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Preface

Peristaltic is an important mechanism in which fluid is transported through successive waves of

expansion and contraction propagating together with channel boundaries. This mechanism has

widespread applications in physiology and industry. Peristaltic is one of the major mechanisms

for transportation of fluid in various biological processes. This is helpful in food swallowing

through esophagus, motion of chyme in the gastrointestinal, transportation of urine from

kidney to bladder, blood motion in small blood vessels, blood pump via heart and in other

reproduction systems etc. In indushy, mechanical equipments are designed on this mechanism

in order to avoid contamination of outside environment. Its few examples ar€ roller and finger

pumps, toxic liquid transport in nuclear industry, tube pumps and hose pumps etc. Many

modern medical devices also work on the principle of perisalsis such as the blood in a heart-

lung machines and dialysis machines etc. Due to immense application of peristalsis in

diversified fietds, many researchers explored the peristaltic flow problems while taking into

account different conditions and geometries. Morimum wo* in this field available for straight

channels seems not realistic for all situations. Clearly, major chunk of glandular ducts and

pipes are found for curved shapes in industrial and physiological systems. This makes it quite

attractive and imperative to study the peristalsis in curved configuration.

Further the combined effects of heat and mass transfer result in very complicated mathematical

expression between the driving potentials and the fluxes. In these situations the enerry flux can

be brought not only by the tcmperature gradient but by composition gradient as well. In view

of the above mentioned applications this thesis is organized by taking features of magnetic

field, mixed convection, porosity, Soret-Dufour effects, thermal radiation, entropy generation,

v
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variable physical properties of the fluid and electroosmotic effects through curved channel.

Boundary conditions for curved channel walls are via physical constraints. This thesis consists

of eight chapters and organized in the following fashion.

Chapter one contains brief introduction of peristalsis, Iiterature survey and fundamental

equations.

Chapter two addresses the mathematical model of inclined magnetic field for curved

geometry. The magneto peristaltic movement of Jeffiey liquids with variable physical

characteristics in curved geometry is investigated. Accordingly, the energy exprcssion involves

viscous dissipation and variable thermal conductivity. In addition the enfopy generation in

magneto perisaltic movement of Jeffrey materials together with variable (depending upon

temperature) thermal conductivity/ viscosity for curved configurations has been modeled and

analp6d. Velocity, heat transfer coefficient, temperature and entropy generation are computed

numerically. The graphical analysis is anallzed for pertinent variables. Contents of this work

are published in Part E: Journal of Process Mechanical Engineering Q02l)

p.095440i92tt041278.

Chapter thrce contains heat and mass transfer in peristalsis of magnetohydrodynamic (MHD)

third grade material through curved configuration. Variable characteristics of thermal

conductivity and viscosity are taken. Effects of Soret and Dufour are examined. Chemical

reaction with activation energy is anended. Compliant properties are subject to channel

boundaries. Slip aspects are considered for velocity, temperature and concenfiation at channel

boundaries. Large wavelength and low Reynolds number are invoked. Resulting expressions

are computed numerically. The detailed physical. interpretations of all the flow quantities are

vt



anallzed for various pertinent parameters. Temperature increases for Dufour parameter

whercas concentration reduces for Soret variable. The contents of this chapter are published in

Journal of Thermal Analysis and Calorimetry 143 (2021)2749-2760.

Chapter four examined peristaltic transport of Sutterby liquid with temperature dependent

thermal conductivity in curved configurations. Inclined magnetic field is considercd. Enerry

expression is modeled with effects of viscous dissipation, non-linear thermal radiation, variable

thermal conductivity, Joule heating and heat source/ sink. Lubrication approach in formulation

has been implemented. Inegularities are discussed by entropy in the process of heat transfer.

Numerical method has been used for velocity and energy equations are solved numerically.

Quantities of interest via important parameterc arc graphically malyzed. Irregularity is

minimum via entropy for enhanced thermal conductivity and radiation parameters. Heat

transfer rate increases for increased values of Brinkman number. These observations are

published in International Communications in Heat and Mass Transfer 122

(2021):105009.

Chepter five addresses non-Darcy resistance in peristaltic transport of Sutterby liquid in

curved configuration. Variable characteristics of material (i.e. thermal conductivity and

viscosity) are taken as temperature-dependent. Soret and Dufour features have also been

retained. Problem is modeled by using conservation laws. Long wavelenglh and small

Reynolds number have been invoked. Resulting problems have been solved numerically.

Entropy optimization analysis is made. Axial velocity, temperature, concentration, entropy,

Bejan number and heat transfer rate are examined for influential variables. Opposite behavior

of mass and enerry is noted for Soret and Dufour pararneters. Entropy enhancement is noticed

)



for Soret and Dufour parameters. This analpis is published in Journal of Thermal Analysis

and Calorimetry 143 (2021) 2215-2225.

Chapter six examines entropy generation via thermal radiation, heat absorption coefficient and

variable thermal conductivity under magnetic consideration. Third grade material flow by

peristalsis in curved configuration has been considered. Modeled problem has been simplified

by the lubrication approach. Momentum equation is solved through regular perturbation

method and enerry equations is solved numerically. Furthermore, physical investigation of

pertinent parameters on temperature, velocity, Bejan number, total entropy and pressure

gradient has been scrutinized through graphical results. Total entropy enhances for heat

absorption coeflicient whereas it lessens for thermal conductivity coefficient and thermal

radiation parameter. The contents of this chapter are submitted in International

Communications in Heat and Mass Transfer.

Chapter ssyen discusses perisaltic flow of Sisko material is modeled with variable

characteristics of thermal conductivity and viscosity via curved configuration. Both quantities

are taken space and temperaturc dependent. Conservation laws for mass, momentum and

temperature are first modeled and then simplified by taking small wave length and large

Reynolds number assumptions. Entropy is also under consideration to study inegularities in

heat transfer process. Problem is solved numerically. These solution is utilized to plot the

behaviors of quantities of interest against the pertinent parameters. For larger thermal

conductivity parameter the temperature decays whereas it increases for Sisko fluid parameter.

Irregularity in heat transfer is found minimum through entropy generation for larger viscosity

and thermal conductivity. The rcsults of this study arr published in Thermal Analysis and

)



Calorimetry 143 Q02l) 363-375.

Chapter eight organized modeling of electroosmotic Carreau liquid flow through a

micncchannel in curved configuration. FIuid flow is because of both the peristaltic pumping

and electro osmosis effects. The Carreau liquid flow is governed by Navier-Stokes equations

along with electric body force. Heat equation is also modeled. Electric dissipation effects are

incorporated. These equations are simplified by assuming lubrication theory. However

Poisson-Boltzmann equation is simplified by DebyeHUckel approximation. Resulting

expression is solved analyically. Velocity distribution, trapping and temperature are

investigated for various pertinent parameters like inverse Electric Double Layer (EDL), ratio of

zeta potential, curvature of the channel, electric dissipation and Helmholtz-Smoluchowski

velocity etc. Velocity shows dual behavior for different parameters in the curved microchannel

and is asymmetric near the centre due to curvature effects. Temperature decrcases for EDL

thickness however reversed holds for electric dissipation parameter. Contents of this chapter

are submitted in Prrt E: Journal of Process Mechanical Engineering.

Chapter Nine prtsents the conclusion of thesis.
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Chapter L

Literattrre Survey and Basic

Equations

This chapter deals with introduction of peristalsis, literature survey and fundamental equations

of fluid flow and mass and heat transfer.

1.1 Peristalsis

Mathematical modeling and analysis of various problems aIt made to solve the issues

associated with industry, engineering and medical sciences. It is well known fact that various

materials/ fluids in industrial processes and living organisms are calried out frrom one point to

another through a natural method known as peristaltic pumping. It is a series of wave-like

motion that occurs due to contraction and rclaxation. Peristalsis has prime importance in the

fields of physiology and engineering. For physiologists, it is well known phenomena as it is

one of the key mechanisms for transportation of fluid tansport in many biological systems.

Few examples in this context include urine transport from kidney to bladder, movement of

food particles in digestive tract, blood circulation in capillaries, ovum movement in fallopian,

vasomotion of small blood vessels and in other reproduction systems etc. Various biological

and indusfiial appliances have also been manufactured by engineers through this concept e.g.

finger and hose pumps, heart bypass and dialysis machines, rollers and B.P apparatus are few

)



pertinent examples in this regard. Peristaltic phenomena is also helpful to ransport fluidV

materials where direct contact with the material is avoided e.g. in nuclear industry toxic

materials are transported through this mechanism.

1.2 Literature review

Latham [] is recognized as the pioneer who investigated the peristaltic fluid motion

experimentally. Burns and Parkes [2] discussed peristaltic motion through both symmetrical

and axially symmehic channels and pipes. In this study two extreme cases are analyzed, one is

with peristaltic motion with no pressure gradient and second is fluid flow under pressure along

channel. Shapiro and Jaffiin [3] analped fluid transport via peristalsis with assumption of

small Reynolds number and large wavelength. Yin and Fung [a] carried out a study in which

they compared the experimental work and theoretical investigation related to peristaltic

motion. Barton and Raynor [5] discussed peristaltic motion in tubes. A mathematical

formulation is presented by Lrw et al. [6] to present the chyme transport in small intestine.

Tong and Vawter [7] adopted numerical technique (frnite+lement method) to study peristaltic

motion. It is conctuded that the wavelength and amplitude of the wave affect the flow velocity.

Li t8l studied peristaltic motion in cyinderical tubes. Mittra and Prasad [9] discussed the

Poiseuille flow of peristaltic motion of the material. Liron [0] investigated the efficiency of

peristaltic activity in living bodies. Jaffrin I l] discussed peristaltic pumping theoretically in a

tube for the case when effects of inertial and streamline curvature is significant. Fluid flow

through peristalsis in non-uniform channels was addressed by Gupta and Seshadri [12] and

Vishnyakov et al. [3]. An experimental study was performed by Manero et al. [14] for non-

Newtonian fluid flow in oscillating channels. Peristaltic movement of physiological fluid flow

)



with variable viscosity in a non-uniform channel was discussed by Srivastava et al. [5]. In

1983, Bdhme and Friedrich [6] investigated wavy motion forviscoelastic fluids. In this study

Reynolds number is taken to be small enough so that inertial forces could be ignored and large

wavelength is considered so that pressur€ could remain constant in the cross-section of the

duct. Srivastava and Srivastava [l7] studied two-layer fluid flow through a non-uniform duct.

Two-dimensional fluid flow through wavy motion was portrayed by Takabaake and Ayukawa

I S]. In this work Navier Stokes are solved by using numerical method (finite difference

method) for distinct values of wavelength, wave amplitude and Reynolds number. Pozrikidis

[9] investigated wavy motion in two-dimensional duct. ln this article creeping fluid motion

was assumed and impact of width of the channel, amplitude of wave, pr€ssutc gradient on

pattern of streamlines and characteristics of fluid flow were discussed. Related studies in this

context are (see ref. [20-25]).

Initially peristaltic was studied for viscous materials only. Viscous materials are related

through linear relationship between strain rate and shear sfiess. Such materials do not represent

realistic materials. For instance, various materials like greases, jellies, gelatin, corn-flour,

ketchup, toothpaste, soap, blood, clay coating and various emulsions do not lie in the category

of Newtonian materials as these carry non-linear relation amid strain rate and shear stress.

These are known as non-Newtonian materials. Non-Newtonian models present different

perspective of fluids for better understanding of several dynamical mechanisms. A single

material cannot rpveal all properties of non-Newtonian fluids. To overcome such facts various

non-Newtonian models are proposed in the literature. These materials undertake a vital

contribution in daily life, petroleum, geophysics, physiology, chemical industries and

)



engineering therefore non-Newtonian materials are of much significance. Such significance in

various spheres of daily life demands a thorough and comprehensive understanding of these

materials making it an ever more attractive field for contemporary. Thus for the first time Raju

and Devanathan [26] made a theoretical study to investigate the flow characteristics of

physiological fluids in peristalsis. In this study they considered power law fluids in a tube.

They discussed in detail the impact of applied pr€ssure gradient coupled with non-Newtonian

material parameters on velocity and streamlines. In another study [27], they also extended [26]

by taking viscoelastic fluids. Siddiqui et al. [28] examined properties of peristaltic transport of

shear-thinning Third grade materials in planner channel. Siddiqui et al. [29] studied the

peristaltic motion of second grade fluid via an axi-symmetric conduit. Srivastava [30] analped

peristaltic hansport of couple-stress fluid that is an especial case of non-Newtonian fluids.

Hayat et al. [31] presented peristaltic motion of third grade fluid in a circular cylinder tube.

This wok presented a model in order to have better understanding of the mechanics of

physiological flows. Hayat et al. [32] portrayed peristaltic motion for Johnson-Segalman

materials in twodimensional planner channel. Wang et al. [33] analyzed peristaltic motion for

Johnson-segalman fluid in a sinusoidal deformed tube. In this article wavelength of deformed

tube was considered large. Solution for pertinent pararneters is calculated for both perturbation

and numerical techniques. Haroun [34] studied wavy motion in an asymmetric channel for

third grade fluid. In previous works peristaltic motion was considered in straight and planner

channel but in this study non-Newtonian fluid was frrstly considered in asymmetric channel'

Here long wave length is assumed large as comparison to the varying width of the channel.

However, amplitude of the wave is not very small as compared to the channel width. After

[34], Nasir and Hayat [35] also modeled non-Newtonian fluid in an asymmetric channel. ln



this work they considered a four parameters model Cameau fluid as a non-Newtonian fluid.

Recent works in this direction can be seen thrcugh Ref. [3641].

Literature suryey reveals that reasonable work has been undertaken on material transport

through peristaltic mechanism with various conditions and geometric configurations. However,

very little work has been done in curved geometry. It is noticed that flow through curved

geometry yields rather more realistic applications when compared with flow via straight

channel. Obviously various glandular ducts, arteries and pipes in physiological and industrial

systems are curved shaped. Peristaltic mechanism in a curved channel was initially investigated

by Sato et al. [42] in which they studied viscous fluid in a laboratory frame. They used long

wave length and small Reynolds numbers assumptions while solving the equations. Due to the

various applications of curved channel, the analysis of l42l has been reviewed by Ali et al.

[a3]. They presented mathematical formulation of the problem in wave frame for curved

geometry for the first time. In these studies it was concluded that flow due to peristaltic motion

in curved channel is not symmefic. Due to various applications of non-Nefionian fluids in

industry, Ali et al. [a4] firstly formulated a mathematical model for non-Newtonian fluid in

curved configurations. Here rheolory of non-Newtonian fluid was defined by third grade fluid.

Hayat et al. [45] discussed impact of magnetic field on wavy motion of third grade fluid in

curved configuration. In this article they considered wave frame of reference. Hina et al. [46]

investigated wall properties on peristaltic motion of non-Newtonian fluid (thirrd grade fluid) in

curved geometry. Ramanamurthy et aL$71formulated mathematical model for viscous fluid

flow in peristaltic motion for curved geometry. In this study they analyzed the flow in

laboratory frame of refercnce. Narla et al. [48] presented exact solution for viscoelastic fluid in

)



curved channel. In this work they used lubrication approach in order to liberalize the equations.

Hayat et al. [49] investigated motion of Carreau-Yasuda liquids through peristalsis in curved

configurations. Abbasi et al. [50] considered Eyring-Powell fluid flow via peristaltic transport

in curved channel. Problems with different fluids and boundary conditions are investigated in

curved channel by different researphers (see Ref. [5]-58]).

It is worth mentioning here that application of magnetic field in peristalsis has a lot of

significance due to its tremendous applications in various fields of life and thus researchers of

different eras have continuously been working in this field (see ref. [59-76]). In these attempts

magnetic field is applied either in hansverse or in inclined directions for peristaltic flow for

d ifferent geometries..

Heat transfer is an integral and pivotal element in cooling processes of industries and various

other processes. It regularly occurs in the bodies of different temperatur€s. A number of

processes rely on this phenomenon of heat transfer e.g. crystallization, distillation and various

boiling operations. Similarly laser therapy, cryosurgery and hyperthermia are considered the

most modern ways to destroy unwanted tissues like cancer etc. In peristalsis the food bolus

moves in gastrointestinal tract while being immensely affected by the transfer of heat

phenomenon. Articles concerning with heat transfer have been presented by many researchers

(see refs. U7-841). It is evident from the available literature that researchers have shown

interest in biological and industrial fluid flows with heat transfer. It is a fact that consequences

of heat transfer are examined througfi entropy. In thermodynamical systems, frictional forces,

viscosity and chemical reactions etc are the main causes of energy degradation that result in

entropy production.
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ln thermodynamics, entropy is stated as thermal ineversibility or depletion of useful energy.

