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Preface

This study is an application of statistical modeling for the estimation of extreme flood
quantiles. The data series consists of Annual Maximum Peak Flows (AMPF)
(maximum value extracted from the daily data series for each year) of thirty-six gauging
sites. These sites are located on various streams/rivers of north-western areas of
Pakistan. The focus of this study is two-fold; firstly, the application of L-moments
based regional flood frequency analysis (RFFA) coupled with machine learning
methods to estimate accurate and reliable flood quantiles considering different return
periods for gauged as well as ungauged sites. Secondly, assessing suitability of different
estimation methods for fitting Pearson Type-3 distribution. The assessment procedure
is based on simulation experiments considering variations in the sample size and shape
characteristics of the distribution of data series.

For the application of RFFA, as a preprocessing step, necessary assumptions with
respect to recorded data series at each site are validated through various graphical and
formal statistical tests. These include time-series graphs, run test, rank-sum test and
Wald-Wolfowitz test. This graphical and non-parametric analysis show that data series
of all thirty-six sites is random, independent, identically distributed and free of
significant trends. In the next stage, an established step-wise methodology of RFFA has
been used including identification of discordant sites, formation of homogeneous
region(s), assessing goodness of fit of a distribution for identified homogenous
region(s) and estimation of quantiles for gauged and ungauged sites. According to
results of discordancy measure, two sites “Badri” and “Chilah” are observed as
discordant sites. For further investigation, their observed data series have been analyzed
and found that high outliers are the main reason within the increase of their discordancy

values. Considering the existence of such high extremes in the data series is random as

iv
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well as important in RFFA. The sites “Badri” and “Chilah” are retained for further
analysis. The initial cluster of thirty-six sites is heterogeneous as showed by L-moments
based heterogeneity measures. Therefore, it is subdivided into four homogeneous
regions considering the most influential site characteristic, i.c., “Latitude” among
available, using wards clustering method and Euclidean distance. Each homogeneous
region consists of a different number of sites, twelve in Region 1, nine in Region 2,
nine in Region 3 and Region 4 has six sites. The geography of the sites located in Region
1, Region 2 and Region 3 is sub-mountainous while the sites located in Region 4 have
mountainous land. After the formation of homogeneous regions, |Z ""‘l statistic and L-
moment ratio diagram are used as goodness of fit measures. As at-least two
distributions have passed goodness of fit criteria for most of the regions. Therefore, a
simulation-based assessment analysis has been performed to identify most suitable
robust distribution for each region. The details are: Generalized Normal (GNO)
distribution is robust distribution for Region 1, Generalized Pareto (GPA) for Region 2
as well as for Region 3, and Generalized Logistic (GLO) for Region 4. Regional and
at-site flood quantiles for various return periods are estimated using quantile functions
of respective robust regional distributions. Backpropagation neural networks (BPNN),
radial bases function (RBF) and regression models with robust and OLS estimation
methods are used for the estimation of quantiles at ungauged sites within each
homogeneous region. Model evaluation criteria’s (error comparison of predicted
values) show that RBF is suitable method for Region 1 while BPNN is more appropriate
for Region 2, Region 3 and Region 4. The predictive ability of the model for T-year
flood quantiles at ungauged sites for each region is verified through historical
comparison of the highest recorded values of AMPF at each corresponding site for

shorter as well as longer return periods.



Accurate fitting of a probability distribution to annual maxima’s is a progressive area
of extreme values analysis. Different methods of estimation like L-moments, maximum
likelihood, method of moments and maximum product of spacing (MPS) are available
with choice of various models like PE3, Generalized Extreme Value, etc. Success
depends on the size and span of sample, severity of shape characteristics of the
distribution of data series and many others. This study provides comparison of three
estimation methods namely L-moments, maximum likelihood and MPS using PE3
distribution. Simulations experiments are designed considering variations in the size of
sample and values of skewness and kurtosis of the data. The results of simulation
experiments and a case study show that MPS estimation method is a reasonable
alternative and provides efficient estimates, especially when the data shows large
skewness and kurtosis with small to moderate size of sample.

Major details of the chapter are provided below:

Chapter 1 introduces the problem of research being addressed in this thesis. This
chapter includes discussion of some basic issues (distributional choice, regional
homogeneity and inter-site dependence) related to flood quantile estimation. Recent
literature related to the estimation of flood quantile for gauged and ungauged sites is
also part of this chapter.

Chapter 2 provides theoretical/methodological details of different measures/methods
used in this study. Description of the study area and details of sample data of AMPF of
36 sites with their respective site characteristics are also given in this chapter.
Chapter 3 includes results of preprocessing of the data series at each site.

Chapter 4 provides stepwise analysis of RFFA. This chapter covers comprehensive

details of application of L-moments based RFFA on the sites of north western areas of
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Pakistan. Notable point is that this is the first application of L-moments based RFFA to
the sites of this study area, which we believe a unique contribution of this thesis.
Chapter 5 presents the results of quantiles estimation for ungauged sites. For these,
regression models are developed using OLS and robust estimation methods as well as
machine learning methods (BPNN and RBF). Introduction of artificial intelligence or
machine learning techniques in analyses of extreme values will bring flexibility and
improve efficiency of the estimates, if handled properly. Three research papers based
on the findings of Chapter 4 and 5 are published in worthy journals. The details of
published papers are given below:

Applied Ecology and Environmental Research (2019) 17(3) 6937-6959.

Applied Ecology and Environmental Research (2020) 19(1) 471-489.

Journal of Flood Risk Management (2021) 14(4) 1-21.

Chapter 6 investigates the effects of three methods of estimation namely LM, MLE
and MPS considering PE3 distribution. Assessment is based on a two-step approach.
The first step uses simulation experiments while the second is based on empirical
analyses, by varying size and shape characteristics of the sample. The results of this
chapter provide useful guidelines for fitting PE3 distribution, especially in modeling of
extreme values. The findings of this chapter are also published in a reputable journal
with following publication details:

Water Resources Management (2021) 35(5) 1415-1431.
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Chapter-1

Introduction:

Frequency analysis of extreme events like floods, rainfall, winds and droughts is
necessary for effective planning and management against these natural disasters. It is
also useful for the design and development of hydrological structures such as dams,
barrages, culverts and bridges, to ensure public safety and efficient utilization of
available water resources and so on. The available literature includes a variety of
methods for the frequency analysis of extreme events. These methods are mainly
divided into at-site and regional frequency analysis (RFA). Both these methods have
certain advantages/disadvantages associated to them. However, at-site frequency
analysis may not be a preferred choice for the estimation of quantiles due to the
availability of a shorter or limited span of observed data series with respect to extreme
events at any site. Additionally, the estimates cannot be interpolated/extrapolated
effectively for any specific site with no observed record (such sites are commonly
referred as ungauged site). Estimates using at-site frequency analysis may suffer from
sampling variability especially with the shorter span of observed data while estimation
for longer return periods (Cunnane, 1988; Hosking and Wallis, 1993). In this scenario,
RFA is an optimum choice, i.e., pooling data of different sites based on similar site
characteristics. Major advantages of using RFA include robust estimates of quantiles at
gauged sites and estimation or improvement of quantiles at ungauged or
partially/poorly gauged sites within the homogeneous region(s). Keeping in view the
advantages of RFA, this study is designed to apply a standard methodology of L-

moments based RFA available in Hosking and Wallis (1997) to a new and important



study area of Pakistan. The observed variable of analysis at different sites is annual
maximum peak flows because L-moments based RFA is most suited and utilized for
annual maximum series rather than Peaks-over a threshold or any other
monthly/quarterly/seasonal series (Cook, 1985; Hosking and Wallis, 1997; Palutikof et
al., 1999 and Ferreira and de Haan, 2015).

Another important consideration in frequency analysis of extreme events is the choice
of models or probability distributions for fitting the data series. Many probability
distributions with two, three, four and five parameters are available and used for the
fitting of extreme values related to floods, rainfall and winds. Moreover, interesting
debate is available in literature with respect to modeling of extreme values and
generally there is a consensus that distributions with three to five parameters are
appropriate to consider as candidates. The use of two-parameter probability
distributions resulted in biased estimates of tail quantiles when the shape of frequency
distribution is not well estimated by the fitted distribution (Hosking and Wallis 1997).
Secondly, with respect to the estimation methods, a wide variety is available including
method of moments, maximum likelihood, probability weighted moments, L-moments,
trimmed L-moments, L-H moments, maximum product of spacing, etc. There are no
universal criteria linked with the use of a single parameter estimation method. However,
useful guideline suggest that success depends on the span of data and shape
characteristics especially skewness and kurtosis of the data series at different sites. This
study has used a set of five three-parameter distributions namely Generalized Extreme
Values (GEV), Generalized Pareto (GPA), Generalized Normal (GNO), Generalized
Logistic (GLO) and Pearson Type-3 (PE3), with L-moments as estimation method.
Estimation of quantiles at ungauged sites using the estimates of gauged sites is an

important part of RFA analysis. For ungauged T-year flood quantiles estimates using
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estimates of gauged sites, various methods are in practice including regression analysis
with linear as well as non-linear approaches, artificial neural networks (ANN), etc.
None of these methods, however, received universal consensus. Adequacy of the
method depends upon the quality and availability of the site characteristics and the type
of relationship with the observed records at various sites of a homogeneous region.
Therefore, keeping in view the available number of sites of analysis, span of data and
limited site characteristics, we have used regression models using ordinary least square
(OLS) and robust estimation methods. Additionally, two machine learning approaches
(back propagation neural network (BPNN) and radial basis function (RBF)) have been

used for the estimation of quantiles at ungauged sites within homogeneous region(s). A
comparative analysis has been provided to identify most suitable method in given
scenarios. A comparison with historic values is also illustrated to highlight the practical
utility of the estimated quantiles.

Choice of model and estimation methods is also a debatable issue in at-site frequency
analysis especially when the region understudy is showing extreme heterogeneity and
not suitable to perform RFA (Soukissian and Tsalis, 2015). The analysis exploring
utility of at-site frequency analysis, especially in the presence of small sample size and
high skewness in the observed data series, is also part of this dissertation. PE3
distribution is selected as candidate distribution because it is important probability
distribution which is used for the for modeling of extreme events. Comparison of three
estimation methods (two common/popular methods L-moments and maximum
likelihood while one relatively rarely used method maximum product of spacing) has
been provided by varying size of sample and shape characteristics using simulation

experiments and applied example.
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1.1 Background of the study

Pakistan, with integrated river basins, has a long history of floods since 1947 (from the
year of its independence). Twenty-four major floods have occurred in the country from
1947 to 2016. Resultantly, the country has suffered direct economic loss of about
38.171 billion USD, approximately 12,502 lives lost, around 197,273 villages
destroyed/damaged and over 616,598 Sq.km area affected. Floods are increasing in
frequency and intensity in the country by the year 2000 and their trends are alarming from
2010 onwards. The flood that occurred in 2010 was the worst one in the region during
the last 80 years or so (Government of Pakistan, 2017). These floods mainly occur due
to heavy monsoon rainfall which results into massive water inflows in the main rivers,
and main hill torrents nullahs/streams having sharp slopes which significantly enhance
the flood intensity and destroy the banks severely.

Indus River is a major river of Pakistan. Indus River System is known as the world’s
biggest river system due to its very large basin area. This river system has two major
sections of tributaries. One section (commonly known as eastern tributaries) consists of
rivers Jhelum, Chenab, Ravi, Beas and Sutlej and other section has Kabul, Swat,
Panjkora, Bara, Shah Alam and Jundi as north-western tributaries. Eastern tributaries
originate from Jamun and Kashmir (A disputed territory between India and Pakistan)
and flows from north to south in the Punjab province. Western tributaries of Indus River
mostly originate from northern areas of Pakistan except Kabul River (its origin is in
Afghanistan, the neighboring country of Pakistan) and flows from northwest to south
in the area of Khyber Pakhtunkhwa (KPK). These rivers and streams of the region of
KPK has natural flow (less effected from man made changes). Therefore, are suitable

to perform L-moments based RFA methods using data series of different gauging sites.
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The geography of KPK is mountainous from north side and sub-mountain in south.
Therefore, area of KPK is vulnerable to flash flooding due to its steep geography and
uncontrolled flow of rivers/streams. This region is badly affected due to flash floods in
1992 and 2010 (Pakistan Meteorological Department, 2012). Therefore, the need of
modeling extreme flow behavior of the observed records of various sites in this region
is immense. The flood estimates of modeling procedure can be used for effective
preventive measures against these natural disasters, generation of flood risk maps,
management of stream water and feasibilities/designing of new hydraulic structures.

Some pictares of 2010 flood are given in Fig (1.1).




Fig. 1.1: Some pictures of the 2010 flood disaster in KPK Pakistan.

Another important aspect is that Pakistan is a developing country with agriculture sector
as a major contributor to its gross domestic product (GDP). Agriculture sector
contributes about 24 percent in the GDP of Pakistan (Pakistan Burean of Statistics,
2018). Therefore, for sustainable economic growth and to ensure food security in the
country analyzing the available river water in the area of KPK, using standard

methodologies is a primary need of time. The resultant future estimates of floods



quantiles through this study will be useful for agriculture water management and

optimum utilization of the available water resources.
1.2 Literature review

1.2.1 Application of L-moments based RFFA

RFA using L-moments is a well-documented popular methodology with application in
several case studies around the world. Highlights of few studies of RFFA are provided
below:

In Malaysia, Lim and Lye (2003) used RFFA to analyze annual maxima series of 23
gauging sites of Sarawak River basin. For the division of group of 23 sites into
homogeneous groups, 6 site characteristics namely basin area, specific discharge,
return-period storms with duration of 12 h (T5, T10, T20, T50), mean annual rainfall,
longitude and latitude were used. The study area was divided into two homogeneous
regions using Euclidean Distance. The results showed that Generalized Extreme Value
(GEV) and GLO were best fitted distributions for homogeneous regions.

In India, Kumar and Chatterjee (2005) used annual maxima series of 13 gauging sites
of North Brahmaputra region. The considered region was homogeneous in nature as
showed by the results of L-moments based heterogeneity measure. GEV distribution
was identified as robust distribution for the estimation of quantiles.

Alam et al. (2016) selected 18 sites to perform L-moments based RFFA. Two sites
having large values of discordancy measure were dropped from the analysis and the
region consists of remaining 16 sites was homogeneous. The ZP* goodness of fit
methods showed that GEV and Gumbel distributions were identified as good fit
regional distributions.

In Turkey, Saf, (2009) used K-mean cluster analysis with first five L-moments site

statistics to divide the 47 gauging sites into three homogeneous regions. Findings of the
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study showed that Pearson type-3 (PE3) is best fitted distribution for Antalya and
Lower-West Mediterranean regions and GLO for Upper-West Mediterranean region.

Aydogan et al. (2016) divided the 29 gauging sites of Coruh Basin of Turkey into four
homogeneous regions using geographical suitability method. Results of the study
showed that PE3 is best fitted distribution for Region-1 and Region-4, GPA for Region-
2 and GEV for Region-3.

In China, Yang et al. (2010) utilized geographical and statistical attributes to divided
19 gauging sites of Pearl River into three homogeneous regions. Outcomes of the study
showed that GEV is best fitted distribution for first region, Wakeby distribution for
second and GLO distribution for third region.

In Iran, Mosaffaie (2015) divided 15 gauging sites of rivers located in Qazvin province
into two homogenous regions. Initially, based on the factor analysis basin area is
identified as an important site characteristic that have significant affects on the
homogeneity of regions among others like basin slope, perimeter, main channel slope
and main channel length. Then basin area is used for sub division of gauging sites into
homogeneous region using Ward Clustering with Euclidian Distance. Finding of this
study showed that GLO distribution is robust distribution for first region while GPA
distribution for second region. Mesbahzadeh et al., (2019) considered a region of 9 sites
of Loot River basin to perform RFA,, as the results show that entire region is
homogeneous and goodness of fit Z* statistics show that the Log-Pearson type-3 was
the best fitted regional distribution.

In Korea, Lee and Kim (2019) used data of 20 gauging sites of Chungju dam basin to
performed RFFA and three distributions GLO, GEV and GNO have passed the criteria
of goodness of fit. A simulation analysis was performed and resultantly GNO was

identified as robust regional distribution. Similarly, many other applications of RFFA



are available in the literature advocating applicability, significance and effectiveness of
this methodology. This methodology has also been used for the quantile estimation of
other extreme events like rainfall, droughts and winds. Two important studies providing
inter-comparison of various regional flood estimation procedures are by GREHYS
(19964, b). A brief of the development in RFA has been illustrated in Malekinezhad
and Zare-Garizi (2014).

1.2.1.1 A brief of application of RFA using L-moments in Pakistan

RFA has also been applied in few published studies related to extreme values of rainfall,
floods and winds in Pakistan. For instance, for rainfall (Ahmad et al. 2013; Shahzadi et
al. 2013; Ahmad et al. 2016; Ahmad et al. 2017a; Hussain et al. 2017; Khan et al. 2017),
for floods (Hussain and Pasha, 2009; Hussain, 2011; Ahmad et al. 2016; Ahmad et al.
2017b; Hussain, 2017; Batool, 2017), for wind (Fawad et al. 2018; Fawad et al. 2019).
Since this study has a focus on flood frequency analysis. Therefore, highlights of the
published literature regarding flood frequency analysis are provided in the following
section:

Hussain and Pasha (2009) identified Generalized Normal (GNO) Distribution as robust
probability distribution considering annual maxima’s of river discharges for seven sites
of three major rivers of Punjab namely Jhelum, Ravi and Chenab. Hussain (2011) used
annual maxima’s of river discharges of seven sites located on the Indus River to
perform RFA. The results showed that Pearson Type-III (PE3) is a robust distribution
for the upper half of the Indus River while Generalized Logistic (GLO) is a robust
distribution for the lower half. Ahmad et al. (2017b) performed RFA using 10 days
average of low flows of nine sites located on different rivers of Pakistan. The study
area, consisting of nine sites, was divided into two homogeneous regions. Region 1

having sites Tunsa, Tarbela, Nowshera, and Kalabagh while Region-2 includes
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Chashma, Guddu, Mangla and Marala. GNO distribution for Region 1 and Generalized
Pareto (GPA) distribution for Region-2 were identified as best fitted distributions.
Hussain (2017) performed RFA using annual maxima’s of river discharges considering
gauging stations of major rivers of Punjab, Pakistan, namely Ravi, Sutlej, Jhelum and
Chenab. Two homogeneous regions were defined for the study area. Region-1 contains
sites Mangla, Rasul, Marala, Khanki, Qadirabad, Balloki, Sidhnai, Suleimanki and
Islam, while Region-2 have only sites Trimmu and Panjnad. The results showed that
PE3 is most suitable for Region-1 while GNO distribution is best choice for the sites of
Region-2,

These aforementioned details reveal that the sites of major rivers of Punjab and the

Indus River have been the focus of studies so far. Hence, there is a need to analyze

- extreme values of sites located on the rivers and streams of other parts of the country,

especially Khyber Pakhtunkhwa (the north-western area of Pakistan). Another
important reason of modeling annual maximas of different sites of the study area is that
rivers and stream located in this area are the second major sources of river water in
Pakistan.

1.2.2 Estimation of quantiles at ungauged sites

Another interesting dimension of analysis in this study is the development of models for
the estimation of quantiles at ungauged sites. In the existing literation, a broader division
of estimation methods is development of linear models using ordinary least squares, non-
linear models using different estimation methods and machine learning techniques
including artificial neural network, random forest regression, etc. Brief details of few

studies are provided below:
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1.2.2.1 Studies using linear regression models

Jingyi and Hall (2004) proposed a multiple linear regression model for ungauged flood
quantiles estimation. The selection of explanatory variables was performed through
backward elimination method. Resultantly, four site characteristics (catchment area,
weighted mean river slope, average annual rainfall, mean annual maximum catchment
1-day rainfall) out of eight were selected for the development of model. Griffis and
Stedinger (2007) proposed a generalized least square (GLS) method for the estimation
of regression model. The study showed that GL'S method gives more efficient and
reliable estimates of hydrological regression model parameters as compared to OLS
and weighted least square (WLS). Zaman et al., (2012) used two variables design
rainfall intensity and catchment area as regressors for the development of regional
forecast model for ungauged sites. Smith et al., (2015) selected average annual rainfall
and catchment area as explanatory variables for the estimation of mean annual flood
with in the homogeneous region. Komi et al., (2016) developed a regression model
using three site characteristics drainage area, mean annual rainfall and mean basin slope
as regressors for the ungauged flood quantiles estimation. Yang (2016) developed a
forecast equation for ungauged sites using drainage area as independent variable.
Hailegeorgis and Alfredsen (2017) developed linear regression models using catchment
area as explanatory variable.

