total entropy enhances for heat
absorption coefficient whereas it lessens for thermal conductivity coefficient and thermal
radiation parameter. The contents of this chapter are submitted in International

Communications in Heat and Mass Transfer.

Chapter seven discusses peristaltic flow of Sisko material is modeled with variable
characteristics of thermal conductivity and viscosity via curved configuration. Both quantities
are taken space and temperature dependent. Conservation laws for mass, momentum and
temperature are first modeled and then simplified by taking small wave length and large
Reynolds number assumptions. Entropy is also under consideration to study irregularities in
heat transfer process. Problem is solved numerically. These solution is utilized to plot the
behaviors of quantities of interest against the pertinent parameters. For larger thermal
conductivity parameter the temperature decays whereas it increases for Sisko fluid parameter.
Irregularity in heat transfer is found minimum through entropy generation for larger viscosity

and thermal conductivity. The results of this study are published in Thermal Analysis and

viii



Calorimetry 143 (2021) 363-375.

Chapter eight organized modeling of electroosmotic Carreau liquid flow through a
microchannel in curved configuration. Fluid flow is because of both the peristaltic pumping
and electro osmosis effects. The Carreau liquid flow is governed by Navier—Stokes equations
along with electric body force. Heat equation is also modeled. Electric dissipation effects are
incorporated. These equations are simplified by assuming lubrication theory. However
Poisson-Boltzmann equation is simplified by Debye-Hiickel approximation. Resulting
expression is solved analytically. Velocity distribution, trapping and temperature are
investigated for various pertinent parameters like inverse Electric Double Layer (EDL), ratio of
zeta potential, curvature of the channel, electric dissipation and Helmholtz—Smoluchowski
velocity etc. Velocity shows dual behavior for different parameters in the curved microchannel
and is asymmetric near the centre due to curvature effects. Temperature decreases for EDL
thickness however reversed holds for electric dissipation parameter. Contents of this chapter

are submitted in Part E: Journal of Process Mechanical Engineering.

Chapter Nine presents the conclusion of thesis.
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Chapter 1
Literature Survey and Basic

Equations

This chapter deals with introduction of peristalsis, literature survey and fundamental equations

of fluid flow and mass and heat transfer.

1.1 Peristalsis

Mathematical modeling and analysis of various problems are made to solve the issues
associated with industry, engineering and medical sciences. It is well known fact that various
materials/ fluids in industrial processes and living organisms are carried out from one point to
another through a natural method known as peristaltic pumping. It is a series of wave-like
motion that occurs due to contraction and relaxation. Peristalsis has prime importance in the
fields of physiology and engineering. For physiologists, it is well known phenomena as it is
one of the key mechanisms for transportation of fluid transport in many biological systems.
Few examples in this context include urine transport from kidney to bladder, movement of
food particles in digestive tract, blood circulation in capillaries, ovum movement in fallopian,
vasomotion of small blood vessels and in other reproduction systems etc. Various biological
and industrial appliances have also been manufactured by engineers through this concept e.g.

finger and hose pumps, heart bypass and dialysis machines, rollers and B.P apparatus are few

1



pertinent examples in this regard. Peristaltic phenomena is also helpful to transport fluids/
materials where direct contact with the material is avoided e.g. in nuclear industry toxic

materials are transported through this mechanism.

1.2 Literature review

Latham [1] is recognized as the pioneer who investigated the peristaltic fluid motion
experimentally. Burns and Parkes [2] discussed peristaltic motion through both symmetrical
and axially symmetric channels and pipes. In this study two extreme cases are analyzed, one is
with peristaltic motion with no pressure gradient and second is fluid flow under pressure along
channel. Shapiro and Jaffrin [3] analyzed fluid transport via peristalsis with assumption of
small Reynolds number and large wavelength. Yin and Fung [4] carried out a study in which
they compared the experimental work and theoretical investigation related to peristaltic
motion. Barton and Raynor [5] discussed peristaltic motion in tubes. A mathematical
formulation is presented by Lew et al. [6] to present the chyme transport in small intestine.
Tong and Vawter [7] adopted numerical technique (finite-element method) to study peristaltic
motion. It is concluded that the wavelength and amplitude of the wave affect the flow velocity.
Li [8] studied peristaltic motion in cyinderical tubes. Mittra and Prasad [9] discussed the
Poiseuille flow of peristaltic motion of the material. Liron [10] investigated the efficiency of
peristaltic activity in living bodies. Jaffrin [11] discussed peristaltic pumping theoretically in a
tube for the case when effects of inertial and streamline curvature is significant. Fluid flow
through peristalsis in non-uniform channels was addressed by Gupta and Seshadri [12] and
Vishnyakov et al. [13]. An experimental study was performed by Manero et al. [14] for non-

Newtonian fluid flow in oscillating channels. Peristaltic movement of physiological fluid flow
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with variable viscosity in a non-uniform channel was discussed by Srivastava et al. [15]. In
1983, Bshme and Friedrich [16] investigated wavy motion for viscoelastic fluids. In this study
Reynolds number is taken to be small enough so that inertial forces could be ignored and large
wavelength is considered so that pressure could remain constant in the cross-section of the
duct. Srivastava and Srivastava [17] studied two-layer fluid flow through a non-uniform duct.
Two-dimensional fluid flow through wavy motion was portrayed by Takabatake and Ayukawa
[18]. In this work Navier Stokes are solved by using numerical method (finite difference
method) for distinct values of wavelength, wave amplitude and Reynolds number. Pozrikidis
[19] investigated wavy motion in two-dimensional duct. In this article creeping fluid motion
was assumed and impact of width of the channel, amplitude of wave, pressure gradient on
pattern of streamlines and characteristics of fluid flow were discussed. Related studies in this

context are (see ref. [20-25]).

Initially peristaltic was studied for viscous materials only. Viscous materials are related
through linear relationship between strain rate and shear stress. Such materials do not represent
realistic materials. For instance, various materials like greases, jellies, gelatin, comn-flour,
ketchup, toothpaste, soap, blood, clay coating and various emulsions do not lie in the category
of Newtonian materials as these carry non-linear relation amid strain rate and shear stress.
These are known as non-Newtonian materials. Non-Newtonian models present different
perspective of fluids for better understanding of several dynamical mechanisms. A single
material cannot reveal all properties of non-Newtonian fluids. To overcome such facts various
non-Newtonian models are proposed in the literature. These materials undertake a vital

contribution in daily life, petroleum, geophysics, physiology, chemical industries and
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engineering therefore non-Newtonian materials are of much significance. Such significance in
various spheres of daily life demands a thorough and comprehensive understanding of these
materials making it an ever more attractive field for contemporary. Thus for the first time Raju
and Devanathan [26] made a theoretical study to investigate the flow characteristics of
physiological fluids in peristalsis. In this study they considered power law fluids in a tube.
They discussed in detail the impact of applied pressure gradient coupled with non-Newtonian
material parameters on velocity and streamlines. In another study [27], they also extended [26]
by taking viscoelastic fluids. Siddiqui et al. [28] examined properties of peristaltic transport of
shear-thinning Third grade materials in planner channel. Siddiqui et al. [29] studied the
peristaltic motion of second grade fluid via an axi-symmetric conduit. Srivastava [30] analyzed
peristaltic transport of couple-stress fluid that is an especial case of non-Newtonian fluids.
Hayat et al. [31] presented peristaltic motion of third grade fluid in a circular cylinder tube.
This wok presented a model in order to have better understanding of the mechanics of
physiological flows. Hayat et al. [32] portrayed peristaltic motion for Johnson-Segalman
materials in two-dimensional planner channel. Wang et al. [33] analyzed peristaltic motion for
Johnson-Segalman fluid in a sinusoidal deformed tube. In this article wavelength of deformed
tube was considered large. Solution for pertinent parameters is calculated for both perturbation
and numerical techniques. Haroun [34] studied wavy motion in an asymmetric channel for
third grade fluid. In previous works peristaltic motion was considered in straight and planner
channel but in this study non-Newtonian fluid was firstly considered in asymmetric channel.
Here long wave length is assumed large as comparison to the varying width of the channel.
However, amplitude of the wave is not very small as compared to the channel width. After

[34], Nasir and Hayat [35] also modeled non-Newtonian fluid in an asymmetric channel. In
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this work they considered a four parameters model Carreau fluid as a non-Newtonian fluid.

Recent works in this direction can be seen through Ref. [36-41].

Literature survey reveals that reasonable work has been undertaken on material transport
through peristaltic mechanism with various conditions and geometric configurations. However,
very little work has been done in curved geometry. It is noticed that flow through curved
geometry yields rather more realistic applications when compared with flow via straight
channel. Obviously various glandular ducts, arteries and pipes in physiological and industrial
systems are curved shaped. Peristaltic mechanism in a curved channel was initially investigated
by Sato et al. [42] in which they studied viscous fluid in a laboratory frame. They used long
wave length and small Reynolds numbers assumptions while solving the equations. Due to the
various applications of curved channel, the analysis of [42] has been reviewed by Ali et al.
[43]. They presented mathematical formulation of the problem in wave frame for curved
geometry for the first time. In these studies it was concluded that flow due to peristaltic motion
in curved channel is not symmetric. Due to various applications of non-Newtonian fluids in
industry, Ali et al. [44] firstly formulated a mathematical model for non-Newtonian fluid in
curved configurations. Here rheology of non-Newtonian fluid was defined by third grade fluid.
Hayat et al. [45] discussed impact of magnetic field on wavy motion of third grade fluid in
curved configuration. In this article they considered wave frame of reference. Hina et al. [46]
investigated wall properties on peristaltic motion of non-Newtonian fluid (third grade fluid) in
curved geometry. Ramanamurthy et al. [47] formulated mathematical model for viscous fluid
flow in peristaltic motion for curved geometry. In this study they analyzed the flow in

laboratory frame of reference. Narla et al. [48] presented exact solution for viscoelastic fluid in
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curved channel. In this work they used lubrication approach in order to liberalize the equations.
Hayat et al. [49] investigated motion of Carreau-Yasuda liquids through peristalsis in curved
configurations. Abbasi et al. [S0] considered Eyring-Powell fluid flow via peristaltic transport
in curved channel. Problems with different fluids and boundary conditions are investigated in

curved channel by different researchers (see Ref. [51-58]).

It is worth mentioning here that application of magnetic field in peristalsis has a lot of
significance due to its tremendous applications in various fields of life and thus researchers of
different eras have continuously been working in this field (see ref. [59-76]). In these attempts
magnetic field is applied either in transverse or in inclined directions for peristaltic flow for
different geometries..

Heat transfer is an integral and pivotal element in cooling processes of industries and various
other processes. It regularly occurs in the bodies of different temperatures. A number of
processes rely on this phenomenon of heat transfer e.g. crystallization, distillation and various
boiling operations. Similarly laser therapy, cryosurgery and hyperthermia are considered the
most modemn ways to destroy unwanted tissues like cancer etc. In peristalsis the food bolus
moves in gastrointestinal tract while being immensely affected by the transfer of heat
phenomenon. Articles concerning with heat transfer have been presented by many researchers
(see refs. [77-84]). It is evident from the available literature that researchers have shown
interest in biological and industrial fluid flows with heat transfer. It is a fact that consequences
of heat transfer are examined through entropy. In thermo-dynamical systems, frictional forces,
viscosity and chemical reactions etc are the main causes of energy degradation that result in

entropy production.



In thermodynamics, entropy is stated as thermal irreversibility or depletion of useful energy.
One of the major concerns for scientists and researchers, these days, is how to manage the
wastage of thermal energy. The analysis of entropy production is considered vital in finding
location and origin of irreversibilities. The sources of energy losses are due to friction, heat
transfer, expansion and compression, thermal radiation, magnetic field, heat source/ sink and
chemical reactions. By minimizing entropy generation, efficiency of thermal systems may be
improved. The same may be accomplished through various methods such as by reducing chip
components' sizes in computers, introducing porous medium, cooling fans to avoid overheating
and heat exchangers. Laws of thermodynamics describe transformation of energy and the first
law portrays quantity of energy in the process of heat transfer. Second law describes reduction
in quality of energy that is measured as entropy. After working on entropy generation, Bejan
[85, 86] was the first one to propose a method that optimizes system's destruction. Afterwards,
many other researchers considered irreversibility analysis and ensured its utility in determining
the system's efficacy. Souidi et al. [87] analyzed entropy generation for peristaltic flows. Abbas
et al. [88] and Rashidi et al. [89] worked on peristaltic flows for nanofluids. Similarly, Hayat et
al. [90] discussed entropy in peristalsis with rotating frame. Khan et al. [91] studied entropy
for skin friction coefficient and Nusselt number. Farooq et al. [92] portrayed entropy
generation for peristaltic transport of carbon nanotubes. Afridi et al. [93] described entropy for
heat-mass transport. Noreen et al. [94] presented entropy minimization of Carreau materials
along with Hall current and Ohmic heating effects via peristalsis. Khan et al. [95] simulated
entropy production via peristaltic motion of viscous fluid in asymmetric channel using
shooting method. Nawaz et al. [96] analyzed entropy for peristaltic motion of Williamson

liquid in curved configuration.



Viscosity affects the capability of propulsion in peristalsis. It plays an important role during the
preparation of flow measurements of fluids. In almost all the real fluids, the viscosity varies
with thermal effects when viscous dissipations are taken. Viscosity of physiological fluids like
honey, syrup, blood and polymer solutions vary with temperature. Available literature reflects
that previously majority works on peristalsis are done for constant viscosity of fluid. Little has
been organized for peristalsis by considering the variable viscosity. In several engineering
applications, both viscosity and thermal conductivity are temperature dependent with high
temperature such as nuclear power plants, missile technologies, rockets and space vehicles,
turbines pumps etc. Further in many other procedures the irreversible damage are followed by
small change in temperature for example during dialysis and heart lung equipment. Keeping in
mind such importance of variable viscosity and thermal conductivity only few investigations
have been yet organized. Keeping in view its vitality, few researchers have analyzed the effects
of variable viscosity of peristaltic flow. Reddy and Reddy [97] analyzed the peristaltic flow
with variable viscosity through a porous medium in a planar channel. Ali et al. [98] considered
consequences of slip boundary conditions on the peristaltic flow of MHD fluid while taking
variable viscosity. Eldabe et al. [99] analyzed mixed convective heat and mass transfer for a
non-Newtonian fluid of peristaltic flow with temperature dependent viscosity. Recently,
Tanveer et al. [100] discussed variable viscosity for Sisko fluid in curved channel using
compliant wall properties. In most of the investigations constant thermal conductivity has been
carried out. However, it has been proved that the thermal conductivity changes linearly with
temperature from 0 to 400 °F. Few researchers have also analyzed the combined effects of
variable physical properties of peristaltic flow in straight/planner channel. Hussain et al. [101]

discussed heat transfer analysis in peristaltic flow of MHD Jeffrey fluid with variable thermal
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conductivity. Hussain et al. [102] discusses nonlinear thermal radiation and temperature
dependent viscosity for peristaltic flow through porous medium of hydromagnetic fluid in a
straight channel. Hayat et al. [103] investigated collective effects of variable viscosity and
thermal conductivity for MHD mixed convective peristaltic flow. Hussain et al. [104] studied
the influence of temperature dependent viscosity and thermal conductivity for hydromagnetic
Jeffrey fluid on peristaltic motion in a straight asymmetric channel. Latif et al. [105] explored
combined effects of temperature dependent viscosity and thermal conductivity for MHD third
order fluid for symmetric peristaltic channel. Abbasi et al. [106] examined peristaltic flow of
electrically conducting fluid through porous medium with temperature dependent viscosity for
a planar channel.

Review of the available literature witnesses that advance study is needed for peristaltic
movement in micro/nano scale via curved geometry to design devices like kidney-on-a-chip,
Gut-on-a-chip and Liver-on-a-chip. These devices work through basic code of electro-kinetic
that means interaction of fluid flow in micro channel subject to electrical field. An important
element of electro-kinetic flow is electro-osmosis. Tripathi et al. [107] explored electro-
osmotic pumping with effects of Soret and Dufour in a microchannel under peristaltic transport
of nanofluid through Joule heating. Tripathi et al. [108] extended this model by taking the
effects of buoyancy. Narla et al. [109] formulated a model for electro-osmotic and peristaltic
pumping in a microchannel. Narla et al. [110] also extended this model to examine uterine
hydrodynamics of uterine cavity. Although many researchers have studied electro-osmotic
peristaltic flow in different geometries; however, in curved channel Narla et al. [111] explored
the electro-osmotic flow of viscous liquid for first time ever and presented its mathematical

model. This mathematical model was exclusively derived for blood flow. Results of this study
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revealed that peristaltic pumping could be controlled by electro-osmotic phenomenon. In
another study, Narla et al. [112] analyzed entropy generation in biomimetic nanofluids via

curved geometry with Joule dissipation.

1.3 Fundamental Equations

1.3.1 Mass Conservation Equation

Concept of mass conservation is extensively used in various fields such as mechanics,
chemistry and fluid dynamics. It was established in chemical reactions by Mikhail
Lomonosov and after that it was revived by Antoine Lavoisier. According to this law, in a
closed system mass remained conserved or unchanged that is it can neither be formed nor
destroyed by any chemical reaction or physical transformation. Mathematically, it is expressed

by equation of continuity as follows:

op (1.1)
—+V.(pW)=0,
5 tV(P )

where p denotes the density of the material, ¢+ time and W velocity of fluid. The above

equation is for the compressible fluid. For incompressible fluid, where density of the fluid
remains constant, Eqn. (1.1) reduced to

V.W=0. (1.2)

1.3.2 Momentum Conservation Equation

Momentum conservation is directly followed by Newton's third law motion. According to this
law, momentum of an isolated system remains unaltered unless an external force act upon it.

Mathematically
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dW
p—==V.1+pf,
dt (1.3)

where t=-pI+S represents Cauchy Stress tensor, p pressure, I identity matrix, S extra

stress tensor, of body force, %=§+W.V total derivative and V del operator.

1.3.3 Energy Conservation Equation

The law of conservation of energy states that the total energy remains constant in any process.
It may transfer from one to the other system or may change its form but the total quantity of

energy remains the same. Mathematically, we write

dT

p7t_=

V.(xVT)+ E,, (1.4)

in which p shows fluid density, €, specific heat, T temperature, x thermal conductivity, E,

energy transfer by viscous dissipation, radiative heat flux, Joule heating, surface cooling\

heating and Dufour effects etc.

1.3.4 Concentration Equation

The equation of concentration can be deduced by considering the assumption of mass
conservation within moving material/ fluid. Molecular diffusion and convection are responsible

for mass transportation.

