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ABSTRACT

Tensor factorization in which a tensor (multidimensional array) is decomposed into a sum
of rank-one tensors has been used extensively in various enginecring applications. In this
work, we apply tensor factorization to recover missing data in biomedical signals.
Biomedical signals such as electromyography (EMG) are used to control robotic arms.
During acquisition of biomedical signals, data is missed because of various reasons such
as disconnection of electrodes, artifacts, muscle fatigue, or incapability of instruments to
cotlect very low amplitude signals. Missing data recovery is an important application to
maintain signals fidelity or otherwise classification accuracy c = algorithms degrades.

Traditional algorithms for tensor factorization are canonical polyadic decomposition
(CPD) and Tucker decomposition. The present work is an advancement in CPD to recover
missing data with significantiy improved accuracy in .erms of relative mean error (RME).
CPD decomposes the Nth-order tensor into a lincar combination of N rank-1 tensors. The
concept of CPD is exploited to develop CP based weighted optimization (WOPT) method
in which only known data is modeled. RME using WOPT is reduced significantly as
compared to other tensor factorization methods which shows good recovery of missing
data. In this work, we compared performance of CP-WOPT with Non-negative Matrix
Factorization (NMF) and PARAFAC/CPD. Performance of traditional methods such as
NMF and CPD degrade as amount of missing data increase but CP-WOPT outperforms
traditional methods even in worst case of 95% of unstructured (individual samples of data
is missing randomly) and 50% of structured missing data (chunks of data is missing

randomly). Our proposed framework has been tested on synthetic data, surface EMG and
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intramuscular EMG data of both healthy and amputee subjects with two types of missing
data schemes of unstructured and structured. For unstructured missing data, we have
removed 60% to 95% data from total EMG data whereas for structured missing data we
have removed 10% to 50% data from first and second halves for all four movements.
Results show CP-WOPT outperformed both NMF and CPD to recover unstructured and
structured missing data from synthetic, sSEMG and iEMG data. Furthermore, in order to
test the robustness of our framework we have employed CP-WOPT on large multiday
IEMG data of heaithy as well as amputee subjects. Results show that CP-WOPT even has
outperformed NMF and CPD in multiday EMG data as well. The effective application of
proposed framework on synthetic as well as real-life Electromyography (EMG) signals
(which include both surface EMG and intramuscular EMG signals) establishes the worth
and efficacy of the method. Prosthetic hand is one of the application where EMG data is
collected to control it. Because of various issues, part of EMG data is lost which leads to
poor classification of finger movements. In this work, missing data is recovered so that
functioning of prosthetic hand could be improved. We do so by firstly acquiring EMG data
from healthy and amputee subjects. Then this research builds on recovering structured and

unstructured missing data by employing matrix and tensor factorization methods.
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Chapter 1.

Introduction

1.1 Background and motivation

Electromyography (EMG) signal is the primary biomedical signal that is used for
myoelectric control. It has two types 1) surface EMG (sEMG) and 2) intramusculér EMG
(iEMG). Surface EMG is the signal captured from above the skin, whereas intramuscular
EMG is the signal captured from inside skin. Sensors or zlectrodes are used to capture
SEMG signals, whereas needles are used to capture iEMG signals. Acquisition of EMG
signals need preprocessing and conditioning of data. There exists various control schemes
to efficiently translate and utilize EMG data such as ON-OFF control, proportionali control,

finite state machine control, direct control etc. [2].

Use of prosthetic devices such as prosthetic hands, prosthetic limb etc. have increased
drastically ever since advancements have been made in myoelectric devices and state-of-
the-art artificial inteliigence algorithms are employed in them. Prosthetic devices are
controlled by EMG signals or more precisely by the electrical activity recorded from
muscles. Artificial inteltigence algorithms perform efficiently if input data (EMG in our
case) is large in amount. However, it has been observed that EMG data is not lossless
because of factors such as artifacts or disconnection of electrodes. Performance of

prosthetic hand rely on acquired EMG data and artificial intel ligence zigorithms, whereas



incomplete or missing EMG data reduces performance of artificial intelligence algorithms
and consequently control of prosthetic hand. Therefore, if missing data is recovered

efficiently than control of prosthetic hand can be improved significantly.

1.2 Research problem statement

It has been observed that during data collection, some of it is missed because of different
reasons. For example, in EEG or EMG signals data is missed because of disconnection of
electrodes, muscle fatigue, or incapability of instruments to collect very low amplitude
data. Such incomplete data degrades the performance of myoelectric devices due to
inaccurate execution of movements. In different fields of engineering, data is collected for
various applications. For example, Electroencephalography (EEG), Electromyography
(EMQ) are collected in the field of biomedical engineering for the control of prosthetic
arms or wheelchairs, and communication for people with various motor disabilitics.
Artificial intelligence algorithms, which are employed in biomedical applications such as
classification of movements in prosthetic arms or wheelchairs require accurate as well as

complete data for optimal performance.

Standard practice is to fill missing values with different estimates, such as mean value.
However, it has been observed that performance of such estimates degrades with the
increase in missing data. Another method to recover missing data is based on matrix
factorization in which multidimensional data is first flattened or unfolded and then
factorized, which destroys intrinsic multi-way nature of data. Usually methods such as

Alternating Least Squares (ALS), are used to minimize the objective function on matrix



factorization. Therefore, in order to preserve multi-way rature of data, tensor factorization
is employed to recover missing data. However conventional methods for tensor
factorization also exhibit poor performance in estimating missing values. This is due to
their modeling technique in which all known and missing values are used to estimate
missing values [2]. In order to improve performance of recovering missing data, our study

aims to model only known entries by formulating modelling technique as a wei ghted least

squares problem. It is done by minimizing weighted error function %"[(JC-—

jALa®@, ,A(”J])'W]":( between originai X and recovered data X. Research problem

parameters include 22 (which has weighted snsor multiplied with recovered tensor), f,
(computed function), and 6™ (gradiewts). Moreover, the proposed framework is tested on
both surface and intramuscular electromyography (EMG) data of healthy and amputee
subjects. Therefore, tensor facto- zation is employed effectively for engineering
application to fill the EMG data so that performance of prosthetic hand can be improved.
1.3 Research objectives

The following research work has two major objectives:

¢ Design of novel tensor factorization framework based on strong mathematical

foundations of multilinear aigebra.

¢ Applications of proposed tensor factorization framework to real-life surface and
intramuscular EMG data of both healthy and amputee subjects.
* To apply the proposed tensor factorization framework to EMG data for preferential

accuracy of the proposed technique.



1.4  Research philesophy

Missing data in EMG signals degrades control performance of prosthetic devices and
reduces accuracy of mode] or leads to biased model. To imprave control of prosthetic hand
or limb, missing data should be recovered efficiently. To recover missing data, tensor and
matrix factorization methods are employed. Both tensor and matrix factorization methods
discover latent features, which are then used to predict missing values and thereby improve
the performance of artificial intelligence algorithms. Hence, in this thesis, we will
investigate application of tensor factorization on biomedical signals to recover missing

values for better reconstruction of EMG signals.

1.5  Hypothesis

Movement of prosthetic hand is controlled by classification algorithms such as Lnear
discriminant analysis (LDA), support vector machine (SVM) etc. Performanr : of
classification methods rely on amount of data i.e. classification accuracy impro ses if
amount of input data is large. Whereas real-life EMG signals are not lossless and
considerable amount of data is missed, which degrades accuracy of classification methods.
To improve accuracy of classification methods, amount of input data should be increased
by employing different methods such as matrix and tensor factorization methods.
Performance of matrix and tensor factorization methods is measured by performance
metric i.e. relative mean error (RME). For this research, ten subjects (all male) were
recruited for EMG data acquisition. Ages of all subjects ranged from 18 to 38 years old
(mean + standard deviation (SD), 24.5£2.3y). All subjects were healthy with no

neutomuscular disorders,

e



1.6 Research methodology

The methods employed to recover missing data on simulated and reai-life EMG data are
based on matrix and tensor factorization. The objective function of both matrix and tensor
factorization methods is to find the hidden factor matrices of the incomplete input data. In
matrix factorization method, input data is matricized so that it is applicable to it. Whereas,
in tensor factorization methods input data is kept in its original multi-dimensional form.
Traditionally matrix and tensor factorization methods model the entire input data including
missing values and thus a weak model is built. Such weak model does not recover missing
data efficiently. Ther.zre, our proposed framework models only the known entries of
input data. Where model is formulated as weighted least squares problem and solved by a

gradient descent optimization approach.

To test the al ility of proposed framework to recaver missing data, it was employed on
simulated daa of various sizes, surface EMG (SEMG) data of healthy subjects, and
intramuscular EMG (iEMG) data of both healthy and amputee subjects. Proposed
framework outperformed traditional state-of-the-art methods on single day sSEMG data. To
test the performance of proposed framework on large data, it was employed on multiday
iEMG data. Our proposed framework significantly outperformed traditional state-of-the-

art methods in large multiday data as well.

Research abjective Remarks

Design of novel texsor factorization Research objective achieved

framework based on strong




mathematical foundations of

multilinear algebra.

Applications of proposed tensor Research objective achieved
factorization framework to real-life
surface and intramuscular EMG data

of both healthy and amputee subjects.

To apply the proposed tensor Research objective achieved
factorization framework to EMG data
for preferential accuracy of the

proposed technique.

1.7  Thesis outlines

This thesis is organized as consisting of five chapters. In Chapter 1 is presented a
conceptual outline of the whole thesis by mentioning a background to identify Research
Problem. The research problem statement with objectives and significance. The philosophy
and hypothesis make the two pillars upon which the framework is built. Literature review
is given in Chapter 2 which presents the current research relevant to this thesis.
Methodology is discussed in Chapter 3 which presents the methodological framework
employed to achieve the research objectives. Results of prqposed framework are discussed
in Chapter 4, where single day surface EMG data of healthy subjects and muitiday
intramuscular EMG data of healthy as well amputee subjects was utilized. Conclusions and

further work is provided in Chapter 5.



Chapter 2.

Literature Review

2.1 Imtroduction

This study discusses the recovery of missing data in sSEMG signals that arise during the
acquisition process. Missing values in EMG signals occur due to either discotmection of
electrodes, artifacts, muscle fatigue or incapability of instruments to collect very low
amplitude signals. In many real-world EMG related applications, algorithms need complete
data to make accurate and correct predictions, or otherwise, the performance of prediction
reduces sharply. Tensor factorization methods are employed to recover unstructured snd
structured missing data from EMG signals. In this work, we usc first-order weighted

optimization (WOPT) of PARAFAC decomposition model to recover missing data.

2.2  General Background

ELECTROMYOGRAPHY (EMG) is a diagnostic technique which records the electrical
activity produced by contraction of muscles. The electric activity or potential is penerated by
the muscle cells when these cells are electrically activated. Genenally, two types of EMG
exist surface EMG (SEMG) and intramuscular EMG (iEMG). SEMG is the recording of
electrical activity from the muscle surface (non-invasive), whereas iEMG is recorded directly
within the muscie tissue. EMG signals have many applications such as upper-limb prostheses

[3], [1],[4] , electric wheelchairs control [5] and muscle-computer interaction [6]. In these



applications, complete EMG signals without missing data are required for efficient and
successful implementation. However, practically, EMG data acquisition is not lossless.
During signal acquisition, data is lost due to many reasons, such as artifacts or disconnection
of electrodes with the body [7). These missing values in the EMG signal can cause
degradation in the overall performance of healthcare applications, such as myoelectric
pattern recognition to predict motor intention from sEMG signals [7]. Moreover, missing
values also reduce the accuracy of the classification of movements for prostheses control [8].
If data is incomplete and the percentage of missing data is large, then the classification
performance and statistical power of those classification methods highly degrade, which
makes it important to have complete data set. To effectively estimate the missing data, proper
hnpufation methods must be utilized. Generally, in EMG applications, missing data had
either not been recovered or estimated by simply replacing it with mean values of the
neighboring data values, which has prcven to be highly sub-optimal [9]. In this study, we
focus on estimating missing values using multidimensional data structure [2], [10] based
upon multilinear algebra (tensors).

This study aims to recover missing values in surface EMG signals by estimating the latent
structure of the data. In order to estimate latent structure, tensor factorization methods have
been employed, which produce factor matrices which are used to produce the reconstructed
tensor. A weighted version of an error function has been further formulated that ignores
the missing values and model only the known values which improve the estimation

accuracy of recovering missing data significantly.

Matrix and Tensor decomposition of EMG signals have been widely studied in the

literature. In [11-15], non-negative matrix factorization (NMF) has been applied on EMG



signals for various applications, e.g. recognition of gestures, to obtain information for
neural control and identification of various surface EMG signals. In {16], various matrix
factorization algorithms such as Principal Component Analysis (PCA), Factor Analysis
(FA), Independent Component Analysis (ICA), and Non-negative Matrix Factorization
(NMF) were evaluated on EMG recording. In [17], surface EMG signals are decomposed
using non-negative Tensor factorization to find the features for classification purpose. In
[18), NMF was employed to identify EMG finger movements to evaluate the functional
status of hand so that it can assist in hand gesture recognition, prosthetics and rehabilitation
applications. In [19], FastICA method is implemented for EMG signals decomposition. In
[20], NMF along with different initialization techniques was applied to acquire mnscle
synergies which are important for generating biomechanical tasks. In [21], higher ordec

tensor decompositions are employed on EMG signals to estimate muscle synergies.