The above-mentioned studies developed linear models between mean of observed data
series at different sites (dependent variable) and their respective site characteristic(s)
(independent variable(s)), but only few of them have illustrated complete theoretical

and statistical justifications of the developed models.
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1.2.2.2 Studies using non-linear models

Scarce literature is available with respect to the development of nonlinear relationship
between site characteristics and observed data of gauged sites for ungauged quantiles
estimation. Anilan et al., (2018) used the site characteristics drainage area, mainstream
slope, mean annual rainfall, stream density, elevation, and rainfall intensity as
explanatory variables for development of regional forecast model for ungauged sites.
The results show that non-linear model gives reliable estimates as compared to linear
models. Cassalho, et al., (2019) developed non-linear regression model by using site
characteristics area, mean slope, stream gradient, and flow length as independent
variables. The findings of the study showed that nonlinear models performed better than
linear models. Khan et al., (2019) proposed a quadratic regression model based on
single explanatory variable “average rainfall in monsoon” and used robust estimation
method for estimation of model parameters. Durocher et al., (2019) introduced
nonparametric regression methods for ungauged flood quantiles estimation. Few other
studies have showed that nonlinear relationships may provide more accurate estimates
of flood quantiles at ungauged sites as compared to linear relationships (Sivakumar and
Singh, 2012; Ouali et al., 2017). In an important study,

Anilan et al. (2016) illustrated details of commonly used site characteristics as independent
variables in different studies around the world for development of regression models. These
include drainage area, slope of stream, and mean annual rainfall. Adding to this point, we
emphasize that identification of the most influential site characteristics, among available,
having strong correlation with the dependent variable is an ongoing area of research.
Development of an adequate model depends on plenty of features including availability of
data with respect to site characteristics and the nature of relationship of site characteristics

with observed data series.
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1.2.2.3 Studies using machine learning models

Due to recent developments in computational resources, another evolving choice in
estimation methods, especially for estimating flood quantiles at ungauged sites, is
machine leaming models including artificial neural networks (ANN). ANN is a
nonparametric approach that works like biological operative of a human brain
(Rumelhart et al., 1985). This method provides reliable results over other estimation
techniques including regression analyses (Liu et al., 2009; Landi et al., 2010). ANN
methods are used to handle various hydrological problems such as river/stream flood
forecasting and rainfall modelling (Govindaraju, 2000; Dawson and Wilby, 2001;
Abrahart et al., 2004). In a study, Dawson et al., (2006) made a comparison between
ANN models and regression model to predict ungauged flood quantiles and the value
of index flood. The results show that the accuracy of ANN estimates was better than
regression. Shu and Ouarda, (2007) proposed canonical correlation based ANN model
for ungauged quantiles and compered its efficiency with single ANN models. The final
recommendation is that ANN model based on canonical correlation provides better
estimates of quantiles. Aziz et al., (2013) compared the ANN model with fuzzy-based
methods and gene expression programming for the prediction of ungauged flood
quantiles. In another study, Aziz et al., (2014) performed an RFFA and made a
comparison between ANN model and quantile regression for ungauged flood estimates.
Anilan et al., (2016) compared the accuracy of ungauged flood quantiles obtained
through various regression models with ANN. Ouali et al., (2017) illustrated that the
relationship between site statistic and site characteristics is strongly nonlinear.
Therefore, ANN methods can give more reliable estimates of ungauged flood quantiles.
All these studies cited above may lead to a conclusion that ANN models can provide

better estimates of quantiles for ungauged sites as compared to regression models. One
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major advantage of ANN is its capacity to identify complex nonlinear relationships and
before numerical analysis, there is no need to express such a relationship in
mathematical form as the data itself recognizes the model form through the use of
artificial intelligence (Hjelmfelt and Wang, 1996).

In hydrological analysis, among different methods of ANN, the radial basis function
(RBF) network is a preferred choice because of its accuracy to estimate non-linear and
complex functions (Ham and Kostanic, 2001). Allahbakhshian-Farsani (2020)
suggested that support vector regression model based on RBF provides more reliable
estimates of flood quantiles relative to other machine learning methods. In another
study, Haddad and Rahman (2020) showed that RBF method gives more consistent
quantile estimates for ungauged sites. A brief of the predictive ability of RBF network
in extreme floods is available in Lin and Chen, 2004; Lin et al., 2009 and El-Shafie et
al., 2009. Therefore, there is a clear margin of use of machine learning methods for
development of relationship for estimation of flood quantiles at ungauged sites in
Pakistan. In this study, we have used linear, non-linear and machine learning methods
for development of functional relationship for prediction of flood quantiles at ungauged
sites. Comparison has been made using various accuracy measures to obtain the most
suitable method.

1.2.2.4 At-site frequency analysis in case of heterogeneous region(s): Choice of
estimation methods

In RFA application, homogeneity in characteristics of observed record a part from a
site-specific scale factor for a group of sites or a region is a critical and essential
requirement. In situations, when it is difficult to form homogenous region(s) of the
study area, at-site frequency analysis becomes alternate choice. This scenario generates

various other challenges including choice of model (probability distribution) and
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estimation methods. Success depends on various factors like size and span of the
observed record and shape of the distribution of observed data at a site. In this study,
we have analyzed the suitability of PE3 distribution for fitting extreme values with three
estimation methods namely L-moments, maximum likelihood and maximum product
of spacing. PE3 is an important probability distribution for modeling of variety of
extreme events, In terms of estimation methods, L-moments and MLE more commonly
used for the distribution fitting as compared to MPS. Recently, in some case studies,
accuracy of MPS method has been compared with LM, MLE and few others. For
example; Soukissian and Tsalis, (2015) illustrated a comparison between different
methods of estimation like LM, MLE, MPS and others using GEV distribution for
extreme winds quantiles estimation. Their results showed that the estimates based on
MPS were better than MLE, LM and others in terms of bias and root mean square error.
Asquith et al. (2017) performed a study to assess the uncertainties associated with
smaller return period flood quantiles. They reported that accuracy of the estimates based
on MPS and LM is comparable to each other. Due to these interesting facts, we have
also analyzed the effects of MPS, MLE and LM in the case of fitting PE3 distribution
considering a variety of sample sizes and shape characteristics using simulation
experiments and a case study. This portion of the study is a novel contribution in the
literature of modeling of extreme values. Further details are provided in chapter 6.

1.3 Gaps in the literature

These aforementioned details reveal that there exist few interesting areas of research
which needs further investigation with respect to the estimation of flood quantiles,
especially in Pakistan

a. L-moments based RFA has never been used for the estimation of flood quantiles

for the sites of KPK and no such methods/approaches are available for the reliable
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estimation of flood quantiles at ungauged or poorly/partially gauged sites within the
study area.

b. Choice of model and estimation method for at-site analysis in case the region under
study is heterogeneous

1.4 Objectives of the study

The current study is designed to achieve the following goals.

» To observe and discuss the general trends and tendencies of extremes of floods, i.e.
AMPF at various sites of north-western areas of Pakistan using descriptive statistics
in terms of L-moments.

» To obtain regional and at-site estimates of flood quantiles using L-moments under
RFFA for various return periods.

» To assess the accuracy and reliability of the estimated regional and at-site quantiles
using simulation experiments.

» To develop functional relationship between variables for estimation of flood
quantiles at ungauged sites using linear, non-linear and machine learning methods,
etc.

» To provide useful guidelines for choice of estimation methods in at-site frequency
analysis using PE3 distribution, especially when the region understudy is

heterogeneous.

1.5 Organization of subsequent chapters

Rest of the thesis organized as follows. chapter 2 describes different methods used for
analysis, chapter 3 provides results of data screening for frequency analysis, chapter 4
elaborates detailed application of RFA, chapter 5 illustrates the development of forecast
models for the estimation of quantiles at ungauged sites and chapter 6 covers guidelines

for choice of estimation methods among LM, MLE and MPS in case of PE3 distribution
16



for at-site frequency analysis considering variations in size of sample and shape
characteristics. Last section provides summary and conclusions of the study and some

recommendations for future research.
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Chapter 2

Material and Methods

2.1 General

This chapter gives a detailed description of methodology used in this study. As per the
sequence of execution, general description of methods/steps include: 1) Application of
non-parametric tests for pre-processing of the data series at each site 2) L-moments for
descriptive analysis and RFA including formation of homogeneous region(s),
distribution fitting and quantiles estimation 3) Assessment analysis of the estimates
using simulation experiments 4) Application of linear, non-linear and machine leaming
methods for the estimation of quantiles at ungauged sites 5) assessment of different
estimation methods (L-moments, maximum likelihood (MLE) and maximum product
of spacing (MPS)) in at-site frequency analysis using PE3 distribution in presence of
different sample sizes and shape parameters/characteristics.

Details of the each adopted method and technique for the analysis have been given in

the following sections of this chapter.

2.2 Nonparametric tests

While dealing with data in any applied study, preprocessing of the available data is
crucial as it directly impacts the quality of estimates. In a statistical analysis
preprocessing generally includes but not limited to cleaning of data, checking and
estimation of missing values, detection of outliers, randomness of data series, and
independently and identically distributed sample free from significant trends. This
study is based on secondary data of annual maximum peak flows at different gauging

sites for the application of L-moments based RFA. Therefore, non-parametric tests have
18



been used to deal with sensitivity of underlying assumptions of parametric methods as
samples of extreme values usually have small span and non-normal behavior.

Details of each non-parametric test have been provided below.

2.2.1 Grubbs and Beck Test

Grubbs and Beck (1972) introduced a test for the detection of outliers within the sample
data. This test is successfully applied for detection of outliers within the annual maxima
and annual minima series of hydrological data (WRC, 1981).

For the application of this test, initially, the sample data sets are transformed by taking

the natural logarithm. Then the values of lower and upper bounds from the ranked data

sample are calculated using:
X, =EXP(Y - Kn.az’:v) 2.1)
Xy = EXP(Y + K, ,s,) 22)

Where ¥ is mean and Sy is the standard deviation of transformed sample data, Ky 4 is

the critical value of the GB and N is the sample size of a random variable.

2.2.2 Runs test
Run test of randomness given in (Bradley, 1968; Hirsch et al., 1992) has been used to
check the randomness of observed data set of each site. The test statistics of the Run

test for the large sample size is given below:

_ R—E(R)
~ SE(R) 23)

Here, R is the total number of runs, E(R) is the expected value of R, S.E.(R) is the
standard error of R.

2.2.3 Rank Sum test

To validate the assumption of the identical distribution of the data set of each site, Rank-

Sum has been used. The details of this test are available in (Hirsch et al., 1992):
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For small samples, i.e. if n, and n, are less than 10, following test statistics is used

W = mini(W; — W) 24)
where, W, is the sum of the rank of the first group and W, is the sum of the rank of the
second group.

In the case of dealing with large sample, i.e. greater than 10, the test statistic is

z, ==k (2.5)
Here

uw = n1(n1:nz+1) and a_w = ’ﬂlnz(n;;nz"'l)

2.2.4 Wald-Wolfowitz test

For the validation of an important assumption regarding the data series at each site that
it is independent and free from significant trends, Wald-Wolfowitz test (Wald and
Wolfowitz, 1943) has been used. For a sample size of less than 10, the test statistic is
given as:

K =35 xix41 + Xy % (2.6)

The expected mean and variance is

_ si-s,; 2 _ S3-5, _ 2 , St-4sis;+4s;55+53-2s5,
M =0 and oj; = n-1 E(K)*+ (n-1)(n-2) ’

withs, =Y, xf,t =1,2,3,4

For a large sample, i.c. greater than 10, the test statistic is computed as;

Ty =2 @7
2.3 Method of L-moments

Hosking (1990) introduced a method of estimation known as L-moments (MLM) based
on order statistics of the observed data series. MLM gives reliable and robust estimates
of parameters of probability distribution especially in case of small sample.
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Suppose “X” is a continuous random variable with known probability distribution

function. Its first four population L-moments can be derived as flows.

1 = E(Xy) X))
2, = %E (X22 = X12) (2.9)

Ry = 3E(Xy3 — 2Kz + X1) (2.10)
Ay = FE(Xysg = 3Ky + 3K — Xya) @.11)

The general form of the above equations can be written as.

b =r B0 (77 1) By @12)
The expression E(X,.,) is defined as
E(X,.p) = (rTn%-T). Jy x(FYF™1(1 — Fy~rdF @.13)

Here F is the cumulative distribution function (CDF) of random variable X.
For the quantities defined in Eq. (2.8 and 2.9), 4, is the location parameter while A, is
the scale parameter of probability distribution.

The first four sample L-moments analogues to Eq. (2.12) can be obtained as follows.

I = b, 2.14)
I, = 2b; — by @.15)
Iy = 6b; — 6by + by 2.16)
l = 20bs — 30b, + 12b, — b, @.17)
Here

br =1 S e D 2y T =0020n— 1 (2.18)

L~-moment ratios are defined as.

Lecv, T= % the distribution having positive values than 0 < T < 1

L-skewness, T; = :’jme distribution having positive values then 2T -1 < Ty < 1
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L-kurtosis, T, = %the distribution having positive values then % GT?-1)<T, <1

For higher-order L-moment ratios, the general expression is, T, = r=3

Sy

Sample estimates of location, scale, L-cv, L-skewness and L-kurtosis are represented
through 14,1, t,t; and t, respectively. Numerical estimates of L-moment ratios are

obtained by replacing the sample estimates of lambdas (4) in the above expressions.

2.4 Steps and measures in RFA

This study has used L-moments based RFA, proposed by Hosking and Wallis (1997)
and applied in various case studies around the world. It is a stepwise approach including
calculation of discordancy measure, formation of homogenous region(s), identification
of best suited probability distribution and estimation of parameters and quantiles. A
summary of few measures of the procedure is given below:

1) To recognize the discordant site(s) i in a group of N sites, we define a
dissimilarity measure:

Dy =ZN(u; ~B)TS™(u; — ), i=123,...N 2.19)

Where § = XN, (u; — ) (u; — )7

u; represents a vector of sample L-moments ratios of site i, % is their mean and N is the
total number of sites.

2) An important step in RFA is the formation/identification of homogeneous
region, i.e. grouping sites with similar site characteristics. Heterogeneity measures
based on sample L-moment ratios L-CV, L-Skewness and L-Kurtosis are used to test
the regional heterogeneity. If the value of heterogeneity test is less than one the region
is considered as homogeneous, if it lies between one and two the region is possibly

homogeneous and the region is regarded as definitely heterogeneous if the value of the

22



test is greater than two. The values of heterogeneity tests based on the sample L-
skewness and L-kurtosis rarely exceed from two for a complete heterogeneous region
and both tests have less power to differentiate between homogeneous and
heterogeneous regions. Consequently, the heterogeneity test based on L-CV considered
to be more power full than the tests based on L-skewness and L-kurtosis (Hosking and
Wallis, 1997; Satyanarayana and Srinivas, 2008). Therefore, in this study, L-CV based

heterogeneity test is used to test the regional heterogeneity. The statistic to compute

heterogeneity measure (H) is:
Hy ==t 2.20)
1
N i_R\*)2
where V = g‘ﬂé?;gtm—t)- zand Uy and g, are respectively the mean and standard
=1

deviation of computed inter-site variation obtained through simulations, “t” is the
sample L-CV and t® = TN n;t® /TN . n,.

3) The next step is identification of best-fitted distribution from a set of different
three-parameter probability distributions for the defined homogeneous region(s). L-
moments ratio diagram and |ZP*] statistic are used as goodness of fit measures. The
formula for |ZP™¥| statistic is:

|ZDlst | Tt +8s @.21)

o4
where T215tis the L-kurtosis of the candidate probability distribution, ¢ is the regional
L-kurtosis, g, is standard deviation and B, is the bias of t§ obtained through
simulations. Further details related to these measures can be found in Hosking and
Wallis (1997). A popular set of five three-parameter probability distributions GEV,
GPA, GNO, GLO and PE3 have been used as candidates of regional distribution. Their
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probability density function (PDF) and cumulative density function (CDF) are provided
in Appendix A-1.

4) Estimation of parameters and quantiles of the best-fit distribution is the next
obvious step. These regional quantiles are used to estimate at-site quantiles within the

homogeneous region using the following relationship:

0P = 1P4(F) 2.22)

where (J;(F) represents estimated quantile for site , l{l) denotes first sample L-moment
of a site i and §(F) represents estimated regional quantiles for any return period.

5) It is possible in RFA that two or more probability distributions fulfil the criteria
of goodness-of-fit. In such scenario an obvious requirement is to identify a robust
probability distribution among successful candidates. For this purpose, a simulations
based assessment can be performed to obtain 95% error bounds and root mean square

error (RMSE) of the flood quantiles estimates.

RMSE can be calculated using:
Y.
) P 2772
R(F) =M1, {g‘%ﬂ}] (223)

‘["'] (F) is the estimated quantile of site-i for non-exceedance probability F at m™
repetition. Averaging over the complete region gives:
RMSE = N~1IN . R/(F) (2.24)
Where N represents the total number of gauging stations in a study area. For the growth
curve of regional quantiles the quantities §; [m(F) and §,(F) are replaced by h fml
and §;(F) respectively. The 95% error bounds for §;(F) are.

_awm _am
Uoozs(F) =q(F) =< ’-oozs(F) (2.25)
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Where Ly g25(F) and Uy 25(F) are the values between which approximately 95% of

the distribution of simulated values of the ratio of estimated to true values of regional
. . Qi(F) .
quantile function ( / q( F)) lies.

2.5 Methods of estimation of quantiles at ungauged sites

For the estimation of flood quantiles at ungauged a functional relationship between /1
(mean of observed AMPF at given sites) and their corresponding available site
characteristics has been developed within the homogeneous region. This functional
relationship will provide the estimates of at-site mean (for ungauged sites) within the
homogeneous region for the estimation of T-years flood quantiles.

Various methods are in practice for the ungauged flood quantiles estimation. These
methods include regression with linear/non-linear approaches (Griffis and Stedinger,
2007; Sivakumar and Singh, 2012; Hailegeorgis and Alfredsen, 2017; Ouali et al.,
2017), artificial neural networks (Aziz et al.,, 2014; Anilan et al., 2016), satellite
precipitation products (Gado et al., 2017), remotely sensed precipitation information
(Faridzad et al., 2018), etc. The given literature show that the relationship between I,
and the site characteristics is complex. Therefore, none of the adopted method(s) so far
received universal acceptability; however, success depends on the availability and
suitability of gauged site characteristics. In this study, regression and ANN methods
have been used to develop a predictive model of each respective homogeneous region
to estimate ungauged flood quantiles. Regression analysis based on linear and
polynomial models with OLS and robust estimation methods. These regression models
and OLS estimation method are well known in the literature. Their details have been
given in Appendix A-2. The description of the ANN and robust regression methods has

been given in the following subsections.
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2.5.1 Robust regression methods

2.5.1.1 M-estimation method

Huber (1964) introduced the M-estimation method for the estimation of regression
model parameters. It is based on maximum likelihood estimation and it gives efficient
results as OLS. Fox (2002) suggested that the M-estimation method is the most
commonly used method of robust regression. The M-estimation method gives robust
estimates of regression parameters when extreme observations or outliers are present in
the data sets. In the M-estimation procedure, parametric estimates are obtained by
minimizing the residuals function. The objective function for the M-estimate of the
regression parameter is given below.

By =minIlL,p (Y, — k.. )B)) (2.26)

To solve this objective function for the estimates of “B” Hampel et al., 2011 proposed
a system of normal equations. These normal equations are obtained by taking partial
derivatives with respect to unknown parameters and equating them with zero. The final
form of M-estimators for regression parameter is given below.

By = (x'wX)1(x'wY) 27

where w is the matrix having diagonal values of the weight matrix.

® yt-Eklgoxuﬁ)
_ 7 _ medlanje;~median(e|
w= -ﬁ—;—, , where & = 0.6745

(J’l"z[=o xy) )
7

Because ©; = %than w is equals to the following
212
w= [1_(%) ] ul<c
0 Iutl >cC
The procedure of weighted least square (WLS) is adopted to estimate B,, using “w” as

weight.
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2.5.1.2 S-estimation Method

Rousseeuw and Yohai (1984) introduced S-estimation method for the estimation of
regression coefficient. S-estimators of regression coefficients are derived from the
generalization of two methods Least Median of Squares (LMS) and Least Trimmed
Squares (LTS). LMS and LTS also have similar asymptotic properties as the M-
estimation method and can tackle half of the extreme (outliers) observations that exist
in the data. The residual standard deviation is used by Susanti and Pratiwi (2014) to
solve the shortcomings of the median used in the S-estimation process. The S-estimator
of regression coefficients is given as follows.

B, = ming 8,(ey, €5,€4, ... 8n ) (2.28)

To determine the smallest robust scale, estimator
_on
min BL., & (L-H207) (2.29)
(]
where

as = median|e;—median(ey)| , when iteration = 1

0.6747
@ = ’%Z{Ll we? , when iteration > 1
_vk
S y,0 (ﬁ;’"—"lﬁ) =0, j=0123 ..k (2.30)

@ is a function drived from takin derivative of 6.