One of the major concems for scientists and researchers, these days, is how to manage the

wastage of thermal energy. The analysis of enfopy production is considerpd vital in finding

location and origin of irreversibilities. The souces of energy losses are due to friction, heat

transfer, expansion and compression, thermal radiation, magnetic field, heat source/ sink and

chemical reactions. By minimizing entropy generation, efficiency of thermal systems may be

improved. The same may be accomplished through various methods such as by reducing chip

components'sizes in computers, introducing porous medium, cooling fans to avoid overheating

and heat exchangers. Laws of thermodynamics describe tansformation of enerry and the first

law portrays quantity of energy in the process of heat transfer. Second law describes reduction

in quality of enerry that is measured as entropy. After working on entropy generation, Bejan

[85, 86] was the first one to propose a method that optimizes system's destruction. Afterwards,

many other researcherc considered irreversibility analysis and ensurcd its utility in determining

the system's efficacy. Souidi et al. [87] anallzed entropy generation for peristaltic flows. Abbas

et al. [88] and Rashidi et al. [89] worked on peristaltic flows for nanofluids. Similarly, Hayat et

al. [90] discussed entropy in peristalsis with rotating frame. Khan et al. [9t] studied entropy

for skin friction coefficient and Nusselt number. Farooq et al. [92] portrayed entropy

generation for peristaltic transport of carbon nanotubes. Afridi et al. [93] described entropy for

heat-mass transport. Noreen et al. [94] presented entropy minimization of Carreau materials

along with Hall current and Ohmic heating effects via peristalsis. Khan et al. [95] simulated

entropy production via peristaltic motion of viscous fluid in asymmehic channel using

shooting method. Nawaz et al. [96] anallzed entropy for peristaltic motion of Williamson

liquid in curved configuration.

)



Viscosity affects the capability of propulsion in perisalsis. It plays an important role during the

prcparation of flow measurements of fluids. In almost all ttre real fluids, the viscosity varies

with thermal effects whcn viscous dissipations arc taken. Viscosity of physiological fluids like

honey, syrup, blood and polymer solutions vary with temperatur€. Available literature rcflects

that previously majority works on peristalsis are done for constant viscosity of fluid. Little has

been organized for peristalsis by considering the variable viscosity. In several engineering

applications, both viscosity and thermal conductivi$ are temperature dependent with high

temperature such as nuclear power plants, missile technologies, rockets and space vehicles,

turbines pumps etc. Further in many other procedures the irreversible damage are followed by

small change in temperature for example during dialysis and heart lung equipment. Keeping in

mind such importance of variable viscosity and thermal conductivity only few investigations

have been yet organized. Keeping in view its vitality, few researchers have analped the effects

of variable viscosity of peristaltic flow. Reddy and Reddy l97l analyzed the peristaltic flow

with variable viscosity through a porous medium in a planar channel. Ali et al. [98] considered

consequences of slip boundary conditions on the peristaltic flow of MHD fluid while taking

variable viscosity. Eldabe et al. [99] analped mixed convective heat and mass transfer for a

non-Newtonian fluid of peristaltic flow with temperature dependent viscosity. Recently,

Tanveer et al. [ 00] discussed variable viscosity for Sisko fluid in curved channel using

compliant wall properties. ln most of the investigations constant thermal conductivity has been

carried out. However, it has been proved that the thermal conductivity changes linearly with

temperature from 0 to 400 oF. Few researchers have also anallzed the combined effects of

variable physical properties of peristaltic flow in sraighUplanner channel. Hussain et al. [01]

discussed heat transfer analysis in peristaltic flow of MHD Jeffiey fluid with variable thermal



conductivity. Hussain et al. [02] discusses nonlinear thermal radiation and temperature

dependent viscosity for peristaltic flow through porous medium of hydromagnetic fluid in a

straight channel. Hayat et al. [l03] investigated collective effects of variable viscosity and

thermal conductivity for MHD mixed convective peristaltic flow. Hussain et al. [04] studied

the influence of temperature dependent viscosity and thermal conductivity for hydromagnetic

Jeftey fluid on peristaltic motion in a straight asymmetric channel. Latif et al. [05] explored

combined effects of temperature dependent viscosity and thermal conductivity for MHD third

order fluid for symmetric peristaltic channel. Abbasi et al. [06] examined peristaltic flow of

electically conducting fluid through porous medium with temperaturc dependent viscosity for

a planar channel.

Review of the available lircrature witnesses that advance study is needed for perisaltic

movement in micro/nano scale via curved geometry to design devices like kidney-on-a-chip,

Gut-on-a-chip and Liveron-a-chip. These devices work through basic code of electro-kinetic

that means interaction of fluid flow in micro channel subject to electrical field. An important

element of electro-kinetic flow is electro-osmosis. Tripathi et al. [07] explored electro-

osmotic pumping with effects of Soret and Dufour in a microchannel under peristaltic transport

of nanofluid through Joule heating. Tripathi et al. [08] extended this model by taking the

effects of buoyancy. Narla et al. [09] formulated a model for electro-osmotic and peristaltic

pumping in a microchannel. Narla et al. I l0] also extended ttris model to examine uterine

hydrodynamics of uterine cavity. Although many r€searchers have studied electro-osmotic

peristaltic flow in different geometries; however, in curved channel Narla et al. [l I l] explored

the electro-osmotic flow of viscous liquid for first time ever and presented its mathematical

model. This mathematical model was exclusively derived for blood flow. Results of this study



revealed that peristaltic pumping could be controlled by electro-osmotic phenomenon. In

another study, Narla et al. I l2l analyzed entropy generation in biomimetic nanofluids via

curved geometry with Joule dissipation.

1.3 F'undamental Equations

1.3.1 Mass Conseruation Equation

Concept of mass conservation is extensively used in various fields such as mechanics,

chemistry and fluid dynamics. It was established in chemical reactions by Mikhail

Lomonosov and after that it was revived by Antoine Lavoisier. According to this law, in a

closed system mass remained consered or unchanged that is it can neither be formed nor

destroyed by any chemical reaction or physical fansformation. Mathematically, it is exprcssed

by equation of continuity as follows:

ff+v.(ow\=o, (r'r)

where p denotes the density of the material, r time and W velocity of fluid. The above

equation is for the comprcssible fluid. For incompressible fluid, where density of the fluid

remains constant, Eqn. ( l. l) reduced to

V.W=0.

1.3.2 Momentum Conseruation Equation

Momentum conservation is directly followed by Newton's third law motion. According to this

law, momentum of an isolated system remains unaltered unless an external force act upon it.

Mathematically

(1.2)



,#=v.t+ d,
(t.3)

where t--pI+S represents Cauchy Stress tensor, p pressure, I identity matrix, S extra

sfesstensor, pf bdyton", fi=$+WV totalderivativeand V deloperator.

1.3.3 Energy Conseruation Equation
The law of conservation of energy states that the total energy remains constant in any process.

It may transfer from one to the other system or may change its form but the total quantity of

energy remains the same. Mathematically, we write

e",#=v'(rVr) + E,,

in which p shows fluid density, c, specific heat, Itemperature, r thermal conductivity, E,

energy transfer by viscous dissipation, radiative heat flux, Joule heating, surface cooling\

heating and Dufour effects etc.

1.3.4 Concentration Equation
The equation of concentration can be deduced by considering the assumption of mass

conservation within moving material/ fluid. Molecular diffirsion and convection are responsible

for mass transportation.

#= Duv'c *DD*'-y'7.

where C rcpresent. loncentrution, D, represents mass diffrrsion coefficient,

diffirsion ratio and T*r, meanmateriat temperature.

k7 thermal

(1.4)

( I.s)
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1.3.5 Maxwell's Equations
Four equations illustrating a relationship between electric and magnetic fields behavior in view

of electromagnetism laws are named as Maxwell's equations. These equations are

YE=L,
to

V3=0,

0t'

VxB= 141+14roff,

in which Erepresents electric filed, Btotal magnetic field, Jcurrent density,

density, eo permittivity of free space and po electric quantity.

(1.6)

(t.z)

( 1.8)

( l.e)

p, chtge

t2



Chapter 2

Entropy Generation Analysis for

Peristalsis of Magneto ]effrey

Materials
This chapter discusses magneto peristaltic movement of Jeffrey liquids with variable physical

characteristics in curved geometry. Enerry expression involves viscous dissipation and

variable thermal conductivity. Entropy generation together with variable (depending upon

temperature) thermal conductivity/ viscosity and effects of inclined magnetic field has been

modeled and anallzed. Slip boundary conditions for temperature and velocity are invoked.

Velocity, heat hansfer coefficient, temperaturt, entropy generation and trapping are computed

numerically by using Mathematica I I softrvare. The graphical results are analyzed for

influential variables.

2.1 Mathematical Form ulation

We intend to investigate entropy in peristalsis of Jeffrey liquids within curued channel.

Channel width is 2a, radius R' and centne O. Velocity components (W'Wr) are taken along

radial and axial (.R,X) directions rrspectively. Inclined magnetic field 8o is applied with an

inclination 90. Fluid viscosity and thermal conductiviry are temperature dependent. Flow is

induced due to wave propagation having amplitude D, wavelength I and speed s. The



wavelength 2 of curved channel is supposed to be much larger than half width of channel such

ther- +l l. Geometry related to this context is given in Fig. (2.1). Wave shape is taken as:
).

7 =tz(x,o =+[,*a, "(Tr* -"r)],

Fig. 2.1: Sketch of considered problem

ln curved geometry inclined magnetic field is written as:

, _ [n4 sin g, 
. 
*4.o.9, .o).

\ ^R'+X 
' .R'+R ' )

(2.1)

where 7 represents radial distance of wave from centre line. Heat transfer occurc because of

different wall temperatures (Io,fr) at upper wall and lower wall respectively such that

Qr>\).

R'8o
ffi

(&vr)

r''-:

X'.Be I ia 8s
x +x

T.

R,

12.21

) L4



From Eqn. (2.2),it is clear that for magnetic field is in radial direction when go =90'.

By Ohm's law, we can write without electric field

.l = -o[Bx w], (2.3)

and lorenE force F,

F=BxJ,

in which J shows curent density and o electrical conductivity.

From Eqns. (2.2)to (2.4), we arrive at

F = " (ffi)' t-ncos2 Jo + Wr sin go cos go,nl1sin go ens go -W,sin29o, 0),

u =(o-!L)'14 ro.so -wrsinso)2 . (2.G1

\ ^R'+R/ '

By Reynolds model we have following expression of temperature dependent viscosity [03-

l04l:

p(r)= p.e,q{q (r-4)} * p,(r-a'(r-ro\),

in which 1rro reprcsents constant fluid dynamic viscosity urd a' variable viscosity coefficient.

Clearly a' =0 reduces this problem to constant viscosity situation. Temperature dependent

|.2.41

(2.s)

12.71

thermal conductivity is [01]:

4r) = x"(r+ g (r -q)),

15
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whcre r, shows constant thermal conductivity of material and p'represents variable thermal

conductivity coeffi cient.

Cauchy stress tensor (t) for Jeffiey materials is [36]:

t =S-PI,

s=rt?)( L4\*, \
),,+t; dt *',J' (2'9)

here ^I denotes identity tensor, P prcssure, pQ) temperature dependent viscosity,

, [- Relaxation time'). , ,"oroation time. 4 material derivative and'( Retardation time)'

A, = (VW)' +V\il. (2.10)

Elementary equations of present work are p3a6l:

*'#.*((n'+n)4)=0, (2.11)

,(T."K - m. ffi#) = -ofu #. ##('- (n' + r)' 
)

.ffi#."(#)' Fosin2eo+I(sinsocosso), t2't2l

o(%*n.altr, * =R'w, =aw, - wr' )=-ar-. so . *, R' 
, 
ff*-[ 0, '.' 

aR 
'(n'* 

R) 0x R'+R) aR (n'+n) '(n'* R) a,y

. # * ((n' + n) so 
) - " (# )' Fosin eo cos eo + w, cosz eo), (2.13)

16



n'(#. n#. ffi#)=-v' (-r(nv 4 - # $ *- s*' )

.l#-ffi.ffi#)0"."(ffu)'rncoseo -w,sineo)2, (214)

with

v (-r(r)v,r = - * ( n,#)- ##- *(ffi *r\
Herc p denotes density, .S.n,,.S.n,,SR? the exfa stness tensor S components, C, specific heat

and T material temperature.

The boundaries conditions are

Wr-ors.o=0, T-A*=r, at R=-2,'aR ,

wr+aisn=0, T+ A#,=r, at R= x,

where aj and p, stand for slip parameters.

We considered transformation between wave (r,f) and laboratory (X,n) frarnes as:

i = x -st,F = R, *r(l,r'1=wr(x,R,t)-s, rr(t,r)=wr(x,R,t),
F (t,t) = T (x, n, t),-n (t,r7 = P (x, n,t).

Applying transformation (2.17) in Eqns. (2.1l) to (2.16), we arrived at

*'*.*({n,+r)4) =0,

(2.ls)

(2.16)

12.t7l

t7



o( -r%*o.ffi' -(fr'*t)* 
(m' +t)n'a7' 

)='t & 'ff R'+V R'+7 ffi)

l@*&*#*(s'(n'+r)') 
IR' l E E R'(R'+F) ff\ "' 
,,-:1., 

# r:(-tr, + s)sin2 eo + fr, sin so cos e,)l

,l-*. *,P. ffi* W) = -#-ob. 6*
. ;c *((n' + r ) so ) - " (#)' t- to + s) sin .{, cos,{, + n, cos2,eo ),

n,(* *. r*. W #)=-v (-r1r-v o \ - * (s= - s, )

. 
[*- - {#} . #*)'" . 

" (#+)' (4 .o,,, - (r, + s) sin 4 )',

where V.(-r1f)VI) in curved channel is computed as

v (-471v r) -- - *("r,*)- ## *(ffi #)
We now define dimensionless variables (x,r), pressurE p, velocity components (frr,frr),

wave number d, amplitude &,, temperature 9, Reynolds number Re, peristaltic wall ft.

viscosity pararneter a, Brinkman number 8r, thermal conductivity parameter p, curvature

18



(,,r)=(:,1), o=#, (,,,,,)=(+,+) , o=L,

o,--1, ,=ffi' *"=ff, o=1,

or,=ot (r,-\), ,r=ffi, p= F(r,-q), k=L,

,r=+, ,,=*, o,=ry, H=ff (2.18)

Velocities (w,wr) via stream function Qy) can be presented below

(r,,r,) =(-i*X,#)

By low Reynolds number and long wavelength we get

*X= afu # [,' 
- ae)(r- -r {-# ('. Y). #l)

_k2H2 sin2 go( 
, _av\

(*+r)' l'' a, )'

?=0,
dr

o(#)' . (t + pq(#. *#)*,,ffi[ d*,(, 
.y). y]'

(2.le)

12.2ol

12.ztl

12.22l.
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*=ff[ ar'.Y).#)
Eqns. (2.20) and (2.21) imply that

(2.23)

= o, lz,z4l

12.zsl

12.271

12.281

, f6#(,' -'4{-v. *l(' .ff).{'. r' #})
al_r'(asin4)'(r_av\

| (t+r) (" a, )

with boundary conditions in dimensionless form

,?)=-*, -a,Sxr+y'(r)+t=0, - fl0'(r)+0(r)-t =O at r =..h,

,U)=*, a,*r+y'(r)+l =0, p,e'(r)+e(r)=0 at r=h,

h

r= !y,b=y(h)-y(-h),
-h

h : (l + Dr sin(2zx)).

Heat transfer coeflicient d, r =f (r) is

0h a0
z - -x-.fuAr

2.1.1 Entropy

Entropy generation [75] in fixed frame is given by

20



so,n = #(#)' . 
fi (#*)' r*,cos eo -w,sn eo)2

. +((#. ## - h)' ** (-so .' *t#),

' .Sc \0, ) l+ p0

ffi(-#(,.#).#)'

where @, denotes reference temperature. Above equation is combination of three parts. First

part represents enfopy generation caused by heat Eansfer, second part shows enfiopy because

of effects of inclined magnetic field and third part due to fluid friction.

Entropy production in dimensionless form becomes

(2.2s)

(2.30)

(2.31)

in which A defines temperature difference pararneter and 
^So 

entropy generation characteristic

as

n=h, so=W
Bejan number (Be) is

Be=

(#)'+ItBrr# ffi(# - i.r(#.'))' * (h rusin so )' (#.')

2t

12.32l,



From (2.32), it is clear that Bee[O,t].

2.2 Methodology

Eqns. (2.22) and (2.24) subject to the boundary condition (2.25) are solved numerically to

solve boundary value problems.

2.3 Analysis

In this section we analyze nesponses of axial velocity, enfiopy generation, temperature and heat

transfer coeffrcient vercus pertinent parameters.