Electromyography (EMG) has many daily-life applications e.g. EMG controlled prosthe iic
limb [22), EMG based embedded system [23] to control a six degree of freedoms {DOFs)
prosthetic hand, [24] presents an extensive review on control strategies of prosthetic hands,
whereas in [25] an EMG-based cost-effective design of prosthetic hand is proposed. EMG
signais have two types 1) surface EMG signals and 2) Intramuscular EMG signals. Surface
EMG (sEMGQG) signais are acquired from electrodes that are mounted on the skin whereas
intramuscular EMG (iEMG) signals are acquired from needle electrodes inserted through
the skin into muscle tissuc. Although SEMG signals are widely used, recordings are highly
variable because the innermost layer of skin is made of fat. In order to obtain better EMG
signals, iEMG signals were explored, which are highly specific with respect to what muscle

signals are recorded from {26]. Moreover, it allows the recording of EMG signals from the



11

Missing data degrades the accuracy of classification methods because they do not analyze
the relationship with other variables correctly [52]. Usually, there are two ways to improve
the performance of classification methods: 1) by increasing the total number of samples or
input data because a large data set relies less on assumptions, 2) by recovering missing data
efficiently by replacing zeroes with useful values. In [53], it is shown that filling the
missing values improves performance of classifiers such as KNN, SVM, etc. In [54], four
methods (case deletion, mean imputation, median imputation, and knn-imputation) are
compared to impute missing data and their effects are shown on classification performance.

They claim that all methods perform better after imputation.
2.3 Contemporary research closer to backgrourd

However, so far in the literature, missing data in EMG signals has been recovered by using
ensemble classifier systems (Benchmark -.cper 1) [9), nonlinearit’ 2s interpolation approach
(Benchmark paper 2) [32], mean data imputing [7], Empirical Decomposition Mode
(EMD) [55] and marginalization and conditional-mean imputation [31]. In [9], imputation
and reduced-feature models were employed to perform classification in presence of
missing data but the results were not promising, In [32], missing data of up to 80% was
recavered. However they tested algorithm on single subject and it is also unclear whether
they recovered unstructured or structured missing data. In [7], imputation was carried out
using mean of data which works poorly on non-stationary EMG data, In [55], EMD fails
to recover structured missing data. In [31], the main focus was on developing classification
model. However they also employed a simple mean imputation method to recover nhissing
data. In [2] and [56], tensor factorization techniques are applied on EEG signals. However,

so far, EMG signals have not been explored that way. For the first time, n this work,
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missing data is recovered in EMG signals with a detailed analysis in which matrix, as well
as tensor factorizatica methods, are employed. We apply NMF for matrix factorization and,
PARAFAC and CANDECOMP/PARAFAC - Weighted OPTimization (CP-WOPT) for
tensor factorization. As normalized EMG data contains non-negative values; hence, for the
case of matrix factorization we apply NMF, which is the unsupervised leamning algorithm
used for dimensionality reduction and construction of low-dimensional approximation of
observed data. NMF is more suitable because other methods such as Principal Component
Analysis (PCA) produce the factors which can be positive or negative. To our knowledge,
tensor factorization for recovering missing data in EMG signals has not been studied yet.
In this work, for the first time, we employ the tensor factorization method to recover
unstructured and structured missing data in EMG signals. We apply PARAFAC and
weighted optimization (WOPT) of PARAFAC model to EMG signals and recover missine
data efficiently as compared to matrix factorization techniques. In [33], the recovery of
missing data in surface Electromyography (SEMG) signals is discussed that arise during
the acquisition process. Missing values in EMG signals occur due to either disconnection
of electrodes, artifacts, muscle fatigue or incapability of instruments to collect very low
amplitude signals. [n many real-world EMG related applications, algorithms need complete
data to make accurate and correct predictions, or otherwise the performance of prediction
reduces sharply. Matrix and tensor factorization methods are employed to recover
unstructured and structured missing data from EMG signals. First order weighted
optimization (WOPT) of PARAFAC decomposition model is used to recover missing data.
Proposed framework is tested against Non-Negative Matrix Factorization (NMF) and

Parailel Factor Analysis (FPARAFAC) on simulated as well as on offline EMG signals
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having unstructured missing values (randomly missing data ranging from 60% to 95%) and
structured missing values. In the case of structured missing data havi..g different channels,
the percentage of missing data of a channe! goes up to 50% for different movements. It has
been observed empirically that the proposed framework recovers the missing data with
relatively much improved accuracy in terms of Relative Mean Error (up to 50% and 30 %
for unstructured and structured missing data respectively) as compared to matrix
factorization methods even when the portion of unstructured and structured missing data
reaches up to 95% and 50%, respectively. Missing data in surface EMG signals are
recovered using matrix and tensor factorization-based methods. Moreover, their
performances are compared to recover missing data in noisy simulated data and real-world
EMG data to show that the tensor-based approach outperforms matrix factorization based
approach. Problem of missing data in ex'reme cases is also addressed when up to half
consecutive EMG samples of a particular channel are missing. Our proposed framework

successfully recovers the missing data even in such an extreme case as well.

Missing data from intramuscular EMG signals of both healthy and amputee subjects are
also recovered using state-of-the-art tensor factorization methods. Performance of matrix
and tensor factorization methods is compared to recover missing data in real-world IEMG
signals as well. Furthermore, multiday EMG data is utilized to test the performance of both
matrix and tensor factorization methods in a large multiday iEMG dataset. Extreme case is
also considered when up to 50% iEMG data is missing from day 1 to 7 and performance of
both matrix and tensor factorization methods is tested. Results show that CP-WOPT
outperformed both NMF and CPD to recover missing data even in the worst-case scenario

in iIEMG data as well.
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2.4 Summary

This chapter has described the general background of the research, identifying clearly the
importance of EMG signals in biomedical engineering. The use of EMG for applications in
prosthetic parts of the body has been discussed. Techniques for EMG signals acquisition has
been discussed, and sources of infarmation from EMG signal data has been presented. This
is done to explore how such missing elements of data could affect the overall performance
of the prosthetic parts. Algorithms to this effect are critically reviewed in benchmark 1 and
benchmark 2 for identifying the dark spots yet to be highlighted. A ground and reason for
this research is established by continuing from benchmark 1 and benchmark 2 onward for
formulating modelling technique as a weighted least squares problem as the core framewarck

in this research, which is elaborated in Chapter 3 for achieving the target objectives,
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Chapter 3.

Methodological Framework Details

3.1 Introduction
This chapter presents the material and methodology adopted for all two studies. The first

study covers single day surface EMG signals of ten healthy patients. The second study

covers multiday intramuscular EMG data of both healthy and amputee subjects.

3.2 Notations anu preliminaries

Tensor &X(;y%.) 1+ 2 multi-dimensional array which has different modes for data
representation. A tensor with one mode is a one-dimensional array referred to as a vector
and with two modes is known as the matrix. A tensor of third order is shown in Fig. 3.1,
which has three dimensions having indices i = 1,...,1,j = 1,..,Jandk = 1,..,K.In
the current work, a tensor is represented by uppercase Blackadder ITC letter X, a matrix
is represented by bold italic uppercase letter X, a vector is denoted by italic bold lower case
letter x, and a scalar is represented by italic lowercase letter x. The individual elements of
nth-order tensor are represented by lowercase letters with subscripts e.g. if N-way tensor

has (f; X I x ... x I, } samples then its n-th element is denoted by x; 4, ity
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Fig. 3.1 Tensor of third order: X ¢ R/*/*K

The Scalar product of two tensors X, & with size [, x I, x ... x lyis defined as:

{X, ﬁ = Z Z Z Xiyiz. iy Viyiz. iy
iy iy e

The Hadamard product of two tensors X, 4 is defined as:

(x * $EII2 ..JN = xfliz---inyiliz ...iﬁ

The Frobenius norm of a tenscr oX is given by:

i i

= > . Z iy
11=1 lz=1 tn—
The Weighted norm of X for two tensors X and ##is defined as follows:
Xl = || 9+ XI|

The Kharri-Rao product ¢ is defined as follows:

XOY=[x@y Qy,..x; Qyl
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where size of matrices X and Y is [ x X and J X K respectively. The symbol & is the

Kronecker product.

The Kronecker product ® is defined as follows:

ley xlnY
X®Y= L : : )
mlr xmny

where X is an m X n matrix and ¥ isa p X q matrix, and the Kronecker product X ® Y is

the mp x nq block matrix.
The Guter product < between two vectors x and y is given by:
xoy=xy"
where x and y are column vectors and their outer product gives rank-1 matrix.

Tensor mode-n unfolding, which is also called tensor matricization, is analogous to
vectorizing a2 matrix. Mode-n unfolding of X € R/1*/2X~XI¥ re_arranges the elements of
X to form a matrix Xn) € RwNlz-n-rbuiilN where Il 1 dnyp o dyh]s o dyey is in &

cyclic order.

The notation [A™,A®, | A® )] defines a tensor of size R‘1%/2X-*Inwhose elements are

given by:

4
([A®,A®, ., A®)] = l |~ ™
r LT {1 fIZ .---;in n=1 !nr

r=1

foriye{l,...lh)}. ne{1,.. N}
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3.3 Missing data and its types

Missing data has been categorized into two types: 1) unstructured missing data 2)
structured missing data. If the observed data in the original structure is missing randomly;
itis categorized as unstructured missing data as shown in Fig. 3.2 (a). For example, samples
of EMG data missing at random entries. However, if the data is missing in some consistent
and structured way, it is termed as structured missing data. For example, some percentage
of consecutive values of an EMG channel are missing either in the beginning, middle or
end of data acquisition process/session as shown in Fig. 3.2 (b). This block of missing
values is repeated randomly in other channels of EMG data.

(@)  Random antrios {b)  Random channels

Channel
Channel

® unavailable en

Fig. 3.2 Unstructured and structured missing data. a) Unstructured missing data with data
missing at random instants b) Structured missing data with missing channels [57]

3.4 Tensor factorization

A tensor is a generalized matrix. A vector with order one can be termed as one-dimensional
(1-D) tensor, whereas a matrix with order two can be termed as two-dimensional 2-D)
tensor. N-dimensional tensor is represented as X € R/*~2X-XIN_where the order of X is
N (N> 2). A 3-D tensor is a higher order array with order N = 3. Mode is a term used to

represent each dimension of a tensor. Hence for 2X € R1*EX-XIv N is the mode where
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Iy is the dimension in the Nth mode. For 3-D tensor where N = 3, o would have three
dimensions I,, I, and 73, and X would be represented as X € R!1*2% ! Elementwise X
would be written as x;,;,;, where iy, i; and i, are the entries in i£* row, i£" column and i£*
tube as shown in Fig. 3.3. If an index is fixed in one of the modes and the indices vary in
other rwo modes such division of data is called a slice. For example if it" row of X is fixed
and indices vary across i, and i; then it is a horizontal slice as shown in Fig. 3.4 (a).

Likewise if i3* column of X is fixed and indices vary across i, and i, then it is a vertical

slice as shown in Fig. 3.4 (b).

T
b //;,/
il
il
H j -
(a) (c)

Fig. 3.3 (a) Columns {b) Rows (c) tubes [58)

! |
[}
1 ’

(8) (o) (c)
Fig. 3.4 a) Horizontal slices b) Vertical slices c) Frontal slices [58]
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3.5 Signal Processing
3.5.1 NMF
The objective function for recovering missing values of the EMG data in the form of Matrix

is given as:
fX)= minllX — XII7 @3.1)
where X € R™" is the input matrix which contains EMG data with missing values and X

is the reconstructed matrix obtained by minimizing the objective function in equation (3.1).

To solve equation (3.1) using NMF [18], the objective function in equation (3.1) becomes:

f(P.Q) = minllX - PQI} (3.2)

where P and Q are R™** and R**™ matrices, respectively.”