2,5.2 Machine learning methods

As mentioned earlier that there may exist a complex non-linear relationship between I,
and available site characteristics. Therefore, application of machine learning methods
can provide accurate estimates of the dependent variable (I;) to be used for the
estimation of quantiles at ungauged sites. This study has applied different machine

learning methods namely back-propagation neural network (BPNN) and radial basis
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function (RBF) for estimation of quantiles at ungauged sites. The suitability of these
techniques for the prediction of river flows is discussed in details in Maier and Dandy,

2000 and Abrahart et al., 2004. Few details of these methods are as follows:

2.5.2.1 Back-propagation neural network (BPNN)

The ANN model based on back-propagation training is called BPNN. Back-
propagation is the process of proper tuning of weights of ANN based on the preceding
stage (i.e. iteration) error rate. Lower error rates are achieved by fine-tuning the
weights, which increases the model’s generalization and hence its reliability. Working
structure of BPNN model is given below.

BPNN model comprises an input, hidden and output layers. Neurons layers interact via
a network of feed-forward weighted connection. For computations, every input of the
neurons multiplied by weight which is known as the connection parameter and
combined output with some bias is produced. This value is managed with an activation
function. A logistic activation function is used because it provides accurate results for

river flow prediction (Shamseldin et al., 2002). A typical logistic activation function is

given below.
@) =z @31)

In this study, the relationship between the mean of the AMPF of each site (dependent
variable) and site characteristics (independent variables) of regions is estimated using

the BPNN model. Working configuration of BPNN is given in Fig. (2.1).
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Fig. 2.1: Working configuration of BPNN.
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For the application of machine learning methods, the complete data set is usually
divided into training, validation and test datasets with the ratio of 60%, 20% and 20%,
respectively. This division is useful for large data. In this study, leave one out cross-
validation (LOOCYV) approach has been used for the training and validation of the
sample data set as it is usually considered more useful for smaller data sets. In the
LOOCYV approach, the data set divides into two parts; if the data set contains n
observations, then one observation is used for the validation, i.e. (x;, y,) and remaining
"n-1" observations {(x2,¥2),( X3,¥3),»( Xn,¥n )} are in the training dataset to predict
the average value of the dependent variable (which is I; in this case). This process is
repeated n times (equals to the total number of observations in the sample) and generate
n times mean square error. The estimate of the test means squared error can be obtained

from “n” test errors as:

CVny = = iy MSE; (232)
where MSE denotes mean squared error. For more details of this method see James et
al. (2013) and Kuhn and Johnson (2013). The primary objective of training ANN is to
reduce the error among the target output and ANN output through adjusting weights
2.5.2.2 Radial basis function (RBF)

RBF is a type of feed-forward neural networks. It is a popular method to solve nonlinear

functions because of its easy topological structure and having the capacity to execute
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the learning process directly. Furthermore, it has various advantages over the
conventional multilayer perceptron like quick convergence, fewer errors and more
reliability (Girosi and Poggio, 1990).

The structure of the RBF network is based on three layers; input, hidden and output
layers. The input layer divides the input data to the hidden layer without processing the
input data. Neurons in a hidden layer of RBF are equal to the historic observation of
the predictors. For the estimates of any real-time event, the output of every neuron is
the true influence of historic observation. For the input data, every neuron of the hidden
layer uses the radial basis function as a non-linear transfer function. The Gaussian
function is a commonly used radial basis function. It has two features; center C; and

width H;. Euclidean distance is used between the center C; of RBF and input (¥). In

the hidden layer, a non-linear transformation is used with RBF as:

2
hy(Y) = EXP (_ (IIY -gl /sz)) 2.33)

where h; is the output of a J® unit of RBF network, C; is the center and Hjis the width
of jth RBF. For the output layer, the following equation is used.

Zy(Y) = Xja Wighy(Y) + By (234

For any input (¥), Zy is the kth output unit. Weight connection between jth hidden layer
unit and kth output unit is represented by wy, and By, represents the bias.

The training of RBF involves the calculation of the weights, spreads and centers.
Various mathematical algorithms such as the least square algorithm or genetic
algorithm can be used for the selection of centers. After the selection of spread and
center of RBF, link weights between output and hidden layer is adjusted using the least

square algorithm.
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2.6 Method of maximum product of spacing (MPS)

This study is an application of L-moments based RFA but there exists scenarios in
which homogeneous regions cannot be identified. An alternate solution then is at site
frequency analysis. Quality of quantiles estimates using at-site frequency analysis
typically depends on size and span of the sample, distribution characteristics, choice of
model and estimation method. This study has also analyzed effectiveness of different
estimation methods for fitting Pearson Type 3 distribution in case of at-site frequency
analysis through simulations experiments by varying size of sample and shape
characteristics. Findings of simulation experiments are validated using real life
examples. The estimation methods include L-moments, MLE and maximum products
of spacing. Few details of MPS method are provided below.

Cheng and Amin (1983) introduced order statistics-based method of MPS for the
estimation of any continuous probability distribution. Suppose ¥1.n < ¥2.n S *** € Ynn
be the ordered sequence of any continuous random variable “Y” having CDF F(y, 6)
and pdf f(y, 8). The space between two CDF of the consecutive points can be defined

as.
2(6) = FOin,60) = FOi-1m.0) = [} f(3,0)dy, i=123..n+1  (235)

Where yq., = —0 and y,,1., = +00 then the sum of Z;(8) is equals to one.

Xi=1Z4(0) =1 (2.36)
and
zl(a) =1- F (yu:n: 0) (2.37)

Method of MPS provides optimum estimates for the value of @ by maximizing the
product of probabilities between two adjacent sample points.

The Z;'s are as near as possible to each other. We choose the value of the parameter 0
as an estimate that maximizes the log of geometric mean (GM) of Z;(6).
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K(0) = log (T 2,(8)) T+ = 2, 5742 1og (2,(6)) (238)
The optimum MPS log estimator is given as.
Kope(0) = log— (2:39)

The relationship given in Eq. (2.23) shows that MPS has advantageous results relative

to MLE because log-likelihood can reach to +o0o0, whereas, MPS estimator is always
bounded by log # It can easily be provided that the maximum and optimum value of

GM is only obtained when all Z;’s are equal to Z; = i/(n + 1). For more details, see

Ranneby (1984).
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Chapter 3

Preprocessing of Data Series

3.1 General

The preprocessing of flood data is very important for the successful application of
frequency analysis. Because quality of the results frequency analysis strongly depends
on the quality of the available data series. In this study, time series secondary data of
AMPF have been used. Time series data usually suffer from missing observations and
outliers. Before performing the final analysis filling the missing observations and
handling of outliers is necessary to obtain reliable estimates. Moreover, RFA strictly
based on the assumptions that the sample data must be random, independent,
homogeneous and free from significant trends. Therefore, in this chapter data of AMPF
of 36 gauging sites of KPK has been analyzed through non-parametric tests to check
the suitability of the data to perform RFA.

Rest of this chapter organized as: section 3.2 describes study area, section 3.3 deals
with the availability of the data and missing observations, section 3.4 based on graphical
time series analysis, in section 3.5 outlier analysis is performed and in section 3.6 basic

assumptions of data series has been tested.

3.2 Study area

The KPK region, having various small rivers and stream, is the second source of river
water in Pakistan. KPK has a 101,741 km? area with steep geography and a population
of about 35.53 million (as per the population census of 2017 by the Government of
Pakistan). The terrain of KPK consists of mountainous in the north, sub mountainous

and lands surrounded by hills to the south. Due to the steep geography and mountain
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land of KPK, the heavy rainfall usually turns into flash flooding affecting the whole of
KPK (Pakistan Meteorological Department, 2012). Southern KPK is the most
populated area of the province, and due to its downstream location, it has been affected
badly due to heavy floods in 1992 and 2010 (Hashmi et al., 2012). Therefore, preventive
measures against these natural disasters are a popular demand of the people of KPK
which requires quantification of the frequency associated with these floods. Moreover,
KPK has an identified potential of hydroelectricity is about 18698 Mega Watt, as
reported in a study on Hydel Potential in Pakistan by National Electric Power
Regulatory Authority (NEPRA), Pakistan (NEPRA, 2018) and search for more sites is
still on going. None of the published studies so far has used L-moment based RFFA for
flood quantiles estimation at various sites of KPK. The current study has performed
RFFA using AMPF in cusecs of 36 gauging sites situated in KPK and at-site analysis
of some selected sites having variation in sample size and shape characteristics using

PE3 distribution. Geographical locations of the 36 gauging sites of KPK have been

given in Fig. (3.1).

3.3 Availability of data and missing observations

This study has used “annual maximum peaks flow” (AMPF) of 36 gauging sites of
important rivers/streams of KPK. The length of recorded data sets on all 36 sites varies
between 15 to 55 years. The data sets have been gotten from the flood section of the
Irrigation Department of KPK. Few details of the sites along with their respective
characteristics namely longitude (Long), latitude (Lat), elevation (Ele) in meters,
average annual rainfall (AARF) in millimeter, average rainfall in monsoon season
(ARMS) in millimeter and average annual temperature (AAT) in degree Celsius has

been given in Table 3.1.
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Few missing observations has been found in the data series of some gauging sites. If
these shortfalls of data series not filled properly can produced inaccurate flood
frequency estimates. Missing data filling techniques generally involves deletion of gaps
or imputation of single value arithmetic mean or median (Peugh and Enders 2004).
Filling out missing observations by using a single value (arithmetic mean or median)
never effect the original size of data sample (Ekeu-wei et al., 2018). Therefore, in this
study, missing values are estimated and filled with the arithmetic means of AMPF of
each respective site where the missing observations found. Similar treatment with

missing observation of AMPF was performed by Hussain (2011).
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Fig. 3.1: Geographical locations of 36 gauging stations of Khyber Pakhtunkhwa.
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Table 3.1: Site characteristics of 36 gauging sites of the study area.

S. No. Site name Lat Long | Ele | AARF | ARMS | AAT
™) E) | (m) | (mm) | (mm) | (c)

1 Budni 34.1307 | 72.4648 | 334 | 639 272 | 22.7
2 Shahi Bala 34.1858 | 71.7661 | 300 | 460 151 | 22.7
3 Dallus 34.165 | 71.5931 ] 310 | 460 151 | 22.7
4 Badri 34.9866 | 72.352 | 1243 | 639 272 | 22.2
5 Naranji 34.2475 | 72.3432 | 356 | 639 272 | 222
6 Kalpani Raisalpur | 34.3303 | 71.9085 | 345 | 556 222 | 222
7 Kalpani Deheri 33.9928 | 71.746 | 303 | 559 255 | 22.2
8 Bagiari 34.2254 | 72.1543 | 313 | 559 227 | 222
9 Katlongi 34.096 | 71.7416 | 389 | 460 151 | 225
10 Chprial 34.1998 | 71.7584 | 306 | 478 212 | 199
11 Jani Khwar 34.2653 | 72.1963 | 330 | 384 105 | 22.7
12 Shahban 34.0918 | 72.0388 | 288 | 559 227 | 222
13 Mugam 34.1078 | 72.0505 | 291 | 559 227 | 22.2
14 Chinkar 34.014 | 71.7538 | 301 | 400 119 | 22.7
15 Wazir Gahri 33.993 | 71.746 | 303 | 400 119 | 22.7
16 Bara Kohat Road | 33.8637 | 71.5637 | 413 | 400 119 | 22.7
17 Bara Tarnab 34.0165 | 71.7035 | 305 | 400 119 | 22.7
18 Lund Khwar East | 34.0064 | 71.9777 | 285 | 559 255 | 22.2
19 Kalpani Saidabad | 34.0512 | 71.528 | 314 | 559 255 | 222
20 Dagi 34.0865 | 71.4749 | 328 | 384 105 | 22.7
21 Garandi 34.3571 | 72.0845 | 384 | 532 212 | 224
22 Hakim Gahri 34.1432 | 71.7053 | 296 | 460 151 | 225
23 Khuderzai 34.0116 | 71.7741 | 300 | 532 212 | 224
24 Kabul Nowshera | 34.8337 | 72.4253 | 985 | 532 212 | 224
25 Chilah 34.3918 | 71.9862 | 375 | 532 212 | 224
26 Kabul Adezai 34.122 | 71.6078 | 305 | 532 212 | 224
27 Shah Alam 34.1664 | 71.3689 | 397 | 384 105 | 22.7
28 Panjkora 34.1019 | 71.4672 | 328 | 460 151 | 22.5
29 Kabul Naguman 34.114 | 71.7523 | 292 | 384 105 | 22.7
30 Jundi Utmanzai 34.0099 | 71.8327 | 294 | 460 170 | 225
31 Jundi Tangi 33.8965 | 72.235 | 266 | 460 170 | 225
32 Jundi River 34.9422 | 72.4528 | 1099 | 460 151 | 225
33 Swat Khaili 34.3307 | 71.5706 | 365 | 460 151 | 225
34 Swat Ningolai 33.9042 | 71.5583 | 379 | 743 221 19.9
35 | Swatkhawazakhela | 34.7677 | 71.7924 | 665 | 743 221 19.9
36 Swat Munda Head | 34.7507 | 72.0767 | 923 | 743 221 19.9
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3.4 Time series plots of data sets

Climate change affects the frequency and size of floods in different parts of the world
(Maghsood, et al., 2019). Pakistan is also experiencing the impact of climate change,
ranking 10th in the long-term climate change index (Kreft, et al., 2015). Flooding has
become more common in Pakistan over the last decade, and the country has experienced
flooding almost every year since 2010 (Government of Pakistan 2018). As a result,
graphical time series analysis has been used to see if any significant trend or pattern
exists in the AMPF data sample of each gauging site under investigation. The results of
this graphical time series analysis are also used in the RFFA's subsequent measures.
Time series plots of AMPF of all 36 gauging stations are presented in Fig. (3.2).

Fig. (3.2) shows that AMPF is randomly distributed along their average line of gauging
sites Shahi Bala, Dallus, Badri, Kalpani Deheri, Bagiari, Katlongi, Chaprial, Jani
Khwar, Shahban, and Muaqm Shah Alam, with no discernible upward or downward
trend. For the period 1994 to 1998, only at site Kalpani Deheri AMPF values highly
scattered along the mean line. Some plots of gauging sites in Fig. (3.2) indicate that
AMPF values have a larger magnitude and deviate significantly from their average line.
The details of the time series plots of some sites given in Fig. (3.2) are provided in
Table (3.2). Table (3.2) gives the names of the gauging sites as well as the occurrence
time of the value/s that deviate significantly from their average line. The AMPF are
scattered along with the average line of each site listed in Table (3.2) at random.
Furthermore, an upward trend was observed in the AMPF sample data of site Naranji

from 1980 to 2010, and at site Kalpani Raisalpur from 2003 to 2010.
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Table 3.2: Names of gauging sites, as well as the years in which they deviated
significantly from their mean values.

Site Name Time in year Site Name Time in year
Budni 2008 Bara Tarnab 2013
Chinkar 2010 Lund Khwar East 1997
Wazir Ghari 1982, 1998 Dagi 2009
Bara Kohat Road 2010 Garandi 2003
Hakim Ghari 1983 Khuderzai 1984
Kabul Nowshera 2010 Chilah 1979
Panjkora 2010 Kabul Naguman 2010
Swat Khaili 2010 Swat Khawazakhela 2010

Swat Munda Head 2010

After 2005, the AMPF data sample of sites Kalpani Saidabad, Kabul Adezai, Jundi
Utmanzai, Jundi Tangi, and Jundi River shows a rising pattern, as does the data sample
of site Swat Ningolai after 2010. The reason for the upward and downward trend in the

data set is may be due to the irregular pattern of monsoon season rainfall in the region.
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3.5 Detection of outliers

Outlier detection is a frequent subject for hydrological data that has gained much
attention in univariate context (Chebana, et al., 2012). The identification of low and
high outliers within the data set is evident in extreme hydrological modelling. And
when a flood frequency curve is fitted to the annual maxima series, low outliers have a
substantial impact on the performance. If there is any low outlier in the data set of the
annual maxima series, this must be treated separately before the frequency analysis
(Cohn et al., 2013; England et al., 2019). Outliers, in general, may have a negative
impact on the selection of an accurate probability model and the parametric estimates
associated with it. Therefore, in this study, outlier detection analysis has been
performed on sample data of AMPF of 36 gauging sites to avoid the shortcoming of
outlier on the results.

The Grubbs and Beck (GB) test has been used to identify outliers in the AMPF data set
of each gauging station. Every value of the data set of each gauging site has been tested
using the GB test. The decision has been taken whether the checked finding is an outlier
or not based on the GB test results. The GB test results for each gauging station are
given in Fig. (3.3). Fig. (3.3) shows that although no low outliers have been identified
in the data sets of 36 gauging sites, high outliers have been found in the data set of sites
Budni, Naranji, Kalpani Raisalpur, Jani Khwar, Wazir Ghari, Chinkar, Bara Khoat
Road, Bara Tarnab, Kalpani Saidabad, Dagi, Garandi, Khuderzai, Hakim Ghari, Kabul
Nowshera, Chilah, Panjkora, Kabul Naguman, Jundi Tangi, Jundi Utmanzai, Jundi
River, Swat Khaili, Swat Khawazakhela, Swat Ningolai and Swat Munda Head. Within
the flood data set, there are three main explanations for outliers: 1) an erroneous
calculation, 2) a change in the unit of measurement, and 3) a storm or other unusual

hydro-meteorological occurrence (Hosking and Wallis 1997; Chebana et al., 2012;
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Naghettini, 2017). After diligent visualization, no irregularities found in the data sets
of each site where outliers are observed. All of the study area’s gauging sites are in an
arca that is known as more vuinerable to climate change. During the monsoon season,
this area experiences erratic rainfall (June to August). Due to climate variability, such
events (floods) of low and high magnitude can occur at any time and any place. High
outliers provide extremely valuable information for the development of a flood risk
map. Furthermore, where estimates of the extreme upper tail quantiles of the frequency
distribution of flood are the primary interest, high outlier values must remain within the
sample data (Naghettini, 2017, Hussain 2017; Khan et al., 2020). Because of the reasons

mentioned above, the values of those high outliers remain within the data sets to

perform RFFA.
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Fig 3.3: Results of Grubbs and Beck test for all 36 gauging sites.

3.6 Assumptions of randomness, homogeneity, independence and

stationarity

RFFA based on few assumptions related to data series. These assumptions have been

tested for the data series of each gauging site and results have been given in Table (3.3).

The detailed discussion related to each assumption has been given in the following

points.

1) Randomness of data series of each site is tested using Run test (Bradiey, 1968). The
results of run test given in Table (3.3) show that the data series of each site is
random at 5% level of significance. This shows that sample data of each gauging
site is drawn at random from the population, with each sample point has the same

probability of being chosen.

56

FALSE
TRUE



2)

3)

Rank-sum test is used to test the homogeneity (Hirsch et al., 1992) of the data series
at various sites. The results of Table (3.3) show that data series of each site fulfill
the criteria of Rank-sum test at 5% level of significance. This mean that all of the
sample points of each respective site are drawn from the same population.

Wald-Wolfowitz test (Wald and Wolfowitz, 1943; Rai et al., 2013) has been used
to test independence and stationarity of data series of each site. The data series of
each respective gauging site pass Wald-Wolfowitz test of independence and
stationarity at 5% level of significance as shown in Table (3.3). Therefore, we
conclude that no single data point in the sample of each respective gauging site
would have an impact on the non-occurrence or occurrence of any other element in
the sample. Moreover, data set of each gauging site is stationarity and free from

significant trends.