2.3.1 Velocity

Effects of axial velocity are illustrated through Figs. (2.2) to (2.5) against r for different

parameters (4, k, ,1, and 4). ln Fig. (2.2), it is seen tlrat maximum velocity occurc near

centre of the channel and it decays for higher a in the vicinity of upper wall where

temperature of wall being d(<{). Enhancement in wave amplitude is observed for larger a.

It is because of inverse relation between p and a. For higher values of a viscosity decreases

and thus fluid velocity increases. Fig. (2.3) shows behavior of w, for t. An increase in t

velocity is decreased near the lower wall and it is higher near upper channel wall. When /r

increased, curved channel is converts to straight channel and for straight channel velocity

amplitude is symmetric at centre of channel. Fig. (2.a) shows impact of inclination ,{, on

velocity. For 9, from 0' to 90', material velocity decreases. For ,i, = 0" magnetic field is in

the direction of flow with maximum velocity. However for ,{, = 90' the fluid velocity is least



due to morimum magnetic field strength. From Fig. (2.5), it is observed that n, decreases in

half of the channel width for larger values of 1,,. In all these figures, it can also be noticed that

trend of velocity is dual due to curved geometry.

2.3.2 Temperature

Figs. (2.6) to (2.10) exhibit temperature distribution 0 via r for various pertinent parameters.

Fig. (2.6) reveals that by increasing viscosity coefricient (a), temperature is decreased. Fig.

(2.7) illusfiates that for increased value of thermal conductivity coefficient (f) tnt nuia

temperature decreases. In fact an enhancement in B intensifies the fluid ability for soaking up

or dispersion heat. Fig. (2.8) depicts influence of Br on 0. Temperature is found increasing

for higher Br. lt shows that for higher Brinkman number the effect of viscosity dominates and

it opposes flow field. Because of flow resistance, an inqease in the collision occurs for fluid

particles and consequently the temperature rises. Fig. (2.9) explains behavior of X, on 0. lt

elucidates that temperature decreases with higher 4. Fig. (2.10) shows that when inclination

,{, of magnetic field is increased from 0' to 90o, d also increases.

2.3.3 Entropy

Figs. (2.11) to (2.1S) are drawn to observe outcome of entropy generation (Ns) and Bejan

number versus various parameters (P,8r,9, anda). figs. (2.11) and Q.l2) demonstrate

influence of p on /Vs and Bejan number. Increase in p shows similar behavior for both

quantities. Effect of A.8r can be revealed from Figs. (2.13) and (2.14). Br has direct relation

with viscosity and square of the wave prcpagation speed. An enhancement in ltBr
23



corresponds to more temperature rise thus enfiopy also increases (see Fig. (2.13)). Fig. (2.14)

explains the dominant effects of heat transfer for increasing I\Br.Figs. (2.15) and (2.16) show

influence of q on lVs and Bejan number. Opposirc trend is noticed for both. Entropy

increases near the channel walls for higher inclination ("f,) whereas Bejan number decreases

due to dominating effects of magnetic field strengtlr. Figs. (2.17) and (2.18) show the effect of

a on dimensionless quantities lVs and Bejan number. Clearly, both decrease by increasing

viscosity coefficient. It is also noticed that lVs does not change significantly in the cenfral

region of the channel.

2.3.4 Heat transfer coeflicient and isotherm

Figs. (2.19) and (2.20) are sketched to show the impact of p wrd I/ respectively on heat

transfer coefficient. These figures revealed similar behavior i.e. increasing response of heat

fransfer coefficient for larger 0 and H. ln these figures oscillatory behavior is observed

because of wavy motion of channel walls

Figs. 2.21a and2.2lb are skerched to show the contours of temperature for curved and straight

channels respectively. It is observed that distribution of temperatu€ is high for curved

configuration in comparison with straight channel. In these figures thermal conductivity and

viscosity are assumed constant.

2.3.5 Trapping

In the fluid model, it is vital and significant to investigarc ttre pattern of steam lines. Sketch of

stream function reveals a very clear visualization of flow behavior. In the flow of physiological

fluids, contour plots of stream lines depict the intrinsic flow properties which arc referred as



trapping. Trapping phenomenon for non-Newtonian fluid model is presented through Figs.

(2.22)ta (2.24).

The consequences of curvature on trapping can be illustrated through Figs. (2.22t-2.22c). For

small values of curvature parameter (t = 2,4) more streamlines are fiapped in upper half than

the lower half of channel. Moreover, bolus size in upper and lower half is asymmefic. When

curvature parameter is increased to infinity i.e. (t+-), ttren trapping phenomenon in the

channel seems to be symmetric. Effect of viscosity parameter (a) on trapping is observed

through Figs. (2.23a-2.23c).In Fig. (2.23a,), when viscosity is considered to be constant i.e.

(a = 0), mor€ streamlines are trapped in central and upper half of channel. When viscosity of

the fluid is taken to be temperature dependent i.e. (a+0) and by increasing(o), size of the

bolus expands in central and upper half while it shrinks in lower half of the curved channel.

The effect of Hartmann number on tapping phenomenon is porhayed through Figs. (2.24a-

2.24c). It is noted that as Hartmann number (II) enhances, symmetry at both halves also

incteases.
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Fig. (2.2): Velocity for viscosity parameter (a)
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Fig. (2.3): Velocity for curvature parameter (t )

with x=0.1, a=0 p=0.1, Br-0.5,$ozr/4, H=l.2,Il=1.5.
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Fig. (2.4): Velocity for inclination parameters
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Fig. (2.5): Velocity for ratio of reluration to retardation time

with x=0.1, c=0 p=0.1, k= 1.7, Br-0.5, $0-nl4, H=\.2.
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Fig. (2.6): Temperature for viscosity parameter

with p=0.1, Ir = 3, Br-0.5, 90=ry'4, H=0.5, h=I.5.
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Fig. (2.7): Temperature for thermal conductivity pararneter
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Fig. (2.8): Temperature for Brinkman number

with c=P=0.1, k= 3, S0=rd4, H=0.5, 
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Fig. (2.10): Temperature for inclination of magnetic field

with o=0.05, p=0.1, t= 3, Br0.5, H=l, h=l.5.
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Figs. (2.1 l): Entropy for thermal conductivity parameter

with a=0.1, ,t= 3, Br3, S0=n/4, H{.5, X,r=I, A:0.01.
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Fig. (2.16): Bejan number for inclination of magnetic field

with c=P=0.1, k= 3, Bn3, H=0.5, Xt=l, A=0.01.
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Fig. (2.18): Bejan number for thermal conductivity parameter
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Fig. (2.20): Heat transfer function for Hartmann number
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2.4 Conclusions

In this chapter, peristaltic flow of Jeffrey liquids has been taken. Physical properties of the

material are modeled as variables. Inclined magnetic field is formulated mathematically for

curved geometry. Velocity, temperature, entropy and isotherms of the flow are analyzed.

Key points ar€ as follow:

. There is opposite response for a and 9, for axial velocity.

. Temperature is decreased by higher a and p.

I Rate of heat transfer shows similar response for p and H.

r Response of entropy is found parabolic for considered parameters.

r Entropy is higher for .!, and A.8r.

r Entropy minimizes for a and p.

r Temperature distribution is higher for curved channel in contrast to straight

channel.
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Chapter 3

Soret-Dufour impacts with
Activation Energy in Peristaltic
Mechanism of Third Grade Material

ln this chapter heat and mass transfer in peristalsis of MHD third grade material are

addressed. Soret and Dufour contributions arE examined. Variable properties of thermal

conductivity and viscosity are considered. Compliant wall properties are taken. Thermal

radiation is present. Furthermore, non-linear activation energy through chemical reaction is

also considered. Slip boundary conditions are taken for momentum, energy and

concentration flow. Numerical solutions to the considered problems are developed and

analyed.

3.1 Mathematical Formulation

Effects of Soret and Dufour in peristalsis of electrically conducting third grade material are

analped in curved geometry. Width of channel is 2a. It is coiled in circte (O,^').

Components (W,Wr) of velocity lVare along radial and axial directions (R,X)

respectively. Thermal conductivity and viscosity are taken as functions of temperature.

Waves are traveling along with channel walls with wavelenglh 7, speed s and amplitude

D as in Fig. (2.1). Geometry of such waves satisfies
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i =tz(x,t) = r[,*r, ^(Tr* -",)], 
(3.1)

Conservation of energy and concentration laws witlr thermal radiation, viscous dissipation,

Soret and Dufour impacts and activation energy with chemical reaction are considered.

Compliant wall properties at the boundaries of curved channel are taken. Velocity, heat and

mass tansfer for slip effects are applied at channel walls. Magnetic field having strength

(a) i. exerted radially direction for ,90 =90' (see Eqn. (2.2)). Impact of induced magnetic

field is not taken into account because of low magnetic Reynolds number. We write

, = (**r,,r,o). (3.2)

By Ohm's law and Lorentz force as defined in Eqns. (2.3) and (2.4), we arrived at

"=[u-"(*l o,o), (33]

in which F denotes body force due to magnetic field along radial direction and o electric

conductivity. According to Rosseland approximation radiative heat nu* (q,) [74] is:

,,=-!#(vr),

in which t' and o'(=5.6697x104I//m4K{) represent mean absorption coeffrcient and

Stephan-BolEmann constant respectively and

Yr=(#,p*il.

Governing equations with considercd assumptions are as under

(3.4)

t
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(3.51

,(#-k)=-#-uh.#*((**n')s*)*;fr, t, (38)

0,, # = *(o,, #) - # #. *rlffi #) x r,ro + 

'o )

( R' awt ow , w, ). Drkr( a' a' t a )^-[-n-*' N- aR 
-R*R'J"*- ,, [-ffi-N-ffioR)" (3.e)

.{*)' @' .w;yJ6o!i ( # *r*- #),,
dc_ ^[ a' I a a'1^ Drkrl a2 I a a'1i=-''l-*-"mm-N )'-tl-*-^ma -ffi )'
*,(;)'(-co+o*r(-ft), (310)

where T represents temperature of fluid, p fluid density, C p specific heat, C

concentration, DB mass diffirsion coefficien! kT thermal diffirsion ratio, Cs

concentation susceptibility, r(I) temperature dependent thermal conductivity coefficien!

*i chemical reaction rate, Eo activation energy, L(=gradW), T** and



T'(= 8.61* lf.s ev t k) are mean material ternperature and Bolemann rcspectively.

The imposed boundary conditions are

tziS.o tWr=Q, at R=lt,

xr,ff+r={;} at R=!t,

xr,ffi+c={!,} a. R=!t,

(^#-;fi*a#o),=# * R=!r,

Model of third grade fluid is defrned as [67]:

1=-pI+S,

s = rr(r)E + ABr+ prB? +a, (rrnf )n,,

Br =Ll+I+

n, = ($ *w.o)r, +B,L +LrB,,

(3.11)

(3.12)

(3.13)

(3.14)

(3.ls)

(3.15)

(3.17)

(3.18)

(3.le)

where r(f) portrays temperature dependent viscosity, (q,A,&) material parameters,

(n,,nr) first and second Rivilin-Erickson tensors such that

pt>o, d1>0, lfr* frl<,12/tt*r.

ln this chapter viscosity and ttrermal conductiwy of the fluid are taken temperture

dependentas defined in Eqns. Q.7)ufr(2.S) in cltr4/rsr2.

Irt the dimensionless velocities, cundurE, anrplitde rdiq prcssur€, t€mperahr€,

concentrdion, wave number, perisaltic wall, Reynolds nunrber, variable viscosity
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parameter, components of extra sfess tensor, variable thermal conductivity pararneter,

Brinkman number, elasticity parameters, Prandtl number, chemical reaction parameter,

third grade fluid parameter, temperature ratio parameter, activation energy parameter,

Schmidt number, Dufour number, Hartmann number, radiation parameter, Soret number

and velocity, thermaland concentration slip parameters are

(ry,*,)=(+,+), k=4, 4=*,

i=ffi, 6=1,, Re=

g= P,(7,-7.), n =#,
Pr=+, €=+, gr=fr(*)'

p--#,

0r=ot (r,-1),

(E,E,rr)=(-#,

pso
E

o=T-To ,
Tt-7.

o -duou -@,

,'o3 a'r' \7,il,),

It-

, C2=ft,

Ra=#
sc=h,

n . _ DB(q-c)Krtru-@,

- u -!tand ri a

Velocities (w,wr) as a stream function (V) cn be defined as:

6k ?ry ity
-r =::rnz=--r+E cN Ar'

s_ _ pDakr(4-t), Dr-ffij,
(3.21)

13.22t.

Substituting Eqn. (3.20) into Eqns. (3.6-3.18) then using Eqns. (3.21) nd (3.22) in the

resulting expressions; condition of incompressibility is satisfied trivially in Eqn. (3.6) and

applying lubrication approach in rests of the exprrssions give

k!=-*(tr+k)";*{f*, (3.23)
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?=0,dr

(pe *')(#. *X). o(#)' . *(- **. #)s,, + az rr[ *Y. #)
.u"(##.#).-ffi(-#)'=0, (32s1

*X. #. *o[* #. #)- s"€ (t+ (a - r)d)' r*o( ' )=0.
r-t)o )l+(A-l)0

Eqns. (3.23) and (3.2a) imply that

*l#fr(,*r)"^).#,#]=r,

s., = so = -(r - ao)?*X.#)-ru( *X. #)',
h=t+4sin(2xx).

Dimensionless boundary conditions now arE

-!*,yrs* =g at r =1;h,
ctr

*r,ff+e={;} at r=th,

*r,#+o={l} d r=,,h,

r e + \(2, fu * r, # * r, #)" = *(? * r)' s 
^)+ 

ru, *, ff

(3.26)

13.zt1

(3.28)

(3.2s)

(3.30)

(3.31)

(3.32)

r =th.
(3.33)
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3.2 Methodology

Eqns. (3.25-3.29) subject to boundary conditions (3.30-3.33) have been solved numerically

by using a built in command (NDSolve) in Mathematics.

3.3 Analysis

Physical interpretations of axial velocity, temperature and concentration against pertinent

parameters have been deliberated upon in this section.

3.3.1 Velocity

Fig. (3.1) shows impact of temperature dependent viscosity coefficient (a) on axial

velocity. An enhancement is noticed in wave amplitude for larger a. Since p and a have

inverse relationship so for higher a, the viscosity decreases and consequently fluid

velocity enhanced. Response of axial velocity for curvature (t) is seen from Fig. (3.2).

Here velocity reduces near lower channel wall and it increases in remaining part of

channel. Interestingly velocity is more for straight channel in confast with curved

configuration. However velocity is asymmetric about the mean position. Variation in radial

magnetic field fI on velocity can be observed from Fig. (3.3). Clearly velocity amplitude

is decreased for an incrcased Hartmann number (tt). As the applied radial magnetic force

behaves as a resistive force that acts in opposite direction to the fluid flow. Fig. (3.a)

depicts variation in third grade fluid parameter (4). Thi. plot clearly shows that velocity

decays for higher pr. Figs. (3.5) and (3.6) are sketched for compliant walls coefficients

(EpEr) and E, respectively. It is noticed ttrat velocity is increased for elastic coefficients



(\,tr) and it decreased in case of damping parameter (4). Fig. (3.7) is formulated to

show the effects of slip parameter for velocity (X). OUviously origin is changing by

varying yr.

3.3.2 Temperature

This portion describes temperaturc for pertinent parameters. Fig. (3.8) shows that variable

thermal conductivity coefficient (B) trm inverse relationship with d. As I is incleased,

the temperature of material is decreased. Fig. (3.9) presents influence of Deborah parameter

(4) on fluid temperature. It is found that temperature drops with rise of A. It is also

noticed that temperature in third grade material is lower in comparison with viscous fluid.

It is shown in Fig. (3.10) that by increasing Brinkman number(.Br)the rcmperature is also

enhanced due to the viscous dissipation effects. Fig. (3.1l) gives Dufour (Dr) effects on

8. Temperature against Du is increased. Forhigher Du the viscosity decreases and hence

fluid velocity is increased. As a result fast movement of fluid particles together with

increased molecular vibration enhances fluid temperature. Fig. (3.12) shows variation in d

venius Rr. Temperature decreases for higher R, as it has inverse relation with radiation

and t'. There is decay in absorption parameter for higher radiation. Thus extra heat is

transmitted away. Consequently temperaturc is decreased accordingly. Fig. (3.13)

witnessed that temperaturc incrcases against higher Schmidt number ,Sc. Figs. (3.14) and

(3.15) are drawn for compliant wall parameters (E ,Er') and Er. Converse behavior of

temperature is observed for elastic coefficients (4,q) and damping parameter (4). ln

47



Fig. (3.16), it is shown that response of d is increasing for increased I/. tmpact of

temperature for slip parameters (2, ) ir change for origin of temperature (see Fig. (3.17)).