 In order to apply NMI to multidimensional input data, it is represented as a matrix X with
dimensions time X channels. NMF decomposes the data of matrix X into two matrices P
and ), as mentioned above. Main objective of NMF is to find factor matrices P and Q that

minimize the objective function in equation (3.2).
3.5.2 PARAFAC

The objective function for recovering missing values of the EMG data in the form of

tensors is given as:
F(X) = min il X - X 12 (3.3)

where X € R *2%-XI¥ s an order-Ninput tensor and assumed rank is R. X contains

EMG data with missing values and X is the reconstructed tensor obtained by minimizing
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the objective function. To solve equation (3.3), a standard tensor factorization is CP, which
can be used to find the reconstructed tensor, then the objective function in equation (3.3)

becomes:

_ 2
f(AmA(Z), ,A(N)) = A@)A%l,l..'.ﬁ(”);-" (J{ - IIA{I}.AQ). ....A(NJID"F (3.4)

where A™is factor matrix corresponding to n-th dimension, [AD), A®, ..., A™] makes

an order-N tensor equivalent to:
E ~ I[A(i)'A(Z)' _-_‘A(.NJ]] = E§=1 ail) o aﬁ?‘.) oo aEN) (3‘5)

where af‘)is 7-th column vector of A®™}actor matrix , and n = 1,2, ..., N. The sum of the

outer products of vectors alVin equation (3.6) shows the CP decosposition as a sum
of R rank-1 tensors to estimate a tensor. CP de~omposition [2] is used to find the factor
matrices of the input tensor. The tensor in equation (3.5) is an approxiination proposed by
CP/PARAFAC method [2] which is one of the standard methods for tensor factorization.
In equation (3.5), a particular constraint is the value of R which is determined heuristically.
CP tensor factorization method is modified to a weighted CP model which caters for the

missing data recovery. Element wise, equation {3.5) can be written as:
Xistyty = LF Oy Qi . Qg (3.6)
foriy =1,2,.., 0,8 = 1,2, Lo, in = 1,2, ..., Iy

In mode-n unfolded (matrix) form, equation (3.5) is represented as:

Kny = AP (ACY 3.7)
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where
ACY = AMEB | QAMTIEAN-DG | 0AW
in unfolded form, the objective function to find mode-n factor matrices becomes:
f( AWVA@ A("))

.1 - T |2
= E}L?Ell(x(“} —AMAME | OARTNACR-DG Oﬂ(l)) )"F

Literature provides many methods to compute CP decomposition to find a good
approximation of original data such as alternating least squares (ALS) [59).[60], gradient

descent (GD) [60] and enhanced line search [60] etc.

Our experiments show that conventional method such as CP decomposition only give
~omparable results to that of matrix factorization methods that even worsens when large
amount of data is missing. To overcome this problem, we model CP factor matrices only
from non-zero values of the input data. For this purpose, we multiply the input data with a

weighting tensor #” with size equal to the size of input data tensor X such that

1if Xiyiy. by is known

Wit iy = : o
Lty { 0ifx;,, ;. is missing

foralli, =1.2,..,5,i, =12, wada iy =12, 0, 1.

The weighted CP factorization of the EMG tensor vield factor matrices, which reconstruct

the tensor using equation (3.7) to estimate the missing values.
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353 CP-WOPT

CP-WOPT solves the problem of fitting the CP model to missing data by solving the

following weighted least-squares objective function:
fw(ADAD, . AW) =2 |{(X - [AVA®, ., aA®]) 93| (.8)

where % is tensor of the same size as X, and its samples are defined as:

1if x;;is known
Wipe = { 0 if x, pis unknown (3.9)
foralli=1,...,1,J=1,....Jandk =1,....K.
For the sake of simplicity equation (3.8) is redefincd as:
fu(ADAD,  AG)) =\§ Hﬁ-z"z (3.10)
where
Y=W+Xand Z = %= [ADAD,  AN] (3.11)
The gradient equation for the weighted case would be:
2W = (2 - YW)AL™, (3.12)

forn=1,...,N.

The main objective is to find factor matrices A™e R™*R forn = 1, ..., N that minimize
the weighted objective function in equation (3.10). Once gradients in equation (3.12) are

known, any gradient-based optimization method can be used to solve the optimization
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problem. We use CP-WOPT [59] and the nonlinear conjugate gradient (NCG) as the
optimization method with Hestenes-Stiefel updates [61]. The stopping conditions of both
tensor based algorithms are based on the relative change in the function value f, in
equation (3.8) (set to 107%). The maximum number of iteration is set to 10° and the
maximum number of function evaluations is set to 10*. These choices are based on the

values used in [2). The brief methodology of CP-WOPT is summarized below:

Algorithm Methodology of CP-WOPT

Task: To find gradient matrices ™ that
minimize the weighted objective function in (6).
Input: /X (Input tensor with missing values)
Outpat: 6™

Steps to compute G™:

1. Compute 4 = %"+ X

n

Compute Z = #7+ [AVAD ., AM]
3. Compute value of functions: f = -;--
(% 2+l
4. Compute 7 =%-Z
Repeat forn=1,.. ,N:

5. G(l‘l) - —T(H)A-(nj
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3.6 Theoretical Framework
Missing data in EMG has been categorized into twe types: 1) unstructured missing data 2)

structured missing data. If the observed data in the original structure is missing randomly,
then such a pattern of missing data is categorized as unstructured missing data. For
example, samples of EMG data missing at random entries. However, if the data is missing
in some consistent and structured way, it is termed as structured missing data. For example,
25% consecutive values of an EMG channel are missing either at the start, middle or end
of data acquisition process/session. This block of missing values is repeated randomly in

other channels of EMG d=ta.

3.7 Experiments| setup and procedure
37.1 Study one

Surface EMG signals of ten healthy subjects were acquired using six surface EMG
clectrodes. Three electr des were placed on flexor and three electrodes on extensor
muscles. The sampling frequency of surface EMG signals was 8 kHz, whereas we filtered
it using bandpass filter of third order with bandwidths 20-500 Hz. Total of four-hand
motions were performed by each subject: (1) hand open (2) hand close (3) pronation and
(4) hand extension. Each hand motion was repeated four times per session, with a
contraction and relaxation time of five seconds. Hence a single session span over a time

interval of 400 seconds.

372 Study two
The experimental setup for this study mainly focuses on recovering missing data in iEMG
signals. iEMG signals were collected by inserting six pairs of wires into the flexor carpi

radialis, palmaris longus muscle, fluxor digitorum superficialis, extensor carpi radialis
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longus, extensor digitorum, and extensor carpi ulnaris [3]. Fig. 3.6 shows placement of
electrodes. Intramuscular EMG signals were filtered digitally with a third-order
Butterworth bandpass filter of 100-900 Hz and sampled at 8 kHz. The 100-900 Hz range
of bandpass filter was selected because useful frequency contents in iIEMG lie within this

range [3].

Study one Study two
1 ! __
Acquisition of Acquisition of
sEMG data iEMG data usin~
using 6 6 pairs of wires |
electrodes l
l Samplin
Sampling amping
frequency =8
frequency =8 KHz
KHz ‘
Band pass filter Band pass filter
= 20 =500 Hz = 100 - 900 Hz
Four hand Four .hand
. motions
mations formed
performed periorme

Fig. 3.5 Flowchart of two studies

Each of the ten subjects performed four hand mations in each experimental session; hand
open, hand close, pronation and extend hand, For each subject, seven experimental sessions

were conducted where cach session was separated by 24 hours. Each hand movement was
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repeated four times with a contraction and relaxation time of 5 seconds per session. The

order of the movements was .¢lected randomly.

Fig. 3.6 Electrodes placement

3.8 Data Acquisition

3.8.1 Synthetic data

Fc- the first study, a tensor of size R”/*X was generated comprising a number of true
factors R = 5. To test the performance of different methods for the recovery of
unstructured missing, a set of different sized data (such as 60 x 50 x 40,120 x 100 X
80,180 x 150 x 120) was synthesized. For the case of structured missing data, the
methods were tested on a dataset of size 120 x 100 X 80. Factor matrices A, Band C were
generated with sizes: RPR R/*®and R¥*R respectively. All the factor matrices were
randomly chosen from ¥ (0, 1) and then normalized every column to unit length. We then

create the data tensor as:

X = [A,B,C] +n% (3.13)
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Here N is a notse tensor (of the same size as oX ) in which all samples were drawn from
Gaussian i.i.d. distribution with mean zero and variance one. The term [A, B, C] is a tensor
being constructed from factor matrices A, B and C where 7 is noise parameter which has

value 0.1.

38.2 Real-life EMG data
For sSEMG data acquisition, six electrodes were used to collect SEMG signals on a single

day. The movement-wise size of data was 320000 x 6 x 4, which was down-sampled
t0 80000 x 6 x 4. 80000 is the number of samples, 5 represents total number of
electrodes/channels and 4 is total number of movemen~ for which EMG data was
collected. Data was down-sampled to reduce i size and computation time. Sampling
factor was kept smalier to keep the data unaffected. After down-sampling EMG data, we
normalized it between 0 &i. ©. Surface EMG data := the form of a tensor aX can be viewed
as oX ¢ RBOV0OXEX4 for each of four movements. If we relate it with Fig. 3.1, then f =
80000, J = 8 and K = 4 where L, J and K represent samples of EMG data, total number of

channels and total number of movements respectively.

Ten healthy subjects (all males; 25 + 0.22 years (mean age + SD)) and two transradial
amputee subjects (all males, 34.8 + 0.33 (mean age + SD)) took part in the second study.
These procedures were performed in accordance with the Declaration of Helsinki and
approved by the local ethical committee of Riphah International University (approval no.:

refi# Riphah/RCRS/REC/000121/20012016).
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3.9 Statistical tests
A three-way ANOVA was used to assess which method had the least amount of RME.

Three factors: methods (NMF, PARAFAC and CP-WOPT), Movement type (hand open,
hand close, pronation and extend hand) and missing data percentage (10%, 20%, 30%, 40%
and 50%) were used, post hoc pairwise comparisons were made using Tukey’s HSD tests

if required. Statistical significance was set at P < .05 for all comparisons.
3.10 Evaluation metric

Let X be the original data and X be the estimated data produced by the matrix or tensor

factorization methods. Then the Relative Mecan Error (RME) is:

_ IX-B)lis
RME = =5, (3.14)

The best possible score is zero, i.e., the recovered data matches with original data

completely.

3.11 Critique of methodology

Matrix and tensor factorization techniques are assessed to evaluate their performance to
recover missing data for synthetic and real EMG data. For matrix and tensor factorization
we applied NMF, and PARAFAC and CP-WOPT respectively. One of the reason for tensor
factorization to outperform NMF is the arrangement of EMG data in a muhtidimensional
way. This multidimensional arrangement of the data to constitute a tensor captures the
global structure of observed data and models it efficiently by covering entire spatial and

temporal dimension with an additional feature of multi-mode correlations. The
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performance of NMF and PARAFAC to recover missing data was almost the same as both

the methods model, both known and unknown values.

Although PARAFAC is a tensor-based technique with the benefit of preserving the muiti-
way nature of data, yet its performance is comparable with NMF. The results reveal that
CP-WOPT outperformed both NMF and PARAFAC to recover both unstructured and
structured missing data. Usually, factorization methods find latent factors and then exploit
those latent factors to predict the missing vatues. However, Matrix factorization based
latent factors only capture two-dimensional linear relationships for estimating missing
values, which can be improved if m-:ti-linear relations are used. The main advantage of
working through latent factors is that they let us take into account the information of the

tensor explicitly by expioiting the multilinear interactions between obtained latent factors.

The main advantage of em ioying tensor factorization is that solution provided by it is
unique [62). Moreover, tensor factorization offers better computational capabilities and
storage [63].

We divided the missing data into two categories: 1) unstructured missing data and 2)
structured missing data. CP-WOPT gave promising results in recovering unstructured and
structured (which is a more realistic assumption in Muscle-Computer Interface) missing

data.

3.12 Summary
This chapter has described the methodology to employ matrix and tensor factorization

methods on EMG data to recover missing data so that performance of prosthetic hand can

be improved. Relevant notations and preliminaries are also mentioned which are used
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frequently in factorizations methods. Moreover, experimental setup to acquire data is
discussed. Evaluation metric is mentioned to test the performance of factorization methods.

Results of the performances of different factorization methods is discussed in Chapter 4.
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Chapter 4.

Results and Discussion

4.1 Introduction

To the best of our knowledge, the problem of missing data in SEMG and iEMG signals has
not been addressed so far. Therefore, for the first time, we will recover unstructured and
structured missing data (random missing channels) in SEMG and iEMG signals and carry out
detailed analyses and comparisons with matrix and tensor factorization methods. This is an
extension of our work [33] where we recovered unstructured and structured missing data in
surface EMG signals for ten subjects and data of only one day. We recovered missing data
in iEMG signals as well which are collected for ten healthy and two amputee subjects over
sever days. We employ NMF which is a matrix-based factorization method, and Canonical
Polysdic Decomposition (CPD) & Canonical Polyadic-Weighted Optimization (CP-WOPT)
which are both tensor-based factorization methods to recover structured missing data. They
basically find the latent factors via high order factorization to estimate the missing data. We
further extend our analysis for multiday iEMG data to test the performance of matrix and

tensor factorization methods when the percentage of missing data is Jarge.

4.2 Synthetic data performance

In Fig. 4.1, we compare the estimation performance of matrix and tensor-based
factorization mec.ods to recover unstructured missing data in the synthetic dataset for
different proportions, ¢.g. 60%, 70%, 80%, 90% and 95%. In Fig. 4.2, we show the

capability of different methods to recover structured missing data. Structured missing data
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is modelied by replacing enttre 10, 20, 30, 40 and 50 columns (which are channels in case
of EMG data) with zeroes. Performance of NMF, PARAFAC and CP-WOPT t> recover
unstructured and structured missing data is presented in Table 4.1 and Table 4.2

respectively.
0.6

HG0%
n70%
- HB0%
H50%
! B95%

Fig. 4.1 RME of NMF, PARAFAC and CP-WOPT methods for 60%, 70%, 80%, 90% and 95%
missing data for synthetic data of sizes 60x40x40, 120x100=80 and 180x150x120.