@ _ DV*C+
dt

anr VT. (1.5)

where C represents concentration, D, represents mass diffusion coefficient, k, thermal

diffusion ratio and 7,,,, mean material temperature.
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1.3.5 Maxwell's Equations

Four equations illustrating a relationship between electric and magnetic fields behavior in view

of electromagnetism laws are named as Maxwell's equations. These equations are

VE=2, (16)
&
VB=0, (1.7
VxE=-@’ (1.8)
ot

va:/‘oJ"'ﬂoso%‘:‘s (1.9)

in which Erepresents electric filed, Btotal magnetic field, Jcurrent density, p, charge

density, &, permittivity of free space and g, electric quantity.
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Chapter 2

Entropy Generation Analysis for
Peristalsis of Magneto Jeffrey

Materials

This chapter discusses magneto peristaltic movement of Jeffrey liquids with variable physical
characteristics in curved geometry. Energy expression involves viscous dissipation and
variable thermal conductivity. Entropy generation together with variable (depending upon
temperature) thermal conductivity/ viscosity and effects of inclined magnetic field has been
modeled and analyzed. Slip boundary conditions for temperature and velocity are invoked.
Velocity, heat transfer coefficient, temperature, entropy generation and trapping are computed
numerically by using Mathematica 11 software. The graphical results are analyzed for

influential variables.

2.1 Mathematical Formulation

We intend to investigate entropy in peristalsis of Jeffrey liquids within curved channel.

Channel width is 2a, radius R’ and centre O. Velocity components (#,,/,) are taken along
radial and axial (R, X) directions respectively. Inclined magnetic field B, is applied with an
inclination 9,. Fluid viscosity and thermal conductivity are temperature dependent. Flow is

induced due to wave propagation having amplitude b, wavelength A and speed s. The
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wavelength A of curved channel is supposed to be much larger than half width of channel such

that %] 1. Geometry related to this context is given in Fig. (2.1). Wave shape is taken as:
F=:|:1(X,t)=i[a+bsin(2—;t-(X—st))], (2.1)

where 7 represents radial distance of wave from centre line. Heat transfer occurs because of
different wall temperatures (7},,2}) at upper wall and lower wall respectively such that

& >T,).

0

Fig. 2.1: Sketch of considered problem

In curved geometry inclined magnetic field is written as:

B=(RB?sm.9°,RBocos.9°’o . (2.2)
R'+R R'+R

14



From Eqn. (2.2), it is clear that for magnetic field is in radial direction when $, =90°.

By Ohm's law, we can write without electric field
J=—o[BxW], (2.3)

and Lorentz force F,

F=BxJ s (2.4)
in which J shows current density and o electrical conductivity.

From Eqns. (2.2) to (2.4), we arrive at

, 2

F= a(:f‘}i) (—W, cos’ 9, + W, sin 9, cos 9,, W, sin 8, cos %, — W, sin’ .90,0), (2.5)
, 2

JI= (0' 15 f(}z ) (W, cos 8, ~W,sin 8,)". (26)

By Reynolds model we have following expression of temperature dependent viscosity [103-

104]:

M) = p,exp{-a (T-T, )} » 1, (1~ (T-T,)), (2.7)

in which u, represents constant fluid dynamic viscosity and o' variable viscosity coefficient.

Clearly @ =0 reduces this problem to constant viscosity situation. Temperature dependent

thermal conductivity is [101]:

x(T)=x,(1+8(T-T,)), (2.8)
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where x, shows constant thermal conductivity of material and S’ represents variable thermal
conductivity coefficient.
Cauchy stress tensor () for Jeffrey materials is [36]:

t=S-PI,

s=ﬂ(4ﬁ+AJ (2.9)
A+WN 2 a ')

here I denotes identity tensor, P pressure, u(T) temperature dependent viscosity,

A (_ Relaxation time

= — ), A, retardation time, 4 material derivative and
Retardation time dt

A, =(VW) +VW. (2.10)
Elementary equations of present work are [43-46]:

: 0 ((p
R §2+6—R((R +R)W,)=0, (2.11)

(am+wam_mm+ W,R' awz) R opP ! a(S_m(R'+V)2)

& VaR R+R (R+R)oX | (R+R)aX (R+R) OR

R & RB, Y s _
+(R'+R) a)’{“ +G(R'+3Q) (-#,sin’ 8, + W, sin 8, cos 5, ), (2.12)
oW, . oW, RW, oW, W} )\ &P S, R a5,
+W, + - =——— +
a9 'R (R+R)aX R+R| 0R (R+R) (R+R) X
10 (p BR Y ,
+R’+R51_(-((R +R)SRR)—O'(R,:_R) (-, sin 8, cos 3, +W, cos* 8, ), (2.13)
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or or RW, oT
w (

Pl ot MaR? (R'+R)8XJ——V(— (TWT)— (S Su)

oW, W, R_owm ( B, ) W, cos 9, — W, sin 9 2.14
[BR (R+R) (R+R) aX’J AR o (¥, cos sind)’, 214
with
- 8 (L \_xD) o _ o | x(DR” oT (2.15)
V(-K(T)VT)=- aR("(T)aR) R+ROR ax[(R'+R)2 aXJ

Here p denotes density, Syy,Syz,Sz, the extra stress tensor S components, C, specific heat

and T material temperature.

The boundaries conditions are

W,-aiSq=0, T-fo0=T at R=-z,

o (2.16)
W,+a,S;z =0, T+B8—=T, at R=7,

OR
where @, and B, stand for slip parameters.
We considered transformation between wave (X,7) and laboratory (X, R) frames as:
X=X-st,F =R, w,(x,7)=W,(X,R,1)-s, w (%F)=W,(X,R1),
T(%,7)=T(X,Rt),p(x.F)=P(X,R1). 247)

Applying transformation (2.17) in Eqns. (2.11) to (2.16), we arrived at

R'%+§:((R’+F)W,)=O,
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p( OB, O (wz+S)+(wz+S)R'&)=

ox or R+7 R+r
B Sy, 1 O( (.
R |® & R+ -)ar-( Sy (R+7))
R+F| R N _ ’
+aﬁBg (—(w2 +5)sin’ §, + W, sin 9, cos 80)

—_ ') —_ 2 ,
P —s%+wlaw +R(W2+S)aw (w2'+‘i) =_@_ "gﬁ_ + 'R— BSW
ax (R+F) & R+F oF (R+F) (R+F) ox

1
R’+ or

((R’ ) Sy )-G(I?f;_' )2 (~(®, +s)sin 8, cos 9, + %, cos’ §,),

LG RO\ o rywr)-Pos,, -
pc,( A — ®+7) az) V.(-x(T)VT) ar-(sﬁ S+)

(e z oo oo nar.

where V.(—«(T)VT') in curved channel is computed as

V.(~(FWVT)=-2 K(T)a _x@oT 3| x(DR* oT |
F\ T RAFF E((R+F) &

We now define dimensionless variables (x,r), pressure p, velocity components (#,,#,),
wave number &, amplitude b, temperature 8, Reynolds number Re, peristaltic wall A,
viscosity parameter @, Brinkman number Br, thermal conductivity parameter 3, curvature

k, Prandtl number Pr, thermal slip parameters (e;,/3,) and Hartmann number H as follows:
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F X a’p (w, w,) a
Ty = s ’ Sl 6=_l
(r,x)= (a ﬂ.) P su,A (2, ) s’s A
h=2,  6=r—>, Re=22, h=%,
a L-T, Hy a
a=a (I-T), Br=—2"_  p=p@-1), k=%,
! ° 0 (T; _7:)) ° a
’ _ 2,2
pr=_’£e_, 2, =4, B, =w, H= aB_oa. (2.18)
X, a a Ho
Velocities (w,,w,) via stream function (i) can be presented below
(wl,w,)=(_ﬁa_v',6_w ) (2.19)
k+r ox or

By low Reynolds number and long wavelength we get

r+kkgi (,1,+1)l( +k)’ &[(l aa)(Hk){ (’*1“_")( +%)+§’_¢:}J

2ry2
_Mzi(l,,a_v'), (220)
(k+r) or

P _o, (2.21)

(2] (1200 2+ 2} ('&j‘f)[ (r;k)(l%)g’r_f]’

k (Hsing,)’ (1+—)z 0 (2.22)
(k+r) or ’
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-— 2
5, =82 L (12 2
1+4 | (r+6)\ o) or
Eqns. (2.20) and (2.21) imply that

-

e e e e G R

*| b, o)

with boundary conditions in dimensionless form
W(r)=_€-’ _alsxr+w'(r)+]=os —ﬂa'(r)+0(r)—l=0 at r:—h’

y/(r)=§, aSer+y'(r)+1=0, BO'(r)+6(r)=0 at r=h,

F=jw,dr=w(h)—w(-h),

h = (1 + b sin(2xx)).

Heat transfer coefficient at r = h(x) is

oh 06

I —
ox oOr

2.1.1 Entropy

Entropy generation [75] in fixed frame is given by

20

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)



2 ’ 2
_E(_T:l(fil) +i(_R_°) (WI cos.90—Wzsin-9o)2

gen @i dR @n R'+R
1 oW, R' oW, W, ) o,

+ + - Sye +(=Sx +Spe) 22 |- _
e, (( R R+R3X R+R)™ (=Sir +5u) 3R (2.29)

where ©, denotes reference temperature. Above equation is combination of three parts. First

part represents entropy generation caused by heat transfer, second part shows entropy because

of effects of inclined magnetic field and third part due to fluid friction.

Entropy production in dimensionless form becomes

F(l—aa)(_ 1 (y, 0% +62w)2-
-
s (ao)2+ Ay | ) m( ‘ar—) or
= — 2
or 1+ 56 kz(Hsinso) dy
+—z(1+'ar—)
(k+r)

(2.30)

in which A defines temperature difference parameter and S,; entropy generation characteristic

s KOE-T) (2.31)

Be = (%;Q)z
2
(60)2+Mr1rlﬂg[€m‘9)(%g—_r_-}-f(%g+l)) +(%EHsin.90) (—aa'f,i+l):|



From (2.32), it is clear that Be [0,1].

2.2 Methodology

Eqns. (2.22) and (2.24) subject to the boundary condition (2.25) are solved numerically to

solve boundary value problems.

2.3 Analysis
In this section we analyze responses of axial velocity, entropy generation, temperature and heat

transfer coefficient versus pertinent parameters.

2.3.1 Velocity

Effects of axial velocity are illustrated through Figs. (2.2) to (2.5) against r for different

parameters (@, k, 8, and 4,). In Fig. (2.2), it is seen that maximum velocity occurs near

centre of the channel and it decays for higher a in the vicinity of upper wall where

temperature of wall being T,(<7]). Enhancement in wave amplitude is observed for larger .
It is because of inverse relation between 4 and a. For higher values of @ viscosity decreases
and thus fluid velocity increases. Fig. (2.3) shows behavior of w, for k. An increase in &

velocity is decreased near the lower wall and it is higher near upper channel wall. When &
increased, curved channel is converts to straight channel and for straight channel velocity

amplitude is symmetric at centre of channel. Fig. (2.4) shows impact of inclination $, on
velocity. For 9, from 0° to 90°, material velocity decreases. For $ =0° magnetic field is in

the direction of flow with maximum velocity. However for 8, =90° the fluid velocity is least
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due to maximum magnetic field strength. From Fig. (2.5), it is observed that w, decreases in
half of the channel width for larger values of 4,. In all these figures, it can also be noticed that

trend of velocity is dual due to curved geometry.

2.3.2 Temperature

Figs. (2.6) to (2.10) exhibit temperature distribution @ via r for various pertinent parameters.
Fig. (2.6) reveals that by increasing viscosity coefficient (a), temperature is decreased. Fig.
(2.7) illustrates that for increased value of thermal conductivity coefficient () the fluid

temperature decreases. In fact an enhancement in g intensifies the fluid ability for soaking up

or dispersion heat. Fig. (2.8) depicts influence of Br on 8. Temperature is found increasing
for higher Br. It shows that for higher Brinkman number the effect of viscosity dominates and
it opposes flow field. Because of flow resistance, an increase in the collision occurs for fluid

particles and consequently the temperature rises. Fig. (2.9) explains behavior of 4, on 6. It
elucidates that temperature decreases with higher A,. Fig. (2.10) shows that when inclination

8, of magnetic field is increased from 0° to 90°, @ also increases.

2.3.3 Entropy

Figs. (2.11) to (2.18) are drawn to observe outcome of entropy generation (Ns) and Bejan

number versus various parameters (S, Br, 9, and a). Figs. (2.11) and (2.12) demonstrate

influence of B on Ns and Bejan number. Increase in B shows similar behavior for both

quantities. Effect of A.Br can be revealed from Figs. (2.13) and (2.14). Br has direct relation

with viscosity and square of the wave propagation speed. An enhancement in A.Br
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corresponds to more temperature rise thus entropy also increases (see Fig. (2.13)). Fig. (2.14)
explains the dominant effects of heat transfer for increasing A.Br. Figs. (2.15) and (2.16) show

influence of & on Ns and Bejan number. Opposite trend is noticed for both. Entropy
increases near the channel walls for higher inclination (9,) whereas Bejan number decreases

due to dominating effects of magnetic field strength. Figs. (2.17) and (2.18) show the effect of
a on dimensionless quantities Ns and Bejan number. Clearly, both decrease by increasing
viscosity coefficient. It is also noticed that Ns does not change significantly in the central

region of the channel.

2.3.4 Heat transfer coefficient and isotherm
Figs. (2.19) and (2.20) are sketched to show the impact of S and H respectively on heat
transfer coefficient. These figures revealed similar behavior i.e. increasing response of heat

transfer coefficient for larger 8 and H. In these figures oscillatory behavior is observed

because of wavy motion of channel walls

Figs. 2.21a and 2.21b are sketched to show the contours of temperature for curved and straight
channels respectively. It is observed that distribution of temperature is high for curved
configuration in comparison with straight channel. In these figures thermal conductivity and

viscosity are assumed constant.

2.3.5 Trapping

In the fluid model, it is vital and significant to investigate the pattern of stream lines. Sketch of
stream function reveals a very clear visualization of flow behavior. In the flow of physiological

fluids, contour plots of stream lines depict the intrinsic flow properties which are referred as

24



trapping. Trapping phenomenon for non-Newtonian fluid model is presented through Figs.

(2.22) to (2.24).

The consequences of curvature on trapping can be illustrated through Figs. (2.22a-2.22c). For

small values of curvature parameter (k =2, 4) more streamlines are trapped in upper half than
the lower half of channel. Moreover, bolus size in upper and lower half is asymmetric. When
curvature parameter is increased to infinity i.e. (k—)oo), then trapping phenomenon in the
channel seems to be symmetric. Effect of viscosity parameter () on trapping is observed
through Figs. (2.23a-2.23c). In Fig. (2.23a), when viscosity is considered to be constant i.e.
(a = 0), more streamlines are trapped in central and upper half of channel. When viscosity of
the fluid is taken to be temperature dependent i.e. (a #0) and by increasing(a), size of the

bolus expands in central and upper half while it shrinks in lower half of the curved channel.

The effect of Hartmann number on trapping phenomenon is portrayed through Figs. (2.24a-

2.24c). It is noted that as Hartmann number (H)enhances, symmetry at both halves also

increases.
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Fig. (2.2): Velocity for viscosity parameter (o)
with x=0.1, p=0.1, k=3, Br=0.5,%=n/4, H=1.2, M=1.5.

1.0 -0.5 00 05 1.0
r

Fig. (2.3): Velocity for curvature parameter (k)

with x=0.1, a=0 p=0.1, Br=0.5,9=n/4, H=1.2, A;=1.5.
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Fig. (2.4): Velocity for inclination parameters

with x=0.1, 0=0 B=0.1, k= 1.7, Br=0.5, H=1.2, Ai=1.5.
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Fig. (2.5): Velocity for ratio of relaxation to retardation time

with x=0.1, a=0 p=0.1, k= 1.7, Br=0.5, So=n/4, H=1.2.
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Fig. (2.6): Temperature for viscosity parameter

with p=0.1, k=3, Br=0.5, 89 =n/4, H=0.5, A1=1.5.

Fig. (2.7): Temperature for thermal conductivity parameter

with a=0.05, k=3, Br=0.5, 8o=n/4, H=0.5, ,;=1.5.
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Fig. (2.8): Temperature for Brinkman number

with a=p=0.1, k=3, %o=n/4, H=0.5, Mi=1.5.
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Fig. (2.9): Temperature for ratio of relax tion to retardation time with

with a=p=0.1, k=3, Br=0.5, 8o =n/4, H=0.5.
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Fig. (2.10): Temperature for inclination of magnetic field

with 0=0.05, p=0.1, k=3, Br=0.5, H=1, A;=1.5.

v P——— Py
L L v

$=0.0,0.1,0.2

Figs. (2.11): Entropy for thermal conductivity parameter
with 0=0.1, k=3, Br=3, So=n/4, H=0.5, Mi=1, A=0.01.
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Fig. (2.12): Bejan number for thermal conductivity parameter

with a=0.1, k = 3, Br=3, 8o=n/4, H=0.5, Ai=1, A=0.01.

Fig. (2.13): Entropy for Brinkman number

with o=p=0.1, k=3, So=r/4, H=0.5, A,=1.
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Fig. (2.14): Bejan number for Brinkman number
with 0=p=0.1, k= 3, So=n/4, H=0.5, A;=1.

40f,

Fig. (2.15): Entropy for inclination of magnetic field

with 0=f=0.1, k=3, Br=3, H=0.5, Ai=1, A=0.01.
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Fig. (2.16): Bejan number for inclination of magnetic field

with a=p=0.1, k=3, Br=3, H=0.5, A,;=1, A=0.01.
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Fig. (2.17): Entropy for thermal conductivity parameter

with p=0.1, k=3, Br=3, %=n/6, H=0.5, A;=1, A=0.01.
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Fig. (2.18): Bejan number for thermal conductivity parameter

with p=0.1, k= 3, Br=3, 8o=n/6, H=0.5, Mi=1, A=0.01.
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Fig. (2.19): Heat transfer function for thermal conductivity parameter

with a= 0.1, k=3, Br=0.5, 8o=n/4, H=1.5, li=1, A=0.01.
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Fig. (2.20): Heat transfer function for Hartmann number

with a=p=0.1, k=3, Br=0.5, So=n/4, li=1, A=0.01.

(a): k=1.7 (b): k=100

Figs. (2.21a, 2.21b): Temperature contours for curvature parameters
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Figs. (2.22a-2.22c): Stream lines for curvature parameter &
with «=0.1, p=0.1, So=n/4, H=0.3, .,=1.5.
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Figs. (2.23a-2.23c): Stream lines for viscosity parameter

with H=0.3, B=0.1, So=n/4, k=2, M=1.5.
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Figs. (2.24a-2.24c): Stream lines for Hartmann number H

with B=0.1, So=n/4, k=2, Mi=1.5.
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2.4 Conclusions

In this chapter, peristaltic flow of Jeffrey liquids has been taken. Physical properties of the
material are modeled as variables. Inclined magnetic field is formulated mathematically for
curved geometry. Velocity, temperature, entropy and isotherms of the flow are analyzed.