3.3.3 Concentration

Figs. (3.18) to (3.2a) are plotted for effects of parameters under consideration on

concentration (/). Figs. (3.18) and (3.19) show the decreasing behavior of concenfiation

for both Jh and 
^Sc. 

Mass diffrrsion decreases for increasingSr and so concentration

decreases accordingly. Fig. (3.20) illustrates $ via E. When activation energy parameter

(f) is enhanced, the value of expression of Arrhenius form decreases which corresponds

to enlarged chemical reaction. As a result the concentration increases. Fig. (3.21) shows

slight decrease in concentration for increased z. FiS. Q.22) is prepared to observe

concentration behavior for incrpasing chemical reaction (6). Thir sketch depicts that

concentration is reduced for increased destructive chemical reaction paramet€r (E). fig.

(3.23) shows / against pr. It is evident that concentdion is high for third grade material

than viscous fluid. Fig. (3.2a) gives concentration outcome for slip parameter (zr). tt i.

evident that concentration shows dual rcsponse near upper and lower channel walls by

vrying yr.
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Fig. (3.1): Velocity profile for viscosity coefficient with t =3,€ =0.1,4= P =0.l,Br =2,H =0.4,

Sr =L,Du = Fr = ^SC = 0.5,.Rd = 0.5.
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Fig. (3.2): Velocity profile forcurvature pararneterwith 6 =0.1,4= F =O.l,Br =2,H =0.4,

Sr =l,d =O.O3,Du = Pr =^Sc = 0.5, M =0.5.
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Fig. (3.3): Velocity profile for Hartnann number with t = 3,a = 0.03, A = 0 = 0.1, Br = 2, H = 0.4,

SY =l,Da = Pr = Jb = 0.5,6 = 0.1,R,| = 0.5.
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Fig. (3.4): Velocity profile for fluid parameter with & = 3,d = 0.03, pr = 0 = 0.1, Br = 2, H = 0.4,

Jl = l, Du = Pr = ,Sc = 0.5,4 = 0.l,.Rd = 0.5.
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Fig. (3.5): Velocity profile for elastic parameters with t =3,a =0.03,4= 0 =0.l,Br =2,

sl =l,H =0.4,Rd = 0.5,Pr = Du =Sc = 0.5,6 =0.1.
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Fig. (3.6): Velocity profile for elastic pararneters with t =3,a =0.03, P3 = F =0.l,Br =2,

Sy =1, H = 0.4, Rd = 0.5,Pr = Du =Sc = 0.5,6 = 0.1.
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Fig. (3.7): Velocity profile for slip parameterwith t =3,d--0.1,ft= 0=0.l,Br=l,M = 0.5,6 = 0.1,

Sr =l,H = 0.2, Pr = Sc = 0.5.
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Fig. (3.8): Ternpemture profile for thermal conductivity coefficient with t =3,a =0.03,p, = 9.1,

Br=2,Du =0.8,If =0.l,Sc= Pr=0.5,,Sr =l,M =0.5,f =0.1.
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Fig. (3.9) : Tenrperature profile for fluid psrameter with a = 0.03, 93 = 0 = 0.1, Br = 2, Du = 0.8,

Il = 0. 1,.$g = h = 0.5,.Sr =1, M = 0.5,6 = 0.1.
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Fig. (3.10): Temperature profile for Brinkman number with & =3,a =0.03,H =0.1,03= 0 =0.1,

Sl = l,Pr = Se = 0.5,M = 0.5,6 = 0.1.
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Fig. (3.1l): Temperature profile for Dufour parameterwithk=3,a = 0.03,ff =0.1,h= 0 =0.1,

Sr = l,ff = 2,Pt = ^Sc = 0.5, M = 0.5,6 = 0.1.
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Fig. (3. I 2): Temperature profile for thermal radiation paranneter with t = 3, ^Sr = Du = l, Br = l,

P = 4 = 0.1,d = 0.03,If = 0.l,,Sc = Pr = 0.5,6 = 9.1.
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Fig. (3.13): Temperature profile for Schmidt numberwith t =3,^Sr = Dtt =l,Br =l,p = ft=Q.1,
a =0.03,H = 0.1, Pr =0.5,M = 0.5,6 = 0.1.
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Fig. (3.14): Tenrperature prrofile for elastic wall parameters with k =3,8r =2,€ = 0.1, a = 0.03,

Ou = 0.5, 0g = I = O.l,* = Pr = 0.5, M = 0.5,.Sr = l.
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Fig. (3.15): Temperature profile for elastic wall parameters with t =3,8r - 2,6 = 0.1, a = 0.03,

Du = 0.5, h = 0 = 0.1,& = h = 0.5, M = 0.5,.Sr = l.
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Fig. (3.16): Temperature profile for Hartmann nunrber with t=3,a=O.O3,PB=p=0.l,Sr=1,
Br=2, Da=Sc=Pr=0.5. Rd=0.5,6=0. I .
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Fig. (3.17): Temperature profile for thermal slip parameter withk=3,a4.03,Bj=p=9.1,
Sr=1, Br=2, H 4.2,Du=Sc=Pr=0.5, Rd =0.5,6 4.1 .

Fig. (3.1 8): Concentration profile for Soret parameter with t = 3, Du = 0.8,a = 0.03, 6 = 0. l, rII = 0. l,

4=0.l,Br =2,5c =0.4,Pr = 0.5, Rd =0.5.
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Fig. (3.19):Concentration profile for Schmidt number with & =3,Du = 0.8,a = 0.03,6 = 0.1..fiI =0.1,

9j=0.1,8t, =2,Pr = 0.5,ffa| = 0.5.

Fig. (3.20): Concentration profile fq actination enerry pamrneter with t = 3,Pr =0.5,a = 0.03,

H = 0.1, Br = 2, 93 = / = 0. l, h =,Sh = Sc = 0.3, 6 = 0. l, fi;| = 0.5.

-1.0

E= A, L,2

58



-0.5 0.0 0.5 1.0

f

Fig. (321):Concentration profile for z with t =3,Pr =0.5,a = 0.03,II = 0.l,Br =2,h= 0 =0.1,

Pr =.9r =,Sc = 0.3,€ =0.1,fl1| = 0.5.

Fig.(3.22): Concentration profile forchemical reaction with t =3,9 =Q.l,Du =l,gt=0.1,
a = 0.O3, Br = l, H = 0. I. Pr = Sb = 0.5,.5? = l, rRd = 0.5.
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Fig. (3.23) : Concentration profile for fluid parameter wittr t =3,9 = 0.l,Du =l,a = 0.03, Br = l,

If = 0.l,Pr = Sb = 0.5,SF = l,ft/ = 0.5.

Fig.(3.2a):Concentrationprofileforconcentrationslippanrteterwitht =3,d=O.O3,Dv=0.2,9=0.1,
Br = l, H = 0.5, Pr = 0.5, Sb =,Sr = 0.3, M = 0.5, f = 0. l.
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3.4 Conclusions

Key points are listed below:

' Behavior of velocity is incrrasing for temperature dependent viscosity parameter a.

' Behavior of temperature is qualitatively same (i.e. decreasing) for both p and ft.

I Temperature has opposite outcomes for Du and Rr.

r Concentration decrrases for .Sr.

r Impacts of E and f are opposite on concentration.

. The problem is related to viscous fluid when a = A=0.

51



Chaptet 4

Entropy Optimizafion of MHD
Sutterby Fluid Subject to
Temperature Dependent Thermal
Conductivity and Non'Linear
Thermal Radiation

Here peristaltic transport of Sutterby liquid with temperature dependent thermal

conductivity is addressed. Inclined magnetic field is imposed in curved geomefiy. Entropy

generation with variable thermal conductivity of Sutterby liquids, magnetic field, non-

linear thermal radiation and heat absorption is discussed. The system of differential

equations by lubrication approach is arranged. The parameters of interest are sketched and

analped by the plots of velocity, temperatut€, sfeam function and enhopy production.

4.1 Mathematical Formulation

Here our objective is to discuss entropy production in peristalsis of incompressible Sutterby

material in curved geometry. Width of the channel is 2a.It is coiled in a circle with centre

O and radius R'. The velocity components Qf' Wr) arp in radial and axial directions

(R,X) respectively. Temperature dependent thermal conductivity of Sutterby material is

considered. Heat absorption/ addition coefficient and non-linear thermal radiations are also

taken into account. Magnetic field of strength 4 with an inclination angle go is taken.
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Fluid is moving in channel because of propagation of waves with speed s, wavelength 2

and amplitude D. The problem addressed is modeled with no-slip boundary conditions for

velocity. Convective boundary conditions are taken at boundary of the channel walls with

distinct temperatur€. Fig. (2.1) depicts the physical sketch.

Mathematically, walls of the channel are

i =tz(x,t) =r[o*a, n(ffW -",)],

Model of Sutterby fluid is defined as

parameter, d(=lmT) sr,eu rute, nt power-law index and A(=gradw+gradW)

in which S extra stress tensor, /10 constant dynamic viscosity of the fluid, 7 fluid

deformation rate tensor. In Eqn. (4.2) if ilt=O, the model r€pr€sents Newtonian fluid

model and for zr = I the model reduces to Eyring model. Since

sinh-' ,lGl' =/ol' -*(rl{')'.*( ,lcl') -+...,

Eqn. (4.2) reduces to

."+[,-*(rpl')']" o,.

After applying Binomial expansion in above Eqn.

become:

(4.1)

14.21

(4.31

(4.4)

(4.4), components of Stress tensor



s n = +l' -+1tct' )' ](, ffi ),

'*=f[,- (ficr)'1?#),
so = s*, = +1,_+(pl,)'](# . *# _ h),
in which

lcl=

Inclined magnetic field in curued geometry is:

, = (#* sin,9s, ffi cos go, o).

and

J.J = (+?)' (\cosso-wrsinso)'.

Thermal conductivity depending upon temperature is taken as

x(T)=x"(t+a'(r-4)),

1c.s)

(4.6)

14.71

Note that induced magnetic field effects are ignored because of low magnetic Reynolds

number. Clearly, for go = 9f the magnetic field is along radial direction as described in

chapter 2.

Thus by Ohm's law (2.7) and Lorentz force (2.8), we get

r = o(ffi)' (-*rcos2 9o +Wrens,gosrngo,Wrcosg, singo -Wrsin2gr,0), (4.8)

(4.s)

(4.10)

in which ro denotes constant thermal conductivity and d' variable thermal conductivity
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coefficient.

Fundamental equations of problem are

v.w=0, (4.11)

,#=v's-vP+r(o[w*n]'B), l4't2l

e"r#= -v.[-r(r)vr]+L.s-vq, +U+ Qo(T -To), (4'13)

in which p shows fluid density, c, specific heal,, Qo heat addition/ absorption coeffrcient,

1= grad$ P pressure and q, radiative heat flux as defined in Eqn. (3.13).

Component form of Eqns. (4.1l) to (4.13) is

*'#.*({r+n)r,)=0, (4.14}

'(#. m) = -lu*,tl #. #fi {{*' * ^r'* } 
. aftl #

."(ffi)' (nrrn4cose -w,sinz eo),

,(# - #) = -#. 6fi {{* * ^')'*} 
-G% * R', %

-"(ffi)' {', *" eo -usin so cos.{,),

N, #= -v.(-r(r v r1.(% - ffi,. #*)t * . #(s** - so )

.W(#.## . #),.(#l (r( coseo -tt sinso)z + oo(r -r),

where variable thermalconductivity in curved channel is modeled as

(4.1s)

(4.16)



v (-r(r)v q = *(-.o,#)- *|ru X) A+, f
Boundary conditions are

Wz=O at R=*r,)

,ff=-fr(r,-r) at R=-1, 
I

*,#=-p2(T -To) * R= 7, )

(4.181

1+,rs)

in which 7i, and { denote temperature of upper and lower walls respectively, r, thermal

conductivity of the walls and (A,4) Biot numbers.

Wave and fixed frames can be related through following fiansformations

7 = R, i = X -st, fir=\, frr=Wr-s. (4.20)

Dimensionless variables velocities, prtssurc, temperaturc, wave number, peristaltic wall,

Reynolds number, variable thermal conductivity parameter, Eckert number, Prandtl

number, Brinkman number, cuwatur€, amplitude ratio, radiation paramet€r, heat

absorption parameter, Hartmann number, thermal Biot parameterc and Sutterby fluid

parameter are defined as:

0,4=(:,1), (n,,n,)=(+,+), P(= #), t(=#),

o(=;), n=I, *[=ff) , o(=o,(r,-4)),

*l=#)' "[=*)' Br(=a'p';, *(=#),
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o(=I), u(=##), ,(=+), B=

(a,p,)=(+,+), ,"(=#)

Velocities (w'w2) through stream function (V) can be expressed below:

kd 0w _dty'\=-:=t wz =--. l4.2l)' r+k&-' 0r

Using Eqns. (4.20) and (4.21), above mentioned dimensionless variables and applying

lubrication approach (as flow is considered laminar thus Re +0 and channel width is very

small than wave length), Eqns. (4.14) to (4.19) are reduced in dimensionless form as:

**=#*(s-(t+')')-(#l('*ff)'i"'c,' gzzl

1r . "e1(4 X . #). "(#)' . *(- *(y.,). #J,- * * (# 
)', 
(* .,)',

+PrR, (#.*ff)*rr=o, 14.241

?=0,dr

and incompressibility condition is trivially satisfied.

Eqns.(4.22) and (a.B) imply

*,lA*(s^ 1r + r)' 
) - 

(*;Tf' )' 
(, . #)] = n

where

14.231

(4.2s)



, 
^ = +l#-6(,. #)[, - +(# 6(,.#)']

and p= p(x).

Boundary conditions in non-dimensional form are

-F 0w lV=1-2, wr=fi=-l at r=Th, 
I

B(Q+ff=0, at r=-h, 
I

ge+9=0, atr=h, )

with

o =i,** =ty(h)-y(-h),

h=t+btsin(2zx).

4.1.1 Entropy

14.271

(4.26)

(4.2s)

Enhopy production for Sutterby fluid is defined as

,,=-#q.vr.r[ *['-+(q')'](+F +r*#-*,)' +QoQ -r) 
I,

(4.30)

where @, and q(=-r(Z)VI) denote reference temperature and heat flux respectively.

Eqn. (4.30) comprises of entropy generation due to heat fiansfer, fluid friction, heat source/

sink coefficient, magnetic field effects and thermal radiation.
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Dimensionless form of entropy generation Eqn. (a.30) becomes

s=&.
,So

Thus

s =(y\'
\ar )

A
l-' (t+a/)

lX* -r,q (' * *))' (' - +( 
"ur- 

r-.a (' . #)f )ll
[.(ry)'!**)' ,, 

I

+PrR, (#.*u*)*Ot )

(4.31)

|{4.321

(4.331

in which

^(=c-t),
*(DtT-r")2

s2d
0

,, 
[=

4.2 Methodology

The problem under consideration has nonJinear system of differential equations. It is not

possible to solve these equations exactly. Thus we evaluate momentum Eqns. (4.25),

enerry equation (4.24) and total entropy generation (4.32) numerically by using Shooting

method from NDSolve command in Mathematica.

4.3 Analysis

Here interpretation of axial velocity, temperature, entopy generation and pumping

characteristics is arranged for relevant pararneters i.e. variable thermal conductivity (a),

heat absorption/ addition parameter (Q), magnetic stnength (8), inclination (90), Biot

69



numbers (A,&), thermal radiation parameter ({r), Brinkman number (Br), Sutterby

fluid parameter (f'2) and curvature (t).

4.3.1 Velocity

Figs. (4.1-4.5) display the effects of pertinent parameters B, 90, y'2 and t on axial

velocity wr. lt is evident from Figs. (4.14.2) that behavior of velocity is alike for both

parameters .B and 90. Clearly, near lower wall the velocity decrcases when it increases in

vicinity of upper wall by enhancing .B and 90. Velocity decreases as magnetic forte

behaves as a resistive force to fluid. Morcover, it is also noticed that velocity decays by

rising Jo and velocity is minimum for ,$ = 90' (see Fig. (a.2). Since at 4 = 90' magnetic

force is perpendicular to the direction of flow and resists fluid motion the most. Figs. (4.3-

4.4) reveal behavior of Sutterby fluid param eter y'2 for (z < 0) and (n , 0) r€spectively. It

is clear that velocity shows opposite behavior for (n <0)and(rr0). As orial velocity

accelerates for n < 0 while it de-accelerates for n > 0 at cente of channel.

Fig. (a.5) illustrates the influence of curvature t on the velocity. Here velocity deqpases in

vicinity of lower wall however it enhances near the upper wall when fr is increased.