08 T ——— = = ————— am
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Fig. 4.2 RME of NMF, PARAFAC and CP-WOPT methods for 10, 20, 30, 40 and 50 columns
missing in structured manner from synthetic data of size 120x100x80.

4.3 Surface EMG data performance

Fig. 4.3 shows a segment of original EMG data with no missing values, the same EMG
segment with unstructured missing values, and lastly the recovered EMG signal. A segment
of the original EMG signal is shown in Fig. 4.3(a) with no missing values and it contains
information of movement of muscle from a single channel. Fig. 4.3(b) shows the same

EMG signal with unstructured missing values, which are the input signal to factorization
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methods. It can be seen in Fig. 4.3(b) that a lot of values with different amplitudes are
replaced Ly zeroes to model unstructured missing data. Fig. 4.3(c) shows a recovered EMG
signal when CP-WOPT is applied on the EMG signal of Fig. 4.3(b). It can be seen in Fig.
4.3(c) that all the missing values that were replaced by zeroes were successfully recovered
with amplitudes around 0.48 + 0.02. Fig. 4.4 illustrates a segment of EMG data with no
missing values having same four movements where each movement exists at higher
amplitudes. First half (with two movements) and second half (with two movements) is
removed and then recovered from EMG data. In Fig. 4.4(a), EMG signal with no missing

values is shown that has been obtained from a particular channel.

. G date
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Unstructwed missing entries in EMG data
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Fig. 4.3 (a) Original EMG data (b) Unstructured missing data (c) Recovered missing data by
CP-WOPT.

The four epochs of higher amplitudes indicate execution of movement, however it can be
seen that there is a very small difference between amplitudes of movement and no-
movement (at rest} epochs. In Fig. 4.4 (b & d), first and second half (the worst case of

removing 50% of data) of channel values is removed to model the structured missing data.
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This simulates the scenario where data of two movements is completely missed. In Fig.
4.4(c & ¢), recovered signal by CP-WOPT is shown i:: which it can be seen that the
difference between amplitudes of movement and no-movement epochs have increased

which clearly differentiate epochs.

Fig. 4.4 (a) Original EMG data (b & d) First and Second half of a channel missing (c)
& (e} Recovered missing channel by CP-WOPT.

"
2

Fig. 4.5 shows a comparison of three methods to recover unstructured missing data. There
was a significant decrease (P<0.05) in the RME value with CP-WOPT as compared to
PARAFAC and NMF across all four movements and different percentage of missing data.
From each of four movements, we remove 60%, 70%, 80%, 90% and 95% data randomly

in &n unstructured manner.
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Fig. 4.5 RME for recovering 60%, 70%, 80%, 90% and 95% unstructured EMG missing
data by NMF, PARAFAC and CP-WOPT.

Performance of NMF, PARAFAC and CP-WOPT ta recover unstructured missing data ;=
SsEMG signals is presented in Table 4.3, Table 4.4 and Table 4.5 respectively. Whereas,
performance of NMF, PARAFAC and CP-WOPT 1o recover structured missing data in

sEMG signals is presented in Table 4.6, Table 4.7 and 1 a: 1e 4.8.

Tabie 4.1 Performance of NMF, PARAFAC and CP-WOPT on synthetic data to recover
unstructured missing data of various sizes

60x50x40 120x100x80 1801150x120
Missi
ng CP- CP- CP-
data |NM |PARAF | WO |NM | PARAF ( WO |NM | PARAF WO
%) |F AC PT |[F AC PT |F AC PT
0.41 0.261 | 039 0274 | 038
60% 52 0.371 2| 21 0.3521 1 56| 03352 0.284
0.46 0268 | 043 0.281 | 0.43 0.292
70% 59 04171 1 541 0.3954 2 97| 0.3975 8
0.50 0.270 | 048 0285] 0.53 0.299
80% 6| 0.4649 1 591 04526 4 48 | 0.4557 1
0.54 0.275| 0.53 0291 | 0.53
90%{ 94| 0.5209 1 48 | 0.4987 2 74 |  0.5087 | 0.301
0.56 0.281 | 0.6 0295 | 0.55 0.305
95% 76| 0.5414 1 41 0.5174 4 62 | 0.5286 9
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Table 4.2: Performance of NMF, PARAFAC and CP-WOPT an synthetic data to recover
structured missing data of various sizes

Number of missing channels

10 20 30 40 50
NMF 0.3872 0.4306 04731 0.5308 0.5742
PARAFAC 0.3787 0.4251 0.4639 0.5031 0.5619
CP-WOPT 0.271 0.2777 0.2812 0.2839 0.2987

Table 4.3: Perfcimance of NMF on SEMG data to recover unstructured missing data of

various percentages

NMF
Second Third Fourth
Mean First movement | movement movement movement
60% 0.44704 0.4532 0.4463 0.4454
70% 0.4966 0.5053 0.4993 0.4893
80% 0.5456 0.5226 0.546 0.5367
% {1.5866 0.593 0.5869 0.5719
95% 0.6047 0.6216 0.6048 0.6192
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Table 4.4: Performance of PARAFAC on sEMG data to recover unstructured missing

data of various percentages
PARAFAC
First Second Third Fourth
Mean movement movement movement movement
60% 0.483 0.4887 0.48442 0.4904
70% 0.53 0.5545 0.5304 0.536
80% 0.5711 0.5764 0.5726 0.578
90% 0.608 0.6145 0.61 0.6153
95% 0.6261 0.6312 0.6275 0.633

Table 4.5: Performance of CP-WOPT on sEMG data to recover unstructured missing data

of various percentages
CP-WOPT
First Second Third Fourth
Mean movement movement movement movement
60% (.0476 0.054 0.05435 0.06263
70% 0.0477 0.05361 0.05515 (.06343
80% 0.04786 0.0538 0.05445 0.06541
%% 0.049 0.056 0.05589 0.0674
95% 0.05 0.058 0.0587 0.071
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Table 4.6: Performance of NMF on sSEMG data to recover structured missing data of

various percentages
NMF

Mean 1st half 2% half
Ist
Mave | 0.15| 0.19| 0.26| 029 034 | 0.170 ] 0.213 | 0.253 | 0.309 | 0.350
ment 9251 825| 165| 435! 085S 05 05 85 Kh] 55
2nd
Move | 0.14) 020/ 0.27] 031 | 035 0.199| 0.209 | 0.269 | 0.299 | 0.349
ment 425 | 745 | 225| 565| 195 85 85 85 85 85
3rd
Move ( 0.15| 022 026 | 031 | 035 0.167{ 0.189 | 0.240 | 0.274 | 0.299
ment 265 | 045| 765 595| 315 95 95 05 8s 85
4th
Move | 0.15| 022| 026 031 035 0.179 ! 0.204 | 0.254 ] 0.294 | 0.333
ment 265 045]| 765( 595 315| 283| 283 583 o683 417

Table 4.7: Performance of PARAFAC on sEMG data to recover structured missing data

of various percentages
PARAFAC

Mean 1st half 2% half

1st

Move [0.158 0224|0274 0316|0353 | 0.174 | 0.223 | 0.274 | 0.316 | 0.353
ment 65 05 05 35 55 75 95 28 45 75
2nd

Move |0.159]0.224 | 0.274 | 0.317 | 0.354 | 0.175 | 0.224 | 0.274 | 0.316 | 0.354
ment 635 75 85 15 35 43 25 35 75 25
3rd

Move | 0.159]0.224 [ 0.275 | 0.317 | 0.354 { 0.174 [ 0.223 | 0.274 | 0.315 | 0352
ment 95 95 03 25 45 85 09 05 6 3
4th

Move | 0.158|0.223 | 0.274 | 0316 | 0.358 [ 0.171 | 0.226 | 0.279 | 0.335 | 0.358
ment 85 85 15 45 75 05 95 15 95 25
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Table 4.8: Performance of CP-WOPT on sSEMG data to recover structured missing data

of various percentages
CP-WOPT

Mean 1st half 2™ half

1s¢

Move | 0.044 | 0.045 | 0.049 | 0.061 | 0.064 | 0.040 | 0.051 | 0.653 | 0.058 | 6.093
ment 05 45 85 25 15 35 25 45 55 15
2nd

Move |0.0370.048 | G.048 | 0.067 | 0.087 | 0.041 | 0.066 | 0.105 | 0.105 | 0.119
ment 95 03 95 25 85 15 45 25 75 95
3rd

Move |0.031]0.037]0.037|0.038 | 0.038 | 0.033 | 0.035 | 0.045 | 0.052 | 0.072
ment 75 65 85 05 15 6 85 55 35 35
4th

Move | 0.038 | 0.046 | 0.047 | 0.049 } 0.090 | 0.044 | 0.046 | 0.051 | 0.053 | 0.071
ment 55 25 55 75 85 05 55 15 65 45

In Fig. 4.6, results are shown when NMF, PARAFAC and CP-WOPT are applied,

respectively, to recover structured missing data. Results clearly show that CP-WOPT

outperformed PARAFAC and N7 F in recovering structured even for the extreme case

when half of the channel data is m*ssing. In structured missing data, we gradually increased

the proportion of missing data from 10% to 50%. Removing 10% data from first half means

data removal of first 10% samples from all six channels of particular movement whereas

removing 50% data means data removal of first 50% samples (as shown in Fig. 4.4(b))

from all channels. Likewise, removing 10% data from second half means data removal of

last 10% of samples from all six channels of particular movement, whereas removing 50%

means data removal of last 50% of samples {as shown in Fig. 4.4(d)).
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Fig. 4.6 RME for recovering structured missing samples from first and second half of real
EMG data by NMF, PARAFAC and CP-WOPT.

In Fig. 4.7, we show computational complexity of NMF, PARAFAC and CP-WOPT. It can
be seen that CP-WOPT takes slightly more time than NMF and PARAFAC to estimate 10%,
20%, 30%, 40% and 50% structured missing values to produce the reconstructed EMG data.
In benchmark paper, EMG data of only single subject was acquired and 80% missing data
was recovered. It is unciear whether the missing data was unstructured or structured.

Moreover, the collected data was single day sSEMG only and iEMG wasn’t explored.
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4.4 Missing iEMG performance
4.4.1 PERFORMANCE OF NMF

Fig. 4.8 (a) and Fig. 4.9 (a) show the performance of NMF to recover missing data in each

of the four movements from day 1 to day 7 for healthy and amputee subjects respectively.

|
|
|

o
|

Time {sec}
=9

[
|

=

NMF PARAFAC CP-WOPT

910% w20% m30% wma0% ws0%

Fig. 4.7 Comparison of computationat time of Nh‘iFT, PARA_FAC_a_nd -(E-F;-WOPT.
It can be seen in Fig.4.8 (a) and Fig. 4.9 (a) for day 1 that as the percentage of missing data
from the fi.st half of movement one increases from 10% to 50%, the RME also increases
from 0.17 o 0.29 indicating degradation in performance of NMF to recover data. The
performance of NMF is almost the same for the other three movements where RME
increases (up to 0.29) with the increase in the percentage of missing data from 10% to 50%.
The performance of NMF in terms of RME is almost similar for the same percentage of
missing data for the second half of the movements as well. If we further analyze Fig. 4.8
(a) and Fig. 4.9 (a) for the case of missing data for day 1 to 4 and for each of the four
movements, it can be seen that for the first half when the percentage of missing data is 10%
the corresponding valve of RME is 0.22 which increases to 0.35 when missing data
increase to 50%. The parformance of NMTF is again almost samne for second half. Moreover,

if we analyze the case of missing data from 1 to 7 seven days and for each of the four
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movements, it can be seen that for first half when percentage of missing data is 10% the

corresponding value of RME is much worse i.e. 0.22 which increases to 0.4 when mis:ing
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Fig 4.8 Movement-wis¢ performance of (a) NMF, (b) CPD and (c) CP-WOPT, to recover
missing data on healthy subjects for increasing percentage (10% to 50%) of missing iIEMG
data in both halves for increasing number of days (1 to 7).

data increase to 50%. The performance of NMF is again almost similar for the second half.
If we analyze Fig. 4.8 (a) and Fig. 4.9 (a) as a whole, it can be seen that as the total amount
of missing data increase from day 1 to 7, overall RME also increases from 0.17 to 0.4 with
increase in percentage of missing data for either half. So, it can be seen that for small
amount of missing datz in small amount of observed data (day 1 only) NMF performs better
as compared to increased amount of missing data and observed data for seven days where

its performance degrades considerably. Performance of NMF 1o recover structured missing



data of various percentages for day one to seven on iEMG data of healthy subjects has been
presented from Table 4.9 to Table 4.15 respectively. Performance of NMF to recover
structured missing data of various percentages for day one to seven on iEMG data of

amputee subjects has been presented from Table 4.16 to Table 4.22 respectively.