Key points are as follow:

» There is opposite response for & and 9, for axial velocity.

® Temperature is decreased by higher @ and S.

= Rate of heat transfer shows similar response for 8 and H.

= Response of entropy is found parabolic for considered parameters.
» Entropy is higher for $, and A.Br.

= Entropy minimizes for & and S.

= Temperature distribution is higher for curved channel in contrast to straight

channel.
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Chapter 3

Soret-Dufour impacts with
Activation Energy in Peristaltic
Mechanism of Third Grade Material

In this chapter heat and mass transfer in peristalsis of MHD third grade material are

addressed. Soret and Dufour contributions are examined. Variable properties of thermal
conductivity and viscosity are considered. Compliant wall properties are taken. Thermal
radiation is present. Furthermore, non-linear activation energy through chemical reaction is
also considered. Slip boundary conditions are taken for momentum, energy and
concentration flow. Numerical solutions to the considered problems are developed and

analyzed.

3.1 Mathematical Formulation

Effects of Soret and Dufour in peristalsis of electrically conducting third grade material are
analyzed in curved geometry. Width of channel is 2a. It is coiled in circle (O,R').
Components (#,,W,) of velocity Ware along radial and axial directions (R,X)

respectively. Thermal conductivity and viscosity are taken as functions of temperature.

Waves are traveling along with channel walls with wavelength A, speed s and amplitude

b as in Fig. (2.1). Geometry of such waves satisfies
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F=:|:x(X,t)=i[a+bsin(27”(X—st))], (3.1)

Conservation of energy and concentration laws with thermal radiation, viscous dissipation,
Soret and Dufour impacts and activation energy with chemical reaction are considered.
Compliant wall properties at the boundaries of curved channel are taken. Velocity, heat and

mass transfer for slip effects are applied at channel walls. Magnetic field having strength

(B,) is exerted radially direction for 9, =90° (see Eqn. (2.2)). Impact of induced magnetic

field is not taken into account because of low magnetic Reynolds number. We write
B=(£5 0,0 3.2
R+R° 82

By Ohm's law and Lorentz force as defined in Eqns. (2.3) and (2.4), we arrived at

. 2
r-(0-o( 22 mo) e

in which F denotes body force due to magnetic field along radial direction and o electric

conductivity. According to Rosseland approximation radiative heat flux (q,) [74] is:

1630
q, 3%

(v7), (3.4)

in which £°* and & (= 5.6697x107* Wm'zK") represent mean absorption coefficient and

Stephan-Boltzmann constant respectively and
—f(or _R T
VI =(%. 7 %)- (3.5)

Governing equations with considered assumptions are as under
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R _om, om. W __o 6]
R+RoX ' OR 'R+R

_OP 8y __ RB
(dm+mm)_ R | & a& R+R’

dt R+R) R+R| 1 ((R+R) S, ) ’ (3.7
R(R+R)0R
dw, W} P Su 1 B . R a8
S - & -—((R+R)S PR :
(dt R+R) R R+K R+R aR(( ) RR)+R+R ax 38
dT _ &(T) 8T 0 | x(D)R* oT aW2
C,— — |- —|—— ~Sw
Porar ™ ( @) ) R+R R oX (R+R) X T Swt S
B L 5, — Dok o _o 1 2).
"R+R 3X R R+R c, \ ax* aR* R+R oR 9)

' 2 o3 2 2
‘o RjBo (W12+W’22)—16o..]:’ _ 0 —— 1 i_a_z T,
R +R 3k 6X“ R+R OoR OR

dC _ [a’ 1 8 a’] D,,k[a2 1 @ a’]
. -

"oX* R+ROR OR’| T, | aX* R+R R oK’

_kZ(TJ -C, +C)exp( fr) (310
0

where T represents temperature of fluid, 0 fluid density, C,, specific heat, C

concentration, D, mass diffusion coefficient, k7- thermal diffusion ratio, Cj

concentration susceptibility, x(7") temperature dependent thermal conductivity coefficient,

2
k, chemical reaction rate, E, activation energy, L(= grad W), T mean and
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Y (= 8.61x10%ev/ k) are mean material temperature and Boltzmann respectively.

The imposed boundary conditions are

1y, Sz +W,=0, at R=1y, (3.11)
iy;%+T={2} at R=xy, (3.12)
:ty;%%+c={g} at R=ty, (3.13)

Model of third grade fluid is defined as [67]:

T=—pI+8§, (3.15)
S=,u(T)B, +ABz+ﬂzBlz+a| (”Blz)Bn (3.16)
B =L +L, (3.17)
B, =(§?+W.V)B, +BL+LB, (3.18)

where 4(T') portrays temperature dependent viscosity, (;,/3,/3,) material parameters,

(B,.B,) first and second Rivilin-Erickson tensors such that

B 20, a20, |B+A|<24ua,. (3.19)
In this chapter viscosity and thermal conductivty of the fluid are taken temperature
dependent as defined in Eqns. (2.7) and (2.8) in chapter 2.

Let the dimensionless velocities, curvature, amplitude ratio, pressure, temperature,

concentration, wave number, peristaltic wall, Reynolds number, variable viscosity
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parameter, components of extra stress tensor, variable thermal conductivity parameter,
Brinkman number, elasticity parameters, Prandtl number, chemical reaction parameter,
third grade fluid parameter, temperature ratio parameter, activation energy parameter,
Schmidt number, Dufour number, Hartmann number, radiation parameter, Soret number

and velocity, thermal and concentration slip parameters are

wow T-T
by ' — — a*P = 0
(w,,wz)-(T,_sl), k=8, =4, P=57 o T-T°
c-C, _ psa _ _as
b= 0=%, Re=fp", a=d(L-T), §,=3
, — —|_1d_ md dd
B=p (TI'_I;)’ Br= &,(h-T,)° (El’EZ’E3)_( uAs? s ? lzﬂ,,)’

_ Ds(C-Go)Kr _ o8z 160" _ PDskr(T-Ty)
Du = C\Cpﬂ(ﬂ'n) ’ H= o ? Rd T S Tmn/‘(cl'co) )
d Vi~ L tivel (3.21)
an i a0, respectively.
Velocities (w,,w,) as a stream function () can be defined as:
_OSkoy __ oy 5.22)
ke T T

Substituting Eqn. (3.20) into Eqns. (3.6-3.18) then using Eqns. (3.21) and (3.22) in the
resulting expressions; condition of incompressibility is satisfied trivially in Eqn. (3.6) and

applying lubrication approach in rests of the expressions give

212
ka_P=;_a_((,+k)zsn)+” k oy (3.23)
& (r+k)or k+r or

44



% =0, (3.24)

(ﬂa+l)(ﬁ+_l_a_a)+p(y)’wr(_ Loy, az.p)s . P( L o, az¢)

or* r+kor or r+k or or' r+kor or
1 08 o0 kH? ay/)
+R,Pr —+ + Br =0, 3.25
Ri (k+rar ar’) (k+r) ( 8.25)
1 o a’¢ 1 26 a’e E
—+ScSr —-8c&(1+(Q-1)0 —_— =
ko o of ( Fa g7 S (1+Q-D8) pexp| —— Q-1
(3.26)
Eqns. (3.23) and (3.24) imply that
0 1 H%* oy (3.27)
k) S, )+——|=0,
[k(r+k)ar((r+) )*is ar]
2
5, =8, =~(1-af)[ -2, TV} 5[ 1 ¥ az , (3.28)
r+k or ar rik or  or
h=1+b sin(27x). (3.29)
Dimensionless boundary conditions now are
oy (3.30)
-—xyS,=0 at r=1h,
or
1
:l:yzzr—a+9 {0} at r=xth, (3.31)
:l:y,—¢ +¢= {} at r=th, (332
o 3 & 0 2 2,2 0W _
k(r+k)( &a s +E ax +E3W)” ;((f'ﬁ'k) Sn)'l'H k ; at r=th. o33
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3.2 Methodology

Eqns. (3.25-3.29) subject to boundary conditions (3.30-3.33) have been solved numerically

by using a built in command (NDSolve) in Mathematics.

3.3 Analysis

Physical interpretations of axial velocity, temperature and concentration against pertinent

parameters have been deliberated upon in this section.

3.3.1 Velocity

Fig. (3.1) shows impact of temperature dependent viscosity coefficient (@) on axial
velocity. An enhancement is noticed in wave amplitude for larger . Since z and o have
inverse relationship so for higher a, the viscosity decreases and consequently fluid
velocity enhanced. Response of axial velocity for curvature (k) is seen from Fig. (3.2).

Here velocity reduces near lower channel wall and it increases in remaining part of
channel. Interestingly velocity is more for straight channel in contrast with curved
configuration. However velocity is asymmetric about the mean position. Variation in radial

magnetic field H on velocity can be observed from Fig. (3.3). Clearly velocity amplitude
is decreased for an increased Hartmann number (H ) As the applied radial magnetic force

behaves as a resistive force that acts in opposite direction to the fluid flow. Fig. (3.4)

depicts variation in third grade fluid parameter (ﬂ,) This plot clearly shows that velocity
decays for higher A,. Figs. (3.5) and (3.6) are sketched for compliant walls coefficients

(E,,E,) and E, respectively. It is noticed that velocity is increased for elastic coefficients
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(E;,E) and it decreased in case of damping parameter (E,). Fig. (3.7) is formulated to
show the effects of slip parameter for velocity (7,). Obviously origin is changing by
varying y,.

3.3.2 Temperature

This portion describes temperature for pertinent parameters. Fig. (3.8) shows that variable
thermal conductivity coefficient () has inverse relationship with 8. As B is increased,
the temperature of material is decreased. Fig. (3.9) presents influence of Deborah parameter
(B,) on fluid temperature. It is found that temperature drops with rise of B,. It is also
noticed that temperature in third grade material is lower in comparison with viscous fluid.

It is shown in Fig. (3.10) that by increasing Brinkman number(Br) the temperature is also

enhanced due to the viscous dissipation effects. Fig. (3.11) gives Dufour (Du) effects on

6. Temperature against Du is increased. For higher Du the viscosity decreases and hence
fluid velocity is increased. As a result fast movement of fluid particles together with
increased molecular vibration enhances fluid temperature. Fig. (3.12) shows variation in 8

versus R,. Temperature decreases for higher R, as it has inverse relation with radiation

and k°. There is decay in absorption parameter for higher radiation. Thus extra heat is
transmitted away. Consequently temperature is decreased accordingly. Fig. (3.13)

witnessed that temperature increases against higher Schmidt number Sc. Figs. (3.14) and

(3.15) are drawn for compliant wall parameters (E,,E,) and E,. Converse behavior of

temperature is observed for elastic coefficients (E,,E,) and damping parameter (E,). In
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Fig. (3.16), it is shown that response of & is increasing for increased H. Impact of
temperature for slip parameters ( yz) is change for origin of temperature (see Fig. (3.17)).
3.3.3 Concentration

Figs. (3.18) to (3.24) are plotted for effects of parameters under consideration on

concentration (¢) Figs. (3.18) and (3.19) show the decreasing behavior of concentration

for both Sr and Sc. Mass diffusion decreases for increasingSr and so concentration

decreases accordingly. Fig. (3.20) illustrates ¢ via E. When activation energy parameter
(E ) is enhanced, the value of expression of Arrhenius form decreases which corresponds

to enlarged chemical reaction. As a result the concentration increases. Fig. (3.21) shows

slight decrease in concentration for increased n. Fig. (3.22) is prepared to observe

concentration behavior for increasing chemical reaction (f) This sketch depicts that
concentration is reduced for increased destructive chemical reaction parameter (.f) Fig.
(3.23) shows ¢ against B,. It is evident that concentration is high for third grade material
than viscous fluid. Fig. (3.24) gives concentration outcome for slip parameter (73). It is

evident that concentration shows dual response near upper and lower channel walls by

varying 7.
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0.6

Fig. (3.1): Velocity profile for viscosity coefficient with £k =3, =0.1, ﬂ3 =f=0LBr=2,H=04,
Sr=1,Du=Pr=Sc=0.5,Rd=0.5.

Fig. (3.2): Velocity profile for curvature parameter with £ = 0.1, ,63 =f=01,Br=2,H=04,
Sr=1,a=0.03,Du=Pr=Sc=0.5Rd =0.5.
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Fig. (3.3): Velocity profile for Hartmann number with £ = 3,2 =0.03, 8, = f=0.1,Br =2, H = 04,
Sr=1,Du=Pr=8c=0.5,£=0.1,Rd =0.5.

Fig. (3.4): Velocity profile for fluid parameter with k =3, =0.03, 8, = #=0.1,Br =2, H = 0.4,
Sr=1,Du=Pr=8c=0.5,¢&=0.1,Rd =0.5.
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Fig. (3.5): Velocity profile for elastic parameters with k =3, =0.03, ﬂ3 =f=0.1,Br=2,
Sr=1,H=04,Rd =0.5,Pr=Du=8c=05,£=0.1.

Fig. (3.6): Velocity profile for elastic parameters with k =3, = 0.03, ,83 =f=0.1,Br=2,
Sr=1,H=0.4,Rd=05,Pr=Du=8c=0.5,£=0.1.
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Fig. (3.7): Velocity profile for slip parameter with k =3,a =0.1, By=p=0.1,Br=1,Rd=05,£=0.1,
Sr=1,H=02,Pr=Sc=0.5.
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Fig. (3.8): Temperature profile for thermal conductivity coefficient with k =3, a = 0.03, ﬂ3 =0.1,
Br=2,Du=08,H=0.1,Sc=Pr=0.5,Sr=1,Rd=0.5,£ =0.1.
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Fig. (3.9): Temperature profile for fluid parameter with a = 0.03, ﬂ3 =pf=0.1,Br=2,Du=0.8,
H=0.1,Sc=Pr=0.5,8=1,Rd=0.5,=0.1.
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Fig. (3.10): Temperature profile for Brinkman number with k =3,a = 0.03, H = 0.1, ,83 =pf4=0.1,
Sr=1,Pr=S8Sc=05,Rd =0.5,¢ =0.1.
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Fig. (3.11) : Temperature profile for Dufour parameter with k = 3, =0.03, # = 0.], ,H3 =f4=0.1,
Sr=1,Br=2,Pr=8c=0.5,Rd =0.5,¢£ =0.1.

Fig. (3.12): Temperature profile for thermal radiation parameter with ¥ =3,Sr = Du=1,Br =1,
B= ,B3 =0.,a=0.03,H=0.1,Sc=Pr=0.5,&£=0.1.
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Fig. (3.13) : Temperature profile for Schmidt number with k =3,Sr =Du =1,Br=1,48= ﬂ3 =0.1,
a=0.03,H =0.1,Pr=0.5,Rd =0.5,£ =0.1.
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Fig. (3.14): Temperature profile for elastic wall parameters with k =3, Br =2,& =0.1,a = 0.03,
Du =0.5,,63 =f=0.1,Sc=Pr=0.5,Rd =0.5,8r =1.
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Fig. (3.15) : Temperature profile for elastic wall parameters with k =3,Br =2,¢ = 0.1, =0.03,
Du =0.5,,B3 =f=0.1,Sc=Pr=0.5,Rd =0.5,8r=1.
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Fig. (3.16): Temperature profile for Hartmann number with k=3,a=0.03, 83=£=0.1,Sr=I,
Br=2, Du=Sc=Pr=0.5, Rd=0.5,£=0.1.
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Fig. (3.17): Temperature profile for thermal slip parameter with k=3,2=0.03,5;==0.1,
Sr=1,Br=2,H=0.2, Du=Sc=Pr=0.5,Rd=0.5,£=0.1.

Fig. (3.18): Concentration profile for Soret parameter with £ =3, Du = 0.8, = 0.03,£ =0.1, H = 0.1,
ﬂ3 =0.1,Br=2,8¢ =0.4,Pr=0.5,Rd =0.5.
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Fig. (3.19) : Concentration profile for Schmidt number with k =3, Du =0.8,a =0.03,¢ =0.1, H =0.1,
ﬂ3 =0.1,Br=2,Pr=0.5,Rd =0.5.
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Fig. (3.20): Concentration profile for activation energy parameter with k = 3,Pr = 0.5, = 0,03,
H=0.1,Br =2,ﬂ3 =f=0.1,Pr=8r=S¢=03,£=0.1,Rd =0.5.
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Fig. (3.21) : Concentration profile for n with k =3,Pr =0.5,a =0.03, H = 0.1, Br =2, ﬂ3 =f£=0.1,
Pr=8Sr=8c=0.3,£=0.1,Rd =0.5.

Fig. (3.22): Concentration profile for chemical reaction with k=3, 8=0.1,Du =1, 8, =0.1,
a=0.03,Br=1,H=0.1,Pr=S¢=05,5r=1,Rd =0.5.
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Fig. (3.23) : Concentration profile for fluid parameter with k=3, #=0.1, Du =1, =0.03, Br =1,
H=0.1,Pr=8c=0.5,5r=1,Rd =0.5.

-1.0 -0.5 0.0 0.5 1.0

Fig. (3.24) : Concentration profile for concentration slip parameter with k = 3,a =0.03, Du=0.2, = 0.1,
Br=1,H=0.5,Pr=05,Sc=Sr=03,Rd=05,¢ =0.1.
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3.4

Conclusions

Key points are listed below:

Behavior of velocity is increasing for temperature dependent viscosity parameter a.

Behavior of temperature is qualitatively same (i.e. decreasing) for both 8 and 8..

Temperature has opposite outcomes for Du and R,.

Concentration decreases for Sr.

Impacts of E and £ are opposite on concentration.

The problem is related to viscous fluid when = £, = 0.
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Chapter 4

Entropy Optimization of MHD
Sutterby Fluid Subject to
Temperature Dependent Thermal
Conductivity and Non-Linear
Thermal Radiation

Here peristaltic transport of Sutterby liquid with temperature dependent thermal
conductivity is addressed. Inclined magnetic field is imposed in curved geometry. Entropy
generation with variable thermal conductivity of Sutterby liquids, magnetic field, non-
linear thermal radiation and heat absorption is discussed. The system of differential
equations by lubrication approach is arranged. The parameters of interest are sketched and

analyzed by the plots of velocity, temperature, stream function and entropy production.
4.1  Mathematical Formulation

Here our objective is to discuss entropy production in peristalsis of incompressible Sutterby
material in curved geometry. Width of the channel is 2a. It is coiled in a circle with centre
O and radius R'. The velocity components (W, W,) are in radial and axial directions
(R, X) respectively. Temperature dependent thermal conductivity of Sutterby material is

considered. Heat absorption/ addition coefficient and non-linear thermal radiations are also

taken into account. Magnetic field of strength B, with an inclination angle $, is taken.
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Fluid is moving in channel because of propagation of waves with speed s, wavelength 4
and amplitude b. The problem addressed is modeled with no-slip boundary conditions for
velocity. Convective boundary conditions are taken at boundary of the channel walls with
distinct temperature. Fig. (2.1) depicts the physical sketch.