The results of Table (3.3) show that AMPFs at 36 sites are random, independent, free

from significant trends and identically distributed. As a result, the data series of 36

gauging site is ideal for performing RFFA.
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Table 3.3: Calculated values of test statistics and corresponding p-values of Run Test, Rank

Sum Test and Wald-Wolfowitz Test.
S, Rank-Sum Run Test Wald-Wolfowitz
Site name Test Test Test
No. Statistic P-Value Statistic P-Value Statistic P-Value
1 | Budni -0.1444 | 0.8852 | 0.883 03772 |-1.7913 | 0.0732
2 | Shahi Bala -0.7675 |0.4427 |-0.408 |0.6833 |1.9036 | 0.0570
3 | Dallus -1.059 | 0.2892 | -0.69 0.4902 | 1.2807 | 0.2003
4 | Badri -0.408 10.6833 |-0.644 |0.5194 | 1.899 0.0576
5 | Naranji 0446 |0.6556 |-1.656 |0.0977 |0.9353 | 0.3496
6 | Kalpani Raisalpur | -0.3483 | 0.7276 | 1.467 0.1424 | 1.096 0.2729
7 | Kalpani Deheri 0.739 0.4599 |0.459 0.6459 |-0.955 |0.3392
8 | Bagiari 0.293 0.7695 | 1.34 0.1802 | 1.6385 |0.1013
9 | Katlongi 0.4859 | 0.627 0.265 0.7910 |-1.047 | 0.2951
10 | Chprial -1.089 |0.2762 | 1.601 0.1094 | 1.512 0.1305
11 | Jani Khwar 0.525 0.5996 |-1.253 0.2100 |-0.782 | 0.4337
12 | Shahban 0.0547 | 0.9564 |0.81 04179 | -0.1173 | 0.9066
13 | Mugam -1.5407 | 0.1234 | 0.676 0.4990 1.4452 | 0.1484
14 | Chinkar 1.126 0.2602 |-1.201 0.2298 | 0.309 0.7573
15 | Wazir Gahri -0.132 |0.895 0.574 0.5656 |-0.678 | 0.4975
16 | Bara Kohat Road -1.171 | 0.2416 |-0.542 |0.5878 |-0.083 |0.9339
17 | Bara Tarnab -1.659 |0.0971 |-1.858 |0.0631 | 1.251 0.2109
18 | Lund Khwar East | -1.44 0.1499 |-1.155 |0.2479 |0.109 0.9131
19 | Kalpani Saidabad -1.008 0.3135 | -1.797 0.0723 | 0.765 0.4443
20 | Dagi -0.3484 | 0.7275 | -0.522 0.6017 | 0.1914 | 0.8482
21 | Garandi 0.7188 |0.4723 | 1.135 0.2564 |-1.042 |0.2973
22 | Hakim Gahri -1.913 |0.0557 |-1.027 |0.3044 | 1.34 0.1802
23 | Khuderzai 0.955 0.3396 |-1.274 |0.2026 | 0.268 0.7887
24 | Kabul Nowshera 0.868 |0.3854 |-1.112 |0.2658 |-0.788 | 0.4307
25 | Chilah 0594 10.5525 |-1.070 |0.2846 | 1.304 0.1921
26 | Kabul Adezai -1.716 0.0862 |-1.318 0.1875 1.591 0.1116
27 | Shah Alam 0.3716 |0.7102 |-0.664 |0.5067 |-0.23 0.8181
28 | Panjkora -1,797 0.0723 | -0.991 03217 | -0.621 0.5346
29 | Kabul Naguman -1.4864 | 0.1372 1.037 0.2997 1.204 0.2286
30 | Jundi Utmanzai 0.578 0.5633 | -0.481 0.6305 | 1.851 0.0641
31 | Jundi Tangi -1.49 0.1362 1.436 0.151 1.182 0.2372
32 | Jundi River 20.79 0.2495 |0.291 0.7711 |-0.563 {0.5730
33 | Swat Khaili -1.64 0.1010 |-0.937 |0.3486 |-1.08 0.2801
34 | Swat Ningolai 1.864 0.0623 | -0.371 0.7106 1.758 0.0787
35 | Swat khawazakhela | 1.724 0.0847 |-1.741 0.0815 1.814 0.0695
36 | Swat Munda Head | 1.423 0.1547 |-0.141 0.8875 |-1.033 | 0.3015
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Summary

The data of AMPF must fulfil the basic assumptions for valid and realistic estimates of

flood quantiles. The current adopted technique for frequency analysis is also focused

on these fundamental assumptions about data sets. As a result, in this chapter,

preliminary data screening has been carried out to prepare data sets of 36 gauging sites

under study. The key findings of this chapter given below.

L

IL

1L

In the data of many gauging sites, missing observations have been observed. The
average AMPF value of their respective site has been used to filling the missing
values. In a study (Hussain, 2017), similar handling has been done with missing
values within the data of flood.

Graphical analysis (time series plot) has been performed to observe the trend
within the data sets of AMPF of 36 gauging sites. AMPFs of some sites show an
upward trend after 2010. Among the data sets of many sites, there have been
occurred some high magnitude values. The Wald-Wolfowitz test has been used to
assess the significance of trend within each site’s data set, and no noticeable trend
has been discovered in the AMPF across all sites.

The Grubbs and Beck test has been used to identify outliers, and as a result, high
outliers have been identified but no low outliers found within the data of 36 sites.
These high outliers have not been discarded from the sample data and RFFA
analysis has been performed with these high outlier values.

Few critical assumptions associated to the observed data series at various sites for
RFFA has been tested and validated through various statistical tests. The results
have revealed that the observed data at each site is random, independent,

homogeneous, stationarity and free of regular trends.
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Chapter 4
Regional Frequency Analysis of Sites of Khyber

Pakhtunkhwa, Pakistan

4.1 Introduction

Reliable estimation of extreme hydrological events is needed for designing and
building of hydrological structures on stream channels. These structures are important
to provide protection against floods and to regulate the supply of available water.
Various approaches including at-site and regional are in practice for flood frequency
analysis in different parts of the world. However, regional approach has advantageous
results in terms of accuracy and efficiency relative to at-site analysis. Therefore, in this
chapter we perform application of L-moments based RFFA of 36 gauging sites of KPK

Pakistan. Results, discussion and finding of this chapter given below.

4.2 Results and discussion

4.2.1 Discordancy measure

Descriptive Statistics in term of L-moments and values of D; for each site by using Eq.
(2.24) are given in Table (4.1). The results show that two sites, “BADRI” and
“CHILAH”, are discordant, i.e. their D; values are greater than 3. Therefore, possible
options may be; either to drop these two sites at this stage or investigate the reasons for
their large D; values. These sites may be retained if there are abrupt variations or outliers
in the data series at these sites (Hussain, 2011). For data visualization, time series plots
of these two sites are illustrated in Fig. (3.1). For site Badri, the distribution of the data

around the average value is approximately symmetrical. However, a downward trend
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exists in the values of the last seven years or so. This distribution of high and low values
of AMPF is obvious in the shape of the distribution of the data series being negatively
skewed (-0.0211 as shown in Table (4.1)). The time series plot of site Chilah is showing
a flood of a very high magnitude in 1979. Grubbs and Beck test is also applied to detect
outliers in the data series at these two sites and the results are presented in Fig. (3.2).
For site Chilah, six observations can be considered as high outliers within the data
series. These high outliers are a major reason for the increase in its discordancy value.
Such events of low and high magnitude can occur at any site due to climate variability

and are random. Therefore, these two sites are retained in the group for further analysis.
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Table 4.1: Descriptive statistics of each site in terms of L-moments and values of discordancy
measure,

S. Sites n I T ts t ts D,
No.
1 | Budni 47 | 14810.39 | 0.4678 | 0.3093 | 0.2978 | 0.3299 | 0.48
2 | Shahi Bala 25| 27924 |0.5145| 0.242 | 0.0675 { 0.0431 | 1.05
3 | Dallus 25 | 8196.84 | 0.4744 | 0.2517 | 0.0657 | -0.0298 | 0.54
4 | Badri 46| 7229 10.2701|-0.0211] 0.195 | 0.0686 | 4.18*
5 | Naranji 47 | 4836.136 | 0.4104 | 0.2587 | 0.167 | 0.0579 | 0.17
6 | Kalpani Raisalpur | 34 | 34773.34 | 0.3682 | 0.3357 | 0.1593 | 0.0755 | 0.97
7 | Kalpani Deheri 21 | 2856.61 | 0.6275 | 0.4218 | 0.0894 | -0.0475 | 1.03
8 | Bagiari 31| 5767.035| 0.4877 | 0.218 | -0.0367 | 0.0129 | 1.19
9 | Katlongi 18 | 2396.555 | 0.5172 | 0.4206 | 0.1441 | -0.0617 | 0.59
10 | Chprial 34 110479.75 | 0.442 | 0.2632 | 0.0652 | 0.0265 | 0.39
11 | Jani Khwar 22 | 984.918 | 0.3928 | 0.2438 | 0.4011 | 0.3221 | 1.90
12 | Shahban 21 | 1515.763 | 0.4052 | 0.3454 | 0.2173 | 0.0561 | 0.32
13 | Mugam 29 | 16669.1 | 0.4302 | 0.2711 | 0.0577 | -0.0417 | 0.45
14 | Chinkar 28 | 922.269 | 0.7141] 0.6098 | 0.4117 | 0.339 | 0.63
15 | Wazir Gahri 321 426.466 | 0.6457 | 0.5863 | 0.4113 | 0.3193 | 0.33
16 | Bara Kohat Road 34 1453 |1 0.7242 | 0.5958 | 0.3248 | 0.1661 | 0.75
17 | Bara Tarnab 30| 11884.18 | 0.6479 | 0.7283 | 0.6424 | 0.594 | 1.51
18 | Lund Khwar East 28 | 484.082 | 0.5902 | 0.4183 | 0.1165 | 0.0081 | 0.66
19 | Kalpani Saidabad 33| 9408.818 | 0.6698 | 0.578 | 0.2948 | 0.0894 | 0.57
20 | Dagi 33| 390.818 | 0.4852 | 0.3351 | 0.2931 | 0.2535 | 0.30
21 | Garandi 33 | 1004.636 | 0.4494 | 0.3741 | 0.1716 | 0.1078 | 0.41
22 | Hakim Gahri 33| 3713.903 | 0.3123 | 0.2035 | 0.1995 | 0.1137 | 0.51
23 | Khuderzai 33| 1758.374 | 0.6765 | 0.5319 | 0.3615 | 0.3326 | 0.57
24 | Kabul Nowshera 15 | 138870.7 | 0.3059 | 0.4014 | 0.1818 | 0.1376 | 2.23
25 { Chilah 33 ] 1029.687 | 0.8349 | 0.8908 | 0.8475 | 0.8089 | 3.20*
26 | Kabul Adezai 30 | 30027.69 | 0.3877 | 0.228 | 0.0258 | 0.0126 | 0.60
27 | Shah Alam 30 | 7343.067 | 0.3997 | 0.2649 | 0.048 | -0.0109 | 0.61
28 | Panjkora 33 | 26271.79 | 0.3897 | 0.2744 | 0.2225 | 0.2408 | 0.18
29 | Kabul Naguman 30 | 19227.27 | 0.4279 | 0.3195 | 0.2095 | 0.1169 | 0.08
30 | Jundi Utmanzai 25 ] 2052.571 | 0.8037 | 0.7232 | 0.5031 | 0.3593 | 1.27
31 | Jundi Tangi 42 | 1104.653 | 0.8156 | 0.8131 | 0.6704 | 0.5421 | 1.84
32 | Jundi River 43 | 11060.14 | 0.3295 | 0.1764 | 0.2337 | 0.1906 | 0.83
33 | Swat Khaili 43 | 59534.23 | 0.2852 | 0.3021 | 0.2516 | 0.2072 | 1.82
34 | Swat Ningolai 33 | 8933.677 | 0.6162 | 0.5349 | 0.3514 | 0.2009 | 0.19
35 | Swat khawazakhela | 34 | 50834.78 | 0.4153 | 0.4363 | 0.2169 | 0.0572 | 1.55
36 | Swat Munda Head | 55 | 62730.52 | 0.2687 | 0.3371 | 0.3179 | 0.1755 | 2.07
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4.2.2 Formation of homogeneous regions

Formation/identification of homogeneous region(s) is an important and critical step in
RFA. There exist a variety of objective and subjective techniques in the literature to
delineate a study area into homogeneous regions if required. In this regard, elementary
linkage analysis is used to define the homogeneous regions on the bases of cross
correlation matrix calculated using the observed data of gauging sites. Each site is
assigned to a region on the bases of highest index of correlation with other site. Every
site in a region is highly correlated with the other sites in the region. Another correlation
based technique that is used to delineate homogeneous regions is spatial correlation
analysis. In this approach, correlation is considered as the function of distance between
sites and direction. The two-dimensional correlogram is used to plot the correlation
function. Smooth appearance of correlogram show the homogeneity of the region while
irregularities indicate the heterogeneity of the region. Similar subjective approach for
the defining of homogeneous regions is principal component analysis. Spatial
configurations of prominent principal components are examined to delineate coherent
homogeneous regions.

To minimize the subjectivity in the formation of homogeneous regions cluster analysis
approach is gained popularity in RFA. Hosking and Wallis (1997) suggested cluster
analysis based on site characteristics for the formation of homogeneous regions. Rao
and Srinivas (2008) also provided useful details of hierarchical cluster analysis for the
identification of homogeneous regions in RFA. Few other studies using hierarchical
cluster analysis for identification of homogenous regions are Arellano-Lara and
Escalante-Sandoval (2014) and Rasheed et al., 2019. This study has used hierarchical

clustering based on site characteristics with few subjective adjustments to partition the
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group of thirty-six sites into four homogeneous regions. Complete details are provided
in the following section.

For initial estimate of degree of homogeneity in the group of 36 sites, heterogeneity
measures based on L-CV, L-skewness and L-kurtosis are estimated as 8.58, 5.82 and
3.82, respectively, showing that the region is definitely heterogeneous and requires
subdivision.

There are six available site characteristics which can be used for partitioning this
heterogeneous group into homogeneous regions. It is obvious that each site
characteristic has a different degree of relationship with observed data series. Therefore,
to identify the most influential or significant site characteristic, at first step, the Pearson
Correlation Coefficient is calculated between the average value of the AMPF at
different sites (/1) and the available site characteristics. This correlation matrix is
illustrated in Table (4.2), which shows that “latitude” has strongest positive significant
correlation with /;. Therefore, it is used to perform cluster analysis with Ward’s linkage
method and Euclidean distance measure. The dendrogram of cluster analysis is
provided in Fig. (4.1), which shows subdivision into seven clusters at first step.
Heterogeneity measures based on L-CV is calculated to check the degree of
homogeneity in each subdivided group. The details are: from left to right, first group
with 8 sites (H is -0.48), second group with 3 sites (H is 0.95), third group with 4 sites
(H is 4.91), forth group with 9 sites (H is 0.51), fifth group with 7 sites (H is 0.11), sixth

group with 2 sites (H is 0.33) and seventh group with 3 sites (H is 1.22).



Table 4.2; Estimates of correlations between [; and site characteristics.

l; | Latitude | longitude | Elevation | AARF | ARMS AAT
0.5469 | 0.1922 0.4881 | 0.2731 | 0.1361 | -0.2490
l 1
(0.0006) | (0.2614) | (0.0025) | (0.1071) | (0.4287) | (0.1431)
0.5298 0.8930 | 0.3778 | 0.2449 | -0.2696
Latitude 1
(0.0009) | (0.0001) | (0.0231) | (0.1500) | (0.1118)
0.4901 | 03447 | 0.4594 | 0.0187
longitude 1
(0.0024) | (0.0395) | (0.0048) | (0.9138)
0.3539 | 0.2017 | -0.2490
Elevation 1
(0.0342) | (0.2381) | (0.1431)
0.8286 | -0.6881
AARF 1
(0.0001) | (0.0001)
-0.3901
ARMS 1
(0.0187)

Note: Here values without parenthesis are the estimates of correlation coefficients and values in
parenthesis are the corresponding p-values for testing the significance of correlation coefficient.
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Keeping in view an inclusion of a reasonable number of sites in a group to perform
RFA; this division of seven groups/clusters is subjectively adjusted to form fewer
clusters with a larger number of sites and values of heterogeneity measure (H) less than
1. Neighboring clusters are combined to form fewer clusters as guided in the
dendrogram for next step (like combining first group with second, fourth and fifth
groups remains separate regions, and sixth group combined with seventh). The value of
heterogeneity test is very high for third group and its combination with other groups
also effects their homogeneity. The sites of third group are relocated to other
homogeneous groups as suggested by (Hosking and Wallis, 1997; Satyanarayana and
Srinivas, 2008). This relocation of sites is based on the variation (L-CV) of the observed
data of the site which is being transferred to other region and the sites already in that
region. This is done that the sites have similar variation to each other remain in the same
group and eventually the homogeneity of the region is not effected (Khan et al., 2021).
Relocation of sites of third group is given as: sites having similar values of L-CV; like
shifting site “Chillah” from third group to the combination of first and second group,
sites “Garandi” and “Kalpani Raisalpur” from third group to fifth group, and site “Swat
Khaili” from third group to the combination of sixth and seventh group. Details of
delineation of study region into homogenous groups are illustrated in Table (4.3)
showing that the subdivided regions are homogeneous and ready to perform further
steps in RFA.
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Table 4.3: Details of delineation of study area into homogeneous regions.

Region Number Heterogeneity
Combinations Site names
identification of sites Measures
Kalpani Deheri, Wazir
Ghari, Chinkar, Bara
Tarnab, Khuderzai,
First group +
Jundi Utmanzai, Lund
second group + 12 H =0.26
Region 1 Khwar East, Kalpani
Site Chillah
Saidabad, Jundi Tangi,
Swat Ningolai, Bara
Kohat Road, Chillah
Budni, Hakim Ghari,
Katlongi, Shahban, H =0.54
Region 2 Forth group 9
Dagi, Mugam, Panjkora,
Adezai, Naguman
Naranji, Bagiari, Dallus,
Fifth group +
Shah Alam, Shahi Bala,
Site Garandi + H =0.14
Region 3 9 Chprial, Garandi,
Site Kalpani
Kalpani Raisalpur, Jani
Raisalpur
Khwar
Sixth group + Badri, Jundi River, Swat
Seventh group Khawazakhela, Swat H =091
Region 4 6
+ Site Swat Munda Head, Kabul
Khaili Nowshera, Swat Khaili
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4.2.3 Fitting of regional probability distribution

For the regional distribution five three parameter distributions (GLO, GEV, GPA, GNO
and PE3) have been used. The main reason for the inclusion of only these five
distributions is because this is a unique set of distributions that have location scale and
shape parameters among the class of three parameter distributions.

L-moment ratio diagrams of the four regions are illustrated in Fig. (4.2). A probability
distribution is assumed to be fit if the regional average of L-skewness and L-kurtosis
lies closest to its theoretical lines so as the tendency of the individual points. Based on
these principles, details of good fit distribution(s) for each region are: Region 1 has
GNO and GPA distributions; Region 2 has GNO, PE3 and GPA distributions; Region
3 has GPA distribution; and Region 4 has GLO distribution.

The calculated values of |Z2!¢| statistic, for the four regions, are illustrated in Table
(4.4). Details of the distributions passing the goodness of fit criteria are: Region 1 has
GLO, GEV, GNO and GPA distributions; Region 2 has GLO, GEV, GNO, GPA and
PE3 distributions; Region 3 has PE3 and GPA distributions; while Region 4 has GLO
distribution.

The two goodness-of-fit methods are in fair agreement to each other with respect to the
identification of successful regional distributions. However, the results of |ZP!st|
statistic, being a quantitative method based on simulations, are taken for further
analysis.

Table 4.4: Values of |ZP%| statistic for candidate distributions. * Indicates the calculated
values exceeding critical value, i.e. 1.64.

NS; Region identification | GLO GEV | GNO | PE3 GPA
1 Region 1 0.06 0.11 1.14 2.76* 0.76
2 Region 2 1.38 0.62 0.01 1.06 147
3 Region 3 347* 2.49* 1.85* 0.7 0.11
4 Region 4 1.55 241* 2.8* 3.52* 451*
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Fig. 4.2: L-moment Ratio diagrams of four homogeneous regions. Red dot {#) shows
the regional average of L-skewness and L-kurtosis.

4.2 4 Identification of a robust regional distribution

The goodness-of-fit methods have identified two or more probability distributions as
successful candidates for three of the four regions. Therefore, an assessment analyses
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using simulations is required to identify the robust probability distribution for each
region. The details of the development of these simulations experiments are stated in
Hosking and Wallis (1997). A brief of setting up of a base/artificial region for

simulations is described as follows:

The first step is the development of an artificial region similar to the actual/study region
concerning the number of sites, observations at each site and regional average estimates
of L-moment ratios. In addition, L-moment ratios for each site should be chosen in such
a way that the value of heterogeneity measure H remains close to the value calculated
using actual/observed data series. To check for the inter-site dependence between sites,
a correlation matrix is calculated. The average values of inter-site correlation for Region
1, Region 2, Region 3 and Region 4 are -0.014, 0.122, 0.259 and -0.055, respectively.
This indicates weak inter-site dependence between sites of all the regions. This may be
because these sites are located on different streams/rivers. For the development of
artificial regions, the details of the linear variations in the values of L-CV with
incremental effect for each site, the chosen values of L-skewness for each site and the
estimated values of heterogeneity measure for each region are summarized in Table
4.5).

The developed artificial regions are showing a comparable degree of homogeneity
relative to their actual counterparts. Therefore, they can be used for simulations to
calculate the accuracy measures for the identification of the robust regional distribution.
For instance, using the base region of Region 1, 5000 realizations are performed, and
every time the successful distribution is fitted through a method of L-moments. This
process continues for GPA, GLO, GEV and GNO distributions. The relative root mean
square error (RMSE) of regional quantiles is calculated from these simulations and the

results are shown in Table (4.6). These results indicate that, in general, the estimates
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of quantiles for GNO distribution have minimum RMSE. Moreover, regional growth
curves with 95% error bounds for GLO, GEV, GNO and GPA distribution are given in
Fig (4.3). The graph shows that, in general, the growth curve of GNO distribution has
the shortest 95% error bounds, especially for longer return periods. Secondly, the
growth curve of GNO distribution remains within the limits of 95 percent error bounds,
while growth curves of GLO, GPA and GEV distributions are below the lower limits
of 95% error bounds for longer return periods. Therefore, GNO distribution is the most
stable and robust distribution for Region 1.