Further the velocity remains symmetric about the central line for straight channel.

4.3.2 Temperature

The recent subsection is devoted to present temperature 0 via 7 for various sundry

panmet€rs a, Q, B, 90, pr, p* R, and Br through Figs. (4.6-4.13). Fig. (a.6)

represents tlult 0 decays by rising a. Effect of Q is exhibited through Fig. (a.7). Heat is



absorbed (forQ>0) and radiated away (forO.O). By increasing heat absorption

(for O = 0.2, 0.4), temperature rises obviously. However temperature decays when heat is

radiatedawayas (forQ=4.2, -0.4).Figs.(4.8)and(4.9)showthercsponseof d for

incrcasing I and Jo. It is clear fiom these figures that d enhances for both parameters B

and 90. Influence of Biot numbers (n,Pr) on d can be revealed through Figs. (4.10) and

(4.11). Temperature decrpased near the lower and upper walls for increasing 9, and 9,

respectively. Fig. (4.12) witnesses that temperature decays for higher &. As & is

inversely proportional to heat absorption coefficient t'. Thus absorption parameter

decrcases for larger radiation. Clearly additional heat is radiated away and temperature is

reduced. Fig. (a.13) represents 0 via Br. lt is clear from this figure that temperature

enhances for higher Br. lt is due to the major effect for viscosity in Brinkman number that

resists flow of liquid. Because of this resistance in flow, increase in collision of fluid

particles takes place and as a rcsult particles lose enerry and thus temperature rises.

4.3.3 Entropy

Figs. (4.14-4.19) are presented to portray behavior of total enfiopy production (S) for

important parameters ^8, 9r, (r, Q, R, and Br. Influences of B and 9o on ,S are

presented through Figs. (4.14-4.15). Enuopy (S) enhances near the channel walls whe,n B

and 9o are enhanced. Effect of a on ,S is shown in Fig. (4.16). It is noticed that 
^S 

decays

in vicinity of channel walls. Since entropy is directly related to temperature, therefore

entropy reduces when temperature decreases. Effect of Br on 
^S 

is explained from Fig.
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(4.17). Brinkman number (8r)elaborates viscous effects and is in direct relation to the

square of velocity. Incrcase in Br leads to enhanced enfopy. Opposite behavior of S is

observed for R, and p(>0) (see Figs. (4.18-4.19). lt is clear from these figures that

entropy is lesser at cenre and it is higher in vicinity of channel walls.

4.3.4 Heat Transfer Rate and Isotherms

Heat fiansfer rate at the upper wall is 
*r'fu,). efects of thermal conductivity

coefficient, Brinkman number and radiation coefficient on heat transfer are porhayed at a

fixed point (x = 0.5) through Fies. (a.20) ta (4.22).It is quite evident that it is decreasing

for thermal conductivity coefficient and radiation while increasing for Brinkman number.

Figs.4.23a and 4.23b represent contours of temperature for channel cuvatur€ (t). fnese

figures portray that distribution of temperature is less in straight channel when compared

with curved channel.

4.3.5 Trapping

Trapping shows lot of significance in fluid transportation through peristalsis. Because of

contraction/ expansion of peristaltic walls, fluid mass in form of bolus circulates inside the

channel and it moves fonyard with the velocity of propagating perisaltic walls. Figs. (a.2a)

to (4.26) are prepared to show strcamlines nature for different quantities considered in this

work. Figs. (4.24a4.24c) depict that with increasing 7", bolus size decreases in upper and

lower half of curued channel. In lower half, it can also be noticed that bolus strptches in

upward direction. Streamlines movement for f, is depicted through Figs. (4.25a-4.25c). It
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is clear that bolus size and streamlines in both halves of the channel are symmetry for

straight channel. Effect of inclination ,to of magnetic field is shown in Figs. (4.26a4.26c).

When 9o increases from O-:, strength of magnetic field enhances. Forthis, bolus and

streamlines from the lower portion move in upward direction and bolus presses the

streamlines in the upper channel.
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Fig. (4.2): Velocity for inclination of magnetic field with n = k = 3, B = l, f'2 = 0.1 .
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Fig. (4.5): Velocity for cunature pararnctcrs with z =3,8 =1, 9o = [,f2 =0.t.

at -tt'
t -aa

a
I

l-c- 'J:J.
ii1:' aF o.o, 0.03, 0.06, o.o9 ' .:J.
f, '.:.'.

.t l\
tt

-1.0 -0.5 0.0 0.5 1.0

r

Fig. (4.6): 9 for thermal conductivity coefficient with n = k =3, B = 1.5,,90 = ft ,

r*2 =g.l,Rd =o.r,gr= pr=2,e=0.4,8r= 0.5.

61 0.0
BI

-0.5

-1.0

I
7

6-s
4

3

2

76



aaatttt'tlaatt

,-'\ "..
,r' _\------ti-- 

'..
a

a,,
a

t1
tt

a

a' ./,.

i t I

t t
I

attt.- ttta -ta

1l
tl

'-:.N.':
H.4,0.2, 0.0, -0.2, {.4 .::N

-1.0 -0.5 0.0 0.5 1.0

r
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Fig. (4.17): Entropy for Brinkmann numberwith t =3, B = 0.5, 9o=t,a =0.02,

f'2 =0.1,n= Pr= 9r=2,R0 =0.2,Q= 0.5.
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4.4 Conclusion

In this chapter has following key points.

r Opposite behavior of axiat velocity is noted for rising fluid parama", (f") for

(rr0andz<0).

. Decrcase in tcmperature is seen for variable thermal conductivity coeffrcient (a) and

thermal radiation parameter ( {, ) while it rises for heat absorption parameter g(, O).

. Inpversibility is minimum for variable thermal conductivity parametor B.

. Results of the this chapter are summarized to viscous material when (n = 0) and Eyring

liquid for (n = l).

r Heat fiansfer rate decreases for radiation parameters {, while it is higher for Brinkman

number 8r.
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Chapter 5

Entro py Production Minimi zation
and Non-Darcy Resistance within
Wary Motion of Sutterby Liquid
Subject to Variable Physical
Characteristics

The objective of this chapter is to analyzs peristaltic movement of Sutterby material

through porous medium. Modified Darcy's law has been applied. Sora and Dufour effects

in enerry and concentration processes are retained. Variable physical properties of the

material have been included. Investigation of entropy is also made part of the analysis.

Total entropy production is inspected for parameters of curiosity like Soret, Dufour,

variable viscosity and thermal conductivity coeffrcients. Modeled equations are solved

numerically. Results are presented through graphs.

5.1 Mathematical Formulation

Peristaltic activity of Sutterby liquid in curved geomety is examined. Soret and Dufour

impacts ar€ outlined. Variable physical characteristics of the material are under

consideration. Thermal conductivity and viscosity are assumed as temperaturc-dependent.

Modified Darcy law for porous medium is aken into account. Width of curved channel is

2a. lt is coiled in a circle. Fluid flow is because of waves propagation with speed s,



wavelength 7 andamplitude b. Thus mathematically, we have

R=tz(x,o =r[,*r, *(Tr* -",)], (s.1]

Here F is the radial distance and compone*s (W;,Wr) of velocity W are atong (R,X)

directions respectively. Channel walls are comprised of no-slip effects for momentum,

temperature and concenhation. Furthermore, we assume that temperatures at upper and

lowerwallsare Ziand I! respectivelysuchthat 2i(<{). Simitarlyconcentrations Co and

C, at upper and lower walls being a (. C ).

Governing equations for considered problem are

V.W= 0,

,#=v.t-D,

e,#= v.(r(r)vr) + s.A + To'",

#=D,v,c*D{: v,r.

(s.2)

(s.3)

(s.+1

(s.s)

Where p dmotes fluid density, t Cauchy sfiess tensor, c, specific hea\ T Temperature,

C concentration, DB mass diffusion coeffrcient, c, concenfiation susceptibility, k,

thermal diffusion ratio, (r(I),p(f)\ thermal conductivity and viscosity as a function of

temperature.

Extra stess tensor S, for Sutterby fluid obeys
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In which rz, denote powerJaw index, 7 Sutterby fluid parameter, A=gradw+gradW

deformation rate tensor and G = IE;(AT face respectively. Sutterby material has the

property of both shear thickening (dilatant materials for m <0) and shear thinning

(pseudo-plastic materials for m>0) characteristics. Eqn. (5.6) represents viscous fluid

model for m = 0 and Eyring fluid model for m = l. As

sinh-'!(rldl') =qlcl' -3r1(,?ldl')'.*(rFl')'... (s.7)

so the components from Eqn. (5.6) are:

so = +(,#[, - fr (,tdl' )'],

s*, = *(.#)[, - fr (, ldt' )' ],

s,* = s*, = +W. *# -Jlt-X(,tl4'l],
in which

lcl =l- I tl a 2R oth 9L _ 2ni aw2 _ zRWz 9L
I ' r+R 0R ay r+R dy e+n)z toy

By Reynolds model, the expression for viscosity is

p(D = p 
"-i(,-,0) 

t n(t_ B' (r - 4)).

(s.8)

(s.e)



Thermal conductivity depending on temperature is

(s.101

rc(T) =c (t + y' (r -r,)).

Where ro,;ro Constant thermal conductivity and viscosity, 9,f' Viscosity and thermal

conductivity coeffi cients.

Modified Darcy's law for Sutterby fluid gives

D =-lt(r) [sinrr-' 
rrlr]'l'l" *.,* [ qlcl, )

Now Eqns. (5.2) to (5.5) give

0\* R' awr* 4 =naR '(n*R') aR ' (n+n')

(s.11)

(s,121

,(#. m)= -& #.(" . d'*((^ 
* R'r s*). 6 *

-#(,-1(rlol')')*,, (srg)

,(# h)= -#.#**((n *R')s**)-# . #*
-#(,-fr(,tot')')o, (s.141

.(#-h.##)'**+(#.#.##), (s1s)



dc - ( a'c a'c t ac'\ o-k- ( a'r a'T t ar'\
A= 4[uo * o* * n*a' * f *lrx* ax'* R. R' aRI

where,SrR,,Sl",^Sx, represent stness components.

With conditions

W,=0 at R=-I,
Wr=Q at R=tl,

,={fl} d R=rt,

" 
={":l il R=rz.

Lc'J

The transformations in relation between wave and laboratory frames as taken as:

7=R, i=X-st, frr--Wr, fir=Wr-s.

(s.15)

(s.17)

(s.18)

(s.le)

(s.20)

Dimensionless variables (x,r), velocity components (wrrwr), pressur€ p, temperature

d, peristaltic wall h, wave number d, Reynolds number Re, thermal conductivity

coeflicient 7, viscosity coeffrcient p, amplitude D, Prandtl number Pr, curvature rt,

Brinkman number Br, time l', concenfiation {, Schmidt number ,Sc, Soret number ,Sr,

fluid parametat f' , Dufour number Du and permeability parameter fu arcas follows:
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iVfr4fr,*=7, ,=;, ,,=;I, *r=i,

p=1, g=H, h=L, 6=*,' sp.l' Tr-7"' a 7

F = g'(r,-q), r.e=ff, y =r'(T,-q), b,--:,

pr-Fo"o , gr --&-, k=9, 6=c_ 7.Ko *"(7, -7")' a Y 
c, - cu'

gr=pDrKt(\-Tr). sc = Fo - Da=?rKr(9r-cr) -p,T,(Cr-C.) ' -r pDr' crC,ltolr-rr)'

y. -!!!, oo=4.' a a' (5.2U

lf tg denotes the sfeam function then

kA 0v 0w-nt=--.'=-t-w :-
r+rc ax ' ar'

and implementing lubrication approach, one has

k* = _(* + r)Q_ ee)(, +(y _@jD(, . #))' 
I 
(,. y)

.h*(t-to*,)'), (s.23)

(s.24)?=0,or

,(#)' * oe .,,(# . *#). *(# .rr,(,. *)), ̂
+p, ou( l oQ *a,/') = o.

\r +k 0r Ar' )
95
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t oo *U+s"sr[ I oo *4)=r.k+r0r 0r' \k+r0r 0r')

Eqns. (5.23) and (5.24) leads to

|(fr+r)(r-pq( , mr"(a'w I

Zl- n ['-,[*-@
"l.fr*(t^(r+r)')
in which

(,.#))')[,.*)
=0,

(s.25)

ls.27l

(s.30)

(s.311

h=t+b,sin(zrx).

(s.32)

(s.331

s., =s^ =ry1#-#(,.#))[, +(# d",(,.#))')

Dimension less conditions are

V =IF 12, %=; at r--Th,
or

,={;}

, ={l}

where

at r =Th,

at r =Th,

, =!,i#a, =w(h\-v(-h),

(s.2el
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5.1.1 Entropy

The entopy in this case satisfies

Ig:- "q.Vf+@;

,l+(,-+(,tct')')t*+ffi #-rh)'l (s34)

o,f +o,h(4+E-,, gq\ I\.' Fr",\aR' ' axz n'+R oR I )

It should be noticed that Eqn. (5.34) includes irreversibility because of fiansfer of heat,

fluid friction and Dufour effects. Enfiopy generation h dimensionless form is

( ae\'
^L 

- [;.1 +

^ | 
*ryF*,(, - #) - #) (, - +(-ro+4(, . e#). #)' )l(rill *r,o,(##-#) 

-)'

(s.3s)

in which

&,=W,A=h (s.361

Bejan number (ae) inaicating heat transfer irreversibility to total entropy is given by

97



Be-

(#)'.

00

Ar

*r,a,(# *.#)(re *t

Clearly aee[0,t].

This section is devoted to present physical

concentration, enttopy, Bejan number and

parameterc of interest.

5.3.1 Velocity

Figs. (5.1-5.4) show 0, Da, k and 7'2 effects on axial velocity (*r). clearly velocity

is maximum near centrc of channel while it decays near upper wall where wall temperature

being 4r(<{). For higher 9, an increase in amplitude is also noticed. It is due to the

Itason $at p Nd P have inverce relation. Thus for higher p, the viscosity decays and

5.2 Methodology

The modeled differential Eqns. (5.25) to (5.27) subject to the boundary conditions given in

Eqns. (5.29) to (5.31) are computed numerically by Shooting method using the built-in

command in Mathematica.

5.3 Analysis

"vle(-Fh(, 
. e#). #\'(' +(-Fi4(' . w). #|)

(s.37)

description of axial velocity, temperature,

heat flux at the upper wall for various



conscquently velocity enhances (see Fig. (5.1). Fig. (5.2) witnesses that velocity enhances

in the centre for higher Da. Since permeability parameter (f) nas inverse relation with

Da, thus by higher Da, frrere is less permeability. Consequently drag force reduces and

velocity increases. Fig. (5.3) addresses r€sponse of curvature (f) on wr. Further, velocity

is less near the lower channel wall whereas it enhances in rest part of the channel.

Moreover, velocity is symmetric about the cenfie line for straight channel. Fig. (5.4) is

made to study effects of material parameter (f") o" wr. Velocity decrease at centre of

the channel is noted for higher values of f".

5.3.2 Temperature

Variation of temperature (d) for various pertinent parameters B, T, Sr and Du is

described through Figs. (5.5-5.8). Fig. (5.5) depicts that 0 decays for increasing p. rig.

(5.6) presents that 0 reduces by increasing /. This is because of the rcason that higher 7

strengtlren the material capability to diffuse or absorb heat. This occuls when fluid

temperature is greater than wall temperature. Figs. (5.7) and (5.8) illustrate temperature

(0) response for increasing Soret (Sr) and Dufou, (Drr) effects respectively.

Temperature amplifies for both variables. The reason for the same is that an increase in 
^Sr

or Du corresponds to viscosity decay and thus velocity enhances. Thus fast moving

material particles with larger molecular vibration rise material temperature.

5.3.3 Concentration

Figs. (5.9) and (5.10) demonstrate reduction in concentration (Q) for larger Sr and Du.
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Moreover { also reduces when 
^Sc 

is incrcased (see Fig. (5.1t). Schmidt number (Sc) is

ratio of momentum diffusion to mass diffrrsion rates. Thus an increase in Sc corresponds

to low mass diffusion thus concentration is reduced accordingly.

5.3.4 Entropy and Bejan Number

The influences of considered quantities 0, f, Sr and Du on entropy generation and

Bejan number are revealed through Figs. (5.12) to (5.19). Figs. (5.12) and (5.14) are

prepared to show the reaction of Ns for p and f respectively. From these Figs., it is

determined that in the middle of the channel therc is no considerable change in lVs while it

decays near the channel walls. The entopy and temperature are directly related. That's why

these Figs. ensure decrease in temperature. Figs. (5.13) and (5.15) are captured to show the

responses of Be for B and y. Be behavior is opposite for increased values of laryer p

and y. Figs. (5.16) and (5.18) show impacts of ,Sr and Du on /Vs. It is noticed that /Vs

rises near the walls of channel for higher Du and Sr parameters whereas rcsponse of Be

is opposite for these parameters (see Figs. (5. I 7) and (5. t 9)). It is clear that Be decreases

for .Sr while it enhances through Drz.