Mathematically, walls of the channel are
- . (2x
r =:|:z(X,t)=:t|:a+bsm(7(X—st)):|, (4.1)

Model of Sutterby fluid is defined as

4| sinh™ 7[6 "

.12 ?

(4.2)

in which S extra stress tensor, x4, constant dynamic viscosity of the fluid, y fluid

parameter, G(=J%tr(A’)) shear rate, n, power-law index and A(=gradW+grad W)

deformation rate tensor. In Eqn. (4.2) if n,=0, the model represents Newtonian fluid

model and for n, =1 the model reduces to Eyring model. Since

sinn™ 7]6f* =716f' - (A0l ) + 3 (rfef') -+ (43

Eqn. (4.2) reduces to

LfoapV
Sz%[ ‘5(7|G|2)] A (4.9)

After applying Binomial expansion in above Eqn. (4.4), components of Stress tensor

become:
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2 .2\2 ow.
s =220l 252
S P P (LA
&V"?p_Jiﬂq)}(za;}

2, o\2
Sy =Sgy =-&|:l—%(|6r) ](an+ R oW, ¥ ). (4.5)

2 OR r+RoX r+R
in which
2 2 2
il o R_9W, 2R W, oW, W \" __2RW, oW, 2 am
|G|"'\/4(a_k) +(ax) +(FE ax) TR R X +(r+R) (r+R) & R X "
(4.6)
Inclined magnetic field in curved geometry is:
= (K5 o XB, 4.7
B—(R,+Rs1n.90,R.+R cos.9°,0). (4.7)

Note that induced magnetic field effects are ignored because of low magnetic Reynolds
number. Clearly, for 9, =90° the magnetic field is along radial direction as described in

chapter 2.

Thus by Ohm's law (2.7) and Lorentz force (2.8), we get

F= o-(%)2 (—W, cos® &, + W, cos 9, sin 9,, W, cos 9, sin 8, — W, sin’ .90,0), (4.8)
and

2
JJ= (';,"’Tif’) (W, cos 9, -W,sin8,)". (4.9)

Thermal conductivity depending upon temperature is taken as
x(T)=x,(1+a'(T-T,)), (4.10)

in which «x, denotes constant thermal conductivity and &' variable thermal conductivity
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coefficient.

Fundamental equations of problem are

V.W=0, (4.11)
p%=V.S—VP+ p(c[WxB]xB), (4.12)
pc, % =-V.[-x(T)VT]+L.S-Vgq, +£+Q0(T T;), (4.13)

in which p shows fluid density, c, specific heat, O, heat addition/ absorption coefficient,

L=grad W, P pressure and q, radiative heat flux as defined in Eqn. (3.13).

Component form of Eqns. (4.11) to (4.13) is

IaW ]
R aXl aR((R +RW,) =0, (4.14)
dw, W,W,) R opP 1 3 ((p. py2 R3Sy,
=- e R —
(dt YRR (R+R')8X+(R+R')2 aR{( +R) }+(R+R') ox
+o RE, )2 (W sin 9, cos 8 —W, sin2.9) (4.15)
R+RI 1 0 0 2 0)>
daw, W? oP 1 S a8
—_ R+ R’ XX ’ XR
( @ R+R') "R RAR) R+ RIS}~ ®+R) X o
R'B, (4.16)
—O'(R R’) (Wcos 8, —W, sin cosS)
dT ow, W, R oW |, .,
— =-V.(-x(T)VT 22 ! .
rar = VD) )+( R ~(R+R) (R+R) aX)S g 5ot =Sur)
6T (* 1 o @& R'B,
LT (8R2+R+R' 6R+6X’)T+G(R+ ) (W, cos 9, ~W,sin 4, )’ +Q,(T-T,),
(4.17)

where variable thermal conductivity in curved channel is modeled as
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2
V.(—K(T)VT)=%(—K(T)6—T) ax( R7x(T) OF ] K1) oT (4.18)

R (R+R) & ) (R+R)oR’

Boundary conditions are

W, =0 at R=ty,
or

x,a—R=—,q'(7;—T) at R=-y2, (4.19)
or '

"|§= B(T-T,) at R=p,

in which 7, and 7, denote temperature of upper and lower walls respectively, x; thermal

conductivity of the walls and ( B, ﬂz) Biot numbers.

Wave and fixed frames can be related through following transformations

F=R, X=X-st, w=W, w=W,-s. (4.20)
Dimensionless variables velocities, pressure, temperature, wave number, peristaltic wall,
Reynolds number, variable thermal conductivity parameter, Eckert number, Prandtl
number, Brinkman number, curvature, amplitude ratio, radiation parameter, heat
absorption parameter, Hartmann number, thermal Biot parameters and Sutterby fluid

parameter are defined as:

SR L)

s s

Ec( = (;z )] Pr(:

RI

), Br(=Ec Pr), k(=_),

4C,
K, a
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3k’x,

o {28) ()

K,

() ) ) fE

Velocities (w,, w,) through stream function (i) can be expressed below:
W=, W = ——. (4.21)

Using Eqns. (4.20) and (4.21), above mentioned dimensionless variables and applying
lubrication approach (as flow is considered laminar thus Re — 0 and channel width is very

small than wave length), Eqns. (4.14) to (4.19) are reduced in dimensionless form as:

k op__ 1 (s (k+ )) (kB )2(1+-a—"1)sinzn9o, (4.22)

k+rox (k+r) or k+r or
op
P _, 4.23
P (4.23)
2 2 2 . 2 2
(1+ 0) ae+a? +a(a—6-) +Br| - (a—'/,+lJ+a—2 S, +Br (kBsm.S'o) (a—w+l]
+kor or or r+k\ or or r+k or
0 1 a6

+PrR — % li00=0, 4.24

r (ar’+r+kar)+g 0 (4.24)

and incompressibility condition is trivially satisfied.

Eqns. (4.22) and (4.23) imply

[(k+r)ar( - (k+7))- M( ar)]=°’ (4.25)

where
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and p= p(x).

Boundary conditions in non-dimensional form are

y/=$£, W, a"V=—l at r=7Fh,

2 “or
B (1- e)+—-_o at r=-h,
00
+—=0, at r=nh,

with
F= 2 gy (b (),
5, or

h=1+ 4 sin(27x).

4.1.1 Entropy

Entropy production for Sutterby fluid is defined as

8122l ) |3

° +0'(R.+R) (W, cos & — Ws1n.9) +

Ns =—L2q.VT+L

\

oW,
l+ R

o,

R+R X

165" 1;,

LA

R'+R

(&

-
aR? o R'+R aR

(4.26)

)2 +Q0(T_2:))

+

(4.27)

(4.28)

(4.29)

27

(4.30)

where ©, and q(= -x(T)VT ) denote reference temperature and heat flux respectively.

Eqn. (4.30) comprises of entropy generation due to heat transfer, fluid friction, heat source/

sink coefficient, magnetic field effects and thermal radiation.



Dimensionless form of entropy generation Eqn. (4.30) becomes

s=N (4.31)

(30~ 1)) (12 (B0 1)) )]

A Br )
-+ — in 2 s
(+ag)| (+(5) (1+%)
(4.32)
\ +PrR, (20+:4%)+ 00 )
in which
Al=® ) g [o*DE-L)
“Gn)) Y6l T T e | (4.33)
0

4.2 Methodology

The problem under consideration has non-linear system of differential equations. It is not
possible to solve these equations exactly. Thus we evaluate momentum Eqns. (4.25),
energy equation (4.24) and total entropy generation (4.32) numerically by using Shooting

method from NDSolve command in Mathematica.
4.3 Analysis

Here interpretation of axial velocity, temperature, entropy generation and pumping

characteristics is arranged for relevant parameters i.e. variable thermal conductivity (),

heat absorption/ addition parameter (Q), magnetic strength (B), inclination (8,), Biot
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numbers (A,,Bz), thermal radiation parameter (R,), Brinkman number (Br), Sutterby

fluid parameter (¥*) and curvature (k).

4.3.1 Velocity

Figs. (4.1-4.5) display the effects of pertinent parameters B, 9,, 72 and k on axial
velocity w,. It is evident from Figs. (4.1-4.2) that behavior of velocity is alike for both
parameters B and $,. Clearly, near lower wall the velocity decreases when it increases in
vicinity of upper wall by enhancing B and 9,. Velocity decreases as magnetic force
behaves as a resistive force to fluid. Moreover, it is also noticed that velocity decays by
rising 9, and velocity is minimum for &, =90° (see Fig. (4.2). Since at 9, =90° magnetic
force is perpendicular to the direction of flow and resists fluid motion the most. Figs. (4.3-

4.4) reveal behavior of Sutterby fluid parameter »** for (n<0) and (n>0) respectively. It

is clear that velocity shows opposite behavior for (n<0) and (n>0). As axial velocity
accelerates for 7 <0 while it de-accelerates for n> 0 at centre of channel.

Fig. (4.5) illustrates the influence of curvature k on the velocity. Here velocity decreases in
vicinity of lower wall however it enhances near the upper wall when k is increased.

Further the velocity remains symmetric about the central line for straight channel.

43.2 Temperature

The recent subsection is devoted to present temperature § via ¥ for various sundry
parameters «, O, B, 9,, B, B, R, and Br through Figs. (4.6-4.13). Fig. (4.6)

represents that 6 decays by rising a. Effect of Q is exhibited through Fig. (4.7). Heat is
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absorbed (for 0>0) and radiated away (for 0<0). By increasing heat absorption
(for 0=02, 0.4), temperature rises obviously. However temperature decays when heat is
radiated away as (for Q=-0.2, —0.4). Figs. (4.8) and (4.9) show the response of & for
increasing B and §,. It is clear from these figures that § enhances for both parameters B
and 9. Influence of Biot numbers (f3,/3,) on 6 can be revealed through Figs. (4.10) and
(4.11). Temperature decreased near the lower and upper walls for increasing 8, and S,
respectively. Fig. (4.12) witnesses that temperature decays for higher R,. As R, is

inversely proportional to heat absorption coefficient k*. Thus absorption parameter
decreases for larger radiation. Clearly additional heat is radiated away and temperature is
reduced. Fig. (4.13) represents & via Br. It is clear from this figure that temperature
enhances for higher Br. It is due to the major effect for viscosity in Brinkman number that
resists flow of liquid. Because of this resistance in flow, increase in collision of fluid

particles takes place and as a result particles lose energy and thus temperature rises.

4.3.3 Entropy

Figs. (4.14-4.19) are presented to portray behavior of total entropy production (S) for
important parameters B, 9,, a, Q, R, and Br. Influences of B and 4, on S are
presented through Figs. (4.14-4.15). Entropy (S) enhances near the channel walls when B

and 9, are enhanced. Effect of @ on S is shown in Fig. (4.16). It is noticed that S decays

in vicinity of channel walls. Since entropy is directly related to temperature, therefore

entropy reduces when temperature decreases. Effect of Br on S is explained from Fig.
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(4.17). Brinkman number (Br) elaborates viscous effects and is in direct relation to the

square of velocity. Increase in Br leads to enhanced entropy. Opposite behavior of S is

observed for R, and Q(>0) (see Figs. (4.18-4.19). It is clear from these figures that

entropy is lesser at centre and it is higher in vicinity of channel walls.

4.3.4 Heat Transfer Rate and Isotherms

Heat transfer rate at the upper wall is %0’(7], ) Effects of thermal conductivity
r

coefficient, Brinkman number and radiation coefficient on heat transfer are portrayed at a
fixed point (x = 0.5) through Figs. (4.20) to (4.22). It is quite evident that it is decreasing
for thermal conductivity coefficient and radiation while increasing for Brinkman number.
Figs. 4.23a and 4.23b represent contours of temperature for channel curvature (k). These

figures portray that distribution of temperature is less in straight channel when compared

with curved channel.

4.3.5 Trapping

Trapping shows lot of significance in fluid transportation through peristalsis. Because of
contraction/ expansion of peristaltic walls, fluid mass in form of bolus circulates inside the
channel and it moves forward with the velocity of propagating peristaltic walls. Figs. (4.24)
to (4.26) are prepared to show streamlines nature for different quantities considered in this
work. Figs. (4.24a-4.24c) depict that with increasing ", bolus size decreases in upper and
lower half of curved channel. In lower half, it can also be noticed that bolus stretches in

upward direction. Streamlines movement for k is depicted through Figs. (4.25a-4.25¢). It
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is clear that bolus size and streamlines in both halves of the channel are symmetry for

straight channel. Effect of inclination 9, of magnetic field is shown in Figs. (4.26a-4.26c).

When , increases from 0 — % , strength of magnetic field enhances. For this, bolus and

streamlines from the lower portion move in upward direction and bolus presses the

streamlines in the upper channel.

73



-1.0}
-1.5 -10 -0.5 00 0.5 1.0 1.5
r

2

Fig. (4.1): Velocity for magnetic field withn=k =3, 8 = =0

e
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Fig. (4.2): Velocity for inclination of magnetic field withn =k =3, B=1, 7 > =0.1.

74



------------------------

=0.5F /" y2=0.0,0.075, 0.15, 0.25 '\

~1.0t8
-15 —1.0 —0.5 0.0 05 10 L5
r

Fig. (4.3): Velocity for fluid parameters for (n=—3) withn=k =3, B=1, 8§ = %—
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r

Fig. (4.4): Velocity for fluid parameters for (r=3)withn=k =3, B=1, .90 = %’-
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Fig. (4.5): Velocity for curvature parameters withn=3,B =1, .90 = %, 7'2 =0.1.
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Fig. (4.6): @ for thermal conductivity coefficient withn=k =3, B=1.5, .90 = %—,

y2=0.,R,=02,8 =, =2,0=04,Br=05.
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Fig. (4.7): @ for heat absorption parameter with n=k =3, B=1.5, .90 = -:{-,

a=y?=0.LR, =02,8 = f,=2,Br=05.
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Fig. (4.8): @ for magnetic field withn=%k =3, .90 = %—,a = 7'2 =0.1,
R,= 0.2,,3l = ,62 =2,0=04,Br=0.5.
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Fig. (4.9): @ for inclination of magnetic withn=k=3,B=1.5,
a=y?=0.LR,=02,p=p=20=04Br=05.
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Figs. (4.10): @ for Biot numbers withn=k =3, B=1.5, .90 = %,a = 7'2 =0.LR,=0.2,
,Bl =2,0=04,Br=0.5.
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Figs. (4.11): @ for Biot numbers withn=k =3, B=1.5, .90 = %—,a = 7‘2 =0.1,

R;=02,8=2,0=04,Br=0..

Fig. (4.12): 6 for thermal radiation withn =k =3, B=15,8 =F,a=7" =01,
B, =B, =2,0=04,Br=05.
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Figs. (4.13): @ for Brinkmann number withn=k =3, B= 1.5,.510 = %—,a = 7‘2 =0.1,
R, =0.2,,8I = ,62 =2,0=04.

Fig. (4.14): Entropy for magnetic field with k=3, 8 =7, =0.02, y2=01,
n=p =B =2R,=02,0=055r=08.
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Fig. (4.15): Entropy for inclination of magnetic field with k =3, .90 = %—, a =0.02,

y2=01n= B =B,=2R,=02,0=058r=08.

Fig. (4.16): Entropy for thermal conductivty coefficient with k =3, B = 0.5, .90 = %—,a =0.02,

y2=0.Ln= B, =B, =2R,=02,0=05Br=08
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Fig. (4.17): Entropy for Brinkmann number with k =3, B =0.5, .90 = %—, a =0.02,

y*=0Ln=8 =8 =2,R,=02,0=05.

Py Ty

Rd=0.0,0.15,0.30, 0.45

Fig. (4.18): Entropy for thermal radiation with k =3, B=0.5, §, = 7,@ =0.02, y2=0.1,
n=p =p,=20=058r=08.
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Fig. (4.19): Entropy for heat absorption parameter with k =3, B =0.5, .90 = -Z—,a =0.02,

y2=01n= B =B, =2,R,=02,Br=08.

3.55

Heat transfer rate
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Fig. (4.20): Heat transfer rate for thermal conductivity coefficent with x = 0.5, R = 0.5,Br =0.2,

0=02,77=00Lk=3,4 =8 =n=2,B=158,=—.
1 2 4
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Fig. (4.21): Heat transfer rate for Brinkman number with x = 0.5, R =0.5,a =0.,0 =02, 72 =001,

k=38 =ﬂ2=n=2,B=l.S,.9°=%.

Heat transfer rate

Rd=0.0 Rd=0.1 Rd=0.2 Rd=0.3

Fig. (4.22): Heat transfer rate for thermal radiation parameter with x = 0.5, Br = 0.2, =0.1,0 = 0.2,

y2=00Lk=3,8 =f =n=2,B=159,=_.
i 2 4
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Figs. (4.23a, b): Contours of temperature for k with R = 0.5, 7'2 =a=0, ﬂl = ,32 =2,B=1.1,8, = 1.
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Figs. (4.24a-4.24c): Streamlines for Sutterby fluid parameter. The values of other parameters are k = 3,

n
n=4,B=159 =—.
4
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Figs. (4.25a-4.25c¢): Streamlines for curvature of the channel. The values of other parameters are

) T
y2=01Ln=4,B=159 =—.
4
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(c): 8, =-§

Figs. (4.26a-4.26¢): Streamlines for inclination of magenetic field. The values of other parameters are 7.2 =0.1.
n=4,k=3,B=1.5.



4.4 Conclusion

In this chapter has following key points.

=  Opposite behavior of axial velocity is noted for rising fluid parameter (y'z) for
(n>0and n<0).

= Decrease in temperature is seen for variable thermal conductivity coefficient (a) and
thermal radiation parameter ( R, ) while it rises for heat absorption parameter Q(> 0).

® Irreversibility is minimum for variable thermal conductivity parameter S.

= Results of the this chapter are summarized to viscous material when (n = 0) and Eyring
liquid for (n=1).