Similar, the methodology has been adopted for the identification of robust distributions
for Region 2, Region 3 and Region 4. For Region 4, accuracy measures are calculated
for GLO distribution as being the only good-fit distribution. The estimates of regional
quantiles using successful candidate’s distributions and their RMSE for Region 2,
Region 3 and Region 4 are given in Table (4.7), (4.8) and (4.9), respectively. Regional
growth curves for Region 2, Region 3 and Region 4 with their respective 95% error
bounds are given in Fig. (4.4), (4.5) and (4.6), respectively. These results show that the
most stable and robust distribution for Region 2 is GPA (especially for longer return
periods), Region 3 is also GPA and Region 4 is GLO.

After the identification of robust distribution for each region, at-site flood quantiles
using the estimated regional quantiles (based on most stable regional distribution ) of
each respective region, their RMSE and 95% error bounds are given in Table (4.10) for
Region 1, Table (4.11) for Region 2, Table (4.12) for Region 3 and Table (4.13) for
Region 4. The at-site flood quantiles are given in Table (4.10) for Region 1, Table
(4.11) for Region 2, Table (4.12) for Region 3 and Table (4.13) for region 4 are

estimated by multiplying average values of each site within the each homogeneous
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region with their regional quantiles. The accuracy measures RMSE and 95% error
bounds are estimated through simulation process.

The results of Table (4.10) show that in terms of magnitude of flood the site Wazir
Gahri is the smaller and the site Bara Tarnab is the larger site within Region 1. The
results of site Wazir Gahri (smaller site of Region 1) show that in next 15 years the
flood with magnitude of 1320 Cusecs occurs at most one time has 0.93 probability of
non-excedence. For next 30, 50, 100, 150 and 200 years the flood with magnitudes of
2119, 2951, 4377, 5290 and 6279 Cusecs occur at most onetime have probabilities of
non-excedences 0.96, 0.98, 0.99, 0.993 and 0.995 respectively. At-site Bara Tarnab
(larger site of Region 1) in next 15 years the flood with magnitude of 36789 Cusec
occurs at most one time has 0.93 probability of non-excedence. For next 30, 50, 100,
150 and 200 years the flood with magnitudes of 50049, 82229, 121980, 147403 and
174966 Cusec occur at most onetime have probabilities of non-excedences 0.96, 0.98,
0.99, 0.993 and 0.995 respectively. Estimated at-site flood quantiles of each site within
the Region 1 are greater than the average value of their corresponding site. For each
site of Region 1, estimated at-site flood quantiles for small to large return periods lies
within the 95% error bounds limits. Similar, finding are observed from the results of
Region 2, Region 3 and Region 4 which are given in Table (4.11), Table (4.12) and

Table (4.13).

These estimates are useful for the scientists, hydrologists and government officials
dealing with designing and developing proposed and existing hydrological structures
as well as water resources management and flood protection planning of the region.
The accuracy measures of these at-site quantiles would be helpful for future studies to

compare the quality of the estimates using alternative methods of modelling.
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Table 4.5 Information of base regions used for the assessment analyses.

Linear Increment
S. | Region | Number | variation in at each L- Estimated
No.| name of sites | the values of ate skewness | value of H
L-CV P
0.5903 at site
1 | Region 1 12 1 to 0.8433 at 0.0230 0.6194 0.22
site 12
0.2806 at site
2 | Region2 9 1t0 0.5628 at 0.0227 0.2938 0.58
site 9
0.3680 at site
3 [ Region3 9 1 t0 0.4936 at 0.0157 0.2807 0.19
site 9
0.2686 at site
4 | Region 4 6 1 to 0.4286 at 0.0320 0.2720 0.94
site 6
Table 4.6: Estimated quantiles and their RMSE for Region 1.
Distributions
Return | GPA GEV GLO GNO
Periods 9 |RMSE|( § [RMSE 9 |RMSE| § [RMSE
15 2.8425 |0.2852 |2.6404 | 0.2795 | 2.6002 | 0.2572 | 3.0956 | 0.2491
30 45067 |0.4121 | 4.2174 | 0.3829 | 4.1399 { 0.3715 | 4.9687 | 0.4830
50 6.314 0.678 |5.9914 | 0.6411 | 5.8832 |0.6362 | 6.9191 | 0.8052
100 9.6199 1.4218 | 9.3656 | 1.4111 | 9.2277 1.3837 | 10.264 | 1.3711
150 11.8761 | 2.0486 | 11.745 | 2.0802 | 11.6044 | 2.0248 | 12.4032 | 1.9487
200 14.4476 | 2.8429 | 14.518 | 2.9456 | 14.3906 | 2.8528 | 14.7225 | 2.5008
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Table 4.7: Estimated quantiles and their RMSE for Region 2.

Return Distributions
periods GPA GEV GLO GNO PE3 t
q RMSE (0] RMSE q RMSE q RMSE q RMSE
15 2.4281 | 0.3299 | 2.3217 | 0.3034 | 2.2572 | 0.2894 | 2.3587 | 0.3145 | 2.4033 | 0.3205
30 2.9241 | 0.4608 | 2.9269 | 0.4539 | 2.8859 | 0.4457 | 2.9399 | 0.4617 | 2.9306 | 0.4602
50 3.2911 | 0.5665 | 3.4508 | 0.5923 | 3.4635 ) 0.5971 | 3.4224 | 0.5891 | 3.3395 | 0.5748
100 3.7444 | 0.7101 | 4.2133 | 0.8074 | 4.3595 | 0.8458 | 4.0933 | 0.7734 | 3.8701 | 0.7313
150 3.9666 | 0.7866 | 4.6441 | 0.9363 | 4.8945 | 1.0017 | 4.4576 | 0.8768 | 4.1418 | 0.8147
200 4.1697 { 0.8607 | 5.0769 | 1.0711 | 5.4523 | 1.1699 | 4.8138 | 0.9801 | 4.3975 | 0.8952
Table 4.8: Estimated quantiles and their RMSE for Region 3.
Distributions
Return Periods GPA PE3
q RMSE q RMSE
15 2.4838 0.1596 2.4552 0.3274
30 2.9888 0.2427 2.9976 0.4707
50 3.3596 0.3189 3.4176 0.5882
100 3.8139 0.4322 3.9621 0.7486
150 40351 0.4962 42407 0.8342
200 4.2363 0.5598 4.5029 0.9167
Table 4.9: Estimated quantiles and their RMSE for Region 4.
. GLO Distribution
Return Periods 7 RMSE
15 1.9063 0.1457
30 2.3225 0.2093
50 2.6945 0.2692
100 3.256 0.407
150 3.5836 0.5291
200 3.9201 0.6907
t
L
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Table 4.10; Estimated at site flood quantiles with RMSE and 95% error bounds of Region 1

using GNO distribution.

Site Names Measures 15 30 50 100 150 200

) 8843 | 14194 | 19765 20320 | 35431 | 42057

.. . [ RMSE 5054 | 8009 11093 16419 | 19851 | 23595
Kalpani Deheri iB 2555 | 7514 10623 16130 | 19541 | 23413
UB 21432 | 36082 | 52322 80882 | 99912 | 121932

) 1320 | 2119 2951 $B1 5290 6219

L RMSE 598 952 1324 972 2391 2851
Wezir Gahri IB 7l 1201 1690 2563 3106 3708
UB 2740 | 4634 669 10454 | 12934 | 15740

) 2855 | 4583 6381 9466 11439 | 13578

Chinkar RMSE 1418 | 2240 3100 4588 5549 6599

1B 1545 | 2538 3605 5458 6668 7941

UB 6256 | 10599 | 15386 33944 | 29719 | 35923
) 36789 | S9049 | 82229 | 121980 | 147403 | 174966

RMSE | 20402 | 32011 | 44087 64884 | 78265 | 92846
Bara Tamab ) 19772 | 32455 | 45937 69531 | 85156 | 102456
UB 78095 | 132085 | 190298 | 296608 | 367379 | 446644

) 5443 | 8737 12166 18048 | 21810 | 25888

, RMSE 7785 | 4450 6204 962 11246 | 13419

Khuderzai iB 2997 | 4909 6928 10476 | 12733 | 15186
UB 11177 | 1880 | 27392 249 | 52861 | 64141

) 6354 | 10199 | 14202 21068 | 25459 | 30219

. . [ RMSE 3548 | 5662 7892 11783 | 14309 | 17078
Jundi Utmanzsi LB 3303 | 5421 771 11590 | 14097 | 16910
UB 14288 | 24269 | 34984 54354 | 67139 | 81082

) 1499 | 2405 3349 4969 6004 7127

RMSE 302 1268 1755 259 3138 3729

Lund Khwar East iB 791 1307 1843 2810 3420 2093
UB W1 | 5469 11 12312 | 15311 | 18596
) 29127 | 46750 | 65101 96573 | 116700 | 138522

s RMSE | 13407 | 21348 | 29713 24293 | 53761 | 64138
Kalpani Saidabad I8 16147 | 26324 | 37265 56639 | 69029 | 82375
UB 58837 | 99778 | 144389 | 224167 | 278063 | 337619

) 3420 | 5489 7643 11338 | 13701 | 16263

undi Tangi RMSE 31 | 2291 3202 279 5841 6986
B 1970 | 3227 2553 6867 8359 10008

UB 6610 | 11135 | 16126 35213 | 31317 | 38182
] 27656 | 44389 | 61814 9169 | 110807 | 131527

Swat Ningolai RMSE 12525 | 19993 | 27363 41587 | 50499 | 60267
I8 15301 | 25167 | 35794 53845 | 65473 | 78420
UB 57299 | 96827 | 140630 | 220431 | 272911 | 331770

0 4498 7220 10054 14914 18022 21392

RMSE 2021 | 3239 5 5762 8216 9810

Bara Kohat Road B 2492 | 4067 3763 8724 10599 | 12610
UB 9071 | 15390 | 22070 34201 | 42344 | 51175

/] 3188 | 5116 7125 10569 | 12772 | 15160

Chillah RMSE 1733 | 2815 3968 5992 B3 8765

iB 712 | 2930 153 6262 7640 9163

UB 664 | 1319 | 16414 25608 | 31667 | 38282
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Table 4.11: Estimated at site flood quantiles with RMSE and 95% error bounds of Region 2
using GPA distribution.

Site Names Measures 15 30 50 100 150 200
i} 35962 | 43307 | 48743 | 55456 | 58748 | 61756
Budni RMSE | 6119 | 8014 | 9539 | 11599 | 12693 | 13748
LB 27752 | 32607 | 35958 | 39979 | 41953 | 43619
UB 48476 | 59634 | 67852 | 78461 | 83634 | 88541
0 9018 | 10860 | 12223 | 13906 | 14732 | 15486
. . RMSE | 1731 | 2226 | 2618 | 3141 3416 3680
Hakim Gahri LB 6808 | 8019 | 8905 | 9967 | 10464 | 10908
UB 12866 | 15746 | 17982 | 20756 | 22131 | 23338
0 5819 | 7008 | 7887 | 8974 9506 9993
. RMSE | 1357 | 1719 | 2004 | 2378 2573 2759
Katlongi

LB 4155 | 4923 | 5453 | 6089 6390 6656
UB 9227 | 11328 | 12909 | 14864 | 15855 | 16807
0 3681 | 4432 | 4989 | 5676 6013 6320
RMSE 818 1044 | 1224 | 1461 1585 1704
Shahban LB 2649 | 3131 | 3478 | 3873 4062 4232
UB 5597 | 6851 | 7798 | 9013 9633 | 10224
[/} 949 | 1143 | 1286 | 1463 1550 1630
. RMSE 179 231 271 325 354 381
Degt LB 719 847 939 1047 1099 1144
UB 1347 | 1646 | 1880 | 2180 2332 2469
/] 40476 | 48743 | 54860 | 62416 | 66121 | 69507
Mugam RMSE | 8210 | 10535 | 12371 | 14807 | 16084 | 17305
LB 29941 | 35335 | 39186 | 43659 | 45850 | 47750
UB 58853 | 72499 | 82443 | 95240 | 101839 | 108228
[/} 63793 | 76822 | 86464 | 98373 | 104212 | 109548
Panjkora RMSE | 12192 | 15732 | 18548 | 22311 | 24293 | 26196
LB 48279 | 56881 | 62909 | 70180 | 73538 | 76612
UB 90884 | 112080 | 127535 | 147341 | 157502 | 167023
/] 72913 | 87805 | 98825 | 112436 | 119110 | 125209
Kabul Adezai |__KMSE | 14371 [ 18532 | 21830 | 26217 | 28519 | 30725
LB 54510 | 64403 | 71210 | 79293 | 83368 | 86887
UB 104078 | 127630 | 145766 | 168103 | 179856 | 190529
[/} 46687 | 56223 | 63280 | 71995 | 76269 | 80174
RMSE | 9291 | 11924 | 14006 | 16772 | 18223 | 19613

Kabul Naguman
LB 34845 | 41187 | 45639 | 50819 | 53363 | 55700
UB 67966 | 83367 | 95118 | 110033 | 117305 | 123867
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Table 4.12: Estimated at site flood quantiles with RMSE and 95% error bounds of Region 3
based using GPA distribution.

Site Names | Measures| 15 | 30 50 | 100 | 150 | 200

0 13520 | 16281 | 18300 | 20775 | 21979 | 23075

Noranj RMSE | 1673 | 2096 | 2461 | 2992 | 3290 | 3587

IB | 11224 | 13384 | 14859 | 16619 | 17424 | 18130

UB | 16829 | 20477 | 23296 | 26895 | 28671 | 30327

0 14324 | 17237 | 19375 | 21995 | 23271 | 24431

Bagiari RMSE | 2239 | 2752 | 3172 | 3758 | 4078 | 4393

IB | 11283 | 13541 | 15128 | 16945 | 17776 | 18524

UB | 19120 | 23239 | 26236 | 30070 | 32033 | 33853

] 20359 | 24499 | 27539 | 31262 | 33075 | 34725

Dellus RMSE | 3450 | 4220 | 4843 | 5699 | 6163 | 6617

IB | 15846 | 18960 | 21216 | 23805 | 25014 | 26097

UB | 27773 | 33532 | 37960 | 43708 | 46513 | 49108

3 18239 | 21948 | 24670 | 28006 | 29630 | 31108

Shah Alam RMSE | 2840 | 3491 | 4025 | 4771 | 5179 | 5580

LB | 14500 | 17333 | 19381 | 21771 | 22838 | 23759

UB | 24465 | 29642 | 33530 | 38491 | 41040 | 43354

) 6936 | 8346 | 9382 | 10650 | 11268 | 11830

. RMSE | 1173 | 1434 | 1644 | 1934 | 2090 | 2244

Shabi Bala iB 5399 | 6460 | 7220 | 8128 | 8551 | 8906

UB | 9476 | 11472 | 12996 | 14955 | 15937 | 16836

3 26030 | 31323 | 35200 | 39969 | 42287 | 44396

Chprial RMSE | 3873 | 4795 | 5560 | 6636 | 7227 | 7808

LB | 20816 | 24940 | 27797 | 31181 | 32722 | 34170

UB | 34321 | 41661 | 47195 | 54306 | 57968 | 61385

0 2495 | 3003 | 3375 | 3832 | 4054 | 4256

Garandi RMSE | 376 | 462 | 534 | 634 | 680 | 743

iB 1991 | 2381 | 2658 | 2990 | 3144 | 3277

UB | 3274 | 3971 | 4503 | 5177 | 5527 | 5843

] 86371 | 103934 | 116827 | 132623 | 140315 | 147312

Kelpani Raisalpur | RMSE_| 13115 | 16231 | 18807 | 22415 | 24391 | 2633

LB | 68524 | 81818 | 91166 | 102302 | 107272 | 111613

UB | 113623 | 138560 | 157133 | 180703 | 192981 | 203724

3 2446 | 2944 | 3300 | 3756 | 3974 | 4172

: RMSE | 444 | 543 | 622 | 730 | 787 | 843
Jani Khwar

LB 1860 | 2235 | 2502 | 2817 | 2964 | 3090

UB | 3414 | 4136 | 4697 | 5360 | 5715 | 6039
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Table 4.13: Estimated at site flood quantiles with RMSE and 95% error bounds of Region 4

using GLO distribution.
Site Names Measures 15 30 50 100 150 200
(/] 13781 16790 | 19479 | 23538 | 25907 | 28339
Badri RMSE 1972 2683 3377 4517 5229 5993
LB 11105 | 13217 | 15094 | 17725 | 19257 | 20743
UB 17760 | 22356 | 26732 | 33386 | 37411 | 41676
0 21085 | 25688 | 29802 | 36012 | 39636 | 43357
e RMSE 3060 4152 5216 6963 8053 9223
Jundi River
LB 16898 | 20077 | 22902 | 26968 | 29303 | 31697
UB 27091 | 34079 | 40701 | 51146 | 57514 | 64252
0 96910 | 118066 | 136979 | 165520 | 182176 | 199279
Swat RMSE 15439 | 20795 | 25982 | 34435 | 39685 | 45302
Khawazakhela LB 76772 | 91248 | 103912 | 122470 | 132943 | 143843
UB 129020 | 162222 | 193014 | 241063 | 270290 | 300767
0 119588 | 145694 | 169033 | 204253 | 224807 | 245912
Swat Munda RMSE 16260 | 22417 | 28461 | 38432 | 44681 | 51403
Head LB 97305 | 115724 | 131439 | 154804 | 167828 | 181087
UB 151246 | 190871 | 227053 | 283550 | 317760 | 353271
(/] 264739 | 322533 | 374199 | 452169 | 497670 | 544391
Kabul RMSE 57311 | 73814 | 89509 | 114688 | 130150 | 146578
Nowshera LB 191030 | 229720 | 262901 | 311784 | 339714 { 367850
UB 387385 | 486291 | 579803 | 723338 | 808678 | 900271
1] 113494 | 138271 | 160420 | 193846 | 213353 | 233382
. RMSE 16628 | 22590 | 28399 | 37913 | 43842 | 50198
Swat Khaili
LB 90580 | 107638 | 122819 | 144595 | 156694 | 169249
UB 146931 | 185429 | 220863 | 276271 | 310299 | 346232
Summary

This chapter of the study is based on the application of RFFA for estimating flood
quantiles considering AMPF of 36 sites located on important streams/rivers of KPK,
Pakistan. Systematic, detailed and comprehensive application of a standard procedure
to a new study area is an important contribution of this study. Some major findings are
summarized below:

i. L-moments based descriptive statistics show that there exist variations in the

data series at 36 sites. The L-kurtosis values, however, are relatively lower than
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ii.

iv.

the values of L-skewness. This shows that the variation in the data series at
different sites is following a specific pattern or there is a frequent flooding at
different sites of the study area. A possible reason for these fluctuations may be
the erratic cycles of monsoon rainfall, because floods in Pakistan rely mostly on
heavy monsoon rainfall. Hussain (2017) reported similar results for major river
sites in Punjab, Pakistan.

Due to the existence of heterogeneity in the study region, it is divided into four
homogeneous regions. Wards clustering method using Euclidean distance based
on the most significant site characteristic is used for the sub division of study
area into homogenous regions.

Five commonly used probability distributions have been used as candidates for
regional distribution. The goodness of fit criterion of |ZP*®| statistic and L-
moment ratio diagram show that two or more distributions have passed
goodness-of-fit criteria for three of the four regions. Therefore, an assessment
analyses using simulations is performed to identify the robust distribution. The
results of different accuracy measures (95 percent error bounds and RMSE of
estimated quantiles) show that GNO distribution for Region 1, GPA distribution
for Region 2 and Region 3, and GLO distribution for Region 4 are robust
distributions. Identification of dissimilar regional distributions indicates
differences in the trends, tendencies and shape of the distribution of the data
series in different areas.

Using regional quantiles of each region at-site quantiles are estimated. These
estimated at sites quantiles are larger than average values of each site within

each region which shows the rising trend of flood in future.
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Chapter §

Flood Quantiles Estimation at Ungauged Sites

5.1 Introduction

RFFA basically involves two principal steps, (1) identification of regions having similar
site characteristics and (2) development of forecast equations for the estimation of flood
quantiles at gauged and ungauged sites. In RFFA, several methods are in practice
including regression techniques, rational methods, ANNS, etc. for the development of
forecast equations to estimate flood quantiles at ungauged sites. In this chapter,
regression models with robust estimation methods and machine learning methods
(BPNN and RBF) have been used for the development of models for ungauged flood

quantiles estimation. The details are given as follows.