5.3.5 Ifeat Transfer Coefficient

Heat transfer coefficient at the upper wall is 
#r'tOl. 

To show the effects of Soret and

Dufour, heat transfer rate at the wall is sketched through bar charts in Figs. (5.20) and

(5.21). Both Figs. show that heat transfer rate increases for higher Sr and Dtt.
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fig, (S. t): Velocity profile for rariable viscosity parameter r - 0.3,f = 0.02,k = 3,
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Fig. (5.2): Velocity profile for permeability parameters x = 0.3, f = 0.001, / = 0.A,

k =3,Dtt= 0.5,& =0.2,8c =2,h = Sb = Sr =0.5,7'2 = 0.001.
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Fig. (5.5): Tenrperature profile for viscosity parameterx =0.3,f =0.02,k =3,

Da= Da = l,Sr = 0.2,Pr = 0.4,k =2,* = 0.5,^!r =1,T" = 0.003.
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fig. (S.Z): Temperature profile for Soret parameterx =0.3,F =0.01,7 =0.02,k =3,
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Fig. (5.12): Entropy for rariable viscosity param@r.r =0.3,0 - 0.05,y = 0.05,t = 3,

Da = Da = l,Sr = 0.2, Pr = O.4,Ec =2,5c = 0.5,Sr =0.5,f" = 0.fi)25.
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Fig. (5. 16): Enfopy for Dufur parameter with x = 0.3,0 = 0.A4,f = 0.05, t = 3,

Da = Du= l, & = 0.3, Pr = 0.5, h = Z,Sc= 0.5,,Sr = 0.6, A = O.Ol,f'z = 0.0025.
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Fig. (5.19): Bejan number for Soret coefiificient with r = 0.3,p - 0.05,y = 0.05,t = 3,

Da = Da = l, Sr = 0.2,Pr = 0.4, k = 2,Sc = 0.5,,Sr = 0.5, A - 0.01, y'2 = 0.0025.
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5.4 Conclusion

Soret and Dufour aspects on peristaltic flow of Sutterby fluid are examined. Main results

are summarized below.

. Therc is decay in velocity in case of Sutterby fluid.

. Temperature reduces for increasing p and y.

. Concentration decreases for both Soret and Dufour parameters.

r Entropy has parabolic trend and it is more near the upper wall than the lower wall due

to difference in temperature at both walls.

. Totalentropy has similar behavior for p fid f .

. Increasing behavior of enhopy generation is noticed for both Soret and Dufour

variables.

. Bejan number for Soret and Dufour variables is opposirc when compared with entropy

generation.

r Heat transfer rate behavior for both Soret and Dufour variables is qualitatively similar.
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Chapter 6

Generation of Entropy in Peristaltic
Activity of Third Grade Liquids
under Magnetic Field

In this chapter the flow of third grade fluid is considered in curved geometry with the

application of inclined magnetic field. Inclined magnetic field has rarely been used for

curved channel. Heat equation has been undertaken with the effects of Joule heating,

variable thermal conductivity and heat source/ sink. Non-linear radiation is accounted.

Morcoyer, the entropy generation and Bejan number coupled with the effects of viscous

dissipation, inclined magnetic field, heat source/ sink, non-linear thermal radiation and

variable thermal conductivity are analyzed. The parameters of interest are graphically

analped for entropy, Bejan number, temperature, velocity, stream lines and pressure

gradient.

6.1 Mathematical Formulation

Peristaltic movement of third grade liquid is being anallzed in curved geometry. Width of

curved channel is 2a. This channel is coiled in a circle having radius (n'). Components

(W,,Wr) of velocity (W) * along the radial and axial directions (R,X) respectively.

Inclined magnetic field of strcngth (8r) has been imposed with inclination (,f ) with

radius of the channel as defined in Eqn. (2.2), however, impact of induced magnetic field is
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neglected because of the assumption of small magnetic Reynolds number. Thermal

conductivity is assumed as function of temperature. Heat absorption coefficient and non-

linear thermal radiation have also been incorporated in energy equation. Slip effects for

velocity are applied at the channel walls. Convective conditions are entertained for heat.

Waves arr moving along the channel walls with speed (s), amplitude (a) and wavelength

(r) * in Fie. (2.1).

Geometry of such waves satisfies

R = tt= *[o * a.i "(* r*- ",)],

Governing equations for the considered problem are as

V.W= 0,

'#=v't-(JxB)'

in which o'(=5.6697xlT$Wm4r({) and /r' represent Stephan-Boltzmann constant and

mean absorption coefficient respectively. Tensor for third gnde fluid is written as

tl4

(5.1)

(6.2)

orr#=v.[r(Dvr]+rr(LS)+#-oo, +q(t -ro), (6'4]

here, r(I) represents variable thermal conductivity of material, c, specific heat, p density

of fluid, S extra Stress tensor, t Stress tensor, O, heat absorption parameter,

L(=gradw) and radiative heat flux (q,). ercording to Rosseland approximation,

thermalradiation is

t,=-ff{vr ),

(6.3)

(6.s)



r=-pI+S,

S = /68r + AB, + prB?+a, (rrnf )8,,

Br =Ll +L,

n, = ($ *wo)r, +B,L+'/B,,

such that

A>0, q20, lA*fr\<J24tn,.

Component forms of Eqns. (6.2)to (6.a) are

R' 0w, *ow * 4 =nR'+R d{ ' AR 'R'+^R

(5.6)

(6.7)

(5.8)

^(dw,*w,w,1= ^'[ 
-#.1**1o*((*.*')'t*)l

-l dt ' R+R' ) n+a' 

[-#." B;(w'Sin'f'cosgo -w,sin'9))'

,(# - #) = -#. (*)# -#. #s((n. n )s*)

."ffithSin9ocos9o -I( cos2 Jo),

(5.10)

(6.11)

(6.12)

(5.131

N,# = *(n,#) # #.*!ffiil #(-so +so)

( aw, R' an-[- 
aR -Em' #.h)*.(;*)'{n.o,o -w,sine)2 +Qn(r-ro'1

t6o'Tl( a' I o a')-- ,*' [- *z*ffi a*-N f ' (6'14]
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The imposed boundary conditions are

Wz=0, at R=tI,

in which r, is thermal conductivity ofthe walls and (A,A)Biot numbers.

(5.1s)

(5.16)1.,#= -p;(r,-r) rt R=-t,f

1.,#=-pL(r-4) ,, a-- z,l

The relation of tansformations betw'een ,r"n, (r',x') and laboratory (n,X) frames is

shown as:

V=R, i=X-st, frr--Wr, fir=Wr-s.

Defining dimensionless variables (x,r), velocity components (\,*r), curvature K,

amplitude ratio {, pressure p, temperatu€ 0, wave number d, peristaltic wall E,

Reynolds number Re, components of extra sfess tensor ,Sr, variable thermal conductivity

pararrteter B, Brinkman number 8r, Prandtl number Pr, third grade fluid parameter fl,

Hartmann number I/, radiation parameter Rr, heat absorption coefficient Q and thermal

Biot parameters (8,4) *

e,i=(;,;), (n,,*,)=[+,+) , K=4, 4=*, P=ffi,,e=ffi,

6=*,, n,=#, Re=ff, s,,=*, p=F(r,-ro), Br= *fu,
2^

Pr=#, pr=ffi, H=W, R,--t6#i, e=a'Qo
Ko
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, 9r=ogi ,



Pr=ag' .
Kr

(6.18)

(5.le)

16.221

(6.23)

(6.24!-

(5.2s)

Velocities (w'wr) as a sfeam function (rf) can be defined as:

n,=#,*,=-o(*)X

Incompressibility condition in Eqn. (6.1l) is fulfilled tivially; however, after applying

lubrication technique, rest of the exprcssions can be written as:

K{=**(t+r)'s-)-ry(#.'), (620)

?=0,dr

@' . \(&. *#). o(#)' - -(-#. *(y.,)) *
+@ + & "(*#. #). o w(ff .,)' = o,

Equations (6.20) and (6.21) implythat

s., = so =(# - *(#.').,u(# -*(#.,)',

#[6fu#('^ 1' + x7')- K' 4']Y' so(#.')) 
= n

h=t+Lsin(2zr).
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Now the dimensionless boundary conditions art

v=1.F12, %=r at r=Th,
dr

l-a@-t)*#=0, at ,=-0,\

lur*y=,, at ,=n. I
where

, =i,#* =ty(h)-y(-h),

6.1.1 Entropy

(6.25)

16.271

(6.28)

(6.2s)

Dimensional form of entropy production with the effects of viscous dissipation, variable

thermal conductivity, Joule heating, heat absorption and non-linear thermal radiation is

o _ r(r) ( tr\' ,o",n - Gf [an,/ '

I

@,

[ffi.#.ffi#)'-+s',-')
.[ffij (w cos so -tr,sin ro), -rffi (-#. # *- #),

where @, denotes the reference temperature. Non-dimensional form of entropy generation

is
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M. =k =(#)' .

in which ,So and A are given by

(6.30)

(5.31)

(5.32)

Here 0<Be<1.

Bejan number (Ae) defines irreversibility because of heat transfer to total irreversibility as:

+eo+*(*#.#)

a0
:
crr

6.2 Methodology

As the problem under consideration is a non-linear system of differential equations;

therefore, it is difficult to evaluate the exact solution of these equations. We calculate

prcssure gradient in Eqn. (6.20), and momentum in Eqn. (6.23)) by regular perturbation

method for small parameter (fi)of third grade material and energy Fan. (6.22) is solved

numerically. We define
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*=*.o,ff+o1r,f ,l

v =,t o+ gtvt*o(gr)', L (G.33)

F = Fo+ qrFr+O(gr)', 
I

S,, =S0,, t gtSro*o(pr)' .)

Putting (6.33) into Eqns. (6.20),(6.23),(6.24),(6.26) and (6.28) reduces the problem to the

following zeroth and first order systems:

6.2.1 System tt Zeroth Order

#(fr, *(',,,(' + r)' 
) - 

r'{'-sr' 4 (*.')) = n

* = &*(r* (" . *,1 - 
*il.,t* t, (*. t),

in which

s*=wh(*.,),
with boundary conditions

wo=r*, ff=-t, at r=tr'

6.2.2 f irst Order System

#[fr, *F,-1' + r;' )- 
K'{'-s'r' 4 (#;; = -

* = & *(s,., (" * r) ) - 
*:ir; o (T),

(5.34)

(5.3s)

(6.35)

(6.37)

(5.3e)



,,- =(Y @Y).,(Y-#(, .*))',
with boundary cond itions

v,=+!, %=0, at r=i.h.2' Ar

6.3 Analysis

Effects of pertinent parameters i.e. Br, 9s, F, g Ro, K, A, P, P, and H on tcmperature,

total entropy, Bejan number, velocity, stream lines and pressure gradient are discussed and

analyzed in this section.

6.3.1 Velocity

Axial velocity offers significant features of material flow response. Figs. (6.1-6.4) render

the influence of velocity profile (*r) within a curved channel subject to no-slip

boundaries. It is noticed that parabolic trajectory is formed by velocity for pertinent

parameters. However, velocity is not symmetric about central line (r = 0) due to curved

channel. Fig. (6.1) portrays that velocity exhibits dual behavior for increasing values of

material parameter (fi). Velocity decays in the neighborhood of walls of the channel

whelpas it amplifies at centre of the channel. Fig. (6.2) rcpresents the effect of r( on wr.

For this parameter, the velocity also depicts dual behavior as in lower half it decays;

whacas, it enhances in other half of the channel. Clearly, velocity is symmetric about

(r = 0) for straight channel. Fig. (6.3) portrays that w, decreases near centre and increases

near upper wall for higher value of Hartnan number (A). es If coresponds to magnetic

(6.40)

(6.41)
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force that is resistive force in nature; therefore, velocity drops offnear the centrc; however,

it enhances in the vicinity of the upper channel due to curved configuration. In Fig. (6.a)

inclination (9r) shows shength of magnetic force on velocity. It is evident from figure that

magnetic force opposes fluid flow with more sfiength when it is perpendicular to flow

direction (i.e. So =90') and shows less resistance to flow when it is in the direction of the

flow (i.e. when 9o -0').

6.3.2 Pressure Gradient

The impact of curvaturc, inclination of magnetic field and third grade material parameter

on + is reveated through Figs. (6.5-6.7). Fig. (6.5) depicts the effect of increasing K on
dx

pressure gradient. It is noted tn t S increases at both the wider and narrower parts. Fig.
dx

(6.6) shows the response of pressure gradient for go. $ ,ises by increasing 90. The"dx

highest pessure gradient is observed at x=0.75. [t indicates that flow can easily pass

through centre of the channel. Fig. (6.7) illustrates tn t l decrcases at wider part of the
dx

channel for increasing p, whereas negligible change is seen at the nanow region.

6.3.3 Temperature

Figs. (6.8-6.14) have been prepared to show the impact of Brinkman number, inclination,

radiation parameter, heat absorption parameter and Biot numbers on temperature profile

(a). fig. (6.8) portrays effect of Brinkman number on g. It is seen that e increases with



the increase of Br. Reason to this increase is that frictional forpe enhances as fluid

particles collide with each other and resulantly the kinetic enerry increases. Conversion of

kinetic energy into thermal enerry takes place, because of which total temperature of the

fluid rises. Fig. (6.9) depicts that by rising inclination of magnetic sfiength (So) Aom

0" to 90' temperafure increases and it becomes murimum when magnetic force acts in

transvetse direction of the fluid i.e. for go =90'. In fac! the lines of magnetic field interact

electrically with the liquid and generate LorenE force. This force resists flow of the fluid

thus converting kinetic energy into thermal energy. Resultantly, the temperature rises. Fig.

(6.10) portrays the response of temperature for heat absorption coeffrcient (0). Heat is

absorbed for Q > 0 and emitted for Q < 0. Thus rise in temperaturc for Q> 0 is quite

prominent. In Fig. (6.1l) temperature reduces by rising the radiation pararneter (nr). fne

reason is that as R, has inverse relation with heat absorption coefficient thus by increasing

&, heat is radiated away and as a result temperature decreases. Impact of Biot numbers on

temperature is depicted through Figs. (6.12) and (6.13). By increasing A, temperature

decrpases more rapidly near the lower wall as compaled to ilre upper wall. Similarly,

temperature drops down near the upper wall quickly in contrast with the lower wall by

enhancing &.Fig. (6.14) clarifies the influence of thermal conductivity coefficient (p) on

d. It is seen that temperature lessens for higho value of p.
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6.3.4 Entropy production and Bejan number

Entropy generation (rs) ana Bejan number (oe) are porrayed via Figs. (6.1s-6.24) to

illusfate the effect of thermal conductivity coefficient, Brinkman number, inclination of

magnetic field, heat absorption parameter and non-linear thermal radiation parameter. Fig.

(6.15) shows that entropy (fs) aecreases for B.lnFig. (6.16), lVs increases by enhancing

Brinkman number (arn). As Brinkman number is conduction of heat due to viscous

dissipation thus temperature enhances for this factor. Fig. (6.17) illustrates that entropy

rises by increasing the angle of inclination (9r). By increasing 0s, strength of magnetic

field increases. Joule heating generates more heat resultantly entropy generation goes up.

Figs. (6.18) and (6.19) show opposite behavior of entropy fot Q and &. Entropy increases

for heat absorption coefricient; howeyer, it decreases for radiation parameter. It is also

noticed that value of entropy is morc near lower channel as compared to the upper channel

wall. This is due to temperature gradient (* (4 r4)). It is also observed that change in

entropy is less in the centre in contrast to the channel boundaries. Figs. (6.20-6.24) show

the irreversibility caused by heat transfer (i.e. Bejan number) for various parameters. For

higher P nd R, irreversibility due to heat diffirsion is decreased; however, it increases for

Brtt, 9o and Q,

6.3.5 Trapping

Stream lines are presented to show the flow paffem of the material against parameters of

interest. Trapping phenomenon for third grade material pararneter (A), cuvature



parameter (rK) and inclination (ao) is exprcssed by plotting stream lines through Figs.