® Heat transfer rate decreases for radiation parameters R, while it is higher for Brinkman

number Br.
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Chapter 5

Entropy Production Minimization
and Non-Darcy Resistance within
Wavy Motion of Sutterby Liquid
Subject to Variable Physical
Characteristics

The objective of this chapter is to analyze peristaltic movement of Sutterby material
through porous medium. Modified Darcy's law has been applied. Soret and Dufour effects
in energy and concentration processes are retained. Variable physical properties of the
material have been included. Investigation of entropy is also made part of the analysis.
Total entropy production is inspected for parameters of curiosity like Soret, Dufour,
variable viscosity and thermal conductivity coefficients. Modeled equations are solved

numerically. Results are presented through graphs.
5.1 Mathematical Formulation

Peristaltic activity of Sutterby liquid in curved geometry is examined. Soret and Dufour
impacts are outlined. Variable physical characteristics of the material are under
consideration. Thermal conductivity and viscosity are assumed as temperature-dependent.
Modified Darcy law for porous medium is taken into account. Width of curved channel is

2a. 1t is coiled in a circle. Fluid flow is because of waves propagation with speed s,
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wavelength A and amplitude b. Thus mathematically, we have
. (27
R=:I:x(X,t)=:i:|:a+bsm(—i-(X—st))], (5.1)

Here F is the radial distance and components (W, 7, ) of velocity W are along (R, X)

directions respectively. Channel walls are comprised of no-slip effects for momentum,

temperature and concentration. Furthermore, we assume that temperatures at upper and

lower walls are T and T, respectively such that 7, (< T;). Similarly concentrations C, and

C, at upper and lower walls being C, (< C )

Governing equations for considered problem are

V.W=0,

(5.2)

dW
P = Va-D, (5.3)
pcp%T;—=V.(K(T)VT)+S.A+%V’C, (5.4)
c‘

@€ _pvic+Phyr (5:5)
dt T

Where p denotes fluid density, T Cauchy stress tensor, c, specific heat, T Temperature,
C concentration, D, mass diffusion coefficient, ¢, concentration susceptibility, k,

thermal diffusion ratio, (x(T'), #(T)) thermal conductivity and viscosity as a function of

temperature.

Extra stress tensor S, for Sutterby fluid obeys
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o _um s e |
] U
2.\ nld]

(5.6)

In which m, denote power-law index, n Sutterby fluid parameter, A =grad W+ grad W

deformation rate tensor and G = ,’-zltr(A’) trace respectively. Sutterby material has the

property of both shear thickening (dilatant materials for m <0) and shear thinning

(pseudo-plastic materials for m>0) characteristics. Eqn. (5.6) represents viscous fluid

model for m =0 and Eyring fluid model for m=1. As
sint” (|6 ) =n]cf - 5 (nlcf ) +:(nlcf ) -

so the components from Eqn. (5.6) are:

_u)( ., oW, m . 2\2 \
se=t0 250 -5t |

_ u(T) ow, mi{ -2\?
st 25 -5 | |
LA
w-Sw "2 \aR "r+RaX r+R). 3! '

in which

- 43+ () + () + (R

+ 2R OW, O 2, oW, _ 2RW, oW

r+R R oY r+R ay (r+R): ox

By Reynolds model, the expression for viscosity is
HT)= e 1 g (1- B (T-T,)).
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Thermal conductivity depending on temperature is
(5.10)
x(T)z«x,(1+y (T-T,)).

Where «,, 4, Constant thermal conductivity and viscosity, S,y Viscosity and thermal

conductivity coefficients.

Modified Darcy's law for Sutterby fluid gives

p=_#D sinh™ ’7|Gr - W. (5.11)
2K | plf

Now Eqgns. (5.2) to (5.5) give

oW R ow, W
+ +
R (R+R) R (R+R)

=0, (5.12)

dw, W,W,) R &P 1 @ e R oS
=— — RY S X
(dt YRR (R+R')aX+(R+R')’aR(( +K) "")+(R+R') ox

MDY m( 2\

il -
dw, W} oP 1 @ , S R oS
——— | —_— R R S — XX XR

p( dr R+R’) o TR R B R ) R R o

_HED( _m( 1Y (5.14)
2K (1 3!(”|G|))W”

/) 0T, o [ x(T)R? 8T | «(T) oT W,
—=——| —Kx(T)= - ———2(S,-S
* dt aR( *( )GR)+6X[(R+R')26XJ R+R oR aR( o~ Se)

(5.15)

ow, W, R' oW, Dk (0°C oC 1 oC
+ - + LIS, + +—+ — |
O0R R+R R+R X oX* ©6R* R+R R

c.l
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dC_D 62C+32C+ 1 QC_ +D,,k, 62T+62T+ 1 a_T
d °"\oR* 8X* R+RR) T_\O0R® aX* R+R R/ (5.16)
where Sy, Sz, Sy represent stress components.
With conditions
W,=0 at R=—yp,
(5.17)
W,=0 at R=+y,
T= . at R=%Fy, (5.18)
T,
C,
C={ '} at R=%Fy. (5.19)
laf = 7
The transformations in relation between wave and laboratory frames as taken as:
F=R, X=X-st, w=W, w=W,-s (5.20)

Dimensionless variables (x,7), velocity components (w,,w,), pressure p, temperature
6, peristaltic wall h, wave number &, Reynolds number Re, thermal conductivity

coefficient ¥, viscosity coefficient S, amplitude b, Prandtl number Pr, curvature %,
Brinkman number Br, time ¢°, concentration ¢, Schmidt number Sc, Soret number Sr,

fluid parameter ¥°, Dufour number Du and permeability parameter Da are as follows:
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X r W, w,
x=—, r=—, w,=—1, w, =—=,
A a s s
2_ —
p=2E, A n=%, 5=2,
sh,A L-T, a A
sa , b
p=B(T-T),  Re=F=,  y=y(1-1), b==,
K, a
24 s R C-C,
Pr e, Br = 0 , k=—, =
Ka Ko(T;_T:)) ¢ CI_C
S pD,K, (T,-T) o=t D,X,.(C,-C,)
7.(C-C)) oD, (-7,
_ns X
Y=’ Da'az' (5.21)
If  denotes the stream function then
k6 oy Oy (5.22)

! r+k6x’2 or

and implementing lubrication approach, one has

R A [ I &

1 o0 (5.23)
S (k+

(k+r)6r( Ak+rY),
§E=0, (5.24)
or

00 39, 1 29 Sy 1 ( ay/)

hikid )| —+———|+Br - 1 S

( )+(79+ )( k6r)+ (aﬂ b\ o )
+PrDu| — a¢ o9 =0, (5.25)

r+k or ar2
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2 2
1 96,99, gse| 1 26,99 . (5.26)
k+ror or k+ror or

Eqns. (5.23) and (5.24) leads to

R e ) &

— =0,
or
1 0 2 (5.27)
+ —{S_(r+k
] (r+k)ar( A (r+)) |
in which
- 2 2 2 2
S,,=Sn=1 po 61/2/_ 1 (1+6y/) L_mr ay:_ 1 (l+6!//) .
2 (o' (k+r) or 3t \ar' (k+7) or
(5.28)
Dimensionless conditions are
y=+F/2, 3_!//=_1 at r=%h, (5.29)
or
1
0= { } at r="Fh, (5.30)
0
1
¢={ } at r=Fh, (5.31)
0
where
h a
F=]| Y ar= w(h) -y (=h), (5.32)
—h or
h=1+ b sin(27zx). (5.33)
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5.1.1 Entropy

The entropy in this case satisfies

1
S = —Eq.VT +

o

W,

oot )5+ -

e, + Dukr (azc 4 FC 1 g)
pCpCs \ OR? ~ R+R OR

R+R

y

(5.34)

It should be noticed that Eqn. (5.34) includes irreversibility because of transfer of heat,

fluid friction and Dufour effects. Entropy generation in dimensionless form is

N -(a“’)’+
o
A Br(l—zﬂa)( (k+r)(1+T)+azTW)2
(r6+1)

in which

s XDE-T) , e
ola’ (n-T.)

G

Bejan number (Be) indicating heat transfer irreversibility to total entropy is given by

97

1_9¢

(5.35)

(5.36)



Be=

I Br('—_z@(—m(n%ﬁi +?) (1-2;(—(}%)(“%?) -3:7"’))
(%) 5o

(5.37)
Clearly Be e [0,1].

3.2 Methodology

The modeled differential Eqns. (5.25) to (5.27) subject to the boundary conditions given in
Eqns. (5.29) to (5.31) are computed numerically by Shooting method using the built-in

command in Mathematica.

3.3 Analysis

This section is devoted to present physical description of axial velocity, temperature,
concentration, entropy, Bejan number and heat flux at the upper wall for various

parameters of interest.

3.3.1 Velocity

Figs. (5.1-5.4) show B, Da, k and y™ effects on axial velocity (wz). Clearly velocity

is maximum near centre of channel while it decays near upper wall where wall temperature

being I,(<T}). For higher B, an increase in amplitude is also noticed. It is due to the

reason that 4 and B have inverse relation. Thus for higher f, the viscosity decays and
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consequently velocity enhances (see Fig. (5.1)). Fig. (5.2) witnesses that velocity enhances

in the centre for higher Da. Since permeability parameter (K ) has inverse relation with
Da, thus by higher Da, there is less permeability. Consequently drag force reduces and
velocity increases. Fig. (5.3) addresses response of curvature (k) on w,. Further, velocity

is less near the lower channel wall whereas it enhances in rest part of the channel.

Moreover, velocity is symmetric about the centre line for straight channel. Fig. (5.4) is

made to study effects of material parameter ( }"2) on w,. Velocity decrease at centre of

the channel is noted for higher values of ™.

5.3.2 Temperature

Variation of temperature (@) for various pertinent parameters £, ¥, Sr and Du is
described through Figs. (5.5-5.8). Fig. (5.5) depicts that @ decays for increasing . Fig.
(5.6) presents that & reduces by increasing . This is because of the reason that higher

strengthen the material capability to diffuse or absorb heat. This occurs when fluid

temperature is greater than wall temperature. Figs. (5.7) and (5.8) illustrate temperature
(0) response for increasing Soret (Sr) and Dufour (Du) effects respectively.
Temperature amplifies for both variables. The reason for the same is that an increase in Sr

or Du corresponds to viscosity decay and thus velocity enhances. Thus fast moving

material particles with larger molecular vibration rise material temperature.
5.3.3 Concentration

Figs. (5.9) and (5.10) demonstrate reduction in concentration (@) for larger S and Du.
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Moreover ¢ also reduces when Sc is increased (see Fig. (5.11)). Schmidt number (Sc) is

ratio of momentum diffusion to mass diffusion rates. Thus an increase in Sc corresponds

to low mass diffusion thus concentration is reduced accordingly.
3.3.4 Entropy and Bejan Number

The influences of considered quantities S, ¥, Sr and Du on entropy generation and
Bejan number are revealed through Figs. (5.12) to (5.19). Figs. (5.12) and (5.14) are
prepared to show the reaction of Ns for f and y respectively. From these Figs., it is
determined that in the middle of the channel there is no considerable change in Ns while it
decays near the channel walls. The entropy and temperature are directly related. That's why
these Figs. ensure decrease in temperature. Figs. (5.13) and (5.15) are captured to show the
responses of Be for 8 and y. Be behavior is opposite for increased values of larger f
and ¥. Figs. (5.16) and (5.18) show impacts of Sr and Du on Ns. It is noticed that Ns
rises near the walls of channel for higher Du and Sr parameters whereas response of Be
is opposite for these parameters (see Figs. (5.17) and (5.19)). It is clear that Be decreases

for Sr while it enhances through Du.

5.3.5 Heat Transfer Coefficient

oh .
Heat transfer coefficient at the upper wall is -5r—0 (h) To show the effects of Soret and

Dufour, heat transfer rate at the wall is sketched through bar charts in Figs. (5.20) and

(5.21). Both Figs. show that heat transfer rate increases for higher Sr and Du.
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Fig. (5.1): Velocity profile for variable viscosity parameter x = 0.3,y = 0.02,k = 3,
Da=1,Du=0.5,5 =02, Ec=2,Pr=Sc =5 =05, = 0.00L
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Fig. (5.2): Velocity profile for permeability parameters x = 0.3, 8 = 0.001, 7 = 0.02,
k=3,Du=05,5 =02,E=2,Pr=S8=5=057" =0.00l.
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Fig. (5.3): Velocity profile for curvature parameter x = 0.3, 8 = 0.001, » = 0.02,
Da=1,Du=05,5 =02,Ec=2,Pr="5 =S =055 =0.001.

Fig. (5.4): Velocity profile for fluid parameter x = 03, 8 = 0.001,7 = 0.02,k =3,
Da=1,Du=0.5,5 =02, Ec =2,Pr = Sc = §r = 0.5,
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Fig. (5.5): Temperature profile for viscosity parameter x = 0.3,y =0.02,k =3,
Da=Du=1,5r =02,Pr=04,Ec =2,5¢ =0.5,5 = 1,7 = 0.003,
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Fig. (5.6): Temperature profile for thermal conductivity parameter x = 0.3, 8 = 0.0L,k = 3,
Da = Du=1,5r =02,Pr = 0.4, Ec = 2,5 =0.5,5r =1,7" = 0.003.
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Fig. (5.7): Temperature profile for Soret parameter x = 0.3, = 0.01,y = 0.02,k = 3,
Da=Du=1,Pr=05,Ec =25 =057" =0.0025.
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Fig. (5.8): Temperature profile for Dufour parameters x = 0.3, 8 = 0.01, = 0.02,k =3,
Da=1,Pr=0.5,Ec=2,5¢=0.5,5r = 0.5,}"2 = 0.0025.
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Fig. (5.9): Concentration profile for Soret parameter x = 0.3, =0.1,7 = 0.02,k =3,Da =1,
Du =2,Pr=0.5,Ec =0.5,5¢ =0.5,7" =0.0025.
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Fig. (5.10) : Concentration profile for Dufour parameter x = 0.3, 8 = 0.1,y = 0.02,k = 3,
Da=1,8r=0.2,Pr=0.5,Ec =0.5,5¢ =0.5, }"z =0.0025.
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Fig. (5.11): Concentration profile for Schmidt parameterx =03, =0.1,y =0.02,k = 3,Da =1,
Du=05,5r = 02,Pr=0.5,Ec =2, = 0.0025.
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Fig. (5.12): Entropy for variable viscosity parameter x = 0.3, 8 = 0.05, y = 0.05,k =3,
Da=Du=1,8r=02,Pr=04,Ec=2,5¢=05,5r=0.5, }"2 =0.0025.
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Fig. (5.13): Bejan number for variable viscosity parameter x = 0.3, 8 = 0.05,y = 0.05,k =3,
Da=Du=1,5r=02,Pr=04,Ec=2,5=05,8r = 0.5,}"2 = 0.0025.
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Fig. (5.14): Entropy for variable thermal conductivty coefiificient x = 0.3, 8 = 0.05, 7 = 0.05,
k=3,Da=Du=1,Sr=02,Pr=04,Ec=2,5=0.5,5r =05,A = 0.01,}"2 = 0.0025.
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Fig. (5.15): Bejan number for variable thermal conductivty coefiificient x = 0.3, # = 0.05, 7 = 0.05,
k=3,Da=Du=1,Sr=02,Pr=04,Ec=2,5=0.5,5r =05,A = 0.01,}"2 =0.0025.
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Fig. (5.16): Entropy for Dufur parameter with x = 0.3, 8 =0.04, 7 = 0.05,k =3,
Da =Du=1,5r=0.3,Pr=0.5, Ec =2,5¢ =0.5,5r = 0.6, A = 0.01, }"2 =0.0025.
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Fig, (5.17): Bejan number for Dufur parameter with x = 0.3, 8 = 0.04,y = 0.05,k =3,
Da=Du=1,8r=03,Pr=0.5,Ec =2,5=0.5,Sr =0.6,A = 0.01,}"2 =0.0025.
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Fig. (5.18): Entropy for Soret coefiificient with x = 0.3, 8 = 0.05, y = 0.05,k = 3,
Da=Du=1,5r=02,Pr=04,Ec=2,5=0.5,5=05A = 0.01,}"2 =0.0025.
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Fig. (5.19): Bejan number for Soret coefiificient with x = 0.3, 8 = 0.05, y = 0.05,k =3,
Da=Du=1,5r=0.2,Pr=04,Ec =2,5 =0.5,5* =0.5,A =0.01, 7'2 =0.0025.
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Fig. 5.20: Heat transfer rate for Soret parameter
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Fig. 5.21: Heat transfer rate for Dufour parameter
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5.4 Conclusion

Soret and Dufour aspects on peristaltic flow of Sutterby fluid are examined. Main results

are summarized below.

There is decay in velocity in case of Sutterby fluid.

Temperature reduces for increasing S and y.

Concentration decreases for both Soret and Dufour parameters.

Entropy has parabolic trend and it is more near the upper wall than the lower wall due
to difference in temperature at both walls.

Total entropy has similar behavior for £ and y.

Increasing behavior of entropy generation is noticed for both Soret and Dufour
variables.

Bejan number for Soret and Dufour variables is opposite when compared with entropy
generation.

Heat transfer rate behavior for both Soret and Dufour variables is qualitatively similar.
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Chapter 6

Generation of Entropy in Peristaltic
Activity of Third Grade Liquids
under Magnetic Field

In this chapter the flow of third grade fluid is considered in curved geometry with the
application of inclined magnetic field. Inclined magnetic field has rarely been used for
curved channel. Heat equation has been undertaken with the effects of Joule heating,
variable thermal conductivity and heat source/ sink. Non-linear radiation is accounted.
Moreover, the entropy generation and Bejan number coupled with the effects of viscous
dissipation, inclined magnetic field, heat source/ sink, non-linear thermal radiation and
variable thermal conductivity are analyzed. The parameters of interest are graphically
analyzed for entropy, Bejan number, temperature, velocity, stream lines and pressure

gradient.

6.1 Mathematical Formulation

Peristaltic movement of third grade liquid is being analyzed in curved geometry. Width of
curved channel is 2a. This channel is coiled in a circle having radius (R) Components
(W;,W,) of velocity (W) are along the radial and axial directions (R,X) respectively.
Inclined magnetic field of strength (B,) has been imposed with inclination () with

radius of the channel as defined in Eqn. (2.2), however, impact of induced magnetic field is

113



neglected because of the assumption of small magnetic Reynolds number. Thermal
conductivity is assumed as function of temperature. Heat absorption coefficient and non-
linear thermal radiation have also been incorporated in energy equation. Slip effects for

velocity are applied at the channel walls. Convective conditions are entertained for heat.