Table 4.9: Performance of NMF on iEMG data of healthy subjects to recover
structured missing data of various percentages for day one

Day 1
Mean 1st half 2nd half
of 10 10 (20 [30 |40 [5 |10 |20 [30 |40 |50
subje % (% 1% [% [% |% |% |% |% |%
ot 1st
Moveme | 0.19 (021|023 | 026 027 | 0.19 | 021|023 [ 0.25 | ,
nt 71 6| 9| s| o 2| 3| 7| 3|
2nd 0.19 | 022 | 0.24 ] 0.26 | 0.27 022 | 024] 027 029
Moveme ) - i ’ 02| — ) : :
6| 1 71 o] 3 ol 7| 2| 1
nt
i;’:ﬂm 0.17]0.19] 022|024 | 026 | 0.18 | 020 | 022 | 0.24] 0.26
s| s| a| 3| s| a| 1! 5| s| 1
nt
;‘l" 0.18| 021023 | .| 029]0.18|021] 023 025 0.29
m"“"‘“ 6| 2 51% 3 5 ! 3l 9 1

Table 4.10: Performance of NMF on iIEMG data of healthy subjects to recover
structured missing data of various percentages for day two

Day 2
Mesn 1st half 2nd half
of 10 10 120 [30 |40 1[50 |10 |20 |30 |40 |50
subje Yo [% |% [% [% |[% |% (% |% |%
ct 1st
Moveme | 0.20 | 0.22 | 0.24| 0.26 | 0.28 | 0.20 | 0.21| 0.24 | 0.26 | 0.27
nt 3| 3| 8| 1| 1! 1l s| af 3| g
2nd 018 | 0.23 0.26 | 0.28 | 0.20 | 0.23 | 0.25 | 0238 0.28
::‘mm ol 2|92 & a| 2| 2| 6| 1| 3
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Fig. 4.9 Movement-wise performance of (a) NMF, (b) CPD and (c) CP WOPT, to recover
missing data on amputee subjects for increasing percentage (10% to 50%) of missing
1IEMG data in both halves for increasing number of days {1 to 7).
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Table 4.11: Performance of NMF on iEMG data of healthy subjects to recover
structured missing data of various percentages for day three

Day 3
Mea 1st half 2nd half L
nof 10 120 (30 (40 |50 |10% |20% |30% |40% |52
10 % % [% [% |% %
subje | 1st
ct Movem | 02| 02| 02| 02| 03| 0.20| 0.22| 0.24| 026]| 0.2
ent 24 4 64| 85| 02 5 4 9 2) 83
2nd
Movem 02| 02| 02 02 02| 021) 0.24{ 0.26| 0.28| 0.3
ent 25| 487 69| 92| 99 8 4 4 4! 01
3rd
Movem 02| 02| 02| 02 02| 0.20| 0.22 0.25 0.26| 0.2
11 29| 58| 71 9 b 1 5| 84
ent
;:huvem 0.2] 02| 02| 02) 02| 0.21) 0.23| 0.26| 0.28( 0.3
ent 11} 31 5[ 66| 92 a8 86 54 22| 08

Table 4.12: Performance of NMF on iEMG data of healthy subjects to recover
structured missing data of various percentages for day tour

Day 4
Mea 1st half 2nd half
1 of 10 (20 [30% |40% |50 |10 |20% | 30% | 40% 50
10 % % % | % %
subje | 1st
<t Movem | 0.2| 0.2 0.28 0.306 03| 0.2} 0.26| 028! D.30! 0.3
ent a2| 63| 9% 32| a6| 4! 9o 8| 24
:::wm 02| 02| 030| .| 03| 02(027| 030 032| 03
sal s2| 219 as| ss| 8! 2| 7| a3
ent
:;:“m 02/ 02/ 029 .| 03| 02] 02| 028 029 03
48| ea| 5| | az| 1] & o 2
ent
;;‘c‘mm 02| 0.2] 0.28) 0302] 03| 02| 027| 029 031! 03
g 4] 63| 98| s2{ 28| s| ss| 64| 42| 42




K

47

Table 4.13: Performance of NMF on iEMG data of healthy subjects to recover
structured missing data of various percentages for day five

Day 5
Mea Ist haif 2nd half

nof " 110% [20 [30% {d0% [50% [10 [20 30 [40 [s0
10 % % % |lu |% |%

subj | 1st
ect | Move 0.2 0.2]0.29) 031 0.33| 0.3
ment | 9254 | 772 (0297 032 03a| ™2 > 5 ]

2nd
Move |0.268| %0314 |0.334 {0343| @2 | 030| g33| 035 03
92 81 9 2| 7

ment
;[r:“ 0268 | 92| 0316|0331 | 0352 | 02| 0-28] 031/ 0.32) 03
' 87(" ‘ ' 66| 3| 3| 8| a8

ment
;}':m 0260 | 0.2(0.299(0.317|0346| 0.2| 0.29| 031 | 0.33 | 0.3
ment 54| 81| 86| 34| 95| 61| 26| 74| 52| 63

Table 4.14; Performance of NMF on iEMG data of healthy subjects to recover
structure« missing data of various percentages for day six

Day 6

Mea 15t balf 2nd half

nof 10 |20 [30 [40 |S0 |10 |20% |30% |40% |50

10 % (% (% !% |% |% %

subje | 1st

¢ |Movem |027]029/031|033 036|028 030| ,.| 034|036
ent 21 3| 9| s 2| 7| 5| @ sl s
2ad
Movem | 029|032 (033|035 037 0.28| 031 033] 035|036
oot o| 7| 8| s| 7| o 3| 7] 2| s
drd 0.28 033|034 029 031 034 035|037
Movem | 03] =037 ' ) ) )
- 4 1| o 6| 6| 4| 6| 6
;‘I:wm 0.2910.31(0.34 /036038 |028| 031 033] 035|037
o 30 5[ 2| 3| of 7| s6| 34| 12 9




Table 4.15: Performance of NMF on iEMG data of healthy subjects to recove:

structured missing data of various percentages for day seven

Day 7
Mea 1st half 2nd half
nof 0% [20 |30 |40 | S0 |10 |20% | 30% | 40% | 50
10 % |% |% |% |% %
sabje | 1st
et | Movem 03| 02| 03] 03| 02 034] 035| 03
ent 02951 14| al| 63| 83| 99] 92| 5| 8| m
;‘;:ve 0295| 03| 03| 03| 03| 03] 033| 0.35| 037 03
m o 2| 31| s6| 66| 05 3 4 6| 95
ent
3rd
" 0315 | 03| 03| 03] 04| 03| 032| 034| 0.36| 0.3
ovem | ©. 34| e5{ 8| 01| 04 1 9 4| 86
ent
;;zvem 0308 03| 03| 03| 03] 03] 032] v34| 038| 03
eat 98 3| si| e8| 95| 021 42| 98] 74| 96

Table 4.16: Performance of NMF on iEMG data of amputre subjects to recover
structured missing data of various percentages for day on:

Day 1
Mean 1st half 2nd half
of 2 10 20 3 40 50 10 20 30 40 50
subje % (% % |% |% (% |% |% |% |%
ot 1st
Moveme | 0.19 0.2 027 030 0.21 D.26 | 0.27 | 0.30
nt 5| 022 5 5 5 5| 023 5 5 5
2nd
Moveme | 0.22 0.23 027 0.29 031|021} 0.25| 0.26 0.29 0.31
at 5 5 5 5 5 5
d
Moveme 0.18 1 0.20 | 0.23 0.26 029 018 0.20 | 0.21 0.23 0.27
nt 5 5 5 ) 5 5 ] 5 ) 5
4th .
Moveme | 0.2 0'2: o.zg 0.28 “'3; 02| 023|025/ 028 0‘3‘;
(1}
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Table 4.17: Performance of NMF on iEMG data of amputee subjects to recover
structured missing data of various percentages for day two

Day 2
Mean 1st half 2nd half
of2 10 120 |30 |40 |50 |10 |20 |30 |40 [%0
subje % (% (% [% % |% 1% [% |[% |%
ct Ist
Moveme 0.24| 0.28 | 0.28 1 0.29 0.28 | 0.28
i (RT3 el I Rt el P74 [ 13 Regd g I E
2nd
Moveme | 22| 0.25 | 03| 0.3 031|025 |96 030|031} 032
5 5| 5| 5| 5
nt
3rd 0.24 0.29 0.23 | 0.26 0.27
Moveme | 0.18 | %% 1 0.29 [ %% | 031 022 | ¥ 026]
o 5 5 5| s 5
4th 0.20| 0.22 020 0.2 0.25 | 0.28
Moveme 026 026(027] ) 025 )
" s| s 5| 5 5| s

Tabie 4.18: Performance of NMF on iEMG data of amputee subjects to recover
structured missing data of various percentages for day three

Day3
Mean 1st half 2nd balf
of 3 10 20 |30 |40 |50 |10 [20 |30 |40 |50
subje % (% % % (% [% |% |% |% |%
ct 1st
Moveme | ., | 025|029 .1 032} o0l 628032032033
ot s| s 5
2nd 036|027 0.29| 0.33| 0.34 | 0.35
Moveme | 0.28( 03| 0.33 | 0.34
5| s| s| 5| s| s
nt
3rd 0.20 024! 0.25 | 0.27 0.29 | 0.29
Moveme | 0227 ) 0.26 | 0.27 0.32
v 5 s| s| s 51 s
4th 0.21| 0.23 026! 0.31 | 0.34| 0.35
Moveme { ) 0261026029 ' ) ' 0.37
o 5| s s| 5| 7| 1




Table 4.19: Performance of NMF on iEMG data of amjutee subjects to recover
structured missing data of various percentages for day four

Day 4
Mean 1st haif 2nd haif
of 4 10 20 (30 40 50 10 20 30 40 50
subjec Y% (% (% |% Yo % Y Y%a Yo %
ts Ist
Moveme | 0.25| 0.2 0.3 0.34 | 0.27| 0.29 0.33| 0.34
nt 5 7 1 032 5 5 5 0.33 5 5
2nd
Moveme | 0.3 03] 03 0.35 0361 0.27 0.29 0.33 0.34 | 0.35
nt 2 4 5 5 5
3rd 025| 02| 03] 0m 0.28 | 0.29
Moveme | ) : ) 0330206027 ) 0.31
nt 5 7 1 5 5 5
dth 02| 03 '5 027|032{ 035 0.35 | 0.36
Moveme | 0.25 ) 0.31| 0.32 ' ) ’ ) )
at 7 1 5 3 2 & 5

Table 4.20: Performance of NMF o1 iEMG data of amputee subjects to recover
structured mi.sing data of various >rcentages for day five

Day §
Mean 1st kaif 2nd half
of 2 10% (20 [30% [40% (50% (10 120 |30 40 |%0
subje Yo Y |% |% |% [%
cls Ist
Movem | 0.27 | 0.2 02| 0.3 03| 03| 0.3
ent L1 a5 0.33| 0.34| 0.365 85 15 55 55 7
2nd
03] 0234 03) 03| 03| 03| 0.3
Movem 0.3 3 5 0.35 0.37 1 35 8 85 95
ent
3rd
0.32 | 0.33 0.2 037 0.3} 0.3
Movem | 0.28| 03 5 5 0.35 85 Q.3 25 3 4
ent
;‘I‘:“m 025 02 029]| 0.29| 0324 02| 03| 03| 03] 03
ent 77 75 93 67 75 65 38 72 76 95
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Table 4.21: Performance of NMF on iEMG data of amputee subjects to recover

structured missing data of various percentages for day six

Day 6
Mean 1st half 2nd half
of 2 10 (20 (30 |40 |50 |10 [20 |30 |40 |So
subjec % % 1% [% [% [% |% |% |% |%
ts 1st
Moveme | 0.28 | 0.31 | 0.35 | 0.36 0.29 0.35 | 0.35
ot s| 5| 5| s|038| o|032| | |03
2nd 0.33 0.35 0.29{0.32 | 036 | 0.37 | 0.39
Moveme 036 2lo37|03s|" : ' : -
t 5 5 s| s| s| s| s
3rd 0.33 038 | 040|029 | 0.31 | 0.32 0.35
Moveme | 0.31 | 0377 ) ' ’ ) 033!
5 st 5| s| s5| s 5
ot _
dth 0.26 0.32 0.26 | 0.32 | 0.35 | 0.35 | 0.37
Moveme 0.29 034|036 i ' )
o 5 5 s| 3| 2| 6] s

Table 4.22: Performance of NMF on iEMG data of amputee subjects to recover
structured missing data of various percentages for day seven

L

Day 7
Mean 1st haif 2nd half -
of 2 10°% | 20 » 40 5 |10 20 30 40 50
snbjec % |[% (% |% |% |[% (% |% |%
ts 1st
Moveme | 0.30]|033]|0.37]0.38] 0.410.29 0.32 0.34 | 035 | 0.37
nt 5 5 5 5 1 5 ’ 5 5 5
2nd
Moveme | 0.34 | 0.36 | 0.37 036| 031031/ 0.34 0.38 0.39 0.41
nt S 9 5 5 5
3rd
Moveme 034036 0.4 | 0.41 0.4 0.33 0.35 036 0.37 0.39
nt 5 5 2 5 5
;;zwm 032 038  4o| 00| 031[033]036 | 037 039
nt a5 | ™ S| ) 5 8 7 1 L




52

4.4.2 PERFORMANCE OF CPD

Fig. 4.8(b) and Fig. 4.9(b) shows the performance of CPD in terms to recover missing
data. It can bz seen for both halves of Day 1 that as the percentage of missing data
increases from 10% to 50%, RME also increase from 0.1 to 0.2 whereas for Day 1 to
7, RME increase from 0.19 to 0.33 for healthy subjects and 0.1 to 0.31 for amputee
subjects indicating poor performance of CPD. Performance of CPD to recover
structured missing data of various percentages for day one to seven on i(EMG data of
healthy subjects has been presented from Table 4.23 to Table 4.29 respectively.
Performance of CPT .= recover structured missing data of various percentages for day
one to seven on iEMG data of amputee subjects has been presented from Table 4.30

to Table 4.3 respectively.