(6.25'6.27). Figs. (6.25a-6.25c) show ttrat bolus size increases in upper and lower half of

the channel when p, is increased. Figs. (6.26a-6.26c) describe the influence of K on

streamlines. It is noticed that by rising K, in upper half of the channel, bolus size reduces

and moves in upward direction while in the lower half, bolus size increases and number of

closed sfieam lines also increases. Figs. (6.27a-6.27c) porhay increase in bolus size in

lower half of the channel (for 0" s J0 < 90').
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Fig. (6.3): w, for Hartman number with x = 0.3,ar= 0.5,K = 3, Pt= O.t.go = X.
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Fig. (6.9): Temperature for inclination of magnetic field with x = 0.1,4, = 0.5,K = 3,
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Fig. (6.21): 8e for Brinkmann number with x = 0.1,1 = 0.5, K =3, H =1, 04.05,
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6.4 Conclusion

This chapter discusses enhopy production in peristaltic motion of third grade fluid with

non-linear thermal radiation, magnetic field, variable thermal conductivity and heat source/

sink. The key points are listed below.

. Trcnd of the entropy generation is parabolic.

r Entropy generation is non-zero at the centre line (r = 0) and higher at lower wall in

comparison with the upper wall due to temperature difference at both the boundaries.

. Temperature and Enffopy boost up for the inclination and heat absorption pararnet€rs

while these reduce for radiation and thermal conductivity parameters.

. Irrevetsibility caused by heat transfer is greater for inclination and Brinkman number.

. Velocifi enhances at the centre of channel for larger material parameter whereas it

decreases for Hartman number.
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ChapterT

Entropy Generation Analysis in

Peristalsis of Sisko Fluid Subject to

Variable Viscosity and Thermal

Conductivity

Peristaltic flow of Sisko material with variable thermal conductivity and viscosity in curved

configuration is anallzed. Entropy is also under consideration here to study the

irregularities in heat transfer process. Problem is solved numerically. These solutions are

utilized to plot the behaviors of quantities of interest against the pertinent pararneters.

7.1 Mathematical Formulation

Here our aim is to inspect the entropy generation in peristalsis of Sisko material in a curved

channel of width 2a coiled in circle with cenfe O and radius R'. Components Wrand

llrof velocity are along radial (R) and urial (X) dircctions respectively. Both viscosity

and thermal conductivrff of Sisko material are taken as a function of space variable and

temperature respectively. Fluid flow in the channel is due to propagation of waves with

speed s, amplitude b and wavelength ,1, . Modeled problem is subjected to the no-slip

boundary conditions. Transfer of heat is due to different wall temperatures 4 and { (such



that To > 4 ) and I and { are the temperature at upper and lower walls respectively.

Mathematical form of the wall geometry is

R=tr(x,tr =+[o*4. n(Iw -",)], (7.1)

Flow expressions with considered assumptions are as follows:

R'#.*(,*' + Rlwr)=0, 0.21

,(+.m)=-ffi #.#*{to+n[s*].ffi#, (73,

,(#-h)=-#.Eb*(^.+n)s*)-&.ffi#, e4t

,,#).*L[mr) ffi*.
lXA.ffi#)'-..K(so-so) (7s)

Herc P denotes prcssutE, p fluid density, ,SiR,^Sm,,S.q. stress components, C, specific

heat, r(T) temperature dependent thermal conductivity and 7 temperature.

Extra stress tensor S for Sisko fluid model that can be stated as follows [100]:

r=[,.r]*otrl^')a, 
(7 Gr

in which the first Rivilin-Erickson tensor is

A =gradW+gradW , 17.71

Moncover, the parameters c and d represent the material parameters. Helr, z(> 0) is



powerJaw index for Sisko fluid model. For (n < l) it shows shear thinning and

(n >l)shear thickening. In addition, for (n=1, c--0, d=porc= p, d=0) the behavior

of viscous liquid is found.

The boundary conditions are

W, = 0, il. R=lz,

*"#=-A(r,-r) st R= -1, )
*,#=-pL@-r,) at R--7, I

(7.8)

in which ro is constant thermal conductivity at ambient temperature *d (A,Fr) are Biot

numbers. Space dependent viscosity is taken as follows:

tt(R) = tt"exp(-a'ft) t p"(l - o' R), (7.101

where #o represents constant fluid viscosity and a' is variable viscosity coefficient. For

d' =0, the present problem reduces to case of constant viscosity. Thermal conductivity is

(7.e)

17.ttl

taken as t€mperatur€ dependurt in the form:

r(r)= rc.lr+ p (r-4)],

in which B' is variable thermal conductivity coefficient. We consider the transformations

relatingto wave (x,7) anA laboratory (x,n)frames as

i=X-st, r=R, *--Wr-t, i=W. 17.t2l

We now define dimensionless variables, velocities, pressure, temperature, wave number,

peristaltic wall, Reynolds number, viscosity parameter, variable thermal conductivity

TM



parameter, Brinkman number, Prandtl number, curvafure, amplitude ratio, thermal Biot

parameters and Sisko fluid parameter as

@,4=(;,;), (n,,n,)=[+,+) , P=#, o=ffi,

o =1,,, o=1, *"=ff, o =L, F= F (rr-r"),

nr=$=., pr -t'"co-, t={,
Koltt-to) Ko A

.,. -b(, )'-', -;le )
Velocities (w'wr) through stream function (V) can be expressed below:

k6 ?ry _?tyn1 =-llr w2=-.' r+k& ' Ar

4=*, (A,p,\=(*,*),

Incompressibility conditions is now trivially satisfied while other expressions after long

(7.13)

17.t4l

(7.1s1

(7.161

wavelength and low Reynolds number give

k aP= ' 1(('*r)'s^),r+h 0x (r+*)'z A

@=0.
Ar

o(#)' * 1r * oey(#. *X). *(# @(y*,)),^ = o

Eqns. (7.14) and (7.15) implies

:,lA*((r+t)''-)]= 0.171



tff+Q+r)*=0,

, 
^ =(# - i,9.,))[,, -",) * r'(Y h(#.,)-' ],

and p= p@).

Dimensionless boundary conditions are

V=J,F12, ff=-, at r=th,

ff-a(a-t;=e, at r=-.h,

ff+ 9rO=0, at r=h,

where

, =!,** =w(h)-w(-h),

h=t+4sin(2zx).

Heat transfer rate in non-dimensional form is

o _0h a0@)'-a* ar'

7.1.1 Entropy

Entopy equation in dimensional form is as follows:

s*. = #('-)' . 

"[[u*o' 

- ffi. ffi#), - . #(,* -,* )], e 24l

where @, denotes the reference temperatu;, second term in Fan. (7.29 is for viscous

(7.18)

(7.le)

17.201

17.ztl

/,7.221

i,7.231



dissipation.

Dimensionless form of entropy generation thus becomes

4 = t =(x)' . #(y - *(y* r)) s_, 17.asl

in which N, shows Entropy generation pararneter, ,So enfiopy generation characteristic

and A temperature difference parameter. 
^So 

and A are given by

su -rc(Dg -rr', A = ,=': , 17.261
@?,o, (r,-r,\'

Fan. (7.2$ represents that entropy generation is a combination of irreversibility processes

known as heat transfer irreversibility (S*.,), and fluid friction irreversibility (So,)r.

Mathematically Bejan number 8e is written as

B'=(s-frL);
|.7.27l.

It is clear that 0 < Be <l . Here Be =0 conesponds to dominance of fluid friction effects

while 8e=I showshighirreversibilityduetoheatfiansfer.Furthermore, Be=I/2 implies

the same contribution for both.

7.2 Methodology

We have non-linear system of differential equations and thus cannot be evaluated exactly.

Hence we solve velocity Eqn. (7.14) and heat equation (7.16) subject to its boundary

conditions (7.20) is solved numerically by NDSolve command in Mathematica. This

command solves differential equation by Shooting method.
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7.3 Analysis

This section includes the physical interpretation of axial velocity, pumping characteristics

temperature and entropy generation for pertinent quantities.

7.3.1 Velocity

Figs. (7.1-7.3) display ot, T' and t effects ot wz.It is observed from Fig. (7.1) that space

dependent viscosity yields more resistance to fluid flow near lower wall. As a result the

amplitude of axial velocity w, decreases where flowing fluid has less resistance in the

vicinity of upper wall and so axial velocity increases for q . Fig. (7.2) depicts the response

of w, for increasing y' . Here w, has opposite outcome near upper and lower boundaries

respectively. Fig. (7.3) illustrates curvature t impacts on w2. This Fig. reveals that

symmetry of arial velocity is disturbed due to increasing t.

7.3.2 Temperature

This subsection is devoted to represent temperature e via r for different sundry

parameters ot, 0, f,, 9r, f' trrd Br through Figs. (7.4-7.9). From Fig. (7.a) it is seen

that for larger viscosity parameter a the temperatue decays. Influence of B on 0

dominates and 0 decreases (see Fig. (7.5). It is due to the fact that B enlarges the fluid

ability to disperse or soak up heat. This happens when wall temperature is less than the

fluid temperature. Figs. (7.6-7.7) exhibit effects of Biot numbers f, Pron 0. Temperature

decreased when p, and Prare incrcased. Fig. (7.8) illustrates the response of d for larger

fluid parameter y'. It is evident through this plot that temperature rises when 7'enhances.
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Fig. (7.9) represents temperature (a) for Brinkman number (fr) . fnrough this Fig. it is

revealed that temperature is murimum for an enhancement in Br. This shows prominent

effect of viscosity in Brinkman number which opposes the fluid flow. Due to resistance in

flow the collision of fluid particles increases and particles lose their enerry and as a rcsult

temperatur enhances.

7.3.3 Entropy Generation

This subsection is made to interpret the physical behavior of entropy generation and Bejan

number for various pertinent considered quantities (i.e. a , P, T' and BrA). For this

purpose Figs. (7.10-7.17) are presented. Figs. (7.10) and (7.11) are made to see the

influences of a and B on Ns respectively. It is clear from these Figs. that /Vs decays in

the vicinity of channel walls when a and p increase. No doubt entropy (iVs) anO

temperahre have direct relation. Thus these Figs. ensure the decay of temperature.

Influence of fluid pararneter f' cmr be seen via Fig. (7.12). This plot reveals that an

increase in 7' leads to more entropy. Fig. (7.13) depicts the effect of 8rA on iVs.

Physically dimensionless number Brlt explains the viscous effects and has direct

proportion to square of velocity. Thus an enhancement in 8rA corresponds to higher

entropy. Figs. (7.1a) and (7.15) addresses the influences of parameters a nd P on Bejan

number 8e rcspectively. It is evident tlnt Be has similar behavior for both a and p.

Response of Brinkman number ^BrA on 8e is illushated through Fig. (7.16). This figure

describes frrat Be increases for higher 8rA Impact of fluid parameter on Bejan number is

shovm in the Fig. (7.17). Clearly Bejan number enhances for fluid parameter.



7.3.4 Heat Transfer Rate

Bar charts are presented in Figs. (7.18) and (7.19) to illustrate the change in heat transfer

rate for pertinent parameters Br and F. Fig. (7.18) shows incrcase in heat fiansfer rate as

Br enhances. It is due to the dominant characteristic of viscosity in heat equation. Fig.

(7.19) gives that heat transfer rate is decreased when variable thermal conductivity

parameter increased.

7.3.5 Trapping and Pumping

Trapping phenomenon is found significant in problems regarding peristalsis. It creates in

the form a fluid mass called bolus which circulates internally and it is enclosed by

sfeamlines. The propagating peristaltic waves push such type of bolus forward with the

same velocity as that of waves. Trapping has importance in fluid transportation via

peristalsis. Figs. (7.20-7.22) are made to depict the sfeamlines naturc for various

parameters involved in the present analysis. Figs. (7.20a-7.2M) show sfieamlines behavior

for viscosity parameter a . ln this figure bolus size decay in the upper half however it

expands in the lower half of peristaltic channel for incrpasing d. Streamlines for y' can be

depicted through Figs. (7.21a-7.21c).It is found for higher 7' bolus expands near both

wall of channel. Figs. (7.22a-7.22c) show effect of t on streamlines. It is clear from these

figures that behavior of bolus is opposite in upper and lower channels. In the upper half

bolus confiacts while in lower half it expands.
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Fig. 7.1 : Velocity for viscosity parameter with r = 0.3,a, = 0.5,lt = 2,1 = 0.1.
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7.4 Conclusion

The worth mentioning outcomes ofthe modeled problem arc presented below.

' Similar r€sponse of axial velocity has been reported for incleasingfor a and /r.

' Variable viscosity and thermal conductivity parameters ( a and 9) are responsible for

temperature reduction while Sisko fluid parametrr T' enhances ttre fluid temperature.

. Minimum irreversibili$ (i.e. entropy) is observed in case of variable viscosity and

thermal conductivity.

. Variation in Bejan number is found same for both a and B.

r Present result is reduced to viscous fluid when f' =0 and z = l.
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Chapter 8

Electro-Thermal Transportation of

Carreau Fluids Through Peristalsis

in a Curved Micro-Channel

In this chapter the modeling of electroosmotic Caneau liquid flow through a microchannel

in curved configuration is studied. Fluid flow is because of both the peristaltic pumping and

electro osmosis effects. Energy equation is developed by viscous dissipation. Long

wavelength and small Reynolds number are chosen to simplifr related expressions. These

equations are further solved by numerical technique. In addition, EDL phenomenon is

experienced by the channel because of zeta, potential. Solution of the electric potential

function is obained analyically by employing Debye-Hlickelapproximation. Effects of

Helmholtz-Smoluchowski velocity, curvature, ratio of zeta potential, inverse EDL

thickness and Joule heating parameters on temperature, velocity and trapping

characteristics are presented and analyzed through graphical results.

8.1 Mathematical Formulation

We intend to investigate peristaltic flow of non-Newtonian incompressible fluid model

within microchannel in curved geometry. Unperturbed width of the channel is 2c, radius of

curvature is E and it has centre O. Components of velocity



W =(ry(X,n,t),Wr(X,n,t)) are taken along curvilinear coordinates (R,X). Here X

lies along with centre line of microchannel while R is perpendicular to it (See Fig. S.l).

Flow in curved channel is due to both motility of wall that is transverse deflection of

sinusoidal wave and electro-kinetic force (body force). An electric field (E) is imposed to

walls of micro channel.

,e(E)=a

Fig. 8.1: Geometry of problem

The wall shape is defined as:

R =+ E(X,,) = +(c - dcos2 (#),

here E r€prcsents radial distance of the wave from cenfie line, d wave amplitude,

(8.1)



wavelength and s wave speed. The wavelength l, of micro-curved channel is assumed to

be much larger than half width of channel such that *: f . No-slip conditions for
7

momentum equation at the boundaries are aken and temperature on walls is ?}.

Cauchy stress tensor (t) for Carreau fluid model is

t =S-P/,

, = 

[* 
+(ps -,,.")[,.("1"1)')*]", (8.3)

where S denotes extra stress tensor, I identity tensor, P pressurc, (h,p-) initial and

infiniteshearrateviscosity,|G|=@tace.ThefirstRivlin-Ericksentensor

(1,) is

l, =(druW)'+(aruw).

Eqn. (8.3) can also be written as:

sn/6[,.+l.l')",

(8.4)

sry - 
^1,. +(?H' \#.*#*), )+ 

J 

(, #),

s.*' 
^1,. +((,#r .(k.*#*nr)fx . ## - h),

snn o,,6 

[, 
. + (?#), .(k.#_hj,)* 

J(_, 
#\



Viscous fluid can be achieved by putting z =0 in Eqn. (8.5) .

Conservation equations for momentum and enerry for Carreau incompressible fluid

coupled with body force that is produced by action of imposed elechic field on free ion in

EDL have the following expressions Il I l, I l2]:

=R 9w, *94 *L=0.
R+R 0,Y AR R+R

o(ff . v v)w,. m)= -& #. #* ('.. (n + nl' 
)

.&#+p,E11,

o(ff . v.v)w, - ffi) = - #. F4L * (o, (* . 4) - (^ . nl

.ffi#+p"Ep,

-so)

(8.6)

(8.71

(8.s)

(8.101

(8.8)

n,(#. r* o1,) = .[#. oh #. & #)-#, -
.[#.1*#-ffi)'r"
with the boundaries conditions:

llr=0, T =To at R=-8,
l[r=0, T=To at R=8.

Here p denotes density, components ,S.{,r.,S}r,^Syy of the extra stress tensor S, C,

specific heat and 7 material temperatur€. Here the body force (F) is due to imposed

external electric field defined as:



F = p"E= n(Exex +Eod*),

in which p" is net charge density defined as:

p" = ze(n*-n-),

The electric field and electro-osmotic flow are related by:

E=-V@= r=@ a-+Pe,.-R+Ril( ^ AR 't'

with z ionic valence and z* are rcspective number densities of ions and counter co-ions.