5.2 Results and discussion

Major advantages of using RFA include robust estimates of quantiles at gauged sites
and estimation or improvement of quantiles at ungauged or partially/poorly gauged
sites within the homogeneous region(s). For this purpose, following steps are followed:
a) formation of homogenous region(s) of gauging sites b) identification of suitable
regional distribution for each homogeneous region c) estimation of dimensionless
regional quantiles of regional distribution, d) development of forecasting model for
each homogeneous region using site statistics [, (average data value of each site within
the homogeneous region) as dependent variable and characteristics of all sites located
within the homogeneous region as independent variable(s). The developed regional
forecast model is used for the estimation of sites statistic by putting site characteristics

of that particular ungauged site in the regional forecast model. The estimated site
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statistic for ungauged site is multiplied with regional quantiles to estimate the flood
quantiles for that particular ungauged site (Hosking and Wallis, 1997; Hussain, 2017;
Khan et al., 2019; Khan et al., 2020). We have discussed first three steps in Chapter 4

and the details of step d are given in the following sections.

5.2.1 Regression based models

Regression models are developed for the prediction of ungauged flood quantiles. For
such purpose, from the available site characteristics, selection of the most influential
one that has a significant impact on floods within the region is very important. Such
site characteristic(s) is/are used as a predictor variable(s) within the regression model.
Anilan, et al. (2016) gives the details of some commonly used site characteristics as
independent variables in regression models around the world for estimating ungauged
sites flood quantiles. These site characteristics are drainage area, the slope of stream,
and mean annual rainfall. Availability and identification of the most influential site
characteristics that can be used for the prediction of flood at an ungauged site within
the region is an ongoing area of research. The development of an adequate regression
model depends on the site characteristics that show a significant relationship with the
recorded data sets of gauged sites. Therefore, first, we i

dentify the most influential site characteristic that may be used as a predictor variable
within the regression model of each homogeneous region for the prediction of ungauged
flood quantiles.

Floods in Pakistan are mostly occurred in the monsoon season due to heavy monsoon
rainfall within the region (Government of Pakistan, 2017). The frequency in the
percentage of recorded AMPF of gauging sites of Region 1, Region 2, Region 3 and
Region 4 during a year (summer (monsoon), autumn, winter and spring) have been

calculated to identify in which season most of the AMPF values occurred. The
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percentages of the frequencies of AMPF are illustrated in Table (5.1), (5.2), (5.3) and
(5.4). The values of Table (5.1), (5.2), (5.3) and (5.4) show the highest percentage of
AMPF occurred in the monsoon season for all regions. Therefore, ARMS is the most

suitable site characteristic that will be used as the independent variable for the

development of regression models for Regionl, Region 2, Region 3 and Region 4.

Table 5.1: Percentage (%) of frequency of AMPF (Annual Maximum Peak Flows) in four

seasons at each site of Region 1.

S. Site name n Monsoon | Autumn | Winter Spring
No. ) (%) (%) (%)
1 Kalpani Deheri | 21 85.7 4.7 0.0 9.5
2 Wazir Ghari 32 46.8 12.5 12.5 21.8
3 Chinkar 28 64.2 7.1 10.7 10.7
4 Bara Tarnab 30 56.6 33 33 30.0
5 Khuderzai 33 51.5 12.1 9.1 24.2
6 Jundi Utmanzai | 25 80.0 0.0 0.0 4.0
7 | Lund Khwar East | 28 64.2 17.8 0.0 3.5
8 | Kalpani Saidabad | 33 84.8 12.1 3.0 0.0
9 Jundi Tangi 42 69.04 9.5 0.0 9.5
10 Swat Ningolai 33 81.0 10.0 0.0 3.0
11 | Bara Kohat Road | 34 83.0 50 0.0 12.0
12 Chillah 32 60 6 13 21

Note: The time period for Monsoon is from June to August, autumn is from September to November,
winter is from December to February and spring is from March to May.

Table 5.2: Percentage (%) of frequency of AMPF (Annual Maximum Peak Flows) in four

seasons at each site of Region 2.

S. . Monsoon Autumn Winter Spring
No| Sttemames ™) () ®w | % |

1 | Budni 47 73 11 7 9
2 | Hakim Gahri 33 52 19 10 19
3 | Katlongi 18 94 6 0 0
4 | Shahban 21 59 0 6 35
5 | Dagi 33 64 4 7 25
6 | Mugam 29 88 3 3 6
7 | Panjkora 33 52 12 0 36
8 | Kabul Adezai 30 93 0 0 7
9 | Kabul Naguman | 30 83 7 0 10
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Table 5.3: Percentage (%) of frequency of AMPF (Annual Maximum Peak Flows) in four
seasons at each site of Region 3.

S. . Monsoon | Autumn Winter Spring
No, | Stterames | ml| %) %W |
1| Naranji 52| 84 12 2 2
2 | Bagan 31| 80 3 10 6
3 Dallus 25 60 8 8 24
4 Shah Alam 30 80 0 0 20
5 Shahi Bala 25 74 12 0 14
6 Chprial 34 59 0 3 38
7 Garandi 33 67 9 9 15
8 | Kalpani Raisalpur | 34 | 82 3 6 9
9 Jani Khwar 22 51 16 0 33

Table 5.4: Percentage (%) of frequency of AMPF (Annual Maximum Peak Flows) in four
seasons at each site of Region 4.

S. . Monsoon | Autumn Winter Spring
No | Stemmes nll op | o | 0 | o

1 | Badri 46 88 7 5 0

2 | Jundi River 43 93 4 0 3

3 | Swat Khawazakhela | 34 94 3 0 3

4 | Swat Munda Head {55 76 6 2 16

5 | Kabul Nowshera 15 87 0 0 13

6 | Swat Khaili 43 79 5 0 16

For the identification of the functional relationship between dependent and independent
variables for all four regions scatter plots are given in Fig. (5.1). For Region 1, a scatter
plot between [, (at site mean of AMPF) and ARMS shows that a U-shaped relationship
exists between dependent and independent variables. Moreover, for Region 2, Region
3 and Region 4 no such pattern is observed between l; and ARMS.

Based on the aforementioned details, for Region 1, it is appropriate to use a quadratic
form of ARMS as an explanatory variable for the regression model. For Region 2,
Region 3 and Region 4 the linear form of ARMS has been used within the regression

models.
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Plots of Region 1 and Region 2 show that Few observations in the data series do not
follow the usual pattern of the data and create high scatter within the data. In classical
regression modelling, such observations (outliers) create problems of estimation and in
such a situation it is very difficult to fulfil the critical assumptions of classical
regression (normality and constant variance of the error term). Therefore, for Region 1
and Region 2 robust estimation methods are the obvious choice for the model
estimation. Due to the existence of high scatter between the independent and dependent

variable, the M-estimation method (Huber, 1973) for Region 1 and the S-estimation

method for Region 2 has been used.
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Fig. 5.1: Scatter plots for four homogeneous regions between At-site mean and
ARMS.
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Thus the fitted regression models for Region 1 and Region 2 based on the

aforementioned details are.

Model for Region 1
lir1 = 9220.21 — 104.20 ARMSg, + 0.3107 (ARMSg,)? (5.1)
Model for Region 2
lir2 = 40.5682 ARMSp, (5.2)

Values of the coefficients, standard errors of estimates, t-calculated (to validate the
statistical significance of the provided coefficients) and their corresponding p-values
for the model of Region 1 and Region 2 are given in Table (5.5) and (5.6).

Table 5.5: Estimated values of the fitted regression model for Region 1, coefficients
and their corresponding standard errors (S.E.), t-values and P-values.

S. No. | Independent variables | Coefficients | S.E. | t-value | P-value
1 ARMSg, —104.20 32.01 | -3.2554 | 0.001
2 (ARMSp,)? 0.3107 0.0719 | 4.3186 | 0.000

Note: ARMS (Average rainfall in monsoon)

Table 5.6: Estimated values of the fitted regression model for Region 2, coefficients
and their corresponding standard errors (S.E.), t-values and P-value.
S. No. | Independent variables | Coefficients S.E. | t-value

P-value

1 ARMSg, 40.5682 14.9308 | 2.7172 | 0.006

The results show that the coefficients of the fitted regression models in Eq. (5.1) and
Eq. (5.2) are highly significant at 5% level of significance. The quadratic term of the
model (Eq. (5.1)) have a positive impact on flood flows when rainfall during the
monsoon season is increased from its average value. The value of adjusted RZ for

model given in Eq. (5.1) is 0.89 and 0.47 for the model given in Eq. (5.2).
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Fig. 5.2: Comparison of fitted and original values of [, estimated through QR and M-
estimation method for Region 1.
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Fig. 5.3: Comparison of fitted and original values of l, estimated through linear
regression and the S-estimation method for Region 2.

Comparison of predicted values through Eq. (5.1), (5.2) and their corresponding

original values of dependent variable have been given in Fig. (5.2), (5.3).
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For Region 3 and Region 4, log-transformed linear models with the OLS estimation

method are developed. Both regression models for Region 3 and Region 2 are given

below:

Model for Region 3

In(l1z3) = 1.6702 In(ARMSgs) (5.3)
Model for Region 4

In(l1zs) = 1.9748 In(ARMSz,) (5.4)

The intercept term is not included in both models of Region 1 and Region 2 as being
statistically insignificant (at 5% level of significance), high standard error and
practically insignificant, i.e., there is supposed to be no flood in the region with the
value of ARMS as zero (the floods in Pakistan are usually dependent on the monsoon
rainfall (Hussain and Pasha, 2009). For the estimated model in Eq. (5.3) the value of R?
(coefficient of determination) is 0.9931 and adjusted-R? is 0.9921. For the fitted model
given in Eq. (5.4) the value of R? is 0.9862 and adjusted- R? is 0.9801. This show that
the linear regression lines are given in Eq (5.3), (5.4) fits the data of Region 3 and
Region 4 sites adequately. The estimated regression coefficient, standard error of the
estimate, t-calculated and its corresponding p-value of models Eq. (5.3), (5.4) are given
in Table (5.7), (5.8). Results of Table (5.7), (5.8) show that the estimated regression
coefficients of Eq. (5.3), (5.4) models are statistically significant with low standard
errors.

Table 5.7: Results of the fitted regression model in Eq. (5.3).

Independent variable Coefficient S.E. t-value | P-value

In(ARMSgs3) 1.6702 0.0525 | 31.81 | 0.0000
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Table 5.8: Results of the fitted regression model in Eq. (5.4).

Independent variable Coefficients S.E. t-value P-value

In(ARMSgs) 1.9748 0.0978 | 20.1756 | 0.0000

These details show that the fitted models in Eq. (5.3) and (5.4) are adequate, still,
assumptions related to the error term (normality, zero mean and homoscedasticity) are
requisite (for details, see Gujarati, 2003). To check these assumptions, Jarque-Bera test
with the null hypothesis that “the residuals follow normal distribution” has been applied
for residuals of fitted models in Eq. (5.3) and (5.4). The calculated value of the Jarque-
Bera test statistic for the Eq. (5.3) model’s residuals is 0.2725 with its corresponding p-
value as 0.8725 and for Eq. (5.4) value of the Jarque-Bera test statistic is 0.7480, and
P-value is 0.6879. As the p-value exceeds 5% level of significance for Eq. (5.3), (5.4)
models residuals; therefore, we are unable to reject the null hypothesis for Eq. (5.3),
(5.4) models, hence, we can conclude that the error terms of Eq. (5.3), (5.4) models
follow the normal distribution. To check for the homoscedasticity of the error term,
White's Test for heteroscedasticity has been applied under the null hypothesis that the
“variances for the errors are equal”. For a model of Eq. (5.3), the corresponding test
statistic for White's test is W = 0.0260 with the corresponding p-value as 0.88 and for
Eq. (5.4) the value for White's test is W = 1.3378, and its P-value is 0.2519. This shows
that we are unable to reject that the residuals of Eq. (5.3) and Eq. (5.4) are
homoscedastic. All these details show that the estimated regression models in Eq. (5.3),
(5.4) are an adequate fit. Therefore, the fitted models in Eq. (5.3), (5.4) can be used to

predict !, for each ungauged site within the homogeneous Region 3 and Region 4

respectively.
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For Region 1, Region 2, Region 3 and Region 4 estimated values of I, through different
methods of regression have been given in Table (5.9). Comparison of predicted values

through Eq. (5.3), (5.4) and their corresponding original values of dependent variable
have been given in Fig. (5.4), (5.5).
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Fig. 54: Comparison of fitted and original values of !, estimated through linear
regression and the OLS method for Region 3.
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Fig. 5.5: Comparison of fitted and original Values of {; estimated through lincar
regression and the OLS method for Region 4.
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5.2.2 Back-propagation neursl network (BPNN) model

The primary objective of training ANN is to reduce the error among the target output
and ANN output through adjusting weights. The “caret” package of R-language has
been used for the training of BPNN. To select the best BPNN model, different
combinations of hidden layers and neurons have been observed against the MSE of
observed and fitted mean values ({,) of the Region 1, Region 2, Region 3 and Region
4, For each homogeneous region (Region 1, Region 2, Region 3 and Region 4) the
model with minimum MSE relative to other models has been selected for the prediction
of at-site mean values (I;). BPNN algorithm with two hidden layers, five neurons in the
first layer and three in the second layer, have been used. Few of the published studies
have also developed such BPNN model with only two input variables and three hidden
layers for the estimation of floods, for instance, Aziz et al. (2014). To avoid over fitting
of the model to ensure the quality of the developed BPNN model, testing MSE and
training MSE have been compared. Training of BPNN has been terminated for an
observed increase in the test MSE or even a decrease in the training MSE.

Six input and one output variables have been used for the prediction of the dependent
variable (average value of the observed AMPF at various sites (I, )). Site characteristics,
such as, “Lat”, “Long”, “Ele”, “AARF”, “ARMS” and “AAT” have been used as input
variables of the BPNN model. The variable [; has been used as the dependent variable
of the modc?l. The functional relationship of the dependent and independent variables is
given as

f(l1) = g(Lat, Long, Ele, AARF, ARMS, AAT) (5.5)
Predicted values of l;by using BPNN methods for Region 1, Region 2, Region 3 and
Region 4 are provided in Table (5.10) and in Fig, (5.6) (5.7) (5.8) and (5.9). The results

of Table (5.10) show that in Region 1, the sites having a larger magnitude of AMPF
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(Bara Tamab, Kalpani Saidabad and Swat Ningolai) BPNN model closely predicted the
values of ;. Moreover, in Region 1 BPNN model under and overestimate the values of
1, for the sites having a smaller magnitade of AMPF, larger variation and skewness
within the data series. Similar findings observed in the results of Region 2 and Region
3. The results of Region 4 show that the BPNN model closely estimated the values of
[, for all sites in the region. The reason is that the magnitade of AMPF of all sites
included m Region 4 is larger and variation within the data sets is small as compared to

Region 1, Region 2 and Region 3.
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Fig. 5.6: Comparison between fitted values estimated through BPNN and observed

values of /; for Region 1
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Fig. 5.7: Comparison between fitted values estimated through BPNN and observed

values of /1 for Region 2.
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Fig. 5.8: Comparison between fitted values estimated through BPNN and observed

values of /; for Region 3.
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Fig. 5.9: Comparison between fitted values estimated through BPNN and observed

values of I; for Region 4.
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5.2.3 Radial base function (RBF)

RBF method gives accurate estimates in flood prediction modeling. This method has
been used in various studies for short term stream flow forecasting, for example,
Kagoda et al., 2010; Uysal, 2016 and Sahoo et al., 2019. Therefore, in this study, RBF
method is used for ungauged flood quantile estimation in Region 1, Region 2, Region
3 and Region 4. The details of the adopted procedure are:

For the application of the RBF, the dependent and independent variables are rescaled
and their standardized form has been used for the training of the model for the four
regions. A random partition of 70% and 30% have been used for the training and testing
of the model. There are six units (independent variables) in the input layer. The hidden
layer has the same number of units as in the input layer and the output layer containing
only one unit. In this analysis Gaussian function has been used as a link function
between hidden and input layers. Sum of squares error and relative error are used for
the model evaluation criteria’s. Model summary of the training and testing phases for
each region are provided in Table (5.11). A graphical comparison of the fitted values
against observed values of the dependent variable is illustrated in Fig. (5.10), (5.11),
(5.12), (5.13). Furthermore, predicted values of dependent variable /; of each region
given in Table (5.12). The results of Table (5.12) and Fig. (5.10), (5.11), (5.12), (5.13)
show that the RBF model more accurately predicts the values of /; for Region 1 and
Region 4. Results of Region 2 shows large variation in the estimates for the sites “Dagi”
and “Kabul Naguman”., The results of Region 3 show that predicted values of /,
significantly varies from their original values for the first four sites ‘“Naranji”,
“Bagiari”, “Dallus” and “Shah Alam” and after that predicted values accurately follow

the pattern of original values. Therefore, RBF estimates can be coupled with regional



quantiles of the respective region for the estimation of T-years quantiles at the ungauged

site.
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Fig. 5.10: Comparison between fitted values estimated through RBF and observed

values of /; for Region 1.
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Fig. 5.11: Comparison between fitted values estimated through RBF and observed
values of I, for Region 2.
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Fig. 5.12: Comparison between fitted values estimated through RBF and observed

values of /; for Region 3.
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Fig. 5.13: Comparison between fitted values estimated throngh RBF and observed

values of /; for Region 4.
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Table 5.11: Model summaries of RBF during the training and testing phase of each region.

Model Summary Region 1 | Region 2 | Region 3 | Region 4
Sum of Squares Error 0.033 1.045 0.052 0.012
Training
Relative Error 0.008 0.298 0.017 0.006
Sum of Squares Error 0.035 0.681 0.079 0.015
Testing
Relative Error 0.477 0.573 1.762 1.541

102



€01

0€0T | O€OI | YeNMD
peoy
esvl | esy1 S
Te[o3uIN
ye68 | ve6s JomS
86 $86 mmyy wer | Ls96 | LZZ6L " N SOt | sorr Bue
s j mqe 1punf
mdesrey TeZopy peqepres
ELLYE ELLYE wrediey 9162 | 8200€ nqey So¥6 | 60¥6 ediey
JBMI
$86 S001 puBIED 08ILZ | ZLZ9z | wioyfueq $S9 414 ﬁuw__ﬂ.i
TeZueurn,
peves | veES6S Treyy Jems 08401 08401 reudyd Zev9o1 | 69991 | umbnpy 090Z | €50z ..Ea.:
BI9 0
1L98ET | 1L8SEL _H.M_z S6¥S Z6LZ | ered Weqs 1986 16€ Beq €Lyl | 8SLI | veziopnyy
PUsH 14 qeum],
e
600€S TELZ9 | goumpy sems EVEL EPEL TV qeys 6IST | 91SI | uequeys | #88II 2811 ereg
B oﬁ_u—ﬂa?
S€80S | S€80S b asmau S6¥S L618 sn[red yLET | L6EZ | 1Buopey 869 26 | UMD
uqen weyn
JOA um eide
09211 09011 ry punf LOLS LOLS ueiSeq LISE | VILE woEH 9P 9z¥ e
Hagag
6ZZL 62ZL upeq $86 LYbS TfuereN 0I8¥I | OI8YI upng 8967 | LS8Z nedey
pana Y 7] JuIBN S pana®y " omeNMS |pangty | %7 | owmeNoNS [pamigRr| W7 | sumN s
p uoidoy ¢ uofday 7 uoiday T uoidoy

‘suoi3a1 snosusJowoy Ioj Jo JAY YSnory parewnss ¥7 JO SSN[BA PINY PUB PIAISGQ :ZI°S AqEL



5.3 Assessment analysis of RBF, BPNN and regression methods

The three estimation methods (RBF, BPNN and regression) have been used for T-year
flood quantiles estimation at ungauged sites within Region 1, Region 2, Region 3 and
Region 4. The developed models based on the three methods (BPNN, RBF and
regression) are theoretically justified for each region, but still, an assessment analysis
is required to check the relative accuracy of estimated flood quantiles. To do so, R?,
RMSE and MAPE have been calculated using the information of Table (5.9), (5.10),

(5.12) and the results are given in Table (5.13). Their corresponding formulas are:

21 2(11-1122
R 1 ALY (5.6)

2
RMSE = [Elch). 5.7

MAPE = (ﬁzl‘*—l’i’il x 100 .8)

Table (5.13) shows that the values of two evaluation metrics, R? and MAPE, for Region
1 confirms that RBF estimates are more reliable than BPNN and regression. In
comparison to RBF and regression analysis, the values of three assessment parameters
in Table (5.13) indicate that the BPNN approach provides accurate and reliable
estimates for Region 2, Region 3, and Region 4. Therefore, RBF can be the preferred
choice to predict the flood quantiles for ungauged and poorly gauged sites of Region 1

and BPNN for Region 2, Region 3 and Region 4.
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Table 5.13: Accuracy measures of three estimation methods for Region 1, Region 2,
Region 3 and Region 4.
Estimation Region 1 Region 2

Method R? RMSE MAPE R? RMSE MAPE

Regression | 0.0841 | 4681.15 87.34 0.2396 | 16693.67 | 223.69

BPNN 0.9892 3.17 28.17 0.9991 61.33 7.64

RBF 0.9990 64.66 6.67 0.8189 79.33 275.94

Region 3 Region 4
Regression | 0.0519 | 5016.33 126.51 0.3467 | 4132942 | 176.12

BPNN 0.9962 17.33 23.67 0.9993 523.37 5.01

RBF 0.9597 | 1493.67 23.74 0.9916 | 4009.81 293

5.4 Practical validation of estimated quantiles

The estimates of quantiles for various return periods through RFFA for gauged and
ungauged sites are statistically sound but their practical validation is still required. A
comparison of quantiles estimates obtained using regression model, BPNN and RBF of
15, 50 and 100-year return periods have been performed with highest values of
observed/historic AMPF (first and second as per their order of magnitude along with
their year of occurrence) for all sites results have been illustrated in Table (5.14),
(5.15), (5.16), (5.17).