Waves are moving along the channel walls with speed (s), amplitude (a) and wavelength
(A) as in Fig. (2.1).
Geometry of such waves satisfies

R=:|:z=:t[a+bsin(27”(X—st))], (6.1)

Governing equations for the considered problem are as

V.W=0, (6.2)
p% =Vx-(IxB), (6.3)

pe, % =V.[x(T)VT]+r(LS) +io_‘-l——V.q, +0,(T-T,), (6.4)

here, x(T') represents variable thermal conductivity of material, c, specific heat, p density
of fluid, S extra Stress tensor, T Stress tensor, O, heat absorption parameter,
L(=grad W) and radiative heat flux (q,). According to Rosseland approximation,

thermal radiation is

_16Lc"
qr 3kl

(v7), (6.5)

in which ¢ (= 5.6697x10"Wm’2K") and k* represent Stephan-Boltzmann constant and

mean absorption coefficient respectively. Tensor for third grade fluid is written as
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T=-pI+S§,

S=uB, + S4B, + BB} +a, (B} )B,

B, =L +L,
0
B, = (5 +W.V)Bl +B L+

such that

B 20,

a 20,

LB,

|18 +B| < P4ua,.

Component forms of Eqns. (6.2) to (6.4) are

R ow, 6W+W

FiRax TR TR+R-

/

sz+W1Wz __R
dt R+R ) R+R

\

oP 1

9 ((R+R')2 s,m)

_§+(R+R')R'ﬁ

+%+a302 (W, Sin 8, Cos S, - W, Sin* 9,

o

am,_ w; \__opP (

pC‘"7=a_R( N— )

R
+ :
R+R)

Mo o
R+R R X (R+R')26X

Lo, m ),
R

@R R+R aX R+

166 @ 1 3
3k | ax?

S _ Sw_, 1

oX R+R R+R aR

RB} : 2
- (W, Sin 9, Cos 8, —, Cos §,),

(aRB
+
R

2
2 )r.

+ ———
R+R @R &R
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x(T)R* 6T

(R+R)Swm)

Ja"(s w)

)(WCos.S' ~W,Sin8,)’ +Q,(T-T,)

(6.6)
(6.7)

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)



The imposed boundary conditions are

u’z = 0, at R =:|:Z, (5.15)
or
a_=_ﬂ'(T T) at R=-, (6.16)
ar :

x—z="A(-T) at R=z,

in which «, is thermal conductivity of the walls and (,q . ,B,) Biot numbers.

The relation of transformations between wave (r',x') and laboratory (R,X ) frames is
shown as:

F=R, E=X-st, W=W, w=W,-s. (6.17)
Defining dimensionless variables (x,7), velocity components (w,,w,), curvature K,
amplitude ratio b, pressure p, temperature @, wave number &, peristaltic wall R,

Reynolds number Re, components of extra stress tensor S,

,» variable thermal conductivity

parameter 3, Brinkman number Br, Prandtl number Pr, third grade fluid parameter B
Hartmann number H, radiation parameter R,, heat absorption coefficient Q and thermal

Biot parameters (43, 3,) as

(x 7 (w w R ._b ._@P o_T-T,
("")-(z’;} (W"Wz)-(?TJ’ K=% b=8 r=f5 O-T1"
s=L 7 _R sa Br = ”23

=4 Ri=% Re=lg% S, =3 B=B(G-T). Br=gm Ty
c, a;s? 2" 16 3 ap,
_/'20 ’ﬂ3=zja—2-, H: 0-139.1, Rd o-' Q o ﬂ =T,il’
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B, _9B, (6.18)
K,

Velocities (w,,w,) as a stream function () can be defined as:

w, =%”, W, =—5(er)%ll. (6.19)

Incompressibility condition in Eqn. (6.11) is fulfilled trivially; however, after applying

lubrication technique, rest of the expressions can be written as:

op 1 0 2 H?K*Sin’ 8, (al/I ) (6.20)
K2 Z((r+k)’S, |-—2| Z¥ 1], -
ox r+K6r((r+ ) ") r+K 6r+
op
5 (6.21)
20 1 06 LAY Py 1 (oy
6+1)| — Lo Z| -Br|-ZEL Ll 4
(A +)(6r2+r+KarJ+ﬁ(ar) B'( 6r2+r+K(6r+1) S
1 86 &0 K*H*Sin* 8, (oy |\
+00+R, Pr —+ B o ——+1]| =0, (6.22)
QO+R, (r+Kar ar’) " (r+K) (ar )

Equations (6.20) and (6.21) imply that

af 1 @ 2\ K*H*Sin?8,(oy .\

O L _9(s (rex\-KH SIS oy )| 6.23

ar((,+x)ar( (r+ky)-KH S (arﬂ)} 0 623)
vy 1 (oy vy 1 (oy ’

s, =5, =2¥_ W1 |+28| Y- v 24

oo (ar2 r+K(ar+))+ ﬂ’(arz r+K\6r+1) ’ (624

h=1+b,Sin(27x). (6.25)
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Now the dimensionless boundary conditions are

w=%F/2, a—w=—l at r=Fh, (6.26)
or
08
-B{6-1)+—=0, at r=-h,
A ( )ar (6.27)
06
0+—=0, at =h
B, . r
where
ha'l/
F= J'%Tdrm//(h)—t//(—h), (6.28)
~h

6.1.1 Entropy

Dimensional form of entropy production with the effects of viscous dissipation, variable

thermal conductivity, Joule heating, heat absorption and non-linear thermal radiation is

=@ \dR

(_ W, oW, R oW,

R+R) O (R+) aXJS”+Q°(T'T°)

@_

2
°l | oRB, . o 16T & 1 o @&
o 222 | (WCoss,-W,Sing,)} -0 h( & 1 0 0 \p
[(R+R)]( 038 -MSind) - ( X’ "R+R R R’

(6.29)

where ©, denotes the reference temperature. Non-dimensional form of entropy generation
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S 2

2 Br(H?Sin? 9,)K? 2
Br Sm 6_!/:_ 1 (%.}.]) + r( n 0) (a_f[l+]
orr r+K\ or (,-+K)2 or

1+ 6 20 1 20 '
R == = 6.30
00+ d(arz +r+K 6r) (630
in which S; and A are given by
T)(T,-T,)’
S, =w, A=L_ (6.31)
b (1-1)

Bejan number (Be) defines irreversibility because of heat transfer to total irreversibility as:

3
Be = or

2 2772 v 2 2\’
dy 1 (aw 1))S , BrK’H’ Sin So(ay/_”)

Br| ————"
(2] +:2 (S () (+k) \ar
— | +
or 1+ B6 2
+06+R, ! %+a—?
r+K or or

(6.32)
Here 0<Be<l.

6.2 Methodology

As the problem under consideration is a non-linear system of differential equations;
therefore, it is difficult to evaluate the exact solution of these equations. We calculate

pressure gradient in Eqn. (6.20), and momentum in Eqn. (6.23)) by regular perturbation
method for small parameter (,B,)of third grade material and energy Eqn. (6.22) is solved

numerically. We define
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dp d d
—=—2+fZ2+0(B))

V’='/’o+ﬂ3‘/’1+0(p3) R
F=F+BF+0(B),

Oxr +ﬂ3 1xr +0(ﬂ3)2 *J

(6.33)

Putting (6.33) into Eqns. (6.20), (6.23), (6.24), (6.26) and (6.28) reduces the problem to the

following zeroth and first order systems:

6.2.1 System at Zeroth Order

e S &

dp, 1 @ KH’Sinzso(a% ])
dx (r+K)Kar( Sou (7 +K)) rek \or )

in which

oy, 1 (oy )
Sox = L % +1
[arz (mc)( or

with boundary conditions

y/°=:t%-, %=—1, at r=zty.

6.2.2 First Order System

, K*H’Sin’ §,( oy, | _
ar((r+K)ar( Sur (7 K) ) r+K ( av: ))_0’
‘:lxpl (r+;<)1<aar( Sir (r+K) ) KHrflII; .90(63'/:1)’
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(6.35)

(6.36)

(6.37)

(6.38)

(6.39)



oy, 1 dy, oy, 1 ( oy, ’
S = l_ 1142 o _ 1 0 (6.40)
b (ar’ (r+K) or )’L {arz K" 6r) ’

with boundary conditions

R Wi_g at rn (6.41)
2’ o

6.3 Analysis

p, ==

Effects of pertinent parameters i.e. Br, 8,, 8, O, R,, K, B, . 3, and H on temperature,

total entropy, Bejan number, velocity, stream lines and pressure gradient are discussed and

analyzed in this section.
6.3.1 Velocity

Axial velocity offers significant features of material flow response. Figs. (6.1-6.4) render
the influence of velocity profile (wz) within a curved channel subject to no-slip
boundaries. It is noticed that parabolic trajectory is formed by velocity for pertinent
parameters. However, velocity is not symmetric about central line (r = 0) due to curved
channel. Fig. (6.1) portrays that velocity exhibits dual behavior for increasing values of
material parameter (/). Velocity decays in the neighborhood of walls of the channel
whereas it amplifies at centre of the channel. Fig. (6.2) represents the effect of X on w,.

For this parameter, the velocity also depicts dual behavior as in lower half it decays;

whereas, it enhances in other half of the channel. Clearly, velocity is symmetric about

(r= 0) for straight channel. Fig. (6.3) portrays that w, decreases near centre and increases

near upper wall for higher value of Hartman number (H). As H corresponds to magnetic
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force that is resistive force in nature; therefore, velocity drops off near the centre; however,

it enhances in the vicinity of the upper channel due to curved configuration. In Fig. (6.4)

inclination (,) shows strength of magnetic force on velocity. It is evident from figure that
magnetic force opposes fluid flow with more strength when it is perpendicular to flow

direction (i.e. 9, = 90") and shows less resistance to flow when it is in the direction of the

flow (i.e. when S, —)0").

6.3.2 Pressure Gradient
The impact of curvature, inclination of magnetic field and third grade material parameter

on % is revealed through Figs. (6.5-6.7). Fig. (6.5) depicts the effect of increasing K on

pressure gradient. It is noted that % increases at both the wider and narrower parts. Fig.

(6.6) shows the response of pressure gradient for 9. % rises by increasing §,. The
highest pressure gradient is observed at x=0.75. It indicates that flow can easily pass

through centre of the channel. Fig. (6.7) illustrates that % decreases at wider part of the

channel for increasing B, whereas negligible change is seen at the narrow region.

6.3.3 Temperature

Figs. (6.8-6.14) have been prepared to show the impact of Brinkman number, inclination,

radiation parameter, heat absorption parameter and Biot numbers on temperature profile

(8). Fig. (6.8) portrays effect of Brinkman number on 8. It is seen that & increases with
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the increase of Br. Reason to this increase is that frictional force enhances as fluid
particles collide with each other and resultantly the kinetic energy increases. Conversion of

kinetic energy into thermal energy takes place, because of which total temperature of the
fluid rises. Fig. (6.9) depicts that by rising inclination of magnetic strength (,) from
0° to 90° temperature increases and it becomes maximum when magnetic force acts in

transverse direction of the fluid i.e. for , =90°. In fact, the lines of magnetic field interact

electrically with the liquid and generate Lorentz force. This force resists flow of the fluid

thus converting kinetic energy into thermal energy. Resultantly, the temperature rises. Fig.

(6.10) portrays the response of temperature for heat absorption coefficient (Q) Heat is
absorbed for O>0 and emitted for O <0. Thus rise in temperature for Q>0 is quite
prominent. In Fig. (6.11) temperature reduces by rising the radiation parameter (R,,). The
reason is that as R, has inverse relation with heat absorption coefficient thus by increasing
R,, heat is radiated away and as a result temperature decreases. Impact of Biot numbers on
temperature is depicted through Figs. (6.12) and (6.13). By increasing /3, temperature

decreases more rapidly near the lower wall as compared to the upper wall. Similarly,

temperature drops down near the upper wall quickly in contrast with the lower wall by

enhancing £,. Fig. (6.14) clarifies the influence of thermal conductivity coefficient (,B) on

6. It is seen that temperature lessens for higher value of f.
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6.3.4 Entropy production and Bejan number

Entropy generation (Ns) and Bejan number (Be) are portrayed via Figs. (6.15-6.24) to

illustrate the effect of thermal conductivity coefficient, Brinkman number, inclination of

magnetic field, heat absorption parameter and non-linear thermal radiation parameter. Fig.

(6.15) shows that entropy (Ns) decreases for B. In Fig. (6.16), Ns increases by enhancing

Brinkman number (BrA). As Brinkman number is conduction of heat due to viscous
dissipation thus temperature enhances for this factor. Fig. (6.17) illustrates that entropy
rises by increasing the angle of inclination (.90). By increasing 6,, strength of magnetic
field increases. Joule heating generates more heat resultantly entropy generation goes up.
Figs. (6.18) and (6.19) show opposite behavior of entropy for Q and R,. Entropy increases
for heat absorption coefficient; however, it decreases for radiation parameter. It is also
noticed that value of entropy is more near lower channel as compared to the upper channel
wall. This is due to temperature gradient (as (> 7;,)) It is also observed that change in
entropy is less in the centre in contrast to the channel boundaries. Figs. (6.20-6.24) show
the irreversibility caused by heat transfer (i.e. Bejan number) for various parameters. For

higher B and R, irreversibility due to heat diffusion is decreased; however, it increases for

BrA, 8, and Q.

6.3.5 Trapping

Stream lines are presented to show the flow pattern of the material against parameters of

interest. Trapping phenomenon for third grade material parameter (ﬂ,), curvature

124



parameter (K ) and inclination (00) is expressed by plotting stream lines through Figs.
(6.25-6.27). Figs. (6.25a-6.25c) show that bolus size increases in upper and lower half of
the channel when B, is increased. Figs. (6.26a-6.26c) describe the influence of K on
streamlines. It is noticed that by rising K, in upper half of the channel, bolus size reduces

and moves in upward direction while in the lower half, bolus size increases and number of

closed stream lines also increases. Figs. (6.27a-6.27c) portray increase in bolus size in

lower half of the channel (for 0°<s9 < 90“).
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Fig. (6.1): W, for fluid parameter with x = 0.3, a= 0.5,K=3, H=], ,8=0.05,.90 = %—
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Fig. (62): w, for curvature parameter with x =0.3,a =0.5,H =1, 4=0.05,8 =0.1.9, = 7.
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Fig. (6.4): w, for inclination of magnetic field withx = 0.3, a= 0.5,K=3, H=], ,83 =0.1.
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Fig. (6.6): % for inclination of magnetic field with x = 0.3,al =0.5,K=3, H=5, ﬂ1 =0.1.
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Fig. (6.8): Temperature for Brinkmann number with x = 0.1,al =0.5,K=3, H=1,
— T
,B—ﬂ3 = 0.1..90 = T’Rd = 0.2,,8l = ,Bz =2,Pr=0=0.5.
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Fig. (6.9): Temperature for inclination of magnetic field with x = 0.1,:1l =0.5,K =3,
H =], ,8=ﬂ3 =0.LR, = 0.2,/3l = ﬂz =2,Pr=0=035.
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Fig. (6.10): Temperature for heat absorbtin parameter with x = 0.l,al =0.5,K=3,
= z
H=], ﬂ—ﬂ3 =018 =7,R, =0.2,,8I = ﬂz =2,Pr= Br=03.
130



~
VTV T Y
o

Fig. (6.11): Temperature for thermal radiation withx = 0. l,al =05K=3, H=],
B=B,=018 =%.B =B, =2,0=Pr=Br=03.

N SEASS-~———=-agaanansan S—
12
10 wemmene]
o .
4"‘ ﬂ1-1.2.3'
1 b

Fig. (6.12): Temperature for Biot number with x = 0.1, a = 0.5,K=3, H=1, =0,

n
B,=019 =7,R =02, =2,0=05Pr=1,Br=03.
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Fig. (6.13): Temperature for Biot number with x = 0. l,al =05,K=3, H=1, ,B=0,ﬂ3 =01,
z
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Fig. (6.14): Temperature for thermal conductivty parameter with x = 0. I,al =05,K=3,
= - =z = =f = = = =
H=], ﬂ3 =018 =7.R, = 0.2,ﬂl = ,82 =2,0=05,Pr=1,Br=023.
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Fig. (6.15): Ns for thermal conductivity parameter with x =0.1, a = 0.5,K=3,H =1,
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Fig. (6.16): Ns for Brinkmann number with x = 0.1, a= 05,K=3, H=1,
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Fig. (6.17): Ns for inclination of magnetic field withx =0.1,A = 0.01,al =0.5,K =3,
H =1, ﬂ=0.05,ﬂ3 =0.1,R,=0.2, ﬂl = ,82 =2,0=05,Pr=0.5,Br=0.3.
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Fig. (6.18): Nis for heat absorbtion parameter withx =0.1,A = 0.01,al =0.5,K=3, H=1,
- n
ﬂ—o.os.p3 = 0.|..90 = T-Rd =0.2, ﬂl = ﬂz =2,Pr=0.5,Br=0.3.
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Fig. (6.19): Ns for radiation parameter withx =0.1,A = 0.01,al =0.5,K =3, H =1, §=0.05,
T
ﬂ3 = 0.l,l90 = T’ﬂl = 'Bz =2,0=0.5,Pr=0.5,Br=0.3.
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Fig. (6.20): Be for thermal conductivity parameter with x = O.I,aI =05,K=3, H=],
n
A= 0.01,,83 =0 l,.9u =7.R, =0.l.,8I = ﬂz =10,0=0.1,Pr=0.5,Br =0.3.
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Fig. (6.21): Be for Brinkmann number with x = O.I,aI =05,K =3, H =1, =0.05,
n
A =0.01,,¢‘l3 = 0.1,.9o =7:R, =0.1,ﬂl =,82 =10,0=0.1,Pr=0.5.
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Fig. (6.22). Be for inclination of magnetic field withx =0.1,A = 0.01, a= 05,K=3,
H =1, ,19=0.05.,l33 =0.LR,=0.2, ﬂl = ﬂz =2,0=3,Pr=0.1,Br=03.
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Fig. (6.23): Be for heat absorbtion parameter withx =0.1,A = 0.01,aI =05,K=3,
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Fig. (6.24): Impact of radiation parameter on Be withx =0.1,A = 0.01,al =0.5,K=3, H=1,
— _ _7 — _ _ _ -
,6—0.05,/33 = 0.1,80 =7 ﬂl = ﬂz =2,0=05,Pr=0.5,Br=0.3.
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Figs. (6.25a-6.25c): Streamlines for fluid parameter
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Figs. (6.26a-6.26c): Streamlines for curvature parameter
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Figs. (6.27a-6.27c): Streamlines for inclination of magnetic field
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6.4 Conclusion

This chapter discusses entropy production in peristaltic motion of third grade fluid with
non-linear thermal radiation, magnetic field, variable thermal conductivity and heat source/

sink. The key points are listed below.

Trend of the entropy generation is parabolic.

* Entropy generation is non-zero at the centre line (»=0) and higher at lower wall in

comparison with the upper wall due to temperature difference at both the boundaries.

® Temperature and Entropy boost up for the inclination and heat absorption parameters
while these reduce for radiation and thermal conductivity parameters.

® Irreversibility caused by heat transfer is greater for inclination and Brinkman number.