(8.11)

(8.121

(8.13)

in which @ shows electric potential. By electrostatics theory, electric potential is given by

expression of Poisson equation as:

v2@= -4 --ze(n*-n-) - (8.14)
€€

subject to boundary conditions as symmetricznta potential at curved micro channel walls

o(-E) =€,, @(E)=8,. (8.1s)

The Nernst-Planck equation for the curved configuration in the absence of chemical

reactions is given by

#[Fh*[t'5*)1uh*(tu.")".#)] 
(s 16,

in which /r, denotes Boltzmann constant, 7i absolute temperature and D diffrrsivity of an

ionic species.

In laboratory frame, flow phenomena aro taken as unsteady while it is steady according to

wave frame of reference (f,r-). The relationship between the laboratory and wave frames



We define dimensionless pararneters: (r,x) radial and axial variables, p pessure, (z,v)

velocity components, d wave number, d, wave amplitude, d temperature, Re Reynolds

number, ft dimensionless radial distance of centerline from the wave, t curvature, Br

Brinkman number, Pr Prandtl number, z' Debye-Hiickel parametsr, U^ Helmholtz-

Smoluchowski velocity, R, ratio of zeta potential, f Carreau fluid parameter and @u

is:

F = R, i = x - st, or(t,r) = w2(x, R,r) - ", 4 (r, r) =ry (x, R,t).

thermal potential are defined as follows:

(r,x) = (;,I),, =#,, (nun,)=(+,+),

a.=!- e=T-To -_-ld,
c lo

,&=?, r=5,
c-

The fundamental equations (8.6-8.9) and

then the non-dimensional forms are

+%.!*-L-s,k+r & Ar k+r

k=8, Br--Fo!' , pr--Nr-
c rTo' K

/=*, t;=*, t;=&,

(8.17)

^co ==,
l

-Eh=-,
c

m =mc,

U,o =-"@o'' ,
lts

(8.18)

Re={,
a)

@o=k'To.
ze

(8.14) are first transformed in wave frame and

(8.19)

170



*,r[-rff . &r*. rff .ff)= -*. o **t -(r +r))

.ffi * * u 
^ ffi[,' # #. h*@. u#)),

"" 
r(u #. ffi # * n,X)= #. *#. # #

* o, ff $ -- s. ) + a, 
[ *. ffi* - ffi)",

##.#.hx-*'(T)=n
and

s * - 26,.(:)[, . + [(,*)' 
.(*.#*#l]* 

J 
{#},

s,, o h(:)[' . +[(,*)' .(*.**#l]' 
J{# 

. #* -H},

s. x _261,o(:)[, . +[(,*), .(*+q* 4f ]= J{*},

(8.21)

in which .l= 
WJ 

t. ,.orr-Hiicketparameter retated to the thickness of Debye

layer. The dimensionless boundary conditions are:

wz=-[, * r=!h,
0 =0, at r=*,h,

l(-h) = €,, 0(h) = €;.

(8.2s)

t7t



The Nerst-Planck Eqn. (8.16) in dimensionless form is:

r, a' (@, . \ #4* . 
", *)=(ffi # . #. h*)

,(**(ffix). h*(* (, . rt#)),

in which Pe is magnitude of Peclet number. In the above equation Pe62 +0, thus we

arrived at:

o'n- I an, I a( , 1)94). g.z7lF *64i, = +G4 
arln t"+ r) a, )'

with boundary conditions:

nr(i=o)=I, and %=0, at !=0. (s.2s)Ar Ar

Exact solution of the above problem is:

,* ="*p(+/). (s.29)

The Eqns. (8.23) and (8.29) under lubrication theory assumption we get:

a26 I ad*+--='-m'sinh/=9. (8.30)
Ar' Q+k) Ar

The ion distribution and electric potential are independent of the velocity of the fluid. The

above Eqn. (8.30) can be linearized by apply Debye Htickelassumption. This implies

a2d I adH;.h#-*'o=o, (8.31)

subject to boundary condition:

0(-h)=1,, o(h)=€;. (8.32)



The analyical solution of the Eqn. (8.31) subject to boundary conditions (8.32) is:

t(x,r)=€;(mro(m(k+r)).#,A1"(,1r+4y), (8.33)

in which

I, = Io(m(* -n)), L = Io(m(k *h)'), \ = In(m(*-n)), L = In(r(t*fr)). 
1s.3oy

In which Io and /* are respective modified Bessel functions of lst and 2d kind having

order zero.

Equations (8.19-8.22) under assumption of lubrication theory, eliminating pressure gradient

and utilizin E wz=#, nr=r*X,we reached at

#[fr !*F-e+\')+u:.*({,*r)#))=r, (83s}

*#.#.*(*-#),,,=0, (83G)

in which

s,,-^(r[,.+l#+(,#)]")W *1.*)), (837,

subject to the boundary conditions:

,=*I, !=1. at r=1;h,' 2' Ar
0 =0 at r =1.h.

8.2 Analysis

The modeled differential Eqns. (8.35-8.36) subject to boundary conditions (8.38) are solved
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by numerical technique using NDSolve command in Mathematica I I software. Results

have been presented below. These results arp drawn for the pertinent parameters of interest

like curvature effects of micro-channel, Carreau fluid model effects, electro-osmotic

velocity effects, inverse EDL thickness effects, influence of zetz potential ratio and impact

of Joule heating (electric dissipation) on velocity, trapping phenomena and temperature.

8.2.1 Velocity

One of the most significant characteristics in fluid flow is to evaluate the velocity of fluid

through curved microchannel. Figs. (8.2-8.6) arE prepared to analyze the flow

characteristics for significant parameters. Furthermore, a comparison of the viscous and

non-Newtonian fluid model is also presented. In these Figs., dual behavior of velocity is

seen in the microchannel and it changes near the central point. Figs. 8.2(a, b) show the

effects of curvature parameter on velocity profile. It is seen that velocity decreases for

higher values of /r at the lower rcgion of micro-channel; however, rcverse behavior is

observed for the upper half of the channel. Motrover, velocity is maximum near the centre

of the channel and it is symmetric at the axial location (x=0) for straight channel.

Through Figs. 8.2(a) and (b), it is observed that trend of velocity vercus curyature

parameter for viscous fluid is the same when compared with Careau fluid. However,

velocity is parabolic in shape for viscous fluid and has sharp edge near the centre for

Carreau fluid.

FiS. 8.3(a" b) illustrate the effects of electro-osmotic velocity (r,, ) for both viscous and

non-Newtonian fluids on velocity profile. Electro osmotic velocity is imperative parameter

of problem in hand. U,. has a direct relationship with extemally applied electric field E .
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' i@oE'). ot*r*, values of this parameter areIt is negative by definition as ,; 
[= 

-t O, )

considered for constant fluid viscosity, permittivity and applied elecfiical potential, while

applied axial electric field is changed to get a variation in velocity profile. Here (U^ = -t)

means that direction of applied electric field and direction of flow are same and (U^ = t)

indicates that direction of electric field and direction of the flow are opposite. While

(r; = 0) conesponds to case of peristattic tansport of non-Newtonian fluid through

curved geometry when elecho osmotic effects are not considered. From Fig. 8.3(a), it is

observed that velocity manifests when values of electro-osmotic velocity move from

negative to positive in lower half of micro-channel. Howeyer, fend of velocity is reversed

for the upper half of micro-channel. In Fig. 8.3(b), tnend of velocity is the same for viscous

and Carreau fluid qualitatively. In addition, with the change in elecho-osmotic velocity,

variation in viscous fluid is larger than Canpau fluid model.

Scrutiny of Fig. S.a(a) depicts that with a significant increase in m. remarkable

enhancement in uial velocity at lower half of channel occurc. On other hand, such an

elevation for m' is resulted in deceleration at upper micro-channel not exactly at the centre

but little beyond the centerline. Elecfio-osmotic parameter has an inverse relation with

Debye length. Obviously, decrease in Debye length that corresponds to enhanced value of

z', raises electrical potential (see Ref. tllll). By varying m'. velocity distribution is

confrolled effectively.

Impact of zeta potential ratio (n, ) on velocity is investigated through Figs. 8.5(a" b) by

175



takingdifferentvaluesof Rr(=-1,-0.5,0.5,1). Here, rtr=l meansthatpotentialatboth

the walls are equal and R, =0.5 corrcsponds thatzata potential at upperwall is half of

lower wall etc. Through these Figs., it is revealed that velocity increases by increasingzela

potential ratio ranging from Rd = -l !o I in the region r < Q and oonvetse behavior is

observed for the region r > 0. In Figs. 8.5(a) and (b), a contast of viscous and non-

Newtonian fluid model is presented. In this comparison it is concluded that behavior of

velocity for both the fluid models are alike. However, velocity changes significantly in the

case of viscous fluid. Fig. (8.6) is portrayed to reveal the effects of Carreau fluid parameter

(f) on velocity. It is depicted through this Fig. that velocity decays in the lower region of

the micro-channel whereas reverse trend is achieved in the upper region by increasing f.

Velocity in the vicinity of the ccnhe of channel remains unchanged. However, the change

in the entire channel is not so predominant.

8.2.2 Trapping

In peristalsis, one of the very interesting phenomena of trapping occurs. In this

phenomenon, behaviors of stream lines are analyzed which pr€sent a very clear picture of

flow pattem. In fluid movement, these contours plots have intrinsic flow characteristics

which is known as trapping. In trapping, closed paths (called circulation) are formed by

some cente stream lines which depicts smooth movement of fluid. Analysis of trapping

phenomena for non-Newtonian fluid flow subject to external applied electric field is

illustrated in Figs. (8.7-8.9).

The effect of inverse EDL param"ter (r') to trapping is scrutinized via Figs. (8.7a-8.7c).
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The smaller values of z' (i.e. when EDL thickness is more), bolus in size and shape are

different in both halves of the channel. Moreover it is seen that bolus size also varies by

varying EDL thickness. For l*ge m' (i.e. decreasing thickness of EDL wall), bolus in

number and size decreases in the lower region.

The impact of curvature parameter (t) to fiapping is investigated through Figs. (8.8a-

8.8c). The smaller values of curvature portray sfionger curvature of micro-channel and

when (&+.) the special case of straight channel is achieved. In Figs. 8.8(a" b), for small

values of (t), it is noticed that number of trapping botus is larger in upper half and less in

the lower half. Moreover, in lower half trapping bolus is elliptical in shape. In these Figs., it

is clear that for (k=1.2,3), bolus is asymmetric in upper and lower halves of the micro-

channel. However, when we move from curved to straight channel, trapping bolus is more

symmetric in both halves of the channel.

Figs. (8.9a-8.9c) are prepared to demonstrate the effects of electric filed (U^ ). ln these

Figs., it is observed that sizes of trapping bolus in both halves are different and asymmetric.

It is also noted that trapping streamlines are morc when electric field and flow direction are

same i.e. (U,o =-l) and less in number when elecfic filed direction and flow direction arc

opposite i.e. (u^ = l). tn Fig. 8.9(b), when electroosmotic effects arc not present i.e.

(U',, =O), ttre number of trapped streamlines arc morc in upper half and tess in the lower

half of the channel.
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8.2.3 Temperature

Figs. (8.10-8.14) are prepared to demonsfiate the development in temperature profile in the

channel with variation of Helmholtz-smoluchowski velocity (U;), curvatut parameter

(t), inverse Electric Double Layer thickness pararneter (z) and Carreau fluid parameter

(f). A comparison of viscous and Canpau fluid model is also made for various

parameters. It is clear from the Figs. (8.10-8.14) that temperature profiles are homogenous

in contrast with axial velocity profiles. Here tend of temperature distribution is parabolic

in the curved channel and maximum value of the temperaturc occurs in the central part of

the channel. Fig. 8.10(a" b) depict variation in temperature profile via r by varying Urr.

From these Figs. it is revealed that temperature decays by increased values of Urr. In these

Figs., when viscous fluid is compared with Carreau model, same behavior for temperatur€

is observed for both fluids. However, for Carreau model temperature varies rapidly than

viscous fluid. Figs. 8.1l(a, b) indicate curvaturc parameter effects on temperature

distribution for both fluid models. For smaller values of k, (for sfionger curvature

channel), a significant rise in temperatures is noted in the micro-channel. Whereas for

larger values of lb, (for straighter channel geometries) temperatur€ rtduces, it means

cooling produces in the straighter channel. In stronger curved channel, pealc in t€mperature

appears is in the upper half plane whetras, for sfiaighter geometries, it appear in the central

pafi of the channel. Fig. 8.12(a, b) exhibits temperature distibution against m>0. Heating

is produced by lower EDL thickness however cooling is encouraged Carreau fluid

parameter by higher elecfiical double layer thickness in the micro-channel. Fig. (S.13)
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depict t€mperature profile for Carreau fluid parameter (I). It is evident from ttre Fig.

temperature boosts up significantly for even the small variation in f. It shows that heating

is encouraged by Carreau fluid when it is compared with viscous fluid (f=O).

Enhancement in temperature is also evident in the Figs. (8.1l-8.l3xb) for Carreau model.

From the results of temperature distributioq it can be concluded that trend of temperature

profile versus pertinent parameters (Urr,k,n) are the same for both fluid models however

temperature rises significantly in case of Carreau fluid.
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8.3 Conclusions

This chapter addresses Carreau fluid flow in a curved microchannel via peristaltic pumping

with electric field as a body force. The boundaries of the channel are subject to low zeta

potential. key observations are mentioned below.

. Velocity shows dual response in the channel for various parameters due to curvature

effects.

. Careau fluid parameter is responsible to enhance the magnitude of temperature.

r Temperature rises for inverse EDL thickness parameters.

. Temperature is more in curved channel than sfiaight geometry.

. Trend of velocity and temperature is similar qualitatively for both viscous and non-

Newtonian fluids.
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Chapter 9

Conclusions
This thesis discusses peristaltic transport of non-Newtonian fluid in curved geometry with the

effects of variable physical properties of the materials. Heat and mass transfer effects are

considered' Enfopy is also modeled and investigated for various important quantities of

interest.

In chapter one, brief introduction and applications of peristalsis are presented. Literature

survey and fundamental equations of fluid mechanics are discussed.

In chapter two peristaltic movement of Jeffrey fluid with variable thermal conductivity and

viscosity ale addressed. Inctined magnetic field is applied to the flow. It is noted that axial

velocity shows dual response for various parameter. Temperature decays for higher values of

thermal conductivity and viscosity coefficients. Moreover, temperature is higher for curved

channel in comparison to the straight channel. It is also found that enhopy increases for

increasing inclination of magnetic field.

Chapter three addresses heat and mass transport in peristaltic flow of MHD third grade fluid

through curved channel' Soret and Dufour effects are examined. Chemical reaction with

activation energy is also attended. It is found that velocity increases for temperature dependent

viscosity parameter. Temperaturt incrcases for Dufour parameter whereas concentration

reduces for Soret variable. For higher activation energy parameter, concentration also



tnctEases.

Chapter four studied peristaltic transport of Sutterby fluid in curved configurations. Inclined

magnetic field is also imposed. Energy expression is modeled with effects of viscous

dissipation, non-linear thermal radiation and variable thermal conductivity. Enhopy generation

is also modeled. It is concluded that velocity decreases in lower hdf of the channel for higher

values of Harfnann number and curvature parameter. Entropy is minimum for higher thermal

conductivity and radiation parameters. Brinkman number is responsible for increases in heat

transfer rate.

In chapter five non-Darcy resistance in peristaltic fiansport of Sutterby fluid is addressed. Soret

and Dufour features have been retained. It is observed that velocity decay for Sufterby fluid

parameter. Concenffation decreases for both Soret and Dufour parameters while enfropy

increases for these variables.

Entropy generation for thermal radiation, heat absorption coefficient, variable thermal

conductivity and magnetic field effects are examined in chapter six. Third grade material flow

by peristalsis in curved configuration has been considered. It is noted that velocity enhances at

the centre of channel for larger fluid parameter whereas it decreases for Hartman number.

Trend of entropy generation is parabolic. Temperature and enfropy boost up for inclination and

heat absorption parameters while these reduce for radiation and thermal conductivity

parameters.

ln Chapter seven peristaltic flow of Sisko material is modeled with variable characteristics of

thermal conductivity and viscosity via curved configuration. Enhopy is also under



consideration to study irregularities in heat transfer process. It is observed that for larger

thermal conductivity parameter the temperature decays whereas it incrcases for Sisko fluid

parameter. Irregularity in heat fansfer is found minimum through entropy generation for larger

viscosity and thermal conductivity.

Chapter eight presents modeling of electroosmotic Carreau liquid flow through a microchannel

in curved geometry. Velocity shows dual behavior for different parameters in the curved

microchannel and is asymmetric near the cenfe due to curvature effects. Temperature

decreases for EDL thickness however reversed holds for electric dissipation parameter.

Finally, it is concluded that this study will provide rrmarkable applications in different fields of
life as peristalsis has prime importance in the fields of physiology, industries and engineering.
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