The results of Region 1 given in Table (5.14) show that the highest values of observed
AMPFs have closely been estimated through RBF for the sites Chinkar, Bara Tarnab,
Khuderzai and Jundi Utmanzai at 100-year return period quantile. A similar comparison
is seen for the sites Wazir Ghari, Kalpani Saidabad and at Swat Ningolai on 50-year

quantile and at the sites Lund Khwar East on 15-year return period quantiles. The RBF
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estimates for sites Kalpani Deheri and Chillah at 15-year return period and site Jundi
Tangi at 50-year quantile estimate are comparable to the second-highest value of
observed AMPF. Therefore, based on the above discussion, for Region 1, the RBF
model gives more practical results as compared to BPNN and QR model.

Results of Region 2 given in Table (5.15) show that the RBF model closely predicts
the highest values of AMPF of sites Hakim Ghari and Katlongi at a 50-year quantile.
The second highest value is estimated through RBF at 15-year quantile for the sites
Budni and Kabul Adezai. BPNN model gives a close estimate to the highest values of
sites Shahban at 15-year quantile, for site Muqam at 50-year quantile and site Kabul
Naguman at 100-year quantile. The second highest value of site Dagi is also estimated
at 100-year quantile through BPNN. Therefore, for Region 2 BPNN and RBF models
give more reliable estimates as compared to regression model for the ungauged sites.
For Region 3, results given in Table (5.16) illustrate that the BPNN model gives
comparable estimates of quantiles with the highest values of AMPF for all sites except
two sites Garandi and Jani Khwar. Moreover, the comparison of the estimated quantiles
using RBF for Region 3 show that the estimates are accurate and close to the highest
values of AMPF for all the sites. For Region 4, the results of RBF and BPNN provided
in Table (5.17) show similar behavior for the estimation of quantiles for all sites. RBF
estimates for the 100-year return period are closer to the highest values of AMPF as
compared to BPNN. Therefore, the RBF model is the better choice for the estimation
of the ungauged quantile within Region 3 and Region 4.

Results of Table (5.16) (5.17) show that the predicted quantiles through OLS regression
for smaller return period (15 and 50 years) are comparable with the highest values of
observed AMPF for sites Naranji, Bagiari, Shah Alam, Shahi Bala, Chprial and Garandi

sites of Region 3. Similar results has been observed for the sites Badri and Jundi River
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of Region 4. A notable point is that the OLS regression analysis provides reasonably
close estimates of flood quantiles within the span of the observed data. The estimated
quantiles using OLS regression for longer return periods (100 years) or outside the
available span of the data, show large deviations from the highest values of observed
AMPF for all the sites. This is a major disadvantage of using OLS regression for
estimating flood quantiles on longer return periods or beyond the span of the observed
data series.
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II.

Summary

In this chapter, for ungauged flood quantiles estimation within four homogeneous

regions, machine learning (RBF and BPNN) and regression models with robust and

OLS estimation methods have been used to develop a functional relationship between

!, values and their respective site characteristics. The key findings of this chapter are

given below.
For Region 1 Region 2, Region 3 and Region 4 results show that the estimates
obtained using machine learning (RBF and BPNN) methods are better as compared
to regression analysis, RBF is the preferred method for ungauged flood estimation
in Region 1. Moreover, BPNN is more suitable for flood quantiles forecasting at
ungauged and poorly/partially gauged sites in Region 2, Region 3 and Region 4.
A comparison has been demonstrated using the first and second highest values of
the observed AMPF at all the gauging sites located in Region 1, Region 2, Region
3, and Region 4 to determine the functional validity of the given estimates for
various return periods, using RBF, BPNN, and regression methods. Most of the
sites in Region 1 have RBF estimates that are closer to the highest observed values
of AMPF (though only for gauged sites). Therefore, RBF is the reliable method for
ungauged flood estimation in Region 1. The estimated quantiles from BPNN at the
several sites of Region 2, Region 3, and Region 4, for small to large return period,
are closer to the largest and second high value of AMPF. Therefore, BPNN would
be a preferred approach as compared to regression models and RBF for flood
quantiles estimation at ungauged sites (especially for longer return periods) within
the homogeneous Region 2, 3 and 4.

The results of this chapter will not only assist the officials dealing with flood risks

management but will also be useful for the management of agricultural water and the
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design capacity of existing and proposed hydrologic structures in the study region. For
instance, a proposed project of the provincial government of KPK is the site Bara Dam
(an ungauged site of the study area located in Region 1).The RBF model of Region 1
can be used successfully for flood quantiles estimation at proposed Bara Dam site by
including the values of site characteristics in the model. These findings may also be

useful in improving the consistency of quantiles at the study area's poorly gauged sites.

113

iy, &



Chapter 6
Choice of Estimation Methods in at-Site Frequency Analysis

Using Pearson Type-3 distribution

6.1 Introduction

Univariate modeling using probability distribution(s) also known as at-site frequency
analysis is a popular area of research. Fitting a probability distribution to a series of
values generated from a random process can provide accurate and reliable estimates of
quantiles if modeled properly. Probabilistic modeling could be a challenge, especially
when dealing with extreme values because of their non-normal or skewed behavior and
the availability of a limited span of data series at a site. There exists a variety of
probability distributions for modeling a random variable with different methods of
estimation. Success depends on the type, trends and tendencies, and shape of the
variable under study along with the available size of the sample including many others.
Details of dealing with extreme values in the area of statistical hydrology, meteorology
and wind are available in Beirlant et al., (2004) and Naghettini (2017). A review of
different methods of estimation of parameters in extreme values analyses (EVA) and
few recommendations for best practices have been discussed in Palutikof et al., 1999
and Arns et al., 2013. In EVA, the choice of a method for parameters estimation is not
the only source of variation for considering a distribution. Few stochastic uncertainties
that belong to a specific method/model for the estimation of quantiles of T-year return
period are a selection of threshold in a peak over threshold method, selection of block
size (daily, monthly, quarterly, yearly) for maxima and minima analysis (Coles et al.,

2001).
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In EVA, the dealing variable usually consists of minima’s or maxima’s (hourly, weekly,
monthly, quarterly or yearly) or peaks over a threshold (POT). Each series of values
have certain advantages or disadvantages associated with it. The series of annual
maxima’s with a record length of at least twenty years usually provide accurate
estimates of T-year quantiles as compared to POT (Cook 1985; Palutikof et al., 1999;
Ferreira and de Haan 2015). The variable in the focus of this study will be annual
maxima’s as being a common variable in frequency analysis of extreme events. Major
limitations attached with annual maxima’s include the availability of a limited number
of observations (span of the data series) and skewed shape of the distribution.

Pearson Type III (PE3) distribution is an important distribution in EVA as illustrated in
several case studies around the world including IACWD, 1982; Chang and Moore 1983;
Hussain et al., 2017; Asquith et al., 2017; Li et al., 2017; Lei et al., 2018. Its inclusion
in a set of five candidate distributions in the famous methodology of regional frequency
analysis proposed by Hosking and Wallis (1997) is also advocating its significance and
adequacy to models extreme values.

For fitting PE3 distribution, different methods of estimation have been proposed. For
example, Song and Ding (1988) suggested using the probability weighted moments
method while Hosking and Wallis (1997) provided L-moments (LM) estimators of its
parameters. A comparison of maximum likelihood estimation (MLE) and the method
of moments is illustrated in Bobee and Ashkar (1991). Koutrouvelis and Canavos
(1999) proposed mixed moment estimators for PE3 distribution using exponentially
transformed data. Jan and Shabri (2017) provided a comparison of L-moments and TL-
moments estimators of PE3 distribution for river flow predictions in Johor, Malaysia.
The results of these mentioned studies reveal the following important facts that there

does not exist a universal method of estimation of parameters of PE3 distribution and
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the choice of the estimation method is a critical factor, which depends heavily on the
size and shape characteristics of the sample. Therefore, this study is designed to
compare the performance of three estimation methods (MLE, LM and Maximum
product of spacing (MPS)) for fitting PE3 distribution using simulations and empirical
analyses by varying size and shape characteristics of the sample. A concise discussion
on the use of these three methods is provided below:

In EVA, the efficiency of estimates using MLE (especially quantiles of T-year return
period) is linked to the size of the sample (Katz et al. 2002). To overcome this issue,
LM derived by Hosking (1990) is a preferred choice. A large number of studies have
used LM in regional frequency analysis while modeling annual maxima’s, for instance
(Lee and Kim, 2019; Vivekanandan, 2015; Drissia et al., 2019; Hussain, 2017; Khan et
al., 2019; Rutkowska, 2018).

Another, relatively less common choice, especially with a small sample size is MPS.
Few studies like Wong and Li, 2006; Singh et al., 2014; Kumar Singh et al., 2016;
Murage et al., 2019 and El-Sherpieny et al., 2020 showed that the method of MPS is a
better choice of estimation than traditional methods. Asquith et al. (2017) reported that
MPS and LM methods provide nearly identical parameter estimates of PE3 distribution.
The study of Soukissian and Tsalis, (2015) illustrated that estimate using the MPS
method are better in terms of bias, mean square error and variance of the estimated
parameters for modeling extreme wind speed. But none of the studies so far has
provided a comparison of LM, MLE and MPS methods for estimation of PE3
distribution.

This study is designed to check the performance of LM, MLE and MPS estimation
methods for fitting PE3 distribution. A two-step approach is adopted. In the first step,

simulation experiments have been performed by introducing linear variation in the
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shape parameter of the distribution (while selecting standard values of the location and
scale parameters) for different sample sizes. These variations will help in the
assessment of the estimation methods concerning different combinations of size and
shape characteristics of the sample. The second step deals with empirical analysis, i.e.
estimating flood quantiles considering annuals maxima’s of peak flows (AMPF) of four
sites of Khyber Pakhtunkhwa (KPK), Pakistan. These sites have been selected keeping
in view the sample size, scale and shape of the distribution associated with the observed
data series. The findings of this study will provide useful information for the choice of

PE3 distribution with an adequate estimation method in EVA.

6.2 Maximum product of spacing estimates of PE3 distribution
PE3 distribution also known as generalized gamma distribution is an important
probability distribution in EVA. For a random variable ¥ having PE3 distribution, its

density function is

£ = (25 03D ©.1)

a
Where a, b and ¢ are scale, shape and location parameters respectively. If y = € and
a > 0, the shape of PE3 distribution is positively skewed. If y < £ and a < 0, its shape
is negatively skewed.

The key standardizations of a random variable “Y” having PE3 distribution with (g,

b, €) are given as:

_Y-e _ Y—g—ab
zZ=—, K=—5 6.2

Here the random variable Z has Gamma distribution with one parameter which is equal

to the PE3 (1, b, 0), and “X” is the frequency factor with mean “zero”, variance “one”

and skewness "2b1/ 2",
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The relationship of Eq. (2.35) can be used to obtain the estimates of parameters of PE3
distribution using the MPS method. By using the pdf given in Eq. (6.1), the following
equation is obtained.

Kope(a,b,€) = =¥ log [f;:‘_l (ar;(b) (la'—‘)b_1 e‘(%')) dy] 6.3)
Estimates of parameters @, b and & can be obtained by maximizing the MPS log
estimator is given in Eq. (6.3). A Closed-form solution of Eq. (6.3) is not available.

Therefore, non-linear optimization is used to obtain the numerical solutions of MPS

estimators.

6.3. Simulation experiments
The analyses include two steps for evaluating the adequacy of three estimation methods
for fitting PE3 distribution. The first step includes simulation experiments while the
second step is based on empirical analysis using AMPF of four sites of KPK. In the first
step, 1000 repetitions for different sample sizes, i.e. small, moderate and large (20, 40,
75 and 100) from PE3 distribution have been generated in each case of the estimation
of parameters. The standardized form of PE3 distribution has been used as
recommended by Wang 1990; NIST/SEMATECH 2012; Jan and Shabri 2017. For
standard form location and scale parameters are set equals to zero and one respectively,
the values of shape parameters varies arbitrarily. If the value of shape parameter
increases than the skewness of PE3 distribution increases and its density curve become
flatter with low kurtosis. Root mean square error (RMSE) and bias have been used as
accurate measures of the estimates. A brief description of different steps in simulation
experiments is as follows:

1) Random samples of size 20, 40, 75 and 100 have been generated, 1000 times,

by setting the values of parameters of PE3 distribution as € = 0, a=1 and b. A
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linear variation in the shape parameter “b” has been introduced with a unit
difference for the range of 1.5 to 6.5. This variation will help in assessing the
performance of the three estimation methods at different levels of skewness.

2) For each case of 1000 samples, parameters of PE3 distribution have been
estimated through LM, MLE and MPS. In few cases, MLE and MPS fail to
produce the estimates of parameters at some repetitions during simulations due
to the convergence issue of the optimization algorithm.

3) Vectors of estimated parameters through simulations have been obtained. These
1000 estimates have been used to calculate RMSE and bias associated with each

parameter using the following expressions:

bias =E(@) -8 6.2)

RMSE = [Var(8) + (blas(®))’ 63)

Where @ is the actual/assumed value of the parameter and E () is the expected value
of the estimated values of the parameter calculated through simulations. The results of
these simulation experiments for sample size 20 and 40 are illustrated in Table (6.1)
while sample size 75 and 100 are presented in Table (6.2).

For a relatively small sample size, i.e. n = 20, the LM estimation method provides
estimates with low bias and RMSE relative to MLE and MPS for location and scale
parameters. However, for the shape parameter, the estimates provided by the LM
method have more bias and are less efficient. The method of MPS provides more
accurate and efficient estimates as the value of the shape parameter increases. Almost
similar trends are obvious for a moderate sample size of n=40. In few cases, while
dealing with extreme values, especially on an annual scale, a sample size of 40 may be

considered as a large sample size.
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For a sample size of n=75 and n=100, the LM method provides estimates with less bias
for location, scale and shape parameters in comparison to MLE and MPS'. However,
the estimates of shape parameter are less efficient. The method of MPS is a preferred
choice in terms of RMSE, especially when the data exhibits a large value of shape
parameter. Another notable point is that the method of MLE provides low values of
RMSE in comparison to the LM method for the estimation of shape parameter when
the sample size is quite large, i.e. 75 and 100.

In general, the LM method provides estimates with a low bias for location, scale and
shape parameters for small, moderate and large sample sizes. Therefore, it can be
concluded that LM estimates are relatively stable in terms of bias for estimating the
parameters of PE3 distribution. The method of MPS is a preferred choice for estimating
the scale parameter of PE3 distribution for all the sample sizes and values of the shape
parameters. The efficiency of the MPS method, for estimating the shape parameter,
increases with the increase in the value of the shape parameter. The method of MLE
provides comparable values of bias and RMSE for relatively large sample sizes, i.e. 75

and 100 and low values of the shape parameter, i.e. for b=1.5.
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Table 6.1: Values of bias and RMSE of the parameters estimated through LM, MLE and MPS

for sample size 20 and 40.
n=20
g LM MLE MPS
Location | Scale Shape | Location | Scale | Shape | Location | Scale | Shape
C) (@) ) C) @ (b) 0 @ ()
15 RMSE | 0.2267 | 0.2453 | 0.6401 | 0.2385 | 02759 | 0.5892 | 0.2348 | 0.2835 | 0.5676
Bias | -0.0044 | 0.0053 | -0.0951 | -0.0319 | 0.0448 | 0.2573 | 0.0589 | 0.1351 | 0.0791
a5 RMSE | 0.2151 | 03591 | 0.8334 | 02136 | 0.3764 | 0.4987 | 0.2457 | 0.3863 | 0.5086
Bias 0.0142 | 0.0253 | -0.0442 | 0.0449 | 0.0865 | 0.0778 | 0.1090 | 0.1888 | 0.0916
35 RMSE | 0.2033 | 0.4118 | 0.5938 | 0.2494 | 0.4725 [ 0.5055 | 0.2699 | 0.5290 | 0.3036
Bias 0.0127 | -0.0363 | -0.2787 | 0.0884 | 0.0634 | -0.2925 | 0.1358 | 0.1918 | -0.2008
45 RMSE | 0.2065 | 0.5657 | 1.4380 | 0.2280 | 0.7245 [ 1.3598 | 0.2238 | 0.6921 | 1.3129
Bias | -0.0045 | 0.0286 | 0.1723 | 0.1184 | 0.2938 | -0.0228 | 0.0431 | 0.1046 | -0.1640
RMSE | 02398 | 09972 | 22015 | 0.2795 | 1.1368 | 1.7119 | 0.2612 | 1.1228 | 1.6181
53 Bias 0.0175 | 0.1727 | 0.4095 | 0.1158 | 0.3938 | 0.0228 | 0.0994 | 0.4063 | 0.3233
RMSE | 02256 | 1.3475 | 4.2180 | 0.2708 | 1.5568 | 3.3284 | 0.2299 | 1.0058 | 2.5620
63 Bias 0.0208 | 02618 | 09481 | 0.1144 | 0.5899 | 0.4289 | 0.0712 | 0.2534 | 0.0310
n=40
15 RMSE | 0.1493 | 0.1723 | 0.4968 | 0.1535 | 0.1904 | 0.4018 | 0.1550 | 0.1829 | 0.3600
Bias | -0.0096 | 0.0127 | 0.0115 | -0.0176 | 0.0498 | 0.1877 | 0.0302 | 0.0830 | 0.0720
RMSE | 0.1623 | 0.2659 | 0.5269 | 0.1671 | 0.3098 | 0.3506 | 0.1918 | 0.3116 | 0.2827
23 Bias 0.0001 | 0.0208 | 0.0244 | 0.0489 | 0.0838 | 0.0405 | 0.0708 | 0.1452  0.1191
RMSE | 0.1443 | 02993 | 0.6944 | 0.1849 | 03818 | 0.5432 | 0.1874 | 0.3649 | 0.3550
33 Bias | -0.0076 | 0.0052 | 0.0263 | 0.1067 | 0.1415 | -0.1539 | 0.0444 | 0.0432 | -0.1453
RMSE | 0.1616 | 0.4659 | 1.0067 | 0.2190 | 0.6303 | 0.9439 | 0.1973 | 0.5771 | 0.9708
43 Bias 0.0140 | 0.0748 | 0.1513 | 0.1364 [ 0.2931 | -0.1122 | 0.0838 | 0.2640 | 0.2248
RMSE | 0.1635 | 0.5347 | 1.2858 | 0.2195 | 0.7056 | 1.1741 | 0.2080 | 0.6684 | 1.1048
53 Bias 0.0093 | 0.0755 | 02138 | 0.1029 [ 0.2904 | -0.0550 | 0.0859 | 0.2516 | 0.0054
RMSE | 0.1648 | 0.7520 | 1.7845 | 0.2089 | 1.0445 [ 1.5147 | 0.1965 | 0.9100  1.4068
63 Bias 0.0042 | 0.0579 | 0.1274 | 0.0788 | 0.3015 | -0.1037 | 0.0629 | 0.1939 | -0.2521
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Table 6.2: Values of bias and RMSE of the parameters estimated through LM, MLE and MPS

for sample size 75 and 100.