® Velocity enhances at the centre of channel for larger material parameter whereas it

decreases for Hartman number.
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Chapter 7

Entropy Generation Analysis in
Peristalsis of Sisko Fluid Subject to
Variable Viscosity and Thermal
Conductivity

Peristaltic flow of Sisko material with variable thermal conductivity and viscosity in curved
configuration is analyzed. Entropy is also under consideration here to study the
irregularities in heat transfer process. Problem is solved numerically. These solutions are

utilized to plot the behaviors of quantities of interest against the pertinent parameters.

7.1  Mathematical Formulation

Here our aim is to inspect the entropy generation in peristalsis of Sisko material in a curved
channel of width 2a coiled in circle with centre O and radius R. Components W, and
W, of velocity are along radial (R) and axial (X) directions respectively. Both viscosity

and thermal conductivity of Sisko material are taken as a function of space variable and
temperature respectively. Fluid flow in the channel is due to propagation of waves with
speed s, amplitude b and wavelength A. Modeled problem is subjected to the no-slip

boundary conditions. Transfer of heat is due to different wall temperatures 7, and T, (such
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that T, > T, ) and T; and 7, are the temperature at upper and lower walls respectively.

Mathematical form of the wall geometry is
R=d:x(X,t)=:t|:a+bsin(27”(X—st))], (7.1)

Flow expressions with considered assumptions are as follows:

R %+a—((R + R ) =0, (7.2)
aw, . W, R 0P 1 9 R oS
”( P +R) '(x#x)ﬁ*(ﬁax““ +R) S} &+ )Wxx (23)
aw, w; \_ oP 1 0 Sy R &S
( dt R +R) aR+(R +R) OR {(R R)S } (R +R) (R +R) a;k (7.4)

.2 ). _[ﬂél]_ <D o,
(7). ¢

*dt R R (R + R)’ oX | (R+R)oR
ow, W, R_oW |o W,
( aR2 (R'+R)+(R'+R) a)(I ]S 3 (S Sux)- (7.5)

Here P denotes pressure, p fluid density, Spy,Syz,Sy, stress components, C, specific

heat, x(T") temperature dependent thermal conductivity and 7' temperature.

Extra stress tensor S for Sisko fluid model that can be stated as follows [100]:

1 n-1
EW(A)I ]A’ (7.6)

in which the first Rivilin-Erickson tensor is

S=[c+d

A=grad W+grad W, (7.7)

Moreover, the parameters cand d represent the material parameters. Here, n(20) is
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power-law index for Sisko fluid model. For (n<1) it shows shear thinning and
(n> 1) shear thickening. In addition, for (n=1, c=0,d=uorc=u,d =0) the behavior

of viscous liquid is found.

The boundary conditions are

W,=0, at R=1y, (7.8)
orT .

K,—=—B(5,-T) at R=—y,
oR (-1 (7.9)
or ,

Knﬁ=_ﬂz(T_7(')) at R=z,

in which «, is constant thermal conductivity at ambient temperature and (,q s ﬂz) are Biot

numbers. Space dependent viscosity is taken as follows:

H(R) = p,exp(-a R)| p,(1-a'R), (7.10)
where u, represents constant fluid viscosity and o' is variable viscosity coefficient. For

a =0, the present problem reduces to case of constant viscosity. Thermal conductivity is

taken as temperature dependent in the form:

x(T)=x, [1+ B (T-T,,)], (7.12)
in which B is variable thermal conductivity coefficient. We consider the transformations

relating to wave (;,;) and laboratory (X, R) frames as

x=X-st, r=R, wa=W,-s, w=W, (7.12)

We now define dimensionless variables, velocities, pressure, temperature, wave number,

peristaltic wall Reynolds number, viscosity parameter, variable thermal conductivity
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parameter, Brinkman number, Prandtl number, curvature amplitude ratio, thermal Biot

parameters and Sisko fluid parameter as

xr Wi W2 a’P T-T
=| —,— = e—— — = R 0: 2 ,
) (A’a)’ e (s ’ s)’ iy LT,
a_a” h=l, Re=ﬂ, a=a_, ﬂ=ﬂ'(7|"7;)s
a 4, a

Velocities (w,,w,) through stream function () can be expressed below:

kd oy _oy

w= y W,
r+k ox or

(7.13)

Incompressibility conditions is now trivially satisfied while other expressions after long

wavelength and low Reynolds number give

kop_ 1 o0 2
r+ka_(r+k)2 5(("”‘) S")’ (7.1
g
5r’1=0, (7.15)
LAY 3% 1 a6 vy 1 (oy )
= 1+ 89)| — +—— |+ Br| 4 ——— | Z¥ 11 =0. (7.16)
ﬂ(ar) (148 )(ar2 +r+k ar)+ '(ar’ (r+k)(6r 1) )5

Eqns. (7.14) and (7.15) implies

%[ﬁ%((' +k)'S, )] =0, (7.17)
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o’S,, (7.18)
ot

S, = (%rz—'/z'-— (r-:-k) (%’I + 1)][(] —ar)+y’ (i_vz’_ﬁ_)_(%+ 1))"—1], (7.19)

and p= p(x).

3%+(r+k)

Dimensionless boundary conditions are

w=tFi2, 2Y-_1 at r=th,
or
Zr—g- B(6-1)=0, at r=-h, > (7.20)
06
;+ﬂ20=0, at r=h, J
where
h oy
F= I;drm//(h)—y/(—h), (7.21)
-h
h=1+bsin(27x). (7.2
Heat transfer rate in non-dimensional form is
oh 06(h)
Z=——", 7.
o or {(7.23)
7.1.1 Entropy
Entropy equation in dimensional form is as follows:
x(T) dr)’ 1||ow, w, R oW, oW,
= — | +— — +o= Sex +—=2(Spe =S ) |»
= e? (dR e,|| ar (R+R) (R+R) ax | ™ &R (Sax =Sr) (7.24)

where ®, denotes the reference temperature and second term in Eqn. (7.24) is for viscous
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dissipation.
Dimensionless form of entropy generation thus becomes

Sen _(08Y | BrA (w1 (ay, )
N, =-F=|— - —+1|[S.,
"8 (6r) +1+ﬂ0(6r’ r+k\ or g (7.25)

'

in which N, shows Entropy generation parameter, S; entropy generation characteristic

and A temperature difference parameter. S; and A are given by

2
5, =XOE-T) ,__8, (7.26)
©,a (£-1.)

Eqn. (7.24) represents that entropy generation is a combination of irreversibility processes

known as heat transfer irreversibility (Sg,,,)1 and fluid friction irreversibility (Sm)F.

Mathematically Bejan number Be is written as

Be=(s ()f‘:_" (); )F. (7.27)

gen gen

It is clear that 0 <Be<1. Here Be=0 corresponds to dominance of fluid friction effects
while Be =1 shows high irreversibility due to heat transfer. Furthermore, Be=1/2 implies

the same contribution for both.
7.2  Methodology

We have non-linear system of differential equations and thus cannot be evaluated exactly.
Hence we solve velocity Eqn. (7.14) and heat equation (7.16) subject to its boundary
conditions (7.20) is solved numerically by NDSolve command in Mathematica. This

command solves differential equation by Shooting method.
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7.3 Analysis

This section includes the physical interpretation of axial velocity, pumping characteristics

temperature and entropy generation for pertinent quantities.

7.3.1 Velocity

Figs. (7.1-7.3) display &, y" and k effects on w,. It is observed from Fig. (7.1) that space

dependent viscosity yields more resistance to fluid flow near lower wall. As a result the

amplitude of axial velocity w, decreases where flowing fluid has less resistance in the
vicinity of upper wall and so axial velocity increases for o . Fig. (7.2) depicts the response
of w, for increasing »*. Here w, has opposite outcome near upper and lower boundaries
respectively. Fig. (7.3) illustrates curvature k impacts on w,. This Fig. reveals that

symmetry of axial velocity is disturbed due to increasing k.

7.3.2 Temperature

This subsection is devoted to represent temperature @ via r for different sundry
parameters @, B, B,, B,, ' and Br through Figs. (7.4-7.9). From Fig. (7.4) it is seen
that for larger viscosity parameter a the temperature decays. Influence of 8 on @
dominates and & decreases (see Fig. (7.5)). It is due to the fact that S enlarges the fluid
ability to disperse or soak up heat. This happens when wall temperature is less than the
fluid temperature. Figs. (7.6-7.7) exhibit effects of Biot numbers S, B, on 8. Temperature
decreased when £, and pf, are increased. Fig. (7.8) illustrates the response of 8 for larger

fluid parameter »*. It is evident through this plot that temperature rises when »*enhances.

148



Fig. (7.9) represents temperature (6) for Brinkman number (Br). Through this Fig. it is

revealed that temperature is maximum for an enhancement in Br. This shows prominent
effect of viscosity in Brinkman number which opposes the fluid flow. Due to resistance in
flow the collision of fluid particles increases and particles lose their energy and as a result

temperature enhances.

7.3.3 Entropy Generation

This subsection is made to interpret the physical behavior of entropy generation and Bejan
number for various pertinent considered quantities (i.e. @, B, 7* and BrA). For this
purpose Figs. (7.10-7.17) are presented. Figs. (7.10) and (7.11) are made to see the
influences of @ and B on Ns respectively. It is clear from these Figs. that Ns decays in
the vicinity of channel walls when « and B increase. No doubt entropy (Ns) and

temperature have direct relation. Thus these Figs. ensure the decay of temperature.

Influence of fluid parameter y* can be seen via Fig. (7.12). This plot reveals that an

increase in y° leads to more entropy. Fig. (7.13) depicts the effect of BrA on No.
Physically dimensionless number BrA explains the viscous effects and has direct
proportion to square of velocity. Thus an enhancement in BrA corresponds to higher
entropy. Figs. (7.14) and (7.15) addresses the influences of parameters @ and 8 on Bejan
number Be respectively. It is evident that Be has similar behavior for both & and f.
Response of Brinkman number BrA on Be is illustrated through Fig. (7.16). This figure
describes that Be increases for higher BrA. Impact of fluid parameter on Bejan number is

shown in the Fig. (7.17). Clearly Bejan number enhances for fluid parameter.
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7.3.4 Heat Transfer Rate

Bar charts are presented in Figs. (7.18) and (7.19) to illustrate the change in heat transfer
rate for pertinent parameters Br and S. Fig. (7.18) shows increase in heat transfer rate as
Br enhances. It is due to the dominant characteristic of viscosity in heat equation. Fig.
(7.19) gives that heat transfer rate is decreased when variable thermal conductivity

parameter increased.
7.3.5 Trapping and Pumping

Trapping phenomenon is found significant in problems regarding peristalsis. It creates in
the form a fluid mass called bolus which circulates internally and it is enclosed by
streamlines. The propagating peristaltic waves push such type of bolus forward with the
same velocity as that of waves. Trapping has importance in fluid transportation via
peristalsis. Figs. (7.20-7.22) are made to depict the streamlines nature for various
parameters involved in the present analysis. Figs. (7.20a-7.20c) show streamlines behavior

for viscosity parameter . In this figure bolus size decay in the upper half however it
expands in the lower half of peristaltic channel for increasing a. Streamlines for »*can be
depicted through Figs. (7.21a-7.21c). It is found for higher »* bolus expands near both

wall of channel. Figs. (7.22a-7.22c) show effect of k on streamlines. It is clear from these
figures that behavior of bolus is opposite in upper and lower channels. In the upper half

bolus contracts while in lower half it expands.
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Fig. 7.1:

"o

-1.0 . . . . . ]
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

r

Velocity for viscosity parameter with x = 0.3, a= 0.5,k=2, y* =0.1.
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Fig. (7.2): Velocity for Sisko fluid withx = 0.3,al =0.5,k=2,a=0.1.
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Fig. (7.3): Velocity for curvature parameter with x = 0.3, a= 0.5, }'“l =0.La=0.1.
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Fig. (7.4): Temperature for viscocity witha =03,k =2, 7° =0.18=1.8=01, 8-, -2
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Fig. (7.6): Temperature for fluid parameter with a= 03,k=2,Br=l,a=4=01, ,Bl = ,62 =2
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Fig. (7.8): Temperature for Biot coefficent with a= 03,k=2, y* =0.1,Br=lLa=f£=0.1l, ,BI =2
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Fig. (7.9): Temperature for Brinkmann number with a = 0.3,k =2, y* =0.l,a=4=0.1. '81 = ,62 =2,
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Fig. (7.10): Entropy for viscocity with a = 03,k=2, 7* =0.1,Br=1,A =0.01,
,B=0.I,,6I =,B2 =1.
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Fig. (7.11): Entropy for thermal conductivity with a = 0.3,k=2,y =0.1,Br=1,
A=00lLa= 0.l,ﬂl =4 =1
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Fig. (7.12): Entropy for fluid parameter with a = 0.3,k=2,Br =1,
A=00l,a=48= O.I,ﬂI = ,82 =1.
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Fig. (7.13): Entropy for Brinkmann number with a = 0.3,k=2, y* =0.1,
A=0.01,az=ﬂ=0.],,8I =,82 =1.
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Fig. (7.14): Bejan number for viscosity parameter with a = 03,k=2,y =0.1,Br=1,
A =0.1,,B=0.l,ﬂI =ﬂ2 =2.
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Fig. (7.15): Bejan number for thermal conductivity coefficentwith a = 03,k=2, 7* =0.1,
Br=1,A=0la= 0.1,,6l = ,82 =2.

*®
Fig. (7.16): Bejan number for Brinkman number with a = 03,k=2,y =0.1,
A=0.],cr=,8=0.1,,8l =,82 =2,
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Fig. (7.17): Bejan number for fluid parameter with a = 03,k=2,Br=1,
A=0.l,ax =,6=0.l,,8l =p =2
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Fig. (7.18): Heat transfer rate for Brinkman number with a = 0.3,k=3,y =0.,A=0.1,

a=f=018=p4 =2.
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Fig. (7.19): Heat transfer rate for thermal conductivty parameter with a = 0.3,k=3,

7 =0.1,Br=1,A=0La=0.,5 =8 =2
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Figs. (7.20a-7.20c): Streamlines for variable viscosity coefficient
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Figs. (7.21a-7.21c): Streamlines for Sisko fluid parameter
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Figs. (7.22a-7.22c): Streamlines for curvature parameter
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7.4 Conclusion

The worth mentioning outcomes of the modeled problem are presented below.

Similar response of axial velocity has been reported for increasing for « and k.

Variable viscosity and thermal conductivity parameters (a and ) are responsible for

temperature reduction while Sisko fluid parameter ¥* enhances the fluid temperature.
Minimum irreversibility (i.e. entropy) is observed in case of variable viscosity and
thermal conductivity.

Variation in Bejan number is found same for both « and B.

Present result is reduced to viscous fluid when »* =0 and n=1.
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Chapter 8

Electro-Thermal Transportation of
Carreau Fluids Through Peristalsis

in a Curved Micro-Channel

In this chapter the modeling of electroosmotic Carreau liquid flow through a microchannel
in curved configuration is studied. Fluid flow is because of both the peristaltic pumping and
electro osmosis effects. Energy equation is developed by viscous dissipation. Long
wavelength and small Reynolds number are chosen to simplify related expressions. These
equations are further solved by numerical technique. In addition, EDL phenomenon is
experienced by the channel because of zeta potential. Solution of the electric potential
function is obtained analytically by employing Debye- Hiickel approximation. Effects of
Helmholtz-Smoluchowski velocity, curvature, ratio of zeta potential, inverse EDL
thickness and Joule heating parameters on temperature, velocity and trapping

characteristics are presented and analyzed through graphical results.
8.1 Mathematical Formulation

We intend to investigate peristaltic flow of non-Newtonian incompressible fluid model

within microchannel in curved geometry. Unperturbed width of the channel is 2¢, radius of

curvature is R and it has «centre O. Components of velocity
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W=(W, (X,R.1), W, (X, R,t)) are taken along curvilinear coordinates (R,.X). Here X

lies along with centre line of microchannel while R is perpendicular to it (See Fig. 8.1).

Flow in curved channel is due to both motility of wall that is transverse deflection of

sinusoidal wave and electro-kinetic force (body force). An electric field (E) is imposed to

walls of micro channel.

Fig. 8.1: Geometry of problem

The wall shape is defined as:

R==FI-_I(X,t)=T—(c—dcosz(X;s’)), (8.1)

here A represents radial distance of the wave from centre line, d wave amplitude, 4
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wavelength and s wave speed. The wavelength A4 of micro-curved channel is assumed to
be much larger than half width of channel such that %] 1. No-slip conditions for

momentum equation at the boundaries are taken and temperature on walls is T;.

Cauchy stress tensor () for Carreau fluid model is

1=S-PI, (8.2)

n=1
2\2
)J G, (8.3)

where S denotes extra stress tensor, / identity tensor, P pressure, (;to, ,uw) initial and

G

S=| p.+(u —,uw)[l+(x'

infinite shear rate viscosity, |G|=J%trace(A,’) trace. The first Rivlin—Ericksen tensor
(A) is

A, =(dvW)' +(divw). (8.9)

Eqn. (8.3) can also be written as:

~De?| [ (8.5)
s~;¢o(1+‘" De I )G,
( 2/ 2 2\"——1\ 6W
(n-Dx" (MY (O, R oW, W, ) 2 [
S ® th| 147 ( aR) ok R+RoK ReR) | | °oR )
\ )
( =1
(n-0&’ ((om\? (ow,, R om_w, V|2 (o, R OW,_ W, )
+ += — ,
S""“%\H 2 \(ZGR)J{aR R+R0X R+R)J R R+ROX R+R
( n=1")

(n-0x" [ om\2 (ow, R om_w, V)2 |(_, W,
S = tho| 14— \( E_RJ +(6R+R+R6X Effe)) 2R )
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Viscous fluid can be achieved by putting »=0 in Eqn. (8.5) .
Conservation equations for momentum and energy for Carreau incompressible fluid
coupled with body force that is produced by action of imposed electric field on free ion in

EDL have the following expressions [111, 112]:

=R 6W2+6W,+=[V, =0, (8.6)
R+R3X OR R+R

p(gvzz_ (W), + B, )=_( R op 1 0 (S (R+RY')

ot R+R R+R)ax (R.,.fg)’a—R

_ (8.7)

R_asy
+(R+§) aX +peE.Y,

3 W) P, 1 8 N\ Sg
p(a_rl+(w'v)m_§:1e)' aR+(R+1‘e)aR(S’*"(R+R)) (R+R)

R_5g 8.8
+(R+E) T +p,E,, (8.8)

ar _|®T 1 8T R &T| oW, _
”CP(E+(W'V)T)"‘[6R’+(R+R)ak+(R+§)’ ax? | ar 5o ~Sw)

oW, R ow__ W, (8.9)
*[ oR “[R+F) X (R+§)]SXR'
with the boundaries conditions:

-H, (8.10)
H.