Table 4.23: “erformance of CPD on iEMG data of healthy subjects to recover
structured n:issing data of various percentages for day one

Day 1
Mea 1st half 2nd half
nof 10 20 30 40 50 10 20 3 40 50
10 % (% |% (% |% |% |l (% |% |%
subj | 1st
ect | Movem | 0.09] 011 0.13| 0.15| 0.18
o oo | o5 | on| onl ee| 01f013]016| 019|021
nd 15| 0
T .o | 0091 012| 015|018 020 0.10 | 0.12] 0.15| 017 020
o os| o5| os| eos| os| o2] oz 02| 02| o2
l";l’:vm 01| 011]015] 017] 019| 0.09| 0.12| 0.14| 017 0.20
: 8| 8| 8| 8| 99| 99| 99| 99| a9
ent i
;;:wm 010|013 015] 017 019 | 0.09| 011 0.24| 0.17 | 0.19
g oa| o0af{ 04| o0a| 84| 93| 93| 93| o3| o3




Table 4.24: Performance of CPD on iEMG data of healthy subjects to recover

structured missing data of various percentages for day two

53

Day 2
Mea 1st balf 2nd half
o of 10 (20 [30 |40 |50 |10 |20 |30 |40 |50
10 % (% [% 1% |% |% |4 |% |% |%
subj | 1st
ect |Movem | 0.11| 0.14| 017 0.20| 0.22| 011 | 0.13| 0.15| 0.17] 0.20
ent 65| 65| 65! 65| 65| 7| 7| 7| 7| 7
i'l':wm 011 013]| 015{ 017 | 0.20| 012 | 0.15| 0.18| 0.21] 0.23
ent 95| os| os| es| os| o02| 02| 02| o02] 02
i;gwm 011 014|016 019 022 | 011 013 07| 019 0.21
4| 4| a| a| 4| 39| 19| 19| 19| 19
ent :
;‘l" _|o11] 013|016 019|022 011 0.14| 0.16| 028 021
en't""" sa| 54| 54| 54| sa| 43| 43| 43| 43| 23
Table 4.25: Performance of CPD on iIEMG data of healthy svbjects to recover
structured missing data of various percentages for day three n
Day 3 -
Mes 1st half 2nd balf
n of 10 J20 |30 |40 |50 |10 |20 [30 |40 %0
10 % 1% % |% |% % |4 |% |% |%
subj | 1st
ect |Movem | 0.3 0.15[ 017|019 022| 013 | 0161 0.19] 0.22{ 0.24
ent 35 35 35 35 35 4 4 4 4 4
:'l';’vm 0131 0.16| 0.19| 0.22 | 0.24| 014 | 0.16 | 018 0.20| 0.23
ot 95| os| 95| os| o5| 02| 02| o02! 02| 02
:;:“m 012 | 014 | 018] 020 0221 012 | 015 | 0.17] 0.20 | 0.23
s| el 6| 6| 6| 79| 79| 79| 79| 79
ent
;;tvm 0.13| 0.16| 0.18{ 0.20| 0.22 | 0.12| 0.14 | 0.17 | 0.20 | 0.22
ot oa| o4| 04| 04| 84| 93| 93| 93| 93| 93
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Table 4.26: Performance of CPD on iEMG data of healthy subjects to recover
structured missing data of various percentages for day four

Day 4
Mea 1st balf 2nd half
n of 10 20 [30 |40 [50 [10 [20 |30 |40 |50
10 % % 1% |% [% |% |% |% |% [%
sabj | 1st
ect | Movem | 0.15| 0.18] 0.21] 024 0.26 | 0.15| 017 | 0.19| 0.21 | 0.24
ent os| os| os| os| es| 1| 1| 1| 1| 1
;‘;:vm 015| 017 ] 019 | 0.21{ 0.24 | 0.16 | 0.19 | 0.22| 0.25 | 0.27
o os| 95| os| 95| es| 02| 02! 02! oz| 02
i;gnm 014} 017] 019|022 | 0.25| 0.14 | 0.15| 019} 0.21| 0.23
21 2| 2| 2| 2| 19f 99| 99] 99| e
ent
;;"‘mm 014|016 | 019 | 0.22 | 0.24| 0.14 | 017 | 0.19 | 0.21 | 0.24
ol ™| sa| sal sal se sa| a3| 43| 23| 43| 23

Table 4.27: Performance of CPD on iEMG data of healthy subjects to recover
structured missing data of various percentages for day six

Day 5
Mea ist half 2nd half
nof 10 20 |30 |40 [5 |10 [20 [30 [40 |50
10 % (% (% [% [% % (% |% (% |%
subj | 1st
ect |Movem | 0.16| 0.18 | 0.20| 022 | 0.25| 0.16| 0.19| 0.22| 0.25 | 0.27
ent 75| 75| 15| 75| 15| sl 8| 8| 8| s
:‘;:wm 017| 020 023 | 0.26 | 028 | 0.18 | 020| 0.22 | 0.24 | 0.27
ot 95| o9s| as| os| os| 02| 02| 02| 02| 02
i;g“m 0.15| 017 | 021] 023 025 | 0.15| 0.18 | 0.20| 0.23 | 0.26
6| 4| 4| a| 4| s9| ss| s9| 590 59
ent
;;:vem 016{ 0.19 | 0.21| 023 0.25| 0.15| 0.17 ] 0.20 | 0.23 | 0.25
Vo™ oa| 04| 04 04| 84| 93| 93| 93| 93| 93
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Table 4.28: Performance of CPI} on iEMG data of healthy subjects to recover

structured missing data of various percentages for day six

S5

Day 6
Mea 1st half 2nd half
nof 10 20 K] 40 50 10 20 30 40 50
10 e % Y% % % Y% % % % %
subj | 1st
ect Movem | 0.18 ] 0.21 0.24 | 0.27 | 0.29| 0.18]| 0.20| 0.22 | 0.24 | 0.27
ent 45 45 45 45 45 5 5 5 5 5
2nd
Movem 019|021 ( 0.23 | 0.25| 028 | 0.20| 0.22 | 0.26] 0.29} 0.31
ent 95 95 95 95 95 02 02 02 02 02
3rd 016 | 0.18 0.22 | 0.24 | 0.26
Movem | 0.17 0.2 0.22| 0.25| 0.28 59 79 79 79 79
ent )
;‘I"'mm 017] 019 0221 0.25| 0..7] 017 | 0.20| 0.22| 0.24 | 0.27
ent 54 g4 54 54 54 43 43 43 43 23

Table 4.29: Performance of CPD on iEMG data of healthy subjects to recover

structured missiug data of various per :entages for day seven

Day 7

Mea 1st half 2ad half

nof 10 |20 [30 |40 |s0 |10 |20 |30 |40 |50

10 % 1% % (% (% |% (% (% |% |%

subj | 1st

ect |Movem | 020 | 022 | 024{ 026 | 0.29| 020| 0.23| 0.26 | 0.29| 0.31
ent 15| 15| 15| 15| 15| 2| 21 2| 2| 2
2nd
Movem | 021 | 024|027/ 030] 032 022 | 0.24| 0.26 | 0.28 | 0.31
ent gs| os| os| e5| a5| 02| 02| 02| 02| 02
i[":vm 0.18 | 0.20| 0.24| 0.26 | 0.28 | 0.18| 0.21 | 0.23 { 0.26 | 0.29
et | 4| 2| 2| 2y 2| 39| 39f 39| 39| 39
;;"'mm 019|022 | 024! 026| 028 018 0.20( 0.23| 0.26 | 0.28
ot o4o4040434!93 93| 93| 93| o3
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Table 4.30: Performance of CPD on iEMG data of amputee subjects to recover
structured missing data of various percentages for day one

Day 1
Mea 1st half 2nd half
nof2 10 |20 [30 |40 |50 10 [20 |30 |40 [%0
subje Y [% (% |% (% |% [% (% |% |%
cts ist
Move 0.09] 012 0.15| 0.18 | 0.20
ot 01| 012|014 016]019| "o Vol Vol Vol | Vas
i'l': 0.09| 012 015| 018! 020! 010/ 0.12| 0.15| 017 0.20
ve 85| 8| 8| 8| 85| 05| os| os| os| o5
ment
:a“' 0.09( 011 0.15| 0.17| 0.19 | 0.09| 612 | 0.14 | 0.17 | 0.20
ove 8| 6| 6| 6| 6| 95! 95| o5| o5| g5
ment |
;;h 0.10]| 013 0.5 0.17{ 019 0.09 | 0.11| 0.14]| 017! 0.19
m::: 15{ 15| 15| 15| 95| 95| 95| 95| 95 os

Tabie 4.31: Performance of CPD on iEMG data of amputee subjects to recover
structured missing data of various percentages for day two

Day 2
Mea 1st half 2nd half
nof 2 10 [20 [30 |40 [S0 |10 (20 |30 |40 |50
subje % 1% (% % % |% (% |l%u |% |%
cts 1st
Move |0.1(0.14017] 020|022 011] 013 0.15] 0.17 | 0.20
ment 71 70 7] 7| 7| es| es| es| esi es
2nd
Move | 011 0.13] 05| 017] 020 0.12| 015 | 0.18| 0.21 | 0.23
yow 8s| 85| 85| 85| 8| os| os| os| os| os
;I":w 011|014 0.16( 019 | 022 0.11] 0.13 | 017 | 0.19 | 0.21
meat |21 2| 2| 2| 2| 3s| 15| 15| 15| 15
;;:ve 0.11( 013 0.16{ 0.19 | 021 | 0.11| 6.4 | 0.16 | 0.18 | 0.21
Mow 65| 65| 65| 65| 65| 45| 45| as| 45| 25
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Table 4.32: Performance of CPD on iEM(; data of amputee subjects 1o recover
structured missing data of various percentages for day three

Day 3
Mea 1st half 2nd half
nof 2 10 [20 |30 [40 (50 |10 [20 |30 |40 |50
subje % Ya Y% % Yo % Y% Yo % %
cts 1st
Move |0.13!015] 017|019 0.22] 013|016 0.15| 0.22 | 0.24
ment a| a| a4l 4| 4| 35| 35| 35| 35| 35
2nd
Move | 013/ 0161019 022| 024|014 | 0.6 | 0.18| 0.20 | 0.23
85| 85| 85| 85| 85| os| os| os| os] oS
ment
mve 012 | c1a| 018|020/ 022] 012 0.15{ 0.47] 0.20 | 0.23
e| a| a| a| a| 75| 5| 75| 15| 75
ment
;ﬂw 013|016]| 018|020 022 012 | 0141 0.17| 020 | 0.22
polé 15| 15 15| 15| 95| 95| 95| 95| 95| g5

Table 4.33: Pe-formance of CPD on iEMG data of amputee subjects to recover
structured missing data of various percentages for day four

Day 4
Mea 1st half 2nd half
nof2 10 pl ] M 40 50 10 20 30 40 50
subje % Y% % % % % Yo %% % Ya
cts 1st
Move |0.15[0.18|021]024|026|015|0.17| 0.19| 0.21| 0.24
ment 1 1 1 1 1 (#13 05 Q5 05 05
20d 15951047 019 021 024 | 016 | 0.19 | 0.22| 0.25 | 0.27
Move . . ) . . . . . . :
ment &8s a5 85 85 a5 05 0s 05 Qa5 0s
3rd 0.14| 0.15| 0.19| 0.21 | 0.23
Move | 014|017 019{ 022|025 " 5| 95| 95| o5 o5
ment
;;:ve 0.14 | 0.16 | 0.19 | 0.22 | 0.24| 0.14 ] 0.17| 0.19] 021 0.24
ment 65 65 65 65 BS 45 45 45 45 25
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Table 4.34: Performance of CPD on {EMG data of amputee subjects to recover
structured missing data of various percentages for day five

Day §
Mea 1st half 2nd half
nof2 10 20 30 40 50 10 20 ! 30 40 50
subje % ) Y% % % % % % % %
cis 1st
Maove 016]| 0.18( 0.20| 0.22]| 0.25| 0.16 | 0.19| 0.22 | 0.25| 0.27
ment 8 8 8 3 8 75 75 75 75 75
2nd )
Move 017] 020 0.23 ] 026 ]| 0.28 | 0.18| 0.20| 0.22 | 0.24 | 0.27
ment 85 a5 85 85 85 05 05 05 05 05
lsl'l':ve 015 017 0.21] 0.23} 0.25| 0.15( 0.187 0.201 0.23 | 0.26
ment 4 2 2 2 2 55 55 55 55 55
;;:ve 016 019 021 0.23| 0.25| 0.15 0.17} 0.20) 0.23 | 0.25
ment 15 15 15 15 95 95 95 895 95 95

Table 4.35: Performance of CPD on iIEMG data of amputee subiects to recover

structured missing data of various perceniages for day six
.