n=75

apy LM MLE MPS

Location | Scale Shape | Location | Scale | Shape | Location | Scale | Shape
(e @) (b) (&) (a) () © (O)) (b)
RMSE | 0.1139 | 0.1291 | 0.3259 | 0.1158 | 0.1325 | 0.2074 | 0.1164 | 0.1296 | 0.2042
L3 Bias -0.0053 | 0.0067 | -0.0018 | -0.0059 ( 0.0253 | 0.1089 | 0.0191 | 0.0507 | 0.0540
RMSE | 0.1111 | 0.1755 | 0.3644 | 0.1367 | 0.2384 | 0.2488 | 0.1330 | 0.2083 | 0.1903
23 Bias 0.0181 | 0.0359 | 0.0251 | 0.0753 | 0.1045 | 0.0146 | 0.0645 | 0.1208 | 0.0884
3.5 RMSE | 0.1170 | 0.2341 | 0.5089 | 0.1716 | 03224 | 0.3743 | 0.2258 | 0.4333 | 0.3202
Bias -0.0031 | 0.0045 | 0.0136 | 0.1324 | 0.1516 | -0.2380 | 0.0982 | 0.1404 | -0.1370
45 RMSE | 0.1250 | 03137 | 0.6595 | 0.1998 | 0.4653 | 0.5511 | 0.1892 | 0.4633 | 0.5289
Bias 0.0026 | 0.0181 | 0.0520 | 0.1494 | 0.2512 | -0.2922 | 0.1131 | 0.2386 | -0.0667
RMSE | 0.1138 | 03540 | 09044 | 0.1939 | 0.5447 | 0.7813 | 0.1594 | 0.4657 | 0.7790
53 Bias -0.0086 | 0.0004 | 0.1259 | 0.0959 | 0.2261 | -0.1668 | 0.0632 | 0.1449 | -0.1486
RMSE | 0.1212 | 0.4422 | 1.0621 | 0.1706 | 0.6020 | 0.9172 | 0.1559 | 0.5477 | 0.8432
63 Bias 0.0023 | 0.0131 | 0.0084 | 0.0878 | 0.2597 | -0.1948 | 0.0567 | 0.1483 | -0.2618
=100
15 RMSE | 0.0920 | 0.1008 | 0.2729 | 0.0920 | 0.1024 | 0.1666 | 0.0932 | 0.1006 | 0.1613
Bias 0.0014 | 0.0067 | 0.0142 | 0.0015 | 0.0184 | 0.0732 | 0.0209 { 0.0384 | 0.0286
RMSE | 0.1052 | 0.1648 | 0.3081 | 0.1297 | 0.2154 | 0.2189 | 0.1263 | 0.1888 | 0.1580
23 Bias 0.0069 | 0.0186 | 0.0170 | 0.0655 | 0.0867 | 0.0045 | 0.0425 | 0.0829 | 0.0680
RMSE | 0.1010 | 0.1952 | 0.4160 | 0.1545 | 0.2764 | 0.3180 | 0.1823 | 0.3018 | 0.2457
33 Bias 0.0084 | 0.0204 | 0.0156 | 0.1315 | 0.1595 | -0.1989 { 0.1393 | 0.2324 | -0.0170
45 RMSE | 0.1135 | 02831 | 0.5569 | 0.1781 | 0.4107 | 0.5016 | 0.1782 | 0.4240 | 0.4417
Bias 0.0014 | 0.0273 | 0.1128 | 0.1344 | 0.2414 | -0.2030 [ 0.1149 | 0.2410 | -0.0657
55 RMSE | 0.0980 | 03139 | 0.7489 | 0.1852 | 0.5304 | 0.6599 | 0.1710 | 0.4980 | 0.6548
Bias -0.0013 | 0.0053 | 0.0270 | 0.1318 | 0.3077 | -0.2466 | 0.0858 | 0.1899 | -0.2300
65 RMSE | 0.1050 | 04071 | 0.9570 | 0.1783 | 0.6251 | 0.8275 | 0.1592 | 0.5582 | 0.7654
Bias 0.0029 | 0.0451 | 0.1807 | 0.0980 | 0.3142 { -0.0788 | 0.0703 | 0.2156 | -0.1191
6.4 Empirical analysis

In the second step, the performance of three estimation methods (LM, MLE and MPS)

for fitting PE3 distribution has also been tested using a real-life data set. AMPF in cubic

feet per second of four sites in KPK, Pakistan have been used. The secondary data is
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provided by the hydrology section of the Irrigation Department of KPK. These sites are
selected keeping in view the variations in the sample size, trends and tendencies of scale
and shape characteristics (skewness and kurtosis) of the observed data series. None of
the published studies so far (to the best of authors’ knowledge) performed an at-site
frequency analysis of AMPF using the PE3 distribution of these four sites.
Geographical coordinates and record length of observed data series at each site is
provided in Table (6.3). Few details of the fitting procedure are:

Time series plots of AMPF at each site used in this chapter are illustrated in Fig. (3.2).
These graphs show that there exists random variation in the observed data series at each
site. Moreover, the occasional occurrence of a large magnitude of a flood is also
obvious. To observe the general trends and tendencies of AMPF at each site, few
descriptive measures are calculated and presented in Table (6.4). The information
reveals that for the four sites, the sample size varies from 21 to 34. Data exhibits
variation as shown by standard deviation as a scale statistic. The shape of the data series
at four sites is positively skewed with the values of skewness ranging from 1.45 to 3.19
and leptokurtic behavior as kurtosis values are showing more spread ranging from 1.48
to 10.67. These descriptive statistics show that the trends and tendencies of AMPF at
the four sites are different from each other, especially in terms of the shape of the
distribution. Therefore, the data is suitable to evaluate the effectiveness of different
estimation methods for fitting the PE3 distribution.

The estimated parameters along with their RMSE and bias are given in Table (6.5).
The two accuracy measures, i.e. RMSE and bias have been calculated using simulation
experiments. For this purpose, estimated parameters of each site have been used to
generate 1000 random samples from PE3 with a sample size equal to its observed

counterpart. Then for each site and generated sample, PE3 distribution is fitted using

123



LM, MLE and MPS methods. These simulated values (of each parameter) have been
used to calculate the RMSE and bias. The results of Table (6.5), for each site, are

discussed below:

iii.

iv.

For the site Wazir Ghari having relatively moderate sample size and high skewness
and kurtosis values, the estimates of location parameter have nearly comparable
RMSE for LM and MPS methods but the LM method is showing less bias.
However, for the estimates of scale and shape parameters, the MPS method has
obvious fewer values of RMSE while the LM method is showing less bias.

For the site Jundi Utmanzai, having a relatively small sample size but high skewness
and kurtosis values, estimates of the MPS method for all the three parameters are
showing less RMSE values. The estimates using the LM method are showing less
bias; but, interestingly, the estimates of the MPS method are showing comparable
bias for the estimation of the shape parameter. Therefore, the performance of the
MPS method in the case of small sample size with high skewness and kurtosis is
comparable with the LM method while estimating scale and shape parameters in
terms of bias.

For the site Bara Kohat Road having a relatively large sample size with moderate
skewness and high kurtosis, the LM method provides estimates for location and
scale parameters with low bias; however, the bias is comparable for LM and MPS
methods for the estimation of the shape parameter. Here MPS method provides
estimates with low RMSE for all the three parameters of PE3 distribution.

For the site Shahban having a relatively small sample size and the distribution of
observed data series is showing low skewness and kurtosis values, the LM method

provides estimates with low bias and RMSE for location and scale parameters.
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However, for the estimates of the shape parameter, the MPS method provides the

lowest RMSE value in comparison to LM and MLE.
The above discussion reveals that the method of LM generally provides estimates with
a low bias for all the parameters of PE3 distribution but the MPS method provides
efficient estimates, i.e. having low values of RMSE especially for the scale and shape
parameters. The efficiency of the LM method increases for relatively small sample size
and small to moderate values of L-skewness and L-kurtosis, for instance like the site
Shahban. However, as the severity of skewness and kurtosis increases, the MPS method
is more suitable to estimate the scale and shape parameters of PE3 distribution. The
results of this application also show that the MLE method is not a reasonable choice of
estimation in EVA for fitting PE3 distribution with small to moderate size sample.
For a general numerical assessment of goodness-of-fit of the considered methods, two
measures have been used namely standard error of fit (SEF) and Cramer Von-Mises
(CVM) test.
The SEF is defined in Kite, 1988 as:

SEF = [HmOr 3 (6.4)

n=np

Where y, are the observed values of the data series at each site, §; are the fitted values
generated through fitted distribution, “n” is the sample size and n,, is the number of
estimated parameters.

CVM test is another goodness of fit test. In this test, F, (a cumulative distribution
function (CDF)) is compared with a given F, (empirical CDF). Suppose
X1,X3 ... X~ F, then a null hypothesis Hy: F = F; is tested against the two-tailed
alternative hypothesis. The test statistics of the CVM test uses squared difference
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T =nf(F(x) — Fo(x)) dFo(x) 65)
After simplification of Eq. (6.5), the following expression is used for the computations
of T.

2j-1\2
2n

T=-+I, (Fo(XU)) -~

(6.6)

For a small value of T, the null hypothesis holds otherwise rejected. For more details
of the CVM test see Cs8rgd and Faraway (1996).

The values of these goodness-of-fit measures are given in Table (6.6). Comparable
performances have been observed for LM and MPS methods. For the sites with
relatively large sample size, skewness and kurtosis values, i.e. Wazir Ghari and Bara
Kohat Road, the method of MPS is a preferred choice; however, the CVM method
favors of LM method for the site Wazir Ghari. For the site Jundi Utmanzai having a
relatively small sample size and high skewness and kurtosis values, the MPS method is
the preferred choice. For the site Shahban having the smallest sample size with low
skewness and kurtosis values, the LM method has the least SEF value and highest
corresponding p-value of CVM. These results again show that method of MPS can be
a preferred choice of estimation of PE3 distribution for sites having moderate to large
sample size and high values of skewness and kurtosis. However, the LM method
provides better results for fitting PE3 distribution for a small sample size with moderate
skewness and kurtosis associated with the distribution of observed data series.

Flood quantiles for return periods of 20, 50 and 100 years have been estimated using
the quantile function of PE3 distribution. These estimated quantiles along with their
RMSE and bias are given in Table (6.7). Similar trends are obvious from the values of

accuracy measures of the estimated quantiles. In general, the estimates using the MPS

method have low RMSE values while with LM method have low bias. The performance
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of the LM method is superior for the site having a small sample size and low values of

skewness and kurtosis (for the site Shahban).

Another way of measuring the performance of estimation methods in the fitting of a

model is the calculation of 95% confidence intervals of the estimated quantiles. R-

package “lmomco” provided by Asquith (2020) has been used for the development of

95% confidence intervals for the estimated quantiles. These intervals along with growth

curves of the estimated flood quantiles are illustrated in Fig. (6.1). This figure shows

that the MPS estimation method provides the shortest 95% confidence interval,

especially a stable upper bound in the extreme upper tail of the distribution.

Table 6.3: Geographical coordinates and record length of four sites.

S. Longitude Record length
Site Name Latitude (North)
No. (East) in years
1 Wazir Ghari 33.9845 71.7749 1979-2010
2 Jundi Utmanzai 34.0094 71.8328 1987-2011
3 | Bara Kohat Road 33.8638 71.5635 1982-2015
4 Shahban 34.0919 72.0391 1987-2007

Table 6.4: Descriptive statistics of AMRD of four sites. Here n is the number of observations,

Min and Max are the minimum and maximum values in the data series, Skewness and Kurtosis

are moments measures of skewness of kurtosis.

S.

N Site Name N | Min | Max | Mean | S.D. C.V. Skewness | Kurtosis
o.

1 'Wazir Ghari 3215 3080 | 427 697.73 | 163.61 | 3.16 10.03

2 Jundi Utmanzai | 25| 35 19433 | 2053 | 4407.79 | 214.74 | 3.19 10.67

3 Bara Kohat Road | 34 | 24 11698 | 1453 | 2456 169.03 | 2.71 8.58

4 Shahban 211218 | 4309 | 1516 | 1171.86]| 77.31 | 1.45 1.48
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Fig. 6.1: Growth curves of predicted flood quantiles with 95 % confidences intervals.

Summary

The aims of this chapter is to assess the performance of three estimation methods MLE,
LM and MPS for fitting PE3 distribution by varying size and shape characteristics of
the sample. Two of the three methods (MLE and L.M) are quite popular while scarce
literature is available with respect to the application of MPS method. The assessment
is based on simulations and empirical analyses. The fitting of PE3 distribution has been

tested through two goodness-of-fit measures SEF and CVM. RMSE, bias and 95%
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confidence intervals of the estimated quantiles have been calculated for assessment

analyses of estimation methods. Major findings of the study are:

ii.

The results of simulation experiments reveal that the estimates using LM method
have low bias. The method of MPS is a preferred choice for estimating scale
parameter of PE3 distribution for all the considered sample sizes and values of the
shape parameters. The efficiency of MPS method, for estimating the shape
parameter, increases with increase in the value of shape parameter. The method of
MLE provides comparable values of bias and RMSE for relatively large sample
sizes, i.e. 75 and 100 and low values of shape parameter, i.e. for b=1.5.

Similar tendencies of assessment measures have been observed through empirical
analyses. These include that LM method is a preferred choice in case of small
sample size and low or moderate skewness and kurtosis values of the observed
data series. Alternatively, MPS method provides efficient estimates for moderate
to large sample size and high values of skewness and kurtosis. The stability and
efficiency of MPS method is obvious for the estimation of shape parameter of PE3
distribution. Moreover, MLE method is not a preferred method of estimation for

fitting PE3 distribution for relatively small to moderate sample size.

Therefore, the study concluded that for fitting PE3 distribution, estimates using LM

method have low bias in case of small sample and when data exhibits small to moderate

skewness and kurtosis. MPS is a reasonable alternative and provides efficient estimates,

especially when the data shows large skewness and kurtosis. MLE is useful in case of

very large sample size with low values of shape characteristics of data. The results of

this study provide useful guidelines for fitting PE3 distribution to extreme values. These

results can be improved in future by considering different probability distributions from
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the family of extreme value distributions, sample sizes and variations in terms of

location, scale and shape parameters of the distributions.

133



Chapter 7

Summary and Conclusions

For a developing state with agro centered economy and facing problems of water
shortage along with high variations in the stream flows, the importance of precise flood
estimates becomes vast, especially for the small streams and rivers which originates
with in the country. The results of this study contribute in terms of unique area of study
for the application of L-moments based RFA, emphases on the justification of basic
assumptions associated to RFA, application of machine learning methods and
regression analysis to estimate floods and so on. Moreover, the scenarios in which
homogeneous regions cannot be identified an alternate solution then is at site frequency
analysis. Quality of quantiles estimates using at-site frequency analysis typically
depends on size and span of the sample, distribution characteristics, choice of model
and estimation method. This study has also analyzed effectiveness of different
estimation methods for fitting Pearson Type 3 distribution in case of at-site frequency
analysis through simulations experiments by varying size of sample and shape
characteristics. Findings of simulation experiments are validated using real life
examples.
The key finding of this study are given below.
o Flood frequency analysis based on the necessary assumption related to data series.
Data set of 36 gauging sites has been tested through nonparametric tests and found
that data of all sites random, independent, homogeneous and free from significant

trends. Therefore, data set is suitable for RFFA and results are reliable for policy

134



making related to management and efficient utilization of flood water in the study
area.

The estimates of L-moment ratios of all 36 sites showed that there exist deviations
in the recorded data series at various sites. However, the L-kurtosis values are
comparatively small then the L-skewness values. One possible reason for these
fluctuations is the erratic cycles of monsoon rainfall because floods in Pakistan
usually rely on the extreme spells of monsoon rainfall. Hussain (2017) found similar
results for the sites of river basins in Punjab, Pakistan. The overall shape of the
distribution of flood within the study area is flat tope curve with high skewness
(heavy upper tail). Therefore, in future, the threats of bigger floods in the study area
are very high.

Larger heterogeneity exists within the group of 36 sites. Therefore, four
homogeneous regions have been defined using hierarchical wards clustering
method and Euclidean distance to achieve regional homogeneity among the sites.
The most relevant site characteristic has been used for the division of gauging sites
in to homogeneous regions.

After identifying the best fitted distribution(s) for Region 1, Region 2, Region 3
and Region 4 a simulation based assessment analysis has been performed to identify
robust regional distribution for each region. The results of different accuracy
measures and 95% error bounds show that GNO distribution for Region 1, GPA
distribution for Region 2 and Region 3, and GLO distribution for Region 4 has been
identified robust distributions. These identified divergent regional distributions for
each region are indicating dissimilarities in trends, tendencies and shape associated
with data series in different areas. Hence delineation of the study area into smaller

homogeneous region appears suitable.
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At-sites flood quantiles of each site within the study area are greater than their
average flood values and show rising trend. This shows alarming situation related
to future flood events. Therefore, serious planning is needed to overcome the
damages of future flood disaster.

Linear/non-linear regression, BPNN and RBF methods have been used to predict
site statistic (the average of AMPF) for ungauged sites. This site statistic is used for
the estimation of flood quantiles at ungauged sites with in homogeneous region(s).
Error evaluation and historical comparison of estimated quantiles with the highest
recorded values of AMPF show that RBF model gives efficient estimates for Region
1 and BPNN for Region 2, Region 3 and Region 4.

In at-site frequency analysis accuracy of estimates strongly depends on the model
choice, sample size, shape characteristics of sample data. In this regard, PE3 is
selected and its parameters have been estimated using method of LM, MPS and
MLE. The accuracy of the estimates has been tested through simulation
experiments. The simulation results show that MPS method provides more accurate
estimates for the shape parameter of PE3 distribution as compared to LM and MLE.
Moreover, the findings show that LM method is a preferred choice in the case when
observed sample is small and data series has low or moderate values of shape
characteristics (Skewness and Kurtosis). MPS method provides efficient estimates

for moderate to large sample size and high values of skewness and kurtosis.

The flood estimates of the study are beneficial for the authorities concerning flood risk

management, water resources management, irrigation, planning and development of

existing and potential hydraulic structures in the study area. The flood event observed

in past and forecasted in this study show that frequency and magnitude of flood

increases in future in the study area. Therefore, it is primary need of the time to built
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dams and flood protection barriers for the efficient utilization of flood water and to
protect the infrastructure and human’s life in the study area.

7.1 Future work Recommendations

For future studies, the focus would be to adopt different modelling approaches of
analyzing extreme events (like Bayesian approach) by varying estimation methods (like
maximum product spacing’s). We may also consider various novel techniques of
formation of homogeneous regions in RFA. Secondly, the inclusion of the data of more
rivers sites that are located in the Potohar region and Koh-e-Suleman mountain range
to expand the current study for large data sets. All the rivers/streams located in these
areas are known as the part of Indus river basin. Moreover, inclusion of few other site
characteristics for the development of models to estimate quantiles at ungauged sites
can improve the quality of estimates. Another important area is to perform RFA using
variables other than AMPF like 3 days, 5 days or 7 days maxima’s to add more data for
the application of RFA. Supposedly, it will improve the quality and usefulness of the

estimates.
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wifk < 0.

ey e log (1-k(E2).irk=0
(x ) ifk=0

CDF

F(x)=e*"

Generalized Pareto Distribution
Parameters: Location (g), Scale (a), Shape (k)

Rangeof xis:e<x<e+a/kifk>0;eSx<owifk <0.
o { k"log(l k(—)) ifk+0

("‘) ifk=0
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CDF
Fx)=1—e™
Generalized Normal Distribution
Parameters: Location (g), Scale (a), Shape (k)
Range of xis: —0o Sx<e+a/kifk>0;—o<xSwifk=0;e+a/k<x<

o if k < 0.

) = 2 ,={-k'11°s(1—k(;:).sz¢o

a—k(x—¢) (1;_‘ , ifk=0
@ is the standard normal pdf.
CDF
F(x) = ®(y), where @ is the standard normal CDF.
Pearson Type-3 Distribution

Parameters: Location (€), Scale (a), Shape (k)

4
Fs

Leta= B=-:;a|k|,andu=e—2a/k

If k > 0 than rang of x is 4 < x < o0 and

(x=p)
I e _ 6(a%52)

If k = 0 than distribution is normal, the range of x is —00 < x < oo and

f@=0(= F() =@ (=
If k < 0 than rang of x is —00 < x < u and
(B=x)
_ (u—x)-1e=W-2/8 _ 6(al52)
f@) = Fi) =155~
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A-2

Linear regression

In hydrological regression modelling quantity of interest ¥; of any i site can be written
as the linear function of their site characteristics represented through X;. The equation
form of the model is given below.

Y=XB+e¢ (A2.1)
where X is a matrix of gauging site characteristics of order (n X k), B is the vector of
regression parameters and & is the vector of the random error term. The order of B and
gis(nx1).

Polynomial regression

In regression modelling, when dependent and independent variables are not linearly
related to each other than non-linear functions (in terms of variables) are used to
develop and estimates the model. A polynomial regression model is used when the
relationship between independent and dependent variable is curvilinear. A general form
of polynomial regression model is given below.

Y=a+XL,BiX'+¢ (A22)
Most of the time, in flood modelling the relationship between flood values and their
corresponding site characteristics are nonlinear. In this situation, the curvilinear
regression model is used for the estimation of flood values (Khan et al., 2019).
Therefore, in this study the first-time quadratic regression is introduced for the
estimation of flood quantiles at ungauged sites.

OLS estimation method

For the estimation of regression model parameters, OLS methods of estimation

commonly used. OLS estimators for the regression parameters are known as the "best
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linear unbiased estimators" (BLUE). OLS estimators for the regression parameters of

Eq. (2.26) are given below.

B=(X"X)"1X"Y (A2.3)
and
Var(B) = a?(X"X)"? (A24)

OLS estimators for B are minimum variance unbiased estimators and does not
dependent on 42 stated and proven in Gauss-Markov-Aitken theorem see also (Rao and

Toutenburg, 1999; Koop, 2005).
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