R
at R

W,=0, T=T, at
T=T,
Here p denotes density, components S,,,S,,,S,, of the extra stress tensor S, C,

specific heat and T material temperature. Here the body force (F) is due to imposed

external electric field defined as:
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F=pE=p,(Eé, +Eg,), (8.11)

in which p, is net charge density defined as:

p.=ze(n, -n), (8.12)

with z ionic valence and n; are respective number densities of ions and counter co-ions.

The electric field and electro-osmotic flow are related by:

E--ve-——~_%; %, (8.13)
R+ROX ¥ R

in which ® shows electric potential. By electrostatics theory, electric potential is given by

expression of Poisson equation as:

V’(-):_&:_M, (8.14)
& t

subject to boundary conditions as symmetric zeta potential at curved micro channel walls
are:

O(-H)=¢, O(H)=¢, (8.15)
The Nernst-Planck equation for the curved configuration in the absence of chemical

reactions is given by

dn, _ 2 nDel R 08 Rn, 00 1 0 (/5 [
7 =DV "t)i';;,k: [(E+R)6X((R+tR) ) (®R+R) aR((R+R)"* aR)]’
(8.16)

in which k, denotes Boltzmann constant, T, absolute temperature and D diffusivity of an
ionic species.

In laboratory frame, flow phenomena are taken as unsteady while it is steady according to
wave frame of reference (7,X). The relationship between the laboratory and wave frames
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is:

F =R, X=X-st, w,(%,F)=W,(X,R,t)-s, % (X,F) =W, (X,R1). (8.17)
We define dimensionless parameters: (r,x) radial and axial variables, p pressure, (u,v)
velocity components, & wave number, d, wave amplitude, 6 temperature, Re Reynolds
number, » dimensionless radial distance of centerline from the wave, k& curvature, Br

Brinkman number, Pr Prandtl number, m Debye-Hiickel parameter, U, Helmholtz-
Smoluchowski velocity, R. ratio of zeta potential, I' Carreau fluid parameter and ©,

thermal potential are defined as follows:

rx c’P W, W ¢
(r’x)=(?3)’ P s (w"wz):(Tl’Tz)’ =7
dl=is a—T_T;), Re=f£, h=£’
¢ 1, v c
- , c
k=£, Br=£ pr=t £, m =mc,
¢=®2, & =;_1, A =§, U, __s(;);E,
0 0 0
Rf = éz—’ = E, @o = ka(') . (8_18)
fl (4 Zze

The fundamental equations (8.6-8.9) and (8.14) are first transformed in wave frame and

then the non-dimensional forms are

ﬂ%+%+l:o, (8.19)
k+r ox oOr k+r

Re(_aawz+5(wz+l)kg @+wl(wz+l)J k ap+ 1 a(sﬂ(k_*_r)z)

o | (k+r) o or k+r ) (k+r)ox (k+r)or

Sk 8, . |po_k_T¢ li( %)
+(k+r)ax+U"“[6 Gy el a ) (8.20)
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2
Reé‘( Jﬂ ok aw+wa—w-'-+.(%;l)]=_ze+5 ! (S (k+r))

ox (k+r) Ox ' or k+r or r+kor
ko? os., . 0% 'S 62¢ 1 o¢
U 0 .
DR "‘(k+r)( (k+r) o5 (k+r)6r((k+r)ar)} &2

2 212 2
RP( 06  Sk(w,+1)00 wgg) %0, 1 26 &% 39

o (r+k+r)ax Yor | ot r+kor (r+k) at

+8rS0 Z(Sa-S, )+ Br (a“' ok _ow, “’2”) (8.22)

or (r+k)ax (r+k)

5*k* o%¢ 0% 1 o¢ 2(n+—n_)_
(kery oc o (k+r)or "\ 2 =0, (8.23)
and
S, =24 1+ ﬂ(z )2+( . Ok om w:+l "—T

bl 2 c 2 or or r+kax r+k

e (n=1)r? om 2, (0w, Ok Owy Wz+1 "T 6'k ow, _w+l

S"~#°(c)[l+ 2 [(2 ) (3’ Trek ax ’+’¢ ko k)
(8.24)

o2 ) ]{%},

2n, (cze)’

in which m| =
T.k,e

] is Debye- Hiickel parameter related to the thickness of Debye

layer. The dimensionless boundary conditions are:

w,==1, at r==h
6=0, at r=zh,

$(-h)=¢&, d(h)=¢.

(8.25)
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The Nerst-Planck Eqn. (8.16) in dimensionless form is:

Peaz((WIH)(k'*") £l (k+r) ox* e (k+r) ar
5k o nk 2¢) 1 o6
(r+k ax((rn:-k) axJ+ (r+k) or (n;( k) )] (8.26)

in which Pe is magnitude of Peclet number. In the above equation Ped? —0, thus we

on; J (a’kz CACICAC I an:J
2

arrived at:
azn; 1 on 1
—_—=f— k 8.27
(r+k) or (r+k)6r(n¥(r+ ) ) (8.27)
with boundary conditions:
on 0
n(¢=0)=1, and —ari =0, at -a—f =0. (8.28)

Exact solution of the above problem is:
n; =exp(1¢). (8.29)

The Eqns. (8.23) and (8.29) under lubrication theory assumption we get:

2
0 ¢ +— (r-:-k) gf —m*sinh¢ = 0. (8-30)

The ion distribution and electric potential are independent of the velocity of the fluid. The
above Eqn. (8.30) can be linearized by apply Debye Hitckel assumption. This implies

o’ 1 ¢

24 = 8.31
o e "0 (831

subject to boundary condition:

¢(-n)=¢&, @(h)=¢,. (8.32)
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The analytical solution of the Eqn. (8.31) subject to boundary conditions (8.32) is:

. -R RJ] _Iz
#(x.r)=¢ (ﬁ%— I, (m(k + r)) + mlﬂ (M(k + r))), (8.33)

in which
L=I(m(k-h)), L=L(m(k+h), L=L(m(k-h)), L=L(m(k+h). oo,
In which I, and L,are respective modified Bessel functions of 1* and 2™ kind having

order zero.

Equations (8.19-8.22) under assumption of lubrication theory, eliminating pressure gradient

and utilizing w, =a—'/i, w,=-0 La—"’,we reached at
or k+r ox
0 1 0 2 . 0 o¢
— —(8,, (r+k)°)+U_ —|(r+k)=||=0, (8.35)
ar((f+k)ar( A (r+4)) ,,,a,((’ )ar))
2
1 Q+2+B, &_v+l s o, (8.36)
k+ror or or (k+r)
in which
"l 52 Tl 1 (. 8
s (=D io% 1 ( aw)| 2 [|9¥W_ oy

Swaﬂo(c) 1+ 5 [&2 k+r\|+;):| (6r2 k+r(l+ar))’ (8.37)

subject to the boundary conditions:
=-1. at r=1h,

(8.38)

8.2  Analysis

The modeled differential Eqns. (8.35-8.36) subject to boundary conditions (8.38) are solved
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by numerical technique using NDSolve command in Mathematica 11 software. Results
have been presented below. These results are drawn for the pertinent parameters of interest
like curvature effects of micro-channel, Carreau fluid model effects, electro-osmotic
velocity effects, inverse EDL thickness effects, influence of zeta potential ratio and impact

of Joule heating (electric dissipation) on velocity, trapping phenomena and temperature.
8.2.1 Velocity

One of the most significant characteristics in fluid flow is to evaluate the velocity of fluid
through curved microchannel. Figs. (8.2-8.6) are prepared to analyze the flow
characteristics for significant parameters. Furthermore, a comparison of the viscous and
non-Newtonian fluid model is also presented. In these Figs., dual behavior of velocity is
seen in the microchannel and it changes near the central point. Figs. 8.2(a, b) show the
effects of curvature parameter on velocity profile. It is seen that velocity decreases for
higher values of k at the lower region of micro-channel; however, reverse behavior is

observed for the upper half of the channel. Moreover, velocity is maximum near the centre
of the channel and it is symmetric at the axial location (x=0) for straight channel.
Through Figs. 8.2(a) and (b), it is observed that trend of velocity versus curvature
parameter for viscous fluid is the same when compared with Carreau fluid. However,
velocity is parabolic in shape for viscous fluid and has sharp edge near the centre for

Carreau fluid.

Fig. 8.3(a, b) illustrate the effects of electro-osmotic velocity (U;") for both viscous and

non-Newtonian fluids on velocity profile. Electro osmotic velocity is imperative parameter

of problem in hand. U;n has a direct relationship with externally applied electric field E, .
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£Q,E,

). Different values of this parameter are
us

It is negative by definition as U, (=—

considered for constant fluid viscosity, permittivity and applied electrical potential, while

applied axial electric field is changed to get a variation in velocity profile. Here (U"s = —1)

means that direction of applied electric field and direction of flow are same and (Um = 1)
indicates that direction of electric field and direction of the flow are opposite. While
(U;h =0) corresponds to case of peristaltic transport of non-Newtonian fluid through

curved geometry when electro osmotic effects are not considered. From Fig. 8.3(a), it is
observed that velocity manifests when values of electro-osmotic velocity move from
negative to positive in lower half of micro-channel. However, trend of velocity is reversed
for the upper half of micro-channel. In Fig. 8.3(b), trend of velocity is the same for viscous
and Carreau fluid qualitatively. In addition, with the change in electro-osmotic velocity,
variation in viscous fluid is larger than Carreau fluid model.

Scrutiny of Fig. 8.4(a) depicts that with a significant increase in m. remarkable
enhancement in axial velocity at lower half of channel occurs. On other hand, such an
elevation for m' is resulted in deceleration at upper micro-channel not exactly at the centre
but little beyond the centerline. Electro-osmotic parameter has an inverse relation with
Debye length. Obviously, decrease in Debye length that corresponds to enhanced value of
m ., raises electrical potential (see Ref. [111]). By varying m', velocity distribution is

controlled effectively.

Impact of zeta potential ratio (Rg) on velocity is investigated through Figs. 8.5(a, b) by
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taking different values of R'; (=-1,-0.5,0.5,1). Here, R'; =1 means that potential at both

the walls are equal and R'g =0.5 corresponds that zeta potential at upper wall is half of

lower wall etc. Through these Figs., it is revealed that velocity increases by increasing zeta

potential ratio ranging from R; =—1to1 in the region r <0, and converse behavior is

observed for the region »>0. In Figs. 8.5(a) and (b), a contrast of viscous and non-
Newtonian fluid model is presented. In this comparison it is concluded that behavior of
velocity for both the fluid models are alike. However, velocity changes significantly in the

case of viscous fluid. Fig. (8.6) is portrayed to reveal the effects of Carreau fluid parameter

(F) on velocity. It is depicted through this Fig. that velocity decays in the lower region of

the micro-channel whereas reverse trend is achieved in the upper region by increasing T
Velocity in the vicinity of the centre of channel remains unchanged. However, the change

in the entire channel is not so predominant.
8.2.2 Trapping

In peristalsis, one of the very interesting phenomena of trapping occurs. In this
phenomenon, behaviors of stream lines are analyzed which present a very clear picture of
flow pattern. In fluid movement, these contours plots have intrinsic flow characteristics
which is known as trapping. In trapping, closed paths (called circulation) are formed by
some centre stream lines which depicts smooth movement of fluid. Analysis of trapping
phenomena for non-Newtonian fluid flow subject to external applied electric field is

illustrated in Figs. (8.7-8.9).
The effect of inverse EDL parameter (m) to trapping is scrutinized via Figs. (8.7a-8.7c).
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The smaller values of m (i.e. when EDL thickness is more), bolus in size and shape are

different in both halves of the channel. Moreover it is seen that bolus size also varies by

varying EDL thickness. For large m (i.e. decreasing thickness of EDL wall), bolus in

number and size decreases in the lower region.

The impact of curvature parameter (k) to trapping is investigated through Figs. (8.8a-
8.8c). The smaller values of curvature portray stronger curvature of micro-channel and
when (k —>oo) the special case of straight channel is achieved. In Figs. 8.8(a, b), for small
values of (k), it is noticed that number of trapping bolus is larger in upper half and less in

the lower half. Moreover, in lower half trapping bolus is elliptical in shape. In these Figs., it

is clear that for (k=1.2, 3), bolus is asymmetric in upper and lower halves of the micro-

channel. However, when we move from curved to straight channel, trapping bolus is more

symmetric in both halves of the channel.
Figs. (8.9a-8.9c) are prepared to demonstrate the effects of electric filed (U;“ ) In these
Figs., it is observed that sizes of trapping bolus in both halves are different and asymmetric.

It is also noted that trapping streamlines are more when electric field and flow direction are

same i.e. (U;,s = —1) and less in number when electric filed direction and flow direction are
opposite i.e. (U;,.\ =l). In Fig. 8.9(b), when electro-osmotic effects are not present i.e.

(U;ﬂT = 0) » the number of trapped streamlines are more in upper half and less in the lower

half of the channel.
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8.2.3 Temperature
Figs. (8.10-8.14) are prepared to demonstrate the development in temperature profile in the

channel with variation of Helmholtz-Smoluchowski velocity (U;,.), curvature parameter
(k), inverse Electric Double Layer thickness parameter (m) and Carreau fluid parameter

(T). A comparison of viscous and Carreau fluid model is also made for various

parameters. It is clear from the Figs. (8.10-8.14) that temperature profiles are homogenous
in contrast with axial velocity profiles. Here trend of temperature distribution is parabolic

in the curved channel and maximum value of the temperature occurs in the central part of

the channel. Fig. 8.10(a, b) depict variation in temperature profile via r by varying U,.

From these Figs. it is revealed that temperature decays by increased values of U,. In these

Figs., when viscous fluid is compared with Carreau model, same behavior for temperature
is observed for both fluids. However, for Carreau model temperature varies rapidly than
viscous fluid. Figs. 8.11(a, b) indicate curvature parameter effects on temperature
distribution for both fluid models. For smaller values of k, (for stronger curvature
channel), a significant rise in temperatures is noted in the micro-channel. Whereas for
larger values of k, (for straighter channel geometries) temperature reduces, it means
cooling produces in the straighter channel. In stronger curved channel, peak in temperature
appears is in the upper half plane whereas, for straighter geometries, it appear in the central
part of the channel. Fig. 8.12(a, b) exhibits temperature distribution against m > 0. Heating
is produced by lower EDL thickness however cooling is encouraged Carreau fluid

parameter by higher electrical double layer thickness in the micro-channel. Fig. (8.13)
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depict temperature profile for Carreau fluid parameter (I'). It is evident from the Fig.

temperature boosts up significantly for even the small variation in I'. It shows that heating

is encouraged by Carreau fluid when it is compared with viscous fluid (1"=0).

Enhancement in temperature is also evident in the Figs. (8.11-8.13)(b) for Carreau model.

From the results of temperature distribution, it can be concluded that trend of temperature
profile versus pertinent parameters (U;,s,k,m) are the same for both fluid models however

temperature rises significantly in case of Carreau fluid.
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8.3 Conclusions

This chapter addresses Carreau fluid flow in a curved microchannel via peristaltic pumping
with electric field as a body force. The boundaries of the channel are subject to low zeta

potential. key observations are mentioned below.

Velocity shows dual response in the channel for various parameters due to curvature
effects.

» Carreau fluid parameter is responsible to enhance the magnitude of temperature.

® Temperature rises for inverse EDL thickness parameters.

= Temperature is more in curved channel than straight geometry.

* Trend of velocity and temperature is similar qualitatively for both viscous and non-

Newtonian fluids.
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Chapter 9

Conclusions

This thesis discusses peristaltic transport of non-Newtonian fluid in curved geometry with the
effects of variable physical properties of the materials. Heat and mass transfer effects are
considered. Entropy is also modeled and investigated for various important quantities of

interest.

In chapter one, brief introduction and applications of peristalsis are presented. Literature

survey and fundamental equations of fluid mechanics are discussed.

In chapter two peristaltic movement of Jeffrey fluid with variable thermal conductivity and
viscosity are addressed. Inclined magnetic field is applied to the flow. It is noted that axial
velocity shows dual response for various parameter. Temperature decays for higher values of
thermal conductivity and viscosity coefficients. Moreover, temperature is higher for curved
channel in comparison to the straight channel. It is also found that entropy increases for

increasing inclination of magnetic field.

Chapter three addresses heat and mass transport in peristaltic flow of MHD third grade fluid
through curved channel. Soret and Dufour effects are examined. Chemical reaction with
activation energy is also attended. It is found that velocity increases for temperature dependent
viscosity parameter. Temperature increases for Dufour parameter whereas concentration

reduces for Soret variable. For higher activation energy parameter, concentration also
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increases.

Chapter four studied peristaltic transport of Sutterby fluid in curved configurations. Inclined
magnetic field is also imposed. Energy expression is modeled with effects of viscous
dissipation, non-linear thermal radiation and variable thermal conductivity. Entropy generation
is also modeled. It is concluded that velocity decreases in lower half of the channel for higher
values of Hartmann number and curvature parameter. Entropy is minimum for higher thermal
conductivity and radiation parameters. Brinkman number is responsible for increases in heat

transfer rate.

In chapter five non-Darcy resistance in peristaltic transport of Sutterby fluid is addressed. Soret
and Dufour features have been retained. It is observed that velocity decay for Sutterby fluid
parameter. Concentration decreases for both Soret and Dufour parameters while entropy

increases for these variables.

Entropy generation for thermal radiation, heat absorption coefficient, variable thermal
conductivity and magnetic field effects are examined in chapter six. Third grade material flow
by peristalsis in curved configuration has been considered. It is noted that velocity enhances at
the centre of channel for larger fluid parameter whereas it decreases for Hartman number.
Trend of entropy generation is parabolic. Temperature and entropy boost up for inclination and
heat absorption parameters while these reduce for radiation and thermal conductivity

parameters.

In Chapter seven peristaltic flow of Sisko material is modeled with variable characteristics of

thermal conductivity and viscosity via curved configuration. Entropy is also under
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consideration to study irregularities in heat transfer process. It is observed that for larger
thermal conductivity parameter the temperature decays whereas it increases for Sisko fluid
parameter. Irregularity in heat transfer is found minimum through entropy generation for larger

viscosity and thermal conductivity.

Chapter eight presents modeling of electroosmotic Carreau liquid flow through a microchannel
in curved geometry. Velocity shows dual behavior for different parameters in the curved
microchannel and is asymmetric near the centre due to curvature effects. Temperature

decreases for EDL thickness however reversed holds for electric dissipation parameter.

Finally, it is concluded that this study will provide remarkable applications in different fields of

life as peristalsis has prime importance in the fields of physiology, industries and engineering.
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