Day 6 :
Mea 1st half 2nd half
nof2 10 20 30 40 50 10 20 30 40 50
subje Y% (% |% |% |% [ Ya % |% | %
cis 1st
Move 018] 021 ]| 0.24] 0.27] 029 0.18 | 0.20 | 0.22| 0.24 | 0.27
ment 5 5 5 5 5 45 45 45 45 45
2nd
Move 019021 023]|0.25| 0.28| 0.20| 0.23( D.26| D.29 | 0.31
ment 85 85 85 85 85 05 05 05 05 Q5
i;:“ 0161019021024} 0271016 018 0.22| 0.24 | 0.26
ment 8 8 8 3 3 85 75 75 75 75
;;::lwe 0.171 019 0.22| 0.25| 0.27| 0.17 ! 020 0.22 | 0.24 | 0.27
ment 65 65 65 65 65 45 45 45 45 25
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Table 4.36: Performance of CPD on iEMG data of amputee subjects to recover
structured missing data of various percentages for day seven

Day 7
Mea 1st half 2nd half
nof 2 10 (20 [30 [40 |50 [10 120 [30 |40 |50
subje % % Y Y% % Y% %o Yo % %
1st
Move | 0.20| 0.22]{ 024 026|029| 0.20| 0.23| 0.26 | 0.29 0.31
ment 2 2 2 2 2 15 15 15 15 15
i‘l':v 021|024 027|030 032022024/ 0.26| 0.28| 0.31
¢ 8s| 8s| 8| 85| 85| os5| os| os| os{ os
ment
3rd 0.18 0.8 | 021|023/ 0.26 | 0.29
Move 2| 02024/ 026(028| "o | V| 3e| 3| 3
ment
;;:ve 0.19, 0.22 | 0.24| 0.26 | 028 | 0.18 0.20 | 0.23 | 0.26 | 0.28
hont 15| 15| 1s| 15| 95| 95| 95| 95| 95| g5

443 PERFORMANCE OF CP-WOPT

Fig. 4.8(c) and Fig. 4.9(c) show the performance of our proposed framework CP-
WOPT. It can be seen for both halves of Day 1 that as the percentage of missing data
increases from 10% to 50%, the RME increases slightly from 0.083 to 0.087.
Likewise, for Day 1 to 7, RME increases slightly from 0.080 to 0.099. F ig. 4.8(c) and
Fig. 4.9(c) shows that as total amount of observed data increase from day 1 to 7 along
with missing data, overall the RME increases just slightly from 0.08 to 0.09 which
shows robustness of our framework against large percentage of missing data,

Fig. 4.10 shows criginal iEMG data with all movements hidden in noise and then the
signal obtained after applying CP-WOPT to it. Fig. 4.10(a) shows the original noisy

iEMG signal comprising all four movements hidden in noise, which makes
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classification of movements difficult. Fig. 4.10(b) shows the same iEMG signal with

CP-WOPT applied on it which recovers the missing movement zpochs efficiently

from noisy iEMG signal. If we compare both iEMG signals, it can be seen that Fig.

4.10(b) is much more suitable for classification as compared to Fig. 4.10(b).

Performance of CP-WOPT to recover structured missing data of various percentages

for day one to seven on iEMG data of healthy subjects is presented in Tables 4,37 -

4.43 respectively. Performance of CPD to recover structured missing data of various

percentages for day one to seven on iEMG data of amputee subjects has been

presented from Table 4.44 to Table 4.50 respectively.
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Fig. 4.10 a) Original iEMG data with movements hidden in noise (b} Recovered

movements by CP-WOPT
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Table 4.37: Performance of CP-WOPT on IEMG data of healthy subjects to recover
structured missing data of various percentages for day one

Day 1

Mea 1st halfl 2nd half

n of 10% | 20% | 30% | 40% | 50% | 10% | 20% | 30% | 40% | S0%

10 | 1st

sabj | Move | 008 | 0.08| 0.08| 0.08| 0.08| 0.08| 0.08( 0.08| 0.08| 0.08

ect | ment 036| 136| 336 636| 836 | 033| 133 | 233 | 433 | 633
:::ve 008| 08| 0.08| O.OB| 008 | 0.08| 008 | 008 | 0.08 | 0.08
ment 033 | 233| 353 453 633 | 036| 236| 336| 536| 636
:;31@ 008| 008| 008| D08 | 00871 008 0.08| D.O&| 0O8! Q.08
ment 033 | 235| 435 635| 735| 035| 135| 335( 535, 635
:;:ve 008|008 0.08| 0DO8B| 008 008 | 0,08 | 0.08| Q.08 0.08
ment 0361 135 08 as 25| 036 336 | 536 | 636 836

Table 4.38: Performance of CP-WOPT on iEMG data of healthy subjects to recover
structured missing data of various percentages for day two

Day 2
Mea Tst hall 2nd balf
nof 10% [20% | 30% | 40% | 50% | 10% | 20% | 30% | 40% | 50%
10 st
subj | Move | 0.08 | 0.08 | 0.08| 0.08| 0.08| 0.08| 0.08| 0.08| 0.08| 0.09
ect |ment | 236| 336| 436| 636| 836| 233| 333| 533| 833| 033
:;:w 0.08| 008 | 0.08| 0.08| 0.08| 0.08| 0.08| 0.08| 0.08] 0.08
vove | 133| 333| 433| 633| 733| 146| 336| 438| 536| 736
il":w 0.08 | 0.08| 0.08| 0.08| 0.08| 0.08| 0.08| 0.08| 0.08| 0.08
235 | 335 | sa5| 735| 83s| 236| a3s| 635| 835| 9s5
ment
;;‘;w 0.08 | 0.08| 0.08| 0.08| 0.08| 0.08| 0.08| 0.08| 0.08| 0.08
vove | 135| 43| e35| 735| 935 136| 236| 07| o0s| 26
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Table 4.39: Performance of CP-WOPT on iFMG data of healthy subjects to recover
structured missing data of various percentages for day three

Day 3
Mea 1st half 2nd half
n of 10% | 20% | 30% | 40% | 50% | 10% | 20% | 30% | 40% | 50%
10 | 1st
subj | Move | 008 0.08| 0.08| 0.09| 0.09| 0.08| 0.08| 0.08| 0.08| 0.09
ect |ment | 436| 536| 736| 036| 236| 433 533| 633| 833| 033
i'l“*v 008 | 0.08| 0.08| 0.08{ 0.08| 0.08| 0.08! 008 | 0.08| 0.08
OVE | 233| a3a| s33| 633| 833| 236| 436| 536 736| 836
ment
i!"" 0.08| 0.08| 0.08| 0.00| 0.09| 0.08) 0.08 0.08| 0.08! 0.09
OVe | 43s| e3s! 835| 035| 135( 435/ s535| 735| 935 o035
ment al
4th | 08| 008 0.08] 0.08] 0.08| 0.08] 008! 008/ 0.08| 0.09
Im":n‘: 235! 335] o7| o5| 25| 236| s536| 736( 836| 036

Table 4.40: Perfc mance of CP-WOPT on iEMG data of healthy subjects to recover
structured missing data of various percentages for day four

Day 4
Mea 1st half 2nd half
nof 10% | 20% | 30% | 40% | 50% | 10% | 20% | 30% | 40% | 50%
10 [1st
subj | Move | 008 | 0.08] 0.08| 0.09| 0.09| 0.08| 0.08| 0.08| 0.09| 0.03
ect |ment | 636| 736| 836| 036| 236 633| 733 | 933| 233| 433
i'l':v 0.08| 0.08| 0.08| 0.08| 0.08| 0.08] 0.08| 008! 008! 0.08
€ | 333] s33| 633 833 933| 336| s36| 636 736| 936
ment
g;: 0.08| 0.08| 0.08| 0.09( 0.09] 0.08| 0.08| 0.09| 009! 0.09
Ve | 635| 73s| o35| 135| 235| 635| 835 035| 235/ 335
ment
;rtltve 0.08 | 0.08| 008 0.08{ 0.09| 0.08| 0.08| 0.08| 0.08| 0.08
mone | 335] 635 35| 93s| 135| 336| 436| o7 05| 25
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Table 4.41: Performance of CP-WOPT on iEMG daia of healthy subjects to recover
structured missing data of various percentages for day five

Day 5
Mea 1st half 2nd half
a of 10% | 20% | 30% | 40% | 0% | 10% | 20% | 30% | 40% | 50%
10 1st
subj | Move | 0.08| 0.08{ 0.09| 0.09| 0.03| 0.08 | 0.08| 6.09| 0.09| 0.09
ect |ment | 836 936 136| 436| 636| 833 ] 933| 033| 233| 433
i;:w 0.08| 0.08| 0.08| 0.08| 0.09| 0.08| 0.08| c.08] 0.08] 0.09
233 | 633 | 733| 833| 033| 436| 636| 736 536| 036
ment
i;d 008 | 009 0.00| 0.09| 0.00| 0.08| 0.08| 0.09] 0.09| 0.09
OV€ | gas| o035| 235| 435| s3s| 835 | 935 135] 2335] 435
ment
‘;‘{" 0.08 | 0.08| 0.08 | 0.08| 0.08| 0.08| 0.08| 0.08| 0| 0.09
m::: 235| sas| o7| os| 25| a36| 736| 936 036| 236

Table 4 42: Performance of CP-WOPT on iEMG data of healthy subjects to recover
structured missing data of various percentages for day six

Day 6
Mea 1st half 2nc. balf
nof 10% | 20% | 30% | 40% | 50% | 10% | 20% | 30% | 40% | 50%
10 1st
subj | Move | 0.09| 0.09| 0.09| 0.09| 0.09| 0.090| 0.09| 0.09| 0.09| 0.09
ect |memt | 036| 136| 236| 436| 636| 033 | 133| 333| 633 833
i'i“’ 0.08| 0.08| 0.08| 0.00| 0.09} 0.08| 0.08] 0.08| 0.08| 0.09
OVe | 533 733| 833| 033 133! s536| 7361 836| 936] 136
ment
i;‘: . | 0091 009 009]| 009 0.09] 009 | 0.09| 0.09| 0.09| 0.09
V€ | 035 135| 335| 535| 635] 035| 235| 435! 635! 735
ment
;;:ﬁ 0.08 | 0.08 | 0.09| 0.09| 0.09| 0.08| 0.08| 0.08| 0.08 | 0.08
ment | 535] 835| 035| 135} 335| s36| 63| 07| 05| 25
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Table 4.43: Performance of CP-WOPT on iEMG data of healthy subjects to recover
structured missing data of various percentages for day seven

Day 7
Mea Ist haif 2nd half
o of 10% | 20% | 30% | 40% | 50% | 10% | 20% | 30% | 40% | 50%
10 1st
subj | Move | 0.09| 0.09| 0.09| 0.09| 0.10| 0.09 | 0.09| 0.09| 0.09| 0.09
ect |ment | 236| 336| 536| 836| 036| 233 | 333| 433| 33| 833
i‘l‘:m 0.08! 0.08| 0.08| 0.09| 0.09| 0.08| 0.08| 0.08| .09 0.09
633 833| 933| 033| 233| 636 836! 936 136| 236
ment
i{“‘v 0.09| 0.09| 0.09| 0.09| 0.09| 0.09! 0.09| 0.09| 0.09| 009
OV€ | 2351 435 635| 835| 935| 235 335| s35| 73s| 835
ment
fﬁ:ve 0.08| 0.08| 0.08| 0.08| 0.08| 0.08| 0.08] 0.09| 0.09| 0.0
dov | 635 735| 07| os| 25| 636| 936| 136| 236 | 436

Table 4.44: Performance of CP-WOPT on iEMG data of amputee subjects to recover
structured missing data of various percentages for day one

: Day 1

{ Mea 1st half 2nd half

nof 10% | 20% | M0% | 40% | 50% | 10% | 20% | 30% | 40% | 50%
10 1st
subj | Move OOB| O0G8| 008| 008 0.08| 008 | O08) D.08} 0.08| OCE
ect | ment 03 13 33 63 83 03 13 23 43 a3

i'l':w 0.08 | 0.08| 0.08| 0.08| 0.08] 0.08| 0.08| 0.08]| 0.08! 0.08
035| 235| 335| 435| 635| 03| 23| 33| s3| 63

ment

il“’ 0.08| 0.08| 0.08| 0.08]| 0.08] 0.08| 0.08| 008! 0.08| 0.08

OV | o3| 23| 43| 63| 73| o3| 13| 33] s3] e3l

ment

4h | 508| 0.08| 0.08| 0.08]| 0.08| 0.08| 0.08| 0.08] 0.08| 0.08

Move

035 135 07 05 25| 035( 335| 535| 635 835

ment
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Table 4.45: Performance of CP-WOPT on iEMG data of amputze subjects to recover
structured missing data of various percentages for day two

Day 2
Mea 15t balf 2nd half
nof 10% | 20% | 30% | 40% | 50% | 10% | 20% |30 |40 |50
10 % % |%
subj | 1st
ect |Move | 0.08| 0.08| 0.08| 0.08| 008! 008 | 0.08|0.08|0.08|0.09
ment | 23| 33| 43| e3| 83| 23| 33| 53| 83| o3
12\;:“ 0.08| 0.08| 0.08| 0.08| 0.08| 0.08| 0.08]0.08|0.08|0.08
135| 335| 43s| 635 735| 13| 33| 43| s3| 73
ment
:;gve 0.08| 08| 0.08| 0.08| 0.08{ n.08| 0.08|0.08|008]0.08
23| 33| s3| 73| 3| 23| 43| e3| s3| @3
ment .
;I“;“ 0.08| 0.08| 008| 0.08| 0.0s| Vo8| 0.08|0.08| 008|008
mowe | 135| 435| 635 735| 93s| 135| 235( 07| o5| 3

Table 4.46; Performance of CP-WOPT on iEMG data of amputee subjects to recover
structured missing 42*a of various percentar es for day three

Day 3
Mea 1st half 2ad half
m of 10% | 20% | 30% | 40% | 50% | 10% | 20% | 30% | 40% | 50%
10 | 1st
snbj | Mave | 0.08| 0.08| 0.08[ 0.09| 0.09| 0.08| 0.08| 0.08 | 0.08| 0.09
ect | ment 43 53 73 03 23 43 53 63 33 03
2] “ld e 0.08| 0.08; 008{ 0.08| 0.08| D.08| 0.08| 0.08| 008 0.08
235| 435| 535| 635 835 23 43 53 73 83
ment
:rll.:lwe 008 OQO0R2| 0O0B| 009! D09 | 0.08| Q.OR| 0.08| 0.08 | 0.09
43 63 83 03 13 43 53 73 53 03
ment
4] ﬂ'[ e 008| 00B| 008 D.08| 008 | 0.08| 0.08( 0.08]| 0.08| 0.09
ment 235 | 335 07 0s 25| 235| 535 735| 835| 035
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Table 4.47: Performance of CP-WOPT on iEMG data of amputee subjects to recover
structured missing data of various percentages for day four

Day 4
Mea Ist haif Ind baif
nof 10% [ 20% | 30% | 40% | 50% | 10% | 20% |30 |40 |50
10 % |% |%
subj | 1st
ect |Move | 0.08| 0.08| 0.08| 0.09| 0.09| 0.08| 0.08| 008|009 0.09
ment | 63| 73| 83| o3| 23| e3| 73| 93| 23| a3
i;‘:ve 0.08| 0.08| 0.08| 0.08| 0.08| 0.08| 0.08|0.08{0.08|0.08
335| s35] 63s| 835| 93s| 33| 53| 63| 73| o3
ment
:1";’“ 008! 0.08| 0.08] 0.09| 0.05| 0.08| 0.08]0.09|0.09|0.09
63| 73| 93| 13| 23| e3| 83| o3| 23| 33
ment
;;';ve 0.08| 0.08| 0.08] 0.08| 0.09) 0.08{ 0.08|0.08| 008|008
v | 335| 635| 835| 93s| 135| 335| a3s| 07| os| 25

Table 4.48: Performance of CP-WOPT on iEMG data of ampuiee subjects to recover
structured missing data of various percentages for day five

Day 5
Mea 15t balf 2nd half
n of 10% | 20% | 30% | 40% | S0% | 10% | 20% | 30% | 40% | 50%
10 1st
subj | Move | 008! 0.08| 0.09| 0.09| 0.09! 0.08| 0.08| 0.09| 0.09| 0.0
ect iment | 83| 93| 13| 43| 63| 83| 93| o3| 23| a3
;‘I‘:w 0.08 | 0.08 | 0.08| 0.08| 0.00| 0.08| 0.08| 0.08| 0.08| 0.00
435 | 635| 735| 835| 035| 43| 63| 73] 93| o3
ment
g‘l’ﬂv . | 008| 009| 0.09| 009| 0.09| 0.08 | 0.08| 0.09| 003 | 0.09
83| 03] 23| 43| 53| 83| se3| 13| 33! a3
meni
“N'ltw 0.08 | 0.08| 0.08| 0.08| 0.08| 0.08| 0.08| 008 0.09 | 0.09
moni | 435| 535[ 07] os| 25| a35| 735| 935| 035| 235
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Table 4.49: Performance of CP-WOPT cn iEMG data of amputee subjects to recover
structured missing data of various percentages for day six

Day 6
Mea Tst haif Ind half
nof 10% | 20% | 30% | 40% | 50% | 10% | 20% |30 |40 |50
10 % |% |%
subj | 1st
ect |Move | 0.09] 0.09| 0.09{ 0.09| 0.09| 0.09| 0.09) 0.09|0.09] 0.09
ment | 03| 13| 23| 43| 63| 03| 13| 33| 63| 83
;'l':w 008 | 0.08| 008| 0.09| 0.09| 0.08| 0.08|008]|0.08]|0.09
53s| 73s| 835| o3s| 135| s3] 73| 83| 93| 13
ment
:"':w 0.09| 0.09( 0.09| 0.02( 0.09] 0.00| 0.09|0.09| 0009|009
03| 13| 33| s3a| e3| o3| 23| a3| €3] 73
ment
;;:w 008 | 0.0s| 009 0.09| 0.09| 008| 0.08|0.08[ 008|008
oov? | s35| e3s| oas| 135| 335| s3s| €3s| 07| os| 25

Table 4.50: Perform: nce of CP-WOPT on iEMG data of amputee subjects to recover
structured missing d :a of various percentages for day seven

Day 7
Mea 1st half 2nd half
n of 10% | 20% | 30% | 40% | 50% | 10% | 20% | 30% | 40% | 0%
10 1st
subj | Move | 0.09| 0.09| 0.09| 0.09] 0.10| 0.09| 0.09| 0.08| 009! 0.09
ect |memt | 23| 33| 53! 83| o3| 23| 33| 43| 63| =83
i'i':w 0.08| 0.08| 0.08| 0.08]| 0.09| 0.08| 0.08| 0.08! 0.09| 0.09
635| 835| 935| 035| 235| 63| 83| 93| 13| 23
ment
i;:‘w 009 0.09| 009 0.03| 0.09| 0.09| 0.09| 0.09| 0.09| 0.09
ool 23| a3| e3| 83| o3| 23| 33| 53| 73| @3
;;:“ 0.08 | 0.08| 0.08| 0.08] 0.08| 0.08| 0.08| 0.09{ 0.09| 0.08
mewe | 635 735| 07] os| 25| 635 935| 135] 235 43
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4.5 Benchmarking comparison

Unstructured and structured missing data has been recovered in simulated, SEMG and
iEMG data by employing NMF, CP and CP-WOPT. Results show that overal] performance
of NMF and CP/PARAFAC on EMG data was between 0.3 and 0.6 (in terms of RME)
whereas CP-WOPT outperformed both NMF and CP/PARAFAC as it recovered missing
data with much more accuracy of up to 0.1 i.e. in extreme case when size of missing data

was too large.
4.6 Research contribution

Research contributions of first study are:

a) For the first time, missing data in EMG signals are recovered using the tensor

factorization-based method. "

L 40

b) We compare both matrix factorization, and tensor factorization-based approaches to
recover missing data in noisy simulated data and real-world EMG data to show that the

tensor-based approach outperforms matrix factorization based approach.

¢) We address the problem of missing data in extreme cases when up to half consecutive
EMG samples of a particular channel are missing. Qur proposed framework successfully
recovers the missing data even in such an extreme case.
Research contributions of second study are:

1) Missing data from iEMG signals of both healthy and amputee subjects are recovered

using state-of-the-art tensor factorization methods.
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2) We compare the porformance of matrix and tensor factorization methods to recover
missing data in real-world iZMG signals. Furthermore, we utilize EMG data of seven days
and test the performance of both matrix and tensor factorization methods in a large
multiday dataset.

3) We consider the case when up to 50% iEMG data is missing from day 1 to 7 and test
the performance of both matrix and tensor factorization methods. We show that CP-
WOPT outperformed both NMF and CPD to recaver missing data even in the worst-case

scenario.
4.7 Sumimary

Poth matrix (NMF) and tensor factorization methods (CPD and CP-WOPT) are employed
on SEMG of healthy subjects and iEMG signals of healthy as well as amputee subjects to
explore their ability to recover missing data. To further explore the effect of the size of
missing data on performance of factorization methods, we gradually increased the total
size of missing iIEMG data by including data from day 1 10 day 7. For each day we
increased the percentages of missing data from 10% to 50%. We removed data from two
halves. From first half we removed data from 10% to 50% i.c. 10% means removal of data
from initial 10% values. Removal of 10% from second half means removing last 10%
values. The main finding is that as the size of missing data increases, the performance of
NMF and CPD degrades substantially, however, CP-WOPT outperformed both NMF and

CPD in terms of RME.

The results of different analyses show that CP-WOPT not only outperformed both NMF

and CPD, but it also performed much better over SEMG data of single day and iEMG data
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of multiple days, and hence, the results were consistent with the notion that CP-WOPT

performs comparatively better when the size of missing data is too large [33, £4].

i
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Chapter 5.

Conclusion and Further Work

Two different studies were performed in this dissertation. The main objectives of the
first study was to evaluate the performance of weighted CP in comparison with classical
matrix and tensor factorization methods on synthetic and healthy SEMG data of single
day. The objective of the second study were to test the performance of weighted CP on
intramuscular EMG data recorded over multiples days using both healthy and amputee
subjects,

This chapter discusses the outcomes and main findings after evaluating all these

objectives.
5.1 Conclusion

In this dissertation, mainly matrix and tensor factorization algorithms are explored for
engineering applications such as possible improvement in myoelectric control schemes
(prosthetic arm) and evaluate the long-term performance with both the surface and
intramuscular EMG data. Performance comparison of NMF, PARAFAC with CP-
WOPT showed that CP-WOPT outperformed both NMF and PARAFAC in SEMG and
iEMG signals of both healthy and amputee subjects for single as well as multiday data.
CP-WOPT showed significant performance in recovering both unstructured and

structured missing data.
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Proposed framework has been tested with Non-Negative Matrix Factorization (NMF)
and Parallel Factor Analysis (PARAFAC) on sin.alated as well as on offline EMG
signals having unstructured missing values {randomly missing data ranging from 60%
to 95%) and structured missing values. In the case of structured missing data having
different channels, the percentage of missing data of a channel goes up to 50% for
different movements. It has been observed empirically that the proposed framework
recovers the missing data with relatively much improved accuracy in terms of Relative
Mean Error (up to 50% and 30 % for unstructured and structured missing data
respectively) as compared to matrix factorization methods even when the portion of
unstructured and structured missing data reaches up to 95% and 50%, respectively.
Moreover results of our yroposed framework are much better than benchmark paper |
and 2, in terms of recove: :ng missing data. Proposed frameworks are extensively tested
on moderate to large sE. AG and iEMG datasets for both healthy and amputee subjects
which were missing in benchmark paper 1 and 2.

Novel tensor factorization framework based on CP-WOPT has been designed based
on strong mathematical foundations of multilinear algebra. Moreover, proposed
tensor factorization framework has been applied to real-life surface and intramuscular

EMG data of both healthy and amputee subjects.

Classification performed using test with recovered samples is expected to yield far

better accuracy resulting in improved myoelectric control.
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5.2 Further work

Although findings of chapter 4 are promising, but the analysis were performed offline
and hence the generalization of CP-WOPT in real time needs to be investigated in
future. Limited number of amputee subjects also limits the generalization of results.
Moreover, database for this study included data of only seven days. Therefore, future
studies will include more number of both able-bodied and amputee subjects and
protocol will be made to include data collection over weeks.

Preliminary study based on exploring strength of CP-WOPT to recover missing data
proved that CP-WOPT could improve the field of myoelectric control by irrpr ving
classification accuracy. Again, this study was also performed offline and with only ten
able-bodied subjects which limits the generalization of results. Therefore, future studies
will include data spanning over a longer duration of time, for example ifrom 2t04
weeks. CP-WOPT will also be explored in real-time application. :'Furthermore,
performance of classification before and after recovering missing data will be

compared in future study.
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